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1.1 problem First order with homogeneous Coefficients.
Exercise 7.2, page 61

Internal problem ID [4427]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.2, page 61.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2xy +
(
x2 + y2

)
y′ = 0

3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 209� �
dsolve(2*x*y(x)+(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −

2

c1x
2 −

(
4+4

√
4c31x6+1

) 2
3

4


(
4 + 4

√
4c31x6 + 1

) 1
3 √

c1

y(x) = −

(
1 + i

√
3
) (

4 + 4
√

4c31x6 + 1
) 1

3

4√c1
−

√
c1
(
i
√
3− 1

)
x2(

4 + 4
√

4c31x6 + 1
) 1

3

y(x) =
4i
√
3 c1x2 + i

(
4 + 4

√
4c31x6 + 1

) 2
3 √3 + 4c1x2 −

(
4 + 4

√
4c31x6 + 1

) 2
3

4
(
4 + 4

√
4c31x6 + 1

) 1
3 √

c1
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3 Solution by Mathematica
Time used: 15.191 (sec). Leaf size: 401� �
DSolve[2*x*y[x]+(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√√

4x6 + e6c1 + e3c1

3
√
2

−
3
√
2x2

3
√√

4x6 + e6c1 + e3c1

y(x) →
i22/3

(√
3 + i

) (√
4x6 + e6c1 + e3c1

) 2/3 + 3
√
2
(
2 + 2i

√
3
)
x2

4 3
√√

4x6 + e6c1 + e3c1

y(x) →
(
1− i

√
3
)
x2

22/3 3
√√

4x6 + e6c1 + e3c1
−
(
1 + i

√
3
) 3
√√

4x6 + e6c1 + e3c1

2 3
√
2

y(x) → 0

y(x) → 1
2

6√
x6

((
1− i

√
3
)
(x6)2/3

x4 − i
√
3− 1

)

y(x) → 1
2

6√
x6

((
1 + i

√
3
)
(x6)2/3

x4 + i
√
3− 1

)

y(x) → 6√
x6 − (x6)5/6

x4
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1.2 problem First order with homogeneous Coefficients.
Exercise 7.3, page 61

Internal problem ID [4428]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.3, page 61.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

(
x+

√
y2 − xy

)
y′ − y = 0

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 33� �
dsolve((x+sqrt(y(x)^2-x*y(x)))*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

ln (y(x)) y(x)− c1y(x) + 2
√
y (x) (y (x)− x)

y (x) = 0

3 Solution by Mathematica
Time used: 0.291 (sec). Leaf size: 43� �
DSolve[(x+Sqrt[y[x]^2-x*y[x]])*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

2
√

y(x)
x

− 1√
y(x)
x

+ log
(
y(x)
x

)
= − log(x) + c1, y(x)
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1.3 problem First order with homogeneous Coefficients.
Exercise 7.4, page 61

Internal problem ID [4429]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.4, page 61.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

y − (x− y) y′ = −x

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve((x+y(x))-(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = tan
(
RootOf

(
−2_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x) + 2c1

))
x

3 Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 36� �
DSolve[(x+y[x])-(x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
2 log

(
y(x)2
x2 + 1

)
− arctan

(
y(x)
x

)
= − log(x) + c1, y(x)

]
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1.4 problem First order with homogeneous Coefficients.
Exercise 7.5, page 61

Internal problem ID [4430]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.5, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

xy′ − y − x sin
(y
x

)
= 0

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 44� �
dsolve(x*diff(y(x),x)-y(x)-x*sin(y(x)/x)=0,y(x), singsol=all)� �

y(x) = arctan
(

2xc1
x2c21 + 1 ,

−x2c21 + 1
x2c21 + 1

)
x

3 Solution by Mathematica
Time used: 0.325 (sec). Leaf size: 52� �
DSolve[x*y'[x]-y[x]-x*Sin[y[x]/x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x arccos(− tanh(log(x) + c1))
y(x) → x arccos(− tanh(log(x) + c1))
y(x) → 0
y(x) → −πx
y(x) → πx
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1.5 problem First order with homogeneous Coefficients.
Exercise 7.6, page 61

Internal problem ID [4431]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.6, page 61.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

2yx2 + y3 +
(
xy2 − 2x3) y′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve((2*x^2*y(x)+y(x)^3)+(x*y(x)^2-2*x^3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√
2
√

− 1
LambertW (−2c1x4) x

3 Solution by Mathematica
Time used: 5.64 (sec). Leaf size: 66� �
DSolve[(2*x^2*y[x]+y[x]^3)+(x*y[x]^2-2*x^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − i
√
2x√

W (−2e−2c1x4)

y(x) → i
√
2x√

W (−2e−2c1x4)
y(x) → 0
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1.6 problem First order with homogeneous Coefficients.
Exercise 7.7, page 61

Internal problem ID [4432]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.7, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _dAlembert]

y2 +
(
x
√

y2 − x2 − xy
)
y′ = 0

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 32� �
dsolve(y(x)^2+(x*sqrt(y(x)^2-x^2)-x*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

−c1xy(x) + y(x) +
√
y (x)2 − x2

xy (x) = 0

3 Solution by Mathematica
Time used: 2.247 (sec). Leaf size: 111� �
DSolve[y[x]^2+(x*Sqrt[y[x]^2-x^2]-x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−
√

y(x)2
x2 − 1

(
log
(√

y(x)
x

+ 1− 1
)
+ log

(√
y(x)
x

+ 1 + 1
))

√
y(x)
x

− 1
√

y(x)
x

+ 1

− 2 log
(√

y(x)
x

− 1−
√

y(x)
x

+ 1
)

= log(x) + c1, y(x)
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1.7 problem First order with homogeneous Coefficients.
Exercise 7.8, page 61

Internal problem ID [4433]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.8, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

y cos
(
y
x

)
x

−

(
x sin

(
y
x

)
y

+ cos
(y
x

))
y′ = 0

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 15� �
dsolve(y(x)/x*cos(y(x)/x)-(x/y(x)*sin(y(x)/x)+cos(y(x)/x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = RootOf (_Zxc1 sin (_Z)− 1)x

3 Solution by Mathematica
Time used: 0.247 (sec). Leaf size: 27� �
DSolve[y[x]/x*Cos[y[x]/x]-(x/y[x]*Sin[y[x]/x]+Cos[y[x]/x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
log
(
y(x)
x

)
+ log

(
sin
(
y(x)
x

))
= − log(x) + c1, y(x)

]
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1.8 problem First order with homogeneous Coefficients.
Exercise 7.9, page 61

Internal problem ID [4434]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.9, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

y + x ln
(y
x

)
y′ − 2xy′ = 0

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve(y(x)+x*ln(y(x)/x)*diff(y(x),x)-2*x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −LambertW (−exc1)
c1

3 Solution by Mathematica
Time used: 5.502 (sec). Leaf size: 35� �
DSolve[y[x]+x*Log[y[x]/x]*y'[x]-2*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −ec1W
(
−e1−c1x

)
y(x) → 0
y(x) → ex
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1.9 problem First order with homogeneous Coefficients.
Exercise 7.10, page 61

Internal problem ID [4435]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.10, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

2y e
x
y +

(
y − 2x e

x
y

)
y′ = 0

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 21� �
dsolve(2*y(x)*exp(x/y(x))+(y(x)-2*x*exp(x/y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x

RootOf
(
−_Z e−2 e_Z + c1x

)
3 Solution by Mathematica
Time used: 0.247 (sec). Leaf size: 29� �
DSolve[2*y[x]*Exp[x/y[x]]+(y[x]-2*x*Exp[x/y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−2e

x
y(x) − log

(
y(x)
x

)
= log(x) + c1, y(x)

]
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1.10 problem First order with homogeneous Coefficients.
Exercise 7.11, page 61

Internal problem ID [4436]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.11, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

x e
y
x − y sin

(y
x

)
+ x sin

(y
x

)
y′ = 0

3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 63� �
dsolve((x*exp(y(x)/x)-y(x)*sin(y(x)/x))+x*sin(y(x)/x)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x) = RootOf

(
e2_Z(4 ln (x)2 e2_Z + 8 ln (x) e2_Zc1 + 4 e2_Zc21 − 4 ln (x) sin (_Z) e_Z

− 4 sin (_Z) e_Zc1 + 2 sin (_Z)2 − 1
))

x

3 Solution by Mathematica
Time used: 0.328 (sec). Leaf size: 39� �
DSolve[(x*Exp[y[x]/x]-y[x]*Sin[y[x]/x])+x*Sin[y[x]/x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−1
2e

− y(x)
x

(
sin
(
y(x)
x

)
+ cos

(
y(x)
x

))
= − log(x) + c1, y(x)

]
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1.11 problem First order with homogeneous Coefficients.
Exercise 7.12, page 61

Internal problem ID [4437]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.12, page 61.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, _Bernoulli]

y2 − 2xyy′ = −x2

With initial conditions

[y(−1) = 0]

3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 23� �
dsolve([(x^2+y(x)^2)=2*x*y(x)*diff(y(x),x),y(-1) = 0],y(x), singsol=all)� �

y(x) =
√

x (1 + x)
y(x) = −

√
x (1 + x)

3 Solution by Mathematica
Time used: 0.19 (sec). Leaf size: 36� �
DSolve[{(x^2+y[x]^2)==2*x*y[x]*y'[x],y[-1]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x
√
x+ 1

y(x) →
√
x
√
x+ 1
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1.12 problem First order with homogeneous Coefficients.
Exercise 7.13, page 61

Internal problem ID [4438]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.13, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

x e
y
x + y − xy′ = 0

With initial conditions

[y(1) = 0]

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 15� �
dsolve([(x*exp(y(x)/x)+y(x))=x*diff(y(x),x),y(1) = 0],y(x), singsol=all)� �

y(x) = ln
(
− 1
ln (x)− 1

)
x

3 Solution by Mathematica
Time used: 0.316 (sec). Leaf size: 15� �
DSolve[{(x*Exp[y[x]/x]+y[x])==x*y'[x],y[1]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x log(1− log(x))
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1.13 problem First order with homogeneous Coefficients.
Exercise 7.14, page 61

Internal problem ID [4439]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.14, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

y′ − y

x
+ csc

(y
x

)
= 0

With initial conditions

[y(1) = 0]

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 22� �
dsolve([diff(y(x),x)-y(x)/x+csc(y(x)/x)=0,y(1) = 0],y(x), singsol=all)� �

y(x) = arccos (ln (x) + 1)x
y(x) = − arccos (ln (x) + 1)x

3 Solution by Mathematica
Time used: 0.394 (sec). Leaf size: 24� �
DSolve[{y'[x]-y[x]/x+Csc[y[x]/x]==0,y[1]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x arccos(log(x) + 1)
y(x) → x arccos(log(x) + 1)
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1.14 problem First order with homogeneous Coefficients.
Exercise 7.15, page 61

Internal problem ID [4440]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.15, page 61.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, _Bernoulli]

xy − y2 − x2y′ = 0

With initial conditions

[y(1) = 1]

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 12� �
dsolve([(x*y(x)-y(x)^2)-x^2*diff(y(x),x)=0,y(1) = 1],y(x), singsol=all)� �

y(x) = x

ln (x) + 1

3 Solution by Mathematica
Time used: 0.139 (sec). Leaf size: 13� �
DSolve[{(x*y[x]-y[x]^2)-x^2*y'[x]==0,y[1]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

log(x) + 1
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2.1 problem Differential equations with Linear Coefficients.
Exercise 8.1, page 69

Internal problem ID [4441]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.1, page
69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2y − (2x− 4y) y′ = −x+ 4

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 31� �
dsolve((x+2*y(x)-4)-(2*x-4*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 1−
tan

(
RootOf

(
2_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x− 2) + 2c1

))
(x− 2)

2

3 Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 63� �
DSolve[(x+2*y[x]-4)-(2*x-4*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
2 arctan

(
−2y(x)− x+ 4

x− 2y(x)

)
+ log

(
x2 + 4y(x)2 − 8y(x)− 4x+ 8

2(x− 2)2

)
+ 2 log(x− 2) + c1 = 0, y(x)

]
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2.2 problem Differential equations with Linear Coefficients.
Exercise 8.2, page 69

Internal problem ID [4442]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.2, page
69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2y − (3x+ 2y − 1) y′ = −3x− 1

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve((3*x+2*y(x)+1)-(3*x+2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −3x
2 −

2 LambertW
(
− c1e

1
4− 25x

4
4

)
5 + 1

10

3 Solution by Mathematica
Time used: 4.816 (sec). Leaf size: 43� �
DSolve[(3*x+2*y[x]+1)-(3*x+2*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
10

(
−4W

(
−e−

25x
4 −1+c1

)
− 15x+ 1

)
y(x) → 1

10 − 3x
2
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2.3 problem Differential equations with Linear Coefficients.
Exercise 8.3, page 69

Internal problem ID [4443]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.3, page
69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

y + (2x+ 2y + 2) y′ = −1− x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve((x+y(x)+1)+(2*x+2*y(x)+2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −1− x

y(x) = −x

2 + c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 22� �
DSolve[(x+y[x]+1)+(2*x+2*y[x]+2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x− 1
y(x) → −x

2 + c1
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2.4 problem Differential equations with Linear Coefficients.
Exercise 8.4, page 69

Internal problem ID [4444]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.4, page
69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

y + (2x+ 2y − 3) y′ = 1− x

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve((x+y(x)-1)+(2*x+2*y(x)-3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = LambertW (2 ex−4−c1)
2 + 2− x

3 Solution by Mathematica
Time used: 4.725 (sec). Leaf size: 33� �
DSolve[(x+y[x]-1)+(2*x+2*y[x]-3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
(
W
(
−ex−1+c1

)
− 2x+ 4

)
y(x) → 2− x
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2.5 problem Differential equations with Linear Coefficients.
Exercise 8.5, page 69

Internal problem ID [4445]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.5, page
69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

y − (x− y − 1) y′ = 1− x

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 30� �
dsolve((x+y(x)-1)-(x-y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = tan
(
RootOf

(
2_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x− 1) + 2c1

))
(1− x)

3 Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 48� �
DSolve[(x+y[x]-1)-(x-y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

[
2 arctan

(
y(x) + x− 1
−y(x) + x− 1

)
= log

(
1
2

(
y(x)2

(x− 1)2 + 1
))

+ 2 log(x− 1) + c1, y(x)
]
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2.6 problem Differential equations with Linear Coefficients.
Exercise 8.6, page 69

Internal problem ID [4446]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.6, page
69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

y + (2x+ 2y − 1) y′ = −x

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 21� �
dsolve((x+y(x))+(2*x+2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = LambertW (2 ex−2−c1)
2 − x+ 1

3 Solution by Mathematica
Time used: 1.056 (sec). Leaf size: 33� �
DSolve[(x+y[x])+(2*x+2*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
(
W
(
−ex−1+c1

)
− 2x+ 2

)
y(x) → 1− x
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2.7 problem Differential equations with Linear Coefficients.
Exercise 8.7, page 69

Internal problem ID [4447]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.7, page
69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

7y + (2x+ 1) y′ = 3

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve((7*y(x)-3)+(2*x+1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 3
7 + c1

(1 + 2x)
7
2

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 28� �
DSolve[(7*y[x]-3)+(2*x+1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3
7 + c1

(2x+ 1)7/2

y(x) → 3
7
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2.8 problem Differential equations with Linear Coefficients.
Exercise 8.8, page 69

Internal problem ID [4448]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.8, page
69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2y + (3x+ 6y + 3) y′ = −x

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 23� �
dsolve((x+2*y(x))+(3*x+6*y(x)+3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −LambertW
(
−e− 3

2−
x
6+

c1
6

2

)
− 3

2 − x

2

3 Solution by Mathematica
Time used: 4.834 (sec). Leaf size: 43� �
DSolve[(x+2*y[x])+(3*x+6*y[x]+3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
(
−2W

(
−e−

x
6−1+c1

)
− x− 3

)
y(x) → 1

2(−x− 3)
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2.9 problem Differential equations with Linear Coefficients.
Exercise 8.9, page 69

Internal problem ID [4449]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.9, page
69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2y + (y − 1) y′ = −x

3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 30� �
dsolve((x+2*y(x))+(y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = (−1− x) LambertW (c1(2 + x))− 2− x

LambertW (c1 (2 + x))

3 Solution by Mathematica
Time used: 1.178 (sec). Leaf size: 143� �
DSolve[(x+2*y[x])+(y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

−(−2)2/3
(
−
(
(x+ 1) log

(
−3(−2)2/3(x+2)

y(x)−1

))
+ x log

(
3(−2)2/3(y(x)+x+1)

y(x)−1

)
+ log

(
3(−2)2/3(y(x)+x+1)

y(x)−1

)
+ y(x)

(
− log

(
−3(−2)2/3(x+2)

y(x)−1

)
+ log

(
3(−2)2/3(y(x)+x+1)

y(x)−1

)
− 1
)
+ 1
)

9(y(x) + x+ 1) = 1
9(−2)2/3 log(x+2)+c1, y(x)
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2.10 problem Differential equations with Linear Coefficients.
Exercise 8.10, page 69

Internal problem ID [4450]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.10, page
69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

−2y − (2x+ 7y − 1) y′ = −3x− 4

3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 33� �
dsolve((3*x-2*y(x)+4)-(2*x+7*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
−
√

7 + 15625
(
x+ 26

25

)2
c21 + (−50x+ 25) c1

175c1

3 Solution by Mathematica
Time used: 0.126 (sec). Leaf size: 65� �
DSolve[(3*x-2*y[x]+4)-(2*x+7*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
7

(
−
√

25x2 + 52x+ 1 + 49c1 − 2x+ 1
)

y(x) → 1
7

(√
25x2 + 52x+ 1 + 49c1 − 2x+ 1

)
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2.11 problem Differential equations with Linear Coefficients.
Exercise 8.11, page 69

Internal problem ID [4451]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.11, page
69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

y + (3x+ 3y − 4) y′ = −x

With initial conditions

[y(1) = 0]

3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 19� �
dsolve([(x+y(x))+(3*x+3*y(x)-4)*diff(y(x),x)=0,y(1) = 0],y(x), singsol=all)� �

y(x) =
2LambertW

(
−1,−3 e−

5
2+x

2

)
3 + 2− x

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[{(x+y[x])+(3*x+3*y[x]-4)*y'[x]==0,y[1]==0},y[x],x,IncludeSingularSolutions -> True]� �
{}
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2.12 problem Differential equations with Linear Coefficients.
Exercise 8.12, page 69

Internal problem ID [4452]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.12, page
69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2y − (x+ 2y − 1) y′ = −3x− 3

3 Solution by Maple
Time used: 0.187 (sec). Leaf size: 93� �
dsolve((3*x+2*y(x)+3)-(x+2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x)

=
(−2− x) RootOf

(
−1 + (16c1x5 + 160c1x4 + 640c1x3 + 1280c1x2 + 1280c1x+ 512c1)_Z25 + (−80c1x5 − 800c1x4 − 3200c1x3 − 6400c1x2 − 6400c1x− 2560c1)_Z20)5

2
+ 3x

2 + 9
2

3 Solution by Mathematica
Time used: 60.094 (sec). Leaf size: 3081� �
DSolve[(3*x+2*y[x]+3)-(x+2*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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2.13 problem Differential equations with Linear Coefficients.
Exercise 8.13, page 69

Internal problem ID [4453]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.13, page
69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

y + (2x+ y + 3) y′ = −7

With initial conditions

[y(0) = 1]

3 Solution by Maple
Time used: 0.14 (sec). Leaf size: 87� �
dsolve([(y(x)+7)+(2*x+y(x)+3)*diff(y(x),x)=0,y(0) = 1],y(x), singsol=all)� �

y(x) =
(
−x3 + 6x2 − 12x+ 72 + 8

√
−2x3 + 12x2 − 24x+ 80

) 1
3

+ (x− 2)2(
−x3 + 6x2 − 12x+ 72 + 8

√
−2x3 + 12x2 − 24x+ 80

) 1
3
− x− 5

3 Solution by Mathematica
Time used: 6.783 (sec). Leaf size: 198� �
DSolve[{(y[x]+7)+(2*x+y[x]+3)*y'[x]==0,y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
x2 −

(
3
√

−x3 + 6x2 + 8
√
2
√
−x3 + 6x2 − 12x+ 40− 12x+ 72 + 4

)
x+

(
−x3 + 6x2 + 8

√
2
√
−x3 + 6x2 − 12x+ 40− 12x+ 72

)2/3 − 5 3
√

−x3 + 6x2 + 8
√
2
√
−x3 + 6x2 − 12x+ 40− 12x+ 72 + 4

3
√

−x3 + 6x2 + 8
√
2
√
−x3 + 6x2 − 12x+ 40− 12x+ 72
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2.14 problem Differential equations with Linear Coefficients.
Exercise 8.14, page 69

Internal problem ID [4454]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.14, page
69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

y − (x− y − 4) y′ = −x− 2

3 Solution by Maple
Time used: 0.204 (sec). Leaf size: 31� �
dsolve((x+y(x)+2)-(x-y(x)-4)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −3− tan
(
RootOf

(
2_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x− 1) + 2c1

))
(x− 1)

3 Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 58� �
DSolve[(x+y[x]+2)-(x-y[x]-4)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
2 arctan

(
y(x) + x+ 2
y(x)− x+ 4

)
+ log

(
x2 + y(x)2 + 6y(x)− 2x+ 10

2(x− 1)2

)
+ 2 log(x− 1) + c1 = 0, y(x)

]
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3.1 problem Exact Differential equations. Exercise 9.4, page
79

Internal problem ID [4455]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.4, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

3yx2 + 8xy2 +
(
x3 + 8yx2 + 12y2

)
y′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 475� �
dsolve((3*x^2*y(x)+8*x*y(x)^2)+(x^3+8*x^2*y(x)+12*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x) =

(
9x5 − 27c1 − 8x6 + 3

√
−3x10 + 3x9 + 48c1x6 − 54c1x5 + 81c21

) 1
3

6
+ x3(−3 + 4x)

6
(
9x5 − 27c1 − 8x6 + 3

√
−3x10 + 3x9 + 48c1x6 − 54c1x5 + 81c21

) 1
3
− x2

3

y(x)

=

(
−i

√
3−1

)(
9x5−27c1−8x6+3

√
−3x10+3x9+48c1x6−54c1x5+81c21

) 2
3

4 +
(
−
(
9x5 − 27c1 − 8x6 + 3

√
−3x10 + 3x9 + 48c1x6 − 54c1x5 + 81c21

) 1
3 +

(
i
√
3− 1

) (
−3

4 + x
)
x

)
x2

3
(
9x5 − 27c1 − 8x6 + 3

√
−3x10 + 3x9 + 48c1x6 − 54c1x5 + 81c21

) 1
3

y(x) =

−

(
− i

√
3

4 + 1
4

)(
9x5 − 27c1 − 8x6 + 3

√
−3x10 + 3x9 + 48c1x6 − 54c1x5 + 81c21

) 2
3 +

((
9x5 − 27c1 − 8x6 + 3

√
−3x10 + 3x9 + 48c1x6 − 54c1x5 + 81c21

) 1
3 +

(
1 + i

√
3
) (

−3
4 + x

)
x

)
x2

3
(
9x5 − 27c1 − 8x6 + 3

√
−3x10 + 3x9 + 48c1x6 − 54c1x5 + 81c21

) 1
3
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3 Solution by Mathematica
Time used: 1.703 (sec). Leaf size: 474� �
DSolve[(3*x^2*y[x]+8*x*y[x]^2)+(x^3+8*x^2*y[x]+12*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 1

6

−2x2 + 3
√

−8x6 + 9x5 + 3
√
3
√
−x10 + x9 − 16c1x6 + 18c1x5 + 27c12 + 27c1

+ (4x− 3)x3

3
√

−8x6 + 9x5 + 3
√
3
√
−x10 + x9 − 16c1x6 + 18c1x5 + 27c12 + 27c1


y(x) → 1

48

−16x2 + 4i
(√

3

+ i
)

3
√

−8x6 + 9x5 + 3
√
3
√
−x10 + x9 − 16c1x6 + 18c1x5 + 27c12 + 27c1

−
4i
(√

3− i
)
(4x− 3)x3

3
√

−8x6 + 9x5 + 3
√
3
√
−x10 + x9 − 16c1x6 + 18c1x5 + 27c12 + 27c1


y(x) → 1

48

−16x2 − 4
(
1

+ i
√
3
)

3
√

−8x6 + 9x5 + 3
√
3
√
−x10 + x9 − 16c1x6 + 18c1x5 + 27c12 + 27c1

+
4i
(√

3 + i
)
(4x− 3)x3

3
√

−8x6 + 9x5 + 3
√
3
√
−x10 + x9 − 16c1x6 + 18c1x5 + 27c12 + 27c1
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3.2 problem Exact Differential equations. Exercise 9.5, page
79

Internal problem ID [4456]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.5, page 79.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2xy + 1
y

+ (−x+ y) y′
y2

= 0

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
dsolve((2*x*y(x)+1)/y(x)+(y(x)-x)/y(x)^2*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = − x

LambertW (−ex2c1x)

3 Solution by Mathematica
Time used: 5.208 (sec). Leaf size: 29� �
DSolve[(2*x*y[x]+1)/y[x]+(y[x]-x)/y[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x

W (x (−ex2−c1))
y(x) → 0
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3.3 problem Exact Differential equations. Exercise 9.6, page
79

Internal problem ID [4457]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.6, page 79.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2xy +
(
x2 + y2

)
y′ = 0

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 209� �
dsolve(2*x*y(x)+(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −

2

c1x
2 −

(
4+4

√
4c31x6+1

) 2
3

4


(
4 + 4

√
4c31x6 + 1

) 1
3 √

c1

y(x) = −

(
1 + i

√
3
) (

4 + 4
√

4c31x6 + 1
) 1

3

4√c1
−

√
c1
(
i
√
3− 1

)
x2(

4 + 4
√

4c31x6 + 1
) 1

3

y(x) =
4i
√
3 c1x2 + i

(
4 + 4

√
4c31x6 + 1

) 2
3 √3 + 4c1x2 −

(
4 + 4

√
4c31x6 + 1

) 2
3

4
(
4 + 4

√
4c31x6 + 1

) 1
3 √

c1
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3 Solution by Mathematica
Time used: 15.514 (sec). Leaf size: 401� �
DSolve[2*x*y[x]+(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√√

4x6 + e6c1 + e3c1

3
√
2

−
3
√
2x2

3
√√

4x6 + e6c1 + e3c1

y(x) →
i22/3

(√
3 + i

) (√
4x6 + e6c1 + e3c1

) 2/3 + 3
√
2
(
2 + 2i

√
3
)
x2

4 3
√√

4x6 + e6c1 + e3c1

y(x) →
(
1− i

√
3
)
x2

22/3 3
√√

4x6 + e6c1 + e3c1
−
(
1 + i

√
3
) 3
√√

4x6 + e6c1 + e3c1

2 3
√
2

y(x) → 0

y(x) → 1
2

6√
x6

((
1− i

√
3
)
(x6)2/3

x4 − i
√
3− 1

)

y(x) → 1
2

6√
x6

((
1 + i

√
3
)
(x6)2/3

x4 + i
√
3− 1

)

y(x) → 6√
x6 − (x6)5/6

x4
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3.4 problem Exact Differential equations. Exercise 9.7, page
79

Internal problem ID [4458]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.7, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

ex sin (y) + e−y −
(
x e−y − ex cos (y)

)
y′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve((exp(x)*sin(y(x))+exp(-y(x)))-(x*exp(-y(x))-exp(x)*cos(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

ex sin (y(x)) + x e−y(x) + c1 = 0

3 Solution by Mathematica
Time used: 0.389 (sec). Leaf size: 24� �
DSolve[(Exp[x]*Sin[y[x]]+Exp[-y[x]])-(x*Exp[-y[x]]-Exp[x]*Cos[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x
(
−e−y(x))− ex sin(y(x)) = c1, y(x)

]
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3.5 problem Exact Differential equations. Exercise 9.8, page
79

Internal problem ID [4459]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.8, page 79.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

cos (y)−
(
x sin (y)− y2

)
y′ = 0

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
dsolve(cos(y(x))-(x*sin(y(x))-y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

x+
sec (y(x))

(
y(x)3 − 3c1

)
3 = 0

3 Solution by Mathematica
Time used: 0.124 (sec). Leaf size: 23� �
DSolve[Cos[y[x]]-(x*Sin[y[x]]-y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x = −1

3y(x)
3 sec(y(x)) + c1 sec(y(x)), y(x)

]
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3.6 problem Exact Differential equations. Exercise 9.9, page
79

Internal problem ID [4460]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.9, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

−2xy + ey +
(
y − x2 + x ey

)
y′ = −x

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 28� �
dsolve((x-2*x*y(x)+exp(y(x)))+(y(x)-x^2+x*exp(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

−y(x)x2 + x ey(x) + x2

2 + y(x)2

2 + c1 = 0

3 Solution by Mathematica
Time used: 0.315 (sec). Leaf size: 35� �
DSolve[(x-2*x*y[x]+Exp[y[x]])+(y[x]-x^2+x*Exp[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x2(−y(x)) + x2

2 + xey(x) + y(x)2
2 = c1, y(x)

]
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3.7 problem Exact Differential equations. Exercise 9.10, page
79

Internal problem ID [4461]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.10, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

y2 − (ey − 2xy) y′ = −x2 + x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve((x^2-x+y(x)^2)-(exp(y(x))-2*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

x3

3 + xy(x)2 − x2

2 − ey(x) + c1 = 0

3 Solution by Mathematica
Time used: 0.198 (sec). Leaf size: 32� �
DSolve[(x^2-x+y[x]^2)-(Exp[y[x]]-2*x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−x3

3 + x2

2 − xy(x)2 + ey(x) = c1, y(x)
]

42



3.8 problem Exact Differential equations. Exercise 9.11, page
79

Internal problem ID [4462]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.11, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

y cos (x) + (2y + sin (x)− sin (y)) y′ = −2x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve((2*x+y(x)*cos(x))+(2*y(x)+sin(x)-sin(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

sin (x) y(x) + x2 + y(x)2 + cos (y(x)) + c1 = 0

3 Solution by Mathematica
Time used: 0.198 (sec). Leaf size: 22� �
DSolve[(2*x+y[x]*Cos[x])+(2*y[x]+Sin[x]-Sin[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x2 + y(x)2 + y(x) sin(x) + cos(y(x)) = c1, y(x)

]
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3.9 problem Exact Differential equations. Exercise 9.12, page
79

Internal problem ID [4463]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.12, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _exact, _dAlembert]

x
√

x2 + y2 − x2yy′

y −
√
x2 + y2

= 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x*sqrt(x^2+y(x)^2)-(x^2*y(x))/(y(x)- sqrt(x^2+y(x)^2))*diff(y(x),x)=0,y(x), singsol=all)� �

c1 +
(
x2 + y(x)2

) 3
2 + y(x)3 = 0
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3 Solution by Mathematica
Time used: 60.259 (sec). Leaf size: 2125� �
DSolve[x*Sqrt[x^2+y[x]^2]-(x^2*y[x])/(y[x]- Sqrt[x^2+y[x]^2])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−

x2

√√√√√ e6c1
x4 − 6x2 + 3

(
5x6−4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

+
3

3
√

−11x12 + 14e6c1x6 + 2
√

(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2 + x2

√√√√√√√√√
2e6c1
x4 − 12x2 + 3

(
−5x6+4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

−
3

3
√

−11x12 + 14e6c1x6 + 2
√

(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2 −

2e3c1
(
−9+ e6c1

x6

)
√√√√√√√√ e6c1

x4 −6x2+
3
(
5x6−4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

+
3
3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

x2

− e3c1

6x2

y(x)

→

x2

−

√√√√√ e6c1
x4 − 6x2 + 3

(
5x6−4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

+
3

3
√

−11x12 + 14e6c1x6 + 2
√

(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2

+ x2

√√√√√√√√√
2e6c1
x4 − 12x2 + 3

(
−5x6+4e6c1

)
3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

−
3

3
√

−11x12 + 14e6c1x6 + 2
√

(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2 −

2e3c1
(
−9+ e6c1

x6

)
√√√√√√√√ e6c1

x4 −6x2+
3
(
5x6−4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

+
3
3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

x2

+ e3c1

6x2

y(x)

→

x2

√√√√√ e6c1
x4 − 6x2 + 3

(
5x6−4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

+
3

3
√

−11x12 + 14e6c1x6 + 2
√

(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2 − x2

√√√√√√√√√
2e6c1
x4 − 12x2 + 3

(
−5x6+4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√

(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
−

3
3
√

−11x12 + 14e6c1x6 + 2
√

(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2 +

2e3c1
(
−9+ e6c1

x6

)
√√√√√√√√ e6c1

x4 −6x2+
3
(
5x6−4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√

(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
+

3
3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

x2

+ e3c1

6x2

y(x)

→

x2

√√√√√ e6c1
x4 − 6x2 + 3

(
5x6−4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

+
3

3
√

−11x12 + 14e6c1x6 + 2
√

(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2 + x2

√√√√√√√√√
2e6c1
x4 − 12x2 + 3

(
−5x6+4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√

(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
−

3
3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2 +

2e3c1
(
−9+ e6c1

x6

)
√√√√√√√√ e6c1

x4 −6x2+
3
(
5x6−4e6c1

)
3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

+
3
3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

x2

+ e3c1

6x2
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3.10 problem Exact Differential equations. Exercise 9.13,
page 79

Internal problem ID [4464]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.13, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

y3 −
(
y2 + 1− 3xy2

)
y′ = −4x3 + sin (x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 658� �
dsolve((4*x^3-sin(x)+y(x)^3)-(y(x)^2+1-3*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x)

=

(
2 1

3

((
−3x4 − 3 cos (x) +

√
(27x−9) cos(x)2+54

(
x− 1

3
)
(x4+c1) cos(x)+27x9−9x8+54c1x5−18c1x4+27c21x−9c21−4

3x−1 − 3c1
)
(3x− 1)2

) 2
3

+ 6x− 2
)
2 1

3

((
−3x4 − 3 cos (x) +

√
(27x−9) cos(x)2+54

(
x− 1

3
)
(x4+c1) cos(x)+27x9−9x8+54c1x5−18c1x4+27c21x−9c21−4

3x−1 − 3c1
)
(3x− 1)2

) 1
3

(6x− 2)

y(x) =

−

(
2 1

3
(
1 + i

√
3
)(

−
(
3x4 + 3 cos (x)−

√
(27x−9) cos(x)2+54

(
x− 1

3
)
(x4+c1) cos(x)+27x9−9x8+54c1x5−18c1x4+27c21x−9c21−4

3x−1 + 3c1
)
(3x− 1)2

) 2
3

− 6
(
x− 1

3

) (
i
√
3− 1

))
2 1

3

4
(
−
(
3x4 + 3 cos (x)−

√
(27x−9) cos(x)2+54

(
x− 1

3
)
(x4+c1) cos(x)+27x9−9x8+54c1x5−18c1x4+27c21x−9c21−4

3x−1 + 3c1
)
(3x− 1)2

) 1
3

(3x− 1)

y(x)

=

(
2 1

3
(
i
√
3− 1

)(
−
(
3x4 + 3 cos (x)−

√
(27x−9) cos(x)2+54

(
x− 1

3
)
(x4+c1) cos(x)+27x9−9x8+54c1x5−18c1x4+27c21x−9c21−4

3x−1 + 3c1
)
(3x− 1)2

) 2
3

− 6
(
x− 1

3

) (
1 + i

√
3
))

2 1
3

4
(
−
(
3x4 + 3 cos (x)−

√
(27x−9) cos(x)2+54

(
x− 1

3
)
(x4+c1) cos(x)+27x9−9x8+54c1x5−18c1x4+27c21x−9c21−4

3x−1 + 3c1
)
(3x− 1)2

) 1
3

(3x− 1)
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3 Solution by Mathematica
Time used: 60.207 (sec). Leaf size: 682� �
DSolve[(4*x^3-Sin[x]+y[x]^3)-(y[x]^2+1-3*x*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
3
√
2
(
−27x6 + 18x5 − 3x4 + 1

27

√
4(9− 27x)3 + 6561(1− 3x)4 (x4 + cos(x)− c1) 2 − 27x2 cos(x) + 27c1x2 + 18x cos(x)− 3 cos(x)− 18c1x+ 3c1

)
2/3 + 6x− 2

22/3(3x− 1) 3

√
−27x6 + 18x5 − 3x4 + 1

27
√
4(9− 27x)3 + 6561(1− 3x)4 (x4 + cos(x)− c1) 2 − 27x2 cos(x) + 27c1x2 + 18x cos(x)− 3 cos(x)− 18c1x+ 3c1

y(x)

→
9i 3
√
2
(√

3 + i
) (

−27x6 + 18x5 − 3x4 + 1
27

√
4(9− 27x)3 + 6561(1− 3x)4 (x4 + cos(x)− c1) 2 − 27x2 cos(x) + 27c1x2 + 18x cos(x)− 3 cos(x)− 18c1x+ 3c1

)
2/3 + 2

(
1 + i

√
3
)
(9− 27x)

18 22/3(3x− 1) 3

√
−27x6 + 18x5 − 3x4 + 1

27
√

4(9− 27x)3 + 6561(1− 3x)4 (x4 + cos(x)− c1) 2 − 27x2 cos(x) + 27c1x2 + 18x cos(x)− 3 cos(x)− 18c1x+ 3c1
y(x)

→
i
(√

3 + i
)

22/3 3

√
−27x6 + 18x5 − 3x4 + 1

27
√

4(9− 27x)3 + 6561(1− 3x)4 (x4 + cos(x)− c1) 2 − 27x2 cos(x) + 27c1x2 + 18x cos(x)− 3 cos(x)− 18c1x+ 3c1

−

(
1 + i

√
3
) 3

√
−54x6 + 36x5 − 6x4 + 2

27
√

4(9− 27x)3 + 6561(1− 3x)4 (x4 + cos(x)− c1) 2 − 54x2 cos(x) + 54c1x2 + 36x cos(x)− 6 cos(x)− 36c1x+ 6c1
2 22/3(3x− 1)
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3.11 problem Exact Differential equations. Exercise 9.15,
page 79

Internal problem ID [4465]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.15, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _Bernoulli]

ex
(
y3 + y3x+ 1

)
+ 3y2(exx− 6) y′ = 0

With initial conditions

[y(0) = 1]

3 Solution by Maple
Time used: 0.14 (sec). Leaf size: 38� �
dsolve([exp(x)*(y(x)^3+x*y(x)^3+1)+3*y(x)^2*(x*exp(x)-6)*diff(y(x),x)=0,y(0) = 1],y(x), singsol=all)� �

y(x) =
(
i
√
3− 1

) (
−(ex + 5) (x ex − 6)2

) 1
3

2x ex − 12

3 Solution by Mathematica
Time used: 1.114 (sec). Leaf size: 28� �
DSolve[{Exp[x]*(y[x]^3+x*y[x]^3+1)+3*y[x]^2*(x*Exp[x]-6)*y'[x]==0,y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√
−ex − 5

3
√
exx− 6
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3.12 problem Exact Differential equations. Exercise 9.16,
page 79

Internal problem ID [4466]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.16, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

sin (x) cos (y) + cos (x) sin (y) y′ = 0

With initial conditions [
y
(π
4

)
= π

4

]
3 Solution by Maple
Time used: 0.141 (sec). Leaf size: 9� �
dsolve([sin(x)*cos(y(x))+cos(x)*sin(y(x))*diff(y(x),x)=0,y(1/4*Pi) = 1/4*Pi],y(x), singsol=all)� �

y(x) = π

2 − arcsin
(
sec (x)

2

)
3 Solution by Mathematica
Time used: 6.111 (sec). Leaf size: 12� �
DSolve[{Sin[x]*Cos[y[x]]+Cos[x]*Sin[y[x]]*y'[x]==0,y[Pi/4]==Pi/4},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arccos
(
sec(x)

2

)
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3.13 problem Exact Differential equations. Exercise 9.17,
page 79

Internal problem ID [4467]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.17, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

y2exy2 +
(
2xy exy2 − 3y2

)
y′ = −4x3

With initial conditions

[y(1) = 0]

3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 23� �
dsolve([(y(x)^2*exp(x*y(x)^2)+4*x^3)+(2*x*y(x)*exp(x*y(x)^2)-3*y(x)^2)*diff(y(x),x)=0,y(1) = 0],y(x), singsol=all)� �

y(x) = RootOf
(
−ex_Z2 − x4 + _Z3 + 2

)
3 Solution by Mathematica
Time used: 0.332 (sec). Leaf size: 23� �
DSolve[{(y[x]^2*Exp[x*y[x]^2]+4*x^3)+(2*x*y[x]*Exp[x*y[x]^2]-3*y[x]^2)*y'[x]==0,y[1]==0},y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x4 + exy(x)

2 − y(x)3 = 2, y(x)
]
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4.1 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.51, page 90

Internal problem ID [4468]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.51, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

y2 + y − xy′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve((y(x)^2+y(x))-x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x

−x+ c1

3 Solution by Mathematica
Time used: 0.274 (sec). Leaf size: 32� �
DSolve[(y[x]^2+y[x])-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ec1x

1− ec1x
y(x) → −1
y(x) → 0
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4.2 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.52, page 90

Internal problem ID [4469]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.52, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

y sec (x) + sin (x) y′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 8� �
dsolve((y(x)*sec(x))+sin(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = cot (x) c1

3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 15� �
DSolve[(y[x]*Sec[x])+Sin[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cot(x)
y(x) → 0
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4.3 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.661, page 90

Internal problem ID [4470]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.661, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [‘y=_G(x,y’)‘]

− sin (y) + cos (y) y′ = −ex

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve((exp(x)-sin(y(x)))+cos(y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = − arcsin ((x+ c1) ex)

3 Solution by Mathematica
Time used: 11.754 (sec). Leaf size: 16� �
DSolve[(Exp[x]-Sin[y[x]])+Cos[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arcsin (ex(x+ c1))
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4.4 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.701, page 90

Internal problem ID [4471]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.701, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

xy +
(
x2 + 1

)
y′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve((x*y(x))+(1+x^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1√
x2 + 1

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 22� �
DSolve[(x*y[x])+(1+x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1√
x2 + 1

y(x) → 0
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4.5 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.741, page 90

Internal problem ID [4472]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.741, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

y3 + xy2 + y +
(
x3 + yx2 + x

)
y′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 99� �
dsolve((y(x)^3+x*y(x)^2+y(x))+(x^3+x^2*y(x)+x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x2 + 1(√
x2 + 1

√
−1+(x4+x2)c1

x2(x2+1) − 1
)
x

y(x) = −x2 − 1(√
x2 + 1

√
−1+(x4+x2)c1

x2(x2+1) + 1
)
x
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3 Solution by Mathematica
Time used: 3.726 (sec). Leaf size: 114� �
DSolve[(y[x]^3+x*y[x]^2+y[x])+(x^3+x^2*y[x]+x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
1
x3x(x2 + 1)√

1
x3x2 −

√
c1x3 − 1

x
+ c1x

y(x) → −

√
1
x3x(x2 + 1)√

1
x3x2 +

√
c1x3 − 1

x
+ c1x

y(x) → 0
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4.6 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.781, page 90

Internal problem ID [4473]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.781, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

3y − xy′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve((3*y(x))-(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1x
3

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 16� �
DSolve[(3*y[x])-(x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
3

y(x) → 0
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4.7 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.81, page 90

Internal problem ID [4474]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.81, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

y − 3xy′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve((y(x))-(3*x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1x
1
3

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 18� �
DSolve[(y[x])-(3*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
3
√
x

y(x) → 0
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4.8 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.83, page 90

Internal problem ID [4475]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ample 10.83, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _rational]

y
(
2y3x2 + 3

)
+ x
(
y3x2 − 1

)
y′ = 0

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 39� �
dsolve((y(x)*(2*x^2*y(x)^3+3))+(x*(x^2*y(x)^3-1))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = e−
11c1
3 x3

RootOf
(
11 e11c1_Z15 − e11c1_Z11 + 4x11

)5
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3 Solution by Mathematica
Time used: 10.635 (sec). Leaf size: 1081� �
DSolve[(y[x]*(2*x^2*y[x]^3+3))+(x*(x^2*y[x]^3-1))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → Root

[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 1
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 2
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 3
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 4
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 5
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 6
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 7
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 8
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 9
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 10
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 11
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 12
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 13
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 14
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 15
]
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4.9 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.1, page 90

Internal problem ID [4476]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.1, page 90.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2xy +
(
x2 + y2

)
y′ = −x2
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 321� �
dsolve((2*x*y(x)+x^2)+(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −

2

c1x
2 −

(
4−4x3c

3
2
1 +4

√
5x6c31−2x3c

3
2
1 +1

) 2
3

4


√
c1

(
4− 4x3c

3
2
1 + 4

√
5x6c31 − 2x3c

3
2
1 + 1

) 1
3

y(x) = −

(
1 + i

√
3
)(

4− 4x3c
3
2
1 + 4

√
5x6c31 − 2x3c

3
2
1 + 1

) 1
3

4√c1

−
(
i
√
3− 1

)√
c1 x

2(
4− 4x3c

3
2
1 + 4

√
5x6c31 − 2x3c

3
2
1 + 1

) 1
3

y(x)

=
4i
√
3 c1x2 + i

(
4− 4x3c

3
2
1 + 4

√
5x6c31 − 2x3c

3
2
1 + 1

) 2
3 √

3 + 4c1x2 −
(
4− 4x3c

3
2
1 + 4

√
5x6c31 − 2x3c

3
2
1 + 1

) 2
3

4
(
4− 4x3c

3
2
1 + 4

√
5x6c31 − 2x3c

3
2
1 + 1

) 1
3 √

c1
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3 Solution by Mathematica
Time used: 23.867 (sec). Leaf size: 597� �
DSolve[(2*x*y[x]+x^2)+(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√

−x3 +
√
5x6 − 2e3c1x3 + e6c1 + e3c1

3
√
2

−
3
√
2x2

3
√

−x3 +
√
5x6 − 2e3c1x3 + e6c1 + e3c1

y(x) →
3
√
2
(
2 + 2i

√
3
)
x2 + i22/3

(√
3 + i

) (
−x3 +

√
5x6 − 2e3c1x3 + e6c1 + e3c1

) 2/3

4 3
√
−x3 +

√
5x6 − 2e3c1x3 + e6c1 + e3c1

y(x) →
(
1− i

√
3
)
x2

22/3 3
√

−x3 +
√
5x6 − 2e3c1x3 + e6c1 + e3c1

−
(
1 + i

√
3
) 3
√

−x3 +
√
5x6 − 2e3c1x3 + e6c1 + e3c1

2 3
√
2

y(x) →
2 3
√
−2x2 + (−2)2/3

(√
5
√
x6 − x3

)2/3
2 3
√√

5
√
x6 − x3

y(x) →

(
2
√
5
√
x6 − 2x3

)2/3
− 2 3

√
2x2

2 3
√√

5
√
x6 − x3

y(x) →
3
√
2
(
2− 2i

√
3
)
x2 +

(
−1− i

√
3
) (

2
√
5
√
x6 − 2x3

)2/3
4 3
√√

5
√
x6 − x3
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4.10 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.2, page 90

Internal problem ID [4477]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.2, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

y cos (x) +
(
y3 + sin (x)

)
y′ = −x2

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve((x^2+y(x)*cos(x))+(y(x)^3+sin(x))*diff(y(x),x)=0,y(x), singsol=all)� �

x3

3 + sin (x) y(x) + y(x)4

4 + c1 = 0
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3 Solution by Mathematica
Time used: 60.198 (sec). Leaf size: 1119� �
DSolve[(x^2+y[x]*Cos[x])+(y[x]^3+Sin[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√√√√√ 4x3+
(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

√
6

− 1
2

√√√√√√√√√
− 8 (x3 − 3c1)

3 3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

− 2
3

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3 − 4

√
6 sin(x)√√√√√ 4x3+

(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

y(x) →

√√√√√ 4x3+
(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

√
6

+1
2

√√√√√√√√√
− 8 (x3 − 3c1)

3 3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

− 2
3

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3 − 4

√
6 sin(x)√√√√√ 4x3+

(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

y(x) → −

√√√√√ 4x3+
(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

√
6

− 1
2

√√√√√√√√√
− 8 (x3 − 3c1)

3 3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

− 2
3

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3 + 4

√
6 sin(x)√√√√√ 4x3+

(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

y(x)

→ 1
2

√√√√√√√√√
− 8 (x3 − 3c1)

3 3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

− 2
3

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3 + 4

√
6 sin(x)√√√√√ 4x3+

(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

−

√√√√√ 4x3+
(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

√
6
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4.11 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.3, page 90

Internal problem ID [4478]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.3, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

y2 + xyy′ = −x2 − x

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 49� �
dsolve((x^2+y(x)^2+x)+(x*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −
√
−18x4 − 24x3 + 36c1

6x

y(x) =
√
−18x4 − 24x3 + 36c1

6x

3 Solution by Mathematica
Time used: 0.242 (sec). Leaf size: 60� �
DSolve[(x^2+y[x]^2+x)+(x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
−x4

2 − 2x3

3 + c1

x

y(x) →

√
−x4

2 − 2x3

3 + c1

x
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4.12 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.4, page 90

Internal problem ID [4479]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.4, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

−2xy + ey +
(
y − x2 + x ey

)
y′ = −x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 28� �
dsolve((x-2*x*y(x)+exp(y(x)))+(y(x)-x^2+x*exp(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

−y(x)x2 + x ey(x) + x2

2 + y(x)2

2 + c1 = 0

3 Solution by Mathematica
Time used: 0.316 (sec). Leaf size: 35� �
DSolve[(x-2*x*y[x]+Exp[y[x]])+(y[x]-x^2+x*Exp[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x2(−y(x)) + x2

2 + xey(x) + y(x)2
2 = c1, y(x)

]
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4.13 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.5, page 90

Internal problem ID [4480]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.5, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

ex sin (y) + e−y −
(
x e−y − ex cos (y)

)
y′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve((exp(x)*sin(y(x))+exp(-y(x)))-(x*exp(-y(x))-exp(x)*cos(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

ex sin (y(x)) + x e−y(x) + c1 = 0

3 Solution by Mathematica
Time used: 0.377 (sec). Leaf size: 24� �
DSolve[(Exp[x]*Sin[y[x]]+Exp[-y[x]])-(x*Exp[-y[x]]-Exp[x]*Cos[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x
(
−e−y(x))− ex sin(y(x)) = c1, y(x)

]
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4.14 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.6, page 90

Internal problem ID [4481]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.6, page 90.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

−y2 − y −
(
x2 − y2 − x

)
y′ = −x2

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 28� �
dsolve((x^2-y(x)^2-y(x))-(x^2-y(x)^2-x)*diff(y(x),x)=0,y(x), singsol=all)� �

2y(x)− ln (y(x) + x) + ln (y(x)− x)− 2x− c1 = 0

3 Solution by Mathematica
Time used: 0.242 (sec). Leaf size: 32� �
DSolve[(x^2-y[x]^2-y[x])-(x^2-y[x]^2-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−e2x−2y(x)(y(x) + x)

2(x− y(x)) = c1, y(x)
]
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4.15 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.7, page 90

Internal problem ID [4482]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.7, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational]

y2x4 − y +
(
y4x2 − x

)
y′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve((x^4*y(x)^2-y(x))+(x^2*y(x)^4-x)*diff(y(x),x)=0,y(x), singsol=all)� �

−x3

3 − 1
y (x)x − y(x)3

3 + c1 = 0
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3 Solution by Mathematica
Time used: 60.131 (sec). Leaf size: 1507� �
DSolve[(x^4*y[x]^2-y[x])+(x^2*y[x]^4-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ 1
4


√
2

√√√√√8 3
√
2x+ 22/3

(
x9 − 6c1x6 + 9c12x3 +

√
x2 (−256x+ (x4 − 3c1x) 4)

)
2/3

x
3
√

x9 − 6c1x6 + 9c12x3 +
√

x2 (−256x+ (x4 − 3c1x) 4)

−2

√√√√√√√√−
3
√

x (x4 − 3c1x) 2 +
√
x2 (−256x+ (x4 − 3c1x) 4)
3
√
2x

− 2
√
2 (x3 − 3c1)√√√√ 8

3
√
2x+22/3

(
x9−6c1x6+9c12x3+

√
x2(−256x+(x4−3c1x)4)

)
2/3

x
3
√
x9 − 6c1x6 + 9c12x3 +

√
x2 (−256x+ (x4 − 3c1x) 4)

− 4 3
√
2

3
√

x9 − 6c1x6 + 9c12x3 +
√

x2 (−256x+ (x4 − 3c1x) 4)


y(x)

→ 1
4


√
2

√√√√√8 3
√
2x+ 22/3

(
x9 − 6c1x6 + 9c12x3 +

√
x2 (−256x+ (x4 − 3c1x) 4)

)
2/3

x
3
√

x9 − 6c1x6 + 9c12x3 +
√

x2 (−256x+ (x4 − 3c1x) 4)

+2

√√√√√√√√−
3
√

x (x4 − 3c1x) 2 +
√

x2 (−256x+ (x4 − 3c1x) 4)
3
√
2x

− 2
√
2 (x3 − 3c1)√√√√ 8

3
√
2x+22/3

(
x9−6c1x6+9c12x3+

√
x2(−256x+(x4−3c1x)4)

)
2/3

x
3
√

x9 − 6c1x6 + 9c12x3 +
√
x2 (−256x+ (x4 − 3c1x) 4)

− 4 3
√
2

3
√

x9 − 6c1x6 + 9c12x3 +
√
x2 (−256x+ (x4 − 3c1x) 4)


y(x)

→ 1
4

−
√
2

√√√√√8 3
√
2x+ 22/3

(
x9 − 6c1x6 + 9c12x3 +

√
x2 (−256x+ (x4 − 3c1x) 4)

)
2/3

x
3
√

x9 − 6c1x6 + 9c12x3 +
√
x2 (−256x+ (x4 − 3c1x) 4)

−2

√√√√√√√√−
3
√

x (x4 − 3c1x) 2 +
√
x2 (−256x+ (x4 − 3c1x) 4)
3
√
2x

+ 2
√
2 (x3 − 3c1)√√√√ 8

3
√
2x+22/3

(
x9−6c1x6+9c12x3+

√
x2(−256x+(x4−3c1x)4)

)
2/3

x
3
√

x9 − 6c1x6 + 9c12x3 +
√
x2 (−256x+ (x4 − 3c1x) 4)

− 4 3
√
2

3
√

x9 − 6c1x6 + 9c12x3 +
√
x2 (−256x+ (x4 − 3c1x) 4)


y(x)

→ 1
4

2

√√√√√√√√−
3
√

x (x4 − 3c1x) 2 +
√

x2 (−256x+ (x4 − 3c1x) 4)
3
√
2x

+ 2
√
2 (x3 − 3c1)√√√√ 8

3
√
2x+22/3

(
x9−6c1x6+9c12x3+

√
x2(−256x+(x4−3c1x)4)

)
2/3

x
3
√

x9 − 6c1x6 + 9c12x3 +
√
x2 (−256x+ (x4 − 3c1x) 4)

− 4 3
√
2

3
√

x9 − 6c1x6 + 9c12x3 +
√

x2 (−256x+ (x4 − 3c1x) 4)

−
√
2

√√√√√8 3
√
2x+ 22/3

(
x9 − 6c1x6 + 9c12x3 +

√
x2 (−256x+ (x4 − 3c1x) 4)

)
2/3

x
3
√

x9 − 6c1x6 + 9c12x3 +
√

x2 (−256x+ (x4 − 3c1x) 4)
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4.16 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.8, page 90

Internal problem ID [4483]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.8, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _rational]

y
(
2x+ y3

)
− x
(
2x− y3

)
y′ = 0

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 330� �
dsolve((y(x)*(2*x+y(x)^3))-(x*(2*x-y(x)^3))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =

(
−108x4+12

√
81x4−12c31 x2+8c31

) 1
3

2 + 2c21(
−108x4+12

√
81x4−12c31 x2+8c31

) 1
3
+ c1

3x
y(x)

=

(
−i

√
3− 1

) (
−108x4 + 12

√
81x4 − 12c31 x2 + 8c31

) 2
3 + 4

(
ic1

√
3− c1 +

(
−108x4 + 12

√
81x4 − 12c31 x2 + 8c31

) 1
3
)
c1

12
(
−108x4 + 12

√
81x4 − 12c31 x2 + 8c31

) 1
3
x

y(x)

=

(
i
√
3− 1

) (
−108x4 + 12

√
81x4 − 12c31 x2 + 8c31

) 2
3 + 4

(
−ic1

√
3− c1 +

(
−108x4 + 12

√
81x4 − 12c31 x2 + 8c31

) 1
3
)
c1

12
(
−108x4 + 12

√
81x4 − 12c31 x2 + 8c31

) 1
3
x
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3 Solution by Mathematica
Time used: 11.386 (sec). Leaf size: 371� �
DSolve[(y[x]*(2*x+y[x]^3))-(x*(2*x-y[x]^3))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−

2
3
√
2c12

3
√

27x4 + 3
√
81x8 + 12c13x4 + 2c13

+ 22/3 3
√
27x4 + 3

√
81x8 + 12c13x4 + 2c13 + 2c1

6x
y(x)

→

2
3
√
2
(
1+i

√
3
)
c12

3
√

27x4 + 3
√

81x8 + 12c13x4 + 2c13
+ 22/3

(
1− i

√
3
) 3
√
27x4 + 3

√
81x8 + 12c13x4 + 2c13 − 4c1

12x
y(x)

→

2
3
√
2
(
1−i

√
3
)
c12

3
√

27x4 + 3
√

81x8 + 12c13x4 + 2c13
+ 22/3

(
1 + i

√
3
) 3
√

27x4 + 3
√

81x8 + 12c13x4 + 2c13 − 4c1

12x
y(x) → 0
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4.17 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.9, page 90

Internal problem ID [4484]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.9, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

arctan (xy) + xy − 2xy2
y2x2 + 1 + (x2 − 2yx2) y′

y2x2 + 1 = 0

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 22� �
dsolve((arctan(x*y(x))+(x*y(x)-2*x*y(x)^2)/(1+x^2*y(x)^2))+((x^2-2*x^2*y(x))/(1+x^2*y(x)^2))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
tan

(
RootOf

(
x_Z− ln

(
sec (_Z)2

)
+ c1

))
x

3 Solution by Mathematica
Time used: 0.173 (sec). Leaf size: 26� �
DSolve[(ArcTan[x*y[x]]+(x*y[x]-2*x*y[x]^2)/(1+x^2*y[x]^2))+((x^2-2*x^2*y[x])/(1+x^2*y[x]^2))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
log
(
x2y(x)2 + 1

)
− x arctan(xy(x)) = c1, y(x)

]
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4.18 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.10, page 90

Internal problem ID [4485]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.10, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [‘y=_G(x,y’)‘]

(eyy − exx) y′ = −ex(x+ 1)

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 20� �
dsolve((exp(x)*(x+1))+(y(x)*exp(y(x))-x*exp(x))*diff(y(x),x)=0,y(x), singsol=all)� �

x e−y(x)+x + y(x)2

2 + c1 = 0

3 Solution by Mathematica
Time used: 0.291 (sec). Leaf size: 26� �
DSolve[(Exp[x]*(x+1))+(y[x]*Exp[y[x]]-x*Exp[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−1
2y(x)

2 − xex−y(x) = c1, y(x)
]
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4.19 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.11, page 90

Internal problem ID [4486]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.11, page 90.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

xy + 1
y

+ (−x+ 2y) y′
y2

= 0

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve(((x*y(x)+1)/y(x))+((2*y(x)-x)/y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = − x

2 LambertW
(
− e

x2
4 c1x
2

)
3 Solution by Mathematica
Time used: 3.618 (sec). Leaf size: 37� �
DSolve[((x*y[x]+1)/y[x])+((2*y[x]-x)/y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x

2W
(
−1

2xe
1
4 (x2−2c1)

)
y(x) → 0
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4.20 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.12, page 90

Internal problem ID [4487]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.12, page 90.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

y2 − 3xy +
(
xy − x2) y′ = 2x2

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 59� �
dsolve((y(x)^2-3*x*y(x)-2*x^2)+(x*y(x)-x^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1x
2 −

√
2c21x4 + 1

c1x

y(x) = c1x
2 +

√
2c21x4 + 1

c1x

3 Solution by Mathematica
Time used: 0.657 (sec). Leaf size: 99� �
DSolve[(y[x]^2-3*x*y[x]-2*x^2)+(x*y[x]-x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x−
√
2x4 + e2c1

x

y(x) → x+
√
2x4 + e2c1

x

y(x) → x−
√
2
√
x4

x

y(x) →
√
2
√
x4

x
+ x
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4.21 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.13, page 90

Internal problem ID [4488]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.13, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

y(y + 2x+ 1)− x(x+ 2y − 1) y′ = 0
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 389� �
dsolve((y(x)*(y(x)+2*x+1))-(x*(2*y(x)+x-1))*diff(y(x),x)=0,y(x), singsol=all)� �
y(x) =

3 5 1
3

(
x
(√

5
√

80c1x2−160c1x+80c1−x
c1

+ 20x− 20
)
c21

) 1
3

40c1

+ 3x5 2
3

40
(
x
(√

5
√

80c1x2−160c1x+80c1−x
c1

+ 20x− 20
)
c21

) 1
3
+ x− 1

y(x)

=

3 5
1
3
(
−i

√
3−1

)(
x

(
√
5
√

80(x−1)2c1−x
c1

+20x−20
)
c21

) 2
3

80 +

3c1


80(x−1)

x

√
5

√
80(x−1)2c1−x

c1
+20x−20

c21

 1
3

3 +
(
i
√
3−1

)
5
2
3 x


80

c1

(
x

(√
5
√

80(x−1)2c1−x
c1

+ 20x− 20
)
c21

) 1
3

y(x)

=

3
(
i
√
3−1

)
5
1
3

(
x

(
√
5
√

80(x−1)2c1−x
c1

+20x−20
)
c21

) 2
3

80 +

3

−
80(1−x)

x

√
5

√
80(x−1)2c1−x

c1
+20x−20

c21

 1
3

3 +
(
−i

√
3−1

)
5
2
3 x

c1

80

c1

(
x

(√
5
√

80(x−1)2c1−x
c1

+ 20x− 20
)
c21

) 1
3
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3 Solution by Mathematica
Time used: 41.715 (sec). Leaf size: 463� �
DSolve[(y[x]*(y[x]+2*x+1))-(x*(2*y[x]+x-1))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → −

3
√
2x

3
√

−27c12x2 +
√

108c13x3 + (27c12x− 27c12x2) 2 + 27c12x

+
3
√

−27c12x2 +
√

108c13x3 + (27c12x− 27c12x2) 2 + 27c12x
3 3
√
2c1

+ x− 1

y(x) →
(
1 + i

√
3
)
x

22/3 3
√

−27c12x2 +
√
108c13x3 + (27c12x− 27c12x2) 2 + 27c12x

−
(
1− i

√
3
) 3
√

−27c12x2 +
√

108c13x3 + (27c12x− 27c12x2) 2 + 27c12x
6 3
√
2c1

+ x− 1

y(x) →
(
1− i

√
3
)
x

22/3 3
√

−27c12x2 +
√
108c13x3 + (27c12x− 27c12x2) 2 + 27c12x

−
(
1 + i

√
3
) 3
√

−27c12x2 +
√
108c13x3 + (27c12x− 27c12x2) 2 + 27c12x

6 3
√
2c1

+ x− 1

y(x) → Indeterminate
y(x) → x− 1
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4.22 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.14, page 90

Internal problem ID [4489]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.14, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

y(2x− y − 1) + x(2y − x− 1) y′ = 0
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 391� �
dsolve((y(x)*(2*x-y(x)-1))+(x*(2*y(x)-x-1))*diff(y(x),x)=0,y(x), singsol=all)� �
y(x) =

3 5 1
3

(
x
(√

5
√

80c1x2+160c1x+80c1−x
c1

− 20x− 20
)
c21

) 1
3

40c1

+ 3x5 2
3

40
(
x
(√

5
√

80c1x2+160c1x+80c1−x
c1

− 20x− 20
)
c21

) 1
3
− 1− x

y(x)

=

3 5
1
3
(
−i

√
3−1

)−20

−
√
5

√
80(1+x)2c1−x

c1
20 +x+1

c21x


2
3

80 +

3c1



80(−1−x)

−20

−

√
5

√
80(1+x)2c1−x

c1
20 +x+1

c21x


1
3

3 +
(
i
√
3−1

)
5
2
3 x


80−20

−
√
5
√

80(1+x)2c1−x
c1

20 + x+ 1

 c21x

 1
3

c1

y(x)

=

3
(
i
√
3−1

)
5
1
3

−20

−
√
5

√
80(1+x)2c1−x

c1
20 +x+1

c21x


2
3

80 +

3


−

80(1+x)

−20

−

√
5

√
80(1+x)2c1−x

c1
20 +x+1

c21x


1
3

3 +
(
−i

√
3−1

)
5
2
3 x


c1

80−20

−
√
5
√

80(1+x)2c1−x
c1

20 + x+ 1

 c21x

 1
3

c1
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3 Solution by Mathematica
Time used: 40.285 (sec). Leaf size: 471� �
DSolve[(y[x]*(2*x-y[x]-1))+(x*(2*y[x]-x-1))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → −

3
√
2x

3
√

27c12x2 +
√

(27c12x2 + 27c12x) 2 − 108c13x3 + 27c12x

−
3
√

27c12x2 +
√

(27c12x2 + 27c12x) 2 − 108c13x3 + 27c12x
3 3
√
2c1

− x− 1

y(x) →
(
1 + i

√
3
)
x

22/3 3
√

27c12x2 +
√

(27c12x2 + 27c12x) 2 − 108c13x3 + 27c12x

+
(
1− i

√
3
) 3
√
27c12x2 +

√
(27c12x2 + 27c12x) 2 − 108c13x3 + 27c12x

6 3
√
2c1

− x− 1

y(x) →
(
1− i

√
3
)
x

22/3 3
√

27c12x2 +
√

(27c12x2 + 27c12x) 2 − 108c13x3 + 27c12x

+
(
1 + i

√
3
) 3
√

27c12x2 +
√

(27c12x2 + 27c12x) 2 − 108c13x3 + 27c12x
6 3
√
2c1

− x− 1

y(x) → Indeterminate
y(x) → −x− 1
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4.23 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.15, page 90

Internal problem ID [4490]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.15, page 90.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

y2 + 12yx2 +
(
2xy + 4x3) y′ = 0

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 51� �
dsolve((y(x)^2+12*x^2*y(x))+(2*x*y(x)+4*x^3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −2x3 +
√
4x6 + c1x

x

y(x) = −2x3 −
√
4x6 + c1x

x

3 Solution by Mathematica
Time used: 0.431 (sec). Leaf size: 58� �
DSolve[(y[x]^2+12*x^2*y[x])+(2*x*y[x]+4*x^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
2x3 +

√
x (4x5 + c1)
x

y(x) → −2x3 +
√
x (4x5 + c1)
x
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4.24 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.16, page 90

Internal problem ID [4491]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.16, page 90.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3(x+ y)2 + x(3y + 2x) y′ = 0

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 63� �
dsolve((3*(y(x)+x)^2)+(x*(3*y(x)+2*x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −4c1x2 −
√
−2c21x4 + 6

6c1x

y(x) = −4c1x2 +
√

−2c21x4 + 6
6c1x

3 Solution by Mathematica
Time used: 1.741 (sec). Leaf size: 135� �
DSolve[(3*(y[x]+x)^2)+(x*(3*y[x]+2*x))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −4x2 +
√
−2x4 + 6e4c1
6x

y(x) → −4x2 +
√
−2x4 + 6e4c1
6x

y(x) → −
√
2
√
−x4 + 4x2

6x

y(x) →
√
2
√
−x4 − 4x2

6x
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4.25 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.17, page 90

Internal problem ID [4492]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.17, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational]

y −
(
x2 + y2 + x

)
y′ = 0

3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 40� �
dsolve((y(x))-(y(x)^2+x^2+x)*diff(y(x),x)=0,y(x), singsol=all)� �

e−2iy(x)(ix+ y(x)) + 2(iy(x) + x) c1
2iy (x) + 2x = 0

3 Solution by Mathematica
Time used: 0.102 (sec). Leaf size: 18� �
DSolve[(y[x])-(y[x]^2+x^2+x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
y(x)− arctan

(
x

y(x)

)
= c1, y(x)

]
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4.26 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.18, page 90

Internal problem ID [4493]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.18, page 90.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2xy +
(
x2 + y2 + a

)
y′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 313� �
dsolve((2*x*y(x))+(x^2+y(x)^2+a)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x) =

(
−12c1 + 4

√
4x6 + 12a x4 + 12x2a2 + 4a3 + 9c21

) 2
3 − 4x2 − 4a

2
(
−12c1 + 4

√
4x6 + 12a x4 + 12x2a2 + 4a3 + 9c21

) 1
3

y(x) =

−

(
i
√
3

4 + 1
4

)(
−12c1 + 4

√
4x6 + 12a x4 + 12x2a2 + 4a3 + 9c21

) 2
3 + (x2 + a)

(
i
√
3− 1

)
(
−12c1 + 4

√
4x6 + 12a x4 + 12x2a2 + 4a3 + 9c21

) 1
3

y(x) =

(
i
√
3−1

)(
−12c1+4

√
4x6+12a x4+12x2a2+4a3+9c21

) 2
3

4 + (x2 + a)
(
1 + i

√
3
)(

−12c1 + 4
√

4x6 + 12a x4 + 12x2a2 + 4a3 + 9c21
) 1

3
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3 Solution by Mathematica
Time used: 4.319 (sec). Leaf size: 299� �
DSolve[(2*x*y[x])+(x^2+y[x]^2+a)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

3
√
2
(√

4 (a+ x2)3 + 9c12 + 3c1
)

2/3 − 2a− 2x2

22/3 3

√√
4 (a+ x2)3 + 9c12 + 3c1

y(x) →
(
1 + i

√
3
)
(a+ x2)

22/3 3

√√
4 (a+ x2)3 + 9c12 + 3c1

+
i
(√

3 + i
) 3

√√
4 (a+ x2)3 + 9c12 + 3c1
2 3
√
2

y(x) →
(
1− i

√
3
)
(a+ x2)

22/3 3

√√
4 (a+ x2)3 + 9c12 + 3c1

−
i
(√

3− i
) 3

√√
4 (a+ x2)3 + 9c12 + 3c1
2 3
√
2

y(x) → 0
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4.27 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.19, page 90

Internal problem ID [4494]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Ex-
ercise 10.19, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

2xy +
(
x2 + y2 + a

)
y′ = −x2 − b

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 505� �
dsolve((2*x*y(x)+x^2+b)+(y(x)^2+x^2+a)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x)

=
−4x2 − 4a+

(
−4x3 − 12xb− 12c1 + 4

√
5x6 + 6 (2a+ b)x4 + 6c1x3 + 3 (4a2 + 3b2)x2 + 18xbc1 + 4a3 + 9c21

) 2
3

2
(
−4x3 − 12xb− 12c1 + 4

√
5x6 + 6 (2a+ b)x4 + 6c1x3 + 3 (4a2 + 3b2)x2 + 18xbc1 + 4a3 + 9c21

) 1
3

y(x) =

−

(
i
√
3

4 + 1
4

)(
−4x3 − 12xb− 12c1 + 4

√
5x6 + 6 (2a+ b)x4 + 6c1x3 + 3 (4a2 + 3b2)x2 + 18xbc1 + 4a3 + 9c21

) 2
3 + (x2 + a)

(
i
√
3− 1

)
(
−4x3 − 12xb− 12c1 + 4

√
5x6 + 6 (2a+ b)x4 + 6c1x3 + 3 (4a2 + 3b2)x2 + 18xbc1 + 4a3 + 9c21

) 1
3

y(x)

=

(
i
√
3−1

)(
−4x3−12xb−12c1+4

√
5x6+6(2a+b)x4+6c1x3+3(4a2+3b2)x2+18xbc1+4a3+9c21

) 2
3

4 + (x2 + a)
(
1 + i

√
3
)(

−4x3 − 12xb− 12c1 + 4
√

5x6 + 6 (2a+ b)x4 + 6c1x3 + 3 (4a2 + 3b2)x2 + 18xbc1 + 4a3 + 9c21
) 1

3
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3 Solution by Mathematica
Time used: 6.558 (sec). Leaf size: 396� �
DSolve[(2*x*y[x]+x^2+b)+(y[x]^2+x^2+a)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

3
√
2
(√

4 (a+ x2)3 + (3bx+ x3 − 3c1) 2 − 3bx− x3 + 3c1
)

2/3 − 2a− 2x2

22/3 3

√√
4 (a+ x2)3 + (3bx+ x3 − 3c1) 2 − 3bx− x3 + 3c1

y(x) →
(
1 + i

√
3
)
(a+ x2)

22/3 3

√√
4 (a+ x2)3 + (3bx+ x3 − 3c1) 2 − 3bx− x3 + 3c1

+
i
(√

3 + i
) 3

√√
4 (a+ x2)3 + (3bx+ x3 − 3c1) 2 − 3bx− x3 + 3c1

2 3
√
2

y(x) →
(
1− i

√
3
)
(a+ x2)

22/3 3

√√
4 (a+ x2)3 + (3bx+ x3 − 3c1) 2 − 3bx− x3 + 3c1

−
i
(√

3− i
) 3

√√
4 (a+ x2)3 + (3bx+ x3 − 3c1) 2 − 3bx− x3 + 3c1

2 3
√
2
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5.1 problem Exercise 11.1, page 97
Internal problem ID [4495]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.1, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

xy′ + y = x3

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(x*diff(y(x),x)+y(x)=x^3,y(x), singsol=all)� �

y(x) = x4 + 4c1
4x

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 19� �
DSolve[x*y'[x]+y[x]==x^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3

4 + c1
x
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5.2 problem Exercise 11.2, page 97
Internal problem ID [4496]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.2, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

y′ + ya = b

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x)+a*y(x)=b,y(x), singsol=all)� �

y(x) = e−axc1a+ b

a

3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 29� �
DSolve[y'[x]+a*y[x]==b,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → b

a
+ c1e

−ax

y(x) → b

a
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5.3 problem Exercise 11.3, page 97
Internal problem ID [4497]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.3, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

xy′ + y − ln (x) y2 = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(x*diff(y(x),x)+y(x)=y(x)^2*ln(x),y(x), singsol=all)� �

y(x) = 1
1 + c1x+ ln (x)

3 Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 20� �
DSolve[x*y'[x]+y[x]==y[x]^2*Log[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
log(x) + c1x+ 1

y(x) → 0
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5.4 problem Exercise 11.4, page 97
Internal problem ID [4498]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.4, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

x′ + 2yx = e−y2

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(x(y),y)+2*y*x(y)=exp(-y^2),x(y), singsol=all)� �

x(y) = (y + c1) e−y2

3 Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 17� �
DSolve[x'[y]+2*y*x[y]==Exp[-y^2],x[y],y,IncludeSingularSolutions -> True]� �

x(y) → e−y2(y + c1)
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5.5 problem Exercise 11.5, page 97
Internal problem ID [4499]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.5, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

r′ −
(
r + e−θ

)
tan (θ) = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(r(theta),theta)=(r(theta)+exp(-theta))*tan(theta),r(theta), singsol=all)� �

r(θ) = (− tan (θ)− 1) e−θ

2 + sec (θ) c1

3 Solution by Mathematica
Time used: 0.093 (sec). Leaf size: 24� �
DSolve[r'[\[Theta]]==(r[\[Theta]]+Exp[-\[Theta]])*Tan[\[Theta]],r[\[Theta]],\[Theta],IncludeSingularSolutions -> True]� �

r(θ) → −1
2e

−θ(tan(θ) + 1) + c1 sec(θ)
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5.6 problem Exercise 11.6, page 97
Internal problem ID [4500]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.6, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

y′ − 2xy
x2 + 1 = 1

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)-(2*x*y(x))/(x^2+1)=1,y(x), singsol=all)� �

y(x) = (arctan (x) + c1)
(
x2 + 1

)
3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 16� �
DSolve[y'[x]-2*x*y[x]/(x^2+1)==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
x2 + 1

)
(arctan(x) + c1)
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5.7 problem Exercise 11.7, page 97
Internal problem ID [4501]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.7, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

y′ + y − y3x = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
dsolve(diff(y(x),x)+y(x)=x*y(x)^3,y(x), singsol=all)� �

y(x) = − 2√
2 + 4 e2xc1 + 4x

y(x) = 2√
2 + 4 e2xc1 + 4x

3 Solution by Mathematica
Time used: 2.606 (sec). Leaf size: 50� �
DSolve[y'[x]+y[x]==x*y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
x+ c1e2x + 1

2

y(x) → 1√
x+ c1e2x + 1

2

y(x) → 0
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5.8 problem Exercise 11.8, page 97
Internal problem ID [4502]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.8, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

(
−x3 + 1

)
y′ − 2(x+ 1) y − y

5
2 = 0

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 38� �
dsolve((1-x^3)*diff(y(x),x)-2*(1+x)*y(x)=y(x)^(5/2),y(x), singsol=all)� �

−(x− 1)2 c1
x2 + x+ 1 + 1

y (x)
3
2
+ 3

4x2 + 4x+ 4 = 0

3 Solution by Mathematica
Time used: 3.024 (sec). Leaf size: 41� �
DSolve[(1-x^3)*y'[x]-2*(1+x)*y[x]==y[x]^(5/2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 3
√
2(

−3+4c1(x−1)2
x2+x+1

)
2/3

y(x) → 0
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5.9 problem Exercise 11.9, page 97
Internal problem ID [4503]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.9, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

tan (θ) r′ − r = tan (θ)2

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(tan(theta)*diff(r(theta),theta)-r(theta)=tan(theta)^2,r(theta), singsol=all)� �

r(θ) = (ln (sec (θ) + tan (θ)) + c1) sin (θ)

3 Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 14� �
DSolve[Tan[\[Theta]]*r'[\[Theta]]-r[\[Theta]]==Tan[\[Theta]]^2,r[\[Theta]],\[Theta],IncludeSingularSolutions -> True]� �

r(θ) → sin(θ)
(
coth−1(sin(θ)) + c1

)
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5.10 problem Exercise 11.11, page 97
Internal problem ID [4504]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.11, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y′ + 2y = 3 e−2x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)+2*y(x)=3*exp(-2*x),y(x), singsol=all)� �

y(x) = (3x+ c1) e−2x

3 Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 17� �
DSolve[y'[x]+2*y[x]==3*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(3x+ c1)
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5.11 problem Exercise 11.12, page 97
Internal problem ID [4505]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.12, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y′ + 2y = 3 e−2x

4

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)+2*y(x)=3/4*exp(-2*x),y(x), singsol=all)� �

y(x) = (3x+ 4c1) e−2x

4

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 22� �
DSolve[y'[x]+2*y[x]==3/4*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

−2x(3x+ 4c1)
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5.12 problem Exercise 11.11, page 97
Internal problem ID [4506]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.11, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y′ + 2y = sin (x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x)+2*y(x)=sin(x),y(x), singsol=all)� �

y(x) = −cos (x)
5 + 2 sin (x)

5 + e−2xc1

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 26� �
DSolve[y'[x]+2*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 sin(x)
5 − cos(x)

5 + c1e
−2x
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5.13 problem Exercise 11.14, page 97
Internal problem ID [4507]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.14, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

y′ + y cos (x) = e2x

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve(diff(y(x),x)+y(x)*cos(x)=exp(2*x),y(x), singsol=all)� �

y(x) =
(∫

e2x+sin(x)dx+ c1

)
e− sin(x)

3 Solution by Mathematica
Time used: 0.735 (sec). Leaf size: 32� �
DSolve[y'[x]+y[x]*Cos[x]==Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e− sin(x)
(∫ x

1
e2K[1]+sin(K[1])dK[1] + c1

)
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5.14 problem Exercise 11.15, page 97
Internal problem ID [4508]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.15, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

y′ + y cos (x) = sin (2x)
2

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)+y(x)*cos(x)=1/2*sin(2*x),y(x), singsol=all)� �

y(x) = sin (x)− 1 + e− sin(x)c1

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 18� �
DSolve[y'[x]+y[x]*Cos[x]==1/2*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x) + c1e
− sin(x) − 1
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5.15 problem Exercise 11.16, page 97
Internal problem ID [4509]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.16, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

xy′ + y = sin (x)x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x*diff(y(x),x)+y(x)=x*sin(x),y(x), singsol=all)� �

y(x) = −x cos (x) + sin (x) + c1
x

3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 19� �
DSolve[x*y'[x]+y[x]==x*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x)− x cos(x) + c1
x
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5.16 problem Exercise 11.17, page 97
Internal problem ID [4510]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.17, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

−y + xy′ = x2 sin (x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x)-y(x)=x^2*sin(x),y(x), singsol=all)� �

y(x) = (− cos (x) + c1)x

3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 14� �
DSolve[x*y'[x]-y[x]==x^2*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(− cos(x) + c1)
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5.17 problem Exercise 11.18, page 97
Internal problem ID [4511]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.18, page 97.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class D‘], _rational, _Bernoulli]

xy′ + xy2 − y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(x*diff(y(x),x)+x*y(x)^2-y(x)=0,y(x), singsol=all)� �

y(x) = 2x
x2 + 2c1

3 Solution by Mathematica
Time used: 0.149 (sec). Leaf size: 23� �
DSolve[x*y'[x]+x*y[x]^2-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x
x2 + 2c1

y(x) → 0
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5.18 problem Exercise 11.19, page 97
Internal problem ID [4512]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.19, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

xy′ − y(2 ln (x) y − 1) = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x*diff(y(x),x)-y(x)*(2*y(x)*ln(x)-1)=0,y(x), singsol=all)� �

y(x) = 1
2 + c1x+ 2 ln (x)

3 Solution by Mathematica
Time used: 0.14 (sec). Leaf size: 22� �
DSolve[x*y'[x]-y[x]*(2*y[x]*Log[x]-1)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2 log(x) + c1x+ 2

y(x) → 0
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5.19 problem Exercise 11.20, page 97
Internal problem ID [4513]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.20, page 97.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class D‘], _rational, _Bernoulli]

x2(x− 1) y′ − y2 − x(−2 + x) y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x^2*(x-1)*diff(y(x),x)-y(x)^2-x*(x-2)*y(x)=0,y(x), singsol=all)� �

y(x) = x2

1 + c1 (x− 1)

3 Solution by Mathematica
Time used: 0.191 (sec). Leaf size: 25� �
DSolve[x^2*(x-1)*y'[x]-y[x]^2-x*(x-2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

c1(−x) + 1 + c1
y(x) → 0
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5.20 problem Exercise 11.21, page 97
Internal problem ID [4514]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.21, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y′ − y = ex

With initial conditions

[y(0) = 1]

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 10� �
dsolve([diff(y(x),x)-y(x)=exp(x),y(0) = 1],y(x), singsol=all)� �

y(x) = ex(1 + x)

3 Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 12� �
DSolve[{y'[x]-y[x]==Exp[x],{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(x+ 1)
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5.21 problem Exercise 11.22, page 97
Internal problem ID [4515]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.22, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

y′ + y

x
− y2

x
= 0

With initial conditions

[y(−1) = 1]

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve([diff(y(x),x)+y(x)/x=y(x)^2/x,y(-1) = 1],y(x), singsol=all)� �

y(x) = 1

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 6� �
DSolve[{y'[x]+y[x]/x==y[x]^2/x,{y[-1]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1

114



5.22 problem Exercise 11.23, page 97
Internal problem ID [4516]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.23, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

2 cos (x) y′ − sin (x) y + y3 = 0

With initial conditions

[y(0) = 1]

3 Solution by Maple
Time used: 0.578 (sec). Leaf size: 33� �
dsolve([2*cos(x)*diff(y(x),x)=y(x)*sin(x)-y(x)^3,y(0) = 1],y(x), singsol=all)� �

y(x) =

√(
2 cos (x)2 − 1

)
(− sin (x) + cos (x))

2 cos (x)2 − 1

3 Solution by Mathematica
Time used: 0.369 (sec). Leaf size: 14� �
DSolve[{2*Cos[x]*y'[x]==y[x]*Sin[x]-y[x]^3,{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1√
sin(x) + cos(x)
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5.23 problem Exercise 11.24, page 97
Internal problem ID [4517]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.24, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

(x− cos (y)) y′ + tan (y) = 0

With initial conditions [
y(1) = π

6

]
3 Solution by Maple
Time used: 1.172 (sec). Leaf size: 29� �
dsolve([(x-cos(y(x)))*diff(y(x),x)+tan(y(x))=0,y(1) = 1/6*Pi],y(x), singsol=all)� �

y(x) = RootOf
(
24 sin (_Z)x− 6 sin (2_Z) + 2π + 3

√
3− 12_Z− 12

)
3 Solution by Mathematica
Time used: 0.216 (sec). Leaf size: 45� �
DSolve[{(x-Cos[y[x]])*y'[x]+Tan[y[x]]==0,{y[1]==Pi/6}},y[x],x,IncludeSingularSolutions -> True]� �
Solve

[
x = 1

24

(
12− 3

√
3− 2π

)
csc(y(x)) +

(
y(x)
2 + 1

4 sin(2y(x))
)
csc(y(x)), y(x)

]
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5.24 problem Exercise 11.26, page 97
Internal problem ID [4518]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.26, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, _Riccati]

y′ − 2y
x

+ y2

x
= x3

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x)=x^3+2/x*y(x)-1/x*y(x)^2,y(x), singsol=all)� �

y(x) = i tan
(
−ix2

2 + c1

)
x2

3 Solution by Mathematica
Time used: 0.162 (sec). Leaf size: 75� �
DSolve[y'[x]==x^3+2/x*y[x]-1/x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
x2
(
i cosh

(
x2

2

)
+ c1 sinh

(
x2

2

))
i sinh

(
x2

2

)
+ c1 cosh

(
x2

2

)
y(x) → x2 tanh

(
x2

2

)
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5.25 problem Exercise 11.27, page 97
Internal problem ID [4519]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.27, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Riccati]

y′ + sin (x) y2 = 2 sec (x) tan (x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(diff(y(x),x)=2*tan(x)*sec(x)-y(x)^2*sin(x),y(x), singsol=all)� �

y(x) = −2c1 cos (x)2 + sec (x)
c1 cos (x)3 + 1

3 Solution by Mathematica
Time used: 0.88 (sec). Leaf size: 32� �
DSolve[y'[x]==2*Tan[x]*Sec[x]-y[x]^2*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sec(x) (−2 cos3(x) + c1)
cos3(x) + c1

y(x) → sec(x)
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5.26 problem Exercise 11.28, page 97
Internal problem ID [4520]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.28, page 97.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class G‘], _rational, _Riccati]

y′ + y

x
+ y2 = 1

x2

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)=1/x^2-y(x)/x-y(x)^2,y(x), singsol=all)� �

y(x) = −tanh (− ln (x) + c1)
x

3 Solution by Mathematica
Time used: 1.192 (sec). Leaf size: 62� �
DSolve[y'[x]==1/x^2-y[x]/x-y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → i tan(c1 − i log(x))
x

y(x) → −−x2 + e2iInterval[{0,π}]

x3 + xe2iInterval[{0,π}]
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5.27 problem Exercise 11.29, page 97
Internal problem ID [4521]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11,
Bernoulli Equations
Problem number: Exercise 11.29, page 97.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, _Riccati]

y′ − y

x
+ y2

x2 = 1

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(diff(y(x),x)=1+y(x)/x-y(x)^2/x^2,y(x), singsol=all)� �

y(x) = tanh (ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.539 (sec). Leaf size: 43� �
DSolve[y'[x]==1+y[x]/x-y[x]^2/x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(x2 − e2c1)
x2 + e2c1

y(x) → −x
y(x) → x
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6.1 problem Exercise 12.1, page 103
Internal problem ID [4522]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.1, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

2xyy′ + y2(x+ 1) = ex

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 59� �
dsolve(2*x*y(x)*diff(y(x),x)+(1+x)*y(x)^2=exp(x),y(x), singsol=all)� �

y(x) = −
√
2
√

x ex (e2x + 2c1) e−x

2x

y(x) =
√
2
√

x ex (e2x + 2c1) e−x

2x

3 Solution by Mathematica
Time used: 7.324 (sec). Leaf size: 66� �
DSolve[2*x*y[x]*y'[x]+(1+x)*y[x]^2==Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
ex + 2c1e−x

√
2
√
x

y(x) →
√
ex + 2c1e−x

√
2
√
x
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6.2 problem Exercise 12.2, page 103
Internal problem ID [4523]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.2, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [‘y=_G(x,y’)‘]

cos (y) y′ + sin (y) = x2

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(cos(y(x))*diff(y(x),x)+sin(y(x))=x^2,y(x), singsol=all)� �

y(x) = − arcsin
(
−x2 + 2x− 2 + e−xc1

)
3 Solution by Mathematica
Time used: 14.047 (sec). Leaf size: 23� �
DSolve[Cos[y[x]]*y'[x]+Sin[y[x]]==x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arcsin
(
x2 − 2x− 2c1e−x + 2

)
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6.3 problem Exercise 12.3, page 103
Internal problem ID [4524]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.3, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

(x+ 1) y′ − y − (x+ 1)
√

1 + y = 1

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 81� �
dsolve((x+1)*diff(y(x),x)-(y(x)+1)=(x+1)*sqrt(y(x)+1),y(x), singsol=all)� �
(−c1y(x) + 1 + c1x

2 + (2c1 + 1)x)
√

y (x) + 1− (1 + x) (−c1y(x)− 1 + c1x
2 + (2c1 − 1)x)

(x2 + 2x− y (x))
(
−
√

y (x) + 1 + 1 + x
)

= 0

3 Solution by Mathematica
Time used: 0.244 (sec). Leaf size: 60� �
DSolve[(x+1)*y'[x]-(y[x]+1)==(x+1)*Sqrt[y[x]+1],y[x],x,IncludeSingularSolutions -> True]� �
Solve

2√y(x) + 1 arctan
(

x+1√
−y(x)−1

)
√

−y(x)− 1
+log

(
y(x)−(x+1)2+1

)
− log(x+1) = c1, y(x)
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6.4 problem Exercise 12.4, page 103
Internal problem ID [4525]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.4, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _dAlembert]

ey(1 + y′) = ex

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 19� �
dsolve(exp(y(x))*(diff(y(x),x)+1)=exp(x),y(x), singsol=all)� �

y(x) = x− ln (2) + ln
(
1 + e−2xc1

)
3 Solution by Mathematica
Time used: 1.32 (sec). Leaf size: 22� �
DSolve[Exp[y[x]]*(y'[x]+1)==Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x+ log
(
e2x

2 + c1

)
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6.5 problem Exercise 12.5, page 103
Internal problem ID [4526]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.5, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

y′ sin (y) + sin (x) cos (y) = sin (x)

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)*sin(y(x))+sin(x)*cos(y(x))=sin(x),y(x), singsol=all)� �

y(x) = arccos
(
e− cos(x)c1 + 1

)
3 Solution by Mathematica
Time used: 0.792 (sec). Leaf size: 81� �
DSolve[y'[x]*Sin[y[x]]+Sin[x]*Cos[y[x]]==Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0

Solve
[
2 cos(x) tan

(
y(x)
2

)
earctanh(cos(y(x)))

−
√

sin2(y(x)) csc
(
y(x)
2

)
sec
(
y(x)
2

)(
log
(
sec2

(
y(x)
2

))
− 2 log

(
tan

(
y(x)
2

)))
= c1, y(x)

]
y(x) → 0
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6.6 problem Exercise 12.6, page 103
Internal problem ID [4527]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.6, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _dAlembert]

(x− y)2 y′ = 4

3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 27� �
dsolve((x-y(x))^2*diff(y(x),x)=4,y(x), singsol=all)� �

y(x) + ln (y(x)− x− 2)− ln (y(x)− x+ 2)− c1 = 0

3 Solution by Mathematica
Time used: 0.202 (sec). Leaf size: 36� �
DSolve[(x-y[x])^2*y'[x]==4,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
y(x)− 4

(
1
4 log(y(x)− x+ 2)− 1

4 log(−y(x) + x+ 2)
)

= c1, y(x)
]
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6.7 problem Exercise 12.7, page 103
Internal problem ID [4528]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.7, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

−y + xy′ −
√

x2 + y2 = 0

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 26� �
dsolve(x*diff(y(x),x)-y(x)=sqrt(x^2+y(x)^2),y(x), singsol=all)� �

−c1x
2 +

√
x2 + y (x)2 + y(x)
x2 = 0

3 Solution by Mathematica
Time used: 0.337 (sec). Leaf size: 27� �
DSolve[x*y'[x]-y[x]==Sqrt[x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

−c1
(
−1 + e2c1x2)
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6.8 problem Exercise 12.8, page 103
Internal problem ID [4529]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.8, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

(3x+ 2y + 1) y′ + 3y = −4x− 2

3 Solution by Maple
Time used: 0.11 (sec). Leaf size: 32� �
dsolve((3*x+2*y(x)+1)*diff(y(x),x)+(4*x+3*y(x)+2)=0,y(x), singsol=all)� �

y(x) =
−
√

(x− 1)2 c21 + 4 + (−3x− 1) c1
2c1

3 Solution by Mathematica
Time used: 0.123 (sec). Leaf size: 61� �
DSolve[(3*x+2*y[x]+1)*y'[x]+(4*x+3*y[x]+2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−
√
x2 − 2x+ 1 + 4c1 − 3x− 1

)
y(x) → 1

2

(√
x2 − 2x+ 1 + 4c1 − 3x− 1

)
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6.9 problem Exercise 12.9, page 103
Internal problem ID [4530]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.9, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

(
x2 − y2

)
y′ − 2xy = 0

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
dsolve((x^2-y(x)^2)*diff(y(x),x)=2*x*y(x),y(x), singsol=all)� �

y(x) = 1−
√
−4x2c21 + 1
2c1

y(x) = 1 +
√
−4x2c21 + 1
2c1

3 Solution by Mathematica
Time used: 0.982 (sec). Leaf size: 66� �
DSolve[(x^2-y[x]^2)*y'[x]==2*x*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
ec1 −

√
−4x2 + e2c1

)
y(x) → 1

2

(√
−4x2 + e2c1 + ec1

)
y(x) → 0
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6.10 problem Exercise 12.10, page 103
Internal problem ID [4531]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.10, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

y +
(
1 + e2xy2

)
y′ = 0

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 18� �
dsolve(y(x)+(1+y(x)^2*exp(2*x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = e−x√
LambertW (e−2xc1)

3 Solution by Mathematica
Time used: 3.33 (sec). Leaf size: 57� �
DSolve[y[x]+(1+y[x]^2*Exp[2*x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − e−x√
W (e−2x+2c1)

y(x) → e−x√
W (e−2x+2c1)

y(x) → 0
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6.11 problem Exercise 12.11, page 103
Internal problem ID [4532]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.11, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class G‘], _rational, _Bernoulli]

yx2 + y2 + y′x3 = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve((x^2*y(x)+y(x)^2)+x^3*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 3x2

3c1x3 − 1

3 Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 26� �
DSolve[(x^2*y[x]+y[x]^2)+x^3*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3x2

−1 + 3c1x3

y(x) → 0
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6.12 problem Exercise 12.12, page 103
Internal problem ID [4533]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.12, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

y2exy2 +
(
2xy exy2 − 3y2

)
y′ = −4x3

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve((y(x)^2*exp(x*y(x)^2)+4*x^3)+(2*x*y(x)*exp(x*y(x)^2)-3*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

exy(x)
2
+ x4 − y(x)3 + c1 = 0

3 Solution by Mathematica
Time used: 0.279 (sec). Leaf size: 24� �
DSolve[(y[x]^2*Exp[x*y[x]^2]+4*x^3)+(2*x*y[x]*Exp[x*y[x]^2]-3*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x4 + exy(x)

2 − y(x)3 = c1, y(x)
]
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6.13 problem Exercise 12.13, page 103
Internal problem ID [4534]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.13, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

y′ −
(
x2 + 2y − 1

) 2
3 = −x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x)=(x^2+2*y(x)-1)^(2/3)-x,y(x), singsol=all)� �

x− 3(x2 + 2y(x)− 1)
1
3

2 − c1 = 0

3 Solution by Mathematica
Time used: 0.214 (sec). Leaf size: 40� �
DSolve[y'[x]==(x^2+2*y[x]-1)^(2/3)-x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
54
(
8x3 − 3(9 + 8c1)x2 + 24c12x+ 27− 8c13

)
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6.14 problem Exercise 12.14, page 103
Internal problem ID [4535]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.14, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

xy′ + y − x2(1 + ex) y2 = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(x*diff(y(x),x)+y(x)=x^2*(1+exp(x))*y(x)^2,y(x), singsol=all)� �

y(x) = − 1
(x+ ex − c1)x

3 Solution by Mathematica
Time used: 0.249 (sec). Leaf size: 55� �
DSolve[x*y'[x]+y[x]==x^2*(1+exp[x])*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
−x
∫ x

1 (exp(K[1]) + 1)dK[1] + c1x

y(x) → 0

y(x) → − 1
x
∫ x

1 (exp(K[1]) + 1)dK[1]
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6.15 problem Exercise 12.15, page 103
Internal problem ID [4536]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.15, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

2y − xy ln (x)− 2x ln (x) y′ = 0

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve((2*y(x)-x*y(x)*ln(x))-2*x*ln(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1e−
x
2 ln (x)

3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 22� �
DSolve[(2*y[x]-x*y[x]*Log[x])-2*x*Log[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x/2 log(x)

y(x) → 0
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6.16 problem Exercise 12.16, page 103
Internal problem ID [4537]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.16, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y′ + ya = k ebx

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(diff(y(x),x)+a*y(x)=k*exp(b*x),y(x), singsol=all)� �

y(x) =
(
k ex(a+b) + c1(a+ b)

)
e−ax

a+ b

3 Solution by Mathematica
Time used: 0.072 (sec). Leaf size: 33� �
DSolve[y'[x]+a*y[x]==k*Exp[b*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
e−ax

(
kex(a+b) + c1(a+ b)

)
a+ b
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6.17 problem Exercise 12.17, page 103
Internal problem ID [4538]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.17, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _Riccati]

y′ − (x+ y)2 = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)=(x+y(x))^2,y(x), singsol=all)� �

y(x) = −x− tan (−x+ c1)

3 Solution by Mathematica
Time used: 0.472 (sec). Leaf size: 14� �
DSolve[y'[x]==(x+y[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x+ tan(x+ c1)
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6.18 problem Exercise 12.18, page 103
Internal problem ID [4539]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.18, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

y′ + 8x3y3 + 2xy = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 43� �
dsolve(diff(y(x),x)+8*x^3*y(x)^3+2*x*y(x)=0,y(x), singsol=all)� �

y(x) = 1√
e2x2c1 − 4x2 − 2

y(x) = − 1√
e2x2c1 − 4x2 − 2

3 Solution by Mathematica
Time used: 7.034 (sec). Leaf size: 58� �
DSolve[y'[x]+8*x^3*y[x]^3+2*x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
−4x2 + c1e2x

2 − 2

y(x) → 1√
−4x2 + c1e2x

2 − 2
y(x) → 0
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6.19 problem Exercise 12.19, page 103
Internal problem ID [4540]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.19, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [NONE]

(
xy
√

x2 − y2 + x
)
y′ − y + x2

√
x2 − y2 = 0

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 34� �
dsolve((x*y(x)*sqrt(x^2-y(x)^2)+x)*diff(y(x),x)=y(x)-x^2*sqrt(x^2-y(x)^2),y(x), singsol=all)� �

y(x)2

2 + arctan

 y(x)√
x2 − y (x)2

+ x2

2 − c1 = 0

3 Solution by Mathematica
Time used: 1.772 (sec). Leaf size: 44� �
DSolve[(x*y[x]*Sqrt[x^2-y[x]^2]+x)*y'[x]==y[x]-x^2*Sqrt[x^2-y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
− arctan

(√
x2 − y(x)2
y(x)

)
+ x2

2 + y(x)2
2 = c1, y(x)

]
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6.20 problem Exercise 12.20, page 103
Internal problem ID [4541]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.20, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y′ + ya = b sin (kx)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 45� �
dsolve(diff(y(x),x)+a*y(x)=b*sin(k*x),y(x), singsol=all)� �

y(x) = e−axc1(a2 + k2) + b(sin (kx) a− k cos (kx))
a2 + k2

3 Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 40� �
DSolve[y'[x]+a*y[x]==b*Sin[k*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → b(a sin(kx)− k cos(kx))
a2 + k2 + c1e

−ax
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6.21 problem Exercise 12.21, page 103
Internal problem ID [4542]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.21, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

xy′ − y2 = −1

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(x*diff(y(x),x)-y(x)^2+1=0,y(x), singsol=all)� �

y(x) = − tanh (ln (x) + c1)

3 Solution by Mathematica
Time used: 0.486 (sec). Leaf size: 43� �
DSolve[x*y'[x]-y[x]^2+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1− e2c1x2

1 + e2c1x2

y(x) → −1
y(x) → 1
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6.22 problem Exercise 12.22, page 103
Internal problem ID [4543]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.22, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

(
y2 + a sin (x)

)
y′ = cos (x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 43� �
dsolve((y(x)^2+a*sin(x))*diff(y(x),x)=cos(x),y(x), singsol=all)� �(

− sin (x) a3 − y(x)2 a2 − 2ay(x)− 2
)
e−ay(x) + c1a

3

a3
= 0

3 Solution by Mathematica
Time used: 0.194 (sec). Leaf size: 45� �
DSolve[(y[x]^2+a*Sin[x])*y'[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
sin(x)

(
−e−ay(x))− e−ay(x)(a2y(x)2 + 2ay(x) + 2)

a3
= c1, y(x)

]
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6.23 problem Exercise 12.23, page 103
Internal problem ID [4544]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.23, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

xy′ − x e
y
x − y = x

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 20� �
dsolve(x*diff(y(x),x)=x*exp(y(x)/x)+x+y(x),y(x), singsol=all)� �

y(x) =
(
ln
(
− x

x ec1 − 1

)
+ c1

)
x

3 Solution by Mathematica
Time used: 4.512 (sec). Leaf size: 38� �
DSolve[x*y'[x]==x*Exp[y[x]/x]+x+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x log
(
1
2

(
−1 + tanh

(
1
2(− log(x)− c1)

)))
y(x) → iπx
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6.24 problem Exercise 12.24, page 103
Internal problem ID [4545]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.24, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

y′ + y cos (x) = e− sin(x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)+y(x)*cos(x)=exp(-sin(x)),y(x), singsol=all)� �

y(x) = (x+ c1) e− sin(x)

3 Solution by Mathematica
Time used: 0.123 (sec). Leaf size: 16� �
DSolve[y'[x]+y[x]*Cos[x]==Exp[-Sin[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x+ c1)e− sin(x)
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6.25 problem Exercise 12.25, page 103
Internal problem ID [4546]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.25, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘]]

xy′ − y(ln (xy)− 1) = 0

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 14� �
dsolve(x*diff(y(x),x)-y(x)*(ln(x*y(x))-1)=0,y(x), singsol=all)� �

y(x) = e
x
c1

x

3 Solution by Mathematica
Time used: 0.186 (sec). Leaf size: 24� �
DSolve[x*y'[x]-y[x]*(Log[x*y[x]]-1)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ee
c1x

x

y(x) → 1
x
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6.26 problem Exercise 12.26, page 103
Internal problem ID [4547]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.26, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class D‘], _rational, _Bernoulli]

y′x3 − y2 − yx2 = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x^3*diff(y(x),x)-y(x)^2-x^2*y(x)=0,y(x), singsol=all)� �

y(x) = x2

c1x+ 1

3 Solution by Mathematica
Time used: 0.129 (sec). Leaf size: 22� �
DSolve[x^3*y'[x]-y[x]^2-x^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

1 + c1x
y(x) → 0
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6.27 problem Exercise 12.27, page 103
Internal problem ID [4548]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.27, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

xy′ + ya = −b xn

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(x*diff(y(x),x)+a*y(x)+b*x^n=0,y(x), singsol=all)� �

y(x) = − xnb

a+ n
+ x−ac1

3 Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 25� �
DSolve[x*y'[x]+a*y[x]+b*x^n==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − bxn

a+ n
+ c1x

−a
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6.28 problem Exercise 12.28, page 103
Internal problem ID [4549]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.28, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

xy′ − x sin
(y
x

)
− y = 0

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 44� �
dsolve(x*diff(y(x),x)-x*sin(y(x)/x)-y(x)=0,y(x), singsol=all)� �

y(x) = arctan
(

2xc1
x2c21 + 1 ,

−x2c21 + 1
x2c21 + 1

)
x

3 Solution by Mathematica
Time used: 0.321 (sec). Leaf size: 52� �
DSolve[x*y'[x]-x*Sin[y[x]/x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x arccos(− tanh(log(x) + c1))
y(x) → x arccos(− tanh(log(x) + c1))
y(x) → 0
y(x) → −πx
y(x) → πx
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6.29 problem Exercise 12.29, page 103
Internal problem ID [4550]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.29, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

y2 − 3xy +
(
xy − x2) y′ = 2x2

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 59� �
dsolve((x*y(x)-x^2)*diff(y(x),x)+y(x)^2-3*x*y(x)-2*x^2=0,y(x), singsol=all)� �

y(x) = c1x
2 −

√
2c21x4 + 1

c1x

y(x) = c1x
2 +

√
2c21x4 + 1

c1x

3 Solution by Mathematica
Time used: 0.625 (sec). Leaf size: 99� �
DSolve[(x*y[x]-x^2)*y'[x]+y[x]^2-3*x*y[x]-2*x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x−
√
2x4 + e2c1

x

y(x) → x+
√
2x4 + e2c1

x

y(x) → x−
√
2
√
x4

x

y(x) →
√
2
√
x4

x
+ x
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6.30 problem Exercise 12.30, page 103
Internal problem ID [4551]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.30, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

(
6xy + x2 + 3

)
y′ + 3y2 + 2xy = −2x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 75� �
dsolve((6*x*y(x)+x^2+3)*diff(y(x),x)+3*y(x)^2+2*x*y(x)+2*x=0,y(x), singsol=all)� �

y(x) = −x2 − 3 +
√
x4 − 12x3 − 12c1x+ 6x2 + 9

6x

y(x) = −x2 − 3−
√
x4 − 12x3 − 12c1x+ 6x2 + 9

6x

3 Solution by Mathematica
Time used: 0.477 (sec). Leaf size: 83� �
DSolve[(6*x*y[x]+x^2+3)*y'[x]+3*y[x]^2+2*x*y[x]+2*x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x2 +
√
x4 − 12x3 + 6x2 + 36c1x+ 9 + 3

6x

y(x) → −x2 −
√
x4 − 12x3 + 6x2 + 36c1x+ 9 + 3

6x
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6.31 problem Exercise 12.31, page 103
Internal problem ID [4552]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.31, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, _Riccati]

x2y′ + y2 + xy = −x2

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(x^2*diff(y(x),x)+y(x)^2+x*y(x)+x^2=0,y(x), singsol=all)� �

y(x) = −x(ln (x) + c1 − 1)
ln (x) + c1

3 Solution by Mathematica
Time used: 0.139 (sec). Leaf size: 31� �
DSolve[x^2*y'[x]+y[x]^2+x*y[x]+x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(log(x)− 1− c1)
− log(x) + c1

y(x) → −x
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6.32 problem Exercise 12.32, page 103
Internal problem ID [4553]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.32, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

(
x2 − 1

)
y′ + 2xy = cos (x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve((x^2-1)*diff(y(x),x)+2*x*y(x)-cos(x)=0,y(x), singsol=all)� �

y(x) = sin (x) + c1
x2 − 1

3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 18� �
DSolve[(x^2-1)*y'[x]+2*x*y[x]-Cos[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x) + c1
x2 − 1
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6.33 problem Exercise 12.33, page 103
Internal problem ID [4554]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.33, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

(
yx2 − 1

)
y′ + xy2 = 1

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 51� �
dsolve((x^2*y(x)-1)*diff(y(x),x)+x*y(x)^2-1=0,y(x), singsol=all)� �

y(x) = 1 +
√
−2c1x2 + 2x3 + 1

x2

y(x) = 1−
√
−2c1x2 + 2x3 + 1

x2

3 Solution by Mathematica
Time used: 0.505 (sec). Leaf size: 57� �
DSolve[(x^2*y[x]-1)*y'[x]+x*y[x]^2-1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1−
√
2x3 + c1x2 + 1

x2

y(x) → 1 +
√
2x3 + c1x2 + 1

x2
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6.34 problem Exercise 12.34, page 103
Internal problem ID [4555]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.34, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

(
x2 − 1

)
y′ + xy − 3xy2 = 0

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 20� �
dsolve((x^2-1)*diff(y(x),x)+x*y(x)-3*x*y(x)^2=0,y(x), singsol=all)� �

y(x) = 1
3 +

√
x− 1

√
1 + x c1

3 Solution by Mathematica
Time used: 2.214 (sec). Leaf size: 35� �
DSolve[(x^2-1)*y'[x]+x*y[x]-3*x*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3 + ec1

√
x2 − 1

y(x) → 0

y(x) → 1
3
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6.35 problem Exercise 12.35, page 103
Internal problem ID [4556]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.35, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

(
x2 − 1

)
y′ − 2xy ln (y) = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve((x^2-1)*diff(y(x),x)-2*x*y(x)*ln(y(x))=0,y(x), singsol=all)� �

y(x) = ec1(x−1)(1+x)

3 Solution by Mathematica
Time used: 0.223 (sec). Leaf size: 22� �
DSolve[(x^2-1)*y'[x]-2*x*y[x]*Log[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ee
c1
(
x2−1

)
y(x) → 1
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6.36 problem Exercise 12.36, page 103
Internal problem ID [4557]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.36, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

(
1 + x2 + y2

)
y′ + 2xy = −x2 − 3

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 370� �
dsolve((x^2+y(x)^2+1)*diff(y(x),x)+2*x*y(x)+x^2+3=0,y(x), singsol=all)� �
y(x)

=

(
−4x3 − 12c1 − 36x+ 4

√
5x6 + 6c1x3 + 30x4 + 9c21 + 54c1x+ 93x2 + 4

) 2
3 − 4x2 − 4

2
(
−4x3 − 12c1 − 36x+ 4

√
5x6 + 6c1x3 + 30x4 + 9c21 + 54c1x+ 93x2 + 4

) 1
3

y(x) =

−

(
i
√
3

4 + 1
4

)(
−4x3 − 12c1 − 36x+ 4

√
5x6 + 6c1x3 + 30x4 + 9c21 + 54c1x+ 93x2 + 4

) 2
3 +

(
i
√
3− 1

)
(x2 + 1)(

−4x3 − 12c1 − 36x+ 4
√
5x6 + 6c1x3 + 30x4 + 9c21 + 54c1x+ 93x2 + 4

) 1
3

y(x)

=

(
i
√
3− 1

) (
−4x3 − 12c1 − 36x+ 4

√
5x6 + 6c1x3 + 30x4 + 9c21 + 54c1x+ 93x2 + 4

) 1
3

4

+
(
1 + i

√
3
)
(x2 + 1)(

−4x3 − 12c1 − 36x+ 4
√
5x6 + 6c1x3 + 30x4 + 9c21 + 54c1x+ 93x2 + 4

) 1
3
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3 Solution by Mathematica
Time used: 5.385 (sec). Leaf size: 411� �
DSolve[(x^2+y[x]^2+1)*y'[x]+2*x*y[x]+x^2+3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3

√
−27x3 +

√
4 (9x2 + 9)3 + 729 (x3 + 9x− 3c1) 2 − 243x+ 81c1

3 3
√
2

− 3 3
√
2(x2 + 1)

3

√
−27x3 +

√
4 (9x2 + 9)3 + 729 (x3 + 9x− 3c1) 2 − 243x+ 81c1

y(x) →
3
(
1 + i

√
3
)
(x2 + 1)

22/3 3

√
−27x3 +

√
4 (9x2 + 9)3 + 729 (x3 + 9x− 3c1) 2 − 243x+ 81c1

+

(
−1 + i

√
3
) 3

√
−27x3 +

√
4 (9x2 + 9)3 + 729 (x3 + 9x− 3c1) 2 − 243x+ 81c1

6 3
√
2

y(x) →
3
(
1− i

√
3
)
(x2 + 1)

22/3 3

√
−27x3 +

√
4 (9x2 + 9)3 + 729 (x3 + 9x− 3c1) 2 − 243x+ 81c1

−

(
1 + i

√
3
) 3

√
−27x3 +

√
4 (9x2 + 9)3 + 729 (x3 + 9x− 3c1) 2 − 243x+ 81c1

6 3
√
2
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6.37 problem Exercise 12.37, page 103
Internal problem ID [4558]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.37, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

cos (x) y′ + y = −(1 + sin (x)) cos (x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(diff(y(x),x)*cos(x)+y(x)+(1+sin(x))*cos(x)=0,y(x), singsol=all)� �

y(x) = −2 ln (sec (x) + tan (x)) + 2 ln (cos (x)) + sin (x) + c1
sec (x) + tan (x)

3 Solution by Mathematica
Time used: 0.671 (sec). Leaf size: 40� �
DSolve[y'[x]*Cos[x]+y[x]+(1+Sin[x])*Cos[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2arctanh
(
tan
(
x
2
))(

sin(x) + 4 log
(
cos
(x
2

)
− sin

(x
2

))
+ c1

)

160



6.38 problem Exercise 12.38, page 103
Internal problem ID [4559]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.38, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

(
2xy + 4x3) y′ + y2 + 12yx2 = 0

3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 51� �
dsolve((2*x*y(x)+4*x^3)*diff(y(x),x)+y(x)^2+12*x^2*y(x)=0,y(x), singsol=all)� �

y(x) = −2x3 +
√
4x6 + c1x

x

y(x) = −2x3 −
√
4x6 + c1x

x

3 Solution by Mathematica
Time used: 0.441 (sec). Leaf size: 58� �
DSolve[(2*x*y[x]+4*x^3)*y'[x]+y[x]^2+12*x^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
2x3 +

√
x (4x5 + c1)
x

y(x) → −2x3 +
√
x (4x5 + c1)
x
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6.39 problem Exercise 12.39, page 103
Internal problem ID [4560]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.39, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

(
x2 − y

)
y′ = −x

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 23� �
dsolve((x^2-y(x))*diff(y(x),x)+x=0,y(x), singsol=all)� �

y(x) = x2 +
LambertW

(
4c1e−2x2−1

)
2 + 1

2

3 Solution by Mathematica
Time used: 5.105 (sec). Leaf size: 40� �
DSolve[(x^2-y[x])*y'[x]+x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 + 1
2

(
1 +W

(
−e−2x2−1+c1

))
y(x) → x2 + 1

2
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6.40 problem Exercise 12.40, page 103
Internal problem ID [4561]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.40, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

(
x2 − y

)
y′ − 4xy = 0

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 57� �
dsolve((x^2-y(x))*diff(y(x),x)-4*x*y(x)=0,y(x), singsol=all)� �

y(x) = −c1
√

c21 − 4x2

2 + c21
2 − x2

y(x) = c1
√

c21 − 4x2

2 + c21
2 − x2
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3 Solution by Mathematica
Time used: 2.441 (sec). Leaf size: 246� �
DSolve[(x^2-y[x])*y'[x]-4*x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

1 + 2− 2i
i
√
2√

x2 cosh
(

2c1
9

)
+x2 sinh

(
2c1
9

)
−i

− (1− i)



y(x) → x2

1 + 2− 2i
(−1 + i)− i

√
2√

x2 cosh
(

2c1
9

)
+x2 sinh

(
2c1
9

)
−i



y(x) → x2

1 + 2− 2i
(−1 + i)−

√
2√

x2 cosh
(

2c1
9

)
+x2 sinh

(
2c1
9

)
+i



y(x) → x2

1 + 2− 2i
√
2√

x2 cosh
(

2c1
9

)
+x2 sinh

(
2c1
9

)
+i

− (1− i)


y(x) → 0
y(x) → −x2
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6.41 problem Exercise 12.41, page 103
Internal problem ID [4562]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.41, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, _Bernoulli]

xyy′ + y2 = −x2

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
dsolve(x*y(x)*diff(y(x),x)+x^2+y(x)^2=0,y(x), singsol=all)� �

y(x) = −
√
−2x4 + 4c1

2x

y(x) =
√
−2x4 + 4c1

2x

3 Solution by Mathematica
Time used: 0.211 (sec). Leaf size: 46� �
DSolve[x*y[x]*y'[x]+x^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
−x4

2 + c1

x

y(x) →

√
−x4

2 + c1

x
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6.42 problem Exercise 12.42, page 103
Internal problem ID [4563]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.42, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2xyy′ − y2 = −3x2

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 29� �
dsolve(2*x*y(x)*diff(y(x),x)+3*x^2-y(x)^2=0,y(x), singsol=all)� �

y(x) =
√
(−3x+ c1)x

y(x) = −
√
c1x− 3x2

3 Solution by Mathematica
Time used: 0.306 (sec). Leaf size: 35� �
DSolve[2*x*y[x]*y'[x]+3*x^2-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x(−3x+ c1)

y(x) →
√

x(−3x+ c1)
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6.43 problem Exercise 12.43, page 103
Internal problem ID [4564]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.43, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

(
2y3x− x4) y′ + 2yx3 − y4 = 0

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 317� �
dsolve((2*x*y(x)^3-x^4)*diff(y(x),x)+2*x^3*y(x)-y(x)^4=0,y(x), singsol=all)� �

y(x) =
12 1

3

(
x12 1

3 c1 +
(
x

(
−9c1x2 +

√
3
√

27c31x4−4x
c1

)
c21

) 2
3
)

6c1
(
x

(
−9c1x2 +

√
3
√

27c31x4−4x
c1

)
c21

) 1
3

y(x) =
3 1

3

((
−i

√
3− 1

)(
x

(
−9c1x2 +

√
3
√

27c31x4−4x
c1

)
c21

) 2
3

+
(
i3 5

6 − 3 1
3

)
c12

2
3x

)
2 2

3

12
(
x

(
−9c1x2 +

√
3
√

27c31x4−4x
c1

)
c21

) 1
3

c1

y(x) = −
3 1

3

((
1− i

√
3
)(

x

(
−9c1x2 +

√
3
√

27c31x4−4x
c1

)
c21

) 2
3

+
(
i3 5

6 + 3 1
3

)
c12

2
3x

)
2 2

3

12
(
x

(
−9c1x2 +

√
3
√

27c31x4−4x
c1

)
c21

) 1
3

c1
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3 Solution by Mathematica
Time used: 60.224 (sec). Leaf size: 331� �
DSolve[(2*x*y[x]^3-x^4)*y'[x]+2*x^3*y[x]-y[x]^4==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√
2
(
−9x3 +

√
81x6 − 12e3c1x3

) 2/3 + 2 3
√
3ec1x

62/3 3
√

−9x3 +
√
81x6 − 12e3c1x3

y(x) →
i

3
√
2 6
√
3
(√

3 + i
) (

−9x3 +
√
81x6 − 12e3c1x3

) 2/3 − 2
(√

3 + 3i
)
ec1x

2 22/335/6 3
√
−9x3 +

√
81x6 − 12e3c1x3

y(x) →
3
√
2 6
√
3
(
−1− i

√
3
) (

−9x3 +
√
81x6 − 12e3c1x3

) 2/3 − 2
(√

3− 3i
)
ec1x

2 22/335/6 3
√

−9x3 +
√
81x6 − 12e3c1x3
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6.44 problem Exercise 12.44, page 103
Internal problem ID [4565]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.44, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _rational]

(xy − 1)2 xy′ +
(
y2x2 + 1

)
y = 0

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 34� �
dsolve((x*y(x)-1)^2*x*diff(y(x),x)+(x^2*y(x)^2+1)*y(x)=0,y(x), singsol=all)� �

y(x) = eRootOf
(
−e2_Z−2 ln(x)e_Z+2c1e_Z+2_Z e_Z+1

)
x

3 Solution by Mathematica
Time used: 0.108 (sec). Leaf size: 25� �
DSolve[(x*y[x]-1)^2*x*y'[x]+(x^2*y[x]^2+1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
xy(x)− 1

xy(x) − 2 log(y(x)) = c1, y(x)
]
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6.45 problem Exercise 12.45, page 103
Internal problem ID [4566]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.45, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

(
x2 + y2

)
y′ + 2x(2x+ y) = 0

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 321� �
dsolve((x^2+y(x)^2)*diff(y(x),x)+2*x*(2*x+y(x))=0,y(x), singsol=all)� �

y(x) = −

2

c1x
2 −

(
4−16x3c

3
2
1 +4

√
20x6c31−8x3c

3
2
1 +1

) 2
3

4


√
c1

(
4− 16x3c

3
2
1 + 4

√
20x6c31 − 8x3c

3
2
1 + 1

) 1
3

y(x) = −

(
1 + i

√
3
)(

4− 16x3c
3
2
1 + 4

√
20x6c31 − 8x3c

3
2
1 + 1

) 1
3

4√c1

−
√
c1
(
i
√
3− 1

)
x2(

4− 16x3c
3
2
1 + 4

√
20x6c31 − 8x3c

3
2
1 + 1

) 1
3

y(x)

=
4i
√
3 c1x2 + i

√
3
(
4− 16x3c

3
2
1 + 4

√
20x6c31 − 8x3c

3
2
1 + 1

) 2
3

+ 4c1x2 −
(
4− 16x3c

3
2
1 + 4

√
20x6c31 − 8x3c

3
2
1 + 1

) 2
3

4
(
4− 16x3c

3
2
1 + 4

√
20x6c31 − 8x3c

3
2
1 + 1

) 1
3 √

c1
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3 Solution by Mathematica
Time used: 18.874 (sec). Leaf size: 593� �
DSolve[(x^2+y[x]^2)*y'[x]+2*x*(2*x+y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
3
√

−4x3 +
√
20x6 − 8e3c1x3 + e6c1 + e3c1

3
√
2

−
3
√
2x2

3
√
−4x3 +

√
20x6 − 8e3c1x3 + e6c1 + e3c1

y(x) →
3
√
2
(
2 + 2i

√
3
)
x2 + i22/3

(√
3 + i

) (
−4x3 +

√
20x6 − 8e3c1x3 + e6c1 + e3c1

) 2/3

4 3
√

−4x3 +
√
20x6 − 8e3c1x3 + e6c1 + e3c1

y(x) →
(
1− i

√
3
)
x2

22/3 3
√

−4x3 +
√
20x6 − 8e3c1x3 + e6c1 + e3c1

−
(
1 + i

√
3
) 3
√

−4x3 +
√
20x6 − 8e3c1x3 + e6c1 + e3c1

2 3
√
2

y(x) → 3
√√

5
√
x6 − 2x3 − x2

3
√√

5
√
x6 − 2x3

y(x) →

(
1− i

√
3
)
x2 +

(
−1− i

√
3
) (√

5
√
x6 − 2x3

)2/3
2 3
√√

5
√
x6 − 2x3

y(x) →

(
1 + i

√
3
)
x2 + i

(√
3 + i

) (√
5
√
x6 − 2x3

)2/3
2 3
√√

5
√
x6 − 2x3

171



6.46 problem Exercise 12.46, page 103
Internal problem ID [4567]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.46, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

3xy2y′ + y3 = 2x

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 73� �
dsolve(3*x*y(x)^2*diff(y(x),x)+y(x)^3-2*x=0,y(x), singsol=all)� �

y(x) = ((x2 + c1)x2)
1
3

x

y(x) = −
((x2 + c1)x2)

1
3
(
1 + i

√
3
)

2x

y(x) =
((x2 + c1)x2)

1
3
(
i
√
3− 1

)
2x

3 Solution by Mathematica
Time used: 0.224 (sec). Leaf size: 72� �
DSolve[3*x*y[x]^2*y'[x]+y[x]^3-2*x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√

x2 + c1
3
√
x

y(x) → −
3
√
−1 3
√
x2 + c1

3
√
x

y(x) → (−1)2/3 3
√

x2 + c1
3
√
x
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6.47 problem Exercise 12.47, page 103
Internal problem ID [4568]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.47, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

2y3y′ + xy2 = x3
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3 Solution by Maple
Time used: 0.422 (sec). Leaf size: 649� �
dsolve(2*y(x)^3*diff(y(x),x)+x*y(x)^2-x^3=0,y(x), singsol=all)� �

y(x) = −

√
2

√√√√√x4c21−c1x2
(
2+x6c31+2

√
x6c31+1

) 1
3
+
(
2+x6c31+2

√
x6c31+1

) 2
3

(
2+x6c31+2

√
x6c31+1

) 1
3

2√c1

y(x) =

√
2

√√√√√x4c21−c1x2
(
2+x6c31+2

√
x6c31+1

) 1
3
+
(
2+x6c31+2

√
x6c31+1

) 2
3

(
2+x6c31+2

√
x6c31+1

) 1
3

2√c1

y(x) = −

√√√√√√
(−i

√
3−1

)(
2+x6c31+2

√
x6c31+1

) 1
3
+
(
i
√
3−1

)
x2c1

c1x2+
(
2+x6c31+2

√
x6c31+1

) 1
3


(
2+x6c31+2

√
x6c31+1

) 1
3

2√c1

y(x) =

√√√√√√
(−i

√
3−1

)(
2+x6c31+2

√
x6c31+1

) 1
3
+
(
i
√
3−1

)
x2c1

c1x2+
(
2+x6c31+2

√
x6c31+1

) 1
3


(
2+x6c31+2

√
x6c31+1

) 1
3

2√c1

y(x) = −

√√√√√√
(2+x6c31+2

√
x6c31+1

) 1
3 (

i
√
3−1

)
+
(
−i

√
3−1

)
x2c1

c1x2+
(
2+x6c31+2

√
x6c31+1

) 1
3


(
2+x6c31+2

√
x6c31+1

) 1
3

2√c1

y(x) =

√√√√√√
(2+x6c31+2

√
x6c31+1

) 1
3 (

i
√
3−1

)
+
(
−i

√
3−1

)
x2c1

c1x2+
(
2+x6c31+2

√
x6c31+1

) 1
3


(
2+x6c31+2

√
x6c31+1

) 1
3

2√c1
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3 Solution by Mathematica
Time used: 60.13 (sec). Leaf size: 714� �
DSolve[2*y[x]^3*y'[x]+x*y[x]^2-x^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x)→−

√√√√ 3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1 − x2 + x4

3
√
x6 + 2

√
e24c1 − e12c1x6 − 2e12c1

√
2

y(x) →

√√√√ 3
√
x6 + 2

√
e24c1 − e12c1x6 − 2e12c1 − x2 + x4

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1

√
2

y(x) →

−1
2

√√√√(−1− i
√
3
)

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1 − 2x2 +

i
(√

3 + i
)
x4

3
√
x6 + 2

√
e24c1 − e12c1x6 − 2e12c1

y(x)

→ 1
2

√√√√(−1− i
√
3
)

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1 − 2x2 +

i
(√

3 + i
)
x4

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1

y(x) →

−1
2

√√√√i
(√

3 + i
)

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1 − 2x2 +

(
−1− i

√
3
)
x4

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1

y(x)

→ 1
2

√√√√i
(√

3 + i
)

3
√
x6 + 2

√
e24c1 − e12c1x6 − 2e12c1 − 2x2 +

(
−1− i

√
3
)
x4

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1
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6.48 problem Exercise 12.48, page 103
Internal problem ID [4569]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.48, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational]

(
2y3x+ xy + x2) y′ − xy + y2 = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve((2*x*y(x)^3+x*y(x)+x^2)*diff(y(x),x)-x*y(x)+y(x)^2=0,y(x), singsol=all)� �

y(x) = eRootOf
(
−e3_Z−ln(x)e_Z+c1e_Z−_Z e_Z+x

)

3 Solution by Mathematica
Time used: 0.225 (sec). Leaf size: 23� �
DSolve[(2*x*y[x]^3+x*y[x]+x^2)*y'[x]-x*y[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
y(x)2 − x

y(x) + log(y(x)) + log(x) = c1, y(x)
]
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6.49 problem Exercise 12.49, page 103
Internal problem ID [4570]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.49, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

(
2y3 + y

)
y′ = 2x3 + x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 113� �
dsolve((2*y(x)^3+y(x))*diff(y(x),x)-2*x^3-x=0,y(x), singsol=all)� �

y(x) = −
√

−2− 2
√
4x4 + 4x2 + 8c1 + 1

2

y(x) =
√

−2− 2
√
4x4 + 4x2 + 8c1 + 1

2

y(x) = −
√

−2 + 2
√
4x4 + 4x2 + 8c1 + 1

2

y(x) =
√

−2 + 2
√
4x4 + 4x2 + 8c1 + 1

2
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3 Solution by Mathematica
Time used: 2.313 (sec). Leaf size: 151� �
DSolve[(2*y[x]^3+y[x])*y'[x]-2*x^3-x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−1−
√
4x4 + 4x2 + 1 + 8c1√

2

y(x) →
√

−1−
√
4x4 + 4x2 + 1 + 8c1√

2

y(x) → −
√

−1 +
√
4x4 + 4x2 + 1 + 8c1√

2

y(x) →
√

−1 +
√
4x4 + 4x2 + 1 + 8c1√

2
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6.50 problem Exercise 12.50, page 103
Internal problem ID [4571]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Mis-
cellaneous Methods
Problem number: Exercise 12.50, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

y′ − ex−y = −ex

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 20� �
dsolve(diff(y(x),x)-exp(x-y(x))+exp(x)=0,y(x), singsol=all)� �

y(x) = −ex + ln
(
−1 + eex+c1

)
− c1

3 Solution by Mathematica
Time used: 2.135 (sec). Leaf size: 23� �
DSolve[y'[x]-Exp[x-y[x]]+Exp[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log
(
1 + e−ex+c1

)
y(x) → 0
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7.1 problem Exercise 20.1, page 220
Internal problem ID [4572]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.1, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ + 2y′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1 + c2e−2x

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 19� �
DSolve[y''[x]+2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2 −
1
2c1e

−2x
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7.2 problem Exercise 20.2, page 220
Internal problem ID [4573]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.2, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − 3y′ + 2y = 0

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 15� �
dsolve(diff(y(x),x$2)-3*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)� �

y(x) = e2xc1 + c2ex

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18� �
DSolve[y''[x]-3*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(c2ex + c1)
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7.3 problem Exercise 20.3, page 220
Internal problem ID [4574]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.3, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x$2)-y(x)=0,y(x), singsol=all)� �

y(x) = c1ex + c2e−x

3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 20� �
DSolve[y''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x + c2e

−x
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7.4 problem Exercise 20.5, page 220
Internal problem ID [4575]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.5, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

6y′′ − 11y′ + 4y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(6*diff(y(x),x$2)-11*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)� �

y(x) = c1e
4x
3 + c2e

x
2

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 35� �
DSolve[y''[x]-11*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
− 1

2

(√
105−11

)
x
(
c2e

√
105x + c1

)
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7.5 problem Exercise 20.6, page 220
Internal problem ID [4576]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.6, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ + 2y′ − y = 0

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) = c1e
(√

2−1
)
x + c2e−

(
1+

√
2
)
x

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 34� �
DSolve[y''[x]+2*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
−
((

1+
√
2
)
x
)(

c2e
2
√
2x + c1

)
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7.6 problem Exercise 20.7, page 220
Internal problem ID [4577]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.7, page 220.
ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

y′′′ + y′′ − 10y′ − 6y = 0

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 32� �
dsolve(diff(y(x),x$3)+diff(y(x),x$2)-10*diff(y(x),x)-6*y(x)=0,y(x), singsol=all)� �

y(x) = c1e3x + c2e
(
−2+

√
2
)
x + c3e−

(
2+

√
2
)
x

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 43� �
DSolve[y'''[x]+y''[x]-10*y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−
((

2+
√
2
)
x
)
+ c2e

(√
2−2

)
x + c3e

3x
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7.7 problem Exercise 20.8, page 220
Internal problem ID [4578]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.8, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ − y′′′ − 4y′′ + 4y′ = 0

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$4)-diff(y(x),x$3)-4*diff(y(x),x$2)+4*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
(
c2e4x + c3e3x + e2xc1 + c4

)
e−2x

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 36� �
DSolve[y''''[x]-y'''[x]-4*y''[x]+4*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2c1e

−2x + c2e
x + 1

2c3e
2x + c4
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7.8 problem Exercise 20.9, page 220
Internal problem ID [4579]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.9, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ + 4y′′′ + y′′ − 4y′ − 2y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 36� �
dsolve(diff(y(x),x$4)+4*diff(y(x),x$3)+diff(y(x),x$2)-4*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)� �

y(x) = c1ex + c2e−x + c3e
(
−2+

√
2
)
x + c4e−

(
2+

√
2
)
x

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 49� �
DSolve[y''''[x]+4*y'''[x]+y''[x]-4*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−
((

2+
√
2
)
x
)
+ c2e

(√
2−2

)
x + c3e

−x + c4e
x
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7.9 problem Exercise 20.10, page 220
Internal problem ID [4580]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.10, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ − ya2 = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 38� �
dsolve(diff(y(x),x$4)-a^2*y(x)=0,y(x), singsol=all)� �

y(x) = c1e
√
a x + c2e−

√
a x + c3 sin

(√
a x
)
+ c4 cos

(√
a x
)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 53� �
DSolve[y''''[x]-a^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2e
−
√
ax + c4e

√
ax + c1 cos

(√
ax
)
+ c3 sin

(√
ax
)
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7.10 problem Exercise 20.11, page 220
Internal problem ID [4581]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.11, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − 2ky′ − 2y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve(diff(y(x),x$2)-2*k*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)� �

y(x) = c1e
(
k+

√
k2+2

)
x + c2e

(
k−

√
k2+2

)
x

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 44� �
DSolve[y''[x]-2*k*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e

(
k−

√
k2+2

)
x + c2e

(√
k2+2+k

)
x
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7.11 problem Exercise 20.12, page 220
Internal problem ID [4582]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.12, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ + 4ky′ − 12k2y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$2)+4*k*diff(y(x),x)-12*k^2*y(x)=0,y(x), singsol=all)� �

y(x) =
(
c1e8kx + c2

)
e−6kx

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 24� �
DSolve[y''[x]+4*k*y'[x]-12*k^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−6kx(c2e8kx + c1
)
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7.12 problem Exercise 20.13, page 220
Internal problem ID [4583]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.13, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _quadrature]]

y′′′′ = 0

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$4)=0,y(x), singsol=all)� �

y(x) = 1
6c1x

3 + 1
2c2x

2 + c3x+ c4

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 22� �
DSolve[y''''[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(x(c4x+ c3) + c2) + c1
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7.13 problem Exercise 20.14, page 220
Internal problem ID [4584]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.14, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ + 4y′ + 4y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x$2)+4*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)� �

y(x) = e−2x(c2x+ c1)

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 18� �
DSolve[y''[x]+4*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(c2x+ c1)
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7.14 problem Exercise 20.15, page 220
Internal problem ID [4585]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.15, page 220.
ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

3y′′′ + 5y′′ + y′ − y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(3*diff(y(x),x$3)+5*diff(y(x),x$2)+diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) =
(
c1e

4x
3 + c3x+ c2

)
e−x

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 28� �
DSolve[3*y'''[x]+5*y''[x]+y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
c1e

4x/3 + c3x+ c2
)
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7.15 problem Exercise 20.16, page 220
Internal problem ID [4586]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.16, page 220.
ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

y′′′ − 6y′′ + 12y′ − 8y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$3)-6*diff(y(x),x$2)+12*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)� �

y(x) = e2x
(
c3x

2 + c2x+ c1
)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 23� �
DSolve[y'''[x]-6*y''[x]+12*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e2x(x(c3x+ c2) + c1)

195



7.16 problem Exercise 20.17, page 220
Internal problem ID [4587]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.17, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − 2ay′ + ya2 = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x$2)-2*a*diff(y(x),x)+a^2*y(x)=0,y(x), singsol=all)� �

y(x) = eax(c2x+ c1)

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 18� �
DSolve[y''[x]-2*a*y'[x]+a^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → eax(c2x+ c1)
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7.17 problem Exercise 20.18, page 220
Internal problem ID [4588]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.18, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ + 3y′′′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$4)+3*diff(y(x),x$3)=0,y(x), singsol=all)� �

y(x) = c1 + c2x+ c3x
2 + c4e−3x

3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 28� �
DSolve[y''''[x]+3*y'''[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1
27c1e

−3x + x(c4x+ c3) + c2
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7.18 problem Exercise 20.19, page 220
Internal problem ID [4589]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.19, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ − 2y′′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$4)-2*diff(y(x),x$2)=0,y(x), singsol=all)� �

y(x) = c1 + c2x+ c3ex
√
2 + c4e−x

√
2

3 Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 42� �
DSolve[y''''[x]-2*y''[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

−
√
2x
(
c1e

2
√
2x + c2

)
+ c4x+ c3
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7.19 problem Exercise 20.20, page 220
Internal problem ID [4590]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.20, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ + 2y′′′ − 11y′′ − 12y′ + 36y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(diff(y(x),x$4)+2*diff(y(x),x$3)-11*diff(y(x),x$2)-12*diff(y(x),x)+36*y(x)=0,y(x), singsol=all)� �

y(x) =
(
(c2x+ c1) e5x + xc4 + c3

)
e−3x

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 35� �
DSolve[y''''[x]+2*y'''[x]-11*y''[x]-12*y'[x]+36*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−3x(c3e5x + x
(
c4e

5x + c2
)
+ c1

)

199



7.20 problem Exercise 20.21, page 220
Internal problem ID [4591]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.21, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

36y′′′′ − 37y′′ + 4y′ + 5y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(36*diff(y(x),x$4)-37*diff(y(x),x$2)+4*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)� �

y(x) =
(
c3e

11x
6 + c1e

3x
2 + c2e

2x
3 + c4

)
e−x

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 44� �
DSolve[36*y''''[x]-37*y''[x]+4*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
c1e

11x/6 + c2e
2x/3 + c3e

3x/2 + c4
)
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7.21 problem Exercise 20.22, page 220
Internal problem ID [4592]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.22, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ − 8y′′ + 36y = 0

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 48� �
dsolve(diff(y(x),x$4)-8*diff(y(x),x$2)+36*y(x)=0,y(x), singsol=all)� �

y(x) = c1e
√
5x sin (x)− c2e−

√
5x sin (x) + c3e

√
5x cos (x) + c4e−

√
5x cos (x)

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 142� �
DSolve[y''''[x]-8*y''[x]+36*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
−
√
6x cos

(
1
2 arctan

(√
5

2

))((
c3e

2
√
6x cos

(
1
2 arctan

(√
5

2

))

+ c2

)
cos
(
√
6x sin

(
1
2 arctan

(√
5
2

)))

+ sin
(
√
6x sin

(
1
2 arctan

(√
5
2

)))(
c1e

2
√
6x cos

(
1
2 arctan

(√
5

2

))
+ c4

))
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7.22 problem Exercise 20.23, page 220
Internal problem ID [4593]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.23, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − 2y′ + 5y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)� �

y(x) = ex(c1 sin (2x) + c2 cos (2x))

3 Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 24� �
DSolve[y''[x]-2*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(c2 cos(2x) + c1 sin(2x))
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7.23 problem Exercise 20.24, page 220
Internal problem ID [4594]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.24, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − y′ + y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 28� �
dsolve(diff(y(x),x$2)-diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = ex
2

(
c1 sin

(√
3x
2

)
+ c2 cos

(√
3x
2

))

3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 42� �
DSolve[y''[x]-y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex/2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
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7.24 problem Exercise 20.25, page 220
Internal problem ID [4595]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.25, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ + 5y′′ + 6y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 37� �
dsolve(diff(y(x),x$4)+5*diff(y(x),x$2)+6*y(x)=0,y(x), singsol=all)� �

y(x) = c1 sin
(√

3x
)
+ c2 cos

(√
3x
)
+ c3 sin

(
x
√
2
)
+ c4 cos

(
x
√
2
)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 50� �
DSolve[y''''[x]+5*y''[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c3 cos
(√

2x
)
+ c1 cos

(√
3x
)
+ c4 sin

(√
2x
)
+ c2 sin

(√
3x
)
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7.25 problem Exercise 20.26, page 220
Internal problem ID [4596]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.26, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − 4y′ + 20y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(diff(y(x),x$2)-4*diff(y(x),x)+20*y(x)=0,y(x), singsol=all)� �

y(x) = e2x(c1 sin (4x) + c2 cos (4x))

3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 26� �
DSolve[y''[x]-4*y'[x]+20*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e2x(c2 cos(4x) + c1 sin(4x))
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7.26 problem Exercise 20.27, page 220
Internal problem ID [4597]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.27, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ + 4y′′ + 4y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$4)+4*diff(y(x),x$2)+4*y(x)=0,y(x), singsol=all)� �

y(x) = (xc4 + c2) cos
(
x
√
2
)
+ sin

(
x
√
2
)
(c3x+ c1)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 38� �
DSolve[y''''[x]+4*y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (c2x+ c1) cos
(√

2x
)
+ (c4x+ c3) sin

(√
2x
)
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7.27 problem Exercise 20.28, page 220
Internal problem ID [4598]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.28, page 220.
ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

y′′′ + 8y = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve(diff(y(x),x$3)+8*y(x)=0,y(x), singsol=all)� �

y(x) =
(
c2e3x sin

(√
3x
)
+ c3e3x cos

(√
3x
)
+ c1

)
e−2x

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 42� �
DSolve[y'''[x]+8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−2x + c3e

x cos
(√

3x
)
+ c2e

x sin
(√

3x
)
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7.28 problem Exercise 20.29, page 220
Internal problem ID [4599]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.29, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ + 4y′′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$4)+4*diff(y(x),x$2)=0,y(x), singsol=all)� �

y(x) = c1 + c2x+ c3 sin (2x) + c4 cos (2x)

3 Solution by Mathematica
Time used: 0.118 (sec). Leaf size: 32� �
DSolve[y''''[x]+4*y''[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c4x− 1
4c1 cos(2x)−

1
4c2 sin(2x) + c3
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7.29 problem Exercise 20.30, page 220
Internal problem ID [4600]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20.30, page 220.
ODE order: 5.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y(5) + 2y′′′ + y′ = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(diff(y(x),x$5)+2*diff(y(x),x$3)+diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = (c5x+ c3) cos (x) + (xc4 + c2) sin (x) + c1

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 35� �
DSolve[y'''''[x]+2*y'''[x]+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (−c4x+ c2 − c3) cos(x) + (c2x+ c1 + c4) sin(x) + c5
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7.30 problem Exercise 20, problem 31, page 220
Internal problem ID [4601]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20, problem 31, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

y′′ = 0

With initial conditions

[y(1) = 2, y′(1) = −1]

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve([diff(y(x),x$2)=0,y(1) = 2, D(y)(1) = -1],y(x), singsol=all)� �

y(x) = −x+ 3

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 10� �
DSolve[{y''[x]==0,{y[1]==2,y'[1]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3− x
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7.31 problem Exercise 20, problem 32, page 220
Internal problem ID [4602]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20, problem 32, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ + 4y′ + 4y = 0

With initial conditions

[y(0) = 1, y′(0) = 1]

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve([diff(y(x),x$2)+4*diff(y(x),x)+4*y(x)=0,y(0) = 1, D(y)(0) = 1],y(x), singsol=all)� �

y(x) = e−2x(1 + 3x)

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 16� �
DSolve[{y''[x]+4*y'[x]+4*y[x]==0,{y[0]==1,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(3x+ 1)
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7.32 problem Exercise 20, problem 33, page 220
Internal problem ID [4603]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20, problem 33, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − 2y′ + 5y = 0

With initial conditions

[y(0) = 2, y′(0) = 1]

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve([diff(y(x),x$2)-2*diff(y(x),x)+5*y(x)=0,y(0) = 2, D(y)(0) = 1],y(x), singsol=all)� �

y(x) = −ex(sin (2x)− 4 cos (2x))
2

3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 25� �
DSolve[{y''[x]-2*y'[x]+5*y[x]==0,{y[0]==2,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

x(4 cos(2x)− sin(2x))
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7.33 problem Exercise 20, problem 34, page 220
Internal problem ID [4604]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20, problem 34, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − 4y′ + 20y = 0

With initial conditions [
y
(π
2

)
= 1, y′

(π
2

)
= 1
]

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 25� �
dsolve([diff(y(x),x$2)-4*diff(y(x),x)+20*y(x)=0,y(1/2*Pi) = 1, D(y)(1/2*Pi) = 1],y(x), singsol=all)� �

y(x) = −(sin (4x)− 4 cos (4x)) e−π+2x

4

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 31� �
DSolve[{y''[x]-4*y'[x]+20*y[x]==0,{y[Pi/2]==1,y'[Pi/2]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

2x−π(4 cos(4x)− sin(4x))

213



7.34 problem Exercise 20, problem 35, page 220
Internal problem ID [4605]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coeffi-
cients
Problem number: Exercise 20, problem 35, page 220.
ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

3y′′′ + 5y′′ + y′ − y = 0

With initial conditions

[y(0) = 0, y′(0) = 1, y′′(0) = −1]

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve([3*diff(y(x),x$3)+5*diff(y(x),x$2)+diff(y(x),x)-y(x)=0,y(0) = 0, D(y)(0) = 1, (D@@2)(y)(0) = -1],y(x), singsol=all)� �

y(x) =

(
9 e 4x

3 + 4x− 9
)
e−x

16

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 28� �
DSolve[{3*y'''[x]+5*y''[x]+y'[x]-y[x]==0,{y[0]==0,y'[0]==1,y''[0]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
16e

−x
(
4x+ 9e4x/3 − 9

)
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8.1 problem Exercise 21.3, page 231
Internal problem ID [4606]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.3, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ + 3y′ + 2y = 4

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=4,y(x), singsol=all)� �

y(x) = −e−2xc1 + c2e−x + 2

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 23� �
DSolve[y''[x]+3*y'[x]+2*y[x]==4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−2x + c2e

−x + 2
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8.2 problem Exercise 21.4, page 231
Internal problem ID [4607]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.4, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y′′ + 3y′ + 2y = 12 ex

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=12*exp(x),y(x), singsol=all)� �

y(x) = −
(
−2 e3x − c2ex + c1

)
e−2x

3 Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 27� �
DSolve[y''[x]+3*y'[x]+2*y[x]==12*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(2e3x + c2e
x + c1

)

217



8.3 problem Exercise 21.5, page 231
Internal problem ID [4608]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.5, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y′′ + 3y′ + 2y = eix

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 28� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=exp(I*x),y(x), singsol=all)� �

y(x) = e−x

((
1
10 − 3i

10

)
e(1+i)x − e−xc1 + c2

)
3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 37� �
DSolve[y''[x]+3*y'[x]+2*y[x]==Exp[I*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(

1
10 − 3i

10

)
eix + c1e

−2x + c2e
−x
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8.4 problem Exercise 21.6, page 231
Internal problem ID [4609]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.6, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 3y′ + 2y = sin (x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=sin(x),y(x), singsol=all)� �

y(x) = −e−2xc1 −
3 cos (x)

10 + sin (x)
10 + c2e−x

3 Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 32� �
DSolve[y''[x]+3*y'[x]+2*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
10
(
sin(x)− 3 cos(x) + 10e−2x(c2ex + c1)

)
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8.5 problem Exercise 21.7, page 231
Internal problem ID [4610]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.7, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 3y′ + 2y = cos (x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=cos(x),y(x), singsol=all)� �

y(x) = −e−2xc1 +
cos (x)
10 + 3 sin (x)

10 + c2e−x

3 Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 32� �
DSolve[y''[x]+3*y'[x]+2*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
10
(
3 sin(x) + cos(x) + 10e−2x(c2ex + c1)

)
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8.6 problem Exercise 21.8, page 231
Internal problem ID [4611]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.8, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 3y′ + 2y = 8 + 6 ex + 2 sin (x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 38� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=8+6*exp(x)+2*sin(x),y(x), singsol=all)� �

y(x) = −e−2x
((

−4 + 3 cos (x)
5 − sin (x)

5

)
e2x − c2ex + c1 − e3x

)
3 Solution by Mathematica
Time used: 0.165 (sec). Leaf size: 38� �
DSolve[y''[x]+3*y'[x]+2*y[x]==8+6*Exp[x]+2*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex + sin(x)
5 − 3 cos(x)

5 + c1e
−2x + c2e

−x + 4
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8.7 problem Exercise 21.9, page 231
Internal problem ID [4612]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.9, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y′′ + y′ + y = x2

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 37� �
dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=x^2,y(x), singsol=all)� �

y(x) = e−x
2 sin

(√
3x
2

)
c2 + e−x

2 cos
(√

3x
2

)
c1 + x2 − 2x

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 54� �
DSolve[y''[x]+y'[x]+y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x/2

(
ex/2(x− 2)x+ c2 cos

(√
3x
2

)
+ c1 sin

(√
3x
2

))
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8.8 problem Exercise 21.10, page 231
Internal problem ID [4613]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.10, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ − 2y′ − 8y = 9 exx+ 10 e−x

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 28� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)-8*y(x)=9*x*exp(x)+10*exp(-x),y(x), singsol=all)� �

y(x) =
(
e6xc1 − e3xx− 2 ex + c2

)
e−2x

3 Solution by Mathematica
Time used: 0.145 (sec). Leaf size: 35� �
DSolve[y''[x]-2*y'[x]-8*y[x]==9*x*Exp[x]+10*Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(−e3xx− 2ex + c2e
6x + c1

)
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8.9 problem Exercise 21.11, page 231
Internal problem ID [4614]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.11, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

y′′ − 3y′ = 2 sin (x) e2x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 28� �
dsolve(diff(y(x),x$2)-3*diff(y(x),x)=2*exp(2*x)*sin(x),y(x), singsol=all)� �

y(x) = e2x(− cos (x)− 3 sin (x))
5 + c1e3x

3 + c2

3 Solution by Mathematica
Time used: 0.245 (sec). Leaf size: 33� �
DSolve[y''[x]-3*y'[x]==2*Exp[2*x]*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
15e

2x(−9 sin(x)− 3 cos(x) + 5c1ex) + c2
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8.10 problem Exercise 21.13, page 231
Internal problem ID [4615]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.13, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

y′′ + y′ = x2 + 2x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x$2)+diff(y(x),x)=x^2+2*x,y(x), singsol=all)� �

y(x) = x3

3 − e−xc1 + c2

3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 24� �
DSolve[y''[x]+y'[x]==x^2+2*x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3

3 − c1e
−x + c2
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8.11 problem Exercise 21.14, page 231
Internal problem ID [4616]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.14, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

y′′ + y′ = x+ sin (2x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 33� �
dsolve(diff(y(x),x$2)+diff(y(x),x)=x+sin(2*x),y(x), singsol=all)� �

y(x) = x2

2 − e−xc1 −
sin (2x)

5 − cos (2x)
10 − x+ c2

3 Solution by Mathematica
Time used: 0.359 (sec). Leaf size: 43� �
DSolve[y''[x]+y'[x]==x+Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

2 − x− 1
5 sin(2x)− 1

10 cos(2x)− c1e
−x + c2
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8.12 problem Exercise 21.15, page 231
Internal problem ID [4617]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.15, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y = 4 sin (x)x

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$2)+y(x)=4*x*sin(x),y(x), singsol=all)� �

y(x) =
(
−x2 + c1

)
cos (x) + sin (x) (c2 + x)

3 Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 27� �
DSolve[y''[x]+y[x]==4*x*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
−x2 + 1

2 + c1

)
cos(x) + (x+ c2) sin(x)
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8.13 problem Exercise 21.16, page 231
Internal problem ID [4618]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.16, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 4y = x sin (2x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 31� �
dsolve(diff(y(x),x$2)+4*y(x)=x*sin(2*x),y(x), singsol=all)� �

y(x) = (−x2 + 8c1) cos (2x)
8 + sin (2x) (16c2 + x)

16

3 Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 38� �
DSolve[y''[x]+4*y[x]==x*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
64
((
−8x2 + 1 + 64c1

)
cos(2x) + 4(x+ 16c2) sin(2x)

)
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8.14 problem Exercise 21.17, page 231
Internal problem ID [4619]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.17, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 2y′ + y = x2e−x

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=x^2*exp(-x),y(x), singsol=all)� �

y(x) = e−x

(
c2 + c1x+ 1

12x
4
)

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 27� �
DSolve[y''[x]+2*y'[x]+y[x]==x^2*Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
12e

−x
(
x4 + 12c2x+ 12c1

)
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8.15 problem Exercise 21.19, page 231
Internal problem ID [4620]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.19, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 3y′ + 2y = e−2x + x2

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 33� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=exp(-2*x)+x^2,y(x), singsol=all)� �

y(x) = 7
4 + (−c1 − x− 1) e−2x + x2

2 + c2e−x − 3x
2

3 Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 41� �
DSolve[y''[x]+3*y'[x]+2*y[x]==Exp[-2*x]+x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4
(
2x2 − 6x+ 7

)
+ e−2x(−x− 1 + c1) + c2e

−x
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8.16 problem Exercise 21.20, page 231
Internal problem ID [4621]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.20, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ − 3y′ + 2y = x e−x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$2)-3*diff(y(x),x)+2*y(x)=x*exp(-x),y(x), singsol=all)� �

y(x) = (36c1e3x + 36c2e2x + 6x+ 5) e−x

36

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 34� �
DSolve[y''[x]-3*y'[x]+2*y[x]==x*Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
36e

−x(6x+ 5) + c1e
x + c2e

2x
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8.17 problem Exercise 21.21, page 231
Internal problem ID [4622]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.21, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y′′ + y′ − 6y = x+ e2x

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve(diff(y(x),x$2)+diff(y(x),x)-6*y(x)=x+exp(2*x),y(x), singsol=all)� �

y(x) = −
((
−6x

5 − 6c2 + 6
25

)
e5x +

(
x+ 1

6

)
e3x − 6c1

)
e−3x

6

3 Solution by Mathematica
Time used: 0.085 (sec). Leaf size: 40� �
DSolve[y''[x]+y'[x]-6*y[x]==x+Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
36(−6x− 1) + c1e

−3x + e2x
(
x

5 − 1
25 + c2

)
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8.18 problem Exercise 21.22, page 231
Internal problem ID [4623]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.22, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y = sin (x) + e−x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$2)+y(x)=sin(x)+exp(-x),y(x), singsol=all)� �

y(x) = e−x

2 + (2c1 − x) cos (x)
2 + c2 sin (x)

3 Solution by Mathematica
Time used: 0.337 (sec). Leaf size: 36� �
DSolve[y''[x]+y[x]==Sin[x]+Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4
(
2e−x + sin(x)− 2x cos(x) + 4c1 cos(x) + 4c2 sin(x)

)
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8.19 problem Exercise 21.24, page 231
Internal problem ID [4624]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.24, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y = sin (x)2

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$2)+y(x)=sin(x)^2,y(x), singsol=all)� �

y(x) = c2 sin (x) + cos (x) c1 +
cos (x)2

3 + 1
3

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 27� �
DSolve[y''[x]+y[x]==Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6(cos(2x) + 6c1 cos(x) + 6c2 sin(x) + 3)
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8.20 problem Exercise 21.27, page 231
Internal problem ID [4625]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.27, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y = sin (x) sin (2x)

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$2)+y(x)=sin(2*x)*sin(x),y(x), singsol=all)� �

y(x) = −sin (x)2 cos (x)
4 + (4c2 + x) sin (x)

4 + cos (x) c1

3 Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 33� �
DSolve[y''[x]+y[x]==Sin[2*x]*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
16(cos(3x) + (−1 + 16c1) cos(x) + 4(x+ 4c2) sin(x))
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8.21 problem Exercise 21.28, page 231
Internal problem ID [4626]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.28, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y′′ − 5y′ − 6y = e3x

With initial conditions

[y(0) = 2, y′(0) = 1]

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 23� �
dsolve([diff(y(x),x$2)-5*diff(y(x),x)-6*y(x)=exp(3*x),y(0) = 2, D(y)(0) = 1],y(x), singsol=all)� �

y(x) = 45 e−x

28 + 10 e6x
21 − e3x

12

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 30� �
DSolve[{y''[x]-5*y'[x]-6*y[x]==Exp[3*x],{y[0]==2,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
84e

−x
(
−7e4x + 40e7x + 135

)
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8.22 problem Exercise 21.29, page 231
Internal problem ID [4627]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.29, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ − y′ − 2y = 5 sin (x)

With initial conditions

[y(0) = 1, y′(0) = −1]

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 25� �
dsolve([diff(y(x),x$2)-diff(y(x),x)-2*y(x)=5*sin(x),y(0) = 1, D(y)(0) = -1],y(x), singsol=all)� �

y(x) = e−x

6 + e2x
3 + cos (x)

2 − 3 sin (x)
2

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 30� �
DSolve[{y''[x]-y'[x]-2*y[x]==5*Sin[x],{y[0]==1,y'[0]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6
(
e−x + 2e2x − 9 sin(x) + 3 cos(x)

)
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8.23 problem Exercise 21.31, page 231
Internal problem ID [4628]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.31, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 9y = 8 cos (x)

With initial conditions [
y
(π
2

)
= −1, y′

(π
2

)
= 1
]

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 17� �
dsolve([diff(y(x),x$2)+9*y(x)=8*cos(x),y(1/2*Pi) = -1, D(y)(1/2*Pi) = 1],y(x), singsol=all)� �

y(x) = sin (3x) + 2 cos (3x)
3 + cos (x)

3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 20� �
DSolve[{y''[x]+9*y[x]==8*Cos[x],{y[Pi/2]==-1,y'[Pi/2]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(3x) + cos(x) + 2
3 cos(3x)
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8.24 problem Exercise 21.32, page 231
Internal problem ID [4629]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.32, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ − 5y′ + 6y = ex(2x− 3)

With initial conditions

[y(0) = 1, y′(0) = 3]

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 13� �
dsolve([diff(y(x),x$2)-5*diff(y(x),x)+6*y(x)=exp(x)*(2*x-3),y(0) = 1, D(y)(0) = 3],y(x), singsol=all)� �

y(x) = e2x + x ex

3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 35� �
DSolve[{y''[x]-5*y'[x]-6*y[x]==Exp[x]*(2*x-3),{y[0]==1,y'[0]==3}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
175e

−x
(
−7e2x(5x− 9) + 87e7x + 25

)
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8.25 problem Exercise 21.33, page 231
Internal problem ID [4630]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined
Coefficients
Problem number: Exercise 21.33, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y′′ − 3y′ + 2y = e−x

With initial conditions

[y(0) = 1, y′(0) = −1]

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve([diff(y(x),x$2)-3*diff(y(x),x)+2*y(x)=exp(-x),y(0) = 1, D(y)(0) = -1],y(x), singsol=all)� �

y(x) = −5 e2x
3 + 5 ex

2 + e−x

6

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 31� �
DSolve[{y''[x]-3*y'[x]+2*y[x]==Exp[-x],{y[0]==1,y'[0]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x

6 + 5ex
2 − 5e2x

3
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9.1 problem Exercise 22.1, page 240
Internal problem ID [4631]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22.1, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y = sec (x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(diff(y(x),x$2)+y(x)=sec(x),y(x), singsol=all)� �

y(x) = − ln (sec (x)) cos (x) + cos (x) c1 + sin (x) (c2 + x)

3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 22� �
DSolve[y''[x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x+ c2) sin(x) + cos(x)(log(cos(x)) + c1)
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9.2 problem Exercise 22.2, page 240
Internal problem ID [4632]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22.2, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y = cot (x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(diff(y(x),x$2)+y(x)=cot(x),y(x), singsol=all)� �

y(x) = c2 sin (x) + cos (x) c1 + sin (x) ln (csc (x)− cot (x))

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 33� �
DSolve[y''[x]+y[x]==Cot[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cos(x) + sin(x)
(
log
(
sin
(x
2

))
− log

(
cos
(x
2

))
+ c2

)
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9.3 problem Exercise 22.3, page 240
Internal problem ID [4633]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22.3, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y = sec (x)2

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x$2)+y(x)=sec(x)^2,y(x), singsol=all)� �

y(x) = c2 sin (x) + cos (x) c1 + ln (sec (x) + tan (x)) sin (x)− 1

3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 28� �
DSolve[y''[x]+y[x]==Sec[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 sin(x)arctanh
(
tan

(x
2

))
+ c1 cos(x) + c2 sin(x)− 1
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9.4 problem Exercise 22.4, page 240
Internal problem ID [4634]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22.4, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ − y = sin (x)2

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(diff(y(x),x$2)-y(x)=sin(x)^2,y(x), singsol=all)� �

y(x) = c2ex + e−xc1 +
cos (x)2

5 − 3
5

3 Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 30� �
DSolve[y''[x]-y[x]==Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
10(cos(2x)− 5) + c1e

x + c2e
−x
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9.5 problem Exercise 22.5, page 240
Internal problem ID [4635]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22.5, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y = sin (x)2

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$2)+y(x)=sin(x)^2,y(x), singsol=all)� �

y(x) = c2 sin (x) + cos (x) c1 +
cos (x)2

3 + 1
3

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 27� �
DSolve[y''[x]+y[x]==Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6(cos(2x) + 6c1 cos(x) + 6c2 sin(x) + 3)
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9.6 problem Exercise 22.6, page 240
Internal problem ID [4636]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22.6, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y′′ + 3y′ + 2y = 12 ex

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=12*exp(x),y(x), singsol=all)� �

y(x) = −
(
−2 e3x − c2ex + c1

)
e−2x

3 Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 27� �
DSolve[y''[x]+3*y'[x]+2*y[x]==12*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(2e3x + c2e
x + c1

)
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9.7 problem Exercise 22.7, page 240
Internal problem ID [4637]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22.7, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 2y′ + y = x2e−x

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=x^2*exp(-x),y(x), singsol=all)� �

y(x) = e−x

(
c2 + c1x+ 1

12x
4
)

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 27� �
DSolve[y''[x]+2*y'[x]+y[x]==x^2*Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
12e

−x
(
x4 + 12c2x+ 12c1

)
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9.8 problem Exercise 22.8, page 240
Internal problem ID [4638]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22.8, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y = 4 sin (x)x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$2)+y(x)=4*x*sin(x),y(x), singsol=all)� �

y(x) =
(
−x2 + c1

)
cos (x) + sin (x) (c2 + x)

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 27� �
DSolve[y''[x]+y[x]==4*x*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
−x2 + 1

2 + c1

)
cos(x) + (x+ c2) sin(x)
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9.9 problem Exercise 22.9, page 240
Internal problem ID [4639]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22.9, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 2y′ + y = e−x ln (x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=exp(-x)*ln(x),y(x), singsol=all)� �

y(x) = e−x(2 ln (x)x2 + 4c1x− 3x2 + 4c2)
4

3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 36� �
DSolve[y''[x]+2*y'[x]+y[x]==Exp[-x]*Log[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

−x
(
−3x2 + 2x2 log(x) + 4c2x+ 4c1

)
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9.10 problem Exercise 22.10, page 240
Internal problem ID [4640]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22.10, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y = csc (x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(diff(y(x),x$2)+y(x)=csc(x),y(x), singsol=all)� �

y(x) = − ln (csc (x)) sin (x) + (−x+ c1) cos (x) + c2 sin (x)

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 24� �
DSolve[y''[x]+y[x]==Csc[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (−x+ c1) cos(x) + sin(x)(log(sin(x)) + c2)
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9.11 problem Exercise 22.11, page 240
Internal problem ID [4641]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22.11, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y = tan (x)2

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 23� �
dsolve(diff(y(x),x$2)+y(x)=tan(x)^2,y(x), singsol=all)� �

y(x) = c2 sin (x) + cos (x) c1 − 2 + ln (sec (x) + tan (x)) sin (x)

3 Solution by Mathematica
Time used: 0.109 (sec). Leaf size: 23� �
DSolve[y''[x]+y[x]==Tan[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x)arctanh(sin(x)) + c1 cos(x) + c2 sin(x)− 2
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9.12 problem Exercise 22.12, page 240
Internal problem ID [4642]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22.12, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 2y′ + y = e−x

x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=exp(-x)/x,y(x), singsol=all)� �

y(x) = e−x(ln (x)x+ x(c1 − 1) + c2)

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 24� �
DSolve[y''[x]+2*y'[x]+y[x]==Exp[-x]/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x(x log(x) + (−1 + c2)x+ c1)
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9.13 problem Exercise 22.13, page 240
Internal problem ID [4643]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22.13, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y = sec (x) csc (x)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
dsolve(diff(y(x),x$2)+y(x)=sec(x)*csc(x),y(x), singsol=all)� �
y(x) = c2 sin (x) + cos (x) c1 + sin (x) ln (csc (x)− cot (x))− ln (sec (x) + tan (x)) cos (x)

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 30� �
DSolve[y''[x]+y[x]==Sec[x]*Csc[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → − sin(x)arctanh(cos(x)) + c1 cos(x) + c2 sin(x) + cos(x)

(
− coth−1(sin(x))

)
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9.14 problem Exercise 22.14, page 240
Internal problem ID [4644]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22.14, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ − 2y′ + y = ex ln (x)

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 28� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=exp(x)*ln(x),y(x), singsol=all)� �

y(x) = ex(2 ln (x)x2 + 4c1x− 3x2 + 4c2)
4

3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 34� �
DSolve[y''[x]-2*y'[x]+y[x]==Exp[x]*Log[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

x
(
−3x2 + 2x2 log(x) + 4c2x+ 4c1

)
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9.15 problem Exercise 22.15, page 240
Internal problem ID [4645]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22.15, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ − 3y′ + 2y = cos
(
e−x
)

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(diff(y(x),x$2)-3*diff(y(x),x)+2*y(x)=cos(exp(-x)),y(x), singsol=all)� �

y(x) =
(
−ex cos

(
e−x
)
+ (c1 − 1) ex + c2

)
ex

3 Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 29� �
DSolve[y''[x]-3*y'[x]+2*y[x]==Cos[Exp[-x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex
(
−ex cos

(
e−x
)
+ c2e

x + c1
)
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9.16 problem Exercise 22, problem 16, page 240
Internal problem ID [4646]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22, problem 16, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

x2y′′ − xy′ + y = x

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=x,y(x), singsol=all)� �

y(x) = x

(
c2 + c1 ln (x) +

ln (x)2

2

)

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 25� �
DSolve[x^2*y''[x]-x*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2x
(
log2(x) + 2c2 log(x) + 2c1

)
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9.17 problem Exercise 22, problem 17, page 240
Internal problem ID [4647]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22, problem 17, page 240.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

y′′ − 2y′
x

+ 2y
x2 = ln (x)x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(diff(y(x),x$2)-2/x*diff(y(x),x)+2/x^2*y(x)=x*ln(x),y(x), singsol=all)� �

y(x) = ln (x)x3

2 − 3x3

4 + c2x
2 + c1x

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 32� �
DSolve[y''[x]-2/x*y'[x]+2/x^2*y[x]==x*Log[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4x
(
−3x2 + 2x2 log(x) + 4c2x+ 4c1

)
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9.18 problem Exercise 22, problem 18, page 240
Internal problem ID [4648]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22, problem 18, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

x2y′′ + xy′ − 4y = x3

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=x^3,y(x), singsol=all)� �

y(x) = c2
x2 + c1x

2 + x3

5

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 25� �
DSolve[x^2*y''[x]+x*y'[x]-4*y[x]==x^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3

5 + c2x
2 + c1

x2
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9.19 problem Exercise 22, problem 19, page 240
Internal problem ID [4649]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22, problem 19, page 240.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

x2y′′ + xy′ − y = x2e−x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=x^2*exp(-x),y(x), singsol=all)� �

y(x) = c2x
2 + e−xx+ e−x + c1

x

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 27� �
DSolve[x^2*y''[x]+x*y'[x]-y[x]==x^2*Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2x
2 + e−x(x+ 1) + c1

x
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9.20 problem Exercise 22, problem 20, page 240
Internal problem ID [4650]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Pa-
rameters
Problem number: Exercise 22, problem 20, page 240.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

2x2y′′ + 3xy′ − y = 1
x

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(2*x^2*diff(y(x),x$2)+3*x*diff(y(x),x)-y(x)=1/x,y(x), singsol=all)� �

y(x) = 9x 3
2 c2 − 3 ln (x) + 9c1 − 2

9x

3 Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 31� �
DSolve[2*x^2*y''[x]+3*x*y'[x]-y[x]==1/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 9c2x3/2 − 3 log(x)− 2 + 9c1
9x
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10.1 problem Exercise 35.1, page 504
Internal problem ID [4651]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.1, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

y′′ − 2y′y = 0

3 Solution by Maple
Time used: 0.266 (sec). Leaf size: 16� �
dsolve(diff(y(x),x$2)=2*y(x)*diff(y(x),x),y(x), singsol=all)� �

y(x) =
tan

(
c2+x
c1

)
c1

3 Solution by Mathematica
Time used: 9.872 (sec). Leaf size: 24� �
DSolve[y''[x]==2*y[x]*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → √
c1 tan (

√
c1(x+ c2))
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10.2 problem Exercise 35.2, page 504
Internal problem ID [4652]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.2, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

y3y′′ = k

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 46� �
dsolve(y(x)^3*diff(y(x),x$2)=k,y(x), singsol=all)� �

y(x) =

√(
(c2 + x)2 c21 + k

)
c1

c1

y(x) = −

√(
(c2 + x)2 c21 + k

)
c1

c1

3 Solution by Mathematica
Time used: 2.878 (sec). Leaf size: 63� �
DSolve[y[x]^3*y''[x]==k,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

k + c12(x+ c2)2√
c1

y(x) →
√

k + c12(x+ c2)2√
c1

y(x) → Indeterminate

264



10.3 problem Exercise 35.3, page 504
Internal problem ID [4653]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.3, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

yy′′ − y′
2 = −1

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 59� �
dsolve(y(x)*diff(y(x),x$2)=(diff(y(x),x))^2-1,y(x), singsol=all)� �

y(x) =
c1
(
−e

c2+x
c1 + e

−c2−x
c1

)
2

y(x) = −
c1
(
−e

c2+x
c1 + e

−c2−x
c1

)
2

3 Solution by Mathematica
Time used: 60.201 (sec). Leaf size: 85� �
DSolve[y[x]*y''[x]==(y'[x])^2-1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − ie−c1 tanh (ec1(x+ c2))√
−sech2 (ec1(x+ c2))

y(x) → ie−c1 tanh (ec1(x+ c2))√
−sech2 (ec1(x+ c2))
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10.4 problem Exercise 35.4, page 504
Internal problem ID [4654]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.4, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

x2y′′ + xy′ = 1

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(x^2*diff(y(x),x$2)+x*(diff(y(x),x))=1,y(x), singsol=all)� �

y(x) = c2 + c1 ln (x) +
ln (x)2

2

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 21� �
DSolve[x^2*y''[x]+x*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log2(x)
2 + c1 log(x) + c2
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10.5 problem Exercise 35.5, page 504
Internal problem ID [4655]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.5, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

xy′′ − y′ = x2

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x*diff(y(x),x$2)-diff(y(x),x)=x^2,y(x), singsol=all)� �

y(x) = 1
3x

3 + 1
2c1x

2 + c2

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 24� �
DSolve[x*y''[x]-y'[x]==x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3

3 + c1x
2

2 + c2
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10.6 problem Exercise 35.6, page 504
Internal problem ID [4656]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.6, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

(1 + y) y′′ − 3y′2 = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 59� �
dsolve((y(x)+1)*diff(y(x),x$2)=3*(diff(y(x),x))^2,y(x), singsol=all)� �

y(x) = −1

y(x) = −
√
−2c1x− 2c2 − 1√
−2c1x− 2c2

y(x) = −
√
−2c1x− 2c2 + 1√
−2c1x− 2c2

3 Solution by Mathematica
Time used: 1.485 (sec). Leaf size: 107� �
DSolve[(y[x]+1)*y''[x]==3*(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
2c1x+

√
2
√

−c1(x+ c2) + 2c2c1
2c1(x+ c2)

y(x) → −2c1x+
√
2
√

−c1(x+ c2)− 2c2c1
2c1(x+ c2)

y(x) → −1
y(x) → Indeterminate
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10.7 problem Exercise 35.7, page 504
Internal problem ID [4657]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.7, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

r′′ + k

r2
= 0

3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 369� �
dsolve(diff(r(t),t$2)=-k/(r(t)^2),r(t), singsol=all)� �
r(t)

=
c1

(
c21k

2 − 2kc1eRootOf
(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21−2 csgn

(
1
c1

)
e_Zc2−2 csgn

(
1
c1

)
e_Zt

)
+ e2RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21−2 csgn

(
1
c1

)
e_Zc2−2 csgn

(
1
c1

)
e_Zt

))
e−RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21−2 csgn

(
1
c1

)
e_Zc2−2 csgn

(
1
c1

)
e_Zt

)

2
r(t)

=
c1

(
c21k

2 − 2kc1eRootOf
(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+2 csgn

(
1
c1

)
e_Zc2+2 csgn

(
1
c1

)
e_Zt

)
+ e2RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+2 csgn

(
1
c1

)
e_Zc2+2 csgn

(
1
c1

)
e_Zt

))
e−RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+2 csgn

(
1
c1

)
e_Zc2+2 csgn

(
1
c1

)
e_Zt

)

2

3 Solution by Mathematica
Time used: 0.169 (sec). Leaf size: 65� �
DSolve[r''[t]==-k/(r[t]^2),r[t],t,IncludeSingularSolutions -> True]� �

Solve


r(t)

√
2k
r(t) + c1

c1
−

2karctanh
(√

2k
r(t)+c1
√
c1

)
c13/2

 2 = (t+ c2)2, r(t)
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10.8 problem Exercise 35.8, page 504
Internal problem ID [4658]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.8, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

y′′ − 3ky2
2 = 0

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 15� �
dsolve(diff(y(x),x$2)=3/2*k*y(x)^2,y(x), singsol=all)� �

y(x) = 4WeierstrassP (x+ c1, 0, c2)
k

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y''[x]==3/2*(k*y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �
Not solved

270



10.9 problem Exercise 35.9, page 504
Internal problem ID [4659]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.9, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

y′′ − 2ky3 = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$2)=2*k*y(x)^3,y(x), singsol=all)� �

y(x) = c2 JacobiSN
((√

−k x+ c1
)
c2, i

)
3 Solution by Mathematica
Time used: 61.304 (sec). Leaf size: 115� �
DSolve[y''[x]==2*k*y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
isn
(
(−1)3/4

√√
k
√
c1(x+ c2)2

∣∣∣∣− 1
)

√
i
√
k√
c1

y(x) →
isn
(
(−1)3/4

√√
k
√
c1(x+ c2)2

∣∣∣∣− 1
)

√
i
√
k√
c1
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10.10 problem Exercise 35.10, page 504
Internal problem ID [4660]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.10, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

yy′′ + y′
2 − y′ = 0

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 34� �
dsolve(y(x)*diff(y(x),x$2)+(diff(y(x),x))^2-diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0

y(x) = −c1

(
LambertW

(
−e

−c1−c2−x
c1

c1

)
+ 1
)

3 Solution by Mathematica
Time used: 60.084 (sec). Leaf size: 32� �
DSolve[y[x]*y''[x]+(y'[x])^2-y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −c1

(
1 +W

(
−e

−x+c1+c2
c1

c1

))
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10.11 problem Exercise 35.11, page 504
Internal problem ID [4661]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.11, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

r′′ − h2

r3
+ k

r2
= 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 441� �
dsolve(diff(r(t),t$2)= h^2/r(t)^3-k/r(t)^2,r(t), singsol=all)� �
r(t)

=
c1

(
c21k

2 − 2kc1eRootOf
(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+csgn

(
1
c1

)
c21h

2−2 csgn
(

1
c1

)
e_Zc2−2 csgn

(
1
c1

)
e_Zt

)
+ e2RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+csgn

(
1
c1

)
c21h

2−2 csgn
(

1
c1

)
e_Zc2−2 csgn

(
1
c1

)
e_Zt

)
+ h2

)
e−RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+csgn

(
1
c1

)
c21h

2−2 csgn
(

1
c1

)
e_Zc2−2 csgn

(
1
c1

)
e_Zt

)

2
r(t)

=
c1

(
c21k

2 − 2kc1eRootOf
(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+csgn

(
1
c1

)
c21h

2+2 csgn
(

1
c1

)
e_Zc2+2 csgn

(
1
c1

)
e_Zt

)
+ e2RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+csgn

(
1
c1

)
c21h

2+2 csgn
(

1
c1

)
e_Zc2+2 csgn

(
1
c1

)
e_Zt

)
+ h2

)
e−RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+csgn

(
1
c1

)
c21h

2+2 csgn
(

1
c1

)
e_Zc2+2 csgn

(
1
c1

)
e_Zt

)

2
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3 Solution by Mathematica
Time used: 1.099 (sec). Leaf size: 130� �
DSolve[r''[t]==h^2/r[t]^3-k/r[t]^2,r[t],t,IncludeSingularSolutions -> True]� �
Solve


(√

c1(−h2 + r(t)(2k + c1r(t)))− k
√

−h2 + r(t)(2k + c1r(t))arctanh
(

k+c1r(t)√
c1
√

−h2+r(t)(2k+c1r(t))

))
2

c13r(t)2
(
− h2

r(t)2 +
2k
r(t) + c1

) =(t

+ c2)2, r(t)
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10.12 problem Exercise 35.12, page 504
Internal problem ID [4662]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.12, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

yy′′ + y′
3 − y′

2 = 0

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 36� �
dsolve(y(x)*diff(y(x),x$2)+(diff(y(x),x))^3-diff(y(x),x)^2=0,y(x), singsol=all)� �

y(x) = 0
y(x) = c1

y(x) = e
−c1 LambertW

 e
c2+x
c1
c1

+c2+x

c1

3 Solution by Mathematica
Time used: 22.229 (sec). Leaf size: 32� �
DSolve[y[x]*y''[x]+(y'[x])^3-(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ec1W
(
ee

−c1 (x−ec1c1+c2)
)
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10.13 problem Exercise 35.13, page 504
Internal problem ID [4663]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.13, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

yy′′ − 3y′2 = 0

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 33� �
dsolve(y(x)*diff(y(x),x$2)-3*(diff(y(x),x))^2=0,y(x), singsol=all)� �

y(x) = 0

y(x) = 1√
−2c1x− 2c2

y(x) = − 1√
−2c1x− 2c2

3 Solution by Mathematica
Time used: 0.106 (sec). Leaf size: 14� �
DSolve[y[x]*y''[x]-(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2e
c1x
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10.14 problem Exercise 35.14, page 504
Internal problem ID [4664]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.14, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

(
x2 + 1

)
y′′ + y′

2 = −1

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 33� �
dsolve((1+x^2)*diff(y(x),x$2)+(diff(y(x),x))^2+1=0,y(x), singsol=all)� �

y(x) = ln (c1x− 1) c21 + c2c
2
1 + c1x+ ln (c1x− 1)
c21

3 Solution by Mathematica
Time used: 7.091 (sec). Leaf size: 33� �
DSolve[(1+x^2)*y''[x]+(y'[x])^2+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x cot(c1) + csc2(c1) log(−x sin(c1)− cos(c1)) + c2
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10.15 problem Exercise 35.15, page 504
Internal problem ID [4665]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.15, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

(
x2 + 1

)
y′′ + 2x(1 + y′) = 0

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve((1+x^2)*diff(y(x),x$2)+2*x*(diff(y(x),x)+1)=0,y(x), singsol=all)� �

y(x) = −x+ (1 + c1) arctan (x) + c2

3 Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 18� �
DSolve[(1+x^2)*y''[x]+2*x*(y'[x]+1)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (1 + c1) arctan(x)− x+ c2
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10.16 problem Exercise 35.16, page 504
Internal problem ID [4666]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.16, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

(1 + y) y′′ − 3y′2 = 0

With initial conditions [
y(1) = 0, y′(1) = −1

2

]

3 Solution by Maple
Time used: 0.344 (sec). Leaf size: 15� �
dsolve([(y(x)+1)*diff(y(x),x$2)=3*(diff(y(x),x))^2,y(1) = 0, D(y)(1) = -1/2],y(x), singsol=all)� �

y(x) = −x+
√
x

x

3 Solution by Mathematica
Time used: 1.693 (sec). Leaf size: 572� �
DSolve[{(y[x]+1)*y''[x]==3*(y'[x])^2,{y[1]==0,y'[0]==-1/2}},y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

6

(−12 + 3 22/3 3
√

27− 3
√
69− 3

√
2
(
27− 3

√
69
)2/3 + 3 22/3 3

√
3
(
9 +

√
69
)
− 3

√
2
(
3
(
9 +

√
69
))2/3)

x+ 3
√
2

√√√√(12− 3 22/3 3
√

27− 3
√
69 + 3

√
2
(
27− 3

√
69
)2/3 − 3 22/3 3

√
3
(
9 +

√
69
)
+ 3

√
2
(
3
(
9 +

√
69
))2/3)

x− 3
√
2
(
3
(
9 +

√
69
))2/3 + 2 22/3 3

√
3
(
9 +

√
69
)
+ 3
√

9−
√
69
(
9 +

√
69
)2/3 + (9−√

69
)2/3 3

√
9 +

√
69− 3

√
2
(
27− 3

√
69
)2/3 + 2 22/3 3

√
27− 3

√
69 + 6 + 3

√
2
(
3
(
9 +

√
69
))2/3 − 2 22/3 3

√
3
(
9 +

√
69
)
− 3
√

9−
√
69
(
9 +

√
69
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10.17 problem Exercise 35.17, page 504
Internal problem ID [4667]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.17, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

y′′ − y′ey = 0

With initial conditions

[y(3) = 0, y′(3) = 1]

3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 12� �
dsolve([diff(y(x),x$2)=diff(y(x),x)*exp(y(x)),y(3) = 0, D(y)(3) = 1],y(x), singsol=all)� �

y(x) = − ln (−x+ 4)

3 Solution by Mathematica
Time used: 7.673 (sec). Leaf size: 13� �
DSolve[{y''[x]==y'[x]*Exp[y[x]],{y[3]==0,y'[3]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − log(4− x)
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10.18 problem Exercise 35.18, page 504
Internal problem ID [4668]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.18, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

y′′ − 2y′y = 0

With initial conditions

[y(0) = 1, y′(0) = 2]

3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 10� �
dsolve([diff(y(x),x$2)=2*y(x)*diff(y(x),x),y(0) = 1, D(y)(0) = 2],y(x), singsol=all)� �

y(x) = tan
(
x+ π

4

)
7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[{y''[x]==2*y[x]*y'[x],{y[0]==1,y'[0]==2}},y[x],x,IncludeSingularSolutions -> True]� �
{}
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10.19 problem Exercise 35.19, page 504
Internal problem ID [4669]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.19, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2y′′ − ey = 0

With initial conditions

[y(0) = 0, y′(0) = 1]

3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 15� �
dsolve([2*diff(y(x),x$2)=exp(y(x)),y(0) = 0, D(y)(0) = 1],y(x), singsol=all)� �

y(x) = 2 ln (2) + ln
(

1
(x− 2)2

)
3 Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 15� �
DSolve[{2*y''[x]==Exp[y[x]],{y[0]==0,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2 log
(
1− x

2

)
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10.20 problem Exercise 35.20, page 504
Internal problem ID [4670]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.20, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

x2y′′ + xy′ = 1

With initial conditions

[y(1) = 1, y′(1) = 2]

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve([x^2*diff(y(x),x$2)+x*diff(y(x),x)=1,y(1) = 1, D(y)(1) = 2],y(x), singsol=all)� �

y(x) = 1 + 2 ln (x) + ln (x)2

2

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 19� �
DSolve[{x^2*y''[x]+x*y'[x]==1,{y[1]==1,y'[1]==2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
(
log2(x) + 4 log(x) + 2

)
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10.21 problem Exercise 35.21, page 504
Internal problem ID [4671]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.21, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

xy′′ − y′ = x2

With initial conditions

[y(1) = 0, y′(1) = −1]

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve([x*diff(y(x),x$2)-diff(y(x),x)=x^2,y(1) = 0, D(y)(1) = -1],y(x), singsol=all)� �

y(x) = 1
3x

3 − x2 + 2
3

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 19� �
DSolve[{x*y''[x]-y'[x]==x^2,{y[1]==0,y'[1]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3
(
x3 − 3x2 + 2

)
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10.22 problem Exercise 35.23(a), page 504
Internal problem ID [4672]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.23(a), page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

xyy′′ − 2xy′2 + y′y = 0

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
dsolve(x*y(x)*diff(y(x),x$2)-2*x*(diff(y(x),x))^2+y(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0

y(x) = − 1
c1 ln (x) + c2

3 Solution by Mathematica
Time used: 0.243 (sec). Leaf size: 22� �
DSolve[x*y[x]*y''[x]-2*x*(y'[x])^2+y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2
− log(x) + c1

y(x) → 0
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10.23 problem Exercise 35.23(b), page 504
Internal problem ID [4673]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.23(b), page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

xyy′′ + xy′
2 − y′y = 0

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve(x*y(x)*diff(y(x),x$2)+x*(diff(y(x),x))^2-y(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0
y(x) =

√
c1x2 + 2c2

y(x) = −
√

c1x2 + 2c2

3 Solution by Mathematica
Time used: 0.241 (sec). Leaf size: 18� �
DSolve[x*y[x]*y''[x]+x*(y'[x])^2-y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2
√

x2 + c1

286



10.24 problem Exercise 35.23(c), page 504
Internal problem ID [4674]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.23(c), page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

xyy′′ − 2xy′2 + (1 + y) y′ = 0

3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 22� �
dsolve(x*y(x)*diff(y(x),x$2)-2*x*(diff(y(x),x))^2+(1+y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0

y(x) = c1 tanh
(
ln (x)− c2

2c1

)
3 Solution by Mathematica
Time used: 20.549 (sec). Leaf size: 52� �
DSolve[x*y[x]*y''[x]-2*x*(y'[x])^2+(1+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
tan

(√
c1(log(x)−c2)√

2

)
√
2√c1

y(x) → 1
2(log(x)− c2)
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