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1.1 problem First order with homogeneous Coefficients.
Exercise 7.2, page 61

Internal problem ID [4427]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.2, page 61.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2zy + (2 +y*)y' =0

v/ Solution by Maple
Time used: 0.032 (sec). Leaf size: 209

Ldsolve (2xx*xy (x)+(x"2+y(x) "2) *diff (y(x) ,x)=0,y(x), singsol=all) J
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v/ Solution by Mathematica
Time used: 15.191 (sec). Leaf size: 401

kDSolve [2xx*y [x]+(x~2+y [x] “2) *y' [x]==0,y[x] ,x,IncludeSingularSolutions -> True}]
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1.2 problem First order with homogeneous Coefficients.
Exercise 7.3, page 61

Internal problem ID [4428]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.3, page 61.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

(:v+ yz—wy>y’—y=0

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 33

~—

[dsolve((x+sqrt(y(x)‘2—x*y(x)))*diff(y(x),x)—y(x)=0,y(x), singsol=all)

In (y(=)) y(=) — ay(@) + 2y (2) (y (2) —z) _ 0
y (z)

v Solution by Mathematica
Time used: 0.291 (sec). Leaf size: 43

LDSolve [(x+Sqrt [y [x] ~2-x*y[x]])*y' [x]-y[x]==0,y[x],x,IncludeSingularSolutions +> True]

'\/_) + log < ) = —log(z) + c1,y(z)

Solve



1.3 problem First order with homogeneous Coefficients.
Exercise 7.4, page 61

Internal problem ID [4429]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.4, page 61.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘cl

/

y—(r—y)y =—=x

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

e

Ldsolve((x+y(x))—(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)

~—

y(x) = tan (RootOf (—2_Z+1In (sec(_2)*) +21n (z) +2¢;)) =

v/ Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 36

e hY

DSolve [ (x+y[x])-(x-y[x])*y' [x]==0,y[x],x,IncludeSingularSolutions -> True]

N

Solve B log (L””)Q + 1) _ arctan (M) — _log(z) + o1, y(x)

2 T



1.4 problem First order with homogeneous Coefficients.
Exercise 7.5, page 61

Internal problem ID [4430]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.5, page 61.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

zy —y — xsin <g> =0
x

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 44

~—

[dsolve(x*diff(y(x),x)—y(x)-x*sin(y(x)/x)=0,y(x), singsol=all)

2zc;  —x?E +1
22+ 1" 2262+ 1

y(z) = arctan (

v/ Solution by Mathematica
Time used: 0.325 (sec). Leaf size: 52

LDSolve [x*y' [x]-y[x]-x*Sin[y[x]/x]==0,y[x],x,IncludeSingularSolutions -> True]J

y(x) — —x arccos(— tanh(log(z) + ¢1))
y(z) — xarccos( tanh(log(z) + ¢1))
y(z) —

y(zx) - —7mx

y(x) — mz



1.5 problem First order with homogeneous Coefficients.
Exercise 7.6, page 61

Internal problem ID [4431]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.6, page 61.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

2yz’ +y° + (zy? — 22°) y' =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

Ldsolve ((2xx~2xy (x) +y (x) ~3) + (x*y (x) "2-2*x"3) *diff (y(x) ,x)=0,y(x), singsol=a11)J

1
= 2 -
y(z) = V2 \/ LambertW (—2c;z4) ’

v Solution by Mathematica
Time used: 5.64 (sec). Leaf size: 66

LDSolve [(2xx~2xy [x]+y [x] ~3) + (x*y [x] "2-2*%x"3) *y ' [x]==0,y[x],x, IncludeSingularSojLutions -> True

_ z\/ix

\/W (—2e~2c114)
y(e) = VW (—2e-2e174)
y(z) =0

y(z) =




1.6 problem First order with homogeneous Coefficients.
Exercise 7.7, page 61

Internal problem ID [4432]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.7, page 61.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _dAlembert]

y* + (a:\/y2—x2—a:y> y =0

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 32

-

Ldsolve(y(x)"2+(x*sqrt(y(x)‘2—x‘2)-x*y(x))*diff(y(x),x)=0,y(x), singsol=all) }

—cizy(z) + y(z) + \/m =0

zy ()

v/ Solution by Mathematica
Time used: 2.247 (sec). Leaf size: 111

LDSolve [y [x] "2+ (x*Sqrt [y [x] "2-x"2] -x*y [x]) *y' [x]==0,y[x],x, IncludeSingularSoluj:ions -> True]

y(fo—l(log(\/%+l—1)+log( @+1+1>)
\/m_l\/mﬂ

— 2log (%@ -1- \/MH) = log(z) + c1,y(x)

Solve | —

T



1.7 problem First order with homogeneous Coefficients.
Exercise 7.8, page 61

Internal problem ID [4433]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.8, page 61.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

v Solution by Maple
Time used: 0.031 (sec). Leaf size: 15

e

kdsolve (y(x) /x*cos(y(x)/x)-(x/y(x)*sin(y(x) /x)+cos (y(x) /x))*diff (y(x),x)=0, y(x} , singsol=all)

y(x) = RootOf (_Zzcysin(_2Z)—1)x

v/ Solution by Mathematica
Time used: 0.247 (sec). Leaf size: 27

-

LDSolve [y [x] /x*Cos [y [x] /x]-(x/y [x]*Sin [y [x] /x]+Cos [y [x]/x]) *y' [x]==0,y[x],x, Iﬁ\ ludeSingularSc

sovefo (%) 410 (s (22) ) = o) .60

10



1.8 problem First order with homogeneous Coefficients.
Exercise 7.9, page 61

Internal problem ID [4434]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.9, page 61.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

y+zln <%> y —2xy =0

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

e

Ldsolve(y(x)+x*1n(y(x)/x)*diff (y(x) ,x)-2*x*diff (y(x) ,x)=0,y(x), singsol=all) \J

_ LambertW (—ezc:)
C1

y(z) =

v/ Solution by Mathematica
Time used: 5.502 (sec). Leaf size: 35

e B

LDSolve [y [x]+x*Log [y [x]/x]*y' [x]-2*x*y' [x]==0,y[x],x,IncludeSingularSolutions J—> True]

y(z) = —e W (—e' 1)
y(z) =0
y(z) = ex

11



1.9 problem First order with homogeneous Coefficients.
Exercise 7.10, page 61

Internal problem ID [4435]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.10, page 61.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

2yev + <y—2xe%) y =0

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 21

[dsolve(2*y(x)*exp(x/y(x))+(y(x)—2*x*exp(x/y(x)))*diff(y(x),x)=0,y(x), singso%%all)

T
" RootOf (—_Ze2" + ¢11)

y(z)

v/ Solution by Mathematica
Time used: 0.247 (sec). Leaf size: 29

e

kDSolve [2*y [x] *Exp [x/y [x]]+(y [x] -2*x*Exp [x/y [x]]) *y' [x]==0,y[x],x, IncludeSingu\jLarSolut ions ->

Solve [—2674(2) — log <@) =log(z) + c1, y(x)

12



1.10 problem First order with homogeneous Coefficients.
Exercise 7.11, page 61

Internal problem ID [4436]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.11, page 61.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

ze: — ysin <Q> + z sin <g> y =0
T T

v Solution by Maple
Time used: 0.032 (sec). Leaf size: 63

e

Ldsolve ((x*exp (y(x) /x) -y (x)*sin(y(x)/x) ) +x*sin(y(x) /x) *diff (y(x) ,x)=0,y(x), si\ gsol=all)

y(x) = RootOf (e>~%(41n (z)* *~Z + 81n (z) €*Zc, + 4e*~“c} — 41n (z)sin (_2Z) e~
—4sin(_2Z)e-Zc; 4+ 2sin (_2)° — 1)z

v Solution by Mathematica
Time used: 0.328 (sec). Leaf size: 39

LDSolve [(x*Exp [y [x]/x] -y [x]*Sin [y [x]/x])+x*Sin[y [x] /x]*y' [x]==0,y[x],x, Include?ingularSolutio

Solve [—%e—?’f) (Sin <@) + cos (@)) = —log(z) + cl,y(m)]

13



1.11 problem First order with homogeneous Coefficients.
Exercise 7.12, page 61

Internal problem ID [4437]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.12, page 61.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _Bernoulli]

y? —2zyy = —a

With initial conditions

v Solution by Maple
Time used: 0.062 (sec). Leaf size: 23

e hY

dsolve ([(x™2+y(x) ~2) =2*x*y (x) *diff (y(x),x),y(-1) = 0],y(x), singsol=all)

N

y(xz) = vz (1+z)
y(z) = —vz(l+z)

v Solution by Mathematica
Time used: 0.19 (sec). Leaf size: 36

( N
LDSolve [{(x~2+y [x] "2)==2*xxy [x] *y' [x] ,y[-1]==0},y[x],x, IncludeSingularSolutionJE -> True]

y(z) > —vzvr +1
y(z) > Vv +1



1.12 problem First order with homogeneous Coefficients.
Exercise 7.13, page 61

Internal problem ID [4438]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.13, page 61.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

zes +y—zy =0

With initial conditions

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 15

-

Ldsolve([(x*exp(y(x)/x)+y(x))=x*diff(y(x),x),y(i) = 0],y(x), singsol=all)

~—

v/ Solution by Mathematica
Time used: 0.316 (sec). Leaf size: 15

s

LDSolve [{ (x*Exp [y [x] /x]+y [x])==x*y' [x],y[1]1==0},y[x],x, IncludeSingularSolution}s -> True]

y(z) = —zlog(1 — log(z))

15



1.13 problem First order with homogeneous Coefficients.
Exercise 7.14, page 61

Internal problem ID [4439]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.14, page 61.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

With initial conditions

[y(1) = 0]
v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 22
Ldsolve( [diff (y(x),x)-y(x)/x+csc(y(x)/x)=0,y(1) = 0],y(x), singsol=all) J

y(z) = arccos (In (z) + 1)z
y(x) = —arccos (In (z) + 1) z

v/ Solution by Mathematica
Time used: 0.394 (sec). Leaf size: 24

‘ DSolve [{y' [x]-y[x]/x+Csc[y[x]/x]==0,y[1]==0},y[x],x,IncludeSingularSolutions +> True]

y(x) — —z arccos(log(x) + 1)
y(z) — zarccos(log(x) + 1)

16



1.14 problem First order with homogeneous Coefficients.
Exercise 7.15, page 61

Internal problem ID [4440]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.15, page 61.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _Bernoulli]

zy—y’ — 2’y =0

With initial conditions

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

e hY

dsolve ([(x*y(x)-y(x)~2)-x"2*diff (y(x),x)=0,y(1) = 1],y(x), singsol=all)

N

T

y(z) = m

v/ Solution by Mathematica
Time used: 0.139 (sec). Leaf size: 13

‘ DSolve [{(x*y[x]-y[x]~2)-x"2*y' [x]==0,y[1]==1},y[x],x,IncludeSingularSolutions| -> Truel

VO Tog) +1

17
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2.1 problem Differential equations with Linear Coefficients.
Exercise 8.1, page 69

Internal problem ID [4441]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.1, page
69.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘cl

2y — 2z —4dy)y = —z+4

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 31

Ldsolve((x+2*y(x)—4)—(2*x—4*y(x))*diff(y(x),x)=0,y(x), singsol=all) J

_q tan (RootOf (2_Z+ In (sec (_Z)Q) +2In(z —2)+2¢1)) (z —2)
y(z) =1- 5

v/ Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 63

-

N
LDSolve [(x+2xy [x]-4) - (2*%x-4*y [x]) *y' [x]==0,y[x] ,x,IncludeSingularSolutions -> jl'rue]

Solve [2 arctan <—2y(w) —rt 4)
z — 2y(z)
z? + 4y(x)? — 8y(x) — 4z + 8
+ log < 2z = 2)

)+2ng—m+mp=&mw}

19



2.2 problem Differential equations with Linear Coefficients.
Exercise 8.2, page 69

Internal problem ID [4442]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.2, page
69.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘cl

2y—Br+2y—1)y' =-3z—1

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

Ldsolve ((3*x+2%y (x) +1) - (3*x+2*xy (x) -1) *diff (y(x) ,x)=0,y(x), singsol=all) J

1_ 25z
@) = 3, 2LambertW (—#) s 1
Y& =" 5 10

v Solution by Mathematica
Time used: 4.816 (sec). Leaf size: 43

‘ DSolve [ (3*x+2*y [x]+1) - (3*x+2*xy [x]-1) *y' [x]==0,y[x] ,x,IncludeSingularSolutions| -> True]

y(z) = %(—4w (—e—%%”—lm) — 15z + 1)
1 3x
y(z) — 0 9

20



2.3 problem Differential equations with Linear Coefficients.
Exercise 8.3, page 69

Internal problem ID [4443]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.3, page
69.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

y+ 2z +2y+2)y =-1—=x

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve ((x+y (x) +1) +(2*x+2xy (x) +2) *diff (y (x) ,x)=0,y(x), singsol=all) J
y@)=-1l-=z
x
y(z) = ~3 +c

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 22

( N

LDSolve [(x+y [x]+1)+(2*x+2*y [x] +2) *y' [x]==0,y[x] ,x,IncludeSingularSolutions -> jl'rue]

y(z) > —x—1
z
y(z) — —5 +c

21



2.4 problem Differential equations with Linear Coefficients.
Exercise 8.4, page 69

Internal problem ID [4444]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.4, page
69.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘cl

y+Q2z+2y—3)y' =1—=z

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

Ldsolve((x+y(x)—1)+(2*x+2*y(x)—3)*diff (y(x),x)=0,y(x), singsol=all) J

r—4—cy
y(z) = LambertVV2(2e ) to_ g

v/ Solution by Mathematica
Time used: 4.725 (sec). Leaf size: 33

l DSolve [ (x+y[x]-1)+(2*x+2%y [x]-3) *y' [x]==0,y[x],x,IncludeSingularSolutions -> jl‘rue]

y(z) — %(W(—e”’_l"'cl) — 2z +4)
ylx) > 2—=z

22



2.5 problem Differential equations with Linear Coefficients.
Exercise 8.5, page 69

Internal problem ID [4445]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.5, page
69.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘cl

y—@-y-1y=1-2

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 30

Ldsolve ((x+y (x)-1)-(x-y (x)-1) *diff (y(x) ,x)=0,y(x), singsol=all) J

y(z) = tan (RootOf (2_Z+ In (sec (_Z)z) +2n(z—1)+2¢)) (1 — z)

v/ Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 48

‘ DSolve [ (x+y[x]-1)-(x-y[x]-1)*y' [x]==0,y[x] ,x,IncludeSingularSolutions -> Truej]

Solve [2 arctan (—yy(fa):)—:-xz_—ll) = log (% ((j(_x)fy + 1)) + 2log(z — 1) + ¢1,y(z)

23



2.6 problem Differential equations with Linear Coefficients.
Exercise 8.6, page 69

Internal problem ID [4446]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.6, page
69.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘cl

y+2z+2y—1)y = —x

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 21

Ldsolve((x+y(x) )+(2%x+2%y (x)-1) *diff (y(x) ,x)=0,y(x), singsol=all) J

r—2—cC1
y(z) = LambertVV2(2e ) s+ 1

v/ Solution by Mathematica
Time used: 1.056 (sec). Leaf size: 33

l DSolve [ (x+y[x])+(2*x+2*y[x]-1) *y' [x]==0,y[x] ,x,IncludeSingularSolutions -> Trﬁ.\e]

y(z) — %(W(—e”’_l"'cl) — 2z +2)
ylx) > 1—=z
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2.7 problem Differential equations with Linear Coefficients.
Exercise 8.7, page 69

Internal problem ID [4447]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.7, page
69.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

Ty+(2z+1)y =3

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve((7*y(x)—3)+(2*x+1)*diff (y(x),x)=0,y(x), singsol=all) J
3 c
y(@) =+ —
(1+2z)2

v/ Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 28

e hY

DSolve [(7*y[x]-3)+(2*x+1)*y' [x]==0,y[x],x,IncludeSingularSolutions -> True]

- J

<

Voun

&
1

+
(2z +1)7/2

<
—~
8
~
| W gl W
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2.8 problem Differential equations with Linear Coefficients.
Exercise 8.8, page 69

Internal problem ID [4448]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.8, page
69.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘cl

20+ Bz +6y+3)y =—=z

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

Ldsolve ((x+2*xy (x) ) +(3*x+6*xy (x)+3) *diff (y(x) ,x)=0,y(x), singsol=all) J

_§_£+ﬂ
y(z) = — LambertW (—u> _3_2

v/ Solution by Mathematica
Time used: 4.834 (sec). Leaf size: 43

e B

kDSolve [ (x+2%y [x]) +(3*x+6%y [x]+3) *y' [x]==0,y[x],x,IncludeSingularSolutions -> jl‘rue]

y(z) = = (—2W (—e 67 1t) — g — 3)
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2.9 problem Differential equations with Linear Coefficients.
Exercise 8.9, page 69

Internal problem ID [4449]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.9, page
69.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘cl

20+ (y—1)y =—x

v/ Solution by Maple
Time used: 0.063 (sec). Leaf size: 30

Ldsolve ((x+2*xy (x))+(y(x)-1)*diff (y(x),x)=0,y(x), singsol=all) J

_ (-1 —z)LambertW (¢;(2+1z)) -2 —=
y(o) = LambertW (c; (2 + z))

v/ Solution by Mathematica
Time used: 1.178 (sec). Leaf size: 143

LDSolve [(x+2*y [x])+(y[x]-1)*y' [x]==0,y[x] ,x,IncludeSingularSolutions -> Truel J

(_2)2/3 (_ <(x n 1) log (_3(—2)2/3(x+2)>> +zlog (3(_2)2/3(y(x)+x+1)> +log <3(—2)2/3£(g§(x)+z+1)) n

y(z)-1 y(z)—1 y(z)—1
9(y(z) +z+1)

Solve | —
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2.10 problem Differential equations with Linear Coefficients.
Exercise 8.10, page 69

Internal problem ID [4450]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.10, page
69.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd tj

—2y—(2z+Ty—1)y' = -3z —4

v/ Solution by Maple
Time used: 0.109 (sec). Leaf size: 33

Ldsolve ((Bkx-2xy (x) +4) - (2*x+7*y(x) -1) *diff (y(x) ,x)=0,y(x), singsol=all) J

/7415625 (z + 2)° 3 + (502 + 25) ¢,
17561

y(z) =

v/ Solution by Mathematica
Time used: 0.126 (sec). Leaf size: 65

LDSolve [(3*x-2*y [x]+4) - (2*x+7*y [x]-1) *y' [x]==0,y[x],x, IncludeSingularSolutionsJ -> True]

1
y(z) — ?<—\/25x2 + 522 +1+49¢c; — 22 + 1)

y(x) — %<\/25x2 + 522 +1+4+49¢c; — 2z + 1>
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2.11 problem Differential equations with Linear Coefficients.
Exercise 8.11, page 69

Internal problem ID [4451]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.11, page
69.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘cl

y+Bzr+3y—4)y =—z

With initial conditions

v/ Solution by Maple
Time used: 0.156 (sec). Leaf size: 19

dsolve ([(x+y(x))+(3*x+3*y(x)-4)*diff (y(x),x)=0,y(1) = 0],y(x), singsol=all)

N J

-
2 LambertW (1, -2,
y(z) = 3 +2—x

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

e

kDSolve [{ (x+y [x])+(3*x+3*y [x] -4) *y' [x]==0,y[1]==0},y[x],x, IncludeSingularSolutJions -> True]

{
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2.12 problem Differential equations with Linear Coefficients.
Exercise 8.12, page 69

Internal problem ID [4452]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.12, page
69.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘cl

2y—(z+2y—1)y = -3z -3

v/ Solution by Maple
Time used: 0.187 (sec). Leaf size: 93

Ldsolve ((3*kx+2xy (x)+3) - (x+2*y (x) -1) *diff (y(x) ,x)=0,y(x), singsol=all) J
y(z)
(=2 — z) RootOf (—1 + (16¢12° + 160c;z* + 640c1 2> + 1280c, 2% + 1280c;z + 512¢1) _Z*° + (—80c;2°
B 2
3z 9
+ o5 + 2

v/ Solution by Mathematica
Time used: 60.094 (sec). Leaf size: 3081

‘ DSolve [ (3*x+2*y [x]+3) - (x+2*y [x]-1) *y' [x]==0,y[x],x,IncludeSingularSolutions —# Truel

Too large to display
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2.13 problem Differential equations with Linear Coefficients.
Exercise 8.13, page 69

Internal problem ID [4453]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.13, page
69.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘cl

y+ 2z +y+3)y =7

With initial conditions

[y(0) = 1]

v/ Solution by Maple
Time used: 0.14 (sec). Leaf size: 87

e hY

dsolve ([(y(x)+7)+(2*x+y (x)+3)*diff (y(x),x)=0,y(0) = 1],y(x), singsol=all)

N\ J

1
3

y(@) = (—o" +62% = 120+ 72 + 8V/=227 + 1227 — 245 + 80
(z - 2)°
(=23 + 622 — 12z + 72 4 8v/ 223 + 1222 — 24z + 80)

+ —r—=95

W=

v/ Solution by Mathematica
Time used: 6.783 (sec). Leaf size: 198

‘ DSolve [{(y[x]+7)+(2*x+y [x]+3) *y' [x]==0,y[0]==1},y[x],x, IncludeSingularSolutio#s -> Truel

y()
z? — (f/—z?’ 4 622 + 8vV2v/—23 + 622 — 122 + 40 — 122 + 72 + 4) 2+ (—2® + 627 + 8v/2v/—27 1

i’/—x:3 + 622 + 8V2V—13 + 62

_>
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2.14 problem Differential equations with Linear Coefficients.
Exercise 8.14, page 69

Internal problem ID [4454]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.14, page
69.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘cl

y—(@-—y—4)y =-z-2

v/ Solution by Maple
Time used: 0.204 (sec). Leaf size: 31

Ldsolve ((x+y (x)+2) - (x-y (x) -4) *diff (y(x) ,x)=0,y(x), singsol=all) J

y(z) = —3 — tan (RootOf (2_Z+ In (sec (_Z)z) +2In(z—1)+2¢)) (z — 1)

v/ Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 58

‘ DSolve [ (x+y[x]+2) - (x-y [x]-4) *y' [x]==0,y[x] ,x,IncludeSingularSolutions -> Truej]

Solve [2 arctan (M)

y(z) —z+4

2 2 ) 1
+ log (x +y(=) 22;63(?))2 v 0) +2log(z — 1) + ¢1 = 0, y(z)
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3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Chapter 2. Special types of differential equations
of the first kind. Lesson 9

problem Exact Differential equations.
problem Exact Differential equations.
problem Exact Differential equations.
problem Exact Differential equations.
problem Exact Differential equations.
problem Exact Differential equations.
problem Exact Differential equations.
problem Exact Differential equations.
problem Exact Differential equations.
problem Exact Differential equations.
problem Exact Differential equations.
problem Exact Differential equations.
problem Exact Differential equations.

Exercise 9.4, page 79
Exercise 9.5, page 79
Exercise 9.6, page 79
Exercise 9.7, page 79
Exercise 9.8, page 79
Exercise 9.9, page 79
Exercise 9.10, page 79
Exercise 9.11, page 79
Exercise 9.12, page 79
Exercise 9.13, page 79
Exercise 9.15, page 79
Exercise 9.16, page 79
Exercise 9.17, page 79
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3.1 problem Exact Differential equations. Exercise 9.4, page
79

Internal problem ID [4455]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.4, page 79.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

3yz® + 8zy® + (2° + 8yz® +12y%) ¢y = 0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 475

Ldsolve ((3kx~2xy (x) +8*x*y (x) ~2) +(x~3+8*x~2*y (x) +12*y (x) "2) *diff (y(x) ,x)=0,y (x)} singsol=all)

1
3

<9m5 — 27¢; — 8z°% + 31/—3x10 + 329 + 48¢; 78 — 5dc x5 + 810%)

y(z) = 5
3 -3 4 2
. £(=3+ 4a) 2
6 (9335 — 27¢; — 828 + 31/—3x10 + 329 + 48¢; 76 — 5dc x5 + 810%) :
y(z)
2
(-iv3-1) (9x5—2701—8x6+3\/ —3z10+3x9+48c1x6—54c1x5+81c§) ?
1 + <— <9z5 — 27c¢; — 825 + 3/ —3z10 + 32° + 48
3 (90° — 27e; — 820 + 3/=3210 + 327 + 48¢;2° — 5deyz®
y(z) =

2
3

(—5F + 1) (99° — 27c: — 82° + 3y/=3210 + 32 + 48c,2 — 5dera? + 8167 ) + (<9x5 — 27c, — 8

3 (92° — 271 — 820 + 3\/=320 + 32 + 48
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v/ Solution by Mathematica
Time used: 1.703 (sec). Leaf size: 474

tDSolve [(3xx~2%y [x]+8*xxy [x] ~2) +(x~3+8%x~2*y [x] +12*y [x] “2) *y' [x]==0,y[x] ,x, IncjludeSingularSol

1

y(z) — =

5 —2z2 + Q/—Szﬁ + 9z° + 3\/5\/—m10 + z9 — 16¢126 + 18c12° + 27¢12 + 27¢;

(4z — 3)x3

_|_
</—8z6 + 925 + 3v/3v/—z10 + 29 — 16¢126 + 18¢125 + 27¢12 + 27¢4

1 ,
y(z) — T —16z +4z<\/§

+ z) \/ —826 4 925 + 3v/3y/— 210 + 29 — 16¢,25 + 18¢,2° + 27¢;2 + 27¢y
4i(v/3 — i) (4z — 3)z®
Q/—Sxﬁ + 925 + 3v/3y/—x10 + 29 — 16¢126 + 18¢125 + 27¢12 + 27¢4

1 2
y(z) = I —16z —4(1

+ z\/§> €/ —86 + 925 + 3v/3\/—10 + 3% — 16125 + 18¢;2° + 27c1% + 27cy
4i (V3 +1) (4z — 3)2®

_|_
Q/—Sxﬁ + 925 + 3\/3\/—3010 + x9 — 16¢126 + 18c12° + 27¢12 + 27¢;
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3.2 problem Exact Differential equations. Exercise 9.5, page
79

Internal problem ID [4456]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.5, page 79.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd tj

2ey+1 (- /
zy+1 ( w+2y)y _0
y y

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

dsolve ((2*x*y (x)+1) /y (x)+(y(x)-x) /y(x) "2*diff (y(x),x)=0,y(x), singsol=all)

N J

T
" LambertW (—e*’c¢;z)

y(z) =

v/ Solution by Mathematica
Time used: 5.208 (sec). Leaf size: 29

LDSolve [(2*x*y [x]+1) /y [x]+(y [x]-x) /y [x] ~2*y' [x]==0,y[x],x, IncludeSingularSolutjions -> True]

W (@ (—e"=)

y(z) = —
y(z) =0
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3.3 problem Exact Differential equations. Exercise 9.6, page
79

Internal problem ID [4457]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.6, page 79.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2zy + (2 +y*)y' =0

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 209

Ldsolve (2xx*xy (x)+(x"2+y(x) "2) *diff (y(x) ,x)=0,y(x), singsol=all) J

2

3
(4+4, /4c§z6+1)

2| c12? — .
y(z) = — 1
(44427 +1)" va
(1+iv3) (4+4\/m)é V@ (ivV3 — 1) 22
Vo= We . (4 + 4./4c325 + 1)‘1'
oy B+ (44420 1) VB +dea? — (4+4/AcT 1)

1
1(4+4/45+1)" ya
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v/ Solution by Mathematica
Time used: 15.514 (sec). Leaf size: 401

kDSolve [2xx*y [x]+(x~2+y [x] “2) *y' [x]==0,y[x] ,x,IncludeSingularSolutions -> True}]

{’/ V4xb 4 eber + g3 V22
’y(CIJ) - \;7— -
2 </1 /41:6 +6601 _|_63c1
() 1223 (v/3 + 1) (V45 + ebr + €31) 2/3 + V/2(2 + 2i+/3) 22
y(z
4</ V4z5 4 efer 4 e3a
(2) = (1 — Z\/g) x? (1 —|—'L\/§) {;/\/4306 + eber 4 e3a
y\x -
22/3{’/1 /41-6_'_6601 _|_6301 2\3/5
y(z) =0
1 1 —iv/3) (z8)%°
y(x)ﬁéw« VOET s
1 1+iv3) (z8)*®
y@)ﬁéw(( D ICVRY
6\5/6
y(x) — Vb — (z )4
z
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3.4 problem Exact Differential equations. Exercise 9.7, page
79

Internal problem ID [4458]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.7, page 79.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact]

e’sin(y) +e ¥ — (ze ¥ —e”cos(y))y =0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

-

Ldsolve ((exp(x)*sin(y(x))+exp(-y(x)))-(x*exp(-y(x))-exp(x)*cos(y(x)))*diff (y(x} ,X)=0,y(x), si

e®sin (y(z)) + ze¥@ 4 ¢, =0

v/ Solution by Mathematica
Time used: 0.389 (sec). Leaf size: 24

e hY

DSolve [ (Exp [x]*Sin[y [x]]+Exp [~y [x]]) - (x*Exp [-y [x]]-Exp [x] *Cos [y [x]]) *y' [x]== Ly [x],x,Include

N\ J

Solve [x(—e_y(””)) — €e”sin(y(z)) = a1, y(z)]
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3.5 problem Exact Differential equations. Exercise 9.8, page
79

Internal problem ID [4459]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.8, page 79.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]¢]]

cos (y) — (sin (y) —y*) y' =0

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

dsolve(cos(y(x))-(x*sin(y(x))-y(x)~2)*diff (y(x),x)=0,y(x), singsol=all)

N J

o4 % (y(z)) (g:;(gb.)3 —3a1) _ 0

v Solution by Mathematica
Time used: 0.124 (sec). Leaf size: 23

-

LDSolve [Cos[y[x]]-(x*#Sin[y[x]]-y[x]~2)*y' [x]==0,y[x],x, IncludeSingularSolution}s -> True]

Solve |z = —%y(m)?’ sec(y(x)) + c1sec(y(z)), y(x)
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3.6 problem Exact Differential equations. Exercise 9.9, page
79

Internal problem ID [4460)]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.9, page 79.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact]

—2zy+el+ (y—2’+zed)y =—x

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 28

-

Ldsolve ((x—2*xxxy (x) +exp (y(x)))+(y(x)-x"2+x*exp(y(x)))*diff (y(x) ,x)=0,y(x), sin}sol=all)

2 2
—y(z) 2 + 2! + % + @ +c =0
v/ Solution by Mathematica

Time used: 0.315 (sec). Leaf size: 35

e

LDSolve [ (x-2*x*y [x]+Exp [y [x]]1)+(y [x] -x"2+x*Exp [y [x]] ) *y' [x]==0,y[x] ,x, IncludeS}ingularSolution

2 2
Solve | z2(—y(z)) + % + ze?@ + @ = c1,y(7)
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3.7 problem Exact Differential equations. Exercise 9.10, page
79

Internal problem ID [4461]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.10, page 79.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact]

y = (¥ —2zy)y = —a’ + 1

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

Ldsolve((x"2-x+y(x)"2)—(exp(y(x))-2*x*y(x))*diff(y(x),x)=0,y(x), singsol=all) J

3

2
% +ay(e)” — % —e'®@ +e =0

v Solution by Mathematica
Time used: 0.198 (sec). Leaf size: 32

‘ DSolve [ (x~2-x+y [x]~2) - (Exp [y [x]]-2*x*y [x] ) *y' [x]==0,y[x],x, IncludeSingularSol#tions -> Truel

3 2

Solve —% + % - xy(:c)2 +ev@ = c1,y(x)
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3.8 problem Exact Differential equations. Exercise 9.11, page
79

Internal problem ID [4462]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.11, page 79.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact]

ycos (z) + (2y + sin (z) —sin (y)) v = —2z

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

Ldsolve((2*x+y(x)*cos(x))+(2*y(x)+sin(x)-sin(y(x)))*diff(y(x) ,x)=0,y(x), singsol=all)

sin () y(z) + 2% + y(z)* + cos (y(z)) + ¢; = 0

v Solution by Mathematica
Time used: 0.198 (sec). Leaf size: 22

( N

LDSolve [(2*x+y [x] *Cos [x] )+ (2*y [x]+Sin[x] -Sin[y [x]]) *y' [x]==0,y[x],x, IncludeSingularSolutions

Solve[z® + y(z)? + y(z) sin(z) + cos(y(z)) = a1, y(z)]
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3.9 problem Exact Differential equations. Exercise 9.12, page
79

Internal problem ID [4463]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.12, page 79.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _exact, _dAlembert]

x2yy/
T2y — ——e =0
Ty vey

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

‘dsolve(x*sqrt(x“2+y(x)“2)—(x“2*y(x))/(Y(X)— sqrt(x“2+y(x)“2))*diff(y(x),x)=0,$(x), singsol=a

a+ (2% + y(z)Q)% +y(z)>=0
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v/ Solution by Mathematica
Time used: 60.259 (sec). Leaf size: 2125

kDSolve [x*Sqrt [x~2+y [x] ~2] - (x"2*y [x]) / (y [x] - Sqrt[x~2+y[x]~2])*y' [x]==0,y[x],x,IncludeSingula

y(z) —

3(526—4e°1) + 3 i/—llxlz + 14eS

2 ebel 2
x — 6% +
?’\/_11$12 4+ 14ebe1 g6 4+ 2\/(_306 + ebe1) (6 + ber) 3 — 2el21

x4

31112
22| — e:;ll — 622+ 3(5x6—4eb°1) n 3 11212 4 14

‘”{/_119312 4+ 14ebc126 4 2\/(_1:6 + eber) (26 4 eber) 3 — 2el2r

3(51.6_48601) + 3 :{/—11.%12 + 1466011

2 ebc1 9
x — 6% +
3\/_11xl2 + 14ebe1g6 4+ 2\/(_1;6 + ebe1) (6 + eber) 3 — 2el21

x4

_>
y(@)
c 26— 466¢ 3?{/—113012 + 14¢ber.
72 6241 — 622 + 3(5x8—4eb°1) n
3\/—11x12 4+ 14eBc126 4 2\/(_1;6 + eber) (6 + eber) 3 — 2¢l2a
_>
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3.10 problem Exact Differential equations. Exercise 9.13,
page 79

Internal problem ID [4464]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963

Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9

Problem number: Exact Differential equations. Exercise 9.13, page 79.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

y* — (y* +1—3zy®) ¥ = —42° + sin(z)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 658

Ldsolve ((4*x~3-sin(x)+y(x) ~3) - (y(x) "2+1-3*x*y (x) “2) *diff (y(x) ,x)=0,y(x), singsol=all)

y(z)
<2é ((_3:1;4 308 (x) N \/ (272—9) cos(x)2+54( )(x4+01)COS(x3),:21z9 —9x8+54c; 25— 1801x4+27clz 901 . 301) (
((-33:4 — Boos (z) + / CTeeos@)+8a ) (et on) conla) 2" 00" Sdera? L6y 27 —0cf 4 —301) '

( % 1-|-Z\/_ (3$4+3COS (.’L') . \/(27w —9) cos(x)+54 (z— 1) (z4-c1) cos(z)+2729 —928+54c) 25— 18cy 24 +27c3 2 —9

3z—1

4 (— (31-4 + 3 cos (IL') i \/(271—9) Cos(z)2+54(z—%)(z4+cl)cos(m)+27x9—9x8+5401m5—18(319:4+27c%a

3z—1
y(x)
r— 1'2 X C T ¥ —IT C1X" —13C1 X C2$—C2—
<2§(i\/§— 1) < (395 + 308 (x \/(27 9) cos()?+54(z— 1) (z-+c1 ) cos( ;ii 90051 5dc1a5—18c104 4+ 272 0—9c2
(27z— 9)cos(ac)2—+-54(:z:—f)(:1174—1—01)cos.(:;c)—i—27ar:9 928+-54c1 25 —18c1 x44+-27c2x—9
( (3304 + 3cos (z \/ 3T !
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v/ Solution by Mathematica
Time used: 60.207 (sec). Leaf size: 682

kDSolve [(4*x~3-8in[x]+y[x]~3) - (y[x] "2+1-3*x*y[x] ~2) *y' [x]==0,y[x],x,IncludeSingularSolutions

y(x)
\3/5(—27x6 + 182° — 3z* + 5-1/4(9 — 27z)3 + 6561 (1 — 3z)* (x* + cos(z) — c1) 2 — 2722 cos(z) + 27¢;

_>

1
22/3(3z — 1) i/—27x6 + 182% — 3zt + 2—7\/4(9 —27x)3 + 6561(1 — 3z)* (z* 4 cos(z) — ¢1) 2 — 27z2 C
y(z)
9iv/2(v/3 + 1) <—27x6 + 1825 — 3z + 5 1/4(9 — 272)3 + 6561 (1 — 3z)* (z* + cos(z) — ¢1) 2 — 2722 cc

%
18 22/3(3z — 1) </—27x6 + 182% — 3zt + 2l7\/4(9 —27x)3 + 6561(1 — 3z)* (z* + cos(z) -
y(x)
i(v3+1)
_)

1
22/3 i’/—27x6 + 182% — 3zt + 2—7\/4(9 — 27x)3 + 6561(1 — 3z)* (z* + cos(z) — ¢1) 2 — 2722 cos(z) + 2

2
(1+4iv/3) </—54x6 + 362° — 62* + ﬁ\/4(9 —27x)3 + 6561(1 — 3z)* (z* + cos(z) — ¢1) 2 — 54x2 co
2 22/3(3z — 1)
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3.11 problem Exact Differential equations. Exercise 9.15,
page 79

Internal problem ID [4465]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963

Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9

Problem number: Exact Differential equations. Exercise 9.15, page 79.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _Bernoulli]

ex<y3+y3w+1)+3y2(exx_6)ylzo

With initial conditions

v/ Solution by Maple
Time used: 0.14 (sec). Leaf size: 38

N

dsolve([exp(x)* (y (x) ~3+x*y(x) “3+1) +3*y (x) 2% (x*exp (x) -6) *diff (y (x) ,x)=0,y(0) % 1],y(x), sing

ol

(iv3 —1) (—=(e® +5) (ze® — 6)°)
2re® — 12

y(z) =

v Solution by Mathematica
Time used: 1.114 (sec). Leaf size: 28

-

LDSolve [{Exp [x] * (y [x] ~3+x*y [x] "3+1) +3*y [x] “2* (x*xExp [x] -6) *y ' [x]==0,y[0]==1},y [?{] ,X,IncludeSin

V—e® —5

Y2 Y=o
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3.12 problem Exact Differential equations. Exercise 9.16,
page 79

Internal problem ID [4466]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963

Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9

Problem number: Exact Differential equations. Exercise 9.16, page 79.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

sin (z) cos (y) + cos (z) sin (y)y' =0

With initial conditions
v(3) -1

v/ Solution by Maple
Time used: 0.141 (sec). Leaf size: 9

! dsolve([sin(x)*cos(y(x))+cos(x)*sin(y(x))*diff (y(x),x)=0,y(1/4%Pi) = 1/4%Pi] ,i{(x) , Singsol=az

y(z) = g — arcsin (Se‘;(””))

v/ Solution by Mathematica
Time used: 6.111 (sec). Leaf size: 12

-

N\

DSolve [{Sin[x]*Cos [y [x]]+Cos [x]*Sin[y[x]]*y' [x]==0,y[Pi/4]==Pi/4},y[x],x, Incl?.ldeSingularSolu

y(z) — arccos (#)
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3.13 problem Exact Differential equations. Exercise 9.17,
page 79

Internal problem ID [4467]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963

Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9

Problem number: Exact Differential equations. Exercise 9.17, page 79.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

yZewy2 + <2my ™V _ 3y2> y = — 43

With initial conditions

v/ Solution by Maple
Time used: 0.078 (sec). Leaf size: 23

‘dsolve([(y(x)‘2*exp(x*y(x)‘2)+4*x‘3)+(2*x*y(x)*exp(x*y(x)‘2)—3*y(x)‘2)*diff(ykx),x)=0,y(1) =

y(z) = RootOf (—e“”—z2 —2'+ 7+ 2>

v/ Solution by Mathematica
Time used: 0.332 (sec). Leaf size: 23

‘ DSolve [{(y[x] ~2*Exp [x*y [x] ~2] +4*x~3) + (2*x*y [x] *Exp [x*y [x] 2] -3*y [x] ~2) *y' [x] =%0 ,y[11==0},y[x

Solve [1:4 + @’ _y(z)? =2, y(a:)]
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problem Recognizable Exact Differential equations.

ercise 10.18, page 90 . . . . . . .. L
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4.1 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.51, page 90

Internal problem ID [4468]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.51, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

v +y—zy =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

e hY

dsolve ((y(x)~2+y(x))-x*diff (y(x),x)=0,y(x), singsol=all)

N J

v/ Solution by Mathematica
Time used: 0.274 (sec). Leaf size: 32

‘ DSolve [(y[x]~2+y[x])-x*y' [x]==0,y[x],x,IncludeSingularSolutions -> True]

ey

ylz) = 1—-eax
y(z) —» -1
y(z) =0
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4.2 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.52, page 90

Internal problem ID [4469]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.52, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

ysec(z)+sin(z)y’ =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

Ldsolve ((y(x)*sec(x))+sin(x)*diff (y(x),x)=0,y(x), singsol=all) J

y(x) = cot (z) ¢1

v/ Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 15

‘ DSolve [(y[x]*Sec[x])+Sin[x]*y' [x]==0,y[x],x,IncludeSingularSolutions -> True]

y(x) — ¢; cot(z)
y(z) =0
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4.3 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.661, page 90

Internal problem ID [4470]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.661, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [‘y=_G(x,y’) ‘]

/ T

—sin (y) +cos(y)y = —e

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

Ldsolve ((exp(x)-sin(y(x)))+cos(y(x))*diff (y(x),x)=0,y(x), singsol=all) J

y(z) = —arcsin ((z + ¢;1) €%)

v/ Solution by Mathematica
Time used: 11.754 (sec). Leaf size: 16

‘ DSolve [(Exp[x]-Sin[y[x]])+Cos [y [x]]*y' [x]==0,y[x],x,IncludeSingularSolutions +> True]

y(z) — —arcsin (e*(z + ¢1))

%)



4.4 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.701, page 90

Internal problem ID [4471]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.701, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

zy+ (22 +1)y' =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

|dsolve((x+y(x))+(1+x"2)*diff (y(x),x)=0,y(x), singsol=all)

C1

T) = ——
v(@) z2+1

v/ Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 22

-

LDSolve [(x*y[x])+(1+x~2)*y' [x]==0,y[x] ,x,IncludeSingularSolutions -> True]

| —
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4.5 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.741, page 90

Internal problem ID [4472]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.741, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

y3+xy2+y+(w3+yw2+x)y’=0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 99

|dsolve ((y (x) "3+x*y (x) "2+y (x))+(x"3+x 24y (x)+x) *diff (y (x) ,x)=0,y(x), singsol=all)

z2 41
y(x) = [ —1+(z4+2x2)c
(\/ 1'2 + 1 W — 1> X
|

(Vo2 +1 /2t + 1) o
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v/ Solution by Mathematica
Time used: 3.726 (sec). Leaf size: 114

kDSolve [(y [x]~3+x*y [x] "2+y [x] )+ (x~3+x"2*y [x] +x) *y ' [x]==0,y[x] ,x,IncludeSingularSolutions -> T

: ,/w%x(ﬁ-l—l)

y(z) = — = —
BTT—/ax’ — L +ax

( @/x%x(xQ-i-l)

yl@) = ——= . —
BT /ax’ — - +ax

y(z) =0
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4.6 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.781, page 90

Internal problem ID [4473]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.781, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

3y—zy =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

e hY

dsolve ((3xy(x))-(x)*diff (y(x),x)=0,y(x), singsol=all)

N J

y(z) = oz’

v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 16

-

LDSolve [(B*y[x])-(x)*y' [x]==0,y[x],x,IncludeSingularSolutions -> True]

~—

y(z) = ¢’
y(x) =0
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4.7 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.81, page 90

Internal problem ID [4474]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.81, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

y—3zy =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

e hY

dsolve ((y(x))-(3*x)*diff (y(x),x)=0,y(x), singsol=all)

N J

v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 18

e hY

DSolve [(y[x])-(3*x)*y' [x]==0,y[x],x,IncludeSingularSolutions -> True]

- J

y(z) = vz

y(z) =0
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4.8 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.83, page 90

Internal problem ID [4475]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.83, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _rationall

y(2y°z*> +3) + z(y’2z> — 1)y’ =0

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 39

|dsolve ((y (x)*(2+x~2%y (x) ~3+3) )+ (x+ (x"24y (x) "3-1) ) *diff (y (x) ,x)=0,y(x), singsol=all)

_ 11
e 3 T

B RootOf (11 ellan 715 _plla 711 4 4x11)

3

y(z) 5
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v/ Solution by Mathematica
Time used: 10.635 (sec). Leaf size: 1081

e

kDSolve [(y [x]*(2*xx~2%y [x] "3+3) ) +(x* (x~2*y [x] "3-1) ) *y' [x]==0,y[x],x, IncludeSingﬁ.llarSolutions -

44cq

y(x) — Root 10244115222 4 140804112220 4 7744041928 + 212060415216 — 441%™

+ 2928204132 + 161051228, 1]

44cq

y(x) — Root 10244115522 1 140804112220 + 7744041°28 + 212960415216 — 441%™

+ 2928204132 + 161051228, 2|

44cq

y(z) — Root 1024411552 4 140804112220 + 7744041°28 + 21206041521 — #1%™5

+ 2028204132 + 161051224, 3]

44cy

y(z) — Root 1024411527 4 140804112220 + 7744041°28 + 212060415216 — #1%™5

+ 2928204132 + 1610512128, 4]

44cq

y(x) — Root 10244115222 4 140804112220 4 774404128 + 212960415216 — 1% 5"

+ 2928204132 + 1610512'2&, 5|

44cq

y(x) — Root 10244115222 4 140804112220 4 7744041928 + 212060415216 — 441%™

+ 29282041321 + 161051212&, 6]

44cq

y(z) — Root [1024#11%22 + 14080#1122%° + 7744041218 + 21296041216 — #1%e s

+ 2028204132 + 1610512'2&, 7]

44cq

y(z) — Root [1024#1159322 + 14080#1'22%° + 7744041218 + 21296041216 — #1%e s

+ 2928204132 + 1610512'2&, 8]

44cq

y(z) — Root [1024#11%22 + 140804112220 4 77440#1%2'® + 212960#1°%21¢ — #1%e 3

+ 2928204132 + 1610512'2&, 9|

44cq

y(x) — Root 10244115222 4 140804112220 4 7744041928 + 212060415216 — 441%™

+ 2928204131 + 16105128, 10|

44cq

y(x) — Root 1024415222 1 140804112220 + 7744041°28 + 21296041526 — 441%™

+ 2928204132 + 16105128, 11|

44cq

y(z) — Root 1024411527 4 140804112220 + 7744041°28 + 212060415210 — #1%™5
' 62

+ 2928204132 + 16105128, 12|

44cq

y(z) — Root [1024#1159622 + 140804112220 + 7744041%2® + 212960415216 — #1%e 5




4.9 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.1, page 90

Internal problem ID [4476]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.1, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2wy + (x2 +y2) y = —z?

63



v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 321

Ldsolve((2*x*y(x)+x‘2)+(x“2+y(x) ~2)*diff (y(x),x)=0,y(x), singsol=all) J

2
3 / 3 3
<4—4a:3cl? +4 5:1:6c?—2z3cl§+1>

2| c12? — S
y(z) = 1
3 3 3
Nz (4 — 43¢} + 4\/5:060‘1’ —2x3¢} + 1)
3 3 %

(14iv3) (4 — 4z3c? + 4\/5x6cff —2x3¢? + 1)

y(z) = - ije
(V3 1) yera?
3 3 %

(4 —4z3c} + 4\/52560:{ — 2x3¢} + 1)

y(z)

3

3 3 3 3
4iv/3cix? +i (4 —4x3c? + 4\/5x6c:1’j —2x3¢? + 1) V3 +4cy2? — <4 —4x3c? + 4\/53360:1” —2x3¢? +

3 3 3
4 (4 —4x3c} + 4\/5x6cff —2z3¢t + 1) Nz
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v/ Solution by Mathematica
Time used: 23.867 (sec). Leaf size: 597

kDSolve [(2*x*y [x]+x~2) +(x"2+y [x] "2) *y' [x]==0,y[x] ,x,IncludeSingularSolutions -f True]

. f/ —x3 + /56 — 2e3e1g3 + eber 4 e3er V22

y(z) 3 -
V2 {’/ —23 4 /56 — 2e3c173 + eber  e3ar
\3/5(2 +2iv/3) 2% +i2%3 (V3 + 1) (—2® + /5ab — 2e3e173 + eber  ¢31) /3

4f/—$3 + V5xb — 23113 4 eber 4 e3c1
(1—iv/3) z?
22/3 f/—z?’ + /528 — 2e3c123 + eber 4 g3
(1 + z\/g) i"/—ac3 + VBxb — 23113 4 eber 4 e3cr
2V/2
2/—222 + (—2)2/3 (\/Bx/ﬁ - x3)
24/ V5V — 23
2/3
(2\/3\/5 - 2x3> — 2¥/22?
2\3/ V5V 16 — 13
2
V2(2 - 2iv/8) 2 + (-1 - iv3) (2vBVa® - 20°)
4\ V5V — 23

y(z) —

y(z) =

2/3

y(z) —

y(z) —

/3

y(z) —
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4.10 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.2, page 90

Internal problem ID [4477]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.2, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact]

ycos(z) + (y° +sin(z)) y = —2°

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 21

e hY

dsolve ((x~2+y(x)*cos(x))+(y(x) "3+sin(x))*diff (y(x),x)=0,y(x), singsol=all)

N

3

% + sin (z) y(z) +

y(z)
4

+Cl=0
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v/ Solution by Mathematica
Time used: 60.198 (sec). Leaf size: 1119

kDSolve [(x~2+y [x]*Cos [x])+(y [x] ~3+Sin[x]) *y' [x]==0,y[x],x, IncludeSingularSolutjions -> True]

4a3+ (27 sin?(z)++/729 sin? (z)—64(z3—3cl)3> 2/3_12¢,

3\/27 sin?(z) + \/729 sin*(z) — 64 (23 — 3¢;) 3
y(z) = /6

1 3 — 25
-5 |- 8 (z* — 3c1) - 5\/27 sin?(z) + \/729 sin*(z) — 64 (23 — 3c;

3{’/27 sin?(z) + \/729 sin*(z) — 64 (23 — 3¢1) 3

4x3+ (27 sin2(z)++/729 sin? (z)—64(w3—3c1)3> 2/3_12¢;

3&/27 sin?(z) + \/729 sin*(z) — 64 (23 — 3¢;) 3
y(z) = /6

1 3 _ 2 3
R 8 (¢* —3c1) - 5\/ 27 sin?(z) + \/ 729sin*(z) — 64 (x3 — 3c;

3(’/27 sin?(x) + \/729 sin*(z) — 64 (23 — 3¢1) 3

4z3+ (27 sin2(z)-+/729 sin4(a:)—64(a:3—301)3> 2/3_12¢,

3\/27 sin?(z) + \/ 729 sin*(z) — 64 (23 — 3¢;) 3

T) = —
y(z) NG
3 _
_% — 8 (z? —3c1) — ;{’/27 sin?(z) + \/729 sin(z) — 64 (23 — 3c;

3</27 sin?(z) + \/729 sin*(z) — 64 (23 — 3¢1) 3

3 _
1 _ 8 (CI? 301) _ §§/27 sin2(x) 4 \/729 sin4(:1c) — 64 (11,'3 — 3(21)

3{’/27 sin?(z) + \/729 sin*(z) — 64 (23 — 3¢;) 3

423+ (27 sin? (z)++/729 sin? (z)—64(z® —3c1)é}f/ 3_12¢;

3\/27 sin?(z) + \/ 729 sin*(z) — 64 (23 — 3¢;) 3




4.11 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.3, page 90

Internal problem ID [4478]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.3, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

v +ayy = -2 —x

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 49

Ldsolve ((x"2+y (x) ~"2+x) +(x*xy (x) ) *diff (y(x) ,x)=0,y(x), singsol=all) J
(z) = V/—18z% — 24x3 + 36¢;
v = 6z
v —18z* — 24x3 + 36¢;
y(z) = 6z

v Solution by Mathematica
Time used: 0.242 (sec). Leaf size: 60

LDSolve [(x~2+y[x] ~2+x) +(x*y [x]) *y' [x]==0,y[x] ,x,IncludeSingularSolutions -> Trj.\e]

z4 223
\/_?_T"'Cl

x
z4 23
\/—7—T+01
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4.12 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.4, page 90

Internal problem ID [4479]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.4, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact]

—2zy+e'+ (y—’+ze¥)y =—2x

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

-

dsolve ((x-2*x*y (x)+exp (y(x)) ) +(y (x) -x"2+x*exp(y(x)) ) *diff (y(x),x)=0,y(x), sin%sol=a11)

-

2 2
—y(z) 22 + zev@ + % + @ +c=0
v/ Solution by Mathematica

Time used: 0.316 (sec). Leaf size: 35

-

LDSolve [(x-2xx*xy [x]+Exp [y [x]]) +(y [x] -x~2+x*Exp [y [x]]) *y' [x]==0,y[x],x, IncludeSjﬁngularSolution

y(z)?

2
Solve | z*(—y(z)) + % + ze¥@ + 5 T y(z)
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4.13 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.5, page 90

Internal problem ID [4480)]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.5, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact]

e’sin(y) +e ¥ — (ze ¥ —e®cos(y))y =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

e hY

dsolve((exp(x)*sin(y(x))+exp(-y(x)))-(x*exp(-y(x))—exp(x)*cos(y(x)))*diff(y(x?,x)=0,y(x), si

- J

e®sin (y(z)) +ze V@ 4 ¢, =0

v/ Solution by Mathematica
Time used: 0.377 (sec). Leaf size: 24

‘ DSolve [ (Exp [x]*Sin[y[x]]+Exp[-y[x]])-(x*Exp[-y[x]]-Exp[x]*Cos[y[x]])*y' [x]== Ly [x],x,Include

Solve [a:(—e_y(x)) — €e”sin(y(z)) = a,y(z)]
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4.14 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.6, page 90

Internal problem ID [4481]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.6, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_ symmetries], _rational]

2 2

—y —y— (2 -y’ —z)y =2

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 28

‘dsolve((x“2—y(x)“2—y(x))—(x‘2—y(x)‘2—x)*diff(y(x),x)=0,y(x), singsol=all)

2y(z) —In(y(z) +z) + In(y(z) —z) =22 —c; =0

v/ Solution by Mathematica
Time used: 0.242 (sec). Leaf size: 32

‘ DSolve[(x~2-y[x]~2-y[x])-(x"2-y[x] "2-x) *y' [x]==0,y[x],x, IncludeSingularSoluti{ons -> Truel

e y(z) + )

Solve | — 20— y(@)

= (1, y(.’E)
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4.15 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.7, page 90

Internal problem ID [4482]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.7, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_rationall

vt —y o+ (y4x2—x)y’=0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

e hY

dsolve ((x~4*y(x) ~2-y(x))+(x"2*xy(x) “4-x) *diff (y(x),x)=0,y(x), singsol=all)

- J

£ 1y
3 ylx)zx 3

+01=0
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v/ Solution by Mathematica
Time used: 60.131 (sec). Leaf size: 1507

kDSolve [(x~4xy[x] ~2-y [x])+(x"2*y [x] "4-x) *y' [x]==0,y[x],x, IncludeSingularSolutiﬁms -> True]

8V/2x + 2%/3 <x9 — 6c128 + 9¢1223 + /22 (—2562 + (z* — 3c17) 4)> 2/3

3:{’/339 — 6,25 + 9¢1223 + /22 (—2562 + (2% — 3c1z) 4)

) f/a: (x4 — 3c17) 2 + /22 (—2562 + (2 — 3c1z) 4) 2v/2 (23 — 3¢y)
wm 8 {/ﬁx+22/3 <x9—6c1x6+9012x3+\/x2(—256x+
z i/xg — 6¢128 + 9c1 223 + /22 (—256x

1 8v/2x 4 22/3 (zg — 6128 + 9¢1223 + /22 (—2562 + (z* — 3c17) 4)) 2/3
xf/xg — 6125 + 9¢1223 + /22 (—2562 + (2 — 3ciz) 4)

v |- f/x (24 — 3c12) 2 + /22 (—2562 + (z* — 3c12) ) B 2v/2 (23 — 3¢1)
\3/51‘. J 8 ww+22/3 (x9—601z6+9012x3+\ /x2(—256z+

z Vzg — 6¢12% + 9c1 223 + /22 (—256z

1 /5 8v/2z + 22/3 <x9 — 6120 + 9¢1223 + /22 (—2562 + (¢ — 3c17) 4)> 2/3
% —_ p—
4 :c{’/a:g — 6128 + 9c1223 + /2 (—2562 + (2 — 3c1z) 4)

o \/ac (x4 — 3c12) 2 + /22 (—2562 + (z* — 3c12) 4) N 2v/2 (23 — 3cy)
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\3/51" 8 wz+22/3 (939—6clz6+9612933+\/22(—256w+
z ?{/xg — 6¢128 + 9c1 223 + /22 (—256x



4.16 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.8, page 90

Internal problem ID [4483]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.8, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _rationall

y(2z+y®) —z(2z—9®)y' =0

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 330

Ldsolve((y(x)*(2*x+y(x)“3))—(x*(2*x—y(x) ~3))*diff (y(x),x)=0,y(x), singsol=a11)J

ol

(—108:64+12‘ /81zt—12c} x2+8c{>>

(—108z4+12, /81z4—12c3 z2+8c§) :
y(e) = 3
y(x)

2
(—iv3-1) (—108954 +12,/8124 — 123 22 + sci’) 4 4(2’01\/3 —c + (—108304 +12./81z4 — 12¢3 2
1
12 (—108x4 +12,/812% — 128 22 + 8c§) g

y(z)

2
(iv3—1) (—108x4 +12,/812% — 128 22 + 8c§> P 4(—2'01\/3 —e+ (—108x4 +12,/812% — 128 &
1
12 (—108x4 +12,/812% — 128 22 + 8c§) *
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v/ Solution by Mathematica
Time used: 11.386 (sec). Leaf size: 371

kDSolve [(y [x]* (2*x+y [x] ~3) ) - (x* (2*x-y [x] "3) ) *y ' [x]==0,y[x],x, IncludeSingularSojlutions -> True

y(z) —

3
2V 2" +2%/3 \/ 27z + 3+/8128 + 12¢132* + 2¢1% + 201
3\/ 2774 + 31/81a8 + 12¢,3z* + 2¢,3

6x
y(z)

23/2 (1+i\/§) 12
P{/27z4 + 31/8128 + 12¢13z% + 2¢;3
%

+2%3(1 - iv3) {‘/ 27z + 31/8128 + 12¢,32* + 2¢1% — 4y

12z
y(z)

2 w(l—i\/ﬁ)q?
3\/ 27z + 3/8128 + 1232 + 2¢1°
_>

+2%3(1 +14v/3) {’/ 27z* + 31/8128 + 12¢;324 + 2¢,3 — 4y

12z
y(r) =0
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4.17 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.9, page 90

Internal problem ID [4484]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.9, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact]

zy — 2zy*  (x® — 2yz?) Y/
y2x? + 1 y2x? + 1

arctan (zy) + =0

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 22

Ldsolve((arctan(x*y(x))+(x*y(x)-2*x*y(x)“2)/(1+x“2*y(x)“2))+((x“2-2*x“2*y(x))/}1+x“2*y(x)“2))

_ tan (RootOf (z_Z—In (sec (_2)*) +¢1))

y(z)

v/ Solution by Mathematica
Time used: 0.173 (sec). Leaf size: 26

‘ DSolve [(ArcTan [x*y [x]]+(x*y [x] -2*x*y [x] ~2) / (1+x~ 2%y [x] ~2) )+ ((x~2-2*x~2*y [x]) / k1+X”2*y [x]172))

Solve|[log (z°y(z)? + 1) — zarctan(zy(z)) = c1,y(z)]
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4.18 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.10, page 90

Internal problem ID [4485]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.10, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [‘y=_G(x,y’) ‘]

(e'y —e"2)y' = —e"(z + 1)

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 20

[dsolve ((exp(x) *(x+1))+(y(x) *exp(y (x) ) -x*exp(x) ) *diff (y(x),x)=0,y(x), singsol:}ll)

y(z)*
re Y@)te + T +c; =0
v/ Solution by Mathematica

Time used: 0.291 (sec). Leaf size: 26

e

LDSolve [ (Exp [x]*(x+1))+(y [x] *Exp [y [x] ] -x*Exp [x]) *y ' [x]==0,y[x] ,x, IncludeSingulgarSolutions ->

1
Solve —§y(x)2 — 2e” V@ = ¢ y(x)

7



4.19 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.11, page 90

Internal problem ID [4486]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.11, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd tj

zy +1 —z+2y)y
y+1,( 2y)y:O
Y Y

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 20

‘dsolve(((x*y(x)+1)/y(x))+((2*y(x)-x)/y(x)“2)*diff(y(x),x)=0,y(x), singsol=a11}

x
y(CL') = 22
2 LambertW (—%)

v/ Solution by Mathematica
Time used: 3.618 (sec). Leaf size: 37

-

LDSolve [((xxy[x]+1) /y[x])+((2xy [x]-x) /y[x] ~"2)*y' [x]==0,y[x] ,x, IncludeSingularS})lutions -> Tru

xr
oW (—gxeiuz—zcl))

y(z) = —

y(x) =0

78



4.20 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.12, page 90

Internal problem ID [4487]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.12, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘cl

y* — 3zy + (zy — 2°) y = 20

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 59

-

dsolve ((y(x) ~"2-3*x*y (x)-2*x~2) +(x*y (x)-x"2) *diff (y(x) ,x)=0,y(x), singsol=all)

N

2 2.4
cazrt —\/2c5x*+1
y(z) = :
1T
() cr? 4+ /2c3rt + 1
y\x) =
1T

v/ Solution by Mathematica
Time used: 0.657 (sec). Leaf size: 99

LDSolve [(y[x]~2-3*x*xy[x] -2*x"2) +(x*y [x] -x~2) *y' [x]==0,y[x],x, IncludeSingularSojLutions -> True

y(x)—)m—w
y(x)—)x+—\/2x4x+ﬁ
y(x) > ¢ — \/ﬁ;/ﬁ
y(z) — \/E;/ﬁ—l-a:
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4.21 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.13, page 90

Internal problem ID [4488]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.13, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

yly+2z+1)—z(z+2y—1)y' =0
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 389

Ldsolve((y(x)*(y(x)+2*x+1))—(x*(2*y(x)+x—1))*diff(y(x),x)=0,y(x), singsol=all)

ol

( <\/_ \/8001x2 160c1x+8001 —x —{—201}—20) )

y(z) = 4061
3153
+ T +r—1
c122—160c1 T c1—T 3
10(z (V5 [ Sastsitaststazs | 90z —20) c})
y(z)
1
80(x—1) (z (ﬁ,/%+201720) C%) 3 2
2 3c iVv/3—1)53¢
o5 (iv5-r) (o5 g ) ) 3 A5
_ 80 +
c1 <$ (\/5 80(’”—1) 272 4+ 20z — 20) cl>
y(z)
1
80(1—=z) (1: <\/3 %.}201:—20) C%) 3 9
2 3| — +(—iv3-1)53z 1
3(1'\/5_1)5% (w <\/§ /80(””_‘1:)1251_9”_}_20x—20> C%) ’ ’ ( )
+
_ 80 80

Wl

1 (x (\/5 w + 20z — 20) c%)
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v/ Solution by Mathematica
Time used: 41.715 (sec). Leaf size: 463

LDSolve [(y[x]*(y [x]+2%x+1) ) - (x* (2%y [x] +x-1) ) *y' [x]==0,y[x] ,x, IncludeSingularSojlutions -> True

V2z
</—27012w2 + \/1080133103 + (27c12x — 27¢1%222) 2 + 271 2z

y(z) -

{’/—27012332 + 1/108¢;3x3 + (27c12x — 27c¢,222) 2 + 27c 2
+ 3
3\/561
(1+ z\/g) x

22/3 3/—27012562 + 1/108¢13x3 4 (27c 2z — 27¢ 222) 2 + 27c %z

+z—1

y(z) —

(1 — z\/g) {’/—2701%2 + 1/108¢133 4 (27c 2z — 27¢ 222) 2 + 27c, %z

- +z—-1
6\3/501
1—1/3)zx
y(z) — (1= v3)
22/3 3/—27012:62 + 1/108¢3x3 4 (27c 2z — 27¢ 222) 2 + 27c, %z
(1 + 7,\/3) </—27cl2x2 + /108¢ 323 + (27c 2z — 27¢,222) 2 4 27¢, 2 N .
— x —

6\3/561
y(z) — Indeterminate
ylz) >z —1
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4.22 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.14, page 90

Internal problem ID [4489]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.14, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

y2z—y—-1)+2z2y—z—-1)y =0
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 391

Ldsolve((y(x)*(2*x—y(x)-1) )+ (xx (2%y (x)-x-1) ) *diff (y (x) ,x)=0,y(x), singsol=a11)J

1

( <\/— \/8001x2+160c1x+8001 —z 20x—20> C%)S

y(z) = 100,
+ 3z53 1—2
—
40 (ac ( V5 \/ 8001x2+16004i1:1;+8001—w —90% — 20) c%) 3
y(z)

1
VB /80(1+z)2cl —x 3
80(—1—=z)| —20 ——2—017+:t+1 clx
2 3c1 3 (f 1)5335
L V3 80(1+(L‘)261—(L‘ 3
355 (=iv3-1) [ -20| ———5——+a+1 |z

20

_ 80 + 80

\/g 80(1+x)201—w 3
-20|-———F—"—+z+1|dz|

1
VB /80(1+m)2c1 —x 3
80(1+=z) | —20 ——2—074—1'-*-1 cla:
3

_ . +(—i\/§—1)5%x a

i

20

L VB 80(1+z)261—z
3(iv3-1)53 | —20| —— 5 ——+o+1 | s

_ 80 + 80

1
\/5 80(1+z)2cl —z 3

-20 | — S +z+1|cz| o

84



v/ Solution by Mathematica
Time used: 40.285 (sec). Leaf size: 471

LDSolve [(y [x]*(2%x-y [x]-1) )+ (x* (2%y [x]-x-1) ) *y' [x]==0,y[x] ,x, IncludeSingularSojlutions -> True

V2z

y(z) = —
{’/ 27¢,222 + \/(27¢, 222 + 27¢ 2x) 2 — 108¢, 323 + 27c, 2z
{’/27012:62 +/(27c 222 + 27¢,2x) 2 — 108c,323 + 27c 2
_ - —z—-1
3\/501
14+1i/3)x
y(z) — (1+iv9)

22/3 </27012x2 + \/(27c12x2 + 27¢1%2x) 2 — 108¢1323 + 27¢; %z

N (1—1iv3) {3/2701%2 + /(27c 222 4 27c12x) 2 — 108¢,373 + 27¢, 2

—xz—1
6\3/561
1—1/3
y(z) — 1-ivd)e
22/3 </27012x2 + \/(27c12x2 + 27¢1%2x) 2 — 108¢;1323 + 27¢; %z
N (1 + z\/g) </27cl2x2 + /(27c 222 4 27c12x) 2 — 108¢,323 + 27¢, 2 .
— x —

6\3/501
y(x) — Indeterminate
y(x) » —x—1
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4.23 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.15, page 90

Internal problem ID [4490]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.15, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd tj

y? + 12yz” + (2zy + 42°) y = 0

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 51

|dsolve ((y(x) "2+12%x" 2%y (x) )+ (24xxy (x) +4+x"3) *diff (y (x),%)=0,y(x), singsol=all)

—213 4+ /425 + c1z
y(z) = .
u(z) = —223 — /425 + c1x
z

v/ Solution by Mathematica
Time used: 0.431 (sec). Leaf size: 58

‘ DSolve [(y[x] ~2+12*x~2xy [x])+(2*x*y [x] +4*x~3) *y' [x]==0,y[x] ,x, IncludeSingularS#lutions -> Tru

u(z) — 22+ /z (455 + 1)
T

—2x3 + \/x (42° + c1)
y(z) = -
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4.24 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.16, page 90

Internal problem ID [4491]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.16, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘cl

3(z+y)*+zBy+2z)y =0

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 63

Ldsolve ((B*x(y(x)+x) ~2) +(x* (3*y(x)+2*x) ) *diff (y(x) ,x)=0,y(x), singsol=all) J
—dcix? — \/—2c224 + 6
y(z) = 5
C1T
—4c13? + \/—2c214 + 6
y(z) = 6o

v/ Solution by Mathematica
Time used: 1.741 (sec). Leaf size: 135

 DSolve [(3*(y[x]+x)~2)+(x*(3+y [x]+2%x) ) #y' [x]==0,y[x] ,x, IncludeSingularSolutions -> True]

472 + /=224 + 6elar

% J—
y(x) o
(2) = —4z% + /21 + 6etar
y 6z
V2v/—z* + 4z?
y(@) = - 62

y(z) —

V2v/—z — 4x?
6z
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4.25 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.17, page 90

Internal problem ID [4492]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.17, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_rationall

y— (2 +y*+2)y =0

v/ Solution by Maple
Time used: 0.032 (sec). Leaf size: 40

e hY

dsolve ((y(x))-(y(x) 2+x~2+x)*diff (y(x) ,x)=0,y(x), singsol=all)

-

e 2@ iz + y(x)) + 2(iy(z) + x) 1
2ty (z) + 2z

=0

v/ Solution by Mathematica
Time used: 0.102 (sec). Leaf size: 18

e

LDSolve [(y[x])-(y[x]~2+x~2+x)*y' [x]==0,y[x] ,x,IncludeSingularSolutions -> True}]

Solve {y(m) — arctan <$) = cl,y(:v)}
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4.26 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.18, page 90

Internal problem ID [4493]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.18, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_1st_order, ¢ _with_symmetry_[F(x)*G(y),0]

2ty + (2 +y° +a)y =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 313

Ldsolve((2*x*y(x) )+(x~2+y (x)"2+a) *diff (y(x),x)=0,y(x), singsol=all) J

2

(—1201 + 4+/42% 4+ 12a 74 + 122202 + 4a3 + 90%) P _4g?—da

<

—~~
8

~—
Il

2 (—1201 + 4+/47°% + 12a * + 123202 + 4a3 + 90%) :

y(z) =
2
(% + ;i) (—1201 + 4\/4z% + 12a 74 + 127202 + 4a3 + 90%) "+ (2% +a) (iV3-1)
- 1
(—1201 + 4./47°% + 12a z* + 123202 + 4a3 + 90%) ’
2
iv/3-1) (121 +4,/425+ 120 24 + 120202+ 403192 )
Ja) (vs)( v . ) + (2% +a) (1+iV3)
- 1

<—1201 +44/47% + 12a 74 + 127202 + 4a3 + 96%) :
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v/ Solution by Mathematica
Time used: 4.319 (sec). Leaf size: 299

kDSolve [(2%x*y [x])+(x"~2+y[x] ~2+a) *y' [x]==0,y[x],x,IncludeSingularSolutions -> jl‘rue]

\3/5(\/4 (a+ $2)3 +9¢:2 + 3c1) 2/3 _ 9q — 212

y(z) =
22/3 i/\/4 (a+ $2)3 +9¢12 + 3¢
s ) i e
22/3{'/\/4 (a+22)® + 9¢,2 + 3¢y 22
y(z) - (1-iv3) (a+2?) (V3 f/\/4(a+x2)3+9c12+3c1
22/3\3/\/4 (a+22)° +9c12 + 3¢y 2v2
y(z) =0
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4.27 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.19, page 90

Internal problem ID [4494]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.19, page 90.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

2cy + (22 +y* +a)y = —2°—b

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 505

Ldsolve((2*x*y(x)+x‘2+b)+(y(x)‘2+x‘2+a) *diff (y(x),x)=0,y(x), singsol=all) J

y(z)

—4z% — 4a + (—4@3 — 122b — 12¢; + 4+/525 + 6 (2a + b) % + 6¢,23 + 3 (4a2 + 3b2) 22 + 18zbc; + 4a3

2 <—4x3 — 122b — 12¢; + 4+/525 + 6 (2a + b) % + 6¢,23 + 3 (4a2 + 3b2) 22 + 18xbc; + 4a3 + 9c}

(%ﬁ + 71) (—4303 — 122b — 12¢; + 4+/525 + 6 (2a + b) % + 6¢,23 + 3 (4a2 + 3b2) 22 + 18zbc; + 4a3

(—4;.;3 — 127b — 12¢; + 41/57° + 6 (2a + b) 7% + 6¢12° + 3 (4aZ + 3b2) 72 + 18zbe; -

S~

(i\/§—1> (—4:1:3—12a:b—12cl +4\/5m6+6(2a+b)934+661 x3+-3(4a2+3b2)z2+18zbcy +4a3+90%)
+ (% +a) (1 +iv3)
— 4

(—4x3 — 127b — 12¢; + 4/57° + 6 (2a + b) 2* + 6¢12° + 3 (4a2 + 3b%) 22 + 18zbey + 4a’ + 9(;%)

Wl
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v/ Solution by Mathematica
Time used: 6.558 (sec). Leaf size: 396

kDSolve [(2xx*xy [x]+x~2+b) +(y [x] "2+x~2+a) *y' [x]==0,y[x],x, IncludeSingularSolutiofxs -> True]

<\/4 a+22)° + (3bz + 23 — 301)2—3bx—x3+3c1) 2/3 _ 2q — 22

y(z) —
22/3{/\/4 (a+ 22)% + (3bx + 23 — 3¢;) 2 — 3bz — 23 4 3¢,
(1+4v3) (a+2?)
y(z) —
22/3\/\/4 a—l—z2 + (3bz + 23 — 3¢1) 2 — 3bx — 23 + 3¢;
\/_—l—z \/\/4 a—l—w2 + (3bz + 23 — 3¢1) 2 — 3bx — 23 + 3¢;
2v/2
(1 —1iv3) (a+ 2?)
y(z) —

22/3\/\/4 a+ 22)° + (3bx + 23 — 3¢;) 2 — 3bx — 23 + 3¢

—z \/\/4 a—i—a:2 + (3bz + 23 — 3¢1) 2 — 3bx — 23 + 3¢y
2V/2
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5.1 problem Exercise 11.1, page 97
Internal problem ID [4495]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963

Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,

Bernoulli Equations

Problem number: Exercise 11.1, page 97.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

zy +y =2

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

-

Ldsolve (xxdiff (y(x) ,x)+y(x)=x"3,y(x), singsol=all)

-

z* +4c
y(z) = T4z

v/ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 19

LDSolve [x*xy' [x]+y[x]==x"3,y[x] ,x,IncludeSingularSolutions -> True]

£E3

C1
y(z) = Tt
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5.2 problem Exercise 11.2, page 97
Internal problem ID [4496]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.2, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

Y +ya=b
v Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
Ldsolve (diff (y(x) ,x)+a*y(x)=b,y(x), singsol=all) J
e %ca+b
y(z) = —

v/ Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 29

‘ DSolve[y' [x]+a*y[x]==b,y[x],x,IncludeSingularSolutions -> Truel
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5.3 problem Exercise 11.3, page 97
Internal problem ID [4497]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.3, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

zy +y—In(z)y’ =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

Ldsolve(x*diff(y(x),x)+y(x)=y(x)“2*ln(x),y(x), singsol=all) J
1
y@) =1 + c1z + In ()

v Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 20

LDSolve [x*xy' [x]+y[x]==y[x] “2*Log[x],y[x],x,IncludeSingularSolutions -> True] J

(@)
viE log(z) + iz + 1
y(z) =0
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5.4 problem Exercise 11.4, page 97
Internal problem ID [4498]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.4, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

42y =eY

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

dsolve(diff (x(y),y)+2*xy*x(y)=exp(-y~2) ,x(y), singsol=all)

N J

z(y) = (y+c)e?

v/ Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 17

‘ DSolve[x' [y]+2*y*x[y]==Exp[-y~2] ,x[y],y,IncludeSingularSolutions -> Truel

z(y) = eV (y+a)
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5.5 problem Exercise 11.5, page 97
Internal problem ID [4499]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.5, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

r'—(r+e ) tan(d) =0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

‘ dsolve(diff (r(theta) ,theta)=(r(theta)+exp(-theta))*tan(theta),r(theta), sings#1=all)

—tan () —1)e?
ro) = = (‘2 Ve | sec(0)er

v/ Solution by Mathematica
Time used: 0.093 (sec). Leaf size: 24

LDSolve [r' [\[Thetall==(r [\ [Theta]]+Exp[-\[Thetal])*Tan[\ [Thetal],r[\[Thetal], \J[Theta] ,Include

r(0) — —%e‘e(tan(ﬁ) + 1) + ¢ sec()
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5.6 problem Exercise 11.6, page 97
Internal problem ID [4500]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.6, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

, 2xy

_ 2
y 241

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

‘dsolve(diff(y(x),x)—(2*x*y(x))/(x*2+1)=1,y(x), singsol=all)

y(z) = (arctan (z) + ¢1) (z* + 1)

v/ Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 16

‘ DSolve[y' [x]-2*x*y[x]/(x~2+1)==1,y[x],x,IncludeSingularSolutions -> True]

y(z) = (2* + 1) (arctan(z) + ¢1)
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5.7 problem Exercise 11.7, page 97
Internal problem ID [4501]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963

Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,

Bernoulli Equations

Problem number: Exercise 11.7, page 97.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

v +y—ydz=0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

-

Ldsolve(diff (y(x) ,x)+y(x)=x*y (x)~3,y(x), singsol=all)

-/

2

_\/2 +4e2c, +4x
2

- V2 4+ 4e2ec, + 4z

y(z) =
y(z)

v/ Solution by Mathematica
Time used: 2.606 (sec). Leaf size: 50

LDSolve [y' [x]+y[x]==x*y[x]~3,y[x],x,IncludeSingularSolutions -> Truel

1
y(z) = —
\/ T+ e + 2
1
y(z) —
@/x—l-cle%—i-%

y(z) =0
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5.8 problem Exercise 11.8, page 97
Internal problem ID [4502]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.8, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

(—ac3+1)3/’—2(:8-!-1)3/—3/g =0
v Solution by Maple
Time used: 0.016 (sec). Leaf size: 38
[dsolve ((1-x"3)*diff (y(x) ,x)-2*x(1+x) *y(x)=y(x)~(5/2) ,y(x), singsol=all) J

(z—1)201+ 1 n 3 B
B+l yp): d?tdo+d

v/ Solution by Mathematica
Time used: 3.024 (sec). Leaf size: 41

‘ DSolve [(1-x"3)*y' [x]-2*(1+x) *y [x]==y [x]~(5/2),y[x],x,IncludeSingularSolutions| -> True]

2v/2
y(@) =
< c1(z—1) )2/3
r24+x+1
y(z) =0
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5.9 problem Exercise 11.9, page 97
Internal problem ID [4503]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.9, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

tan () ' — r = tan (6)*

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

‘ dsolve(tan(theta)*diff (r (theta) ,theta)-r(theta)=tan(theta) ~2,r(theta), singso#=a11)

() = (ln (sec (6) + tan (0)) + ¢1) sin (6)

v/ Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 14

‘ DSolve[Tan[\[Theta]l*r' [\ [Thetal]l-r[\[Thetal]==Tan[\[Thetal]l ~2,r[\[Thetall,\ [Theta] ,IncludeS

r(0) — sin(6) (coth™'(sin(h)) + c1)
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5.10 problem Exercise 11.11, page 97
Internal problem ID [4504]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.11, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

Yy +2y=3e*
v Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
[dsolve (diff (y(x) ,x)+2*y(x)=3*exp(-2*x) ,y(x), singsol=all) J

y(x) = Bz +c))e ™

v Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 17

LDSolve [y' [x]+2*y[x]==3*Exp[-2*x] ,y[x],x,IncludeSingularSolutions -> True]

y(z) = e ¥ (3z +c1)
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5.11 problem Exercise 11.12, page 97

Internal problem ID [4505]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963

Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,

Bernoulli Equations

Problem number: Exercise 11.12, page 97.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y +2y=

32
4

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve(diff(y(x),x)+2*y(x)=3/4*exp(—2*x),y(x), singsol=all)

(3z +4c;) e

y(z) =

v Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 22

4

N

DSolvel[y' [x]+2*y[x]==3/4*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]

J

1
y(x) — Ze_2$(3x + 4cq)
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5.12 problem Exercise 11.11, page 97
Internal problem ID [4506]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.11, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y' + 2y = sin (z)

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve(diff (y(x),x)+2*y (x)=sin(x) ,y(x), singsol=all)

cos(z)  2sin(z)  _,,

y(e) = —— =+ = +e e

v Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 26

DSolvel[y' [x]+2*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

N\

9 i
y(z) = su;(x) B cos5(x) tee

2z

105



5.13 problem Exercise 11.14, page 97
Internal problem ID [4507]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.14, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

Y +ycos(z) =e*

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

Ldsolve (diff (y(x) ,x)+y(x) *cos(x)=exp(2*x) ,y(x), singsol=all) J

y(m) — (/ e2:t-|—sin(x)dx + Cl) e—sin(x)

v/ Solution by Mathematica
Time used: 0.735 (sec). Leaf size: 32

-

.
LDSolve [y' [x]+y[x]*Cos [x]==Exp[2*x] ,y[x] ,x,IncludeSingularSolutions -> True] J

y(x) > e sin(z) (/ eQK[l]"'Si“(K[lDdK[l] + C1>
1
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5.14 problem Exercise 11.15, page 97
Internal problem ID [4508]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.15, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

in (2
Y +ycos(z) = s1n; 2)
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
Ldsolve (diff (y(x),x)+y(x)*cos(x)=1/2*sin(2*x) ,y(x), singsol=all) J

y(z) = sin (z) — 1 + e *0@)¢,

v Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 18

LDSolve [y' [x]+y[x]*Cos [x]==1/2%8in[2*x] ,y [x] ,x,IncludeSingularSolutions -> True]

y(z) — sin(z) + ce” 0@ — 1
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5.15 problem Exercise 11.16, page 97
Internal problem ID [4509]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.16, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

zy +y=sin(z)z

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve(x*diff(y(x),x)+y(x)=x*sin(x),y(x), singsol=all)

—z cos (x) +sin (z) + ¢
T

y(z) =

v Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 19

DSolve [x*y' [x]+y[x]==x*Sin[x],y[x],x,IncludeSingularSolutions -> True]

N\

sin(z) — z cos(z) + ¢;

y(z) —

T
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5.16 problem Exercise 11.17, page 97
Internal problem ID [4510)]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.17, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

—y + zy = 2*sin ()

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve(x*diff(y(x),x)—y(x)=x‘2*sin(x),y(x), singsol=all)

y(zx) = (—cos(z)+ 1)z

v/ Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 14

e

LDSolve [x*y' [x]-y[x]==x"2*Sin[x],y[x] ,x,IncludeSingularSolutions -> True]

~—

y(z) = z(— cos(z) + ¢1)
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5.17 problem Exercise 11.18, page 97
Internal problem ID [4511]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.18, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class D], _rational, _Bernoulli]

zy +xy? —y=0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

Ldsolve (xxdiff (y(x),x)+x*y(x) "2-y(x)=0,y(x), singsol=all) J
2z
W)= o rae

v/ Solution by Mathematica
Time used: 0.149 (sec). Leaf size: 23

LDSolve [x*y' [x]+x*y[x] “2-y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

(z) = 2z
y 72 + 2¢;

y(z) =0
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5.18 problem Exercise 11.19, page 97
Internal problem ID [4512]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.19, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

zy —y(2n(z)y—1) =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve (x*diff (y(x) ,x)-y(x)*(2*y (x)*1n(x)-1)=0,y(x), singsol=all) J
@) =5
Y © 24cz+2In(2)

v/ Solution by Mathematica
Time used: 0.14 (sec). Leaf size: 22

LDSolve [x*xy' [x]-y[x]*(2*y[x]*Log[x]-1)==0,y[x] ,x,IncludeSingularSolutions -> T#ue]

1
_>
y(=) 2log(z) + c1x + 2
y() =0
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5.19 problem Exercise 11.20, page 97
Internal problem ID [4513]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.20, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class D], _rational, _Bernoulli]

2z -1y -y’ —2(-2+2z)y=0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

e

tdsolve(x‘2*(x—1)*diff(y(x),x)—y(x)‘2—x*(x-2)*y(x)=0,y(x), singsol=all)

~—

v/ Solution by Mathematica
Time used: 0.191 (sec). Leaf size: 25

-

LDSolve [x~2* (x-1) *y' [x] -y [x] "2-x*(x-2) *y [x] ==0,y [x] , x, IncludeSingularSolutionsJ -> Truel

1172

y(z) — aC+ita
y(x) =0

112



5.20 problem Exercise 11.21, page 97
Internal problem ID [4514]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.21, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y—y=¢e"

With initial conditions

[y(0) = 1]

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 10

e hY

dsolve([diff (y(x),x)-y(x)=exp(x),y(0) = 1],y(x), singsol=all)

N J

y(z) =e"(1+x)

v/ Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 12

‘ DSolve [{y' [x]-y[x]==Exp[x],{y[0]==1}},y[x],x,IncludeSingularSolutions -> True}]

y(z) = e*(z +1)
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5.21 problem Exercise 11.22, page 97
Internal problem ID [4515]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.22, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

With initial conditions

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

-

Ldsolve( [diff (y(x),x)+y(x)/x=y(x)~2/x,y(-1) = 1],y(x), singsol=all)

-/

y(z) =1

v Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 6

LDSolve [{y' [x]+y[x]/x==y[x]"2/x,{y[-11==1}},y[x] ,x,IncludeSingularSolutions —>J True]

y(z) =1
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5.22 problem Exercise 11.23, page 97
Internal problem ID [4516]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.23, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

2cos (z)y —sin(z)y+y> =0

With initial conditions

v Solution by Maple
Time used: 0.578 (sec). Leaf size: 33

[dsolve([2*cos(x)*diff(y(x),x)=y(x)*sin(x)—y(x)"3,y(0) =1],y(x), singsol=all)}

\/(2 cos (z)® — 1) (—sin () + cos (z))
2cos () — 1

y(z) =

v/ Solution by Mathematica
Time used: 0.369 (sec). Leaf size: 14

e B
LDSolve [{2*Cos [x] *y' [x]==y [x] *Sin[x]-y[x] "3,{y[0]==1}},y[x],x, IncludeSingularSjalutions -> Tru

1
\/sin(z) + cos(z)

y(z) —
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5.23 problem Exercise 11.24, page 97
Internal problem ID [4517]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.24, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]¢]]

(z —cos(y))y +tan(y) =0

With initial conditions

v/ Solution by Maple
Time used: 1.172 (sec). Leaf size: 29

‘ dsolve([(x-cos(y(x)))*diff (y(x),x)+tan(y(x))=0,y(1) = 1/6xPi],y(x), singsol=a11)

y(z) = RootOf (24 sin(_Z)z—6sin(2_2) + 21 +3v3—12_Z— 12)

v/ Solution by Mathematica
Time used: 0.216 (sec). Leaf size: 45

‘ DSolve [{(x-Cos[y[x]]1)*y' [x]+Tan[y[x]1]1==0,{y[1]1==Pi/6}},y[x],x, IncludeSingular$olutions -> T1

Solve {x = i (12 —3v3 - 27r> csc(y(z)) + <@ + isin(Zy(x))) csc(y(z)), y(x)]
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5.24 problem Exercise 11.26, page 97
Internal problem ID [4518]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.26, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_rational, _Riccati]

2 2
y/__y+y_:x3
X Xz

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve (diff (y(x) ,x)=x"3+2/x*y(x)-1/x*y(x) "2,y(x), singsol=all) J

2
y(x) = itan (—% + cl> ?

v/ Solution by Mathematica
Time used: 0.162 (sec). Leaf size: 75

‘ DSolve[y' [x]==x"3+2/x*y[x]-1/x*y[x]~2,y[x] ,x,IncludeSingularSolutions -> Truej]

)

(z cosh (””2—2> + ¢; sinh (

2

Bl
isinh (Z') + ¢; cosh (%)
2

y(x) — 2 tabnh(2

y(z) —
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5.25 problem Exercise 11.27, page 97
Internal problem ID [4519]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.27, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_Riccatil

y' + sin (z) y* = 2sec (z) tan (z)

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

Ldsolve(diff (y(x),x)=2%tan(x)*sec(x)-y(x) ~2*sin(x) ,,y(x), singsol=all) J

—2c¢; cos (x 2 4 sec (z
o) — (@) + e @)
cicos(z)’ +1

v/ Solution by Mathematica
Time used: 0.88 (sec). Leaf size: 32

-

LDSolve [y' [x]==2*Tan[x]*Sec [x] -y [x] "2*Sin[x],y[x] ,x,IncludeSingularSolutions -j? True]

sec(z) (—2cos?(x) + ¢;)
cos?(z) + ¢

y(z) -

y(x) — sec(x)
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5.26 problem Exercise 11.28, page 97
Internal problem ID [4520]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.28, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _rational, _Riccatil

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

Ldsolve (diff (y(x) ,x)=1/x"2-y(x) /x-y(x)~2,y(x), singsol=all) J

_tanh (—In(z) +c1)

y(z) =

v/ Solution by Mathematica
Time used: 1.192 (sec). Leaf size: 62

LDSolve [y' [x]1==1/x"2-y[x]/x-y[x]"2,y[x],x,IncludeSingularSolutions -> True]

J

itan(c; — ilog(z))

y(z) =

y(z) = —

—x2 + e2iInterval[{O,7r}]

3 + re2ilnterval[{0,7}]
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5.27 problem Exercise 11.29, page 97
Internal problem ID [4521]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations

Problem number: Exercise 11.29, page 97.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _Riccatil

2
y-24¥ =1
T T
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11
Ldsolve (diff (y(x) ,x)=1+y(x) /x-y(x)"2/x"2,y(x), singsol=all) J

y(xz) =tanh (In(z) + 1) =

v/ Solution by Mathematica
Time used: 0.539 (sec). Leaf size: 43

s

LDSolve [y' [x]==1+y[x]/x-y[x]~2/x~2,y[x],x,IncludeSingularSolutions -> True] J

x(wZ _ 6261)
y@) = e
y(z) = -z
y(r) =z
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6.1 problem Exercise 12.1, page 103
Internal problem ID [4522]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.1, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

2eyy’ + P (z +1) =

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 59

Ldsolve(Q*x*y(x)*diff(y(x),x)+(1+x)*y(x)‘2=exp(x),y(x), singsol=all) J
V2+\/ze* (e2* 4+ 2¢;) e ®
y(z) = — v (2 )
X
V2 /T er (€2 + 2¢;) e ®
y(z) = v (2x 4

v Solution by Mathematica
Time used: 7.324 (sec). Leaf size: 66

‘ DSolve [2*x*y [x]*y' [x]+(1+x)*y[x]~2==Exp[x],y[x],x,IncludeSingularSolutions -> True]

y(z) = — Ver 4+ 2cie ™
V2./z
\Ver + 2cie =

y(z) = NN
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6.2 problem Exercise 12.2, page 103
Internal problem ID [4523]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.2, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [‘y=_G(x,y’) ‘]

cos (y) ¢ + sin (y) = 2

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

e

tdsolve(cos(y(x))*diff(y(x),x)+sin(y(x))=x‘2,y(x), singsol=all)

~—

y(z) = —arcsin (-2 4+ 22 — 24+ e %¢;)

v Solution by Mathematica
Time used: 14.047 (sec). Leaf size: 23

-

LDSolve [Cos[y[x]]*y' [x]+Sin[y[x]]==x"2,y[x],x,IncludeSingularSolutions -> True}]

y(z) — arcsin (z* — 2z — 2c1e™" + 2)
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6.3 problem Exercise 12.3, page 103
Internal problem ID [4524]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.3, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

(z4+1)y —y—(z+1)/1+y=1

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 81

Ldsolve ((x+1)*diff (y(x),x)-(y(x)+1)=(x+1) *sqrt(y(x)+1) ,y(x), singsol=all) J

(—ay(@)+1+cx®+ 2 +1)z) Vy(z) +1— (1 +2) (—cry(z) — 1+ c12? + (2¢; — 1) z)

(2 +2z —y(x)) (—\/W+1+x>

=0

v/ Solution by Mathematica
Time used: 0.244 (sec). Leaf size: 60

LDSolve [(x+1)*y' [x]-(y[x]+1)==(x+1)*Sqrt [y [x]+1],y[x] ,x, IncludeSingularSolutiojls -> True]

x+1
2\/y(z) + 1arctan (\/W)

—y(z) — 1 +log (y(z) — (z+1)*+1) —log(z+1) = c1,y(z)

Solve
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6.4 problem Exercise 12.4, page 103
Internal problem ID [4525]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.4, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _dAlembert]

ey(l +y/) — e:z:

v Solution by Maple
Time used: 0.031 (sec). Leaf size: 19

s

Ldsolve(exp(y(x))*(diff(y(x),x)+1)=exp(x),y(x), singsol=all)

~—

yiz)=z—In(2)+In(14+e *c)

v/ Solution by Mathematica
Time used: 1.32 (sec). Leaf size: 22

-

LDSolve [Exp[y[x]]1*(y' [x]+1)==Exp[x],y[x],x,IncludeSingularSolutions -> True] J

629:
y(x) = —x + log (7 + cl)
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6.5 problem Exercise 12.5, page 103
Internal problem ID [4526]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.5, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

y' sin (y) + sin (z) cos (y) = sin (z)

v Solution by Maple
Time used: 0.031 (sec). Leaf size: 14

s

Ldsolve(diff(y(x),x)*sin(y(x))+sin(x)*cos(y(x))=sin(x),y(x), singsol=all)

~—

y(z) = arccos (e”“*(®¢; + 1)

v Solution by Mathematica
Time used: 0.792 (sec). Leaf size: 81

LDSolve [y' [x]*Sin[y[x]]1+Sin[x]*Cos[y[x]]==Sin[x],y[x],x, IncludeSingularSolutiof;s -> True]

y(z) =0
Solve | 2 cos(z) tan (M garctanh(cos(y()))

2
- anety(e)) se (V7 ) seo (157 ) (1og (sect (%57 )
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6.6 problem Exercise 12.6, page 103
Internal problem ID [4527]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.6, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _dAlembert]

v Solution by Maple
Time used: 0.063 (sec). Leaf size: 27

‘dsolve((x—y(x))“2*diff(y(x),x)=4,y(x), singsol=all)

y(x) +In(y(z) -z —-2) —In(y(z) —z+2) - =0

v/ Solution by Mathematica
Time used: 0.202 (sec). Leaf size: 36

-

LDSolve [(x-y[x])~2*y' [x]==4,y[x],x,IncludeSingularSolutions -> True]

| —

Solve {y(m) _4 Gl log(y(z) — z +2) — ;11 log(—y(z) + 7 + 2)) — e, y(x)}
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6.7 problem Exercise 12.7, page 103
Internal problem ID [4528]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.7, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

—y+zy — 22 +y2=0

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 26

Ldsolve (xxdiff (y(x) ,x)-y(x)=sqrt(x"2+y(x)~2),y(x), singsol=all) J

—ca1z? + /22 +y () + y(z)

xr2

v Solution by Mathematica
Time used: 0.337 (sec). Leaf size: 27

LDSolve [x*y' [x]-y[x]==Sqrt [x~2+y[x]~2],y[x],x,IncludeSingularSolutions -> True}]

y(x) — %e‘cl (—1 + ezclxz)
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6.8 problem Exercise 12.8, page 103
Internal problem ID [4529]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.8, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd tj

Br+2y+1)y +3y=—4z—2

v Solution by Maple
Time used: 0.11 (sec). Leaf size: 32

s

Ldsolve((3*x+2*y(x)+1)*diff(y(x),x)+(4*x+3*y(x)+2)=0,y(x), singsol=all)

~—

—\/(x—1)20%+4+(—3x—1)cl

201

y(z) =

v/ Solution by Mathematica
Time used: 0.123 (sec). Leaf size: 61

LDSolve [(3xx+2xy [x]+1) *y' [x]+(4*x+3*y[x]+2)==0,y[x],x, IncludeSingularSolutionsJ -> Truel

y(z) %%(—\/xz—2x+l+4cl—3m—1>

y(x)—)%(\/x2—2x+1+4cl—3x—1>
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6.9 problem Exercise 12.9, page 103
Internal problem ID [4530]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.9, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

(z2 —y2) y —2zy =0

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 47

Ldsolve((x‘Z—y(x)‘2)*diff(y(x),x)=2*x*y(x),y(x), singsol=all)

1—/—4z22 +1
y(z) = %

1+ +/—4z2c2 +1
y(z) = 2

v Solution by Mathematica
Time used: 0.982 (sec). Leaf size: 66

LDSolve [(x~2-y[x] "2) *y' [x]==2*x*y[x],y[x],x,IncludeSingularSolutions -> Truel J

1
y(x) — 2 (ecl — Vv -4z + 6201)

1
y(z) — B (v —4x? 4 e21 + ecl)
y(z) =0
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6.10 problem Exercise 12.10, page 103
Internal problem ID [4531]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.10, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

y+ (1+e*y*)y =0

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 18

Ldsolve(y(x)+(1+y(x)A2*exp(2*x))*diff(y(x) ,x)=0,y(x), singsol=all) J

e—:t
~ /LambertW (e—2%c,)

y(z)

v/ Solution by Mathematica
Time used: 3.33 (sec). Leaf size: 57

LDSolve [y [x]+(1+y [x] ~2*Exp [2#x] ) *y ' [x]==0,y[x] ,x,IncludeSingularSolutions -> Tj(:ue]

—x

y(z) = — WEe-2E+201)
y(z) =0
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6.11 problem Exercise 12.11, page 103
Internal problem ID [4532]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.11, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _rational, _Bernoulli]

yz*+y +yz° =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve((x"2*y(x)+y(x)‘2)+x"3*diff (y(x),x)=0,y(x), singsol=all) J
Ry
y(z) = 3cizd —1

v/ Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 26

‘ DSolve [(x~2*y [x]+y [x] ~2)+x~3*y' [x]==0,y[x],x,IncludeSingularSolutions -> Truel]

2
-1+ 301.'153

y(x) =0
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6.12 problem Exercise 12.12, page 103
Internal problem ID [4533]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.12, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact]

yZezyQ + <2a:y ™y _ 33/2) y = — 43

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

-

Ldsolve ((y(x) ~2*exp (x*y(x) "2) +4*x~3) +(2*x*y (x) *exp (x*y (x) ~2) -3*y (x) "2) *diff (y(}() ,X)=0,y(x), s

e@’ 4 gt —y(z)®+¢1 =0

v/ Solution by Mathematica
Time used: 0.279 (sec). Leaf size: 24

LDSolve [(y [x] ~2#Exp [x*y [x] ~2] +4*x~3) + (2*x*y [x] #*Exp [x*y [x] “2] -3*y [x] ~2) *y ' [x]= j) ,y[x],x,Includ

Solve [w4 + e®(@? _ y(av)3 =cy, y(x)]
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6.13 problem Exercise 12.13, page 103
Internal problem ID [4534]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.13, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

y'—(m2+2y—1)%=—x

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

Ldsolve (diff (y(x) ,x)=(x"2+2*y(x)-1)~(2/3)-x,y(x), singsol=all) J

=

_ 3(z® +2y(x) — 1)
2

—0120

v/ Solution by Mathematica
Time used: 0.214 (sec). Leaf size: 40

kDSolve [y' [x]==(x"2+2*y[x]-1)~(2/3)-x,y[x],x,IncludeSingularSolutions -> True]J

1
y(@) = o (82° = 3(9 + 81)a” + 24er’s + 27 — 8cr°)
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6.14 problem Exercise 12.14, page 103
Internal problem ID [4535]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.14, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

oy +y—2*(1+€)y* =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(x*diff(y(x),x)+y(x)=x‘2*(1+exp(x))*y(x)‘2,y(x), singsol=all) J

v Solution by Mathematica
Time used: 0.249 (sec). Leaf size: 55

LDSolve [x*xy' [x]+y[x]==x"2%(1+exp[x])*y[x] "2,y [x] ,x,IncludeSingularSolutions ->J True]

1
y(z) = —z [ (exp(K[1]) + 1)dK[1] + 1%
y(z) =0 .
y(z) —

x [T(exp(K[1]) + 1)dK][1]
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6.15 problem Exercise 12.15, page 103
Internal problem ID [4536]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.15, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

2y —zyln(z) —2zln(z)y =0

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

s

Ldsolve((2*y(x)—x*y(x)*1n(x))—2*x*ln(x)*diff(y(x),x)=0,y(x), singsol=all)

~—

y(z) = cre”2 In (x)

v/ Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 22

‘ DSolve [ (2*y [x]-x*y [x] *Log[x] ) -2*x*Log [x] *y' [x]==0,y[x],x, IncludeSingularSolut#ons -> True]

—z/2

y(x) = cre log(x)

y(z) =0
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6.16 problem Exercise 12.16, page 103
Internal problem ID [4537]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.16, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y'-l—ya:kebm

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

Ldsolve (diff (y(x),x)+axy(x)=k*exp(b*x),y(x), singsol=all) J

(ke 4 ¢i(a + b)) 7o
a+b

y(z) =

v/ Solution by Mathematica
Time used: 0.072 (sec). Leaf size: 33

kDSolve [y' [x]+a*y[x]==k*Exp [b*x] ,y[x],x,IncludeSingularSolutions -> True] J

e (kex(a-i-b) + cl(a—l- b))
a+b

y(z) —
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6.17 problem Exercise 12.17, page 103
Internal problem ID [4538]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.17, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _Riccati]

y —(z+y)* =0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

'dsolve(diff (y(x),x)=(x+y(x))"2,y(x), singsol=all)

y(x) = —z —tan (—x + ¢1)

v/ Solution by Mathematica
Time used: 0.472 (sec). Leaf size: 14

-

LDSolve [y' [x]==(x+y[x])~2,y[x] ,x,IncludeSingularSolutions -> True]

| —

y(x) = —x + tan(z + ¢1)
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6.18 problem Exercise 12.18, page 103
Internal problem ID [4539]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.18, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 43

-

Ldsolve (diff (y(x) ,x)+8*x"3*y(x) ~3+2*x*y(x)=0,y(x), singsol=all)

-/

1

e2e’c; — 422 — 2

M@=—¢ !

e2’c) — 4x2 — 2

M@=¢

v/ Solution by Mathematica
Time used: 7.034 (sec). Leaf size: 58

‘ DSolve[y' [x]+8*x~3*y[x] "3+2*x*y[x]==0,y[x] ,x,IncludeSingularSolutions -> Trueﬂ

1
y(z) = — ;
vV —4a? + cie22” — 2
1
y(z) — ;
v —42? 4 ce? — 2
y(z) =0
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6.19 problem Exercise 12.19, page 103
Internal problem ID [4540]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.19, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [NONE]

(my xz—y2+x>y'—y+x2\/:ﬂ2— 2=0

v Solution by Maple
Time used: 0.031 (sec). Leaf size: 34

Ldsolve ((xxy (x) *sqrt (x~2-y(x) ~"2) +x) *diff (y(x) ,x) =y (x) -x"2*sqrt (x"2-y(x) ~2), y(x}) , singsol=all)

y(z)’
2

+ arctan

v/ Solution by Mathematica
Time used: 1.772 (sec). Leaf size: 44

-

.
DSolve [ (x*y [x]*Sqrt [x~2-y [x] "2]+x) *y' [x]==y [x] -x~2*Sqrt [x~2-y [x] ~2],y[x],x, In#ludeSingularSo

N\

Solve [— arctan <M> + x_2 + y(@) = c, y(x)]
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6.20 problem Exercise 12.20, page 103
Internal problem ID [4541]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.20, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y' + ya = bsin (kx)

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 45

Ldsolve (diff (y(x) ,x)+a*y(x)=b*sin(k+*x),y(x), singsol=all) J

e~%c;(a? + k?) + b(sin (kz) a — k cos (kx))
a® + k2

y(z) =

v/ Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 40

e hY

DSolvel[y' [x]+a*y[x]==b*Sin[k*x],y[x],x,IncludeSingularSolutions -> True]

N J

b(asin(kx) — k cos(kx))
a? + k?

Cle—ax

y(z) —

142



6.21 problem Exercise 12.21, page 103
Internal problem ID [4542]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.21, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

oy —y’ = -1
v Solution by Maple
Time used: 0.0 (sec). Leaf size: 11
Ldsolve (xxdiff (y(x),x)-y(x)~2+1=0,y(x), singsol=all) J

y(z) = — tanh (In () + ¢1)

v Solution by Mathematica
Time used: 0.486 (sec). Leaf size: 43

LDSolve [x*y' [x]-y[x]~"2+1==0,y[x],x,IncludeSingularSolutions -> True]

1— 6261.'132
-
y(2) 1+ e2e1g?

y(z) - —1
y(z) > 1
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6.22 problem Exercise 12.22, page 103
Internal problem ID [4543]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.22, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]¢]]

(y* + asin(z)) y' = cos (z)

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 43

Ldsolve((y(x)‘2+a*sin(x))*diff(y(x),x)=cos(x),y(x), singsol=all)

(—sin (z) a® — y(z)* a® — 2ay(z) — 2) %@ + ¢;a?

a3

v Solution by Mathematica
Time used: 0.194 (sec). Leaf size: 45

LDSolve [(y[x]~2+a*Sin[x])*y' [x]==Cos[x],y[x],x,IncludeSingularSolutions -> Truel

e~ @) (a?y(x)? + 2ay(x) + 2)
23

Solve [sin(m) (—emw@)) — = ci, y(m)]
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6.23 problem Exercise 12.23, page 103
Internal problem ID [4544]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.23, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

KA
xy —xer —y==x

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 20

Ldsolve (x*diff (y(x),x)=x*exp(y(x)/x)+x+y(x),y(x), singsol=all) J

y(z) = (m Gﬁ) +c1> z

v/ Solution by Mathematica
Time used: 4.512 (sec). Leaf size: 38

LDSolve [x*y' [x]==x*Exp [y [x] /x]+x+y[x],y[x],x,IncludeSingularSolutions -> True]J

y(z) - zlog (% (—1 + tanh (%(— log(z) — cl)))>

y(z) = inx
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6.24 problem Exercise 12.24, page 103
Internal problem ID [4545]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.24, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

— sin(z)

Y +ycos(z) =e

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

‘dsolve(diff(y(x),x)+y(x)*cos(x)=exp(-sin(x)),y(x), singsol=all)

y(@) = (& +cr) e

v/ Solution by Mathematica
Time used: 0.123 (sec). Leaf size: 16

‘ DSolve[y' [x]+y[x]*Cos [x]==Exp[-Sin[x]],y[x],x,IncludeSingularSolutions -> Tru#]

y(x) = (z + c1)e 2@
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6.25 problem Exercise 12.25, page 103
Internal problem ID [4546]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.25, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘]]

zy —y(n(zy) —1) =0

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

s

Ldsolve (x*diff (y(x),x)-y(x)*(In(x*y(x))-1)=0,y(x), singsol=all)

~—

v/ Solution by Mathematica
Time used: 0.186 (sec). Leaf size: 24

‘ DSolve [x*y' [x]-y[x]*(Log[x*y[x]]1-1)==0,y[x],x,IncludeSingularSolutions -> Tru#]

ely
e

y(z) —

y(z) — %
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6.26 problem Exercise 12.26, page 103
Internal problem ID [4547]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.26, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class D], _rational, _Bernoulli]

vz —y? —yz? =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve (x"3*diff (y(x) ,x)-y(x) "2-x"2*y(x)=0,y(x), singsol=all) J
2
z
y(z) = car+1

N

v/ Solution by Mathematica
Time used: 0.129 (sec). Leaf size: 22

DSolve [x~3*y' [x]-y[x]~2-x"2%y[x]==0,y[x],x,IncludeSingularSolutions -> True]

J

.’L'2

y(w) - 1+ 1
y(z) =0
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6.27 problem Exercise 12.27, page 103
Internal problem ID [4548]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.27, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

n

zy +ya=—bzx

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

-

Ldsolve (xxdiff (y(x) ,x)+a*y(x)+b*x"n=0,y(x), singsol=all)

-/

T —a
T)=— z %
y(z) atn + 1
v/ Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 25
LDSolve [x*y' [x]+a*y[x] +b*x"n==0,y[x] ,x,IncludeSingularSolutions -> Truel J
y(zx) - — + iz
a
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6.28 problem Exercise 12.28, page 103
Internal problem ID [4549]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.28, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

zy' — zsin (Q) —y=0
x

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 44

[dsolve(x*diff(y(x),x)—x*sin(y(x)/x)—y(x)=0,y(x), singsol=all)

~—

2 - 1
y(x)=arctan( ve a4 )

22+ 1" 222 +1

v Solution by Mathematica
Time used: 0.321 (sec). Leaf size: 52

LDSolve [xxy' [x]-x*Sin[y[x]/x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]J

y(x) — —x arccos(— tanh(log(z) + ¢1))
y(z) — xarccos( tanh(log(z) + ¢1))
y(z) —

y(zx) - —7x
y(x) —» mz
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6.29 problem Exercise 12.29, page 103
Internal problem ID [4550]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.29, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘cl

-

y? — 3zy + (zy — 2°) y = 22°

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 59

Ldsolve((x*y(x)-x‘2)*diff(y(x),x)+y(x)‘2—3*x*y(x)—2*x‘2=0,y(x), singsol=all) J

2 2,4
cazrt —/2c5x*+1
y(z) = :
1T
() cr? +/2c3rt + 1
y\x) =
1T

v Solution by Mathematica
Time used: 0.625 (sec). Leaf size: 99

LDSolve [(x*y [x]-x"2) *y' [x]+y [x] "2-3*x*y [x] -2*x~2==0,y[x] ,x, IncludeSingularSoluJL.ions -> True]

V2zt 4 e2a

y(zx) - x — .
y(x) >z + —W
y(z) =z — v2vat

T
V2v/x4
+zx

y(z) = —
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6.30 problem Exercise 12.30, page 103
Internal problem ID [4551]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.30, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

(6zy +2° +3) y' +3y° + 2zy = —2z

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 75

Ldsolve((6*x*y(x)+x‘2+3)*diff(y(x),x)+3*y(x)‘2+2*x*y(x)+2*x=0,y(x), singsol=a}})

—22 — 34+ 2% — 1223 — 12¢12 + 622+ 9

y(z) = -
—22 -3 — /28— 1223 — 12c1z + 622 + 9
y(z) = 6z

v Solution by Mathematica
Time used: 0.477 (sec). Leaf size: 83

LDSolve [(6*xxy [x]+x72+3) *y ' [x]+3*y [x] ~2+2*x*y [x] +2*x==0,y [x] ,x, IncludeSingular%Solutions -> Tr

. 2?2+ /2t — 1223 + 622 + 36,2 + 9+ 3

y(z) o
z2 — /2t — 1223 + 622 + 36c1z + 9+ 3
y(z) = — o
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6.31 problem Exercise 12.31, page 103
Internal problem ID [4552]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.31, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _Riccatil

2y +y’ + oy =—2°

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve (x72+diff (y(x) ,x)+y(x) "2+x*y(x)+x~2=0,y(x), singsol=all) J

z(ln(z) + ¢ — 1)
In(z) + ¢

y(z) = —

v/ Solution by Mathematica
Time used: 0.139 (sec). Leaf size: 31

-

N
LDSolve [x~2xy' [x]+y [x] “2+x*y [x] +x~2==0,y[x] ,x,IncludeSingularSolutions -> True)j]

z(log(z) —1—¢1)
—log(z) + 1
y(z) = —x
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6.32 problem Exercise 12.32, page 103
Internal problem ID [4553]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.32, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

(= 1) y' + 23y = cos (z)

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

Ldsolve((x"Z—l)*diff (y(x) ,x)+2*x*y (x)-cos (x)=0,y(x), singsol=all) J

_sin(z) + ¢
y(x) - xz -1

v Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 18

LDSolve [(x~2-1) *y' [x]+2*x*y [x] -Cos [x]==0,y[x] ,x,IncludeSingularSolutions -> Trﬁ.\e]

sin(x) + ¢
2 —1

y(z) =
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6.33 problem Exercise 12.33, page 103
Internal problem ID [4554]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.33, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

(yz> - 1)y +2y® =1

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 51

Ldsolve((x‘2*y(x)—1)*diff (y(x) ,x)+x*y (x)"2-1=0,y(x), singsol=all) J
14++/—2c12%2 + 223+ 1
y(z) = 2
1—+v/—2ci22+ 223 +1
y(z) = p

v Solution by Mathematica
Time used: 0.505 (sec). Leaf size: 57

LDSolve [(x"2*y[x]-1)*y' [x]+x*y[x] ~2-1==0,y[x],x,IncludeSingularSolutions -> Trj.le]

1—+223+ciz2 +1
y(z) — p

14+223 +cix2+1
y(z) — =
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6.34 problem Exercise 12.34, page 103
Internal problem ID [4555]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.34, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

(22— 1)y +zy —3zy* =0

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 20

Ldsolve((x‘2—1)*diff(y(x),x)+x*y(x)—3*x*y(x)‘2=0,y(x), singsol=all)

1
xTr) =
y(=) 3+vVr—1vV14+z

v Solution by Mathematica
Time used: 2.214 (sec). Leaf size: 35

‘ DSolve [(x72-1) *y' [x]+x*y [x]-3*x*y[x] "2==0,y[x],x,IncludeSingularSolutions -> True]

1

)
y(x) =0
y(z) — %
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6.35 problem Exercise 12.35, page 103
Internal problem ID [4556]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.35, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

(2" — 1)y —2zyln(y) =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

Ldsolve ((x72-1)*diff (y(x) ,x)-2*x*xy(x)*1n(y(x))=0,y(x), singsol=all)

y(w) — % (z—1)(14=x)

v/ Solution by Mathematica
Time used: 0.223 (sec). Leaf size: 22

‘ DSolve [(x72-1) *y' [x]-2*x*y [x] *Log[y [x]]1==0,y[x] ,x,IncludeSingularSolutions -> ‘ True]
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6.36 problem Exercise 12.36, page 103
Internal problem ID [4557]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.36, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

(1+2*+y?) Y +2zy=—2*-3

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 370

Ldsolve ((x~2+y (x) ~2+1) *diff (y (x) ,x) +2*x*y (x) +x~2+3=0,y(x), singsol=all) J

y(z)
2
(—49® — 1261 — 863 + 4,/52 + 60127 + 3027 + 0] + derz + 9307 +4) " — 422 — 4

=

2 (—4303 — 12¢; — 367 + 4/52° + 6¢,23 + 302 + 9¢? + 5dcyw + 9322 + 4) s

2
(32 +1) (—42° = 12¢1 — 360+ 4/52% + Gera® + 3007 + 9 + 5deyz + 9357 +4) " + (iv/3 = 1) (

[

<—4x3 — 12¢; — 367 + 4/52° + 6¢,23 + 30z + 9¢? + 5dcyx + 9322 + 4> s

y(z)
1
(iv3—1) (—4x3 —12¢; — 36z + 4+/525 + 6¢12° + 30z* + 9¢? + Bdeyx + 9322 + 4) ’
B 4
N (1+4v3) (2 + 1)

[

3

<—4x3 — 12¢; — 362 + 41/520 + 6¢12° + 3024 + 92 + bde, + 932 + 4)
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v/ Solution by Mathematica
Time used: 5.385 (sec). Leaf size: 411

tDSolve [(x~2+y[x]"2+1)*y' [x]+2*x*y [x]+x~2+3==0,y[x],x, IncludeSingularSolutionsJ -> Truel

i/—27x3 + \/4 (922 + 9)® + 729 (23 + 9z — 3¢;) 2 — 243z + 8lcy

y(z) — 373
3v2(z? 4 1)

i/—27x3 + \/4 (922 + 9)° + 729 (23 4 92 — 3¢;) 2 — 243z + 8l¢y
3(1+iv3) (2?4 1)

y(z) -

22/3 i/—27x3 + \/4 (922 + 9)% + 729 (23 4 9z — 3¢;) 2 — 243z + 81cy

(-1+iv/3) {’/—27963 + \/4 (922 + 9)* + 729 (23 + 92 — 3¢;) 2 — 243z + 81
6v/2
3(1—4v3) (2 + 1)

_|_

y(z) =

22/3 i’/—27x3 + \/4 (922 + 9)% + 729 (23 4 9z — 3¢;) 2 — 243z + 81cy

(1+4iv/3) i/—27x3 + \/4 (922 4+ 9)® + 729 (23 + 9z — 3¢;) 2 — 243z + 81cy
62

159



6.37 problem Exercise 12.37, page 103
Internal problem ID [4558]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.37, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

cos (z)y' +y = —(1 +sin (z)) cos (z)

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

Ldsolve (diff (y(x) ,x)*cos(x)+y(x)+(1+sin(x))*cos(x)=0,y(x), singsol=all) J

—21n (sec (z) + tan (z)) + 21n (cos (z)) + sin (z) + &1
sec (z) + tan (z)

y(z) =

v/ Solution by Mathematica
Time used: 0.671 (sec). Leaf size: 40

LDSolve [y' [x]*Cos [x]+y [x]+(1+Sin[x])*Cos [x]==0,y[x],x, IncludeSingularSolutionsJ -> Truel

y(z) — e~ 2arctanh(tan(3)) (sin(x) + 4log (cos (g) — sin (g)) + c1>
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6.38 problem Exercise 12.38, page 103
Internal problem ID [4559]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.38, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd tj

(2zy +42%) ¢ + y* + 12yz® = 0

v/ Solution by Maple
Time used: 0.032 (sec). Leaf size: 51

Ldsolve((2*x*y(x)+4*x‘3)*diff (y(x) ,x)+y(x) "2+12*x~2*y(x)=0,y(x), singsol=all) J

—223 4+ /425 + c1z
y(z) = -
y(z) = —223 — \/425 + ¢z
x

v Solution by Mathematica
Time used: 0.441 (sec). Leaf size: 58

LDSolve [(2%x*y [x]+4*x~3) *y ' [x]+y[x] "2+12*x~2*y [x]==0,y[x],x, IncludeSingularSolj.ltions -> Truel

223 + \/z (42° + ¢1)
% J—
T
—22% + \/z (42° + 1)
- T
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6.39 problem Exercise 12.39, page 103
Internal problem ID [4560)]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.39, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, ¢_with_symmetry_[F(x)*G(y),0]‘], [_At

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

Ldsolve((x‘2—y(x))*diff(y(x),x)+x=0,y(x), singsol=all)

LambertW (401 e_2””2_1> 1

.2 1
y(z) =z° + 5 +2

v/ Solution by Mathematica
Time used: 5.105 (sec). Leaf size: 40

LDSolve [(x~2-y[x])*y' [x]+x==0,y[x],x,IncludeSingularSolutions -> True] J

y(x) = 22 + %(1 + W(—e"Qle"’cl))

1
y(z) = 2° + 2
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6.40 problem Exercise 12.40, page 103
Internal problem ID [4561]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.40, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘cl

(2 —y)y —4day =0

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 57

dsolve ((x72-y(x))*diff (y(x),x)-4*x*y(x)=0,y(x), singsol=all)

& J
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v/ Solution by Mathematica
Time used: 2.441 (sec). Leaf size: 246

kDSolve [(x~2-y[x])*y' [x]-4*x*y[x]==0,y[x] ,x,IncludeSingularSolutions -> Truel J

2—2
y(@) — | 1+ T ———
\/xz cosh(%)+x2 sinh(%)—i
2—2
y(zr) = 2*| 1+ o ziﬂ
(_ +7/) B \/zz cosh<2ﬂ>+z2 sinh<ﬁ>—i
9 9
y(z) = =* 1+( 119 2_22\/5
— Z —
\/z2 cosh<2%>—i-z2 sinh(%)—i—i
y(x) = 2*| 1+ ﬁ2_22 1)
\/m2 cosh(2%>—f-ac2 sinh(%)—}-i
y(z) =0
y(z) = —2°
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6.41 problem Exercise 12.41, page 103
Internal problem ID [4562]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.41, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _Bernoulli]

oy +y' = -2’
v Solution by Maple
Time used: 0.0 (sec). Leaf size: 39
Ldsolve (x*xy(x)*diff (y(x),x)+x"2+y(x)~2=0,y(x), singsol=all) J
vV —2z4 + 4c¢;
y(z) = B
() = vV —=2x4% 4+ 4c;
B 2z

v Solution by Mathematica
Time used: 0.211 (sec). Leaf size: 46

LDSolve [x*xy [x]*y' [x]+x~2+y[x] “2==0,y[x],x,IncludeSingularSolutions -> True] J

\/—2—44-01

y(z) = ———
\/—§+01
y(z) >

165



6.42 problem Exercise 12.42, page 103
Internal problem ID [4563]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.42, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2zyy — y® = —32°

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 29

Ldsolve (2*x*y (x) *diff (y(x) ,x)+3*x"2-y(x) "2=0,y(x), singsol=all) J

y(z) =+ (-3z+c1)z

y(x) = —v/c1x — 322

v/ Solution by Mathematica
Time used: 0.306 (sec). Leaf size: 35

LDSolve [2%x*y [x] *y' [x]+3*x~2-y[x] "2==0,y[x] ,x,IncludeSingularSolutions -> True?

y(z) = —/z(-3x 4+ ¢1)

y(x) = vz (-3z + 1)
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6.43 problem Exercise 12.43, page 103
Internal problem ID [4564]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.43, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

(2¢°z — )y +2yz® — y* =0

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 317

Ldsolve ((2xx*xy (x) ~3-x"4) *diff (y(x) ,x) +2*x"3*y(x) -y (x) ~4=0,y(x), singsol=all) J

2
3
12% <x12:1’,cl-|-< ( 9611’ +\/_ 27c1m4 42:) C%) )

T e (oo oy ),
§<( —iv/3-1) ( ( 9c12% + /3 1/ T 4“") ) + (3% - 3%) c12§x> 23
"o 12<x( —9¢;22 + /3 ”ﬁ—z)zc%fcl
é<(1 —iv/3) ( ( 9c122 + /3 /AL ‘4””> d{)g + (3% +31) cl2sx> 25
y(@) = —

1
3
12 (m ( —9¢122 +/3 M) c%) ¢
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v/ Solution by Mathematica
Time used: 60.224 (sec). Leaf size: 331

tDSolve [(2*x*y [x] "3-x"4) *y' [x]+2*x "3y [x]-y [x] "4==0,y[x],x, IncludeSingularSoluj;ions -> True]

. V2(—92° + /8128 — 12€3123) /3 + 2v/3e1x

y(@) -
62/3 \/ —9z3 + v/81z6 — 12¢3143
@) - iV2V3 (V3 +1) (—92° + vB1a® — 12e3123) 2/3 — 2(v/3 + 3i) e
yxr
2 22/335/6 {‘/ —9z3 + /818 — 12e3143
(2) = V2vV/3(—1 — iv/3) (—92° + v/812® — 12e34123) 2/3 — 2(v/3 — 3i) ez
ylxr

2 22/335/6 f/ —9z3 + v/81z6 — 12e3c173
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6.44 problem Exercise 12.44, page 103
Internal problem ID [4565]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.44, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _rationall

(zy — 1)’ zy + (y’z*+1)y=0

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 34

‘ dsolve ((x*y(x)-1) "2xx*diff (y(x) ,x)+(x"2*y(x) "2+1) *y(x)=0,y(x), singsol=all) ‘

eRootOf(—esz—2 In(z)e—24+2c1e—2+2_Ze—?+1)

y(z) = .

v/ Solution by Mathematica
Time used: 0.108 (sec). Leaf size: 25

-

.
LDSolve [(x*y[x]-1) ~2*x*y ' [x]+(x"2*y [x] "2+1) *y [x]==0,y[x] ,x, IncludeSingularSoluJL.ions -> True]

Solve |zy(z) — #(w) —2log(y(x)) = c1,y(x)
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6.45 problem Exercise 12.45, page 103
Internal problem ID [4566]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.45, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

(?+y?) Y + 222z +y) =0

v Solution by Maple
Time used: 0.031 (sec). Leaf size: 321

-

Ldsolve((x‘2+y(x)‘2)*diff(y(x),x)+2*x*(2*x+y(x))=O,y(x), singsol=all)

-/

2

3 3 3
(4—16x3c1? +41/20z6c3 —8z3c2 +1>

2| c12? — 1
y(x) 1
3 3 3
NG (4 — 16x3¢? + 4\/203060‘;‘ — 8z3¢} + 1)
3 3 3
(1+iv/3) (4 — 16z3c? + 4\/203060‘;’ — 8x3¢? + 1)
y(z) = - e
/& (3 —1) 2
3 3 3
(4 — 16x3c? + 4\/20:660‘;’ —8z3¢? + 1)
y(z)

2
3 3 3 3
4iv/3 c12* + /3 (4 —16z%c? + 4\/20:1060“;’ — 8z3¢? + 1) +4eyx? — (4 — 1623c? + 41/20z8¢3 — 8x3¢

1
3

3 3
4 (4 — 16x3¢} + 4\/20x6c:f — 8z3¢c} + 1) NG
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v/ Solution by Mathematica
Time used: 18.874 (sec). Leaf size: 593

kDSolve [(x~2+y[x] ~2) *y' [x]+2*x* (2*%x+y [x] )==0,y[x] ,x,IncludeSingularSolutions -f True]

y(z)
. f/ —4z3 + V2018 — 8e3173 + b1 + e B V222
V2 i/ —4z3 + /2026 — 8e3e173 + eber 4 g3
() V2(2 + 2iv/3) 3% + 3223 (/3 + 1) (—43° + /2035 — 83123 + eber + 1) 2/
’ 4<’/ —4x3 + /2026 — 8e3c1x3 + eber 4 e3r
y(z) = -3

22/3 {}/ —473 4 /2025 — 8e3erg3 + eber 4 e3ar

(14 iv3) i/—4m3 + V2025 — 8e3e1z3 + eber + e3ar
272
2

y(x) — v/ V5V — 223 — °

\/ V/BV/z6 — 223
(1-iv3) 2 + (-1 - iv3) (VBVat - 2:1;3)2/3
21/ V5v/z6 — 223
(1+iv8) 2 +i(v3+9) (VBVaF - 200) "
21/ V5Vxb — 223

y(z) —

y(z) —
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6.46 problem Exercise 12.46, page 103
Internal problem ID [4567]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.46, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

3zy’y +y° =22

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 73

Ldsolve(S*x*y(x)‘Q*diff (y(x),x)+y(x)~3-2*%x=0,y(x), singsol=all) J

=

((z* + 1) 2%)

y(z) = -
o(z) = — (z*+ 1) J:2C)C3 (1+4iv/3)
i) = EF x23:3 S

v Solution by Mathematica
Time used: 0.224 (sec). Leaf size: 72

tDSolve [3*xxy [x] “2*y' [x]+y[x] ~3-2*x==0,y[x],x,IncludeSingularSolutions -> Truel]

v +c
y(z) — Tz
v/ —1v/22 4+ ¢
y(z) = —
Jzr

y(x) — (—1)2/3\;\23727%
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6.47 problem Exercise 12.47, page 103
Internal problem ID [4568]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.47, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

Wiy + xy? = 8
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v/ Solution by Maple
Time used: 0.422 (sec). Leaf size: 649

Ldsolve(2*y(x)“3*diff(y(x),x)+x*y(x)“2—x“3=0,y(x), singsol=all)

1 2
3 3
140%—01102 (2+zﬁc:f+2\ /xﬁc:f—i-l) + (2+x%§+21 /x60?+1)
i
3
(2+zﬁc? +24 /zec‘%—{—l)
y(z) = —
2« /C1
3 3
ztc2—c1x? (2+x60?+2\/a?§’+1) + (2+x6c5{+2, /zﬁci‘—i—l)

(2+w60?+2‘/:c6c?+1)%
y(z) = NG

V2

((—i\/ﬁ—l) (2+x60"f+21 /xeci’—i—l) %-I—(i\/g—l)x%l) crz2+ (2-{—3:60‘1‘4-2\ /mﬁc:f—i-l) 3

S

(2+w603+21 /w6c3+1)

1

1
3 3
((—z\/{?—l) (2+x6 +2 :c601+1 +(5v3-1 )x2cl> <c1x2+ 2+w6 342 w6c§’+1) )
1
3

<2+x6c3+21 /x6c3 +1)

y(z) = NG

1 1
3 3
(<2+x60515+21 /x60§+1) (i\/§—1)+<—i\/§—1)w2c1) clz2+(2+wﬁc?+2,/wﬁc§+1) )

3

(2+x6c‘;’+21 /x6c§’+1)

y(z) =~ NG

1 1
((2+wﬁc?+21 /zsc?-l-l) 8 (i\/§—1)+(—i\/§—1)m2cl> crz?+ (2+m6(:?+2‘ /zﬁc§+1) 3 )

e

<2+x6c%+21 /x60%+1)

y(z) = NG
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v/ Solution by Mathematica
Time used: 60.13 (sec). Leaf size: 714

kDSolve [2*y [x] ~3*y' [x]+x*y[x] "2-x"3==0,y[x] ,x,IncludeSingularSolutions -> True}]

3 4
\/ 26 & 9/eZher _ gl2ei b _ 9pl2er _ 42 z
3
\/ x6 + 2V eter — el2e1g6 — 2el201

y(x) - - \/§

3 4
\/ 16 1 91/e2er _ gl2cigb _ Qpl2er _ 42 z
3
\/xﬁ + 2V e — el2e1g6 — 2el2e1

y(z) — 7%

y(z) —
]. ) 3 + y 4
-3 <_1 _ Z\/§> €/x6 + 24/e2e1 — gl2e146 — 9pl201 — 942 4 i(V3+i)w
i/xG + PR /62401 _ 61201x6 _ 261201
y(z)
1 7 (\/3 + Z) zt
=3

<—1 — z\/§> </x6 + 2V e — el2e156 — Qel2er — 22 4
€/$6 + 2, /62401 _ 61201.'1,'6 _ 2el2c1
%

y(z)
1
—EJ i <\/§ + z> €/a:6 + 2V et — el2e1 g6 — 2el2e1 — 292

(-1 —iv3) z*
i/xﬁ + 24 [e24c1 _ gl2c106 _ 9pl2c

~—

y(z

(-1 —4v3) z*
</x6 + 24 fe24c1 _ gl2c1 6 _ 9pl2c

_>

i <\/§ + z) f/a:ﬁ + 2v/e24e1 — el2c16 _ 2el2c1 _ 292

N~
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6.48 problem Exercise 12.48, page 103
Internal problem ID [4569]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.48, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_rationall

2’z +zy+2)y —zy+y> =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

Ldsolve ((2kx*xy (x) “3+x*y (x)+x72) *diff (y(x) ,x) -x*y (x)+y (x) "2=0,y(x), singsol=a11})

RootOf (—e3—Z—In(z)e—Z+c1e—2—_Ze—?+x)

y(z) =e

v/ Solution by Mathematica
Time used: 0.225 (sec). Leaf size: 23

-

.
DSolve [ (2*x*y [x] ~3+x*y [x]+x~2) *y' [x] -x*y [x]+y[x] ~2==0,y[x],x, IncludeSingularS{olutions -> Tru

N\

2 T

Solve [y(x) ")

+log(y(2)) +log(x) = e1,y(2)
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6.49 problem Exercise 12.49, page 103
Internal problem ID [4570]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.49, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

(2°+y)y =22°+

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 113

Ldsolve ((2%y (x) "3+y (x) ) *diff (y(x) ,x)-2*x"3-x=0,y(x), singsol=all) J

V22V 4 8 + 1

y(z) = 5
V=2 — 245"+ 422 + 8¢, + 1
y(z) = 5
V=24 245"+ 422 + 8¢, + 1
y(z) = — 5
V=24 2/4z" + 422 + 8¢, + 1
y(z) = 5
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v/ Solution by Mathematica
Time used: 2.313 (sec). Leaf size: 151

kDSolve [(2xy [x] ~3+y[x])*y' [x]-2*x~3-x==0,y[x] ,x,IncludeSingularSolutions -> Trﬁ.\e]

V-l— Vi + 42? + 1+ 8¢

y(z) = 7
y() = V—1—-VAzT ¥ 422 + 1 + 8¢
V2
)(@) = Vol+ Vit + 42 + 14 8g
V2
y(@) = V—1+VAzF + 422 + 1 + 8¢,
V2
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6.50 problem Exercise 12.50, page 103
Internal problem ID [4571]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods

Problem number: Exercise 12.50, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

!/

y — em—y — _em

v Solution by Maple
Time used: 0.047 (sec). Leaf size: 20

Ldsolve(diff (y(x),x)-exp(x-y(x))+exp(x)=0,y(x), singsol=all) J

y(z) = —e"+In (14" 1) — ¢

v/ Solution by Mathematica
Time used: 2.135 (sec). Leaf size: 23

‘ DSolve[y' [x]-Exp[x-y[x]1]+Exp[x]==0,y[x],x,IncludeSingularSolutions -> True] ‘

y(z) = log (1+e )
y(z) =0
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7.1 problem Exercise 20.1, page 220
Internal problem ID [4572]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.1, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y// + 2y/ — 0
v Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
Ldsolve (diff (y(x),x$2)+2+diff (y(x),x)=0,y(x), singsol=all) J

y(z) = c1 + coe™ >
v/ Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 19

e

kDSolve [y'' [x]+2*y' [x]==0,y[x],x,IncludeSingularSolutions -> Truel

~—

1
y(x) = ey — 5016_2’”
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7.2 problem Exercise 20.2, page 220
Internal problem ID [4573]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.2, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' =3y’ +2y=0

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 15

Ldsolve (diff (y(x),x$2)-3*diff (y(x),x)+2*y(x)=0,y(x), singsol=all) J

y(z) = e*c; + coe”

v/ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18

e

kDSolve [y'' [x]-3*y' [x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

~—

y(x) — €°(coe” + ¢1)
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7.3 problem Exercise 20.3, page 220
Internal problem ID [4574]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.3, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y'—y=0
v Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
Ldsolve (diff (y(x),x$2)-y(x)=0,y(x), singsol=all) J

y(x) = c16” + coe™®

v/ Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 20

‘ DSolvely'' [x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

x

y(x) = c1e” + coe”
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7.4 problem Exercise 20.5, page 220
Internal problem ID [4575]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.5, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

6y” — 11y +4y =0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve (6xdiff (y(x),x$2)-11*diff (y(x) ,x)+4*y(x)=0,y(x), singsol=all) J

y(x) = ce’s + cpe?

v/ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 35

LDSolve [y'' [x]-11*y' [x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(z) = e ? (Vi05-11)a (cze 105 cl)
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7.5 problem Exercise 20.6, page 220
Internal problem ID [4576]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.6, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

yll+2y/_y:0

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 26

Ldsolve (diff (y(x),x$2)+2+diff (y(x) ,x)-y(x)=0,y(x), singsol=all) J

y(z) = cle<\/§_1)z + coe (1+v2)e

v/ Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 34

-

LDSolve [y'' [x]+2*y' [x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

-/

y(z) = e ((1v2)q) (czeQ‘@”” + cl>
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7.6 problem Exercise 20.7, page 220
Internal problem ID [4577]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.7, page 220.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing x]]

ylll +yll _ 10yl _ 6y — 0

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 32

Ldsolve (diff (y(x) ,x$3)+diff (y(x),x$2)-10*diff (y(x) ,x)-6*y(x)=0,y(x), singsol=all)

(-2+v2)e —(24v2)2

y(z) = c1€% + cze + csze

v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 43

-

N
LDSolve [y''' [x]+y' ' [x]-10*y' [x]-6*y[x]==0,y[x],x,IncludeSingularSolutions -> T)fue]

y(x) — cle_((2+\/§>z> + cze(ﬂ_2>w + cze”
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7.7 problem Exercise 20.8, page 220
Internal problem ID [4578]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.8, page 220.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing x]]

yllll _ y//I _ 4yll + 4y/ — 0

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 29

Ldsolve (diff (y(x) ,x$4)-diff (y(x) ,x$3)-4*diff (y(x),x$2)+4*diff (y(x),x)=0,y(x), lfingsol=all)

y(z) = (c26™ + c36™ + €c1 +¢q) €7

v/ Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 36

‘DSolve [y''" ' [x]-y'' ' [x]-4xy"'' [x]+4xy' [x]==0,y[x],x,IncludeSingularSolutions —# Truel

1 1
y(x) — —5016_290 + cpe” + 5036230 + ¢4
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7.8 problem Exercise 20.9, page 220
Internal problem ID [4579]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.9, page 220.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing x]]

"

yllll+4y +y//_4yl_2y:0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

Ldsolve (diff (y(x) ,x$4) +4*diff (y(x) ,x$3)+diff (y(x),x$2)-4*diff (y(x) ,x)-2*y(x) =OJ,y(x) , singsol=

(-2+v2)= —(24v2)2

y(x) = c1€” + coe™® + c3e + cqe

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 49

e N

LDsolve [y'' "' [x]+4xy' ' [x]+y' ' [x]-4*y' [x]-2*y[x]==0,y[x] ,x,IncludeSingularSolu}ions -> True]

y(z) — cle_((2+\/§)m> + cze<\/§_2)z + c3e % 4 ch€”
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7.9 problem Exercise 20.10, page 220
Internal problem ID [4580]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.10, page 220.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing x]]

y//// _ ya2 =0
v Solution by Maple
Time used: 0.0 (sec). Leaf size: 38
Ldsolve(diff (y(x),x$4)-a~2%y(x)=0,y(x), singsol=all) J

y(z) = 16V 4 cpe7V%® + ¢gsin (Vaz) + cscos (Vaz)

v Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 53

DSolvely''''[x]-a"2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

N J

y(x) — coe V¥ 4 eV 4+ ¢ cos (\/Ez) + cgsin (\/Ex)
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7.10 problem Exercise 20.11, page 220
Internal problem ID [4581]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.11, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' —2ky —2y=0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 35

Ldsolve (diff (y(x) ,x$2)-2*k*diff (y(x),x)-2*y(x)=0,y(x), singsol=all) J
y(z) = Cle<k+\/k2+2>w n C2e<k—\/k2+2)w

v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 44

-

N
LDSolve [y'' [x]-2xkx*y' [x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

k—m) T \/m-i-k) T

y(x) — cle< +Cz€(
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7.11 problem Exercise 20.12, page 220
Internal problem ID [4582]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.12, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y" +4ky — 12k*y =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve (diff (y(x) ,x$2) +4*k*diff (y(x),x)-12%k~2*y(x)=0,y(x), singsol=all) J

y(l‘) — (CIGSkm + 02) e—6km

v/ Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 24

‘ DSolvel[y'' [x]+4xkx*y' [x]-12*k~2*y[x]==0,y[x],x,IncludeSingularSolutions -> Trué]

y(m) — e—ka(CzeSkx +cl)
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7.12 problem Exercise 20.13, page 220
Internal problem ID [4583]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.13, page 220.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _quadrature]]

yllll — O

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

Ldsolve (diff (y(x),x$4)=0,y(x), singsol=all) J

1 1
y(z) = 6c1x3 + §czx2 + ez 4 ¢y
v Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22

LDSolve [y''''[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(z) = z(z(car + c3) + o) + ¢
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7.13 problem Exercise 20.14, page 220
Internal problem ID [4584]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.14, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' +4y +4y=0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

Ldsolve (diff (y(x) ,x$2)+4*diff (y(x) ,x)+4*y(x)=0,y(x), singsol=all) J

y(z) = e **(cz + ¢1)

v/ Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 18

e

kDSolve [y'' [x]+4*y' [x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

~—

y(x) — e 2 (coz + ¢1)

193



7.14 problem Exercise 20.15, page 220
Internal problem ID [4585]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.15, page 220.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing x]]

"

3" +5y" +y' —y=0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

Ldsolve(S*diff(y(x),x$3)+5*diff(y(x),x$2)+diff(y(x),x)—y(x)=0,y(x), singsol=a¥})

y(z) = (cle%z + c3x + cz> e

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 28

LDSolve [3xy' ' ' [x]+6xy' ' [x]+y' [x]-y[x]==0,y[x],x,IncludeSingularSolutions -> Trj.\e]

y(z) = e (c1e™/3 + c3z + )
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7.15 problem Exercise 20.16, page 220
Internal problem ID [4586]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.16, page 220.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing x]]

y//I _ 6yll + 12yl _ Sy — 0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve(diff(y(x),x$3)—6*diff(y(x),x$2)+12*diff(y(x),x)—8*y(x)=0,y(x), singso¥fall)

y(z) = ¥ (c32° + cox + 1)

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 23

‘ DSolvely'''[x]-6xy'' [x]+12*y' [x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

y(x) = e*(z(c3z + ¢3) + 1)
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7.16 problem Exercise 20.17, page 220
Internal problem ID [4587]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.17, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' —2ay +ya® =0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

Ldsolve (diff (y(x) ,x$2)-2*a*xdiff (y(x),x)+a"2*xy(x)=0,y(x), singsol=all) J

y(x) = e*(cax + ¢1)

v Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 18

LDSolve [y'' [x]-2xaxy' [x]+a~2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

J

y(z) = e**(cox + 1)
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7.17 problem Exercise 20.18, page 220
Internal problem ID [4588]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.18, page 220.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing x]]

y//// + 3ylll — 0
v Solution by Maple
Time used: 0.0 (sec). Leaf size: 20
Ldsolve (diff (y(x) ,x$4)+3*diff (y(x),x$3)=0,y(x), singsol=all) J

y(x) = ¢ + ot + c32® + cqe” "
v/ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 28

e

kDSolve [y''''[x]+3*y'"'"' [x]==0,y[x],x,IncludeSingularSolutions -> True]

~—

1
y(x) — —2—7016_3“" + z(cax + c3) + o
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7.18 problem Exercise 20.19, page 220
Internal problem ID [4589]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.19, page 220.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing x]]

yllll _ 2y// — 0
v Solution by Maple
Time used: 0.0 (sec). Leaf size: 26
Ldsolve (diff (y(x) ,x$4)-2+diff (y(x),x$2)=0,y(x), singsol=all) J

y(x) =c1+ oz + cge””‘/i + c4e_’“/5

v/ Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 42

-

LDSolve [y''''[x]-2xy'' [x]==0,y[x],x,IncludeSingularSolutions -> True] J

1
y(z) — 56_‘@” <016N§”” + 62> + cs + c3
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7.19 problem Exercise 20.20, page 220
Internal problem ID [4590]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.20, page 220.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing x]]

y///I + 2y/// _ 11y// _ 12yl + 36y — 0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

Ldsolve (diff (y(x) ,x$4)+2+diff (y(x) ,x$3)-11*diff (y(x) ,x$2)-12*diff (y(x) ,x)+36*yfx)=0 ,y(x), sin

y(z) = ((c2 + 1) € + zCs + c3) €7

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 35

‘DSolve [y''" ' [x]+2%y' ' [x]-11xy' ' [x]-12xy' [x]+36%y [x]==0,y [x] ,x,IncludeSingula#Solutions -> 1T

y(z) = €73 (c3™ + z(ca€™ + 2) + 1)
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7.20 problem Exercise 20.21, page 220
Internal problem ID [4591]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.21, page 220.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing x]]

36y//1/ _ 37yll + 4y/ + 5y — 0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

Ldsolve(SG*diff(y(x),x$4)—37*diff(y(x),x$2)+4*diff(y(x),x)+5*y(x)=0,y(x), sing%ol=a11)

11z

y(z) = (c?,eT + cle%z + 02e2?z + C4> e ”

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 44

LDSOlve [36*y' ' "' [x]-37*y"'' [x]+4xy' [x]+5xy[x]==0,y[x] ,x,IncludeSingularSolution%s -> True]

y(z) = e (c1e™/6 + ™% + c36°™/? + cy)
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7.21 problem Exercise 20.22, page 220
Internal problem ID [4592]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.22, page 220.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing x]]

///I 8y” + 36y 0

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 48

Ldsolve (diff (y(x) ,x$4)-8+diff (y(x),x$2)+36*y(x)=0,y(x), singsol=all) J

y(z) = creV5% sin (z) — coe” V3% sin (x) + c3e¥37 cos (z) + cse™V3? cos (x)

v/ Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 142

LDSolve [y''''[x]-8xy'"' [x]+36*y[x]==0,y[x],x,IncludeSingularSolutions -> Truel J

y(z) = o V6o cos( L arctan(47) (( (2VBzcos( S arctan ()

) (e (e ()
+ sin <\/6m sin (% arctan ( ))) ( 2V6z cos(arctan (7)) c4>>
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7.22 problem Exercise 20.23, page 220
Internal problem ID [4593]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.23, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' =2y’ +5y =0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

Ldsolve (diff (y(x) ,x$2)-2+diff (y(x),x)+b*y(x)=0,y(x), singsol=all) J

y(z) = €®(cy sin (2x) + ¢z cos (2z))

v/ Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 24

-

DSolvely'' [x]-2*y' [x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

y(z) = e"(ca cos(2x) + c; sin(2x))
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7.23 problem Exercise 20.24, page 220
Internal problem ID [4594]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.24, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y//_yl+y:0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

Ldsolve(diff (y(x),x$2)-diff (y(x),x)+y(x)=0,y(x), singsol=all) J

y(z) = e2 <01 sin (@) + ¢z cos (@))

v/ Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 42

e

LDSolve [y''[x]-y' [x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

y(z) — e*/? (cl cos (@) + ¢ sin <@>)

~—
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7.24 problem Exercise 20.25, page 220
Internal problem ID [4595]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.25, page 220.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing x]]

yllll + 5y// + 6y — 0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 37

Ldsolve (diff (y(x) ,x$4)+5+diff (y(x) ,x$2)+6*y(x)=0,y(x), singsol=all) J

y(x) = ¢; sin (\/§ x) + ¢y Ccos (\/§ x) + c3sin (z\/é) + ¢4 Ccos (:c\/§>

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 50

LDSolve [y''''[x]+6xy'' [x]+6%y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(x) — c3cos (\/593) + ¢; cos (\/§x> + ¢4 8in (\/§x> + ¢y sin (\/§x>
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7.25 problem Exercise 20.26, page 220
Internal problem ID [4596]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.26, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y" — 4y’ +20y =0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

Ldsolve (diff (y(x) ,x$2)-4*diff (y(x),x)+20*y(x)=0,y(x), singsol=all) J

y(x) = e**(c; sin (4z) + ¢y cos (47))

v/ Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 26

e

kDSolve [y'' [x]-4*y' [x]+20*y[x]==0,y[x] ,x,IncludeSingularSolutions -> Truel

~—

y(z) = € (cy cos(4x) + c; sin(4z))
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7.26 problem Exercise 20.27, page 220
Internal problem ID [4597]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.27, page 220.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing x]]

yllll +4y// +4y — 0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

Ldsolve (diff (y(x) ,x$4)+4*diff (y(x) ,x$2)+4*y(x)=0,y(x), singsol=all) J

y(x) = (zeq + ¢2) cos <x\/§> + sin (mﬁ) (c3z + 1)

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 38

LDSolve [y''' ' [x]+4xy' ' [x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(z) = (caz + 1) cos (ﬁx) + (c4x + c3) sin <\/§x>
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7.27 problem Exercise 20.28, page 220
Internal problem ID [4598]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.28, page 220.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing x]]

y/l/ + Sy — O
v Solution by Maple
Time used: 0.0 (sec). Leaf size: 35
Ldsolve (diff (y(x),x$3)+8*y(x)=0,y(x), singsol=all) J

y(z) = <02€3x sin <\/§ z) + c3e®” cos <\/§ :1;) + C1> e 2

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 42

LDSolve [y''' [x]+8*y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(x) = c1e7%* + c3e” cos (\/593) + cpe” sin (\/§x>
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7.28 problem Exercise 20.29, page 220
Internal problem ID [4599]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.29, page 220.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing x]]

yllll + 4y/l — 0
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
Ldsolve (diff (y(x) ,x$4)+4+diff (y(x),x$2)=0,y(x), singsol=all) J

y(z) = 1 + cax + ¢ sin (2z) + ¢4 cos (2z)

v/ Solution by Mathematica
Time used: 0.118 (sec). Leaf size: 32

-

DSolvely''''[x]+4*y'' [x]==0,y[x],x,IncludeSingularSolutions -> True]

1 1
y(z) = o — e cos(2x) — 1C sin(2z) + ¢3

208



7.29 problem Exercise 20.30, page 220
Internal problem ID [4600]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20.30, page 220.

ODE order: 5.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing x]]

y(5) 4+ zy/// + y/ =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

-

Ldsolve(diff(y(x),x$5)+2*diff(y(x),x$3)+diff(y(x),x)=0,y(x), singsol=all)

| —

y(z) = (csx + ¢3) cos (x) + (xcg + ¢2) sin (x) + ¢

v/ Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 35

LDSolve [y'''' ' [x]+2xy"' ' [x]+y' [x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(x) = (—cax + ca — c3) cos(z) + (cox + ¢1 + ¢4) sin(z) + ¢
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7.30 problem Exercise 20, problem 31, page 220
Internal problem ID [4601]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20, problem 31, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

yI/:()

With initial conditions

[y(1) =2,¢4/(1) = —1]

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

‘dsolve([diff(y(x),x$2)=0,y(1) = 2, D(y) (1) = -1],y(x), singsol=all)

y(z) = -z +3

v/ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 10

‘ DSolve[{y'' [x]==0,{y[1]==2,y' [1]1==-1}},y[x],x,IncludeSingularSolutions -> Tru#]

ylx) >3 —=z
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7.31 problem Exercise 20, problem 32, page 220
Internal problem ID [4602]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20, problem 32, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' +4y +4y=0

With initial conditions

[¥(0) = 1,4/(0) = 1]

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

‘ dsolve([diff (y(x),x$2)+4*diff (y(x),x)+4*y(x)=0,y(0) = 1, D(y)(0) = 1],y(x), s#ngsol=a11)

y(z) = e72*(1 + 32)

v Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 16

LDSolve [{y'' [x]+4*y' [x]+4*y[x]==0,{y[0]==1,y' [0]==1}},y[x],x, IncludeSingularSoJLutions -> True

y(x) = e >3z + 1)
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7.32 problem Exercise 20, problem 33, page 220
Internal problem ID [4603]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20, problem 33, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' =2y’ +5y =0

With initial conditions

[¥(0) = 2,4/(0) = 1]

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

‘ dsolve([diff (y(x),x$2)-2xdiff (y(x),x)+5xy(x)=0,y(0) = 2, D(y)(0) = 1],y(x), s#ngsol=a11)

e”(sin (2x) — 4 cos (2z))
2

y(z) = —

v Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 25

-

LDSolve [{y'' [x]-2*y' [x]+b6*y[x]==0,{y[0]==2,y"' [0]==1}},y[x],x, IncludeSingularSojLutions -> True

y(z) — %ez(él cos(2z) — sin(2x))
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7.33 problem Exercise 20, problem 34, page 220
Internal problem ID [4604]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20, problem 34, page 220.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y" — 4y’ +20y =0

With initial conditions

v Solution by Maple
Time used: 0.031 (sec). Leaf size: 25

Ldsolve([diff(y(x),x$2)-4*diff(y(x),x)+20*y(x)=0,y(1/2*Pi) = 1, D(y) (1/2*Pi) =J 11,y(x), sings

_ (sin(4z) — 4cos (4x)) e" "2
y(z) = - ;

v/ Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 31

‘ DSolve[{y'' [x]-4*y' [x]+20*y[x]==0,{y[Pi/2]==1,y' [Pi/2]==1}},y[x],x, IncludeSingularSolutions

y(z) — }162”_”(4 cos(4x) — sin(4x))
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7.34 problem Exercise 20, problem 35, page 220
Internal problem ID [4605]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients

Problem number: Exercise 20, problem 35, page 220.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing x]]

"

3" +5y" +y' —y=0

With initial conditions

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

|dsolve([3+diff (y(x),x$3)+5+diff (y(x),x$2)+diff (y(x),x)-y(x)=0,y(0) = 0, D(y)(0) = 1, (DEE2)(

<9e4?x +4x — 9) e ®
16

y(z) =

v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 28

-

LDSolve [{3*y' "' [x]+5*y"' ' [x]+y' [x]-y[x]==0,{y[0]==0,y' [0]==1,y"'' [0]==-1}},y[x] ,'\ ,IncludeSingul

1
y(@) = pe (4o + 9e**/3 — 9)
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8.1 problem Exercise 21.3, page 231
Internal problem ID [4606]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.3, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y'+3y +2y=4

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=4,y(x), singsol=all)

y(x) = —e *c; + coe™" + 2

v/ Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 23

e

kDSolve [y'' [x]+3*y' [x]+2*y[x]==4,y[x],x,IncludeSingularSolutions -> True]

~—

y(z) = cre™ + e + 2
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8.2 problem Exercise 21.4, page 231
Internal problem ID [4607]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.4, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y' 4+ 3y +2y =12¢€"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

Ldsolve (diff (y(x) ,x$2)+3*diff (y(x) ,x)+2*y(x)=12%exp(x),y(x), singsol=all) J

y(z) = —(—26% — 2" +¢1) 7

v/ Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 27

‘ DSolvely'' [x]+3*y' [x]+2*y[x]==12%Exp[x],y[x],x,IncludeSingularSolutions -> Tr#le]

y(z) = €72 (2% + c2€” + 1)
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8.3 problem Exercise 21.5, page 231
Internal problem ID [4608]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.5, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y// + 3y/ + 2y — eiz

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

Ldsolve (diff (y(x),x$2) +3*diff (y(x) ,x)+2*y(x)=exp(I*x),y(x), singsol=all) J

1 31 .
y(z)=e" ( (1—0 - E) eHi)T — e77¢; 4 02)

v/ Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 37

‘ DSolvel[y'' [x]+3*y' [x]+2*y[x]==Exp[I*x],y[x],x,IncludeSingularSolutions -> Tru#]

(z) — 1. % e +cre ¥ 4 e
v 10 10 ! 2
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8.4 problem Exercise 21.6, page 231
Internal problem ID [4609]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.6, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" + 3y’ + 2y = sin (z)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

s

Ldsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=sin(x),y(x), singsol=all)

~—

_ 3cos(z) sin(z) _
_ a2z _
y(z) = —e ey o T tee

x

v/ Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 32

‘ DSolvel[y'' [x]+3*y' [x]+2*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True] ‘

y(z) = 1—10 (sin(z) — 3cos(z) + 10e™**(c2e” + 1))
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8.5 problem Exercise 21.7, page 231
Internal problem ID [4610)]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.7, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" + 3y + 2y = cos ()

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

s

Ldsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=cos(x),y(x), singsol=all)

~—

o cos (z) = 3sin(z)
y(z) = —e o1 + 10 + 10 + ce

—T

v/ Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 32

‘ DSolvel[y'' [x]+3*y' [x]+2*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True] ‘

y(z) — %(3 sin(z) + cos(z) + 10e” % (c2€” + c1))
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8.6 problem Exercise 21.8, page 231
Internal problem ID [4611]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.8, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" 4+ 3y + 2y =8+ 6€” + 2sin (z)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 38

s

Ldsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=8+6*exp(x)+2*sin(x),y(x), singsoi%all)

y(z) = —e % ( (—4 + 3C0§ (=) _ s1n5(x)) e?® — cye® + ¢ — e3’”>

v/ Solution by Mathematica
Time used: 0.165 (sec). Leaf size: 38

LDSolve [y'' [x]+3*y' [x]+2*y[x]==8+6*Exp [x]+2*Sin[x],y[x],x,IncludeSingularSolut jions -> True]

sin(z)  3cos(z)
5) )

y(x) —» e* + +cie ™ 4 e+ 4
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8.7 problem Exercise 21.9, page 231
Internal problem ID [4612]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.9, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y"+y'+y=x2

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 37

Ldsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=x‘2,y(x), singsol=all)

y(x) = e 2 sin (@) o+ €72 cos (@) e+ -2z

v/ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 54

e

kDSolve [y'' [x]+y' [x]+y[x]==x"2,y[x] ,x,IncludeSingularSolutions -> True]

~—

y(z) — e2/? (exﬂ(:c —2)z + ¢ cos (@) + ¢ sin (@) >
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8.8 problem Exercise 21.10, page 231
Internal problem ID [4613]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.10, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y'— 2y —8y=9e"z+10e7"

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 28

ldsolve(diff(y(x),x$2)—2*diff(y(x),x)—8*y(x)=9*x*exp(x)+10*exp(-x),y(x), sings¢1=a11)

y(z) = (e%¢c1 — ¥z — 26" + ¢3) 7

v/ Solution by Mathematica
Time used: 0.145 (sec). Leaf size: 35

e

kDSolve [y'' [x]-2*y' [x]-8*y[x]==9*x*Exp [x]+10*Exp[-x],y[x],x, IncludeSingularSolﬁ.ltions -> True]

y(z) = e 2 (—e*z — 26" + 2% + ¢1)

223



8.9 problem Exercise 21.11, page 231
Internal problem ID [4614]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.11, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing y]]

Y’ — 3y’ = 2sin (z) e*

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

e

kdsolve(diff(y(x),x$2)—3*diff(y(x),x)=2*exp(2*x)*sin(x),y(x), singsol=all)

~—

e%*(— cos (z) — 3sin (z c1e%”
y(x)= ( ( ; ( )) + 13 T+

v Solution by Mathematica
Time used: 0.245 (sec). Leaf size: 33

‘ DSolvel[y'' [x]-3*y' [x]==2%Exp[2*x]*Sin[x],y[x],x,IncludeSingularSolutions -> T#ue]

1
y(z) — 1—562’”(—9 sin(z) — 3cos(z) + 5c1e”) + ¢2
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8.10 problem Exercise 21.13, page 231
Internal problem ID [4615]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.13, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing y]]

y//+y/:x2+2x

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve (diff (y(x),x$2)+diff (y(x) ,x)=x"2+2*x,y(x), singsol=all)

3
y(z) = 3¢ Te1 4
v/ Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 24

LDSolve [y'' [x]+y' [x]==x"2+2%x,y[x],x,IncludeSingularSolutions -> True]

3

T
y(z) — 3~ cie "+ cy
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8.11 problem Exercise 21.14, page 231
Internal problem ID [4616]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.14, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing y]]

Yy’ +9y =z +sin(22)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 33

s

Ldsolve(diff(y(x),x$2)+diff(y(x),x)=x+sin(2*x),y(x), singsol=all)

~—

2 in (2 2
y(a:)=x——e_””c1—sm( z)  cos(2z) 4o

2 5 10

v/ Solution by Mathematica
Time used: 0.359 (sec). Leaf size: 43

LDSolve [y'' [x]+y' [x]==x+Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

z? 1 1 _
y(z) — 5 T sin(2zx) — m cos(2z) — cre™" + ¢
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8.12 problem Exercise 21.15, page 231
Internal problem ID [4617]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.15, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y' +y=4sin(z)z

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 21

s

Ldsolve(diff(y(x),x$2)+y(x)=4*x*sin(x),y(x), singsol=all)

~—

y(z) = (—2° + ¢1) cos (z) + sin (z) (c2 + )

v/ Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 27

-

LDSolve [y'' [x]+y[x]==4*x*Sin[x],y[x],x,IncludeSingularSolutions -> Truel

y(z) — (—x2 + % + c1> cos(z) + (z + ¢;) sin(z)
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8.13 problem Exercise 21.16, page 231
Internal problem ID [4618]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.16, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" + 4y = zsin (2z)

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 31

s

Ldsolve(diff(y(x),x$2)+4*y(x)=x*sin(2*x),y(x), singsol=all)

~—

(—z? + 8¢;) cos (2x) N sin (2z) (16¢2 + )

y(z) = 3 16

v/ Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 38

LDSolve [y'' [x]+4xy[x]==x*Sin[2*x],y[x] ,x,IncludeSingularSolutions -> True]

y(z) = 6—14((—8902 + 1+ 64c) cos(2z) + 4(z + 16¢2) sin(2z))
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8.14 problem Exercise 21.17, page 231
Internal problem ID [4619]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.17, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y// + 2y/ +y — xze—x

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

-

Ldsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=x‘2*exp(—x),y(x), singsol=all)

~—

. 1
y(z) =e (cz + ez + Ex‘l)

v/ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 27

-

LDSolve [y'' [x]+2*xy' [x]+y[x]==x"2*Exp[-x],y[x],x,IncludeSingularSolutions -> Trj:e]

1
y(z) — Ee_”” (z* + 1207 + 12¢1)
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8.15 problem Exercise 21.19, page 231
Internal problem ID [4620]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.19, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y// + 3y/ + 2y — e—2x + xz

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 33

( N

Ldsolve(diff (y(x),x$2) +3xdiff (y(x),x) +2%y (x)=exp(-2*x)+x~2,y(x), singsol=all) J

2
R T |
v/ Solution by Mathematica

Time used: 0.078 (sec). Leaf size: 41

l DSolvel[y'' [x]+3*y' [x]+2*y[x]==Exp[-2*x]+x~2,y[x],x,IncludeSingularSolutions -# True]

1
y(x) — 1(2932 —6z+7)+e P (—z—14c1)+ e
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8.16 problem Exercise 21.20, page 231
Internal problem ID [4621]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.20, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

T

y' =3y +2y==ze”

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

Ldsolve(diff (y(x),x$2) -3*diff (y(x),x)+2%y(x)=x*exp(-x) ,y(x), singsol=all) J

(36¢1€3" + 36¢2e** + 6 + 5) e®
36

y(z) =

v/ Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 34

‘ DSolvely'' [x]-3*y' [x]+2*y[x]==x*Exp[-x],y[x],x,IncludeSingularSolutions -> Tr#e]

1
y(z) = %6_‘”(633 +5) + c1€” + cpe*®
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8.17 problem Exercise 21.21, page 231
Internal problem ID [4622]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.21, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

7

y' +y — 6y =z +e*

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

Ldsolve(diff(y(x),x$2)+diff(y(x),x)—6*y(x)=x+exp(2*x),y(x), singsol=all) J

(=% ~6es+ &) e + (a + 1) & —6er) e
6

y(z) = —

v Solution by Mathematica
Time used: 0.085 (sec). Leaf size: 40

LDSolve [y'' [x]+y' [x]-6%y[x]==x+Exp[2*x],y[x],x,IncludeSingularSolutions -> Truel

1 z 1
y(x) — %(—630 — 1)+ c1e7% 4 > (3 ~ % + 02)
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8.18 problem Exercise 21.22, page 231
Internal problem ID [4623]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.22, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

—X

y'+y=sin(z)+e

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

‘ dsolve(diff (y(x) ,x$2)+y(x)=sin(x)+exp(-x),y(x), singsol=all)

vie) = %5 + A s esin e

v Solution by Mathematica
Time used: 0.337 (sec). Leaf size: 36

e

kDSolve [y'' [x]+y[x]==Sin[x]+Exp[-x],y[x],x,IncludeSingularSolutions -> True] J

y(z) — %1(26_‘” + sin(z) — 2z cos(z) + 4c1 cos(z) + 4ep sin(z))
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8.19 problem Exercise 21.24, page 231
Internal problem ID [4624]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.24, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y' +y =sin (z)”

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 20

|dsolve(diff (y(x),x$2)+y(x)=sin(x)"2,y(x), singsol=all)

2

1
cos () 41
3 3

y(x) = cosin (z) + cos (x) ¢ +

v/ Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 27

-

DSolvely'' [x]+y[x]==Sin[x]~2,y[x],x,IncludeSingularSolutions -> Truel

N\

y(z) — é(cos(%) + 6¢; cos(x) + 6¢g sin(x) + 3)
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8.20 problem Exercise 21.27, page 231
Internal problem ID [4625]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.27, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" + y = sin (z) sin (2z)

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 26

s

Ldsolve (diff (y(x),x$2)+y(x)=sin(2*x)*sin(x) ,y(x), singsol=all)

~—

y(z) = _sin (a:)4cos (z) N (4ee + ajl) sin (z) + cos (z) &

v/ Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 33

LDSolve [y'' [x]+y[x]==Sin[2*x]*#Sin[x],y[x],x,IncludeSingularSolutions -> True] J

y(x) — %(cos(&v) + (=1 + 16¢1) cos(z) + 4(z + 4c2) sin(z))
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8.21 problem Exercise 21.28, page 231
Internal problem ID [4626]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.28, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y// _ 5y/ _ 6y — e3x

With initial conditions

[¥(0) = 2,4/(0) = 1]

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

dsolve([diff (y(x),x$2)-5xdiff (y(x),x)-6*xy(x)=exp(3*x),y(0) = 2, D(y)(0) = 1] ,y(x) , singsol=a

N

_ 45e7" N 10e8% g3
28 21 12

y(z)

v/ Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 30

s

LDSolve [{y'' [x]1-5*y' [x]-6*y[x]==Exp[3*x],{y[0]==2,y' [0]1==1}},y([x],x, IncludeSin\ larSolutions

1
y(x) — 8—46_’”(—764”” + 40e™ + 135)

236



8.22 problem Exercise 21.29, page 231
Internal problem ID [4627]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.29, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" —y' — 2y = 5sin (x)

With initial conditions

[y(0) = 1,4/(0) = —1]

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 25

>

Ldsolve( [diff (y(x),x$2)-diff (y(x),x)-2*y(x)=6*sin(x),y(0) = 1, D(y)(0) = -1] ,y}x) , singsol=al

e | cos (z) 3sin(z)
6 3 2 2

v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 30

LDSolve [{y'' [x]-y' [x]-2*y[x]==5%Sin[x] ,{y[0]==1,y' [0]==-1}},y[x],x, IncludeSingﬁ.\larSolutions -

y(z) — é(e"z + 2¢** — 9sin(z) + 3 cos(z))
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8.23 problem Exercise 21.31, page 231
Internal problem ID [4628]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.31, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" + 9y = 8cos (z)

With initial conditions
b(3) =1 (3) =1

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 17

|dsolve([diff (y(x),x$2)+9%y(x)=8*cos(x),y(1/2%Pi) = -1, D(y) (1/2%Pi) = 11,y(x), singsol=all)

2 cos (3z)

y(z) = sin (3z) + 3

+ cos (z)

v Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 20

s

LDSolve [{y'' [x]+9*y[x]==8%Cos[x],{y[Pi/2]==-1,y"' [Pi/2]==1}},y[x],x, IncludeSing}larSolutions -

y(x) — sin(3z) + cos(z) + gcos(&c)

238



8.24 problem Exercise 21.32, page 231
Internal problem ID [4629]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.32, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" — 5y + 6y = " (2z — 3)

With initial conditions

[¥(0) = 1,4/(0) = 3]

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 13

( N

Ldsolve( [diff (y(x),x$2)-5xdiff (y(x) ,x)+6xy(x)=exp(x)*(2%x-3),y(0) = 1, D(y) (O)J = 3],y(x), sin

y(z) =e* +z6e”

v/ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 35

e

LDSolve [{y'' [x]-5*y' [x]-6*y[x]==Exp[x]*(2*x-3) ,{y[0]==1,y' [0]==3}},y[x],x, Incl}ldeSingularSolu

1
y(z) — e (=7€** (5 — 9) + 87" + 25)
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8.25 problem Exercise 21.33, page 231
Internal problem ID [4630]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coeflicients

Problem number: Exercise 21.33, page 231.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

yll _ 3y/ _|_ 2y — e—.’t

With initial conditions

[y(0) = 1,4/(0) = —1]

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

s

Ldsolve( [diff (y(x),x$2)-3*diff (y(x),x)+2*y(x)=exp(-x),y(0) =1, D(y)(0) = -1] ,}z(x) , singsol=a

(x)__5e2”” L 5e e
Y& =3 2 "6

v/ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 31

LDSolve [{y'' [x]-3*y' [x]+2*y[x]==Exp[-x],{y[0]==1,y' [0]==-1}},y[x],x,IncludeSingularSolutions
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9.1 problem Exercise 22.1, page 240
Internal problem ID [4631]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963

Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-

rameters

Problem number: Exercise 22.1, page 240.
ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" +y = sec (z)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

s

Ldsolve(diff(y(x),x$2)+y(x)=sec(x),y(x), singsol=all)

~—

y(z) = —In (sec (z)) cos (z) + cos (z) c1 + sin (z) (c2 + )

v/ Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 22

-

LDSolve [y'' [x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]

-/

y(z) = (z + ¢2) sin(z) + cos(z)(log(cos(z)) + ¢1)
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9.2 problem Exercise 22.2, page 240
Internal problem ID [4632]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963

Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-

rameters

Problem number: Exercise 22.2, page 240.
ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" +y = cot (z)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

s

Ldsolve(diff(y(x),x$2)+y(x)=cot(x),y(x), singsol=all)

~—

y(z) = cgsin (z) 4 cos () ¢; + sin (z) In (csc (z) — cot (z))

v/ Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 33

-

LDSolve [y'' [x]+y[x]==Cot [x],y[x],x,IncludeSingularSolutions -> True]

~—

y(z) — ¢ cos(z) + sin(z) (log (sin (;)) — log (cos (g)) + 02>
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9.3 problem Exercise 22.3, page 240
Internal problem ID [4633]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22.3, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y' +y = sec (z)’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

|dsolve(diff (y(x),x$2)+y(x)=sec(x)"2,y(x), singsol=all)

y(x) = cosin (z) + cos (z) ¢; + In (sec (x) + tan (z)) sin (z) — 1

v/ Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 28

-

LDSolve [y'' [x]+y[x]==Sec[x]~2,y[x],x,IncludeSingularSolutions -> True]

| —

y(x) — 2sin(x)arctanh (tan (g)) + ¢; cos(z) + cosin(z) — 1
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9.4 problem Exercise 22.4, page 240
Internal problem ID [4634]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22.4, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y' —y =sin(z)’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

dsolve(diff (y(x),x$2)-y(x)=sin(x)~2,y(x), singsol=all)

cos () 3
) 5)

y(x) = coe” + e %y

v/ Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 30

-

N\

DSolvely'' [x]-y[x]==Sin[x]~2,y[x],x,IncludeSingularSolutions -> Truel

1
y(z) — l—o(cos(2x) —5)+c1e® +ce””
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9.5 problem Exercise 22.5, page 240
Internal problem ID [4635]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22.5, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y' +y =sin (z)”

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

|dsolve(diff (y(x),x$2)+y(x)=sin(x)"2,y(x), singsol=all)

2

1
cos () 41
3 3

y(x) = cosin (z) + cos (x) ¢ +

v/ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 27

e hY

DSolvely'' [x]+y[x]==Sin[x]~2,y[x],x,IncludeSingularSolutions -> Truel

N\ J

y(z) — é(cos(%) + 6¢; cos(x) + 6¢g sin(x) + 3)
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9.6 problem Exercise 22.6, page 240
Internal problem ID [4636]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22.6, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y' 4+ 3y +2y =12¢€"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

Ldsolve (diff (y(x) ,x$2)+3*diff (y(x) ,x)+2*y(x)=12%exp(x),y(x), singsol=all) J

y(z) = —(—26% — 2" +¢1) 7

v/ Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 27

DSolvely'' [x]+3*y' [x]+2*y[x]==12%Exp[x],y[x],x,IncludeSingularSolutions -> Tr#le]

N

y(z) = €72 (2% + c2€” + 1)
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9.7 problem Exercise 22.7, page 240
Internal problem ID [4637]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22.7, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y// + 2y/ +y — xze—x

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

-

Ldsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=x‘2*exp(—x),y(x), singsol=all)

~—

. 1
y(z) =e (cz + ez + Ex‘l)

v/ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 27

-

LDSolve [y'' [x]+2*xy' [x]+y[x]==x"2*Exp[-x],y[x],x,IncludeSingularSolutions -> Trj:e]

1
y(z) — Ee_”” (z* + 1207 + 12¢1)
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9.8 problem Exercise 22.8, page 240
Internal problem ID [4638]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963

Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-

rameters

Problem number: Exercise 22.8, page 240.
ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y' +y=4sin(z)z

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

s

Ldsolve(diff(y(x),x$2)+y(x)=4*x*sin(x),y(x), singsol=all)

~—

y(z) = (—2° + ¢1) cos (z) + sin (z) (c2 + )

v/ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 27

-

LDSolve [y'' [x]+y[x]==4*x*Sin[x],y[x],x,IncludeSingularSolutions -> Truel

y(z) — (—x2 + % + c1> cos(z) + (z + ¢;) sin(z)

249



9.9 problem Exercise 22.9, page 240
Internal problem ID [4639]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22.9, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

Y +2y+y=e"In(x)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

‘ dsolve(diff (y(x),x$2)+2*diff (y(x),x)+y(x)=exp(-x)*1n(x),y(x), singsol=all) ‘

e ®(21In (z) % + 4eyx — 322 + 4cy)
4

y(z) =

v/ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 36

LDSolve [y'' [x]+2*y' [x]+y[x]==Exp[-x]*Log[x],y[x],x,IncludeSingularSolutions —>J True]

1
y(z) — Ze_”” (=32 + 227 log(z) + 4crw + 4cy)

250



9.10 problem Exercise 22.10, page 240
Internal problem ID [4640]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963

Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-

rameters

Problem number: Exercise 22.10, page 240.
ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" +y = csc(z)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

s

Ldsolve(diff(y(x),x$2)+y(x)=csc(x),y(x), singsol=all)

~—

y(z) = —In(csc(x))sin (z) + (—z + ¢1) cos () + ¢ sin (x)

v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 24

-

LDSolve [y'' [x]+y[x]==Csc[x],y[x],x,IncludeSingularSolutions -> True]

~—

y(z) = (—z + ¢1) cos(z) + sin(z)(log(sin(z)) + c2)
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9.11 problem Exercise 22.11, page 240
Internal problem ID [4641]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22.11, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

Y’ +y = tan (z)’

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

|dsolve(diff (y(x),x$2)+y(x)=tan(x)"2,y(x), singsol=all)

y(x) = cosin (z) + cos (z) ¢; — 2 + In (sec (z) + tan (x)) sin (z)

v/ Solution by Mathematica
Time used: 0.109 (sec). Leaf size: 23

-

LDSolve [y'' [x]+y[x]==Tan[x]"2,y[x],x,IncludeSingularSolutions -> True]

| —

y(x) — sin(z)arctanh(sin(x)) + ¢; cos(z) + co sin(z) — 2
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9.12 problem Exercise 22.12, page 240
Internal problem ID [4642]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22.12, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

—XT

e
y//+2y/+y=_
Z

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

‘ dsolve(diff (y(x) ,x$2)+2*diff (y(x) ,x)+y(x)=exp(-x)/x,y(x), singsol=all) ‘

y(z)=e(In(x)x+z(c1 — 1) + ¢2)

v Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 24

e

kDSolve [y'' [x]+2*y' [x]+y[x]==Exp[-x]/x,y[x],x,IncludeSingularSolutions -> TrueJ‘]

y(z) = e *(zlog(z) + (=1 + )z + 1)
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9.13 problem Exercise 22.13, page 240
Internal problem ID [4643]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22.13, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" +y = sec (z) csc ()

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

s

Ldsolve(diff(y(x),x$2)+y(x)=sec(x)*csc(x),y(x), singsol=all)

~—

y(z) = ¢z sin (x) + cos (x) ¢; + sin (z) In (csc (z) — cot (z)) — In (sec (x) + tan (z)) cos (z)

v/ Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 30

-

N
LDSolve [y'' [x]+y[x]==Sec[x]*Csc[x],y[x],x,IncludeSingularSolutions -> True] J

y(z) — — sin(z)arctanh(cos(z)) + ¢1 cos(z) + c2 sin(z) + cos(z) (— coth™ (sin(z)))
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9.14 problem Exercise 22.14, page 240
Internal problem ID [4644]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22.14, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

Yy -2y +y=¢€"In(z)

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 28

s

Ldsolve(diff(y(x),x$2)—2*diff(y(x),x)+y(x)=exp(x)*ln(x),y(x), singsol=all)

~—

e?(21In (z) 2% + 4cix — 322 + 4c
y(x)= ( ( ) 41 2)

v/ Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 34

LDSolve [y'' [x]-2*y' [x]+y[x]==Exp[x] *Log[x],y[x],x,IncludeSingularSolutions -> jl'rue]

1
y(z) = 4—163””(—3:62 + 22° log(x) + 4oz + 4cy)
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9.15 problem Exercise 22.15, page 240
Internal problem ID [4645]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22.15, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" — 3y’ +2y = cos (e77)

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

Ldsolve(diff(y(x),x$2)—3*diff(y(x),x)+2*y(x)=cos(exp(—x)),y(x), singsol=all)

J

y(z) = (—e®cos (%) + (a1 — 1) €” + ¢») €”

v/ Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 29

-

.
DSolvel[y'' [x]-3*y' [x]+2*y[x]==Cos[Exp[-x]],y[x],x,IncludeSingularSolutions -> True]

N\

y(z) = e"(—€e"cos (e7%) + ce” + 1)
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9.16 problem Exercise 22, problem 16, page 240
Internal problem ID [4646]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22, problem 16, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

x2y//_xy/+y:x

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

-

Ldsolve(x‘2*diff(y(x),x$2)—x*diff(y(x),x)+y(x)=x,y(x), singsol=all)

~—

y(z) ==z <02 +cln(z) + @)

v/ Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 25

e

kDSolve [x~2*xy'' [x]-x*y' [x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True] J

y(x) — %m(log2(x) + 2¢; log(z) + 2¢1)
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9.17 problem Exercise 22, problem 17, page 240
Internal problem ID [4647]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22, problem 17, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

2y 2y
"
_4 LYYy
Y x+x2 n(z)x

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

e

tdsolve(diff (y(x),x$2)-2/x*diff (y(x) ,x)+2/x 2%y (x)=x*1n(x),y(x), singsol=all) J

In(z)z® 323
y(z) = (2) — T+62x2—|-clac

v/ Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 32

‘ DSolvel[y'' [x]-2/x*y' [x]+2/x"2*y[x]==x*Log[x],y[x],x,IncludeSingularSolutions +> True]

1
y(z) = Zz(—&rz + 22 log(z) + 4cor + 401)
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9.18 problem Exercise 22, problem 18, page 240
Internal problem ID [4648]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22, problem 18, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

x2y// +xy' _4y — .’IJ3

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

-

Ldsolve(x‘2*diff(y(x),x$2)+x*diff(y(x),x)—4*y(x)=x‘3,y(x), singsol=all)

\ >

.’1,'3

_ & 2
y(x) = 2 + iz’ + 3

v/ Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 25

l DSolve [x~2*y'' [x]+x*y' [x]-4*y[x]==x"3,y[x],x,IncludeSingularSolutions -> Truej

1,'3

_
5 + cox +:E2

y(z) =
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9.19 problem Exercise 22, problem 19, page 240
Internal problem ID [4649]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22, problem 19, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

x2y" +xy' —y= x2e—

x

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

Ldsolve (x"2xdiff (y(x) ,x$2) +x*diff (y(x) ,x) -y (x)=x"2%exp(-x),y(x), singsol=all) J

o’ +e*r+e T+

y(z) =

v/ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 27

T

LDSolve [x~2xy' ' [x]+x*y' [x]-y[x]==x"2*Exp[-x],y[x],x,IncludeSingularSolutions -f True]

e +e % (z+1)+c
T

y(z) =
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9.20 problem Exercise 22, problem 20, page 240
Internal problem ID [4650]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters

Problem number: Exercise 22, problem 20, page 240.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

1
22%y" + 3wy —y = -

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

Ldsolve (2*x~2*diff (y(x) ,x$2) +3*x*xdiff (y(x) ,x)-y(x)=1/x,y(x), singsol=all) J

B 9z2¢y — 31n () 4 9¢; — 2

y(z) 0

v/ Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 31

e

kDSolve [2xx~2*y' ' [x]+3*x*y' [x]-y[x]==1/x,y[x],x,IncludeSingularSolutions -> Trﬁ.\e]

9cy2%/2 — 3log(z) — 2+ 9c;
9z

y(z) —
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10.1 problem Exercise 35.1, page 504

Internal problem ID [4651]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.1, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _exact, _nonlinear], _

yll _ 2yly — 0

v/ Solution by Maple
Time used: 0.266 (sec). Leaf size: 16

e

Ldsolve(diff(y(x),x$2)=2*y(x)*diff(y(x),x),y(x), singsol=all)

~—

tan <w>
C1

yz) = —
v/ Solution by Mathematica
Time used: 9.872 (sec). Leaf size: 24
LDSolve [y'' [x]==2*y[x]*y' [x],y[x],x,IncludeSingularSolutions -> Truel J

y(@) = Vertan (Ve (z + )
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10.2 problem Exercise 35.2, page 504

Internal problem ID [4652]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.2, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _reducible, _mu_x_y1]]

y3y// — k‘

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 46

e

Ldsolve(y(x)‘S*diff(y(x),x$2)=k,y(x), singsol=all)

~—

o+z)lE+k)a
y(z) = \/(( c)l )
(2 +2)E+k)c
y(z) = —\/( o )

v/ Solution by Mathematica
Time used: 2.878 (sec). Leaf size: 63

LDSolve [y [x]~3*y'' [x]==k,y[x],x,IncludeSingularSolutions -> True] J
\/k + 012($ + 02)2
z) = —
y(x) e
\/k + 012(1} + 02)2
x) —
y(x) e

y(x) — Indeterminate

264



10.3 problem Exercise 35.3, page 504

Internal problem ID [4653]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.3, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _reducible, _mu_x_y1]]

yy' —y=-1

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 59

Ldsolve (y(x)*diff (y(x),x$2)=(diff (y(x),x))"2-1,y(x), singsol=all) J

cotx —co—z
cl(—e 1 4e )
y(z) = 5
cot+zx —co—x
NE
y(e) = - 5

v/ Solution by Mathematica
Time used: 60.201 (sec). Leaf size: 85

LDSolve [y[x]l*y'' [x]==(y'[x])~2-1,y[x],x,IncludeSingularSolutions -> True] J

ie~“ tanh (e“ (z + ¢2))
- v/ —sech? (e¢1(z + ¢3))
ie"° tanh (e® (z + ¢2))
\/—sech? (e¢1(z + ¢3))

y(z) —

y(z) —
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10.4 problem Exercise 35.4, page 504

Internal problem ID [4654]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.4, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing y]]

2,1

iy +xy =1

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

e

Ldsolve(x‘2*diff(y(x),x$2)+x*(diff(y(x),x))=1,y(x), singsol=all)

~—

In (z)?
2

y(x) =co+c1ln(z) +

v/ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 21

LDSolve [x~2xy' ' [x]+x*y' [x]==1,y[x],x,IncludeSingularSolutions -> True]

l 2
y(z) — %(x) + c1log(z) + ¢
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10.5 problem Exercise 35.5, page 504

Internal problem ID [4655]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.5, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing y]]

my// _ yl — .’EQ

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

e

Ldsolve(x*diff(y(x),x$2)—diff(y(x),x)=x‘2,y(x), singsol=all)

~—

1 1
y(x) = 5:1;3 + §clz2 + ¢

v/ Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 24

‘ DSolve[x*y'' [x]-y' [x]==x"2,y[x],x,IncludeSingularSolutions -> True]

3 ca?

x
% - -
y(x) 3 + 5 + ¢y
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10.6 problem Exercise 35.6, page 504

Internal problem ID [4656]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.6, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], _Liouville, [_2nd_order, _reducible

1+y)y" — 3y =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 59

[dsolve ((y(x)+1) *diff (y(x) ,x$2)=3*(diff (y(x),x))"2,y(x), singsol=all) J
y(z) = —1
v —=2c1r —2¢cy — 1

y(z) = - V=212 — 2¢
(z) = vV —2c1x —2¢co + 1
y - vV—=2c1x — 2¢

v/ Solution by Mathematica
Time used: 1.485 (sec). Leaf size: 107

( N

LDSolve [(yx]+1)*y' ' [x]==3*(y' [x])"2,y[x],x,IncludeSingularSolutions -> True] J

_26113 + \/5\/ —Cl(.’E + 02) + 20201

y(x) - 261 (QJ + CQ)

o(z) = —2c17 +V2y/—c1(z + ¢3) — 2c2¢1
201(.’17 + Cz)

y(z) = -1

y(x) — Indeterminate
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10.7 problem Exercise 35.7, page 504

Internal problem ID [4657]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.7, page 504.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _reducible, _mu_x_y1]]

v Solution by Maple

7,./l +

k_o

72

Time used: 0.062 (sec). Leaf size: 369

Ldsolve(diff(r(t),t$2)=—k/(r(t)‘2),r(t), singsol=all)

r(t)

e (C% k2 B 2k61 eRootOf (csgn ( é) c}k?+2 Zc3ke—Z—csgn ( é ) e>—%c?—2 csgn ( i ) e—Zcy—2 csgn(

1
c1

)e—Zt> + e2 RootOf <csgn (E

r(t)

¢ <C% k2 — 2%ke, eRootOf (csgn ( é) c}k?+2_Zc3ke—%—csgn ( é ) e2-Zc2+2 csgn ( é ) e—Zcy+2 csgn ( é ) e—Zt> + e2 RootOf (csgn < F

v/ Solution by Mathematica

Time used: 0.169 (sec). Leaf size: 65

-

N\

DSolve[r''[t]1==-k/(x[t]"2),r[t],t,IncludeSingularSolutions -> True]

Solve

r(t) /% + e 2karctanh<

2k
Vi ta

Jer

) 2= (t+c)%r(t)

C1
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10.8 problem Exercise 35.8, page 504

Internal problem ID [4658]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.8, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _reducible, _mu_x_y1]]

w_ Bky® _

5 0

Y

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 15

r

Ldsolve(diff(y(x),x$2)=3/2*k*y(x)“2,y(x), singsol=all)

| —

4 WeierstrassP (z + ¢1, 0, ¢2)
y(z) = -

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve [y'' [x]1==3/2*%(k*y[x]~2),y[x] ,x,IncludeSingularSolutions -> True] J

Not solved
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10.9 problem Exercise 35.9, page 504

Internal problem ID [4659]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.9, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _reducible, _mu_x_y1]]

y' —2ky* =0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

e

Ldsolve(diff(y(x),x$2)=2*k*y(x)‘3,y(x), singsol=all)

~—

y(x) = ¢y JacobiSN ((\/—_ka: + cl> Co, z)

v/ Solution by Mathematica
Time used: 61.304 (sec). Leaf size: 115

e

kDSolve [y'' [x]==2%k*y[x]~3,y[x],x,IncludeSingularSolutions -> True]

)
)

~—

isn((—1)3/4\/\/E\/a(a: +¢2)?

ivE
Jer

z'sn((—l)3/4\/ Vk/Ci(z + c2)?

ivk
Vet

y(z) = —

y(z) —
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10.10 problem Exercise 35.10, page 504

Internal problem ID [4660)]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.10, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _exact, _nonlinear], |

vy +y° —y =0

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 34

dsolve(y(x)*diff (y(x) ,x$2)+(diff (y(x),x)) "2-diff (y(x),x)=0,y(x), singsol=all)

N

y(z) =0

y(z) = —c (LambertW (—%) + 1)
1

v/ Solution by Mathematica
Time used: 60.084 (sec). Leaf size: 32

‘ DSolvel[y[x]l*y'' [x]+(y' [x])~2-y' [x]==0,y[x],x,IncludeSingularSolutions -> Truej]

_w+cl+02
y(x) = —c1 (1 +W (_ec—1>>
1
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10.11 problem Exercise 35.11, page 504

Internal problem ID [4661]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.11, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _reducible, _mu_x_y1]]

h? k
"
r r3 r2 0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 441

Ldsolve(diff(r(t) ,t$2)= h~2/r(t)"3-k/r(t)~2,r(t), singsol=all) J

r(t)

c1 <C%k2 _ 2kcleRootOf(csgn(é>c‘llk2+2_Zc?k e—Z—csgn(é>e2—Zc%+csgn<é>c§h2—2 csgn(é)e—Z02—2 csgn(é)e—%) + e2

r(t)

¢ <C% k2 _ 2k’Cl eRootOf (csgn ( i) c‘llk2+2_Zc:I‘k e—Z—csgn ( i ) e2—Zc%+csgn (i) c§h2+2 csgn ( é > e—%co+2 csgn ( é ) e—Zt> + 62
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v/ Solution by Mathematica
Time used: 1.099 (sec). Leaf size: 130

kDSolve [r''[t]==h"2/r[t]"3-k/r[t]"2,r[t],t,IncludeSingularSolutions -> True] J

2 k+cir(t) 2
Solve <\/a(_h + T(t)(2k + clr(t))) B k\/_h2 + T(t)(2k + clr(t))amtanh(\/a\/—h2+r(t)(2k+01r(t)))) _

c13r(t)? (—% + % + cl)

+¢)%,7(t)
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10.12 problem Exercise 35.12, page 504

Internal problem ID [4662]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.12, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _reducible, _mu_x_y1],

v +y° -y =0

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 36

dsolve (y(x)*diff (y(x) ,x$2)+(diff (y(x),x)) "3-diff (y(x),x)"2=0,y(x), singsol=a11[)

N

y(z) =0
y(z) =
cpta
—c1 LambertW (e Ccll ) +co+x
y(z) =e 1

v/ Solution by Mathematica
Time used: 22.229 (sec). Leaf size: 32

e N
LDSOlve [y[x]l*y'' [x]1+(y' [x])~3-(y' [x])~2==0,y[x],x,IncludeSingularSolutions -> jl'rue]

y(z) = 601W<ee_cl(’”—ec101+02)>
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10.13 problem Exercise 35.13, page 504

Internal problem ID [4663]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.13, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], _Liouville, [_2nd_order, _reducible

yy' —3y" =0

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 33

Ldsolve (y(x)*diff (y(x),x$2)-3*(diff (y(x),x))"2=0,y(x), singsol=all) J
y() =0
1
y(z) = V=201 — 2¢9

1

y(z) = - v/ —2c1x — 2¢9

v/ Solution by Mathematica
Time used: 0.106 (sec). Leaf size: 14

e

LDSolve [y[x]*y''[x]-(y'[x])~2==0,y[x],x,IncludeSingularSolutions -> True]

~—  /

y(x) = coe”
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10.14 problem Exercise 35.14, page 504

Internal problem ID [4664]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.14, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing y], [_2nd_order, _reducible, _mu_y_y1]]

(1,'2 + 1) y// +y/2 -1

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 33

Ldsolve((1+x‘2)*diff (y(x),x$2) +(diff (y(x),x))~2+1=0,y(x), singsol=all) J

In(ciz —1) & + et + 1z + In(c1z — 1)

o

y(z) =

v/ Solution by Mathematica
Time used: 7.091 (sec). Leaf size: 33

LDSolve [(1+x~2) *y' ' [x]+(y' [x]) ~2+1==0,y[x],x,IncludeSingularSolutions -> True]J

y(z) = —z cot(c;) + esc?(cy) log(—z sin(cy) — cos(cy)) + ¢
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10.15 problem Exercise 35.15, page 504

Internal problem ID [4665]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.15, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing y]]

(®+1)y"+2z(1+y) =0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

s

Ldsolve((1+x“2)*diff(y(x),x$2)+2*x*(diff(y(x),x)+1)=0,y(x), singsol=all)

-/

y(z) = —x + (1 + ¢1) arctan (z) + ¢

v Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 18

LDSolve [(1+x72) *y' ' [x] +2*x*(y' [x]+1)==0,y[x] ,x,IncludeSingularSolutions -> True]

y(z) = (1 + ¢1) arctan(z) — z + ¢
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10.16 problem Exercise 35.16, page 504

Internal problem ID [4666]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.16, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], _Liouville, [_2nd_order, _reducible

1+y)y" — 3y =0

With initial conditions

y(1)=0,y/(1) = —

v/ Solution by Maple
Time used: 0.344 (sec). Leaf size: 15

e

ldsolve([(y(x)+1)*diff (y(x),x$2)=3*(diff (y(x),x))"2,y(1) = 0, D(y) (1) = -1/2] ,}r(x) , singsol=z

y(z) = —z+Ve

X

v Solution by Mathematica
Time used: 1.693 (sec). Leaf size: 572

DSolve [{(y[x]+1)*y' ' [x]==3+(y' [x])~2,{y[1]==0,y"' [0]==-1/2}},y[x],x, IncludeSingularSolutions

N

y(z)

6 <_12+3 22/0\/27 — 3v/60 — ¥/2(27 - 3v/60) " +3 2%9{/3 (9.4 V/60) — V2(3(0 + \/@))2/3> |

_>
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10.17 problem Exercise 35.17, page 504

Internal problem ID [4667]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.17, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _exact, _nonlinear], |

7

y' —ye’ =0

With initial conditions

[¥(3) = 0,9/(3) = 1]

v/ Solution by Maple
Time used: 0.063 (sec). Leaf size: 12

dsolve([diff (y(x),x$2)=diff (y(x),x)*exp(y(x)),y(3) = 0, D(y)(3) = 1],y(x), si#gsol=all)

N

y(x) = —In(—z +4)

v Solution by Mathematica
Time used: 7.673 (sec). Leaf size: 13

-

DSolve[{y'' [x]==y' [x]*Exp[y[x]],{y[3]==0,y' [3]1==1}},y[x],x, IncludeSingularSolLtions -> True]

N\

y(z) = —log(4 — )
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10.18 problem Exercise 35.18, page 504

Internal problem ID [4668]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.18, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _exact, _nonlinear], _

yll _ 2yly — 0

With initial conditions

[¥(0) = 1,4/(0) = 2]

v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 10

dsolve([diff (y(x),x$2)=2*y(x)*diff (y(x),x),y(0) = 1, D(y)(0) = 2],y(x), sings%ol=a11)

J

N

y(x) = tan <:c + %)

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

‘ DSolve[{y'' [x]==2xy[x]*y' [x],{y[0]==1,y' [0]==2}},y[x],x, IncludeSingularSoluti{ons -> True]

{
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10.19 problem Exercise 35.19, page 504

Internal problem ID [4669]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.19, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _reducible, _mu_x_y1]]

2y" —e¥=0

With initial conditions

[¥(0) = 0,4/(0) = 1]

v/ Solution by Maple
Time used: 0.063 (sec). Leaf size: 15

dsolve([2*diff (y(x) ,x$2)=exp(y(x)),y(0) = 0, D(y)(0) = 1],y(x), singsol=all)

J

N

y(z) = 21n(2) + In (ﬁ)

v Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 15

N

DSolve [{2*y'' [x]==Exp[y[x]],{y[0]==0,y"' [0]==1}},y[x],x, IncludeSingularSolutio#s -> True]

J

-

N\

y(xz) = —2log (1 - g)
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10.20 problem Exercise 35.20, page 504

Internal problem ID [4670)]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.20, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing y]]

2,1

iy +xy =1

With initial conditions

[y(1) =1,4/(1) = 2]

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

Ldsolve( [x~2xdiff (y(x) ,x$2)+x*diff (y(x),x)=1,y(1) = 1, D(y) (1) = 2],y(x), singlfol=a11)

In ()

y(z)=14+2In(z) + 5

v/ Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 19

LDSolve [{x~2*y' ' [x]+x*xy' [x]==1,{y[1]==1,y' [1]1==2}},y[x],x, IncludeSingularSolut%lons -> Truel

y(z) — %(log2 (z) + 4log(z) +2)
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10.21 problem Exercise 35.21, page 504

Internal problem ID [4671]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.21, page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing y]]

my// _ yl — .’EQ

With initial conditions

[y(1) =0,¢'(1) = —1]

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

Ldsolve([x*diff(y(x),x$2)—diff(y(x),x)=x"2,y(1) = 0, D(y (1) = -1],y(x), singsﬂol=a11)

y(w):%x —x2+§

v/ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 19

LDSolve [{x*y'' [x]-y' [x]==x"2,{y[1]==0,y"' [1]==-1}},y[x],x, IncludeSingularSolutiﬂons -> True]

y(z) — %(z?’ —3z%+2)
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10.22 problem Exercise 35.23(a), page 504

Internal problem ID [4672]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.23(a), page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_orde

zyy’ — 2zy”° + 4y =0

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

dsolve (x*y(x)*diff (y(x) ,x$2)-2xx*(diff (y(x),x)) "2+y(x)*diff (y(x),x)=0,y(x), s#ngsol=all)

N

v/ Solution by Mathematica
Time used: 0.243 (sec). Leaf size: 22

" DSolve [x*xy [x]*y' ' [x]-2*x*(y' [x]) " 2+y[x]*y' [x]==0,y[x],x, IncludeSingularSolutiJons -> True]

y(@) = = log(z) + &1
y(z) =0
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10.23 problem Exercise 35.23(b), page 504

Internal problem ID [4673]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.23(b), page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _w

zyy’ + 2y’ —y'y=0

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

Ldsolve (xxy (x)*diff (y(x) ,x$2)+x* (diff (y(x) ,x)) "2-y(x)*diff (y(x) ,x)=0,y(x), singsol=all)

y(z) =0
y(x) = Vear? + 2c
y(x) = —v 12?2 + 2¢

v/ Solution by Mathematica
Time used: 0.241 (sec). Leaf size: 18

‘ DSolve [x*xy[x]*y'' [x]+x*(y' [x])~2-y[x]*y' [x]==0,y[x],x, IncludeSingularSolution# -> True]

y(x) = cov/2?+ ¢
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10.24 problem Exercise 35.23(c), page 504

Internal problem ID [4674]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.23(c), page 504.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducibl

zyy” — 2xy’2 +(1+y)y' =0

v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 22

-

Ldsolve (xxy (x)*diff (y(x) ,x$2)-2*x* (diff (y(x),x)) "2+ (1+y(x))*diff (y(x),x)=0, y(x} , singsol=all)

y(z) =0

y(x) = c¢; tanh (ln(m)—_c?)

201

v/ Solution by Mathematica
Time used: 20.549 (sec). Leaf size: 52

-

N
LDSolve [x*y [x]*y' ' [x]-2%x*(y' [x]) "2+ (1+y[x]) *y' [x]==0,y[x],x, IncludeSingularSojLutions -> True

/i (log(z)—c2)
tan (%)

VNG

y(x) — %(log(x) —C2)

y(z) —
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