A Solution Manual For

Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Nasser M. Abbasi

May 16, 2024

Contents

1	Program 24. First order differential equations. Test excercise 24. page 1067	2
2	Program 24. First order differential equations. Further problems 24. page 1068	15
3	Program 25. Second order differential equations. Test Excercise 25. page 1093	71
4	Program 25. Second order differential equations. Further problems 25. page 1094	80

1 Program 24. First order differential equations. Test excercise 24. page 1067

1.1	problem	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		3
1.2	problem	2																																4
1.3	$\operatorname{problem}$	3																																5
1.4	problem	4																																6
1.5	$\operatorname{problem}$	5																																7
1.6	$\operatorname{problem}$	6																																8
1.7	$\operatorname{problem}$	7																																9
1.8	${\bf problem}$	8																						•									1	0
1.9	$\operatorname{problem}$	9																																11
1.10	${\bf problem}$	10																						•									1	2
1.11	$\operatorname{problem}$	11																															1	13
1.12	problem	12			_																												1	4

1.1 problem 1

Internal problem ID [5075]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$xy' = x^2 + 2x - 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x*diff(y(x),x)=x^2+2*x-3,y(x), singsol=all)$

$$y(x) = \frac{x^2}{2} + 2x - 3\ln(x) + c_1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 22

DSolve[x*y'[x]==x^2+2*x-3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^2}{2} + 2x - 3\log(x) + c_1$$

1.2 problem 2

Internal problem ID [5076]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x+1)^2 y' - y^2 = 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

 $dsolve((1+x)^2*diff(y(x),x)=1+y(x)^2,y(x), singsol=all)$

$$y(x) = \tan\left(\frac{-1 + c_1(x+1)}{x+1}\right)$$

✓ Solution by Mathematica

Time used: 0.264 (sec). Leaf size: 32

DSolve[(1+x)^2*y'[x]==1+y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\tan\left(\frac{1}{x+1} - c_1\right)$$

$$y(x) \to -i$$

$$y(x) \to i$$

1.3 problem 3

Internal problem ID [5077]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 2y = e^{3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x)+2*y(x)=exp(3*x),y(x), singsol=all)

$$y(x) = \frac{(e^{5x} + 5c_1)e^{-2x}}{5}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 23

DSolve[y'[x]+2*y[x]==Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^{3x}}{5} + c_1 e^{-2x}$$

1.4 problem 4

Internal problem ID [5078]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$-y + xy' = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $dsolve(x*diff(y(x),x)-y(x)=x^2,y(x), singsol=all)$

$$y(x) = (x + c_1) x$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 11

DSolve[x*y'[x]-y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x(x+c_1)$$

1.5 problem 5

Internal problem ID [5079]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x^2y' = x^3\sin(3x) + 4$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $dsolve(x^2*diff(y(x),x)=x^3*sin(3*x)+4,y(x), singsol=all)$

$$y(x) = \frac{\sin(3x)}{9} - \frac{x\cos(3x)}{3} - \frac{4}{x} + c_1$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 30

 $DSolve[x^2*y'[x] == x^3*Sin[3*x] + 4, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{4}{x} + \frac{1}{9}\sin(3x) - \frac{1}{3}x\cos(3x) + c_1$$

problem 6 1.6

Internal problem ID [5080]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x\cos(y)y' - \sin(y) = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 8

dsolve(x*cos(y(x))*diff(y(x),x)-sin(y(x))=0,y(x), singsol=all)

$$y(x) = \arcsin(c_1 x)$$

Solution by Mathematica

Time used: 9.024 (sec). Leaf size: 17

DSolve[x*Cos[y[x]]*y'[x]-Sin[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]

 $y(x) \to \arcsin(e^{c_1}x)$ $y(x) \to 0$

1.7 problem 7

Internal problem ID [5081]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$(x^3 + xy^2) y' - 2y^3 = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 44

 $dsolve((x^3+x*y(x)^2)*diff(y(x),x)=2*y(x)^3,y(x), singsol=all)$

$$y(x) = -\frac{\left(-c_1x + \sqrt{c_1^2x^2 + 4}\right)x}{2}$$
$$y(x) = \frac{\left(c_1x + \sqrt{c_1^2x^2 + 4}\right)x}{2}$$

✓ Solution by Mathematica

Time used: 1.2 (sec). Leaf size: 83

 $DSolve[(x^3+x*y[x]^2)*y'[x]==2*y[x]^3,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{1}{2}x\left(\sqrt{4 + e^{2c_1}x^2} + e^{c_1}x\right)$$

$$y(x) \to \frac{1}{2}x\left(\sqrt{4 + e^{2c_1}x^2} - e^{c_1}x\right)$$

$$y(x) \to 0$$

$$y(x) \to -x$$

$$y(x) \to x$$

1.8 problem 8

Internal problem ID [5082]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\left(x^2 - 1\right)y' + 2xy = x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve((x^2-1)*diff(y(x),x)+2*x*y(x)=x,y(x), singsol=all)$

$$y(x) = \frac{x^2 + 2c_1}{2x^2 - 2}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 31

 $DSolve[(x^2-1)*y'[x]+2*x*y[x]==x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^2 + 2c_1}{2(x^2 - 1)}$$
$$y(x) \to \frac{1}{2}$$

1.9 problem 9

Internal problem ID [5083]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y \tanh(x) = 2\sinh(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)+y(x)*tanh(x)=2*sinh(x),y(x), singsol=all)

$$y(x) = \left(\cosh\left(x\right)^2 - \frac{1}{2} + c_1\right)\operatorname{sech}\left(x\right)$$

✓ Solution by Mathematica

Time used: 0.098 (sec). Leaf size: 20

 $DSolve[y'[x]+y[x]*Tanh[x] == 2*Sinh[x], y[x], x, IncludeSingularSolutions \ -> \ True]$

$$y(x) \to \frac{1}{2} \operatorname{sech}(x) (\cosh(2x) + 2c_1)$$

1.10 problem 10

Internal problem ID [5084]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$xy' - 2y = \cos(x) x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(x*diff(y(x),x)-2*y(x)=x^3*cos(x),y(x), singsol=all)$

$$y(x) = \left(\sin\left(x\right) + c_1\right)x^2$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 14

 $DSolve[x*y'[x]-2*y[x]==x^3*Cos[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow x^2(\sin(x) + c_1)$$

1.11 problem 11

Internal problem ID [5085]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y' + \frac{y}{x} - y^3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve(diff(y(x),x)+y(x)/x=y(x)^3,y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{x(c_1x + 2)}}$$

 $y(x) = -\frac{1}{\sqrt{x(c_1x + 2)}}$

✓ Solution by Mathematica

Time used: 0.375 (sec). Leaf size: 40

DSolve[y'[x]+y[x]/x==y[x]^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{\sqrt{x(2+c_1x)}}$$
$$y(x) \to \frac{1}{\sqrt{x(2+c_1x)}}$$
$$y(x) \to 0$$

1.12 problem 12

Internal problem ID [5086]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$xy' + 3y - y^2x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x*diff(y(x),x)+3*y(x)=x^2*y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{1}{x^2 (c_1 x + 1)}$$

✓ Solution by Mathematica

Time used: 0.137 (sec). Leaf size: 22

 $DSolve[x*y'[x]+3*y[x]==x^2*y[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{x^2 + c_1 x^3}$$
$$y(x) \to 0$$

2 Program 24. First order differential equations. Further problems 24. page 1068

2.1	problem 1		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	 			•	17
2.2	problem 2	2.																							 				18
2.3	problem 3	3.																							 				19
2.4	problem 4	Į.																							 				20
2.5	problem 5	5 .																							 				21
2.6	problem 6	i .																 							 				22
2.7	problem 7	7.												•		•	•			•					 				23
2.8	problem 8	3.															•								 				24
2.9	problem 9) .												•		•	•			•					 				25
2.10	problem 1	.0															•								 				27
2.11	problem 1	.1	•					•												•					 				29
2.12	problem 1	2															•								 				30
2.13	problem 1	3												•		•	•			•					 				31
2.14	problem 1	4																							 				32
2.15	problem 1	$_{.5}$												•		•	•			•					 				33
2.16	problem 1	.6												•		•	•			•					 				34
2.17	problem 1	7												•		•	•			•					 				35
	problem 1		•																						 				36
2.19	problem 1	9	•																						 				37
2.20	problem 2	20	•																						 				38
2.21	problem 2	21	•					•						•						•					 				39
2.22	problem 2	22	•					•												•					 				40
2.23	problem 2	23	•																						 				42
2.24	problem 2	24	•																						 				43
2.25	problem 2	25	•					•												•					 				44
2.26	problem 2	26																							 				45
2.27	problem 2	27																							 				46
2.28	problem 2	28	•																						 				48
2.29	problem 2	29																							 				49
2.30	problem 3	30	•																						 				50
2.31	problem 3	31																							 				51
2.32	problem 3	32						•		•			•	•		•	•			•					 		•	•	52
	problem 3							•								•	•			•					 		•	•	54
	problem 3		•					•						•		•	•								 		•	•	55
	problem 3		•					•		•			•	•		•	•	 •		•					 				56
2.36	problem 3	36																											57

2.37	problem 37																		58
2.38	problem 38																		59
2.39	problem 39																		60
2.40	problem 40																		61
2.41	problem 41																		62
2.42	problem 42																		63
2.43	problem 43																		64
2.44	problem 44																		65
2.45	problem 45																		66
2.46	problem 46																		67
2.47	problem 47																		68
2.48	problem 48																		69
2.49	problem 49														_				70

2.1 problem 1

Internal problem ID [5087]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x(y-3)y'-4y=0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve(x*(y(x)-3)*diff(y(x),x)=4*y(x),y(x), singsol=all)

$$y(x) = -3 \operatorname{LambertW}\left(-rac{\mathrm{e}^{-rac{4c_1}{3}}}{3x^{rac{4}{3}}}
ight)$$

✓ Solution by Mathematica

Time used: 13.068 (sec). Leaf size: 94

DSolve [x*(y[x]-3)*y'[x]==4*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -3W \left(\frac{1}{3} \sqrt[3]{-\frac{e^{-c_1}}{x^4}} \right)$$

$$y(x) \to -3W \left(-\frac{1}{3} \sqrt[3]{-1} \sqrt[3]{-\frac{e^{-c_1}}{x^4}} \right)$$

$$y(x) \to -3W \left(\frac{1}{3} (-1)^{2/3} \sqrt[3]{-\frac{e^{-c_1}}{x^4}} \right)$$

$$y(x) \to 0$$

2.2 problem 2

Internal problem ID [5088]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 2.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\left(x^3+1\right)y'-yx^2=0$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

 $dsolve([(1+x^3)*diff(y(x),x)=x^2*y(x),y(1) = 2],y(x), singsol=all)$

$$y(x) = 2^{\frac{2}{3}} (x^3 + 1)^{\frac{1}{3}}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 20

 $DSolve[{(1+x^3)*y'[x]==x^2*y[x],{y[1]==2}},y[x],x,IncludeSingularSolutions} \rightarrow True]$

$$y(x) \rightarrow 2^{2/3} \sqrt[3]{x^3 + 1}$$

2.3 problem 3

Internal problem ID [5089]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\left(1+y\right)^2 y' = -x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 89

 $dsolve(x^3+(y(x)+1)^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\left(-6x^4 - 24c_1\right)^{\frac{1}{3}}}{2} - 1$$

$$y(x) = -\frac{\left(-6x^4 - 24c_1\right)^{\frac{1}{3}}}{4} - \frac{i\sqrt{3}\left(-6x^4 - 24c_1\right)^{\frac{1}{3}}}{4} - 1$$

$$y(x) = -\frac{\left(-6x^4 - 24c_1\right)^{\frac{1}{3}}}{4} + \frac{i\sqrt{3}\left(-6x^4 - 24c_1\right)^{\frac{1}{3}}}{4} - 1$$

✓ Solution by Mathematica

Time used: 0.483 (sec). Leaf size: 110

 $\begin{tabular}{ll} DSolve[x^3+(y[x]+1)^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True] \\ \end{tabular}$

$$y(x) \to -1 + \frac{\sqrt[3]{-3x^4 + 4 + 12c_1}}{2^{2/3}}$$

$$y(x) \to -1 + \frac{i(\sqrt{3} + i)\sqrt[3]{-3x^4 + 4 + 12c_1}}{22^{2/3}}$$

$$y(x) \to -1 - \frac{(1 + i\sqrt{3})\sqrt[3]{-3x^4 + 4 + 12c_1}}{22^{2/3}}$$

2.4 problem 4

Internal problem ID [5090]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 4.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\cos(y) + (1 + e^{-x})\sin(y)y' = 0$$

With initial conditions

$$\left[y(0) = \frac{\pi}{4}\right]$$

✓ Solution by Maple

Time used: 0.344 (sec). Leaf size: 14

dsolve([cos(y(x))+(1+exp(-x))*sin(y(x))*diff(y(x),x)=0,y(0) = 1/4*Pi],y(x), singsol=all)

$$y(x) = \arccos\left(\frac{\sqrt{2}(e^x + 1)}{4}\right)$$

✓ Solution by Mathematica

Time used: 50.086 (sec). Leaf size: 20

$$y(x) \to \arccos\left(\frac{e^x + 1}{2\sqrt{2}}\right)$$

2.5 problem 5

Internal problem ID [5091]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

 ${f Section}$: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x^{2}(1+y) + y^{2}(x-1)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

 $dsolve(x^2*(y(x)+1)+y(x)^2*(x-1)*diff(y(x),x)=0,y(x), singsol=all)$

$$\frac{x^2}{2} + x + \ln(x - 1) + \frac{y(x)^2}{2} - y(x) + \ln(y(x) + 1) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.42 (sec). Leaf size: 56

 $DSolve[x^2*(y[x]+1)+y[x]^2*(x-1)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \text{InverseFunction} \left[\frac{1}{2} (\#1+1)^2 - 2(\#1+1) + \log(\#1+1) \& \right] \left[-\frac{x^2}{2} - x - \log(x-1) + \frac{3}{2} + c_1 \right]$$

$$y(x) \to -1$$

2.6 problem 6

Internal problem ID [5092]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, [_Abel, '2nd ty

$$(2y-x)y'-y=2x$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 51

dsolve((2*y(x)-x)*diff(y(x),x)=2*x+y(x),y(x), singsol=all)

$$y(x) = \frac{c_1 x - \sqrt{5c_1^2 x^2 + 4}}{2c_1}$$
$$y(x) = \frac{c_1 x + \sqrt{5c_1^2 x^2 + 4}}{2c_1}$$

✓ Solution by Mathematica

Time used: 0.454 (sec). Leaf size: 102

$$y(x) \to \frac{1}{2} \left(x - \sqrt{5x^2 - 4e^{c_1}} \right)$$
$$y(x) \to \frac{1}{2} \left(x + \sqrt{5x^2 - 4e^{c_1}} \right)$$
$$y(x) \to \frac{1}{2} \left(x - \sqrt{5}\sqrt{x^2} \right)$$
$$y(x) \to \frac{1}{2} \left(\sqrt{5}\sqrt{x^2} + x \right)$$

2.7 problem 7

Internal problem ID [5093]

 $\bf Book:$ Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$xy + y^2 + \left(x^2 - xy\right)y' = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 17

 $dsolve((x*y(x)+y(x)^2)+(x^2-x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\text{LambertW}\left(-\frac{e^{-2c_1}}{x^2}\right)x$$

✓ Solution by Mathematica

Time used: 2.801 (sec). Leaf size: 25

 $DSolve[(x*y[x]+y[x]^2)+(x^2-x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -xW\left(-\frac{e^{-c_1}}{x^2}\right)$$

 $y(x) \to 0$

2.8 problem 8

Internal problem ID [5094]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y^3 - 3y'y^2x = -x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 74

 $dsolve((x^3+y(x)^3)=3*x*y(x)^2*diff(y(x),x),y(x), singsol=all)$

$$y(x) = rac{2^{rac{2}{3}}(x(x^2 + 2c_1))^{rac{1}{3}}}{2} \ y(x) = -rac{2^{rac{2}{3}}(x(x^2 + 2c_1))^{rac{1}{3}}(1 + i\sqrt{3})}{4} \ y(x) = rac{2^{rac{2}{3}}(x(x^2 + 2c_1))^{rac{1}{3}}(i\sqrt{3} - 1)}{4}$$

✓ Solution by Mathematica

Time used: 0.21 (sec). Leaf size: 90

 $DSolve[(x^3+y[x]^3)==3*x*y[x]^2*y'[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\sqrt[3]{-\frac{1}{2}\sqrt[3]{x}\sqrt[3]{x^2 + 2c_1}}$$
$$y(x) \to \frac{\sqrt[3]{x}\sqrt[3]{x^2 + 2c_1}}{\sqrt[3]{2}}$$
$$y(x) \to \frac{(-1)^{2/3}\sqrt[3]{x}\sqrt[3]{x^2 + 2c_1}}{\sqrt[3]{2}}$$

2.9 problem 9

Internal problem ID [5095]

 $\bf Book:$ Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y + (4y + 3x)y' = 3x$$

✓ Solution by Maple

Time used: 0.36 (sec). Leaf size: 278

 $\label{eq:dsolve} dsolve(y(x)-3*x+(4*y(x)+3*x)*diff(y(x),x)=0,y(x), singsol=all)$

y(x)

$$=\frac{-3x^{8}c_{1} \operatorname{RootOf}\left(\underline{Z^{64}}c_{1}x^{8}+12\underline{Z^{56}}c_{1}x^{8}+48\underline{Z^{48}}c_{1}x^{8}+64\underline{Z^{40}}c_{1}x^{8}-1\right)^{56}-24x^{8}c_{1} \operatorname{RootOf}\left(\underline{Z^{64}}c_{1}x^{8}+12\underline{Z^{56}}c_{1}x^{8}+48\underline{Z^{48}}c_{1}x^{8}+64\underline{Z^{40}}c_{1}x^{8}-1\right)^{40}\left(\operatorname{RootOf}\left(\underline{Z^{64}}c_{1}x^{8}+12\underline{Z^{56}}c_{1}x^{8}+48\underline{Z^{48}}c_{1}x^{8}+64\underline{Z^{40}}c_{1}x^{8}-1\right)^{40}\left(\operatorname{RootOf}\left(\underline{Z^{64}}c_{1}x^{8}+12\underline{Z^{56}}c_{1}x^{8}+48\underline{Z^{48}}c_{1}x^{8}+64\underline{Z^{40}}c_{1}x^{8}-1\right)^{40}\right)^{4}$$

✓ Solution by Mathematica

Time used: 5.296 (sec). Leaf size: 673

DSolve[y[x]-3*x+(4*y[x]+3*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True

$$y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 \right. \\ \left. - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 1 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 \right. \\ \left. - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 2 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 \right. \\ \left. - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 3 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 \right. \\ \left. - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 4 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 \right. \\ \left. - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 5 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 \right. \\ \left. - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 6 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 \right. \\ \left. - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 6 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 \right. \\ \left. - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 7 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 \right. \\ \left. - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 7 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 \right. \\ \left. - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 7 \right] \\ \left. - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 7 \right] \\ \left. - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 7 \right] \\ \left. - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 8 \right] \right.$$

2.10 problem 10

Internal problem ID [5096]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 10.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\;Maple\;gives\;this\;as\;type\;[[_homogeneous,\; `class\;A'],\;_rational,\;_dAlembert]}$

$$(x^3 + 3xy^2)y' - y^3 - 3yx^2 = 0$$

✓ Solution by Maple

Time used: 0.079 (sec). Leaf size: 23

 $dsolve((x^3+3*x*y(x)^2)*diff(y(x),x)=y(x)^3+3*x^2*y(x),y(x), singsol=all)$

$$y(x) = \text{RootOf} \left(\underline{Z}^4 c_1 x - c_1 x - \underline{Z}\right)^2 x$$

Solution by Mathematica

Time used: 60.142 (sec). Leaf size: 1659

$$\rightarrow \frac{1}{6} \left(-\sqrt{3} \sqrt{4x^2 + \frac{16\sqrt[3]{2}x^4}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}} + \frac{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8}} + \sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}} + \sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}} + \sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{2c_1}x^4 + 81e^{2c_1}x^8 + 81e^$$

$$\begin{array}{c}
-3 \sqrt{\frac{8x^2}{3} - \frac{16\sqrt[3]{2}x^4}{3\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}} - \sqrt{\frac{4x^2 + \frac{16\sqrt[3]{2}x^4}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^4}}}}
\end{array}$$

 $\rightarrow \frac{1}{6} \left(3 \sqrt{\frac{8x^2}{3} - \frac{16\sqrt[3]{2}x^4}{3\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}} - \sqrt{\frac{4x^2 + \frac{16\sqrt[3]{2}x^4}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^4}}} \right)} \right) = \frac{1}{6} \sqrt{\frac{16\sqrt[3]{2}x^4}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}} - \sqrt{\frac{4x^2 + \frac{16\sqrt[3]{2}x^4}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}} - \sqrt{\frac{4x^2 + \frac{16\sqrt[3]{2}x^4}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}}} - \sqrt{\frac{4x^2 + \frac{16\sqrt[3]{2}x^4}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}}} - \sqrt{\frac{4x^2 + \frac{16\sqrt[3]{2}x^4}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}}}}$

$$-\sqrt{3}\sqrt{4x^2 + \frac{16\sqrt[3]{2}x^4}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}} + \frac{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}{\sqrt[3]{2}}$$

2.11 problem 11

Internal problem ID [5097]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$-y + xy' = x^3 + 3x^2 - 2x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve(x*diff(y(x),x)-y(x)=x^3+3*x^2-2*x,y(x), singsol=all)$

$$y(x) = \frac{(x^2 + 6x - 4\ln(x) + 2c_1)x}{2}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: $24\,$

 $DSolve[x*y'[x]-y[x]==x^3+3*x^2-2*x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow x \left(\frac{x^2}{2} + 3x - 2\log(x) + c_1\right)$$

2.12 problem 12

Internal problem ID [5098]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y\tan(x) = \sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)+y(x)*tan(x)=sin(x),y(x), singsol=all)

$$y(x) = (-\ln(\cos(x)) + c_1)\cos(x)$$

✓ Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 16

DSolve[y'[x]+y[x]*Tan[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \cos(x)(-\log(\cos(x)) + c_1)$$

2.13 problem 13

Internal problem ID [5099]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$-y + xy' = \cos(x) x^3$$

With initial conditions

$$[y(\pi) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $\label{eq:decomposition} \\ \mbox{dsolve}([x*\mbox{diff}(y(x),x)-y(x)=x^3*\cos(x),y(\mbox{Pi}) = 0],y(x), \mbox{ singsol=all}) \\$

$$y(x) = (\cos(x) + \sin(x) x + 1) x$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 15

 $DSolve[\{x*y'[x]-y[x]==x^3*Cos[x],\{y[Pi]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x(x\sin(x) + \cos(x) + 1)$$

2.14 problem 14

Internal problem ID [5100]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\left(x^2 + 1\right)y' + 3xy = 5x$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

 $dsolve([(1+x^2)*diff(y(x),x)+3*x*y(x)=5*x,y(1) = 2],y(x), singsol=all)$

$$y(x) = \frac{5}{3} + \frac{2\sqrt{2}}{3(x^2+1)^{\frac{3}{2}}}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 27

DSolve[{(1+x^2)*y'[x]+3*x*y[x]==5*x,{y[1]==2}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{2\sqrt{2}}{3(x^2+1)^{3/2}} + \frac{5}{3}$$

2.15 problem 15

Internal problem ID [5101]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y \cot(x) = 5 e^{\cos(x)}$$

With initial conditions

$$\left[y\Big(\frac{\pi}{2}\Big)=-4\right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(x),x)+y(x)*cot(x)=5*exp(cos(x)),y(1/2*Pi) = -4],y(x), singsol=all)

$$y(x) = -5 e^{\cos(x)} \csc(x) + \csc(x)$$

✓ Solution by Mathematica

Time used: 0.1 (sec). Leaf size: 16

$$y(x) \to (1 - 5e^{\cos(x)})\csc(x)$$

2.16 problem 16

Internal problem ID [5102]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$(3x + 3y - 4)y' + y = -x$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 21

dsolve((3*x+3*y(x)-4)*diff(y(x),x)=-(x+y(x)),y(x), singsol=all)

$$y(x) = rac{2 \operatorname{LambertW}\left(rac{3 \operatorname{e}^{-3+x-c_1}}{2}
ight)}{3} - x + 2$$

✓ Solution by Mathematica

Time used: 3.675 (sec). Leaf size: 33

DSolve[(3*x+3*y[x]-4)*y'[x]==-(x+y[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{2}{3}W(-e^{x-1+c_1}) - x + 2$$
$$y(x) \to 2 - x$$

2.17 problem 17

Internal problem ID [5103]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]'], [_Ab

$$-xy^2 - (x + yx^2)y' = -x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 53

 $dsolve((x-x*y(x)^2)=(x+x^2*y(x))*diff(y(x),x),y(x), singsol=all)$

$$x + \frac{\sqrt{y(x)^{2} - 1} \ln \left(y(x) + \sqrt{y(x)^{2} - 1}\right)}{(y(x) - 1)(y(x) + 1)} - \frac{c_{1}}{\sqrt{y(x) - 1} \sqrt{y(x) + 1}} = 0$$

✓ Solution by Mathematica

Time used: 0.127 (sec). Leaf size: 55

 $DSolve[(x-x*y[x]^2)==(x+x^2*y[x])*y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$x = -\frac{2 \arctan\left(\frac{\sqrt{1 - y(x)^2}}{y(x) + 1}\right)}{\sqrt{1 - y(x)^2}} + \frac{c_1}{\sqrt{1 - y(x)^2}}, y(x)$$

2.18 problem 18

Internal problem ID [5104]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$-y + (4y + x - 1)y' = 1 - x$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 29

dsolve((x-y(x)-1)+(4*y(x)+x-1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\frac{\tan\left(\operatorname{RootOf}\left(\ln\left(\sec\left(\underline{Z}\right)^{2}\right) - \underline{Z} + 2\ln\left(x - 1\right) + 2c_{1}\right)\right)(x - 1)}{2}$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 58

 $DSolve[(x-y[x]-1)+(4*y[x]+x-1)*y'[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

Solve
$$\left[2 \arctan \left(\frac{2y(x) - 2x + 2}{4y(x) + x - 1} \right) + 2 \log \left(\frac{4}{5} \left(\frac{4y(x)^2}{(x - 1)^2} + 1 \right) \right) + 4 \log(x - 1) + 5c_1 = 0, y(x) \right]$$

2.19 problem 19

Internal problem ID [5105]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$3y + (7y - 3x + 3)y' = 7x - 7$$

✓ Solution by Maple

Time used: 0.422 (sec). Leaf size: 1814

dsolve((3*y(x)-7*x+7)+(7*y(x)-3*x+3)*diff(y(x),x)=0,y(x), singsol=all)

Expression too large to display

✓ Solution by Mathematica

Time used: 60.706 (sec). Leaf size: 7785

DSolve[(3*y[x]-7*x+7)+(7*y[x]-3*x+3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Too large to display

2.20 problem 20

Internal problem ID [5106]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$y(xy+1) + x(1+xy+y^2x^2)y' = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 38

 $dsolve(y(x)*(x*y(x)+1)+x*(1+x*y(x)+x^2*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = rac{\mathrm{e}^{\mathrm{RootOf}(-2\ln(x)\mathrm{e}^2 - Z} + 2c_1\mathrm{e}^2 - Z} + 2\sum_{z=2}^{Z} 2^{z-z} - 2e^{-z} - 1)}{x}$$

✓ Solution by Mathematica

Time used: 0.11 (sec). Leaf size: 30

$$\operatorname{Solve}\left[\frac{-\frac{1}{2x^2} - \frac{y(x)}{x}}{y(x)^2} + \log(y(x)) = c_1, y(x)\right]$$

2.21 problem 21

Internal problem ID [5107]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y + y' - y^3 x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

 $dsolve(diff(y(x),x)+y(x)=x*y(x)^3,y(x), singsol=all)$

$$y(x) = -\frac{2}{\sqrt{2+4e^{2x}c_1 + 4x}}$$
$$y(x) = \frac{2}{\sqrt{2+4e^{2x}c_1 + 4x}}$$

✓ Solution by Mathematica

Time used: 2.704 (sec). Leaf size: 50

DSolve[y'[x]+y[x]==x*y[x]^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{\sqrt{x + c_1 e^{2x} + \frac{1}{2}}}$$

 $y(x) \to \frac{1}{\sqrt{x + c_1 e^{2x} + \frac{1}{2}}}$
 $y(x) \to 0$

2.22 problem 22

Internal problem ID [5108]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Bernoulli]

$$y + y' - y^4 e^x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 138

 $dsolve(diff(y(x),x)+y(x)=y(x)^4*exp(x),y(x), singsol=all)$

$$y(x) = \frac{2^{\frac{1}{3}} \left(e^{2x} (2 e^{2x} c_1 + 3)^2 \right)^{\frac{1}{3}} e^{-x}}{2 e^{2x} c_1 + 3}$$

$$y(x) = -\frac{\left(1 + i\sqrt{3} \right) 2^{\frac{1}{3}} \left(e^{2x} (2 e^{2x} c_1 + 3)^2 \right)^{\frac{1}{3}} e^{-x}}{4 e^{2x} c_1 + 6}$$

$$y(x) = \frac{2^{\frac{1}{3}} \left(e^{2x} (2 e^{2x} c_1 + 3)^2 \right)^{\frac{1}{3}} \left(i\sqrt{3} - 1 \right) e^{-x}}{4 e^{2x} c_1 + 6}$$

/ Solution by Mathematica

Time used: 4.751 (sec). Leaf size: 90

 $DSolve[y'[x]+y[x]==y[x]^4*Exp[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt[3]{-2}}{\sqrt[3]{e^x (3 + 2c_1 e^{2x})}}$$
$$y(x) \to \frac{1}{\sqrt[3]{\frac{3e^x}{2} + c_1 e^{3x}}}$$
$$y(x) \to \frac{(-1)^{2/3}}{\sqrt[3]{\frac{3e^x}{2} + c_1 e^{3x}}}$$
$$y(x) \to 0$$

2.23 problem 23

Internal problem ID [5109]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$2y' + y - y^3(x - 1) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(2*diff(y(x),x)+y(x)=y(x)^3*(x-1),y(x), singsol=all)$

$$y(x) = rac{1}{\sqrt{\mathrm{e}^x c_1 + x}}$$
 $y(x) = -rac{1}{\sqrt{\mathrm{e}^x c_1 + x}}$

✓ Solution by Mathematica

Time used: 2.721 (sec). Leaf size: 40

 $DSolve[2*y'[x]+y[x]==y[x]^3*(x-1),y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{1}{\sqrt{x + c_1 e^x}}$$
$$y(x) \to \frac{1}{\sqrt{x + c_1 e^x}}$$
$$y(x) \to 0$$

2.24 problem 24

Internal problem ID [5110]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' - 2y \tan(x) - \tan(x)^2 y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(diff(y(x),x)-2*y(x)*tan(x)=y(x)^2*tan(x)^2,y(x), singsol=all)$

$$y(x) = -\frac{3\sec(x)^2}{\tan(x)^3 - 3c_1}$$

✓ Solution by Mathematica

Time used: 0.519 (sec). Leaf size: 31

DSolve[y'[x]-2*y[x]*Tan[x]==y[x]^2*Tan[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{3}{-\sin^2(x)\tan(x) + 3c_1\cos^2(x)}$$
$$y(x) \to 0$$

2.25 problem 25

Internal problem ID [5111]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + y \tan(x) - y^3 \sec(x)^4 = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 68

 $dsolve(diff(y(x),x)+y(x)*tan(x)=y(x)^3*sec(x)^4,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{\cos(x)^{5} (\cos(x) c_{1} - 2\sin(x))} \sec(x)}{-\cos(x) c_{1} + 2\sin(x)}$$
$$y(x) = \frac{\sqrt{\cos(x)^{5} (\cos(x) c_{1} - 2\sin(x))} \sec(x)}{\cos(x) c_{1} - 2\sin(x)}$$

✓ Solution by Mathematica

Time used: 4.061 (sec). Leaf size: 48

DSolve[y'[x]+y[x]*Tan[x]==y[x]^3*Sec[x]^4,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{\sqrt{\sec^2(x)(-2\tan(x) + c_1)}}$$
$$y(x) \to \frac{1}{\sqrt{\sec^2(x)(-2\tan(x) + c_1)}}$$
$$y(x) \to 0$$

2.26 problem 26

Internal problem ID [5112]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(-x^2+1)y'-xy=1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 46

 $dsolve((1-x^2)*diff(y(x),x)=1+x*y(x),y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{x^2 - 1} \ln (x + \sqrt{x^2 - 1})}{(x - 1)(x + 1)} + \frac{c_1}{\sqrt{x - 1} \sqrt{x + 1}}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 54

DSolve[(1-x^2)*y'[x]==1+x*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{\log\left(1 - rac{x}{\sqrt{x^2 - 1}}\right) - \log\left(rac{x}{\sqrt{x^2 - 1}} + 1\right) + 2c_1}{2\sqrt{x^2 - 1}}$$

2.27 problem 27

Internal problem ID [5113]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xyy' - (x+1)\sqrt{y-1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(x*y(x)*diff(y(x),x)-(1+x)*sqrt(y(x)-1)=0,y(x), singsol=all)

$$\frac{(-2y(x) - 4)\sqrt{y(x) - 1}}{3} + x + c_1 + \ln(x) = 0$$

✓ Solution by Mathematica

Time used: 5.614 (sec). Leaf size: 582

DSolve[x*y[x]*y'[x]-(1+x)*Sqrt[y[x]-1]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) & \rightarrow \frac{1}{2} \sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c_1^2\right)} + 9\log^2(x) \\ & + \frac{2}{\sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c_1^2\right)} + 9\log^2(x) \\ & - 1} \\ y(x) & \rightarrow \frac{1}{4}i \Big(\sqrt{3} + i\Big) \sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c_1^2\right)} + 9\log^2(x) \\ & + \frac{-1 - i\sqrt{3}}{\sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c_1^2\right)} + 9\log^2(x) \\ & - 1} \\ y(x) & \rightarrow -\frac{1}{4}i \Big(\sqrt{3} + i\Big) \sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c_1^2\right)} + 9\log^2(x) \\ & + \frac{-1 + i\sqrt{3}}{\sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c_1^2\right)} + 9\log^2(x) \\ & - 1 + i\sqrt{3} + i\Big) \sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c_1^2\right)} + 9\log^2(x) \\ & - 1 + i\sqrt{3} + i\Big) \sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c_1^2\right)} + 9\log^2(x) \\ & - 1 + i\sqrt{3} + i\Big) \sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c_1^2\right)} + 9\log^2(x)} \\ & - 1 + i\sqrt{3} + i\Big) \sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c_1^2\right)} + 9\log^2(x)} \\ & - 1 + i\sqrt{3} + i\Big) \sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c_1^2\right)} + 9\log^2(x)} \\ & - 1 + i\sqrt{3} + i\Big) \sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c_1^2\right)} + 9\log^2(x)} \\ & - 1 + i\sqrt{3} + i\Big) \sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c_1^2\right)} + 9\log^2(x)} \\ & - 1 + i\sqrt{3} + i\Big) \sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c_1^2\right)} + 9\log^2(x)} \\ & - 1 + i\sqrt{3} + i\Big) \sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c_1^2\right)} + 9\log^2(x)} \\ & - 1 + i\sqrt{3} + i\Big) \sqrt[3]{9x^2 + 3\sqrt{(x + \log(x) + c_1)^2 \left(9x^2 + 9\log^2(x) + 18c_1x + 18(x + c_1)\log(x) + 16 + 9c$$

2.28 problem 28

Internal problem ID [5114]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$-2xy + 5y^{2} - (x^{2} + 2xy + y^{2})y' = -x^{2}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

 $dsolve((x^2-2*x*y(x)+5*y(x)^2)=(x^2+2*x*y(x)+y(x)^2)*diff(y(x),x),y(x), singsol=all)$

$$y(x) = x \left(1 + e^{\text{RootOf}(\ln(x)e^2 - Z + c_1e^2 - Z + 2e^2 - Z - 4e^{-Z} - 2)}\right)$$

✓ Solution by Mathematica

Time used: 0.343 (sec). Leaf size: 41 $\,$

Solve
$$\left[\frac{2-\frac{4y(x)}{x}}{\left(\frac{y(x)}{x}-1\right)^2} + \log\left(\frac{y(x)}{x}-1\right) = -\log(x) + c_1, y(x)\right]$$

2.29 problem 29

Internal problem ID [5115]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 29.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' - y \cot(x) - y^2 \sec(x)^2 = 0$$

With initial conditions

$$\left[y\Big(\frac{\pi}{4}\Big)=-1\right]$$

✓ Solution by Maple

Time used: 0.89 (sec). Leaf size: 18

 $dsolve([diff(y(x),x)-y(x)*cot(x)=y(x)^2*sec(x)^2,y(1/4*Pi) = -1],y(x), singsol=all)$

$$y(x) = \frac{2\sin(x)}{\sqrt{2} - 2\sec(x)}$$

✓ Solution by Mathematica

Time used: 0.46 (sec). Leaf size: 22

$$y(x) o rac{\sin(2x)}{\sqrt{2}\cos(x) - 2}$$

2.30 problem 30

Internal problem ID [5116]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 30.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y + \left(x^2 - 4x\right)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(y(x)+(x^2-4*x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1 x^{\frac{1}{4}}}{(x-4)^{\frac{1}{4}}}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 27

DSolve[$y[x]+(x^2-4*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to \frac{c_1 \sqrt[4]{x}}{\sqrt[4]{4-x}}$$
$$y(x) \to 0$$

2.31 problem 31

Internal problem ID [5117]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 31.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - y \tan(x) = \cos(x) - 2\sin(x) x$$

With initial conditions

$$\left[y\left(\frac{\pi}{6}\right) = 0\right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

dsolve([diff(y(x),x)-y(x)*tan(x)=cos(x)-2*x*sin(x),y(1/6*Pi) = 0],y(x), singsol=all)

$$y(x) = \cos(x) x - \frac{\pi \sec(x)}{8}$$

✓ Solution by Mathematica

Time used: 0.073 (sec). Leaf size: $25\,$

 $DSolve[\{y'[x]-y[x]*Tan[x]==Cos[x]-2*x*Sin[x],\{y[Pi/6]==0\}\},y[x],x,IncludeSingularSolutions-1]$

$$y(x) \to \frac{1}{8}(4x + 4x\cos(2x) - \pi)\sec(x)$$

2.32 problem 32

Internal problem ID [5118]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 32.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{2xy + y^2}{x^2 + 2xy} = 0$$

✓ Solution by Maple

 $\overline{\text{Time used: 0.032 (sec)}}$. Leaf size: 356

 $dsolve(diff(y(x),x)=(2*x*y(x)+y(x)^2)/(x^2+2*x*y(x)),y(x), singsol=all)$

$$\begin{split} y(x) &= \frac{12^{\frac{1}{3}} \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{2}{3}}}{6c_1} + \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} + x \\ y(x) &= \frac{-\frac{\left(i3^{\frac{5}{6}} + 3^{\frac{1}{3}} \right) 2^{\frac{2}{3}} \left(x \left(\sqrt{3} \sqrt{\frac{27c_1x^2 - 4x}{c_1}} + 9x \right) c_1^2 \right)^{\frac{2}{3}}}{6} + \left(2 \left(x \left(\sqrt{3} \sqrt{\frac{27c_1x^2 - 4x}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}} + 2^{\frac{1}{3}} \left(i3^{\frac{1}{6}} - \frac{3^{\frac{2}{3}}}{3} \right) \right) x c_1}{2 \left(x \left(\sqrt{3} \sqrt{\frac{27c_1x^2 - 4x}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}} c_1} \\ y(x) &= \\ -\frac{\left(i3^{\frac{5}{6}} - 3^{\frac{1}{3}} \right) 2^{\frac{2}{3}} \left(x \left(\sqrt{3} \sqrt{\frac{27c_1x^2 - 4x}{c_1}} + 9x \right) c_1^2 \right)^{\frac{2}{3}}}{6} + \left(-2 \left(x \left(\sqrt{3} \sqrt{\frac{27c_1x^2 - 4x}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}} + 2^{\frac{1}{3}} \left(i3^{\frac{1}{6}} + \frac{3^{\frac{2}{3}}}{3} \right) \right) x c_1}{2 \left(x \left(\sqrt{3} \sqrt{\frac{27c_1x^2 - 4x}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}} c_1} \end{split}$$

✓ Solution by Mathematica

Time used: 56.42 (sec). Leaf size: 404

 $DSolve[y'[x] == (2*x*y[x]+y[x]^2)/(x^2+2*x*y[x]), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$\begin{split} y(x) &\to -\frac{\sqrt[3]{\frac{2}{3}}e^{c_1}x}{\sqrt[3]{\sqrt{3}\sqrt{e^{2c_1}x^3\left(27x+4e^{c_1}\right)}-9e^{c_1}x^2}} + \frac{\sqrt[3]{\sqrt{3}\sqrt{e^{2c_1}x^3\left(27x+4e^{c_1}\right)}-9e^{c_1}x^2}}{\sqrt[3]{2}3^{2/3}} + x \\ y(x) &\to \frac{\left(1+i\sqrt{3}\right)e^{c_1}x}{2^{2/3}\sqrt[3]{\sqrt{3}\sqrt{e^{2c_1}x^3\left(27x+4e^{c_1}\right)}-27e^{c_1}x^2}} \\ &\quad + \frac{i\left(\sqrt{3}+i\right)\sqrt[3]{\sqrt{3}\sqrt{e^{2c_1}x^3\left(27x+4e^{c_1}\right)}-9e^{c_1}x^2}}{2\sqrt[3]{2}3^{2/3}} + x \\ y(x) &\to \frac{\left(1-i\sqrt{3}\right)e^{c_1}x}{2^{2/3}\sqrt[3]{\sqrt{3}\sqrt{e^{2c_1}x^3\left(27x+4e^{c_1}\right)}-27e^{c_1}x^2}} \\ &\quad - \frac{\left(1+i\sqrt{3}\right)\sqrt[3]{\sqrt{3}\sqrt{e^{2c_1}x^3\left(27x+4e^{c_1}\right)}-9e^{c_1}x^2}}{2\sqrt[3]{2}3^{2/3}} + x \end{split}$$

2.33 problem 33

Internal problem ID [5119]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 33.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x^2 + 1) y' - x(1 + y) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((1+x^2)*diff(y(x),x)=x*(1+y(x)),y(x), singsol=all)$

$$y(x) = \sqrt{x^2 + 1} \, c_1 - 1$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 24

 $DSolve[(1+x^2)*y'[x] == x*(1+y[x]), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -1 + c_1 \sqrt{x^2 + 1}$$
$$y(x) \to -1$$

2.34 problem 34

Internal problem ID [5120]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 34.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$xy' + 2y = 3x - 1$$

With initial conditions

$$[y(2) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $\label{eq:decomposition} \\ \mbox{dsolve}([x*\mbox{diff}(y(x),x)+2*y(x)=3*x-1,y(2) = 1],y(x), \mbox{ singsol=all}) \\$

$$y(x) = x - \frac{1}{2} - \frac{2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 15

 $DSolve[\{x*y'[x]+2*y[x]==3*x-1,\{y[2]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\frac{2}{x^2} + x - \frac{1}{2}$$

2.35 problem 35

Internal problem ID [5121]

 $\bf Book:$ Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 35.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$x^2y' - y^2 + xyy' = 0$$

With initial conditions

$$[y(1) = 1]$$

Solution by Maple

Time used: 0.375 (sec). Leaf size: 13

 $dsolve([x^2*diff(y(x),x)=y(x)^2-x*y(x)*diff(y(x),x),y(1) = 1],y(x), singsol=all)$

$$y(x) = \text{LambertW}\left(\frac{e}{x}\right)x$$

✓ Solution by Mathematica

Time used: 2.335 (sec). Leaf size: 13

$$y(x) \to xW\left(\frac{e}{x}\right)$$

2.36 problem 36

Internal problem ID [5122]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 36.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - e^{3x - 2y} = 0$$

With initial conditions

$$[y(0) = 0]$$

Solution by Maple

Time used: 0.078 (sec). Leaf size: 15

dsolve([diff(y(x),x)=exp(3*x-2*y(x)),y(0) = 0],y(x), singsol=all)

$$y(x) = -\frac{\ln(3)}{2} + \frac{\ln(1+2e^{3x})}{2}$$

✓ Solution by Mathematica

Time used: 0.881 (sec). Leaf size: 23

 $DSolve[\{y'[x] == Exp[3*x-2*y[x]], \{y[0] == 0\}\}, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{1}{2} \log \left(rac{1}{3} \left(2e^{3x} + 1
ight)
ight)$$

2.37 problem 37

Internal problem ID [5123]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 37.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{x} = \sin\left(2x\right)$$

With initial conditions

$$\left[y\left(\frac{\pi}{4}\right)=2\right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 25

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(y(x),x)+1/x*y(x)=\sin(2*x),y(1/4*\mbox{Pi}) = 2],y(x), \ \mbox{singsol=all})$

$$y(x) = \frac{-2x\cos(2x) + 2\pi + \sin(2x) - 1}{4x}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 28

 $DSolve[\{y'[x]+1/x*y[x]==Sin[2*x],\{y[Pi/4]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{\sin(2x) - 2x\cos(2x) + 2\pi - 1}{4x}$$

2.38 problem 38

Internal problem ID [5124]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 38.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y^2 + x^2y' - xyy' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

 $dsolve(y(x)^2+x^2*diff(y(x),x)=x*y(x)*diff(y(x),x),y(x), singsol=all)$

$$y(x) = -x \text{ LambertW}\left(-\frac{e^{-c_1}}{x}\right)$$

✓ Solution by Mathematica

Time used: 2.23 (sec). Leaf size: 25

 $DSolve[y[x]^2+x^2*y'[x]==x*y[x]*y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o -xWigg(-rac{e^{-c_1}}{x}igg)$$
 $y(x) o 0$

2.39 problem 39

Internal problem ID [5125]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 39.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _Bernoulli]

$$2xyy' + y^2 = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 45

 $dsolve(2*x*y(x)*diff(y(x),x)=x^2-y(x)^2,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{3}\sqrt{x(x^3 + 3c_1)}}{3x}$$
$$y(x) = \frac{\sqrt{3}\sqrt{x(x^3 + 3c_1)}}{3x}$$

✓ Solution by Mathematica

Time used: 0.2 (sec). Leaf size: 56

DSolve[2*x*y[x]*y'[x]==x^2-y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\sqrt{x^3 + 3c_1}}{\sqrt{3}\sqrt{x}}$$
$$y(x) \to \frac{\sqrt{x^3 + 3c_1}}{\sqrt{3}\sqrt{x}}$$

2.40 problem 40

Internal problem ID [5126]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 40.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{-2y + x + 1}{2x - 4y} = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.234 (sec). Leaf size: 17

dsolve([diff(y(x),x)=(x-2*y(x)+1)/(2*x-4*y(x)),y(1) = 1],y(x), singsol=all)

$$y(x) = \frac{x}{2} + \frac{\sqrt{-2x+3}}{2}$$

✓ Solution by Mathematica

Time used: 0.115 (sec). Leaf size: 24

 $DSolve[\{y'[x] == (x-2*y[x]+1)/(2*x-4*y[x]), \{y[1] == 1\}\}, y[x], x, IncludeSingularSolutions -> True]$

$$y(x) \to \frac{1}{2} \big(x - i \sqrt{2x - 3} \big)$$

2.41 problem 41

Internal problem ID [5127]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 41.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(-x^3+1)y'+yx^2=x^2(-x^3+1)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve((1-x^3)*diff(y(x),x)+x^2*y(x)=x^2*(1-x^3),y(x), singsol=all)$

$$y(x) = \frac{x^3}{2} - \frac{1}{2} + (x^3 - 1)^{\frac{1}{3}} c_1$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 27

 $DSolve[(1-x^3)*y'[x]+x^2*y[x]==x^2*(1-x^3),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2} \left(x^3 + 2c_1 \sqrt[3]{x^3 - 1} - 1 \right)$$

2.42 problem 42

Internal problem ID [5128]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 42.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{x} = \sin(x)$$

With initial conditions

$$\left[y\left(\frac{\pi}{2}\right)=0\right]$$

/ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

 $\label{eq:decomposition} dsolve([diff(y(x),x)+y(x)/x=\sin(x),y(1/2*Pi) = 0],y(x), \ singsol=all)$

$$y(x) = \frac{\sin(x) - \cos(x)x - 1}{x}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 18

 $DSolve[\{y'[x]+y[x]/x==Sin[x],\{y[Pi/2]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{\sin(x) - x\cos(x) - 1}{x}$$

2.43 problem 43

Internal problem ID [5129]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 43.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + xy^2 = -x$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 14

 $dsolve([diff(y(x),x)+x+x*y(x)^2=0,y(1) = 0],y(x), singsol=all)$

$$y(x) = -\tan\left(\frac{x^2}{2} - \frac{1}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.215 (sec). Leaf size: 17

 $DSolve[\{y'[x]+x+x*y[x]^2==0,\{y[1]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o an\left(rac{1}{2}(1-x^2)
ight)$$

2.44 problem 44

Internal problem ID [5130]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 44.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \left(\frac{1}{x} - \frac{2x}{-x^2 + 1}\right)y = \frac{1}{-x^2 + 1}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x)+ $(1/x-(2*x)/(1-x^2))*y(x)=1/(1-x^2),y(x)$, singsol=all)

$$y(x) = \frac{-x^2 + 2c_1}{2x^3 - 2x}$$

Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 25

 $DSolve[y'[x]+(1/x-(2*x)/(1-x^2))*y[x]==1/(1-x^2),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^2 + 2c_1}{2x - 2x^3}$$

2.45 problem 45

Internal problem ID [5131]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 45.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(x^2+1)y'+xy=(x^2+1)^{\frac{3}{2}}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve((1+x^2)*diff(y(x),x)+x*y(x)=(1+x^2)^(3/2),y(x), singsol=all)$

$$y(x) = \frac{x^3 + 3c_1 + 3x}{3\sqrt{x^2 + 1}}$$

✓ Solution by Mathematica

Time used: 0.065 (sec). Leaf size: 29

 $DSolve[(1+x^2)*y'[x]+x*y[x]==(1+x^2)^(3/2),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^3 + 3x + 3c_1}{3\sqrt{x^2 + 1}}$$

problem 46 2.46

Internal problem ID [5132]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 46.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x(1+y^2) - y(x^2+1)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

 $dsolve(x*(1+y(x)^2)-y(x)*(1+x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{c_1 x^2 + c_1 - 1}$$
$$y(x) = -\sqrt{c_1 x^2 + c_1 - 1}$$

Solution by Mathematica

Time used: 0.499 (sec). Leaf size: 61

DSolve $[x*(1+y[x]^2)-y[x]*(1+x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\sqrt{-1 + e^{2c_1}(x^2 + 1)}$$

 $y(x) \to \sqrt{-1 + e^{2c_1}(x^2 + 1)}$

$$y(x) \to \sqrt{-1 + e^{2c_1}(x^2 + 1)}$$

$$y(x) \to -i$$

$$y(x) \to i$$

2.47 problem 47

Internal problem ID [5133]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 47.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\frac{r\tan\left(\theta\right)r'}{a^2-r^2}=1$$

With initial conditions

$$\left[r\left(\frac{\pi}{4}\right) = 0\right]$$

✓ Solution by Maple

Time used: 0.188 (sec). Leaf size: 39

 $dsolve([r(theta)*tan(theta)/(a^2-r(theta)^2)*diff(r(theta),theta)=1,r(1/4*Pi)] = 0],r(theta),$

$$r(\theta) = -\frac{a\sqrt{2}\sqrt{-\cos(2\theta)}\csc(\theta)}{2}$$
$$r(\theta) = \frac{a\sqrt{2}\sqrt{-\cos(2\theta)}\csc(\theta)}{2}$$

✓ Solution by Mathematica

Time used: 0.149 (sec). Leaf size: 51

 $DSolve[{r[\[Theta]]*Tan[\[Theta]]/(a^2-r[\[Theta]]^2)*r'[\[Theta]]==1,{r[Pi/4]}==0}\},r[\[Theta]]$

$$r(\theta) \to -\sqrt{rac{a^2 \cos(2\theta)}{\cos(2\theta) - 1}}$$

 $r(\theta) \to \sqrt{rac{a^2 \cos(2\theta)}{\cos(2\theta) - 1}}$

2.48 problem 48

Internal problem ID [5134]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 48.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y \cot(x) = \cos(x)$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.157 (sec). Leaf size: 8

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(\mbox{y}(\mbox{x}) + \mbox{y}(\mbox{x}) + \mbox{y}(\mbox{x}) + \mbox{cot}(\mbox{x}) = \mbox{cos}(\mbox{x}) \,, \\ \mbox{y}(0) = 0] \,, \\ \mbox{y}(\mbox{x}) \,, \\ \mbox{singsol=all}) \\$

$$y(x) = \frac{\sin(x)}{2}$$

✓ Solution by Mathematica

Time used: 0.103 (sec). Leaf size: 11

 $DSolve[\{y'[x]+y[x]*Cot[x]==Cos[x],\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{\sin(x)}{2}$$

2.49 problem 49

Internal problem ID [5135]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 49.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y' + \frac{y}{x} - xy^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(x),x)+y(x)/x=x*y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{1}{(-x + c_1)x}$$

✓ Solution by Mathematica

Time used: 0.135 (sec). Leaf size: 23

DSolve[y'[x]+y[x]/x==x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{x^2 - c_1 x}$$
$$y(x) \to 0$$

3	Program 25. Second order differential equation	ıs.
	Test Excercise 25. page 1093	
3.1	oroblem 1	72
3.2	problem 2	73
3.3	problem 3	74
3.4	problem 4	75
3.5	problem 5	76
3.6	oroblem 6	77
3.7	oroblem 7	78
3.8	oroblem 8	79

3.1 problem 1

Internal problem ID [5136]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 2y = 8$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=8,y(x), singsol=all)

$$y(x) = c_2 e^{-x} + e^{2x} c_1 - 4$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 23

DSolve[y''[x]-y'[x]-2*y[x]==8,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-x} + c_2 e^{2x} - 4$$

3.2 problem 2

Internal problem ID [5137]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y = 10 e^{3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-4*y(x)=10*exp(3*x),y(x), singsol=all)

$$y(x) = (2e^{5x} + e^{4x}c_1 + c_2)e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 29

DSolve[y''[x]-4*y[x]==10*Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} (2e^{5x} + c_1e^{4x} + c_2)$$

3.3 problem 3

Internal problem ID [5138]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' + y = e^{-2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=exp(-2*x),y(x), singsol=all)

$$y(x) = (c_1x + c_2)e^{-x} + e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: $24\,$

DSolve[y''[x]+2*y'[x]+y[x]==Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x}(1 + e^x(c_2x + c_1))$$

3.4 problem 4

Internal problem ID [5139]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 25y = 5x^2 + x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(y(x),x$2)+25*y(x)=5*x^2+x,y(x), singsol=all)$

$$y(x) = \sin(5x) c_2 + \cos(5x) c_1 + \frac{x^2}{5} + \frac{x}{25} - \frac{2}{125}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 34

 $DSolve[y''[x]+25*y[x]==5*x^2+x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{125} (25x^2 + 5x - 2) + c_1 \cos(5x) + c_2 \sin(5x)$$

3.5 problem 5

Internal problem ID [5140]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = 4\sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=4*sin(x),y(x), singsol=all)

$$y(x) = (c_1x + c_2)e^x + 2\cos(x)$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 21

 $DSolve[y''[x]-2*y'[x]+y[x]==4*Sin[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 2\cos(x) + e^x(c_2x + c_1)$$

3.6 problem 6

Internal problem ID [5141]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.

2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 5y = 2e^{-2x}$$

With initial conditions

$$[y(0) = 1, y'(0) = -2]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 14

dsolve([diff(y(x),x\$2)+4*diff(y(x),x)+5*y(x)=2*exp(-2*x),y(0) = 1, D(y)(0) = -2],y(x), sings

$$y(x) = -e^{-2x}(\cos(x) - 2)$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 16

$$y(x) \to -e^{-2x}(\cos(x) - 2)$$

3.7 problem 7

Internal problem ID [5142]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$3y'' - 2y' - y = 2x - 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(3*diff(y(x),x\$2)-2*diff(y(x),x)-y(x)=2*x-3,y(x), singsol=all)

$$y(x) = e^{-\frac{x}{3}}c_2 + e^x c_1 - 2x + 7$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: $26\,$

DSolve [3*y''[x]-2*y'[x]-y[x]==2*x-3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -2x + c_1 e^{-x/3} + c_2 e^x + 7$$

3.8 problem 8

Internal problem ID [5143]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 6y' + 8y = 8e^{4x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)-6*diff(y(x),x)+8*y(x)=8*exp(4*x),y(x), singsol=all)

$$y(x) = \frac{(8x + c_1 - 4)e^{4x}}{2} + c_2e^{2x}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 27

 $DSolve[y''[x]-6*y'[x]+8*y[x]==8*Exp[4*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_1 e^{2x} + e^{4x} (4x - 2 + c_2)$$

4 Program 25. Second order differential equations. Further problems 25. page 1094

4.1	problem	Ι.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	81
4.2	problem	2 .																																	82
4.3	problem	3.																																	83
4.4	problem	4 .																																	84
4.5	problem	5.																																	85
4.6	problem	6.																																	86
4.7	problem	7.																																	87
4.8	problem	8.																																	88
4.9	problem	9.																																	89
4.10	problem	10																																	90
4.11	$\operatorname{problem}$	12																																	91
4.12	problem	13																																	92
4.13	$\operatorname{problem}$	14																																	93
4.14	problem	15																																	94
4.15	$\operatorname{problem}$	16																																	95
4.16	$\operatorname{problem}$	17																																	96
4.17	problem	18																																	97
4.18	problem	19																																	98
<i>1</i> 10	problem	20																																	gg

4.1 problem 1

Internal problem ID [5144]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

 ${f Section:}$ Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2y'' - 7y' - 4y = e^{3x}$$

✓ <u>Solution</u> by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(2*diff(y(x),x\$2)-7*diff(y(x),x)-4*y(x)=exp(3*x),y(x), singsol=all)

$$y(x) = e^{-\frac{x}{2}}c_2 + e^{4x}c_1 - \frac{e^{3x}}{7}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 33

DSolve[2*y''[x]-7*y'[x]-4*y[x]==Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{e^{3x}}{7} + c_1 e^{-x/2} + c_2 e^{4x}$$

4.2 problem 2

Internal problem ID [5145]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 6y' + 9y = 54x + 18$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

dsolve(diff(y(x),x\$2)-6*diff(y(x),x)+9*y(x)=54*x+18,y(x), singsol=all)

$$y(x) = (c_1x + c_2)e^{3x} + 6x + 6$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 27

DSolve[y''[x]-6*y'[x]+9*y[x]==54*x+18,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{3x} + x(6 + c_2 e^{3x}) + 6$$

4.3 problem 3

Internal problem ID [5146]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

 ${f Section:}$ Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 5y' + 6y = 100\sin(4x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)-5*diff(y(x),x)+6*y(x)=100*sin(4*x),y(x), singsol=all)

$$y(x) = e^{3x}c_2 + e^{2x}c_1 - 2\sin(4x) + 4\cos(4x)$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 33

DSolve[y''[x]-5*y'[x]+6*y[x]==100*Sin[4*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -2\sin(4x) + 4\cos(4x) + e^{2x}(c_2e^x + c_1)$$

4.4 problem 4

Internal problem ID [5147]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094 **Problem number**: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = 4\sinh(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=4*sinh(x),y(x), singsol=all)

$$y(x) = \frac{(-2x^2 + (2c_1 + 2)x + 2c_2 + 1)e^{-x}}{2} + \frac{e^x}{2}$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 31

$$y(x) \to \frac{e^x}{2} + e^{-x} (-x^2 + c_2 x + c_1)$$

4.5 problem 5

Internal problem ID [5148]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094 **Problem number**: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' - 2y = 2\cosh(2x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 31

 $dsolve(diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=2*\cosh(2*x),y(x), singsol=all)$

$$y(x) = \frac{(9e^{4x} + 36e^{3x}c_2 + 36c_1 - 12x - 7)e^{-2x}}{36}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 39

$$y(x) \to \frac{1}{36}e^{-2x}(-12x + 9e^{4x} + 36c_2e^{3x} - 4 + 36c_1)$$

4.6 problem 6

Internal problem ID [5149]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094 **Problem number**: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' + 10y = 20 - e^{2x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 38

dsolve(diff(y(x),x\$2)-diff(y(x),x)+10*y(x)=20-exp(2*x),y(x), singsol=all)

$$y(x) = e^{\frac{x}{2}} \sin\left(\frac{\sqrt{39}x}{2}\right) c_2 + e^{\frac{x}{2}} \cos\left(\frac{\sqrt{39}x}{2}\right) c_1 + 2 - \frac{e^{2x}}{12}$$

✓ Solution by Mathematica

Time used: 1.291 (sec). Leaf size: 58

DSolve[y''[x]-y'[x]+10*y[x]==20-Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{e^{2x}}{12} + c_2 e^{x/2} \cos\left(\frac{\sqrt{39}x}{2}\right) + c_1 e^{x/2} \sin\left(\frac{\sqrt{39}x}{2}\right) + 2$$

4.7 problem 7

Internal problem ID [5150]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094 **Problem number**: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 4y = 2\cos(x)^{2}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(x),x\$2)+4*\text{diff}(y(x),x)+4*y(x)=2*\cos(x)^2,y(x), \text{ singsol=all}) \\$

$$y(x) = \frac{1}{4} + (c_1 x + c_2) e^{-2x} + \frac{\sin(2x)}{8}$$

✓ Solution by Mathematica

Time used: 0.132 (sec). Leaf size: 29

 $DSolve[y''[x]+4*y'[x]+4*y[x]==2*Cos[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{8} (\sin(2x) + 8e^{-2x}(c_2x + c_1) + 2)$$

4.8 problem 8

Internal problem ID [5151]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

 ${\bf Section:}\ {\bf Program}\ {\bf 25.}\ {\bf Second}\ {\bf order}\ {\bf differential}\ {\bf equations.}\ {\bf Further}\ {\bf problems}\ {\bf 25.}\ {\bf page}\ {\bf 1094}$

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y' + 3y = x + e^{2x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+3*y(x)=x+exp(2*x),y(x), singsol=all)

$$y(x) = e^x c_2 + e^{3x} c_1 - e^{2x} + \frac{x}{3} + \frac{4}{9}$$

✓ Solution by Mathematica

Time used: 0.129 (sec). Leaf size: 35

DSolve[y''[x]-4*y'[x]+3*y[x]==x+Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{x}{3} - e^{2x} + c_1 e^x + c_2 e^{3x} + \frac{4}{9}$$

4.9 problem 9

Internal problem ID [5152]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094 **Problem number**: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' + 3y = x^2 - 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+3*y(x)=x^2-1,y(x), singsol=all)$

$$y(x) = e^x \sin(\sqrt{2}x) c_2 + e^x \cos(\sqrt{2}x) c_1 + \frac{x^2}{3} + \frac{4x}{9} - \frac{7}{27}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 48

 $DSolve[y''[x]-2*y'[x]+3*y[x]==x^2-1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{27} (9x^2 + 12x - 7) + c_2 e^x \cos(\sqrt{2}x) + c_1 e^x \sin(\sqrt{2}x)$$

4.10 problem 10

Internal problem ID [5153]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094 **Problem number**: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 9y = e^{3x} + \sin(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)-9*y(x)=exp(3*x)+sin(x),y(x), singsol=all)

$$y(x) = \frac{(-1 + 6x + 36c_2)e^{3x}}{36} + e^{-3x}c_1 - \frac{\sin(x)}{10}$$

✓ Solution by Mathematica

Time used: 0.126 (sec). Leaf size: 37

DSolve[y''[x]-9*y[x]==Exp[3*x]+Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\sin(x)}{10} + e^{3x} \left(\frac{x}{6} - \frac{1}{36} + c_1\right) + c_2 e^{-3x}$$

4.11 problem 12

Internal problem ID [5154]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' + 4x' + 3x = e^{-3t}$$

With initial conditions

$$x(0) = \frac{1}{2}, x'(0) = -2$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 13

$$x(t) = -\frac{e^{-3t}(t-1)}{2}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 17

$$x(t) \to -\frac{1}{2}e^{-3t}(t-1)$$

4.12 problem 13

Internal problem ID [5155]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094 **Problem number**: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 5y = 6\sin(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(t),t\$2)+4*diff(y(t),t)+5*y(t)=6*sin(t),y(t), singsol=all)

$$y(t) = e^{-2t} \sin(t) c_2 + e^{-2t} \cos(t) c_1 - \frac{3\cos(t)}{4} + \frac{3\sin(t)}{4}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: $36\,$

DSolve[y''[t]+4*y'[t]+5*y[t]==6*Sin[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \left(-\frac{3}{4} + c_2 e^{-2t}\right) \cos(t) + \left(\frac{3}{4} + c_1 e^{-2t}\right) \sin(t)$$

4.13 problem 14

Internal problem ID [5156]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' - 3x' + 2x = \sin\left(t\right)$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

dsolve([diff(x(t),t\$2)-3*diff(x(t),t)+2*x(t)=sin(t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all(x,t),x(t)=sin(x,t),

$$x(t) = \frac{e^{2t}}{5} + \frac{3\cos(t)}{10} + \frac{\sin(t)}{10} - \frac{e^t}{2}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: $27\,$

DSolve[{x''[t]-3*x'[t]+2*x[t]==Sin[t],{x[0]==0,x'[0]==0}},x[t],t,IncludeSingularSolutions ->

$$x(t) \to \frac{1}{10} (e^t (2e^t - 5) + \sin(t) + 3\cos(t))$$

4.14 problem 15

Internal problem ID [5157]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

 ${\bf Section: \ Program\ 25.\ Second\ order\ differential\ equations.\ Further\ problems\ 25.\ page\ 1094}$

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = 3\sin(x)$$

With initial conditions

$$\left[y(0) = -\frac{9}{10}, y'(0) = -\frac{7}{10}\right]$$

✓ Solution by Maple

 $\overline{\text{Time used: 0.031 (sec)}}$. Leaf size: 23

dsolve([diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x)=3*sin(x),y(0) = -9/10, D(y)(0) = -7/10],y(x), s(x), y(x) = -9/10, D(y)(0) = -7/10]

$$y(x) = e^{-2x} - \frac{9\cos(x)}{10} + \frac{3\sin(x)}{10} - e^{-x}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 30

DSolve[{y''[x]+3*y'[x]+2*y[x]==3*Sin[x],{y[0]==-9/10,y'[0]==-7/10}},y[x],x,IncludeSingularSo

$$y(x) \to -e^{-2x}(e^x - 1) + \frac{3\sin(x)}{10} - \frac{9\cos(x)}{10}$$

4.15 problem 16

Internal problem ID [5158]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 10y = 50x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)+6*diff(y(x),x)+10*y(x)=50*x,y(x), singsol=all)

$$y(x) = e^{-3x} \sin(x) c_2 + e^{-3x} \cos(x) c_1 + 5x - 3$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 30

 $DSolve[y''[x]+6*y'[x]+10*y[x]==50*x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 5x + c_2 e^{-3x} \cos(x) + c_1 e^{-3x} \sin(x) - 3$$

4.16 problem 17

Internal problem ID [5159]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 2x' + 2x = 85\sin(3t)$$

With initial conditions

$$[x(0) = 0, x'(0) = -20]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 33

dsolve([diff(x(t),t\$2)+2*diff(x(t),t)+2*x(t)=85*sin(3*t),x(0) = 0, D(x)(0) = -20],x(t), sing(x(t),t)=-20

$$x(t) = (7\sin(t) + 6\cos(t))e^{-t} - 6\cos(3t) - 7\sin(3t)$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 36

$$x(t) \to 7e^{-t}\sin(t) - 7\sin(3t) + 6e^{-t}\cos(t) - 6\cos(3t)$$

4.17 problem 18

Internal problem ID [5160]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = 3\sin(x)$$

With initial conditions

$$\left[y(0) = 0, y'\left(\frac{\pi}{2}\right) = 1\right]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 13

dsolve([diff(y(x),x\$2)=3*sin(x)-4*y(x),y(0) = 0, D(y)(1/2*Pi) = 1],y(x), singsol=all)

$$y(x) = -\frac{\sin(2x)}{2} + \sin(x)$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 13

$$y(x) \to -(\sin(x)(\cos(x) - 1))$$

4.18 problem 19

Internal problem ID [5161]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$\frac{x''}{2} + 48x = 0$$

With initial conditions

$$\left[x(0) = \frac{1}{6}, x'(0) = 0 \right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

dsolve([1/2*diff(x(t),t\$2)=-48*x(t),x(0) = 1/6, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = \frac{\cos\left(4\sqrt{6}\,t\right)}{6}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 18

DSolve[{1/2*x''[t]==-48*x[t],{x[0]==1/6,x'[0]==0}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{6}\cos\left(4\sqrt{6}t\right)$$

4.19 problem 20

Internal problem ID [5162]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

 ${\bf Section: \ Program\ 25.\ Second\ order\ differential\ equations.\ Further\ problems\ 25.\ page\ 1094}$

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 5x' + 6x = \cos\left(t\right)$$

With initial conditions

$$\left[x(0) = \frac{1}{10}, x'(0) = 0 \right]$$

✓ Solution by Maple

 $\overline{\text{Time used: 0.015 (sec)}}$. Leaf size: 25

dsolve([diff(x(t),t\$2)+5*diff(x(t),t)+6*x(t)=cos(t),x(0) = 1/10, D(x)(0) = 0],x(t), singsol=0

$$x(t) = \frac{e^{-3t}}{10} - \frac{e^{-2t}}{10} + \frac{\cos(t)}{10} + \frac{\sin(t)}{10}$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 26

DSolve[{x''[t]+5*x'[t]+6*x[t]==Cos[t],{x[0]==1/10,x'[0]==0}},x[t],t,IncludeSingularSolutions

$$x(t) \to \frac{1}{10} \left(e^{-3t} - e^{-2t} + \sin(t) + \cos(t) \right)$$