
A Solution Manual For

Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Nasser M. Abbasi

May 16, 2024

Contents

1	Chapter 8, Ordinary differential equations. Section 1. Introduction. page 394	2
2	Chapter 8, Ordinary differential equations. Section 2. Separable equations. page 398	4
3	Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations. page 403	17
4	Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR FIRST-ORDER EQUATIONS. page 406	- 32
5	Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENT AND ZERO RIGHT-HAND SIDE. page 414	S 50
6	Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENT AND RIGHT-HAND SIDE NOT ZERO. page 422	S 67
7	Chapter 8, Ordinary differential equations. Section 7. Other second-Order equations. page 435	101
8	Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems. page 466	127
9	Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous problems. page 564	157

1	Chapter 8, Ordinary differential equations.														
	Section 1. Introduction. page 394														
1.1	problem 1	•													

1.1 problem 1

Internal problem ID [4748]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 1. Introduction. page 394

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

dsolve(diff(y(x),x)=y(x),y(x), singsol=all)

$$y(x) = c_1 e^x$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 20

DSolve[y''[x]==y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_2 e^{-x}$$

2 Chapter 8, Ordinary differential equations. Section 2. Separable equations. page 398

2.1	problem	Ι	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	b
2.2	problem	2																																					6
2.3	problem	3																																					7
2.4	problem	4																																					8
2.5	problem	5																																					9
2.6	problem	6																																					10
2.7	problem	7																																					11
2.8	problem	8																																					12
2.9	problem	9																																					13
2.10	problem	10)																																				14
2.11	problem	11																																					15
2 12	problem	12)																																				16

2.1 problem 1

Internal problem ID [4749]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 2. Separable equations. page

398

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$-y + xy' = 0$$

With initial conditions

$$[y(2) = 3]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve([x*diff(y(x),x)=y(x),y(2) = 3],y(x), singsol=all)

$$y(x) = \frac{3x}{2}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: $10\,$

 $DSolve[\{x*y'[x]==y[x],\{y[2]==3\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{3x}{2}$$

2.2 problem 2

Internal problem ID [4750]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 2. Separable equations. page

398

Problem number: 2.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x\sqrt{1-y^2} + y\sqrt{-x^2 + 1}y' = 0$$

With initial conditions

$$\left[y\left(\frac{1}{2}\right) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.36 (sec). Leaf size: 26

 $dsolve([x*sqrt(1-y(x)^2)+y(x)*sqrt(1-x^2)*diff(y(x),x)=0,y(1/2) = 1/2],y(x), singsol=all)$

$$y(x) = \sqrt{2\sqrt{3}\sqrt{-x^2+1} + x^2 - 3}$$

✓ Solution by Mathematica

Time used: 3.578 (sec). Leaf size: 38

DSolve[{x*Sqrt[1-y[x]^2]+y[x]*Sqrt[1-x^2]*y'[x]==0,{y[1/2]==1/2}},y[x],x,IncludeSingularSolv

$$y(x)
ightarrow \sqrt{x^2}$$
 $y(x)
ightarrow \sqrt{x^2 + 2\sqrt{3 - 3x^2} - 3}$

2.3 problem 3

Internal problem ID [4751]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 2. Separable equations. page

398

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'\sin(x) - y\ln(y) = 0$$

With initial conditions

$$\left[y\left(\frac{\pi}{3}\right) = \mathbf{e}\right]$$

✓ Solution by Maple

Time used: 0.516 (sec). Leaf size: 17

dsolve([diff(y(x),x)*sin(x)=y(x)*ln(y(x)),y(1/3*Pi) = exp(1)],y(x), singsol=all)

$$y(x) = e^{-(\cot(x) - \csc(x))\sqrt{3}}$$

✓ Solution by Mathematica

Time used: 0.226 (sec). Leaf size: 19

$$y(x) o e^{e^{\operatorname{arctanh}\left(rac{1}{2}
ight) - \operatorname{arctanh}\left(\cos(x)
ight)}}$$

2.4 problem 4

Internal problem ID [4752]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 2. Separable equations. page

398

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y^2 + xyy' = -1$$

With initial conditions

$$[y(5) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 34

 $dsolve([(1+y(x)^2)+x*y(x)*diff(y(x),x)=0,y(5) = 0],y(x), singsol=all)$

$$y(x) = \frac{\sqrt{-x^2 + 25}}{x}$$
$$y(x) = -\frac{\sqrt{-x^2 + 25}}{x}$$

✓ Solution by Mathematica

Time used: 0.329 (sec). Leaf size: 40

 $DSolve[\{(1+y[x]^2)+x*y[x]*y'[x]==0,\{y[5]==0\}\},y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \to -\frac{\sqrt{25 - x^2}}{x}$$
$$y(x) \to \frac{\sqrt{25 - x^2}}{x}$$

2.5 problem 5

Internal problem ID [4753]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 2. Separable equations. page

398

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$yy' - xy - y = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

 $\overline{\text{Time used: 0.015 (sec)}}$. Leaf size: 8

 $\label{eq:dsolve} \\ \mbox{dsolve}([x*y(x)*diff(y(x),x)-x*y(x)=y(x),y(1) = 1],y(x), \ \mbox{singsol=all}) \\$

$$y(x) = x + \ln(x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 9

 $DSolve[\{x*y[x]*y'[x]-x*y[x]==y[x],\{y[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True] \\$

$$y(x) \to x + \log(x)$$

2.6 problem 6

Internal problem ID [4754]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 2. Separable equations. page

398

Problem number: 6.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{2xy^2 + x}{yx^2 - y} = 0$$

With initial conditions

$$\left[y\left(\sqrt{2}\right)=0\right]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 31

 $dsolve([diff(y(x),x)=(2*x*y(x)^2+x)/(x^2*y(x)-y(x)),y(2^(1/2))=0],y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{2x^2 - 4}x}{2}$$
$$y(x) = \frac{\sqrt{2x^2 - 4}x}{2}$$

✓ Solution by Mathematica

Time used: 3.88 (sec). Leaf size: 48

$$y(x) \to -\frac{\sqrt{x^2(x^2-2)}}{\sqrt{2}}$$
$$y(x) \to \frac{\sqrt{x^2(x^2-2)}}{\sqrt{2}}$$

problem 7 2.7

Internal problem ID [4755]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 2. Separable equations. page

398

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'y + xy^2 = 8x$$

With initial conditions

$$[y(1) = 3]$$

Solution by Maple

Time used: 0.063 (sec). Leaf size: 17

 $dsolve([y(x)*diff(y(x),x)+(x*y(x)^2-8*x)=0,y(1) = 3],y(x), singsol=all)$

$$y(x) = \sqrt{e^{-(x-1)(1+x)} + 8}$$

Solution by Mathematica

Time used: 1.924 (sec). Leaf size: 39

 $DSolve[\{y[x]*y'[x]+(x*y[x]^2-8*x)==0,\{y[1]==3\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \sqrt{e^{1-x^2} + 8}$$

 $y(x) \to \sqrt{e^{1-x^2} + 8}$

$$y(x) \to \sqrt{e^{1-x^2} + 8}$$

2.8 problem 8

Internal problem ID [4756]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 2. Separable equations. page

398

Problem number: 8.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + 2xy^2 = 0$$

With initial conditions

$$[y(2) = 1]$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 11

 $dsolve([diff(y(x),x)+2*x*y(x)^2=0,y(2) = 1],y(x), singsol=all)$

$$y(x) = \frac{1}{x^2 - 3}$$

✓ Solution by Mathematica

Time used: 0.121 (sec). Leaf size: 12

 $DSolve[\{y'[x]+2*x*y[x]^2==0,\{y[2]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{x^2 - 3}$$

2.9 problem 9

Internal problem ID [4757]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 2. Separable equations. page

398

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$(1+y)y'-y=0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 7

dsolve([(1+y(x))*diff(y(x),x)=y(x),y(1) = 1],y(x), singsol=all)

$$y(x) = \text{LambertW}(e^x)$$

✓ Solution by Mathematica

Time used: 2.162 (sec). Leaf size: 9

 $DSolve[\{(1+y[x])*y'[x]==y[x],\{y[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to W(e^x)$$

2.10 problem 10

Internal problem ID [4758]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 2. Separable equations. page

398

Problem number: 10.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - xy = x$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

 $\label{eq:decomposition} dsolve([diff(y(x),x)-x*y(x)=x,y(0) = 1],y(x), \ singsol=all)$

$$y(x) = -1 + 2e^{\frac{x^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 20

 $\label{eq:DSolve} DSolve[\{y'[x]-x*y[x]==x,\{y[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 2e^{\frac{1}{2}(x^2-1)} - 1$$

2.11 problem 11

Internal problem ID [4759]

 $\mathbf{Book}:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 2. Separable equations. page

398

Problem number: 11.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$2y' - 3(y-2)^{\frac{1}{3}} = 0$$

With initial conditions

$$[y(1) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 9

 $dsolve([2*diff(y(x),x)=3*(y(x)-2)^(1/3),y(1) = 3],y(x), singsol=all)$

$$y(x) = 2 + x^{\frac{3}{2}}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 12

 $DSolve[{2*y'[x]==3*(y[x]-2)^(1/3), {y[1]==3}}, y[x], x, IncludeSingularSolutions} \rightarrow True]$

$$y(x) \to x^{3/2} + 2$$

2.12 problem 12

Internal problem ID [4760]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 2. Separable equations. page

398

Problem number: 12.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(xy+x)y'+y=0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 11

dsolve([(x+x*y(x))*diff(y(x),x)+y(x)=0,y(1) = 1],y(x), singsol=all)

$$y(x) = \text{LambertW}\left(\frac{e}{x}\right)$$

✓ Solution by Mathematica

Time used: 2.09 (sec). Leaf size: 11

 $DSolve[\{(x+x*y[x])*y'[x]+y[x]==0,\{y[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to W\left(\frac{e}{x}\right)$$

3 Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations. page 403

3.1	problem	1																				18
3.2	problem	2																				19
3.3	problem	3																				20
3.4	$\operatorname{problem}$	4																				21
3.5	$\operatorname{problem}$	5																				22
3.6	$\operatorname{problem}$	6												•							•	23
3.7	$\operatorname{problem}$	7																				24
3.8	$\operatorname{problem}$	8												•							•	25
3.9	$\operatorname{problem}$	9												•							•	26
3.10	$\operatorname{problem}$	10)																			27
3.11	$\operatorname{problem}$	11												•							•	28
3.12	$\operatorname{problem}$	12)																			29
3.13	$\operatorname{problem}$	13	,											•							•	30
3.14	problem	14																				31

3.1 problem 1

Internal problem ID [4761]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations.

page 403

Problem number: 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x)+y(x)=exp(x),y(x), singsol=all)

$$y(x) = \frac{\mathrm{e}^x}{2} + \mathrm{e}^{-x}c_1$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 21

DSolve[y'[x]+y[x]==Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^x}{2} + c_1 e^{-x}$$

3.2 problem 2

Internal problem ID [4762]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations.

page 403

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x^2y' + 3xy = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(x^2*diff(y(x),x)+3*x*y(x)=1,y(x), singsol=all)$

$$y(x) = \frac{x^2 + 2c_1}{2x^3}$$

Solution by Mathematica

Time used: 0.025 (sec). Leaf size: $20\,$

DSolve[x^2*y'[x]+3*x*y[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^2 + 2c_1}{2x^3}$$

3.3 problem 3

Internal problem ID [4763]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations.

page 403

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + 2xy = x e^{-x^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)+2*x*y(x)-x*exp(-x^2)=0,y(x), singsol=all)$

$$y(x) = \frac{(x^2 + 2c_1) e^{-x^2}}{2}$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.052 (sec). Leaf size: 24}}$

 $DSolve[y'[x]+2*x*y[x]-x*Exp[-x^2] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{1}{2} e^{-x^2} (x^2 + 2c_1)$$

3.4 problem 4

Internal problem ID [4764]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations.

page 403

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$2xy' + y = 2x^{\frac{5}{2}}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(2*x*diff(y(x),x)+y(x)=2*x^{(5/2)},y(x), singsol=all)$

$$y(x) = \frac{x^3 + 3c_1}{3\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 22

DSolve $[2*x*y'[x]+y[x]==2*x^(5/2),y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{x^3 + 3c_1}{3\sqrt{x}}$$

3.5 problem 5

Internal problem ID [4765]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations.

page 403

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$\cos(x) y' + y = \cos(x)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(diff(y(x),x)*cos(x)+y(x)=cos(x)^2,y(x), singsol=all)$

$$y(x) = \frac{(x - \cos(x) + c_1)(\cos(x) - \sin(x) + 1)}{\sin(x) + \cos(x) + 1}$$

✓ Solution by Mathematica

Time used: 0.079 (sec). Leaf size: 25

 $DSolve[y'[x]*Cos[x]+y[x]==Cos[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-2\operatorname{arctanh}(\tan(\frac{x}{2}))}(x - \cos(x) + c_1)$$

3.6 problem 6

Internal problem ID [4766]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations.

page 403

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{\sqrt{x^2 + 1}} = \frac{1}{x + \sqrt{x^2 + 1}}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)+y(x)/sqrt(x^2+1)=1/(x+sqrt(x^2+1)),y(x), singsol=all)$

$$y(x) = \frac{x + c_1}{x + \sqrt{x^2 + 1}}$$

✓ Solution by Mathematica

Time used: 0.121 (sec). Leaf size: 23

DSolve[y'[x]+y[x]/Sqrt[x^2+1]==1/(x+Sqrt[x^2+1]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \left(\sqrt{x^2 + 1} - x\right)(x + c_1)$$

3.7 problem 7

Internal problem ID [4767]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations.

page 403

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(1 + e^x) y' + 2 e^x y = (1 + e^x) e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve((1+exp(x))*diff(y(x),x)+2*exp(x)*y(x)=(1+exp(x))*exp(x),y(x), singsol=all)

$$y(x) = \frac{e^{3x} + 3e^{2x} + 3e^x + 3c_1}{3(1 + e^x)^2}$$

✓ Solution by Mathematica

Time used: 0.08 (sec). Leaf size: 25

DSolve[(1+Exp[x])*y'[x]+2*Exp[x]*y[x]==(1+Exp[x])*Exp[x],y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{1}{3}(e^x + 1) + \frac{c_1}{(e^x + 1)^2}$$

3.8 problem 8

Internal problem ID [4768]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations.

page 403

Problem number: 8.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x\ln\left(x\right)y'+y=\ln\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve((x*ln(x))*diff(y(x),x)+y(x)=ln(x),y(x), singsol=all)

$$y(x) = \frac{\ln(x)}{2} + \frac{c_1}{\ln(x)}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 19

DSolve[(x*Log[x])*y'[x]+y[x]==Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{\log(x)}{2} + rac{c_1}{\log(x)}$$

3.9 problem 9

Internal problem ID [4769]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations.

page 403

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(-x^2 + 1) y' - xy = 2\sqrt{-x^2 + 1} x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve((1-x^2)*diff(y(x),x)=x*y(x)+2*x*sqrt(1-x^2),y(x), singsol=all)$

$$y(x) = \frac{x^2}{\sqrt{-x^2+1}} + \frac{c_1}{\sqrt{x-1}\sqrt{1+x}}$$

Solution by Mathematica

Time used: 0.062 (sec). Leaf size: 33

DSolve[(1-x^2)*y'[x]==x*y[x]+2*x*Sqrt[1-x^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^2}{\sqrt{1-x^2}} + \frac{c_1}{\sqrt{x^2-1}}$$

3.10 problem 10

Internal problem ID [4770]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations.

page 403

Problem number: 10.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y \tanh(x) = 2e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x)+y(x)*tanh(x)=2*exp(x),y(x), singsol=all)

$$y(x) = (x + c_1)\operatorname{sech}(x) + \cosh(x) + \sinh(x)$$

✓ Solution by Mathematica

Time used: 0.077 (sec). Leaf size: 29

DSolve[y'[x]+y[x]*Tanh[x]==2*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^x(2x + e^{2x} + c_1)}{e^{2x} + 1}$$

3.11 problem 11

Internal problem ID [4771]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations.

page 403

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y\cos(x) = \sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x)+y(x)*cos(x)=sin(2*x),y(x), singsol=all)

$$y(x) = 2\sin(x) - 2 + e^{-\sin(x)}c_1$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 20

 $DSolve[y'[x]+y[x]*Cos[x] == Sin[2*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 2\sin(x) + c_1 e^{-\sin(x)} - 2$$

3.12 problem 12

Internal problem ID [4772]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations.

page 403

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x' + x \tan(y) = \cos(y)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(x(y),y)=cos(y)-x(y)*tan(y),x(y), singsol=all)

$$x(y) = (y + c_1)\cos(y)$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 12

DSolve[x'[y] == Cos[y] - x[y] * Tan[y], x[y], y, Include Singular Solutions -> True]

$$x(y) \to (y + c_1)\cos(y)$$

3.13 problem 13

Internal problem ID [4773]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations.

page 403

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$x' + x = e^y$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(x(y),y)+(x(y)-exp(y))=0,x(y), singsol=all)

$$x(y) = \frac{\mathrm{e}^y}{2} + \mathrm{e}^{-y}c_1$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.039 (sec). Leaf size: 21}}$

DSolve[x'[y]+(x[y]-Exp[y])==0,x[y],y,IncludeSingularSolutions -> True]

$$x(y) \to \frac{e^y}{2} + c_1 e^{-y}$$

3.14 problem 14

Internal problem ID [4774]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 3. Linear First-Order Equations.

page 403

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x' - \frac{3y^{\frac{2}{3}} - x}{3y} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(diff(x(y),y)=(3*y^(2/3)-x(y))/(3*y),x(y), singsol=all)$

$$x(y) = \frac{y+c_1}{y^{\frac{1}{3}}}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 15

 $DSolve[x'[y] == (3*y^(2/3)-x[y])/(3*y), x[y], y, IncludeSingularSolutions \rightarrow True]$

$$x(y) o rac{y + c_1}{\sqrt[3]{y}}$$

4 Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR FIRST-ORDER EQUATIONS. page 406

4.1	problem	1	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	 	 •	•	•	•	•	•	•	•	•	•	•	•	•	33
4.2	problem	2																	 														34
4.3	problem	3																	 														35
4.4	$\operatorname{problem}$	4																	 														37
4.5	problem	5																	 														38
4.6	${\bf problem}$	6																	 												•		39
4.7	$\operatorname{problem}$	7																	 														40
4.8	${\bf problem}$	8																	 												•		41
4.9	$\operatorname{problem}$	9																	 														42
4.10	$\operatorname{problem}$	10																	 														43
4.11	$\operatorname{problem}$	11																	 														44
4.12	$\operatorname{problem}$	12		•	•		•			•									 			•	•										45
4.13	$\operatorname{problem}$	13																	 														46
4.14	$\operatorname{problem}$	25	p	ar	\mathbf{t}	(a) .												 														47
4.15	$\operatorname{problem}$	25	p	ar	\mathbf{t}	(b)																								•		48
4.16	problem	25	p	ar	\mathbf{t}	(\mathbf{c})) .												 														49

4.1 problem 1

Internal problem ID [4775]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR

FIRST-ORDER EQUATIONS. page 406

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + y - xy^{\frac{2}{3}} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)+y(x)=x*y(x)^(2/3),y(x), singsol=all)$

$$-x + 3 - e^{-\frac{x}{3}}c_1 + y(x)^{\frac{1}{3}} = 0$$

✓ Solution by Mathematica

Time used: 0.167 (sec). Leaf size: 27

DSolve[y'[x]+y[x]==x*y[x]^(2/3),y[x],x,IncludeSingularSolutions \rightarrow True]

$$y(x) \to e^{-x} (e^{x/3}(x-3) + c_1)^3$$

4.2 problem 2

Internal problem ID [4776]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR

FIRST-ORDER EQUATIONS. page 406

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y' + \frac{y}{x} - 2x^{\frac{3}{2}}\sqrt{y} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(diff(y(x),x)+1/x*y(x)=2*x^(3/2)*y(x)^(1/2),y(x), singsol=all)$

$$\sqrt{y(x)} - \frac{x^3 + 3c_1}{3\sqrt{x}} = 0$$

✓ Solution by Mathematica

Time used: 0.162 (sec). Leaf size: 22

 $DSolve[y'[x]+1/x*y[x]==2*x^(3/2)*y[x]^(1/2),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{(x^3 + 3c_1)^2}{9x}$$

4.3 problem 3

Internal problem ID [4777]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR

FIRST-ORDER EQUATIONS. page 406

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$3xy^2y' + 3y^3 = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 74

 $dsolve(3*x*y(x)^2*diff(y(x),x)+3*y(x)^3=1,y(x), singsol=all)$

$$y(x) = \frac{(9x^3 + 27c_1)^{\frac{1}{3}}}{3x}$$

$$y(x) = -\frac{(9x^3 + 27c_1)^{\frac{1}{3}} (1 + i\sqrt{3})}{6x}$$

$$y(x) = \frac{(9x^3 + 27c_1)^{\frac{1}{3}} (i\sqrt{3} - 1)}{6x}$$

/ Solution by Mathematica

Time used: 0.282 (sec). Leaf size: 195

DSolve[3*x*y[x]^2*y'[x]+3*y[x]^3==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\sqrt[3]{-\frac{1}{3}}\sqrt[3]{x^3 + e^{9c_1}}}{x}$$

$$y(x) \to \frac{\sqrt[3]{3}x}{\sqrt[3]{3}x}$$

$$y(x) \to \frac{(-1)^{2/3}\sqrt[3]{x^3 + e^{9c_1}}}{\sqrt[3]{3}x}$$

$$y(x) \to -\sqrt[3]{-\frac{1}{3}}$$

$$y(x) \to \frac{1}{\sqrt[3]{3}}$$

$$y(x) \to \frac{(-1)^{2/3}}{\sqrt[3]{3}}$$

$$y(x) \to -\frac{\sqrt[3]{-\frac{1}{3}}\sqrt[3]{x^3}}{x}$$

$$y(x) \to \frac{\sqrt[3]{x^3}}{\sqrt[3]{3}x}$$

$$y(x) \to \frac{(-1)^{2/3}\sqrt[3]{x^3}}{\sqrt[3]{3}x}$$

4.4 problem 4

Internal problem ID [4778]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR

FIRST-ORDER EQUATIONS. page 406

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$2x e^{3y} + (3x^2 e^{3y} - y^2) y' = -e^x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

 $dsolve((2*x*exp(3*y(x))+exp(x))+(3*x^2*exp(3*y(x))-y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$x^{2}e^{3y(x)} + e^{x} - \frac{y(x)^{3}}{3} + c_{1} = 0$$

✓ Solution by Mathematica

Time used: 0.262 (sec). Leaf size: 28

Solve
$$\left[x^2 e^{3y(x)} - \frac{1}{3}y(x)^3 + e^x = c_1, y(x) \right]$$

4.5 problem 5

Internal problem ID [4779]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR

FIRST-ORDER EQUATIONS. page 406

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _exact, _rational, [_Abel, '2nd ty

$$(x-y)y'+y=-1-x$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 30

dsolve((x-y(x))*diff(y(x),x)+(y(x)+x+1)=0,y(x), singsol=all)

$$y(x) = \frac{2c_1x - \sqrt{1 + 8\left(x + \frac{1}{2}\right)^2 c_1^2}}{2c_1}$$

✓ Solution by Mathematica

Time used: 0.112 (sec). Leaf size: 55

 $DSolve[(x-y[x])*y'[x]+(y[x]+x+1)==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x - i\sqrt{-2x^2 - 2x - c_1}$$

 $y(x) \to x + i\sqrt{-2x^2 - 2x - c_1}$

4.6 problem 6

Internal problem ID [4780]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR

FIRST-ORDER EQUATIONS. page 406

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type unknown

$$\cos(x)\cos(y) - (\sin(x)\sin(y) + \cos(y)^2)y' = -\sin(x)^2$$

✓ Solution by Maple

Time used: 0.312 (sec). Leaf size: 35

 $dsolve((cos(x)*cos(y(x))+sin(x)^2)-(sin(x)*sin(y(x))+cos(y(x))^2)*diff(y(x),x)=0,y(x), sings(x)+cos(y(x))^2+cos($

$$c_1 + x - y(x) - \frac{\sin(2x)}{2} + \sin(y(x) + x) + \sin(-y(x) + x) - \frac{\sin(2y(x))}{2} = 0$$

✓ Solution by Mathematica

Time used: 0.375 (sec). Leaf size: 43

 $DSolve[(Cos[x]*Cos[y[x]]+Sin[x]^2)-(Sin[x]*Sin[y[x]]+Cos[y[x]]^2)*y'[x]==0,y[x],x,IncludeSin[x]+Cos[y[x]]+Sin[x]^2)+(Sin[x])*z'[x]+Cos[y[x]]+Cos[y[x]]^2)*y'[x]==0,y[x],x,IncludeSin[x]+Cos[y[x]]+Sin[x]^2)+(Sin[x])*z'[x]+Cos[y[x]]+Cos[y[x]]^2)*y'[x]==0,y[x],x,IncludeSin[x]+Cos[y[x]]+Co$

Solve
$$\left[2\left(\frac{y(x)}{2} + \frac{1}{4}\sin(2y(x)) \right) - 2\sin(x)\cos(y(x)) - x + \frac{1}{2}\sin(2x) = c_1, y(x) \right]$$

4.7 problem 7

Internal problem ID [4781]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR

FIRST-ORDER EQUATIONS. page 406

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$x^2y' + y^2 - xy = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $dsolve(x^2*diff(y(x),x)+(y(x)^2-x*y(x))=0,y(x), singsol=all)$

$$y(x) = \frac{x}{\ln(x) + c_1}$$

✓ Solution by Mathematica

Time used: 0.132 (sec). Leaf size: 19

 $DSolve[x^2*y'[x]+(y[x]^2-x*y[x])==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x}{\log(x) + c_1}$$

 $y(x) \to 0$

4.8 problem 8

Internal problem ID [4782]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

 ${\bf Section:}\ {\bf Chapter}\ 8,\ {\bf Ordinary}\ {\bf differential}\ {\bf equations.}\ {\bf Section}\ 4.\ {\bf OTHER}\ {\bf METHODS}\ {\bf FOR}$

FIRST-ORDER EQUATIONS. page 406 **Problem number**: 8.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y'y - \sqrt{x^2 + y^2} = -x$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 27

 $dsolve(y(x)*diff(y(x),x)=-x+sqrt(x^2+y(x)^2),y(x), singsol=all)$

$$\frac{-c_1 y(x)^2 + \sqrt{x^2 + y(x)^2} + x}{y(x)^2} = 0$$

✓ Solution by Mathematica

Time used: 0.378 (sec). Leaf size: 57

DSolve[y[x]*y'[x]==-x+Sqrt[x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow -e^{rac{c_1}{2}}\sqrt{2x+e^{c_1}} \ y(x)
ightarrow e^{rac{c_1}{2}}\sqrt{2x+e^{c_1}} \ y(x)
ightarrow 0$$

4.9 problem 9

Internal problem ID [4783]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006
Section: Chapter 8 Ordinary

Section: Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR

FIRST-ORDER EQUATIONS. page 406

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy + (y^2 - x^2)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

 $dsolve(x*y(x)+(y(x)^2-x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{-\frac{1}{\text{LambertW}(-c_1 x^2)}} x$$

✓ Solution by Mathematica

Time used: 8.102 (sec). Leaf size: 56

 $DSolve[x*y[x]+(y[x]^2-x^2)*y'[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \rightarrow -\frac{ix}{\sqrt{W(-e^{-2c_1}x^2)}}$$
 $y(x) \rightarrow \frac{ix}{\sqrt{W(-e^{-2c_1}x^2)}}$
 $y(x) \rightarrow 0$

4.10 problem 10

Internal problem ID [4784]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR

FIRST-ORDER EQUATIONS. page 406

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y^2 - xy + \left(xy + x^2\right)y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

 $dsolve((y(x)^2-x*y(x))+(x^2+x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{x}{\text{LambertW}(c_1 x^2)}$$

✓ Solution by Mathematica

Time used: 4.24 (sec). Leaf size: 25

 $DSolve[(y[x]^2-x*y[x])+(x^2+x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x)
ightarrow rac{x}{W\left(e^{-c_1}x^2
ight)}$$
 $y(x)
ightarrow 0$

4.11 problem 11

Internal problem ID [4785]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR

FIRST-ORDER EQUATIONS. page 406

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$y' - \cos(x + y) = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve(diff(y(x),x)=cos(x+y(x)),y(x), singsol=all)

$$y(x) = -x - 2\arctan\left(-x + c_1\right)$$

Solution by Mathematica

Time used: 0.933 (sec). Leaf size: 59

DSolve[y'[x] == Cos[x+y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x + 2 \arctan\left(x + \frac{c_1}{2}\right)$$

$$y(x) \rightarrow -x + 2 \arctan\left(x + \frac{c_1}{2}\right)$$

 $y(x) \rightarrow -x + 2 \arctan\left(x + \frac{c_1}{2}\right)$

$$y(x) \to -x - \pi$$

$$y(x) \to \pi - x$$

4.12 problem 12

Internal problem ID [4786]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR

FIRST-ORDER EQUATIONS. page 406

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y' - \frac{y}{x} + \tan\left(\frac{y}{x}\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)=y(x)/x-tan(y(x)/x),y(x), singsol=all)

$$y(x) = x \arcsin\left(\frac{1}{xc_1}\right)$$

✓ Solution by Mathematica

Time used: 12.97 (sec). Leaf size: 21

 $DSolve[y'[x] == y[x]/x - Tan[y[x]/x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \arcsin\left(\frac{e^{c_1}}{x}\right)$$

 $y(x) \to 0$

4.13 problem 13

Internal problem ID [4787]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR

FIRST-ORDER EQUATIONS. page 406

Problem number: 13.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(x-1)y' + y = \frac{1}{x^2} - \frac{2}{x^3}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve((x-1)*diff(y(x),x)+y(x)-1/x^2+2/x^3=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x - 1} - \frac{1}{x^2}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 24

 $DSolve[(x-1)*y'[x]+y[x]-1/x^2+2/x^3==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{c_1 x^2 + x - 1}{(x - 1)x^2}$$

4.14 problem 25 part (a)

Internal problem ID [4788]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR

FIRST-ORDER EQUATIONS. page 406

Problem number: 25 part (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Riccati]

$$y' - xy^2 + \frac{2y}{x} = -\frac{1}{x^3}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(x),x)=x*y(x)^2-2/x*y(x)-1/x^3,y(x), singsol=all)$

$$y(x) = \frac{\tanh(-\ln(x) + c_1)}{x^2}$$

✓ Solution by Mathematica

Time used: 1.188 (sec). Leaf size: 63

DSolve[y'[x] == $x*y[x]^2-2/x*y[x]-1/x^3,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{i \tan(i \log(x) + c_1)}{x^2}$$
$$y(x) \to \frac{-x^2 + e^{2i \text{Interval}[\{0, \pi\}]}}{x^4 + x^2 e^{2i \text{Interval}[\{0, \pi\}]}}$$

4.15 problem 25 part (b)

Internal problem ID [4789]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR

FIRST-ORDER EQUATIONS. page 406

Problem number: 25 part (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Riccati]

$$y' - \frac{2y^2}{x} - \frac{y}{x} = -2x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $\label{eq:def:def:def:def:def} $$\operatorname{dsolve}(\operatorname{diff}(y(x),x)= 2/x*y(x)^2+1/x*y(x)-2*x,y(x), \ \operatorname{singsol=all})$$

$$y(x) = -\tanh(2x + 2c_1)x$$

Solution by Mathematica

Time used: 0.716 (sec). Leaf size: 47 $\,$

 $DSolve[y'[x] == 2/x*y[x]^2+1/x*y[x]-2*x,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{x - xe^{4x + 2c_1}}{1 + e^{4x + 2c_1}}$$

$$y(x) \to -x$$

$$y(x) \to x$$

4.16 problem 25 part (c)

Internal problem ID [4790]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 4. OTHER METHODS FOR

FIRST-ORDER EQUATIONS. page 406

Problem number: 25 part (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Riccati]

$$y' - e^{-x}y^2 - y = -e^x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve(diff(y(x),x) = exp(-x)*y(x)^2+y(x)-exp(x),y(x), singsol=all)$

$$y(x) = i \tan (ix + c_1) e^x$$

✓ Solution by Mathematica

Time used: 0.302 (sec). Leaf size: $19\,$

 $DSolve[y'[x] == Exp[-x]*y[x]^2+y[x]-Exp[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -e^x \tanh(x - ic_1)$$

5 Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

5.1	problem	1		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	51
5.2	problem	2																																52
5.3	$\operatorname{problem}$	3																																53
5.4	problem	4																																54
5.5	problem	5																																55
5.6	$\operatorname{problem}$	6																																56
5.7	problem	7																																57
5.8	$\operatorname{problem}$	8																																58
5.9	$\operatorname{problem}$	9																																59
5.10	$\operatorname{problem}$	12																																60
5.11	$\operatorname{problem}$	19																																61
5.12	$\operatorname{problem}$	20																																62
5.13	$\operatorname{problem}$	24	:																															63
5.14	$\operatorname{problem}$	25	1																															64
5.15	$\operatorname{problem}$	26																																65
5.16	problem	28	,																															66

5.1 problem 1

Internal problem ID [4791]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = (c_1 e^{3x} + c_2) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 20

DSolve[y''[x]+y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-2x} + c_2 e^x$$

5.2 problem 2

Internal problem ID [4792]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)

$$y(x) = e^{2x}(c_2x + c_1)$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 18

DSolve[y''[x]-4*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{2x}(c_2x + c_1)$$

5.3 problem 3

Internal problem ID [4793]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 9y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x\$2)+9*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{-9x}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 19

DSolve[y''[x]+9*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_2 - \frac{1}{9}c_1e^{-9x}$$

5.4 problem 4

Internal problem ID [4794]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}(c_1 \sin(x) + c_2 \cos(x))$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: $22\,$

DSolve[y''[x]+2*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x}(c_2 \cos(x) + c_1 \sin(x))$$

5.5 problem 5

Internal problem ID [4795]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+6*y(x)=0,y(x), singsol=all)

$$y(x) = e^x \left(c_1 \sin\left(\sqrt{5}x\right) + c_2 \cos\left(\sqrt{5}x\right)\right)$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 32

DSolve[y''[x]-2*y'[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x \Big(c_2 \cos \Big(\sqrt{5}x \Big) + c_1 \sin \Big(\sqrt{5}x \Big) \Big)$$

5.6 problem 6

Internal problem ID [4796]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 16y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+16*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(4x) + c_2 \cos(4x)$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 20

DSolve[y''[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \cos(4x) + c_2 \sin(4x)$$

5.7 problem 7

Internal problem ID [4797]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 5y' + 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-5*diff(y(x),x)+6*y(x)=0,y(x), singsol=all)

$$y(x) = e^{2x}c_1 + c_2e^{3x}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 20

DSolve[y''[x]-5*y'[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{2x}(c_2e^x + c_1)$$

5.8 problem 8

Internal problem ID [4798]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 5y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve(diff(y(x),x\$2)+5*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{-5x}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 19

DSolve[y''[x]+5*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_2 - \frac{1}{5}c_1e^{-5x}$$

5.9 problem 9

Internal problem ID [4799]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 13y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+13*y(x)=0,y(x), singsol=all)

$$y(x) = e^{2x}(c_1 \sin(3x) + c_2 \cos(3x))$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 26

DSolve[y''[x]-4*y'[x]+13*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{2x}(c_2\cos(3x) + c_1\sin(3x))$$

5.10 problem 12

Internal problem ID [4800]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$2y'' + y' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(2*diff(y(x),x\$2)+diff(y(x),x)-y(x)=0,y(x), singsol=all)

$$y(x) = \left(c_1 e^{\frac{3x}{2}} + c_2\right) e^{-x}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 24

DSolve[2*y''[x]+y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} (c_1 e^{3x/2} + c_2)$$

5.11 problem 19

Internal problem ID [4801]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + (1+2i)y' + (-1+i)y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$2)+(1+2*I)*diff(y(x),x)+(I-1)*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{(-1-i)x} + c_2 e^{-ix}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 22

 $DSolve[y''[x]+(1+2*I)*y'[x]+(I-1)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{(-1-i)x}(c_2e^x + c_1)$$

5.12 problem 20

Internal problem ID [4802]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + (1+2i)y' + (-1+i)y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$2)+(1+2*I)*diff(y(x),x)+(I-1)*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{(-1-i)x} + c_2 e^{-ix}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 22

 $DSolve[y''[x]+(1+2*I)*y'[x]+(I-1)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{(-1-i)x}(c_2e^x + c_1)$$

5.13 problem 24

Internal problem ID [4803]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 24.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve(diff(y(x),x\$3)+y(x)=0,y(x), singsol=all)

$$y(x) = \left(c_2 e^{\frac{3x}{2}} \sin\left(\frac{\sqrt{3}x}{2}\right) + c_3 e^{\frac{3x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right) + c_1\right) e^{-x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 56

DSolve[y'''[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o e^{-x} \Biggl(c_3 e^{3x/2} \cos \left(rac{\sqrt{3}x}{2}
ight) + c_2 e^{3x/2} \sin \left(rac{\sqrt{3}x}{2}
ight) + c_1 \Biggr)$$

5.14 problem 25

Internal problem ID [4804]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 25.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' - 6y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)-6*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = (c_2 e^{5x} + c_1 e^{3x} + c_3) e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 30

DSolve[y'''[x]+y''[x]-6*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{3}c_1e^{-3x} + \frac{1}{2}c_2e^{2x} + c_3$$

5.15 problem 26

Internal problem ID [4805]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 26.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 3y'' - 9y' - 5y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 105

dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)-9*diff(y(x),x)-5*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{\left(-1 - 2\sin\left(\frac{\arctan\left(\frac{\sqrt{55}}{3}\right)}{3} + \frac{\pi}{6}\right) + 2\sqrt{3}\cos\left(\frac{\arctan\left(\frac{\sqrt{55}}{3}\right)}{3} + \frac{\pi}{6}\right)\right)x}$$

$$-2\left(\sqrt{3}\cos\left(\frac{\arctan\left(\frac{\sqrt{55}}{3}\right)}{3} + \frac{\pi}{6}\right) + \sin\left(\frac{\arctan\left(\frac{\sqrt{55}}{3}\right)}{3} + \frac{\pi}{6}\right) + \frac{1}{2}\right)x$$

$$+ c_2 e^{\left(4\sin\left(\frac{\arctan\left(\frac{\sqrt{55}}{3}\right)}{3} + \frac{\pi}{6}\right) - 1\right)x}$$

$$+ c_3 e^{\left(4\sin\left(\frac{\arctan\left(\frac{\sqrt{55}}{3}\right)}{3} + \frac{\pi}{6}\right) - 1\right)x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 87

 $DSolve[y'''[x]+3*y''[x]-9*y'[x]-5*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_2 \exp \left(x \operatorname{Root} \left[\#1^3 + 3 \#1^2 - 9 \#1 - 5 \&, 2 \right] \right)$$

 $+ c_3 \exp \left(x \operatorname{Root} \left[\#1^3 + 3 \#1^2 - 9 \#1 - 5 \&, 3 \right] \right)$
 $+ c_1 \exp \left(x \operatorname{Root} \left[\#1^3 + 3 \#1^2 - 9 \#1 - 5 \&, 1 \right] \right)$

5.16 problem 28

Internal problem ID [4806]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414

Problem number: 28.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(x),x\$4)+4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(x) e^{-x} + c_2 \cos(x) e^{-x} + c_3 e^{x} \sin(x) + c_4 e^{x} \cos(x)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 40

DSolve[y'''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} ((c_4 e^{2x} + c_1) \cos(x) + (c_3 e^{2x} + c_2) \sin(x))$$

6 Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

0.1	problem 1.	•	•	•	•	•	 •	•	•	•	•	•	•	 •	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	69
6.2	problem 2 .																														70
6.3	problem 3 .																														71
6.4	problem 4 .						 •																								72
6.5	problem 5 .						 •																								73
6.6	problem 6 .																														74
6.7	problem 7 .																														75
6.8	problem 8 .																														76
6.9	problem 9 .						 •																								77
6.10	problem 10																														78
6.11	problem 11																														79
6.12	problem 12																														80
6.13	problem 13																														81
6.14	problem 14																														82
6.15	problem 15																														83
6.16	problem 16																														84
6.17	problem 17																														85
6.18	problem 18																														86
6.19	problem 19																														87
6.20	problem 20																														88
6.21	problem 21																														89
6.22	problem 22																														90
6.23	problem 23																														91
6.24	problem 24																														92
6.25	problem 25																														93
6.26	problem 26																														94
6.27	problem 33																														95
6.28	problem 34																														96
6.29	problem 35																														97
6.30	problem 36																														98
6.31	problem 37						 																								99

6.1 problem 1

Internal problem ID [4807]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' = 10$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)=10,y(x), singsol=all)

$$y(x) = \frac{e^{4x}c_1}{4} - \frac{5x}{2} + c_2$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 24

DSolve[y''[x]-4*y'[x]==10,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{5x}{2} + \frac{1}{4}c_1e^{4x} + c_2$$

6.2 problem 2

Internal problem ID [4808]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 4y = 16$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=16,y(x), singsol=all)

$$y(x) = 4 + (c_1 x + c_2) e^{2x}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 20

DSolve[y''[x]-4*y'[x]+4*y[x]==16,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 4 + e^{2x}(c_2x + c_1)$$

6.3 problem 3

Internal problem ID [4809]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' - 2y = e^{2x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=exp(2*x),y(x), singsol=all)

$$y(x) = \frac{(e^{4x} + 4c_2e^{3x} + 4c_1)e^{-2x}}{4}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 29

 $DSolve[y''[x]+y'[x]-2*y[x]==Exp[2*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{e^{2x}}{4} + c_1 e^{-2x} + c_2 e^x$$

6.4 problem 4

Internal problem ID [4810]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' - 3y = 24 e^{-3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)-3*y(x)=24*exp(-3*x),y(x), singsol=all)

$$y(x) = (e^{6x}c_1 + c_2e^{2x} + 2)e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: $29\,$

 $DSolve[y''[x]-2*y'[x]-3*y[x] == 24*Exp[-3*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-3x} (c_1 e^{2x} + c_2 e^{6x} + 2)$$

6.5 problem 5

Internal problem ID [4811]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y = 2e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)+y(x)=2*exp(x),y(x), singsol=all)

$$y(x) = c_2 \sin(x) + \cos(x) c_1 + e^x$$

Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 19

DSolve[y''[x]+y[x]==2*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x + c_1 \cos(x) + c_2 \sin(x)$$

6.6 problem 6

Internal problem ID [4812]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 9y = 12e^{-x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)+6*diff(y(x),x)+9*y(x)=12*exp(-x),y(x), singsol=all)

$$y(x) = (c_1 x + c_2) e^{-3x} + 3 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 25

 $DSolve[y''[x]+6*y'[x]+9*y[x]==12*Exp[-x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-3x} (3e^{2x} + c_2x + c_1)$$

6.7 problem 7

Internal problem ID [4813]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 2y = 3e^{2x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

dsolve(diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=3*exp(2*x),y(x), singsol=all)

$$y(x) = (c_2 + x) e^{2x} + e^{-x} c_1$$

/ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 27

DSolve[y''[x]-y'[x]-2*y[x] == 3*Exp[2*x], y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-x} + e^{2x} \left(x - \frac{1}{3} + c_2 \right)$$

6.8 problem 8

Internal problem ID [4814]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 16y = 40 e^{4x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)-16*y(x)=40*exp(4*x),y(x), singsol=all)

$$y(x) = (5x + c_2) e^{4x} + e^{-4x} c_1$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 29

DSolve[y''[x]-16*y[x]==40*Exp[4*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{4x} \left(5x - \frac{5}{8} + c_1\right) + c_2 e^{-4x}$$

6.9 problem 9

Internal problem ID [4815]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' + y = 2e^{-x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=2*exp(-x),y(x), singsol=all)

$$y(x) = e^{-x}(c_1x + x^2 + c_2)$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 21

DSolve[y''[x]+2*y'[x]+y[x]==2*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} \left(x^2 + c_2 x + c_1 \right)$$

6.10 problem 10

Internal problem ID [4816]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 6y' + 9y = 6e^{3x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

dsolve(diff(y(x),x\$2)-6*diff(y(x),x)+9*y(x)=6*exp(3*x),y(x), singsol=all)

$$y(x) = e^{3x} (c_1 x + 3x^2 + c_2)$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: $23\,$

DSolve[y''[x]-6*y'[x]+9*y[x]==6*Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{3x} (3x^2 + c_2 x + c_1)$$

6.11 problem 11

Internal problem ID [4817]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 10y = 100\cos(4x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(\texttt{y}(\texttt{x})\texttt{,x\$2}) + 2* \\ \text{diff}(\texttt{y}(\texttt{x})\texttt{,x}) + 10* \\ \text{y}(\texttt{x}) = 100* \\ \cos(4*\texttt{x})\texttt{,y}(\texttt{x})\texttt{, singsol=all})$

$$y(x) = e^{-x} \sin(3x) c_2 + e^{-x} \cos(3x) c_1 + 8 \sin(4x) - 6 \cos(4x)$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 42

$$y(x) \to 8\sin(4x) - 6\cos(4x) + c_2e^{-x}\cos(3x) + c_1e^{-x}\sin(3x)$$

6.12 problem 12

Internal problem ID [4818]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 12y = 80\sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+12*y(x)=80*sin(2*x),y(x), singsol=all)

$$y(x) = e^{-2x} \sin(2x\sqrt{2}) c_2 + e^{-2x} \cos(2x\sqrt{2}) c_1 + 5\sin(2x) - 5\cos(2x)$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 52

DSolve[y''[x]+4*y'[x]+12*y[x]==80*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 5\sin(2x) - 5\cos(2x) + c_2 e^{-2x}\cos(2\sqrt{2}x) + c_1 e^{-2x}\sin(2\sqrt{2}x)$$

6.13 problem 13

Internal problem ID [4819]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = 2\cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=2*cos(x),y(x), singsol=all)

$$y(x) = (c_1x + c_2)e^x - \sin(x)$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 21

 $DSolve[y''[x]-2*y'[x]+y[x]==2*Cos[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sin(x) + e^x(c_2x + c_1)$$

6.14 problem 14

Internal problem ID [4820]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 8y' + 25y = 120\sin(5x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x\$2)+8*diff(y(x),x)+25*y(x)=120*sin(5*x),y(x), singsol=all)

$$y(x) = e^{-4x} \sin(3x) c_2 + e^{-4x} \cos(3x) c_1 - 3\cos(5x)$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 36

DSolve[y''[x]+8*y'[x]+25*y[x]==120*Sin[5*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -3\cos(5x) + c_2e^{-4x}\cos(3x) + c_1e^{-4x}\sin(3x)$$

6.15 problem 15

Internal problem ID [4821]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$5y'' + 12y' + 20y = 120\sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(5*diff(y(x),x\$2)+12*diff(y(x),x)+20*y(x)=120*sin(2*x),y(x), singsol=all)

$$y(x) = e^{-\frac{6x}{5}} \sin\left(\frac{8x}{5}\right) c_2 + e^{-\frac{6x}{5}} \cos\left(\frac{8x}{5}\right) c_1 - 5\cos(2x)$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 44

DSolve[5*y''[x]+12*y'[x]+20*y[x]==120*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -5\cos(2x) + c_2 e^{-6x/5} \cos\left(\frac{8x}{5}\right) + c_1 e^{-6x/5} \sin\left(\frac{8x}{5}\right)$$

6.16 problem 16

Internal problem ID [4822]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = 30\sin(3x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)+9*y(x)=30*sin(3*x),y(x), singsol=all)

$$y(x) = (-5x + c_1)\cos(3x) + c_2\sin(3x)$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: $31\,$

DSolve[y''[x]+9*y[x]==30*Sin[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (-5x + c_1)\cos(3x) + \frac{1}{6}(5 + 6c_2)\sin(3x)$$

6.17 problem 17

Internal problem ID [4823]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 16y = 16\cos(4x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)+16*y(x)=16*cos(4*x),y(x), singsol=all)

$$y(x) = \frac{(4x + 2c_2)\sin(4x)}{2} + \frac{(2c_1 + 1)\cos(4x)}{2}$$

✓ Solution by Mathematica

Time used: 0.105 (sec). Leaf size: 28

DSolve[y''[x]+16*y[x]==16*Cos[4*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \left(\frac{1}{4} + c_1\right)\cos(4x) + (2x + c_2)\sin(4x)$$

6.18 problem 18

Internal problem ID [4824]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 17y = 60 e^{-4x} \sin(5x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

 $\label{eq:diff} $$ $ dsolve(diff(y(x),x$2)+2*diff(y(x),x)+17*y(x)=60*exp(-4*x)*sin(5*x),y(x), singsol=all) $$ $ dsolve(diff(y(x),x$2)+2*diff(y(x),x)+17*y(x)=60*exp(-4*x)*sin(5*x),y(x), singsol=all) $$ $ dsolve(diff(y(x),x)$2)+2*diff(y(x),x)+17*y(x)=60*exp(-4*x)*sin(5*x),y(x), singsol=all) $$ $ dsolve(diff(y(x),x)$4. The exp(-4*x) $$ $ dsolve(diff(y(x),x))$4. The exp(-4*x) $$ ds$

$$y(x) = e^{-x} \sin(4x) c_2 + e^{-x} \cos(4x) c_1 + 2 e^{-4x} \cos(5x)$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 42

$$y(x) \to e^{-4x} (2\cos(5x) + c_2 e^{3x} \cos(4x) + c_1 e^{3x} \sin(4x))$$

6.19 problem 19

Internal problem ID [4825]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$4y'' + 4y' + 5y = 40 e^{-\frac{3x}{2}} \sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

dsolve(4*diff(y(x),x\$2)+4*diff(y(x),x)+5*y(x)=40*exp(-3*x/2)*sin(2*x),y(x), singsol=all)

$$y(x) = 4\cos(x)^{2} e^{-\frac{3x}{2}} - 2e^{-\frac{3x}{2}}\cos(x)\sin(x) + e^{-\frac{x}{2}}\cos(x)c_{1} + e^{-\frac{x}{2}}\sin(x)c_{2} - 2e^{-\frac{3x}{2}}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 42

$$y(x) \to e^{-3x/2} (2\cos(2x) + c_1 e^x \sin(x) + \cos(x) (-2\sin(x) + c_2 e^x))$$

6.20 problem 20

Internal problem ID [4826]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 8y = 30 e^{-\frac{x}{2}} \cos\left(\frac{5x}{2}\right)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+8*y(x)=30*exp(-x/2)*cos(5/2*x),y(x), singsol=all)

$$y(x) = e^{-2x} \sin(2x) c_2 + e^{-2x} \cos(2x) c_1 + 4 e^{-\frac{x}{2}} \sin(\frac{5x}{2})$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 41

$$y(x) \to e^{-2x} \left(4e^{3x/2} \sin\left(\frac{5x}{2}\right) + c_2 \cos(2x) + c_1 \sin(2x) \right)$$

6.21 problem 21

Internal problem ID [4827]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$5y'' + 6y' + 2y = x^2 + 6x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve(5*diff(y(x),x$2)+6*diff(y(x),x)+2*y(x)=x^2+6*x,y(x), singsol=all)$

$$y(x) = e^{-\frac{3x}{5}} \sin\left(\frac{x}{5}\right) c_2 + e^{-\frac{3x}{5}} \cos\left(\frac{x}{5}\right) c_1 + \frac{x^2}{2} - \frac{5}{2}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 47

 $DSolve [5*y''[x]+6*y'[x]+2*y[x] == x^2+6*x, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to \frac{1}{2}(x^2 - 5) + c_2 e^{-3x/5} \cos\left(\frac{x}{5}\right) + c_1 e^{-3x/5} \sin\left(\frac{x}{5}\right)$$

6.22 problem 22

Internal problem ID [4828]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$2y'' + y' = 2x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(2*diff(y(x),x\$2)+diff(y(x),x)=2*x,y(x), singsol=all)

$$y(x) = -2e^{-\frac{x}{2}}c_1 + x^2 - 4x + c_2$$

Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 23

DSolve[y''[x]+y'[x]==2*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2 - 2x - c_1 e^{-x} + c_2$$

6.23 problem 23

Internal problem ID [4829]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = 2e^x x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x\$2)+y(x)=2*x*exp(x),y(x), singsol=all)

$$y(x) = c_2 \sin(x) + \cos(x) c_1 + (x - 1) e^x$$

Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 23

DSolve[y''[x]+y[x]==2*x*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(x-1) + c_1 \cos(x) + c_2 \sin(x)$$

6.24 problem 24

Internal problem ID [4830]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 6y' + 9y = 12e^{3x}x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $\label{eq:diff} $$ $dsolve(diff(y(x),x$2)-6*diff(y(x),x)+9*y(x)=12*x*exp(3*x),y(x), singsol=all)$ $$$

$$y(x) = e^{3x} (2x^3 + c_1x + c_2)$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: $23\,$

DSolve[y''[x]-6y'[x]+9*y[x]==12*x*Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{3x} (2x^3 + c_2x + c_1)$$

6.25 problem 25

Internal problem ID [4831]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' - 3y = 16x^2 e^{-x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $dsolve(diff(y(x),x$2)-2*diff(y(x),x)-3*y(x)=16*x^2*exp(-x),y(x), singsol=all)$

$$y(x) = \frac{(-8x^3 - 6x^2 + 6c_2 - 3x)e^{-x}}{6} + c_1e^{3x}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 37

DSolve[y''[x]-2*y'[x]-3*y[x]==16*x*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}e^{-x}(-8x^2 - 4x + 4c_2e^{4x} - 1 + 4c_1)$$

6.26 problem 26

Internal problem ID [4832]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = 8\sin(x)x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+y(x)=8*x*sin(x),y(x), singsol=all)

$$y(x) = (-2x^2 + c_1)\cos(x) + 2\sin(x)\left(x + \frac{c_2}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 27

DSolve[y''[x]+y[x]==8*x*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (-2x^2 + 1 + c_1)\cos(x) + (2x + c_2)\sin(x)$$

6.27 problem 33

Internal problem ID [4833]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + y = x^3 - 1 + 2\cos(x) + (-4x + 2)e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

 $\label{eq:diff} $$ $$ dsolve(diff(y(x),x$2)+y(x)=x^3-1+2*\cos(x)+(2-4*x)*\exp(x),y(x), $$ singsol=all)$$

$$y(x) = (1 + c_1)\cos(x) + (-2x + 3)e^x + \sin(x)(c_2 + x) + x^3 - 6x - 1$$

✓ Solution by Mathematica

Time used: 0.572 (sec). Leaf size: 40

$$y(x) \to x^3 - 2e^x x - 6x + 3e^x + \left(\frac{1}{2} + c_1\right)\cos(x) + (x + c_2)\sin(x) - 1$$

6.28 problem 34

Internal problem ID [4834]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 5y' + 6y = 2e^x + 6x - 5$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$2)-5*diff(y(x),x)+6*y(x)=2*exp(x)+6*x-5,y(x), singsol=all)

$$y(x) = c_2 e^{2x} + c_1 e^{3x} + x + e^x$$

✓ Solution by Mathematica

Time used: 0.191 (sec). Leaf size: 26

 $DSolve[y''[x]-5*y'[x]+6*y[x]==2*Exp[x]+6*x-5,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x + e^x + c_1 e^{2x} + c_2 e^{3x}$$

6.29 problem 35

Internal problem ID [4835]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 35.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = \sinh\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x\$2)-y(x)=sinh(x),y(x), singsol=all)

$$y(x) = \frac{(2x + 8c_1)e^{-x}}{8} + \frac{(x + 4c_2 - \frac{1}{2})e^x}{4}$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: $38\,$

DSolve[y''[x]-y[x]==Sinh[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{8}e^{-x}(2x + e^{2x}(2x - 1 + 8c_1) + 1 + 8c_2)$$

6.30 problem 36

Internal problem ID [4836]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 36.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = 2\sin(x) + 4\cos(x)x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x\$2)+y(x)=2*sin(x)+4*x*cos(x),y(x), singsol=all)

$$y(x) = (x^2 + c_2 - 1)\sin(x) + \cos(x)c_1$$

✓ Solution by Mathematica

Time used: 0.111 (sec). Leaf size: 28

DSolve[y''[x]+y[x]==2*Sin[x]+4*x*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} (2x^2 - 1 + 2c_2) \sin(x) + c_1 \cos(x)$$

6.31 problem 37

Internal problem ID [4837]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 37.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = 4e^x + (1-x)(e^{2x} - 1)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=4*exp(x)+(1-x)*(exp(2*x)-1),y(x), singsol=all)

$$y(x) = -3 + (c_1x + c_2)e^{-x} + \frac{(-3x+5)e^{2x}}{27} + x + e^x$$

✓ Solution by Mathematica

Time used: 0.539 (sec). Leaf size: 38

$$y(x) \to \frac{1}{27}e^{2x}(5-3x) + e^x + x + e^{-x}(c_2x + c_1) - 3$$

6.32 problem 38

Internal problem ID [4838]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422

Problem number: 38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - 2y' = 9x e^{-x} - 6x^2 + 4 e^{2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

 $dsolve(diff(y(x),x$2)-2*diff(y(x),x)=9*x*exp(-x)-6*x^2+4*exp(2*x),y(x), singsol=all)$

$$y(x) = \frac{(4x + c_1 - 2)e^{2x}}{2} + (3x + 4)e^{-x} + x^3 + \frac{3x^2}{2} + \frac{3x}{2} + c_2$$

✓ Solution by Mathematica

Time used: 0.492 (sec). Leaf size: 49

$$y(x) \to \frac{1}{2} (x(2x^2 + 3x + 3) + e^{-x}(6x + 8) + e^{2x}(4x - 2 + c_1)) + c_2$$

7 Chapter 8, Ordinary differential equations. Section 7. Other second-Order equations. page 435

7.1	problem 1	$(\epsilon$	ı)																			 , ,	102
7.2	problem 1	(ł	o)											 								 	103
7.3	problem 1	(0	:)											 								 	104
7.4	problem 1	(0	d)							 				 						• (105
7.5	problem 2													 								 	106
7.6	problem 3													 								 	107
7.7	problem 4													 								 	108
7.8	problem 5													 								 	109
7.9	$problem\ 6$		•											 								 , ,	110
7.10	problem 10	6 ((a)											 								 , ,	111
7.11	problem 10	6 ((b)											 								 , ,	112
7.12	problem 10	6 ((c)								•											 , ,	113
7.13	problem 10	6 ((d)	•										 		•		•			. ,	 	114
7.14	problem 1'	7												 		•		•			. ,	 	115
7.15	problem 18	8									•								•			 	116
7.16	problem 19	9				•							•	 								 	117
7.17	problem 20	0				•							•	 								 	118
7.18	problem 2	1												 		•		•			. ,	 	119
7.19	problem 2	2												 		•		•			. ,	 	120
7.20	problem 2	5									•								•			 	121
7.21	problem 20	6												 		•		•			. ,	 	122
7.22	problem 2'	7												 		•		•			. ,	 	123
7.23	problem 2	8												 		•		•			. ,	 	124
7.24	problem 29	9				•								 								 	125
7.25	problem 30	0												 								 , ,	126

7.1 problem 1 (a)

Internal problem ID [4839]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 1 (a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _

$$y'' + y'y = 0$$

With initial conditions

$$[y(0) = 5, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 5

dsolve([diff(y(x),x\$2)+y(x)*diff(y(x),x)=0,y(0) = 5, D(y)(0) = 0],y(x), singsol=all)

$$y(x) = 5$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y''[x]+y[x]*y'[x]==0,{y[0]==5,y'[0]==0}},y[x],x,IncludeSingularSolutions -> True]

{}

7.2 problem 1 (b)

Internal problem ID [4840]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 1 (b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _

$$y'' + y'y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = -2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

dsolve([diff(y(x),x\$2)+y(x)*diff(y(x),x)=0,y(0) = 2, D(y)(0) = -2],y(x), singsol=all)

$$y(x) = \frac{2}{1+x}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y''[x]+y[x]*y'[x]==0,{y[0]==2,y'[0]==-2}},y[x],x,IncludeSingularSolutions -> True]

{}

7.3 problem 1 (c)

Internal problem ID [4841]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 1 (c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _

$$y'' + y'y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 12

dsolve([diff(y(x),x\$2)+y(x)*diff(y(x),x)=0,y(0) = 1, D(y)(0) = -1],y(x), singsol=all)

$$y(x) = \cot\left(\frac{x}{2} + \frac{\pi}{4}\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y''[x]+y[x]*y'[x]==0,{y[0]==1,y'[0]==-1}},y[x],x,IncludeSingularSolutions -> True]

{}

7.4 problem 1 (d)

Internal problem ID [4842]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 1 (d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _

$$y'' + y'y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 8

dsolve([diff(y(x),x\$2)+y(x)*diff(y(x),x)=0,y(0) = 0, D(y)(0) = 2],y(x), singsol=all)

$$y(x) = 2 \tanh(x)$$

✓ Solution by Mathematica

Time used: 10.835 (sec). Leaf size: 9

DSolve[{y''[x]+y[x]*y'[x]==0,{y[0]==0,y'[0]==2}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 2 \tanh(x)$$

7.5 problem 2

Internal problem ID [4843]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + 2xy' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 10

dsolve(diff(y(x),x\$2)+2*x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + \operatorname{erf}(x) c_2$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 21

DSolve[y''[x]+2*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{2}\sqrt{\pi}c_1 \operatorname{erf}(x) + c_2$$

7.6 problem 3

Internal problem ID [4844]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible

$$2yy'' - y'^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

 $dsolve(2*y(x)*diff(y(x),x$2)=(diff(y(x),x))^2,y(x), singsol=all)$

$$y(x) = 0$$

 $y(x) = \frac{(c_1x + c_2)^2}{4}$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 29

DSolve $[2*y[x]*y''[x]==(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{(c_1x + 2c_2)^2}{4c_2}$$

 $y(x) \to \text{Indeterminate}$

7.7 problem 4

Internal problem ID [4845]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

$$xy'' - y' - y'^3 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

 $dsolve(x*diff(y(x),x$2)=diff(y(x),x)+(diff(y(x),x))^3,y(x), singsol=all)$

$$y(x) = -\sqrt{-x^2 + c_1} + c_2$$

$$y(x) = \sqrt{-x^2 + c_1} + c_2$$

✓ Solution by Mathematica

Time used: 1.486 (sec). Leaf size: 103

 $DSolve[x*y''[x]==y'[x]+(y'[x])^3,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_2 - ie^{-c_1} \sqrt{-1 + e^{2c_1} x^2}$$

$$y(x) \to ie^{-c_1}\sqrt{-1 + e^{2c_1}x^2} + c_2$$

$$y(x) \to c_2 - i\sqrt{x^2}$$

$$y(x) \rightarrow i\sqrt{x^2} + c_2$$

7.8 problem 5

Internal problem ID [4846]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equations. page 435

Problem number: 5.

ODE order: 2. ODE degree: 2.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y''^2 - k^2 (1 + y'^2) = 0$$

✓ Solution by Maple

Time used: 0.5 (sec). Leaf size: 55

 $dsolve((diff(y(x),x$2))^2=k^2*(1+(diff(y(x),x))^2),y(x), singsol=all)$

$$y(x) = -ix + c_1$$

 $y(x) = ix + c_1$
 $y(x) = \frac{4c_2^2 e^{kx} k^2 + 4c_1 c_2 k^2 + e^{-kx}}{4c_2 k^2}$

✓ Solution by Mathematica

Time used: 0.451 (sec). Leaf size: 71

 $DSolve[(y''[x])^2 = k^2 * (1 + (y'[x])^2), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) o -rac{e^{kx-c_1} + e^{-kx+c_1} - 2c_2k}{2k}$$
 $y(x) o rac{e^{kx+c_1} \left(1 + e^{-2(kx+c_1)}\right)}{2k} + c_2$

7.9 problem 6

Internal problem ID [4847]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 6.

ODE order: 2. ODE degree: 2.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]

$$-\frac{y''}{(1+y')^{\frac{3}{2}}} = -k$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

 $dsolve(k=diff(y(x),x$2)*(1+(diff(y(x),x)))^(-3/2),y(x), singsol=all)$

$$y(x) = -x - \frac{4}{k^2(x+c_1)} + c_2$$

Solution by Mathematica

Time used: 0.515 (sec). Leaf size: 75

DSolve $[k==y''[x]*(1+(y'[x])^2)^(-3/2),y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to c_2 - \frac{i\sqrt{k^2x^2 + 2c_1kx - 1 + c_1^2}}{k}$$
$$y(x) \to \frac{i\sqrt{k^2x^2 + 2c_1kx - 1 + c_1^2}}{k} + c_2$$

$$y(x) \to \frac{i\sqrt{k^2x^2 + 2c_1kx - 1 + c_1^2}}{k} + c_2$$

7.10 problem 16 (a)

Internal problem ID [4848]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 16 (a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' + 3xy' - 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x$2)+3*x*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1 x^4 + c_2}{x^3}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 16

 $DSolve[x^2*y''[x]+3*x*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{c_1}{x^3} + c_2 x$$

7.11 problem 16 (b)

Internal problem ID [4849]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 16 (b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' + xy' - 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_2 x^4 + c_1}{x^2}$$

Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 18

 $DSolve[x^2*y''[x]+x*y'[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_2 x^4 + c_1}{x^2}$$

7.12 problem 16 (c)

Internal problem ID [4850]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 16 (c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' + 7xy' + 9y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(x^2*diff(y(x),x$2)+7*x*diff(y(x),x)+9*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_2 \ln(x) + c_1}{x^3}$$

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 18

DSolve[x^2*y''[x]+7*x*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{3c_2 \log(x) + c_1}{x^3}$$

7.13 problem 16 (d)

Internal problem ID [4851]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 16 (d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - xy' + 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+6*y(x)=0,y(x), singsol=all)$

$$y(x) = x \left(c_1 \sin\left(\sqrt{5} \ln(x)\right) + c_2 \cos\left(\sqrt{5} \ln(x)\right)\right)$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 32

DSolve $[x^2*y''[x]-x*y'[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to x \Big(c_2 \cos \Big(\sqrt{5} \log(x) \Big) + c_1 \sin \Big(\sqrt{5} \log(x) \Big) \Big)$$

7.14 problem 17

Internal problem ID [4852]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + xy' - 16y = 8x^4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-16*y(x)=8*x^4,y(x), singsol=all)$

$$y(x) = \frac{8x^8 \ln(x) + (8c_2 - 1)x^8 + 8c_1}{8x^4}$$

Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 28

 $DSolve[x^2*y''[x]+x*y'[x]-16*y[x] == 8*x^4, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^4 \log(x) + \left(-\frac{1}{8} + c_2\right) x^4 + \frac{c_1}{x^4}$$

7.15 problem 18

Internal problem ID [4853]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equations. page 435

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x^{2}y'' + xy' - y = x - \frac{1}{x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=x-1/x,y(x), singsol=all)$

$$y(x) = \frac{2\ln(x) x^2 + 4c_2x^2 + 2\ln(x) + 4c_1 + 1}{4x}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 37

DSolve $[x^2*y''[x]+x*y'[x]-y[x]==x-1/x,y[x],x$, IncludeSingularSolutions -> True

$$y(x) \to \frac{2(x^2+1)\log(x) + (-1+4c_2)x^2 + 1 + 4c_1}{4x}$$

7.16 problem 19

Internal problem ID [4854]

 $\mathbf{Book}:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' - 5xy' + 9y = 2x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x^2*diff(y(x),x$2)-5*x*diff(y(x),x)+9*y(x)=2*x^3,y(x), singsol=all)$

$$y(x) = x^{3}(c_{2} + c_{1} \ln(x) + \ln(x)^{2})$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: $22\,$

 $DSolve[x^2*y''[x]-5*x*y'[x]+9*y[x]==2*x^3,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^3(\log^2(x) + 3c_2\log(x) + c_1)$$

7.17 problem 20

Internal problem ID [4855]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - 3xy' + 4y = 6\ln(x)x^{2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+4*y(x)=6*x^2*ln(x),y(x), singsol=all)$

$$y(x) = x^{2}(c_{2} + c_{1} \ln(x) + \ln(x)^{3})$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 22

$$y(x) \to x^2 (\log^3(x) + 2c_2 \log(x) + c_1)$$

7.18 problem 21

Internal problem ID [4856]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + y = 3x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $dsolve(x^2*diff(y(x),x$2)+y(x)=3*x^2,y(x), singsol=all)$

$$y(x) = \sqrt{x} \sin\left(\frac{\sqrt{3} \ln(x)}{2}\right) c_2 + \sqrt{x} \cos\left(\frac{\sqrt{3} \ln(x)}{2}\right) c_1 + x^2$$

✓ Solution by Mathematica

Time used: 0.144 (sec). Leaf size: 47

DSolve[x^2*y''[x]+y[x]==3*x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sqrt{x} \left(x^{3/2} + c_1 \cos\left(\frac{1}{2}\sqrt{3}\log(x)\right) + c_2 \sin\left(\frac{1}{2}\sqrt{3}\log(x)\right) \right)$$

7.19 problem 22

Internal problem ID [4857]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + xy' + y = 2x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+y(x)=2*x,y(x), singsol=all)$

$$y(x) = \sin(\ln(x)) c_2 + \cos(\ln(x)) c_1 + x$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 19

 $\label{eq:DSolve} DSolve[x^2*y''[x]+x*y'[x]+y[x]==2*x,y[x],x,IncludeSingularSolutions \ -> \ True]$

$$y(x) \rightarrow x + c_1 \cos(\log(x)) + c_2 \sin(\log(x))$$

7.20 problem 25

Internal problem ID [4858]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}(2-x)y'' + 2xy' - 2y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve([x^2*(2-x)*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,x],singsol=all)$

$$y(x) = \frac{c_1 x^2 + c_2(x-1)}{x}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: $24\,$

 $DSolve[x^2*(2-x)*y''[x]+2*x*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1(x-2)^2 + c_2(x-1)}{x}$$

7.21 problem 26

Internal problem ID [4859]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 1) y'' - 2xy' + 2y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $\label{eq:dsolve} $$ dsolve([(x^2+1)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,x], singsol=all) $$ $$ dsolve([(x^2+1)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,x], singsol=all) $$ $$ dsolve([(x^2+1)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,x], singsol=all) $$ dsolve([(x^2+1)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,x], singsol=all) $$ dsolve([(x^2+1)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,x], singsol=all) $$ dsolve([(x^2+1)*diff(y(x),x)+2*y(x)=0,x], singsol=all) $$ dsolve([(x^2+1)*diff(y(x),x]) $$ dsolve([(x^2+1)*diff(y(x),x])+2*y(x)=0,x], singsol=all) $$ dsolve([(x^2+1)*diff(y(x),x]) $$ dsolve([(x^2+1)*diff(y(x),x])+2*y(x)=0,x], singsol=all) $$ dsolve([(x^2+1)*diff(y(x),x]) $$ dsolve([(x^2+1)*diff(y(x),x])+2*y(x)=0,x], singsol=all) $$ dsolve([(x^2+1)*diff(y(x),x])+2*y(x)=0,x] $$ dsolve([(x^2+1)*diff(y(x),x])+2*y(x)=0,x] $$ dsolve([(x^2+1)*diff(y(x),x])+2*y(x)=0,x] $$ dsolve([(x^2+1)*diff(y(x),x])+2*y(x)=0,x] $$ dsolve([(x^2+1)*diff(y(x),x])+2*y(x)=0,x] $$ dsolve([(x^2+1)*diff(x),x]) $$ dsolve([(x^2+1)*dif$

$$y(x) = c_2 x^2 + c_1 x - c_2$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 21

$$y(x) \to c_2 x - c_1 (x-i)^2$$

7.22 problem 27

Internal problem ID [4860]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' - 2(x+1)y' + (x+2)y = 0$$

Given that one solution of the ode is

$$y_1 = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve([x*diff(y(x),x\$2)-2*(x+1)*diff(y(x),x)+(x+2)*y(x)=0,exp(x)],singsol=all)

$$y(x) = e^x \left(c_2 x^3 + c_1 \right)$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 23

 $DSolve[x*y''[x]-2*(x+1)*y'[x]+(x+2)*y[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{3}e^x(c_2x^3 + 3c_1)$$

7.23 problem 28

Internal problem ID [4861]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$3xy'' - 2(3x - 1)y' + (3x - 2)y = 0$$

Given that one solution of the ode is

$$y_1 = e^x$$

✓ Solution by Maple

 $\overline{\text{Time used: 0.0 (sec)}}$. Leaf size: 14

dsolve([3*x*diff(y(x),x\$2)-2*(3*x-1)*diff(y(x),x)+(3*x-2)*y(x)=0,exp(x)],singsol=all)

$$y(x) = e^x \left(c_1 + x^{\frac{1}{3}} c_2 \right)$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 21

DSolve[3*x*y''[x]-2*(3*x-1)*y'[x]+(3*x-2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^x \left(3c_2\sqrt[3]{x} + c_1\right)$$

7.24 problem 29

Internal problem ID [4862]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x^{2}y'' + (x+1)y' - y = 0$$

Given that one solution of the ode is

$$y_1 = x + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve([x^2*diff(y(x),x$2)+(x+1)*diff(y(x),x)-y(x)=0,x+1],singsol=all)$

$$y(x) = c_2 e^{\frac{1}{x}} x + c_1 x + c_1$$

✓ Solution by Mathematica

Time used: 0.077 (sec). Leaf size: 21

 $DSolve[x^2*y''[x]+(x+1)*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to c_1 e^{\frac{1}{x}} x + c_2(x+1)$$

7.25 problem 30

Internal problem ID [4863]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 7. Other second-Order equa-

tions. page 435

Problem number: 30.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x(x+1)y'' - (x-1)y' + y = 0$$

Given that one solution of the ode is

$$y_1 = x - 1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

dsolve([x*(x+1)*diff(y(x),x\$2)-(x-1)*diff(y(x),x)+y(x)=0,x-1],singsol=all)

$$y(x) = (x - 1) c_2 \ln(x) - 4c_2 + c_1(x - 1)$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 23

 $DSolve[x*(x+1)*y''[x]-(x-1)*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1(x-1) + c_2((x-1)\log(x) - 4)$$

8	Chapter	r	8	3,	(C	r	rdinary differential eq											${f q}$	\mathbf{u}	uations.													
	Section	1	L	3.	•	N	1	is	SC	e	1	la	ır	16	ec	π	18	5	\mathbf{p}	r	ol	ol	.e	n	18	5.	r)	ιg	æ	4	1 6	6	
8.1	problem 1 .																					•					. .							128
8.2	problem 2 .																																	129
8.3	problem 3 .																																	130
8.4	problem 4 .																																	131
8.5	problem 5 .																																	132
8.6	problem 6 .																																	133
8.7	problem 7 .																																	134
8.8	problem 8 .																																	136
8.9	problem 9 .																																	137
8.10	problem 10																										. .							138
8.11	problem 11																										. .							139
8.12	problem 12																										. .							140
8.13	problem 13																																	141
8.14	problem 14																																	142
8.15	problem 15																																	143
8.16	problem 16																																	144
8.17	problem 17																																	145
8.18	problem 18																																	146
8.19	problem 19																																	147
8.20	problem 20																																	148
8.21	problem 21																										. .							149
8.22	problem 22																																	150
8.23	problem 23																																	151
8.24	problem 24																																	152
8.25	problem 25																																	153
	problem 26																																	154
8.27	problem 27																																	155
8.28	problem 28																																	156

8.1 problem 1

Internal problem ID [4864]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x^2y' - xy = \frac{1}{x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(x^2*diff(y(x),x)-x*y(x)=1/x,y(x), singsol=all)$

$$y(x) = \left(-\frac{1}{3x^3} + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 17

 $DSolve[x^2*y'[x]-x*y[x]==1/x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{3x^2} + c_1 x$$

problem 2 8.2

Internal problem ID [4865]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x \ln(y) y' - \ln(x) y = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve(x*ln(y(x))*diff(y(x),x)-y(x)*ln(x)=0,y(x), singsol=all)

$$y(x) = e^{\sqrt{\ln(x)^2 + 2c_1}}$$

 $y(x) = e^{-\sqrt{\ln(x)^2 + 2c_1}}$

✓ Solution by Mathematica

Time used: 0.815 (sec). Leaf size: 60

DSolve[x*Log[y[x]]*y'[x]-y[x]*Log[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow e^{-\sqrt{\log^2(x) + 2c_1}}$$
 $y(x)
ightarrow e^{\sqrt{\log^2(x) + 2c_1}}$
 $y(x)
ightarrow 0$

$$y(x) \to e^{\sqrt{\log^2(x) + 2c_1}}$$

$$y(x) \to 0$$

$$y(x) \to e^{2i\operatorname{Interval}[\{0,\pi\}]}$$

8.3 problem 3

Internal problem ID [4866]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 3.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 2y'' + 2y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$3)+2*diff(y(x),x\$2)+2*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + e^{-x} \sin(x) c_2 + c_3 \cos(x) e^{-x}$$

✓ Solution by Mathematica

Time used: 0.113 (sec). Leaf size: 37

 $DSolve[y'''[x]+2*y''[x]+2*y'[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to \frac{1}{2}e^{-x}((c_2 - c_1)\sin(x) - (c_1 + c_2)\cos(x)) + c_3$$

8.4 problem 4

Internal problem ID [4867]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$r'' - 6r' + 9r = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $\label{eq:diff} $$ $$ dsolve(diff(r(t),t)^2)-6*diff(r(t),t)+9*r(t)=0,r(t), $$ singsol=all)$$

$$r(t) = e^{3t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 18

DSolve[r''[t]-6*r'[t]+9*r[t]==0,r[t],t,IncludeSingularSolutions -> True]

$$r(t) \to e^{3t}(c_2t + c_1)$$

8.5 problem 5

Internal problem ID [4868]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, '_with_symmetry_[F(x),G(x)]'], [_Abel, '

$$-y\sin(2x) - (\sin(x)^2 - 2y)y' = -2x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 75

 $dsolve(2*x-y(x)*sin(2*x)=(sin(x)^2-2*y(x))*diff(y(x),x),y(x), singsol=all)$

$$y(x) = \frac{1}{4} - \frac{\cos(2x)}{4} - \frac{\sqrt{\cos(2x)^2 - 16x^2 - 2\cos(2x) - 16c_1 + 1}}{4}$$
$$y(x) = \frac{1}{4} - \frac{\cos(2x)}{4} + \frac{\sqrt{\cos(2x)^2 - 16x^2 - 2\cos(2x) - 16c_1 + 1}}{4}$$

✓ Solution by Mathematica

Time used: 0.259 (sec). Leaf size: 89

$$y(x) \to \frac{1}{4} \left(-\sqrt{-16x^2 + \cos^2(2x) - 2\cos(2x) + 1 + 16c_1} - \cos(2x) + 1 \right)$$
$$y(x) \to \frac{1}{4} \left(\sqrt{-16x^2 + \cos^2(2x) - 2\cos(2x) + 1 + 16c_1} - \cos(2x) + 1 \right)$$

8.6 problem 6

Internal problem ID [4869]

 $\mathbf{Book}:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = 10 e^x + 6 e^{-x} \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+2*y(x)=10*exp(x)+6*exp(-x)*cos(x),y(x), singsol=all)

$$y(x) = ((c_1 + 3)\cos(x) + 3(x + \frac{c_2}{3})\sin(x))e^{-x} + 2e^x$$

✓ Solution by Mathematica

Time used: 0.212 (sec). Leaf size: 41

$$y(x) \to \frac{1}{2}e^{-x}(4e^{2x} + (3+2c_2)\cos(x) + 2(3x+c_1)\sin(x))$$

8.7 problem 7

Internal problem ID [4870]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$3x^3y^2y' - y^3x^2 = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 85

 $dsolve(3*x^3*y(x)^2*diff(y(x),x)-x^2*y(x)^3=1,y(x), singsol=all)$

$$y(x) = \frac{3^{\frac{2}{3}} (3c_1 x^4 - x)^{\frac{1}{3}}}{3x}$$

$$y(x) = -\frac{3^{\frac{2}{3}} (3c_1 x^4 - x)^{\frac{1}{3}} (1 + i\sqrt{3})}{6x}$$

$$y(x) = -\frac{\left(3^{\frac{2}{3}} - 3i3^{\frac{1}{6}}\right) (3c_1 x^4 - x)^{\frac{1}{3}}}{6x}$$

Solution by Mathematica

Time used: 0.518 (sec). Leaf size: 85

 $DSolve[3*x^3*y[x]^2*y'[x]-x^2*y[x]^3==1,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{\sqrt[3]{-\frac{1}{3}}\sqrt[3]{-1+3c_1x^3}}{x^{2/3}}$$
$$y(x) \to \frac{\sqrt[3]{-\frac{1}{3}+c_1x^3}}{x^{2/3}}$$
$$y(x) \to \frac{(-1)^{2/3}\sqrt[3]{-\frac{1}{3}+c_1x^3}}{x^{2/3}}$$

8.8 problem 8

Internal problem ID [4871]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems. page 466

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' - xy' + y = x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

 $dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=x,y(x), singsol=all)$

$$y(x) = x \left(c_2 + c_1 \ln(x) + \frac{\ln(x)^2}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 25

DSolve[x^2*y''[x]-x*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}x(\log^2(x) + 2c_2\log(x) + 2c_1)$$

8.9 problem 9

Internal problem ID [4872]

 $\mathbf{Book}:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Bernoulli]

$$y' - 2y - y^2 e^{3x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(diff(y(x),x)-(2*y(x)+y(x)^2*exp(3*x))=0,y(x), singsol=all)$

$$y(x) = -\frac{5 e^{2x}}{e^{5x} - 5c_1}$$

✓ Solution by Mathematica

Time used: 0.223 (sec). Leaf size: $29\,$

DSolve[y'[x]-(2*y[x]+y[x]^2*Exp[3*x])==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{5e^{2x}}{e^{5x} - 5c_1}$$
$$y(x) \to 0$$

8.10 problem 10

Internal problem ID [4873]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$u(1-v) + v^2(1-u)u' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 33

 $\label{eq:dsolve} \\ \text{dsolve}(\texttt{u}(\texttt{v})*(\texttt{1-v})+\texttt{v}^2*(\texttt{1-u}(\texttt{v}))*\texttt{diff}(\texttt{u}(\texttt{v}),\texttt{v})=\texttt{0},\texttt{u}(\texttt{v}), \text{ singsol=all}) \\$

$$u(v) = v \operatorname{e}^{rac{-\operatorname{LambertW}\left(-v \operatorname{e}^{rac{c_1v+1}{v}}
ight)v + c_1v + 1}{v}}$$

✓ Solution by Mathematica

Time used: 2.999 (sec). Leaf size: 26

 $DSolve[u[v]*(1-v)+v^2*(1-u[v])*u'[v]==0,u[v],v,IncludeSingularSolutions \rightarrow True]$

$$u(v) \to -W\left(v\left(-e^{\frac{1}{v}-c_1}\right)\right)$$

 $u(v) \to 0$

8.11 problem 11

Internal problem ID [4874]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$-xy' + y = -2x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve((y(x)+2*x)-x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = (2\ln(x) + c_1)x$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 14

 $DSolve[(y[x]+2*x)-x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x(2\log(x) + c_1)$$

8.12 problem 12

Internal problem ID [4875]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$xy'' + y' = 4x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(x*diff(y(x),x\$2)+diff(y(x),x)=4*x,y(x), singsol=all)

$$y(x) = x^2 + c_1 \ln(x) + c_2$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 16

DSolve[x*y''[x]+y'[x]==4*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2 + c_1 \log(x) + c_2$$

8.13 problem 13

Internal problem ID [4876]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 5y = 26 e^{3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+5*y(x)=26*exp(3*x),y(x), singsol=all)

$$y(x) = (e^{5x} + c_2 \sin(x) + \cos(x) c_1) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 27

 $DSolve[y''[x]+4*y'[x]+5*y[x] == 26*Exp[3*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-2x} (e^{5x} + c_2 \cos(x) + c_1 \sin(x))$$

8.14 problem 14

Internal problem ID [4877]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 5y = 2e^{-2x}\cos(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+5*y(x)=2*exp(-2*x)*cos(x),y(x), singsol=all)

$$y(x) = (\sin(x)(c_2 + x) + \cos(x)c_1)e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 26

DSolve[y''[x]+4*y'[x]+5*y[x] == 2*Exp[-2*x]*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x}((1+c_2)\cos(x) + (x+c_1)\sin(x))$$

8.15 problem 15

Internal problem ID [4878]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y' + 4y = 6 e^{2x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=6*exp(2*x),y(x), singsol=all)

$$y(x) = e^{2x} (c_1 x + 3x^2 + c_2)$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 23

 $DSolve[y''[x]-4*y'[x]+4*y[x]==6*Exp[2*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{2x} (3x^2 + c_2 x + c_1)$$

8.16 problem 16

Internal problem ID [4879]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 5y' + 6y = e^{2x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)-5*diff(y(x),x)+6*y(x)=exp(2*x),y(x), singsol=all)

$$y(x) = (-x + c_1) e^{2x} + c_2 e^{3x}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 24

 $DSolve[y''[x]-5*y'[x]+6*y[x]==Exp[2*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow e^{2x}(-x + c_2e^x - 1 + c_1)$$

8.17 problem 17

Internal problem ID [4880]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, [_Abel, '2nd ty

$$(2x+y)y'+2y=x$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 51

dsolve((2*x+y(x))*diff(y(x),x)-(x-2*y(x))=0,y(x), singsol=all)

$$y(x) = \frac{-2c_1x - \sqrt{5c_1^2x^2 + 1}}{c_1}$$
$$y(x) = \frac{-2c_1x + \sqrt{5c_1^2x^2 + 1}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.458 (sec). Leaf size: 94

 $\textbf{DSolve}[(2*x+y[x])*y'[x]-(x-2*y[x])==0,y[x],x,IncludeSingularSolutions \rightarrow \textbf{True}]$

$$y(x) \to -2x - \sqrt{5x^2 + e^{2c_1}}$$

$$y(x) \to -2x + \sqrt{5x^2 + e^{2c_1}}$$

$$y(x) \rightarrow -\sqrt{5}\sqrt{x^2} - 2x$$

$$y(x) \to \sqrt{5}\sqrt{x^2} - 2x$$

8.18 problem 18

Internal problem ID [4881]

 $\mathbf{Book}:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 18.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$\left(\cos(y) x - e^{-\sin(y)}\right) y' = -1$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 20

dsolve((x*cos(y(x)) - exp(-sin(y(x))))*diff(y(x),x)+1=0,y(x), singsol=all)

$$(-y(x) - c_1) e^{-\sin(y(x))} + x = 0$$

✓ Solution by Mathematica

Time used: 0.734 (sec). Leaf size: 26

DSolve[(x*Cos[y[x]] - Exp[-Sin[y[x]]])*y'[x]+1==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$[x = y(x)e^{-\sin(y(x))} + c_1e^{-\sin(y(x))}, y(x)]$$

8.19 problem 19

Internal problem ID [4882]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'\sin(x)^2 + (x+y)\sin(2x) = -\sin(x)^2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

 $dsolve(sin(x)^2*diff(y(x),x)+(sin(x)^2+(x+y(x))*sin(2*x))=0,y(x), singsol=all)$

$$y(x) = -\frac{2c_1}{-1 + \cos(2x)} - x$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 27

 $DSolve[Sin[x]^2*y'[x] + (Sin[x]^2 + (x+y[x])*Sin[2*x]) == 0, y[x], x, IncludeSingularSolutions -> True to the sum of t$

$$y(x) \to \frac{1}{2}\csc^2(x)(-x + x\cos(2x) + 2c_1)$$

8.20 problem 20

Internal problem ID [4883]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + 5y = 5x + 4e^{x}(1 + \sin(2x))$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+5*y(x)=5*x+4*exp(x)*(1+sin(2*x)),y(x), singsol=all)

$$y(x) = \frac{2}{5} - e^{x}(x - c_1 - 1)\cos(2x) + \frac{(2c_2 + 1)e^{x}\sin(2x)}{2} + x + e^{x}$$

✓ Solution by Mathematica

Time used: 1.313 (sec). Leaf size: 45

$$y(x) \to x + e^x - e^x(x - c_2)\cos(2x) + \frac{1}{4}(1 + 4c_1)e^x\sin(2x) + \frac{2}{5}$$

problem 21 8.21

Internal problem ID [4884]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + xy - \frac{x}{y} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $\label{eq:diff} $\operatorname{dsolve}(\operatorname{diff}(y(x),x)+x*y(x)=x/y(x),y(x), \ \operatorname{singsol=all})$$

$$y(x) = \sqrt{e^{-x^2}c_1 + 1}$$
$$y(x) = -\sqrt{e^{-x^2}c_1 + 1}$$

Solution by Mathematica

Time used: 1.922 (sec). Leaf size: 57

DSolve[y'[x]+x*y[x]==x/y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sqrt{1 + e^{-x^2 + 2c_1}}$$

$$y(x) \rightarrow -\sqrt{1 + e^{-x^2 + 2c_1}}$$

$$y(x) \rightarrow \sqrt{1 + e^{-x^2 + 2c_1}}$$

$$y(x) \rightarrow -1$$

$$y(x) \to -1$$

$$y(x) \to 1$$

8.22 problem 22

Internal problem ID [4885]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 22.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 2y''' + 13y'' - 18y' + 36y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 37

$$y(x) = c_1 e^x \sin(\sqrt{3}x) + c_2 e^x \cos(\sqrt{3}x) + c_3 \sin(3x) + c_4 \cos(3x)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: $48\,$

DSolve[y'''[x]-2*y'''[x]+13*y''[x]-18*y'[x]+36*y[x]==0,y[x],x,IncludeSingularSolutions -> T

$$y(x) \rightarrow c_3 \cos(3x) + c_2 e^x \cos\left(\sqrt{3}x\right) + c_4 \sin(3x) + c_1 e^x \sin\left(\sqrt{3}x\right)$$

8.23 problem 23

Internal problem ID [4886]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$\sin(\theta)\cos(\theta)r' - r\cos(\theta)^2 = \sin(\theta)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(sin(theta)*cos(theta)*diff(r(theta),theta)-sin(theta)^2=r(theta)*cos(theta)^2,r(theta

$$r(\theta) = (\ln(\sec(\theta) + \tan(\theta)) + c_1)\sin(\theta)$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 14

DSolve[Sin[\[Theta]]*Cos[\[Theta]]*r'[\[Theta]]-Sin[\[Theta]]^2==r[\[Theta]]*Cos[\[Theta]]^2

$$r(\theta) \to \sin(\theta) \left(\coth^{-1}(\sin(\theta)) + c_1 \right)$$

8.24 problem 24

Internal problem ID [4887]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _w

$$x(yy'' + y'^2) - y'y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

 $dsolve(x*(y(x)*diff(y(x),x$2) + diff(y(x),x)^2) = y(x)*diff(y(x),x),y(x), singsol=all)$

$$y(x) = 0$$

 $y(x) = \sqrt{c_1 x^2 + 2c_2}$
 $y(x) = -\sqrt{c_1 x^2 + 2c_2}$

✓ Solution by Mathematica

Time used: 0.234 (sec). Leaf size: 18

 $DSolve[x*(y[x]*y''[x]+(y'[x])^2) == y[x]*y'[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_2 \sqrt{x^2 + c_1}$$

8.25 problem 25

Internal problem ID [4888]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$3yx^2 + y'x^3 = 0$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $dsolve([3*x^2*y(x)+x^3*diff(y(x),x)=0,y(1) = 2],y(x), singsol=all)$

$$y(x) = \frac{2}{x^3}$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 10

 $DSolve[{3*x^2*y[x]+x^3*y'[x]==0, {y[1]==2}}, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2}{x^3}$$

8.26 problem 26

Internal problem ID [4889]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y + xy' = x^2$$

With initial conditions

$$[y(2) = 6]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $dsolve([x*diff(y(x),x)-y(x)=x^2,y(2) = 6],y(x), singsol=all)$

$$y(x) = x(1+x)$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 10

 $DSolve[\{x*y'[x]-y[x]==x^2,\{y[2]==6\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x(x+1)$$

8.27 problem 27

Internal problem ID [4890]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 6y = 6$$

With initial conditions

$$[y(0) = 1, y'(0) = 4]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve([diff(y(x),x\$2)+diff(y(x),x)-6*y(x)=6,y(0) = 1, D(y)(0) = 4],y(x), singsol=all)

$$y(x) = 2e^{2x} - 1$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: $14\,$

DSolve[{y''[x]+y'[x]-6*y[x]==6,{y[0]==1,y'[0]==4}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 2e^{2x} - 1$$

8.28 problem 28

Internal problem ID [4891]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems.

page 466

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [

$$yy'' + y'^2 = -4$$

With initial conditions

$$[y(1) = 3, y'(1) = 0]$$

✓ Solution by Maple

Time used: 0.891 (sec). Leaf size: $16\,$

 $dsolve([y(x)*diff(y(x),x$2)+diff(y(x),x)^2+4=0,y(1) = 3, D(y)(1) = 0],y(x), singsol=all)$

$$y(x) = \sqrt{-4x^2 + 8x + 5}$$

✓ Solution by Mathematica

Time used: 31.559 (sec). Leaf size: 19

DSolve[{y[x]*y''[x]+y'[x]^2+4==0,{y[1]==3,y'[1]==0}},y[x],x,IncludeSingularSolutions -> True

$$y(x) \to \sqrt{-4x^2 + 8x + 5}$$

9 Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous problems. page 564

9.1	problem 1, using series method	58
9.2	problem 1, using elementary method	59
9.3	problem 2, using series method	60
9.4	problem 2, using elementary method	61
9.5	problem 3, using series method	62
9.6	problem 3, using elementary method	63
9.7	problem 4, using series method	64
9.8	problem 4, using elementary method	65
9.9	problem 5, using series method	66
9.10	problem 5, using elementary method	67
9.11	problem 6, using series method	68
9.12	problem 6, using elementary method	69
9.13	problem 7, using series method	70
9.14	problem 7, using elementary method	71
9.15	problem 8, using series method	72
9.16	problem 8, using elementary method	73
9.17	problem 9, using series method	74
9.18	problem 9, using elementary method	75
9.19	problem 10, using series method	76
9.20	problem 10, using elementary method	77

9.1 problem 1, using series method

Internal problem ID [4892]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

 ${f Section}:$ Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 1, using series method.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xy' - xy - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

Order:=6;

dsolve(x*diff(y(x),x)=x*y(x)+y(x),y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5 \right) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 38

AsymptoticDSolveValue[$x*y'[x] == x*y[x]+y[x],y[x],\{x,0,5\}$]

$$y(x) \to c_1 x \left(\frac{x^5}{120} + \frac{x^4}{24} + \frac{x^3}{6} + \frac{x^2}{2} + x + 1 \right)$$

problem 1, using elementary method 9.2

Internal problem ID [4893]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 1, using elementary method.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xy' - xy - y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(x*diff(y(x),x)=x*y(x)+y(x),y(x), singsol=all)

$$y(x) = x e^x c_1$$

Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 17

DSolve[x*y'[x]==x*y[x]+y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x x$$
$$y(x) \to 0$$

$$y(x) \to 0$$

9.3 problem 2, using series method

Internal problem ID [4894]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 2, using series method.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 3yx^2 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6; dsolve(diff(y(x),x)=3*x^2*y(x),y(x),type='series',x=0);

$$y(x) = (x^3 + 1) y(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 11

AsymptoticDSolveValue[$y'[x] == 3*x^2*y[x], y[x], \{x,0,5\}$]

$$y(x) \rightarrow c_1(x^3+1)$$

9.4 problem 2, using elementary method

Internal problem ID [4895]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 2, using elementary method.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 3yx^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

 $dsolve(diff(y(x),x)=3*x^2*y(x),y(x), singsol=all)$

$$y(x) = c_1 e^{x^3}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 18

 $DSolve[y'[x] == 3*x^2*y[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{x^3}$$
$$y(x) \to 0$$

9.5 problem 3, using series method

Internal problem ID [4896]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 3, using series method.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$-y + xy' = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

Order:=6;
dsolve(x*diff(y(x),x)=y(x),y(x),type='series',x=0);

$$y(x) = c_1 x + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 7

AsymptoticDSolveValue[$x*y'[x] == y[x], y[x], \{x,0,5\}$]

$$y(x) \rightarrow c_1 x$$

9.6 problem 3, using elementary method

Internal problem ID [4897]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 3, using elementary method.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$-y + xy' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve(x*diff(y(x),x)=y(x),y(x), singsol=all)

$$y(x) = c_1 x$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 14

DSolve[x*y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x$$

$$y(x) \to 0$$

9.7 problem 4, using series method

Internal problem ID [4898]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

 $\bf Section:$ Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous problems. page 564

Problem number: 4, using series method.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6;

dsolve(diff(y(x),x\$2)=-4*y(x),y(x),type='series',x=0);

$$y(x) = \left(1 - 2x^2 + \frac{2}{3}x^4\right)y(0) + \left(x - \frac{2}{3}x^3 + \frac{2}{15}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 40

AsymptoticDSolveValue[$y''[x] == -4*y[x], y[x], \{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{2x^5}{15} - \frac{2x^3}{3} + x\right) + c_1 \left(\frac{2x^4}{3} - 2x^2 + 1\right)$$

9.8 problem 4, using elementary method

Internal problem ID [4899]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 4, using elementary method.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)=-4*y(x),y(x), singsol=all)

$$y(x) = c_1 \sin(2x) + c_2 \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 20

DSolve[y''[x]==-4*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 \cos(2x) + c_2 \sin(2x)$$

9.9 problem 5, using series method

Internal problem ID [4900]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 5, using series method.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6;

dsolve(diff(y(x),x\$2)=y(x),y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x^2 + \frac{1}{24}x^4\right)y(0) + \left(x + \frac{1}{6}x^3 + \frac{1}{120}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$y''[x] == y[x], y[x], \{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^5}{120} + \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^4}{24} + \frac{x^2}{2} + 1\right)$$

9.10 problem 5, using elementary method

Internal problem ID [4901]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 5, using elementary method.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)=y(x),y(x), singsol=all)

$$y(x) = c_1 e^x + c_2 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: $20\,$

DSolve[y''[x]==y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_2 e^{-x}$$

9.11 problem 6, using series method

Internal problem ID [4902]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006

 $\bf Section:$ Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous problems. page 564

Problem number: 6, using series method.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 52

Order:=6;

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{1}{8}x^4 - \frac{1}{30}x^5\right)y(0) + \left(x + x^2 + \frac{1}{2}x^3 + \frac{1}{6}x^4 + \frac{1}{24}x^5\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 66

AsymptoticDSolveValue[$y''[x]-2*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(-\frac{x^5}{30} - \frac{x^4}{8} - \frac{x^3}{3} - \frac{x^2}{2} + 1 \right) + c_2 \left(\frac{x^5}{24} + \frac{x^4}{6} + \frac{x^3}{2} + x^2 + x \right)$$

9.12 problem 6, using elementary method

Internal problem ID [4903]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 6, using elementary method.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = e^x(c_2x + c_1)$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 16

DSolve[y''[x]-2*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(c_2x + c_1)$$

9.13 problem 7, using series method

Internal problem ID [4904]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

 ${f Section}:$ Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 7, using series method.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - 3xy' + 3y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

Order:=6; $dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x^3 (1 + O(x^6)) + c_2 x (-2 + O(x^6))$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 14

AsymptoticDSolveValue[$x^2*y''[x]-3*x*y'[x]+3*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 x^3 + c_1 x$$

9.14 problem 7, using elementary method

Internal problem ID [4905]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 7, using elementary method.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - 3xy' + 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+3*y(x)=0,y(x), singsol=all)$

$$y(x) = x(c_2x^2 + c_1)$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 16

 $DSolve[x^2*y''[x]-3*x*y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to x(c_2x^2 + c_1)$$

9.15 problem 8, using series method

Internal problem ID [4906]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 8, using series method.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2} + 2x) y'' - 2(x+1) y' + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

$$y(x) = (1 + \mathrm{O}\left(x^6\right)) c_1 x^2 + c_2 \left(-2 - 2x - \frac{1}{2}x^2 + \mathrm{O}\left(x^6\right)\right)$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 23 $\,$

AsymptoticDSolveValue[$(x^2+2*x)*y''[x]-2*(x+1)*y'[x]+2*y[x]==0,y[x],{x,0,5}$]

$$y(x) \to c_2 x^2 + c_1 \left(\frac{x^2}{4} + x + 1\right)$$

9.16 problem 8, using elementary method

Internal problem ID [4907]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 8, using elementary method.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2} + 2x) y'' - 2(x+1) y' + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve((x^2+2*x)*diff(y(x),x$2)-2*(x+1)*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^2 + c_2 x + c_2$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 19

 $DSolve[(x^2+2*x)*y''[x]-2*(x+1)*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 x^2 - c_2(x+1)$$

9.17 problem 9, using series method

Internal problem ID [4908]

 $\bf Book:$ Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 9, using series method.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 1) y'' - 2xy' + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

Order:=6; $dsolve((x^2+1)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0); \\$

$$y(x) = y(0) + D(y)(0)x - y(0)x^{2}$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 18

AsymptoticDSolveValue[$(x^2+1)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1(1-x^2) + c_2x$$

9.18 problem 9, using elementary method

Internal problem ID [4909]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 9, using elementary method.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 1) y'' - 2xy' + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $\label{eq:dsolve} $$ $ dsolve((x^2+1)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,y(x), $$ singsol=all) $$$

$$y(x) = c_2 x^2 + c_1 x - c_2$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 21

 $DSolve[(x^2+1)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_2 x - c_1 (x - i)^2$$

9.19 problem 10, using series method

Internal problem ID [4910]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

 ${f Section}:$ Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 10, using series method.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4xy' + (4x^2 - 2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

Order:=6;

 $dsolve(diff(y(x),x\$2)-4*x*diff(y(x),x)+(4*x^2-2)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 + x^2 + \frac{1}{2}x^4\right)y(0) + \left(x + x^3 + \frac{1}{2}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: $34\,$

AsymptoticDSolveValue[$y''[x]-4*x*y'[x]+(4*x^2-2)*y[x]==0,y[x],{x,0,5}$]

$$y(x)
ightarrow c_2igg(rac{x^5}{2} + x^3 + xigg) + c_1igg(rac{x^4}{2} + x^2 + 1igg)$$

9.20 problem 10, using elementary method

Internal problem ID [4911]

Book: Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John

Wiley. 2006

Section: Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous

problems. page 564

Problem number: 10, using elementary method.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4xy' + (4x^2 - 2)y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $\label{eq:diff} $$ $ dsolve(diff(y(x),x$2)-4*x*diff(y(x),x)+(4*x^2-2)*y(x)=0,y(x), $$ singsol=all) $$$

$$y(x) = e^{x^2}(c_2x + c_1)$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 18

$$y(x) \to e^{x^2}(c_2x + c_1)$$