A Solution Manual For

Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Nasser M. Abbasi

May 16, 2024

Contents

1	Chapter 4.1, Higher order linear differential equations. General theory. page 173	2
2	Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180	15
3	Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255	27
4	Chapter 6.4, The Laplace Transform. Differential equations with discontinuous forcing functions. page 268	41
5	Chapter 6.5. The Laplace Transform, Impulse functions, page 273	60

1 Chapter 4.1, Higher order linear differential equations. General theory. page 173

1.1	problem 1		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
1.2	problem 2																																			4
1.3	problem 8																																			5
1.4	problem 9																																			6
1.5	problem 10	١.																																		7
1.6	problem 11																																			8
1.7	problem 16		•																•																	9
1.8	problem 17		•																																	11
1.9	problem 20	١.																																		13
1.10	problem 21																																			14

1.1 problem 1

Internal problem ID [812]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

 ${\bf Section} \colon$ Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 1.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _with_linear_symmetries]]

$$y'''' + 4y''' + 3y = t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 182

dsolve(diff(y(t),t\$4)+4*diff(y(t),t\$3)+3*y(t)=t,y(t), singsol=all)

$$y(t) = \frac{t}{3} + e^{-t}c_1 + c_2 e^{\frac{t\left(\left(\sqrt{2}-2\right)\left(4+2\sqrt{2}\right)^{\frac{2}{3}}-2\left(4+2\sqrt{2}\right)^{\frac{1}{3}}-2\right)}{2}} + c_3 e^{-\frac{t\left(\left(\sqrt{2}-2\right)\left(4+2\sqrt{2}\right)^{\frac{2}{3}}-2\left(4+2\sqrt{2}\right)^{\frac{1}{3}}+4\right)}{4}}{\cos\left(\frac{t\left(4+2\sqrt{2}\right)^{\frac{1}{3}}\left(2+\left(\sqrt{2}-2\right)\left(4+2\sqrt{2}\right)^{\frac{1}{3}}\right)\sqrt{3}}{4}\right)}{4} + c_4 e^{-\frac{t\left(\left(\sqrt{2}-2\right)\left(4+2\sqrt{2}\right)^{\frac{2}{3}}-2\left(4+2\sqrt{2}\right)^{\frac{1}{3}}+4\right)}{4}}{\sin\left(\frac{t\left(4+2\sqrt{2}\right)^{\frac{1}{3}}\left(2+\left(\sqrt{2}-2\right)\left(4+2\sqrt{2}\right)^{\frac{1}{3}}\right)\sqrt{3}}{4}\right)}{4}}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 100

DSolve[y''''[t]+4*y'''[t]+3*y[t]==t,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_2 \exp \left(t \operatorname{Root} \left[\# 1^3 + 3 \# 1^2 - 3 \# 1 + 3 \&, 2 \right] \right)$$

+ $c_3 \exp \left(t \operatorname{Root} \left[\# 1^3 + 3 \# 1^2 - 3 \# 1 + 3 \&, 3 \right] \right)$
+ $c_1 \exp \left(t \operatorname{Root} \left[\# 1^3 + 3 \# 1^2 - 3 \# 1 + 3 \&, 1 \right] \right) + \frac{t}{3} + c_4 e^{-t}$

1.2 problem 2

Internal problem ID [813]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 2.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _with_linear_symmetries]]

$$t(-1+t)y'''' + e^t y'' + 4yt^2 = 0$$

X Solution by Maple

 $dsolve(t*(t-1)*diff(y(t),t$4)+exp(t)*diff(y(t),t$2)+4*t^2*y(t)=0,y(t), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[t*(t-1)*y''''[t]+Exp[t]*y''[t]+4*t^2*y[t]==0,y[t],t,IncludeSingularSolutions -> True]

Not solved

1.3 problem 8

Internal problem ID [814]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 8.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + y'' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(t),t\$4)+diff(y(t),t\$2)=0,y(t), singsol=all)

$$y(t) = c_1 + c_2 t + c_3 \sin(t) + c_4 \cos(t)$$

✓ Solution by Mathematica

Time used: 0.098 (sec). Leaf size: 24

DSolve[y'''[t]+y''[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_4 t - c_1 \cos(t) - c_2 \sin(t) + c_3$$

1.4 problem 9

Internal problem ID [815]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 9.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 2y'' - y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(t),t\$3)+2*diff(y(t),t\$2)-diff(y(t),t)-2*y(t)=0,y(t), singsol=all)

$$y(t) = (c_1 e^{3t} + c_3 e^t + c_2) e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 28

DSolve[y'''[t]+2*y''[t]-y'[t]-2*y[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-2t} (c_2 e^t + c_3 e^{3t} + c_1)$$

1.5 problem 10

Internal problem ID [816]

 $\mathbf{Book} \text{: } \mathbf{Elementary \ differential \ equations \ and \ boundary \ value \ problems, \ 11th \ ed., \ Boyce,}$

DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 10.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$xy''' - y'' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(x*diff(y(x),x\$3)-diff(y(x),x\$2)=0,y(x), singsol=all)

$$y(x) = c_3 x^3 + c_2 x + c_1$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 21

DSolve[x*y'''[x]-y''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1 x^3}{6} + c_3 x + c_2$$

1.6 problem 11

Internal problem ID [817]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 11.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _exact, _linear, _homogeneous]]

$$x^3y''' + x^2y'' - 2y'x + 2y = 0$$

✓ <u>Solution</u> by Maple

Time used: 0.016 (sec). Leaf size: 20

 $dsolve(x^3*diff(y(x),x$3)+x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_2 x^3 + c_1 x^2 + c_3}{x}$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

$$y(x) \to c_3 x^2 + c_2 x + \frac{c_1}{x}$$

1.7 problem 16

Internal problem ID [818]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory, page 173

Problem number: 16.

ODE order: 3. **ODE** degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 2y'' - y' - 3y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 183

dsolve(diff(y(x),x\$3)+2*diff(y(x),x\$2)-diff(y(x),x)-3*y(x)=0,y(x), singsol=all)

$$y(x) = c_{1}e^{-\frac{2x\left(-\frac{\left(188+12\sqrt{93}\right)^{\frac{2}{3}}}{4} + \left(188+12\sqrt{93}\right)^{\frac{1}{3}} - 7\right)}{3\left(188+12\sqrt{93}\right)^{\frac{1}{3}}}}$$

$$-c_{2}e^{-\frac{\left(28+\left(188+12\sqrt{93}\right)^{\frac{2}{3}} + 8\left(188+12\sqrt{93}\right)^{\frac{1}{3}}\right)x}{12\left(188+12\sqrt{93}\right)^{\frac{1}{3}}}} \sin\left(\frac{\sqrt{3}\left(\left(188+12\sqrt{3}\sqrt{31}\right)^{\frac{2}{3}} - 28\right)x}{12\left(188+12\sqrt{3}\sqrt{31}\right)^{\frac{2}{3}} - 28\right)x}\right)$$

$$+c_{3}e^{-\frac{\left(28+\left(188+12\sqrt{93}\right)^{\frac{2}{3}} + 8\left(188+12\sqrt{93}\right)^{\frac{1}{3}}\right)x}{12\left(188+12\sqrt{93}\right)^{\frac{1}{3}}}} \cos\left(\frac{\sqrt{3}\left(\left(188+12\sqrt{3}\sqrt{31}\right)^{\frac{2}{3}} - 28\right)x}{12\left(188+12\sqrt{3}\sqrt{31}\right)^{\frac{2}{3}} - 28\right)x}\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 87

DSolve[y'''[x]+2*y''[x]-y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_2 \exp \left(x \operatorname{Root} \left[\#1^3 + 2 \#1^2 - \#1 - 3 \&, 2 \right] \right)$$

+ $c_3 \exp \left(x \operatorname{Root} \left[\#1^3 + 2 \#1^2 - \#1 - 3 \&, 3 \right] \right)$
+ $c_1 \exp \left(x \operatorname{Root} \left[\#1^3 + 2 \#1^2 - \#1 - 3 \&, 1 \right] \right)$

1.8 problem 17

Internal problem ID [819]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory, page 173

Problem number: 17.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$ty''' + 2y'' - y' + yt = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 159

dsolve(t*diff(y(t),t\$3)+2*diff(y(t),t\$2)-diff(y(t),t)+t*y(t)=0,y(t), singsol=all)

$$\begin{split} y(t) &= \mathrm{e}^{-\frac{t\left(i\sqrt{3}-1\right)}{2}} \left(\mathrm{KummerM} \left(\frac{1}{2} \right. \\ &\left. - \frac{i\sqrt{3}}{6}, 1, i\sqrt{3}\,t \right) \left(\int \mathrm{KummerU} \left(\frac{1}{2} - \frac{i\sqrt{3}}{6}, 1, i\sqrt{3}\,t \right) \mathrm{e}^{-\frac{t\left(i\sqrt{3}+3\right)}{2}} dt \right) c_3 \\ &- \mathrm{KummerU} \left(\frac{1}{2} \right. \\ &\left. - \frac{i\sqrt{3}}{6}, 1, i\sqrt{3}\,t \right) \left(\int \mathrm{KummerM} \left(\frac{1}{2} - \frac{i\sqrt{3}}{6}, 1, i\sqrt{3}\,t \right) \mathrm{e}^{-\frac{t\left(i\sqrt{3}+3\right)}{2}} dt \right) c_3 \\ &+ c_1 \, \mathrm{KummerM} \left(\frac{1}{2} - \frac{i\sqrt{3}}{6}, 1, i\sqrt{3}\,t \right) + c_2 \, \mathrm{KummerU} \left(\frac{1}{2} - \frac{i\sqrt{3}}{6}, 1, i\sqrt{3}\,t \right) \right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.639 (sec). Leaf size: 520

DSolve[t*y'''[t]+2*y''[t]-y'[t]+t*y[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow e^{\frac{1}{2}\left(t-i\sqrt{3}t\right)} \left(c_3 \, \text{HypergeometricU}\left(\frac{1}{6}\left(3-i\sqrt{3}\right),1,i\sqrt{3}t\right) \int_1^t \frac{1}{\left(-1-i\sqrt{3}\right)K[1]\left(\text{Hypergeometric1F1}\left(\frac{1}{6}i\right)+c_3 \, \text{LaguerreL}\left(\frac{1}{6}i\left(3i+\sqrt{3}\right),i\sqrt{3}t\right) \int_1^t \frac{2ie^{\frac{1}{2}i\left(3i+\sqrt{3}\right)K[2]} \, \text{Hypergeometric1F1}\left(\frac{1}{6}\left(9-i\sqrt{3}\right),2,i\sqrt{3}K[2]\right) \, \text{HypergeometricU}\left(\frac{1}{6}\left(3-i\sqrt{3}\right),1,i\sqrt{3}t\right) + c_1 \, \text{HypergeometricU}\left(\frac{1}{6}\left(3-i\sqrt{3}\right),1,i\sqrt{3}t\right) + c_2 \, \text{LaguerreL}\left(\frac{1}{6}i\left(3i+\sqrt{3}\right),i\sqrt{3}t\right)\right)$$

1.9 problem 20

Internal problem ID [820]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 20.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$(-t+2)y''' + (-3+2t)y'' - ty' + y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve([(2-t)*diff(y(t),t\$3)+(2*t-3)*diff(y(t),t\$2)-t*diff(y(t),t)+y(t)=0,exp(t)],singsol=al(t)

$$y(t) = e^{t}(c_3t + c_2) + c_1t$$

✓ Solution by Mathematica

Time used: 0.079 (sec). Leaf size: 28

DSolve[(2-t)*y'''[t]+(2*t-3)*y''[t]-t*y'[t]+y[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to t(c_2e^t + c_1) + (c_3 - 4c_2)e^t$$

1.10 problem 21

Internal problem ID [821]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 21.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$t^{2}(t+3)y''' - 3t(2+t)y'' + 6(t+1)y' - 6y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

dsolve([t^2*(t+3)*diff(y(t),t\$3)-3*t*(t+2)*diff(y(t),t\$2)+6*(1+t)*diff(y(t),t)-6*y(t)=0,[t^2

$$y(t) = c_2 t^3 + c_1 t^2 + c_3 t + c_3$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 58

DSolve[t^2*(t+3)*y'''[t]-3*t*(t+2)*y''[t]+6*(1+t)*y'[t]-6*y[t]==0,y[t],t,IncludeSingularSolv

$$y(t) \to \frac{1}{8} \left(2c_1(t^3 - 3t^2 + 3t + 3) - (t - 1) \left(4c_2(t^2 - 2t - 1) + c_3(-3t^2 + 2t + 1) \right) \right)$$

2 Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180

2.1	problem 8	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
2.2	problem 9																																	17
2.3	problem 10																																	18
2.4	problem 11																																	19
2.5	problem 12																																	20
2.6	problem 13																																	21
2.7	problem 14																																	22
2.8	problem 15																																	23
2.9	problem 16																																	24
2.10	problem 17																																	25
2.11	problem 18																																	26

2.1 problem 8

Internal problem ID [822]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

 ${f Section}$: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page

180

Problem number: 8.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - y'' - y' + y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

dsolve(diff(y(x),x\$3)-diff(y(x),x\$2)-diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}c_1 + (c_3x + c_2)e^x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: $25\,$

 $DSolve[y'''[x]-y''[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-x} + e^x (c_3 x + c_2)$$

2.2 problem 9

Internal problem ID [823]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

 ${\bf Section}:$ Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180

Problem number: 9.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 3y'' + 3y' + y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 58

dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)+3*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-\left(2^{\frac{1}{3}} - 1\right)x} + c_2 e^{\frac{\left(2^{\frac{1}{3}} + 2\right)x}{2}} \sin\left(\frac{2^{\frac{1}{3}}\sqrt{3}x}{2}\right) + c_3 e^{\frac{\left(2^{\frac{1}{3}} + 2\right)x}{2}} \cos\left(\frac{2^{\frac{1}{3}}\sqrt{3}x}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 87

DSolve[y'''[x]-3*y''[x]+3*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 \exp \left(x \operatorname{Root}\left[\#1^3 - 3\#1^2 + 3\#1 + 1\&, 1\right]\right) + c_2 \exp \left(x \operatorname{Root}\left[\#1^3 - 3\#1^2 + 3\#1 + 1\&, 2\right]\right) + c_3 \exp \left(x \operatorname{Root}\left[\#1^3 - 3\#1^2 + 3\#1 + 1\&, 3\right]\right)$$

2.3 problem 10

Internal problem ID [824]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

 ${f Section}$: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page

180

Problem number: 10.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 4y''' + 4y'' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $\label{lem:decomposition} \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x$$\4}) - 4*\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x$$\3}) + 4*\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x$$\2}) = 0,\\ \mbox{y}(\mbox{x}),\mbox{singsol=all}) \\$

$$y(x) = (c_4x + c_3)e^{2x} + c_2x + c_1$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22

DSolve[y'''[x]-4*y'''[x]+4*y'''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x(x(c_4x + c_3) + c_2) + c_1$$

2.4 problem 11

Internal problem ID [825]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

 ${\bf Section} \colon$ Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180

Problem number: 11.

ODE order: 6. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(6)} + y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 56

dsolve(diff(y(x),x\$6)+y(x)=0,y(x), singsol=all)

$$y(x) = \left(-\sin\left(\frac{x}{2}\right)c_4 + c_6\cos\left(\frac{x}{2}\right)\right)e^{-\frac{\sqrt{3}x}{2}} + \left(\sin\left(\frac{x}{2}\right)c_3 + \cos\left(\frac{x}{2}\right)c_5\right)e^{\frac{\sqrt{3}x}{2}} + c_1\sin(x) + c_2\cos(x)$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 92

DSolve[y''''[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-\frac{\sqrt{3}x}{2}} \left(c_1 e^{\sqrt{3}x} + c_3 \right) \cos\left(\frac{x}{2}\right) + c_2 \cos(x)$$
$$+ c_4 e^{-\frac{\sqrt{3}x}{2}} \sin\left(\frac{x}{2}\right) + c_6 e^{\frac{\sqrt{3}x}{2}} \sin\left(\frac{x}{2}\right) + c_5 \sin(x)$$

2.5 problem 12

Internal problem ID [826]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page

180

Problem number: 12.

ODE order: 6. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(6)} - 3y'''' + 3y'' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(x),x\$6)-3*diff(y(x),x\$4)+3*diff(y(x),x\$2)-y(x)=0,y(x), singsol=all)

$$y(x) = (c_6x^2 + c_5x + c_4) e^{-x} + e^x(c_3x^2 + c_2x + c_1)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 50

DSolve[y''''[x]-3*y'''[x]+3*y''[x]-y[x]==0,y[x],x,IncludeSingularSolutions] -> True]

$$y(x) \rightarrow e^{-x} (x^2 (c_6 e^{2x} + c_3) + x (c_5 e^{2x} + c_2) + c_4 e^{2x} + c_1)$$

2.6 problem 13

Internal problem ID [827]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

 ${\bf Section} \colon$ Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180

Problem number: 13.

ODE order: 6. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(6)} - y'' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$6)-diff(y(x),x\$2)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 x + c_3 e^x + c_4 e^{-x} + c_5 \sin(x) + c_6 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.112 (sec). Leaf size: 38

DSolve[y''''[x]-y''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^x + c_3 e^{-x} + c_6 x - c_2 \cos(x) - c_4 \sin(x) + c_5$$

2.7 problem 14

Internal problem ID [828]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page

180

Problem number: 14.

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(5)} - 3y'''' + 3y''' - 3y'' + 2y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve(diff(y(x),x\$5)-3*diff(y(x),x\$4)+3*diff(y(x),x\$3)-3*diff(y(x),x\$2)+2*diff(y(x),x)=0,y(x)+2*diff(x)=0,y(x)

$$y(x) = c_1 + e^x c_2 + c_3 e^{2x} + c_4 \sin(x) + c_5 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 36

DSolve[y''''[x]-3*y'''[x]+3*y'''[x]-3*y''[x]+2*y'[x]==0,y[x],x,IncludeSingularSolutions ->

$$y(x) \to c_3 e^x + \frac{1}{2}c_4 e^{2x} - c_2 \cos(x) + c_1 \sin(x) + c_5$$

2.8 problem 15

Internal problem ID [829]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

 ${f Section}$: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page

180

Problem number: 15.

ODE order: 8. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(8)} + 8y'''' + 16y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

$$dsolve(diff(y(x),x\$8)+8*diff(y(x),x\$4)+16*y(x)=0,y(x), singsol=all)$$

$$y(x) = ((c_4x + c_2)\cos(x) + \sin(x)(c_3x + c_1))e^{-x} + ((c_8x + c_6)\cos(x) + \sin(x)(c_7x + c_5))e^{x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 238

$$y(x) \to c_1 \exp \left(x \operatorname{Root} \left[\# 1^8 + 8 \# 1^4 + 3 \# 1^3 + 16 \&, 1 \right] \right)$$

$$+ c_2 \exp \left(x \operatorname{Root} \left[\# 1^8 + 8 \# 1^4 + 3 \# 1^3 + 16 \&, 2 \right] \right)$$

$$+ c_5 \exp \left(x \operatorname{Root} \left[\# 1^8 + 8 \# 1^4 + 3 \# 1^3 + 16 \&, 5 \right] \right)$$

$$+ c_6 \exp \left(x \operatorname{Root} \left[\# 1^8 + 8 \# 1^4 + 3 \# 1^3 + 16 \&, 6 \right] \right)$$

$$+ c_3 \exp \left(x \operatorname{Root} \left[\# 1^8 + 8 \# 1^4 + 3 \# 1^3 + 16 \&, 3 \right] \right)$$

$$+ c_4 \exp \left(x \operatorname{Root} \left[\# 1^8 + 8 \# 1^4 + 3 \# 1^3 + 16 \&, 4 \right] \right)$$

$$+ c_7 \exp \left(x \operatorname{Root} \left[\# 1^8 + 8 \# 1^4 + 3 \# 1^3 + 16 \&, 7 \right] \right)$$

$$+ c_8 \exp \left(x \operatorname{Root} \left[\# 1^8 + 8 \# 1^4 + 3 \# 1^3 + 16 \&, 8 \right] \right)$$

2.9 problem 16

Internal problem ID [830]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

 ${\bf Section} \colon$ Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180

Problem number: 16.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 2y'' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$2)+y(x)=0,y(x), singsol=all)

$$y(x) = (c_4x + c_2)\cos(x) + \sin(x)(c_3x + c_1)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26

 $DSolve[y''''[x]+2*y''[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to (c_2x + c_1)\cos(x) + (c_4x + c_3)\sin(x)$$

2.10 problem 17

Internal problem ID [831]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page

180

Problem number: 17.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 5y'' + 6y' + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(y(x),x\$3)+5*diff(y(x),x\$2)+6*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}c_1 + c_2e^{(\sqrt{2}-2)x} + c_3e^{-(2+\sqrt{2})x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 43

 $DSolve[y'''[x]+5*y''[x]+6*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-x} \left(c_1 e^{-\left(\left(1+\sqrt{2}\right)x\right)} + c_2 e^{\left(\sqrt{2}-1\right)x} + c_3 \right)$$

2.11 problem 18

Internal problem ID [832]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page

180

Problem number: 18.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 7y''' + 6y'' + 30y' - 36y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 38

dsolve(diff(y(x),x\$4)-7*diff(y(x),x\$3)+6*diff(y(x),x\$2)+30*diff(y(x),x)-36*y(x)=0,y(x), sing(x,y)=0

$$y(x) = \left(c_1 e^{5x} + c_3 e^{x(5+\sqrt{3})} + c_4 e^{-x(-5+\sqrt{3})} + c_2\right) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 51

DSolve[y'''[x]-7*y'''[x]+6*y''[x]+30*y'[x]-36*y[x]==0,y[x],x,IncludeSingularSolutions -> Tr

$$y(x) \to c_1 e^{-\left(\left(\sqrt{3}-3\right)x\right)} + c_2 e^{\left(3+\sqrt{3}\right)x} + c_3 e^{-2x} + c_4 e^{3x}$$

3	Chapte	r	6	3.3	2,	r	Γ	h	\mathbf{e}]	L۵	aj	p .	la	lC	e	•	\mathbf{I}	r	\mathbf{a}	n	S	fc	r	'n	α.	 Solution						of	
	Initial Value Problems. page 255																																	
3.1	problem 8																																	28
3.2	problem 9																																	29
3.3	problem 10																																	30
3.4	problem 11																																	31
3.5	problem 12																																	32
3.6	problem 13																																	33
3.7	problem 14																																	34
3.8	problem 15																																	35
3.9	problem 16																																	36
3.10	problem 17																																	37
3.11	problem 18																																	38
3.12	problem 19																																	39

3.1 problem 8

Internal problem ID [833]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 6y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

/ Solution by Maple

Time used: 0.609 (sec). Leaf size: 17

dsolve([diff(y(t),t\$2)-diff(y(t),t)-6*y(t)=0,y(0) = 1, D(y)(0) = -1],y(t), singsol=all)

$$y(t) = \frac{(e^{5t} + 4) e^{-2t}}{5}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 21

DSolve[{y''[t]-y'[t]-6*y[t]==0,{y[0]==1,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{5}e^{-2t} (e^{5t} + 4)$$

3.2 problem 9

Internal problem ID [834]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 3y' + 2y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.532 (sec). Leaf size: 17

dsolve([diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=0,y(0) = 1, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = 2e^{-t} - e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 18

DSolve[{y''[t]+3*y'[t]+2*y[t]==0,{y[0]==1,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to e^{-2t} (2e^t - 1)$$

3.3 problem 10

Internal problem ID [835]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + 2y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.5 (sec). Leaf size: 9

dsolve([diff(y(t),t\$2)-2*diff(y(t),t)+2*y(t)=0,y(0) = 0, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = e^t \sin(t)$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 11

DSolve[{y''[t]-2*y'[t]+2*y[t]==0,{y[0]==0,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to e^t \sin(t)$$

3.4 problem 11

Internal problem ID [836]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + 4y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.547 (sec). Leaf size: 28

dsolve([diff(y(t),t\$2)-2*diff(y(t),t)+4*y(t)=0,y(0) = 2, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = -\frac{2\left(\sqrt{3}\,\sin\left(\sqrt{3}\,t\right) - 3\cos\left(\sqrt{3}\,t\right)\right)\mathrm{e}^t}{3}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 37

DSolve[{y''[t]-2*y'[t]+4*y[t]==0,{y[0]==2,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \rightarrow -\frac{2}{3}e^{t}\left(\sqrt{3}\sin\left(\sqrt{3}t\right) - 3\cos\left(\sqrt{3}t\right)\right)$$

3.5 problem 12

Internal problem ID [837]

 $\mathbf{Book} \text{: } \mathbf{Elementary \ differential \ equations \ and \ boundary \ value \ problems, \ 11th \ ed., \ Boyce,}$

DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + 5y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.563 (sec). Leaf size: 21 $\,$

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+5*y(t)=0,y(0) = 2, D(y)(0) = -1],y(t), singsol=all)

$$y(t) = \frac{e^{-t}(4\cos(2t) + \sin(2t))}{2}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 25

DSolve[{y''[t]+2*y'[t]+5*y[t]==0,{y[0]==2,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> Tru

$$y(t) \to \frac{1}{2}e^{-t}(\sin(2t) + 4\cos(2t))$$

3.6 problem 13

Internal problem ID [838]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 13.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 4y''' + 6y'' - 4y' + y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1, y''(0) = 0, y'''(0) = 1]$$

✓ Solution by Maple

Time used: 0.579 (sec). Leaf size: 22

dsolve([diff(y(t),t\$4)-4*diff(y(t),t\$3)+6*diff(y(t),t\$2)-4*diff(y(t),t)+y(t)=0,y(0) = 0,D(y(t),t)+y(t)=0,y(0) = 0,D(y(t),t)+y(t)=0,y(0)=0,y(0)=0,y

$$y(t) = \frac{e^t t(2t^2 - 3t + 3)}{3}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 23

DSolve[{y''''[t]-4*y'''[t]+6*y''[t]-4*y'[t]+y[t]==0,{y[0]==0,y'[0]==1,y''[0]==0,y'''[0]==1}}

$$y(t) \to \frac{1}{3}e^{t}t(2t^{2} - 3t + 3)$$

3.7 problem 14

Internal problem ID [839]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 14.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 4y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0, y''(0) = 1, y'''(0) = 0]$$

✓ Solution by Maple

Time used: 0.516 (sec). Leaf size: 21 $\,$

dsolve([diff(y(t),t\$4)-4*y(t)=0,y(0) = 1, D(y)(0) = 0, (D@@2)(y)(0) = 1, (D@@3)(y)(0) = 0], y(0) = 0

$$y(t) = \frac{\cos(t\sqrt{2})}{4} + \frac{3\cosh(t\sqrt{2})}{4}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 43

DSolve[{y'''[t]-4*y[t]==0,{y[0]==1,y'[0]==0,y''[0]==1,y'''[0]==0}},y[t],t,IncludeSingularSo

$$y(t) \rightarrow \frac{1}{8} \left(3e^{-\sqrt{2}t} + 3e^{\sqrt{2}t} + 2\cos\left(\sqrt{2}t\right) \right)$$

3.8 problem 15

Internal problem ID [840]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + \omega^2 y = \cos(2t)$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.562 (sec). Leaf size: 27

 $dsolve([diff(y(t),t$2)+omega^2*y(t)=cos(2*t),y(0) = 1, D(y)(0) = 0],y(t), singsol=all)$

$$y(t) = \frac{\cos(2t) + \cos(\omega t)(\omega^2 - 5)}{\omega^2 - 4}$$

✓ Solution by Mathematica

Time used: 0.209 (sec). Leaf size: 28

$$y(t) \to \frac{(w^2 - 5)\cos(tw) + \cos(2t)}{w^2 - 4}$$

3.9 problem 16

Internal problem ID [841]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' + 2y = e^{-t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.578 (sec). Leaf size: 24

dsolve([diff(y(t),t\$2)-2*diff(y(t),t)+2*y(t)=exp(-t),y(0) = 0, D(y)(0) = 1],y(t), singsol=al(t)

$$y(t) = \frac{e^{-t}}{5} + \frac{(-\cos(t) + 7\sin(t))e^{t}}{5}$$

✓ Solution by Mathematica

Time used: 0.071 (sec). Leaf size: $29\,$

DSolve[{y''[t]-2*y'[t]+2*y[t]==Exp[-t],{y[0]==0,y'[0]==1}},y[t],t,IncludeSingularSolutions -

$$y(t) \to \frac{1}{5} (e^{-t} + 7e^t \sin(t) - e^t \cos(t))$$

3.10 problem 17

Internal problem ID [842]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \begin{cases} 1 & 0 \le t < \pi \\ 0 & \pi \le t < \infty \end{cases}$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

Solution by Maple

Time used: 0.891 (sec). Leaf size: 33

dsolve([diff(y(t),t\$2)+4*y(t)=piecewise(0<=t and t<Pi,1,Pi<=t and t<infinity,0),y(0) = 1, D(0)

$$y(t) = \begin{cases} \frac{3\cos(2t)}{4} + \frac{1}{4} & t < \pi \\ \cos(2t) & \pi \le t \end{cases}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 31

DSolve[{y''[t]+4*y[t]==Piecewise[{{1,0<t<Pi},{0,Pi<=t<Infinity}}],{y[0]==1,y'[0]==0}},y[t],t

$$y(t) \rightarrow \{ \begin{array}{cc} \cos(2t) & t > \pi \lor t \le 0 \\ \frac{1}{4}(3\cos(2t) + 1) & \text{True} \end{array} \}$$

3.11 problem 18

Internal problem ID [843]

 $\mathbf{Book} \text{: } \mathbf{Elementary \ differential \ equations \ and \ boundary \ value \ problems, \ 11th \ ed., \ Boyce,}$

DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \begin{cases} 1 & 0 \le t < 1 \\ 0 & 1 \le t < \infty \end{cases}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

Solution by Maple

Time used: 0.875 (sec). Leaf size: 35

 $\frac{\text{dsolve}([\text{diff}(y(t),t\$2)+4*y(t)=\text{piecewise}(0<=t \text{ and } t<1,1,1<=t \text{ and } t<\text{infinity},0)}{\text{y}(0)},y(0)=0,D(y)$

$$y(t) = \frac{\left(\begin{cases} 1 & t < 1\\ \cos(2t - 2) & 1 \le t \end{cases}\right)}{4} - \frac{\cos(2t)}{4}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 39

 $DSolve[\{y''[t]+4*y[t]==Piecewise[\{\{1,0< t<1\},\{0,1<=t<Infinity\}\}],\{y[0]==0,y'[0]==0\}\},y[t],t,I]$

$$y(t) \rightarrow \begin{cases} 0 & t \leq 0 \\ \frac{\sin^2(t)}{2} & 0 < t \leq 1 \\ -\frac{1}{2}\sin(1)\sin(1-2t) & \text{True} \end{cases}$$

3.12 problem 19

Internal problem ID [844]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \begin{cases} t & 0 \le t < 1 \\ -t + 2 & 1 \le t < 2 \\ 0 & 2 \le t < \infty \end{cases}$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.907 (sec). Leaf size: 58

 $dsolve([diff(y(t),t\$2)+y(t)=piecewise(0<=t\ and\ t<1,t,1<=t\ and\ t<2,2-t,2<=t\ and\ t<infinity,0)$

$$y(t) = -\sin(t) + \cos(t) + \begin{pmatrix} t & t < 1 \\ 2 - t + 2\sin(t - 1) & t < 2 \\ -\sin(t - 2) + 2\sin(t - 1) & 2 \le t \end{pmatrix}$$

Time used: 0.051 (sec). Leaf size: 68

 $DSolve[\{y''[t]+y[t]==Piecewise[\{\{t,0< t<1\},\{2-t,1<=t<2\},\{0,2<=t<Infinity\}\}],\{y[0]==1,y'[0]==0\}$

$$y(t) \rightarrow \begin{cases} \cos(t) & t \leq 0 \\ \cos(t) - 4\sin^2\left(\frac{1}{2}\right)\sin(1-t) & t > 2 \end{cases}$$

$$t + \cos(t) - \sin(t) & 0 < t \leq 1$$

$$-t + \cos(t) - 2\sin(1-t) - \sin(t) + 2 \quad \text{True}$$

4	Chapter 6.4, The Laplace Tra	nsform.													
	Differential equations with dis	scontinuous	forcing												
	functions. page 268														
4.1	problem 1		42												
4.2	problem 2		44												
	problem 3														
4.4	problem 4		47												
4.5	problem 5		49												
4.6	problem 6		50												
4.7	problem 7		52												

4.8

4.9

4.1 problem 1

Internal problem ID [845]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous

forcing functions. page 268

Problem number: 1. ODE order: 2.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \begin{cases} 1 & 0 \le t < 3\pi \\ 0 & 3\pi \le t < \infty \end{cases}$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.797 (sec). Leaf size: 39

dsolve([diff(y(t),t\$2)+y(t)=piecewise(0<=t and t<3*Pi,1,3*Pi<=t and t<infinity,0),y(0) = 0,

$$y(t) = \sin(t) - \left(\begin{cases} \cos(t) - 1 & t < 3\pi \\ 2\cos(t) & 3\pi \le t \end{cases} \right)$$

Time used: 0.032 (sec). Leaf size: 34

DSolve[{y''[t]+y[t]==Piecewise[{{1,0<=t<3*Pi},{0,3*Pi<=t<Infinity}}],{y[0]==0,y'[0]==1}},y[t

$$\begin{aligned} \sin(t) & t \leq 0 \\ y(t) \rightarrow & \{ & \sin(t) - 2\cos(t) & t > 3\pi \\ & -\cos(t) + \sin(t) + 1 & \text{True} \end{aligned}$$

4.2 problem 2

Internal problem ID [846]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous

forcing functions. page 268 **Problem number**: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = \begin{cases} 1 & \pi \le t < 2\pi \\ 0 & \text{otherwise} \end{cases}$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.797 (sec). Leaf size: 83

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=piecewise(Pi<=t and t<2*Pi,1,true,0),y(0)=0,

$$y(t) = \sin(t) e^{-t} + \frac{\begin{cases} 0 & t < \pi \\ 1 + e^{\pi - t} (\cos(t) + \sin(t)) & t < 2\pi \\ (\cos(t) + \sin(t)) (e^{\pi - t} + e^{2\pi - t}) & 2\pi \le t \end{cases}}{2}$$

Time used: 0.047 (sec). Leaf size: 89

DSolve[{y''[t]+2*y'[t]+2*y[t]==Piecewise[{{1,Pi<=t<2*Pi},{0,True}}],{y[0]==0,y'[0]==1}},y[t]

$$\begin{array}{ccc} & e^{-t}\sin(t) & t \leq \pi \\ \\ y(t) \to & \{ & \frac{1}{2}e^{-t}(e^{\pi}\cos(t) + e^{t} + (2 + e^{\pi})\sin(t)) & \pi < t \leq 2\pi \\ \\ & \frac{1}{2}e^{-t}(e^{\pi}(1 + e^{\pi})\cos(t) + (2 + e^{\pi} + e^{2\pi})\sin(t)) & \text{True} \end{array}$$

4.3 problem 3

Internal problem ID [847]

 $\mathbf{Book} \text{: } \mathbf{Elementary \ differential \ equations \ and \ boundary \ value \ problems, \ 11th \ ed., \ Boyce,}$

DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous

forcing functions. page 268

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \sin(t) - \text{Heaviside}(t - 2\pi)\sin(t)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.438 (sec). Leaf size: 25

dsolve([diff(y(t),t\$2)+4*y(t)=sin(t)-Heaviside(t-2*Pi)*sin(t-2*Pi),y(0) = 0, D(y)(0) = 0],y(0)

$$y(t) = \frac{\sin(t)(\cos(t) - 1)(-1 + \text{Heaviside}(t - 2\pi))}{3}$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: $27\,$

DSolve[{y''[t]+4*y[t]==Sin[t]-UnitStep[t-2*Pi]*Sin[t-2*Pi],{y[0]==0,y'[0]==0}},y[t],t,Include

$$y(t) \to \frac{2}{3}\theta(2\pi - t)\sin^2\left(\frac{t}{2}\right)\sin(t)$$

4.4 problem 4

Internal problem ID [848]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous

forcing functions. page 268

Problem number: 4. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = \begin{cases} 1 & 0 \le t < 10 \\ 0 & \text{otherwise} \end{cases}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.438 (sec). Leaf size: 65

dsolve([diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=piecewise(0<=t and t<10,1,true,0),y(0)=0, D(y(t),t)+2*y(t)=piecewise(0<=t and t<10,1,true,0),y(0)=0, D(y(t),t)+2*y(t)=0, D(y(t)

$$y(t) = \frac{\left\{ \begin{array}{ll} 1 - 2e^{-t} + e^{-2t} & t < 10\\ -2e^{-10} + e^{-20} + 2 & t = 10\\ 2e^{10-t} - e^{20-2t} - 2e^{-t} + e^{-2t} & 10 < t \end{array} \right\}}{2}$$

Time used: 0.041 (sec). Leaf size: 61

DSolve[{y''[t]+3*y'[t]+2*y[t]==Piecewise[{{1,0<=t<10},{0,True}}],{y[0]==0,y'[0]==0}},y[t],t,

$$y(t) \rightarrow \begin{cases} 0 & t \leq 0 \\ \frac{1}{2}e^{-2t}(-1+e^t)^2 & 0 < t \leq 10 \\ \frac{1}{2}e^{-2t}(-1+e^{10})\left(-1-e^{10}+2e^t\right) & \text{True} \end{cases}$$

4.5 problem 5

Internal problem ID [849]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous forcing functions. page 268

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' + \frac{5y}{4} = t - \text{Heaviside}\left(t - \frac{\pi}{2}\right)\left(t - \frac{\pi}{2}\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

Solution by Maple

 $\overline{\text{Time used: 0.422 (sec)}}$. Leaf size: 66

 $\frac{dsolve([diff(y(t),t$2)+diff(y(t),t)+5/4*y(t)=t-Heaviside(t-Pi/2)*(t-Pi/2),y(0)}{dsolve([diff(y(t),t$2)+diff(y(t),t)+5/4*y(t)=t-Heaviside(t-Pi/2)*(t-Pi/2),y(0)} = 0, D(y)(0)$

$$\begin{split} y(t) &= -\frac{16}{25} - \frac{12 \operatorname{Heaviside}\left(t - \frac{\pi}{2}\right) \left(\cos\left(t\right) + \frac{4 \sin(t)}{3}\right) \mathrm{e}^{-\frac{t}{2} + \frac{\pi}{4}}}{25} \\ &+ \frac{2(8 - 10t + 5\pi) \operatorname{Heaviside}\left(t - \frac{\pi}{2}\right)}{25} + \frac{4(4 \cos\left(t\right) - 3 \sin\left(t\right)) \mathrm{e}^{-\frac{t}{2}}}{25} + \frac{4t}{5} \end{split}$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 96

 $DSolve[\{y''[t]+y'[t]+5/4*y[t]==t-UnitStep[t-Pi/2]*(t-Pi/2),\{y[0]==0,y'[0]==0\}\},y[t],t,Include (a) = (a) + (b) +$

$$y(t) \to \begin{cases} \frac{\frac{4}{25}e^{-t/2}\left(e^{t/2}(5t-4)+4\cos(t)-3\sin(t)\right)}{2t \le \pi} & 2t \le \pi \\ -\frac{2}{25}e^{-t/2}\left(\left(-8+6e^{\pi/4}\right)\cos(t)+\left(6+8e^{\pi/4}\right)\sin(t)-5e^{t/2}\pi\right) & \text{True} \end{cases}$$

4.6 problem 6

Internal problem ID [850]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous

forcing functions. page 268

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' + \frac{5y}{4} = \begin{cases} \sin(t) & 0 \le t < \pi \\ 0 & \text{otherwise} \end{cases}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.532 (sec). Leaf size: 91

dsolve([diff(y(t),t\$2)+diff(y(t),t)+5/4*y(t)=piecewise(0<=t and t<Pi,sin(t),true,0),y(0)=0

$$y(t) = \frac{4\left\{ \begin{cases} -8e^{-\frac{t}{4}}\left(\cos\left(t\right)\sinh\left(\frac{t}{4}\right) - \frac{\sin\left(t\right)\cosh\left(\frac{t}{4}\right)}{4}\right) & t < \pi \\ \left(-e^{-\frac{t}{2} + \frac{\pi}{2}} + e^{-\frac{t}{2}}\right)\left(4\cos\left(t\right) + \sin\left(t\right)\right) & \pi \le t \end{cases} \right\}}{17}$$

Time used: 0.129 (sec). Leaf size: 77

DSolve[{y''[t]+y'[t]+5/4*y[t]==Piecewise[{{Sin[t],0<=t<Pi},{0,True}}],{y[0]==0,y'[0]==0}},y[

$$\begin{array}{ccc} & 0 & t \leq 0 \\ y(t) \rightarrow & \{ & \frac{4}{17} \left(\left(-4 + 4e^{-t/2} \right) \cos(t) + \left(1 + e^{-t/2} \right) \sin(t) \right) & 0 < t \leq \pi \\ & & -\frac{4}{17} e^{-t/2} \left(-1 + e^{\pi/2} \right) \left(4 \cos(t) + \sin(t) \right) & \text{True} \end{array}$$

4.7 problem 7

Internal problem ID [851]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous

forcing functions. page 268

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \text{Heaviside}(t - \pi) - \text{Heaviside}(t - 3\pi)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.297 (sec). Leaf size: 25

dsolve([diff(y(t),t\$2)+4*y(t)=Heaviside(t-Pi)-Heaviside(t-3*Pi),y(0)=0,D(y)(0)=0],y(t),

$$y(t) = \frac{(\text{Heaviside}(t - \pi) - \text{Heaviside}(t - 3\pi))\sin(t)^{2}}{2}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 25

$$y(t)
ightarrow \ \left\{ egin{array}{ccc} rac{\sin^2(t)}{2} & \pi < t \leq 3\pi \\ 0 & {
m True} \end{array}
ight.$$

4.8 problem 8

Internal problem ID [852]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

 ${f Section}$: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous

forcing functions. page 268

Problem number: 8.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 5y'' + 4y = 1 - \text{Heaviside}(t - \pi)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y''(0) = 0, y'''(0) = 0]$$

✓ Solution by Maple

Time used: 0.328 (sec). Leaf size: 23

dsolve([diff(y(t),t\$4)+5*diff(y(t),t\$2)+4*y(t)=1-Heaviside(t-Pi),y(0) = 0, D(y)(0) = 0, (D@@(t-Pi),y(0)) = 0, D(y)(0) =

$$y(t) = -\frac{(\cos(t) + 1)^2 \text{Heaviside}(t - \pi)}{6} + \frac{(\cos(t) - 1)^2}{6}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 29

$$DSolve[\{y''''[t]+5*y''[t]+4*y[t]==1-UnitStep[t-Pi],\{y[0]==0,y'[0]==0,y''[0]==0,y''[0]==0\}\},$$

$$y(t)
ightarrow \left\{egin{array}{ccc} rac{2}{3} \sin^4\left(rac{t}{2}
ight) & t \leq \pi \ -rac{2\cos(t)}{3} & {
m True} \end{array}
ight.$$

4.9 problem 11(b)

Internal problem ID [853]

 $\mathbf{Book} \text{: } \mathbf{Elementary \ differential \ equations \ and \ boundary \ value \ problems, \ 11th \ ed., \ Boyce,}$

DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous

forcing functions. page 268

Problem number: 11(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$\boxed{u'' + \frac{u'}{4} + u = k \left(\text{Heaviside} \left(t - \frac{3}{2} \right) - \text{Heaviside} \left(t - \frac{5}{2} \right) \right)}$$

With initial conditions

$$[u(0) = 0, u'(0) = 0]$$

✓ Solution by Maple

 $\overline{\text{Time used: } 1.344 \text{ (sec)}}$. Leaf size: 129

dsolve([diff(u(t),t\$2)+1/4*diff(u(t),t)+u(t)=k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,

$$u(t) = k \left(\text{Heaviside} \left(t - \frac{5}{2} \right) \left(-21 + i\sqrt{7} \right) e^{\frac{3i\sqrt{7}(2t-5)}{16} - \frac{t}{8} + \frac{5}{16}} + \left(-i\sqrt{7} - 21 \right) \text{Heaviside} \left(t - \frac{5}{2} \right) e^{-\frac{3i\sqrt{7}(2t-5)}{16} - \frac{t}{8} + \frac{5}{16}} \right) \right)$$

Time used: 0.163 (sec). Leaf size: 192

$$+ e^{\frac{3}{16} - \frac{t}{8}} \cos\left(\frac{3}{16}\sqrt{7}(3 - 2t)\right) k + \frac{e^{\frac{3}{16} - \frac{t}{8}} \sin\left(\frac{3}{16}\sqrt{7}(3 - 2t)\right) k}{3\sqrt{7}} + k$$

$$+ \frac{1}{21} e^{\frac{3}{16} - \frac{t}{8}} k \left(-21\cos\left(\frac{3}{16}\sqrt{7}(3 - 2t)\right) + 21\sqrt[8]{e}\cos\left(\frac{3}{16}\sqrt{7}(5 - 2t)\right) + \sqrt{7}\left(\sin\left(\frac{3}{16}\sqrt{7}(3 - 2t)\right) - \sqrt[8]{e}\sin\left(\frac{3}{16}\sqrt{7}(3 - 2t)\right) + \sqrt[8]{e}\cos\left(\frac{3}{16}\sqrt{7}(3 - 2t)\right) + \sqrt[8]{e$$

4.10 problem 11(c) k=1/2

Internal problem ID [854]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous

forcing functions. page 268

Problem number: 11(c) k=1/2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$u'' + \frac{u'}{4} + u = \frac{\text{Heaviside}\left(t - \frac{3}{2}\right)}{2} - \frac{\text{Heaviside}\left(t - \frac{5}{2}\right)}{2}$$

With initial conditions

$$[u(0) = 0, u'(0) = 0]$$

✓ Solution by Maple

Time used: 0.422 (sec). Leaf size: 128

dsolve([diff(u(t),t\$2)+1/4*diff(u(t),t)+u(t)=1/2*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0

$$\begin{split} u(t) &= \frac{\left(-i\sqrt{7} + 21\right) \text{ Heaviside } \left(t - \frac{5}{2}\right) \text{ e}^{\frac{3i\sqrt{7}(2t-5)}{16} - \frac{t}{8} + \frac{5}{16}}}{84} \\ &+ \frac{\text{Heaviside } \left(t - \frac{5}{2}\right) \text{ e}^{-\frac{3i\sqrt{7}(2t-5)}{16} - \frac{t}{8} + \frac{5}{16}} \left(i\sqrt{7} + 21\right)}{84} \\ &+ \frac{\left(-i\sqrt{7} - 21\right) \text{ Heaviside } \left(t - \frac{3}{2}\right) \text{ e}^{\frac{3}{16} + \frac{3i(-2t+3)\sqrt{7}}{16} - \frac{t}{8}}}{84} \\ &+ \frac{\left(-21 + i\sqrt{7}\right) \text{ Heaviside } \left(t - \frac{3}{2}\right) \text{ e}^{\frac{\left(3i\sqrt{7} - 1\right)(2t-3)}{16}}}{84} \\ &- \frac{\text{Heaviside } \left(t - \frac{5}{2}\right)}{2} + \frac{\text{Heaviside } \left(t - \frac{3}{2}\right)}{2} \end{split}$$

Time used: 0.115 (sec). Leaf size: 190

DSolve[{u''[t]+1/4*u'[t]+u[t]==1/2*(UnitStep[t-3/2]-UnitStep[t-5/2]),{u[0]==0},u'[0]==0}},u[t]

$$\hspace{1cm} \rightarrow \hspace{1cm} \{ \begin{array}{c} \frac{1}{42} \left(-21e^{\frac{3}{16} - \frac{t}{8}} \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) + \sqrt{7}e^{\frac{3}{16} - \frac{t}{8}} \sin \left(\frac{3}{16} \sqrt{7} (3-2t) \right) + 21 \right) \\ \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) + 21 \sqrt[8]{e} \cos \left(\frac{3}{16} \sqrt{7} (5-2t) \right) + \sqrt{7} \left(\sin \left(\frac{3}{16} \sqrt{7} (3-2t) \right) - \sqrt[8]{e} \sin \left(\frac{3}{16} \sqrt{7} (3-2t) \right) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) + 21 \sqrt[8]{e} \cos \left(\frac{3}{16} \sqrt{7} (5-2t) \right) + \sqrt{7} \left(\sin \left(\frac{3}{16} \sqrt{7} (3-2t) \right) - \sqrt[8]{e} \sin \left(\frac{3}{16} \sqrt{7} (3-2t) \right) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) + 21 \sqrt[8]{e} \cos \left(\frac{3}{16} \sqrt{7} (5-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) + 21 \sqrt[8]{e} \cos \left(\frac{3}{16} \sqrt{7} (5-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) + 21 \sqrt[8]{e} \cos \left(\frac{3}{16} \sqrt{7} (5-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) + 21 \sqrt[8]{e} \cos \left(\frac{3}{16} \sqrt{7} (5-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{3}{16} \sqrt{7} (3-2t) \right) \right) \\ + \frac{1}{42} e^{\frac{3}{16} - \frac{t}{8}} \left(-21 \cos \left(\frac{$$

4.11 problem 12

Internal problem ID [855]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous

forcing functions. page 268 **Problem number**: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$u'' + \frac{u'}{4} + u = \frac{\text{Heaviside}(t-5)(t-5) - \text{Heaviside}(t-5-k)(t-5-k)}{k}$$

With initial conditions

$$[u(0) = 0, u'(0) = 0]$$

✓ Solution by Maple

Time used: 1.938 (sec). Leaf size: 216

dsolve([diff(u(t),t\$2)+1/4*diff(u(t),t)+u(t)=1/k*(Heaviside(t-5)*(t-5)-Heaviside(t-(5+k))*(t-5)+1/4*diff(u(t),t)+u(t)=1/k*(Heaviside(t-5)*(t-5)-Heaviside(t-(5+k))*(t-5)+1/4*diff(u(t),t)+u(t)=1/k*(Heaviside(t-5)*(t-5)-Heaviside(t-(5+k))*(t-(5+k))*(t-(5+k))+u(t)=1/k*(Heaviside(t-5)*(t-(5+k))+u(t)=1/k*(Heaviside(t-(5+k))+u(t)=1/k*(Hea

$$u(t) = \frac{-21\left(\frac{31\sin\left(\frac{3\sqrt{7}(-t+5+k)}{8}\right)\sqrt{7}}{21} + \cos\left(\frac{3\sqrt{7}(-t+5+k)}{8}\right)\right) \left(\text{Heaviside}\left(5+k\right) + \text{Heaviside}\left(t-5-k\right) - 1\right) e^{-\frac{t}{8} + \frac{5}{8} + \frac{5}{8}$$

Time used: 13.449 (sec). Leaf size: 486

$$u(t) \rightarrow \underbrace{\begin{bmatrix} e^{-t/8} \left(21e^{\frac{k+5}{8}}\cos\left(\frac{3}{8}\sqrt{7}(k-t+5)\right) - 84k\cos\left(\frac{3\sqrt{7}t}{8}\right) - 441\cos\left(\frac{3\sqrt{7}t}{8}\right) + 31\sqrt{7}e^{\frac{k+5}{8}}\sin\left(\frac{3}{8}\sqrt{7}(k-t+5)\right) - 4\sqrt{7}k\sin\left(\frac{3\sqrt{7}t}{8}\right) + 11\sqrt{7}\sin\left(\frac{3\sqrt{7}t}{8}\right) - 441\cos\left(\frac{3\sqrt{7}t}{8}\right) - 441\cos\left(\frac{3\sqrt{7}t}{8}\right) + 31\sqrt{7}e^{\frac{k+5}{8}}\sin\left(\frac{3}{8}\sqrt{7}(k-t+5)\right) - 4\sqrt{7}k\sin\left(\frac{3\sqrt{7}t}{8}\right) + 11\sqrt{7}\sin\left(\frac{3\sqrt{7}t}{8}\right) - 441\cos\left(\frac{3\sqrt{7}t}{8}\right) + 11\sqrt{7}e^{\frac{k+5}{8}}\sin\left(\frac{3\sqrt{7}t}{8}\right) - 441\cos\left(\frac{3\sqrt{7}t}{8}\right) + 11\sqrt{7}e^{\frac{k+5}{8}}\cos\left(\frac{3\sqrt{7}t}{8}\right) - 441\cos\left(\frac{3\sqrt{7}t}{8}\right) + 11\sqrt{7}e^{\frac{k+5$$

5 Chapter 6.5, The Laplace Transform. Impulse functions. page 273

5.1	problem	1.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	 	•	•	•	•	•	•	•	•	•	•	61
5.2	$\operatorname{problem}$	2 .																			 											62
5.3	$\operatorname{problem}$	3.																			 											63
5.4	$\operatorname{problem}$	4 .																			 											64
5.5	${\bf problem}$	5.																			 											65
5.6	$\operatorname{problem}$	6.																			 											66
5.7	${\bf problem}$	7.																			 											67
5.8	${\rm problem}$	8.	•																		 											68
5.9	${\rm problem}$	10($\mathbf{a})$																		 											69
5.10	$\operatorname{problem}$	10($\mathbf{c})$																		 											70
5.11	${\rm problem}$	12	•																	•	 											71
5.12	${\rm problem}$	19($\mathbf{a})$																	•	 											72
5 13	problem	19(b)																													73

5.1 problem 1

Internal problem ID [856]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = \delta(t - \pi)$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.375 (sec). Leaf size: 31

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=Dirac(t-Pi),y(0)=1,D(y)(0)=0],y(t),singsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=Dirac(t-Pi),y(0)=1,D(y)(0)=0],y(t),singsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=Dirac(t-Pi),y(0)=1,D(y)(0)=0],y(t),singsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=Dirac(t-Pi),y(0)=1,D(y)(0)=0],y(t),singsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=Dirac(t-Pi),y(0)=1,D(y)(0)=0],y(t),singsolve([diff(y(t),t)+2*y(t

$$y(t) = e^{-t}(\cos(t) + \sin(t)) - \sin(t) \text{ Heaviside } (t - \pi) e^{\pi - t}$$

✓ Solution by Mathematica

Time used: 0.069 (sec). Leaf size: 29

DSolve[{y''[t]+2*y'[t]+2*y[t]==DiracDelta[t-Pi],{y[0]==1,y'[0]==0}},y[t],t,IncludeSingularSo

$$y(t) \to e^{-t}(-e^{\pi}\theta(t-\pi)\sin(t) + \sin(t) + \cos(t))$$

5.2 problem 2

Internal problem ID [857]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.359 (sec). Leaf size: 25

$$y(t) = -\frac{(\text{Heaviside}(t - 2\pi) - \text{Heaviside}(t - \pi))\sin(2t)}{2}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: $26\,$

 $DSolve[\{y''[t]+4*y[t]==DiracDelta[t-Pi]-DiracDelta[t-2*Pi],\{y[0]==0,y'[0]==0\}\},y[t],t,Include (a)$

$$y(t) \to (\theta(t-2\pi) - \theta(t-\pi))\sin(t)(-\cos(t))$$

5.3 problem 3

Internal problem ID [858]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = \delta(t - 5) + \text{Heaviside}(t - 10)$$

With initial conditions

$$\left[y(0) = 0, y'(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.406 (sec). Leaf size: 59

dsolve([diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=Dirac(t-5)+Heaviside(t-10),y(0) = 0, D(y)(0) = 0

$$y(t) = \frac{e^{-t}}{2} - \frac{e^{-2t}}{2} - \text{Heaviside}(t-10) e^{10-t} + \frac{\text{Heaviside}(t-10) e^{20-2t}}{2} + \frac{\text{Heaviside}(t-10)}{2} + \text{Heaviside}(t-5) e^{-t+5} - \text{Heaviside}(t-5) e^{10-2t}$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.226 (sec). Leaf size: 71}}$

DSolve[{y''[t]+3*y'[t]+2*y[t]==DiracDelta[t-5]+UnitStep[t-10],{y[0]==0,y'[0]==1/2}},y[t],t,I

$$y(t) \rightarrow \frac{1}{2}e^{-2t} \Big(2e^5 \big(e^t - e^5\big) \; \theta(t-5) + \big(e^{10} - e^t\big)^2 \left(-\theta(10-t) \right) + e^t + e^{2t} - 2e^{t+10} + e^{20} - 1 \Big)$$

5.4 problem 4

Internal problem ID [859]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 3y = \sin(t) + \delta(t - 3\pi)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.938 (sec). Leaf size: 54

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+3*y(t)=sin(t)+Dirac(t-3*Pi),y(0) = 0, D(y)(0) = 0],y(t)

$$y(t) = \frac{\sqrt{2}\,\mathrm{e}^{3\pi - t}\,\mathrm{Heaviside}\left(t - 3\pi\right)\sin\left(\sqrt{2}\left(t - 3\pi\right)\right)}{2} - \frac{\cos\left(t\right)}{4} + \frac{\sin\left(t\right)}{4} + \frac{\mathrm{e}^{-t}\cos\left(t\sqrt{2}\right)}{4}$$

✓ Solution by Mathematica

Time used: 1.726 (sec). Leaf size: 82

DSolve[{y''[t]+2*y'[t]+3*y[t]==Sin[t]+DiracDelta[t-3*Pi],{y[0]==0,y'[0]==1/2}},y[t],t,Include

$$y(t) \to \frac{1}{4}e^{-t}\left(-2\sqrt{2}e^{3\pi}\theta(t-3\pi)\sin\left(\sqrt{2}(3\pi-t)\right) + e^{t}\sin(t) + \sqrt{2}\sin\left(\sqrt{2}t\right) - e^{t}\cos(t) + \cos\left(\sqrt{2}t\right)\right)$$

5.5 problem 5

Internal problem ID [860]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \delta(t - 2\pi)\cos(t)$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.375 (sec). Leaf size: 15

dsolve([diff(y(t),t\$2)+y(t)=Dirac(t-2*Pi)*cos(t),y(0) = 0, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = \sin(t)$$
 (Heaviside $(t - 2\pi) + 1$)

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 16

$$y(t) \to (\theta(t-2\pi)+1)\sin(t)$$

5.6 problem 6

Internal problem ID [861]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = 2\delta \left(t - \frac{\pi}{4}\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.406 (sec). Leaf size: 16

dsolve([diff(y(t),t\$2)+4*y(t)=2*Dirac(t-Pi/4),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = -\text{Heaviside}\left(t - \frac{\pi}{4}\right)\cos\left(2t\right)$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 28

 $DSolve[\{y''[t]+4*y[t]==2*DiracDelta[t-Pi/4],\{y[0]==0,y'[0]==1\}\},y[t],t,IncludeSingularSoluti]$

$$y(t) \to \frac{1}{2}(\sin(2t) - 2\theta(4t - \pi)\cos(2t))$$

5.7 problem 7

Internal problem ID [862]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = \cos(t) + \delta\left(t - \frac{\pi}{2}\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.562 (sec). Leaf size: 92

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=cos(t)+Dirac(t-Pi/2),y(0) = 0, D(y)(0) = 0],y(t-Pi/2)

$$y(t) = -\cos(t) \text{ Heaviside } \left(t - \frac{\pi}{2}\right) e^{-t + \frac{\pi}{2}} + \frac{\left(-\cos(t) - 3\sin(t)\right) e^{-t}}{5} + \frac{\cos(t)}{5} + \frac{2\sin(t)}{5}$$

✓ Solution by Mathematica

Time used: 0.176 (sec). Leaf size: 52

DSolve[{y''[t]+2*y'[t]+2*y[t]==Cos[t]+DiracDelta[t-Pi/2],{y[0]==0,y'[0]==0}},y[t],t,IncludeS

$$y(t) \to \frac{1}{5}e^{-t} \left(-5e^{\pi/2}\theta(2t-\pi)\cos(t) + (2e^t-3)\sin(t) + (e^t-1)\cos(t)\right)$$

5.8 problem 8

Internal problem ID [863]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 8.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' - y = \delta(-1+t)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y''(0) = 0, y'''(0) = 0]$$

✓ Solution by Maple

Time used: 0.406 (sec). Leaf size: 21

dsolve([diff(y(t),t\$4)-y(t)=Dirac(t-1),y(0)=0,D(y)(0)=0,(D@@2)(y)(0)=0,(D@@3)(y)(0)

$$y(t) = -\frac{\text{Heaviside}(t-1)(\sin(t-1) - \sinh(t-1))}{2}$$

✓ Solution by Mathematica

Time used: 0.11 (sec). Leaf size: 44

$$y(t) \to \frac{1}{4}e^{-t-1}\theta(t-1)\left(e^{2t} + 2e^{t+1}\sin(1-t) - e^2\right)$$

5.9 problem 10(a)

Internal problem ID [864]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 10(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + \frac{y'}{2} + y = \delta(-1+t)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.562 (sec). Leaf size: 28

$$y(t) = \frac{4 e^{\frac{1}{4} - \frac{t}{4}} \text{ Heaviside} (t - 1) \sqrt{15} \sin \left(\frac{\sqrt{15} (t - 1)}{4}\right)}{15}$$

✓ Solution by Mathematica

Time used: 0.097 (sec). Leaf size: 40

DSolve[{y''[t]+1/2*y'[t]+y[t]==DiracDelta[t-1],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSol

$$y(t) o rac{4e^{rac{1}{4} - rac{t}{4}} \theta(t-1) \sin\left(rac{1}{4}\sqrt{15}(t-1)
ight)}{\sqrt{15}}$$

5.10 problem 10(c)

Internal problem ID [865]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 10(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + \frac{y'}{4} + y = \delta(-1+t)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 1.907 (sec). Leaf size: 28

$$y(t) = \frac{8e^{\frac{1}{8} - \frac{t}{8}} \operatorname{Heaviside}(t-1)\sqrt{7} \sin\left(\frac{3\sqrt{7}(t-1)}{8}\right)}{21}$$

✓ Solution by Mathematica

Time used: 0.075 (sec). Leaf size: 42

DSolve[{y''[t]+1/4*y'[t]+y[t]==DiracDelta[t-1],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSol

$$y(t) \to \frac{8e^{\frac{1}{8} - \frac{t}{8}}\theta(t-1)\sin\left(\frac{3}{8}\sqrt{7}(t-1)\right)}{3\sqrt{7}}$$

5.11problem 12

Internal problem ID [866]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \frac{\text{Heaviside}(t - 4 + k) - \text{Heaviside}(t - 4 - k)}{2k}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.641 (sec). Leaf size: 76

$$y(t) = \frac{(\text{Heaviside}(4+k) + \text{Heaviside}(t-4-k) - 1)\cos(-t+4+k) - \text{Heaviside}(t-4-k) + (-\cos(t-k))\cos(-t+4+k)}{(-\cos(t-4-k) + 1)\cos(-t+4+k) - (-\cos(t-4-k) + 1)\cos(-t+4+k)}$$

✓ Solution by Mathematica

Time used: 1.204 (sec). Leaf size: 181

$$y(t) \to \frac{(\cos(k-t+4)-1)\theta(-k+t-4)-(\cos(-k-t+4)-1)\theta(k+t-4)}{2k} \text{ if } -4 < k < 4$$

$$y(t) \rightarrow \frac{\cos(-k-t+4)-\cos(t)+(\cos(k-t+4)-1)\theta(-k+t-4)-(\cos(-k-t+4)-1)\theta(k+t-4)}{2k} \text{ if } k > 4$$

$$y(t) \to \frac{\frac{(\cos(k-t+4)-1)\theta(-k+t-4)-(\cos(-k-t+4)-1)\theta(k+t-4)}{2k} \text{ if } -4 < k < 4}{y(t) \to \frac{\cos(-k-t+4)-\cos(t)+(\cos(k-t+4)-1)\theta(-k+t-4)-(\cos(-k-t+4)-1)\theta(k+t-4)}{2k} \text{ if } k > 4}$$

$$y(t) \to \frac{-\cos(k-t+4)+\cos(t)+(\cos(k-t+4)-1)\theta(-k+t-4)-(\cos(-k-t+4)-1)\theta(k+t-4)}{2k} \text{ if } k < -4$$

5.12 problem 19(a)

Internal problem ID [867]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 19(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = f(t)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 43

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=f(t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$\begin{split} y(t) &= \left(-\cos\left(t\right) \left(\int_0^t f(_z\mathbf{1}) \sin\left(_z\mathbf{1}\right) \mathrm{e}^{-z\mathbf{1}} d_z\mathbf{1}\right) \\ &+ \sin\left(t\right) \left(\int_0^t f(_z\mathbf{1}) \cos\left(_z\mathbf{1}\right) \mathrm{e}^{-z\mathbf{1}} d_z\mathbf{1}\right)\right) \mathrm{e}^{-t} \end{split}$$

✓ Solution by Mathematica

Time used: 0.104 (sec). Leaf size: 99

DSolve[{y''[t]+2*y'[t]+2*y[t]==f[t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> T

$$\begin{split} y(t) \rightarrow e^{-t} \bigg(-\sin(t) \int_{1}^{0} e^{K[1]} \cos(K[1]) f(K[1]) dK[1] \\ + \sin(t) \int_{1}^{t} e^{K[1]} \cos(K[1]) f(K[1]) dK[1] + \cos(t) \left(\int_{1}^{t} -e^{K[2]} f(K[2]) \sin(K[2]) dK[2] - \int_{1}^{0} -e^{K[2]} f(K[2]) \sin(K[2]) dK[2] \right) \bigg) \end{split}$$

5.13 problem 19(b)

Internal problem ID [868]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce,

DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 19(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = \delta(t - \pi)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.281 (sec). Leaf size: 20

 $dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=Dirac(t-Pi),y(0)=0,\ D(y)(0)=0],y(t),\ singsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=Dirac(t-Pi),y(0)=0,\ D(y)(0)=0],y(t),\ singsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=Dirac(t-Pi),y(0)=0,\ D(y)(0)=0],y(t),\ singsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=Dirac(t-Pi),y(0)=0,\ D(y)(0)=0],y(t),\ singsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=Dirac(t-Pi),y(0)=0,\ D(y)(0)=0],y(t),\ singsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=Dirac(t-Pi),y(0)=0,\ D(y)(0)=0],y(t),\ singsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=Dirac(t-Pi),y(0)=0,\ D(y)(0)=0],y(t),\ singsolve([diff(y(t),t)+2*y(t)+$

$$y(t) = -\sin(t)$$
 Heaviside $(t - \pi) e^{\pi - t}$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 22

DSolve[{y''[t]+2*y'[t]+2*y[t]==DiracDelta[t-Pi],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSo

$$y(t) \to -e^{\pi - t}\theta(t - \pi)\sin(t)$$