
A Solution Manual For

Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Nasser M. Abbasi

May 16, 2024

Contents

1	Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS page 95	5. 2
2	Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS Supplementary Problems. page 101	15
3	Chapter 12. VARIATION OF PARAMETERS. page 104	25
4	Chapter 12. VARIATION OF PARAMETERS. Supplementary Prob- lems. page 109	34
5	Chapter 24. Solutions of linear DE by Laplace transforms. Supple- mentary Problems. page 248	43
6	Chapter 27. Power series solutions of linear DE with variable coef- ficients. Supplementary Problems. page 274	60

1	Chapter 11. THE METHOD OF	
	UNDETERMINED COEFFICIENTS. page 95	
1.1	problem Problem 11.1	3
1.2	problem 11.2	4
1.3	problem 11.3	5
1.4	problem Problem 11.4	6
1.5	problem Problem 11.5	7
1.6	problem Problem 11.6	8
1.7	problem Problem 11.7	9
1.8	problem 11.8)
1.9	problem Problem 11.10	1
1.10	problem Problem 11.12	2
1.11	problem Problem 11.13	3
1.12	problem Problem 11.14	4

1.1 problem Problem 11.1

Internal problem ID [5163]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95 Problem number: Problem 11.1.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 2y = 4x^2$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(y(x),x$2)-diff(y(x),x)-2*y(x)=4*x^2,y(x), singsol=all)$

$$y(x) = c_2 e^{-x} + e^{2x} c_1 - 2x^2 + 2x - 3$$

Solution by Mathematica Time used: 0.014 (sec). Leaf size: 31

DSolve[y''[x]-y'[x]-2*y[x]==4*x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -2x^2 + 2x + c_1 e^{-x} + c_2 e^{2x} - 3$$

1.2 problem Problem 11.2

Internal problem ID [5164]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95 Problem number: Problem 11.2.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 2y = e^{3x}$$

Solution by Maple Time used: 0.015 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=exp(3*x),y(x), singsol=all)

$$y(x) = c_2 e^{-x} + e^{2x} c_1 + \frac{e^{3x}}{4}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 31

DSolve[y''[x]-y'[x]-2*y[x]==Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^{3x}}{4} + c_1 e^{-x} + c_2 e^{2x}$$

1.3 problem Problem 11.3

Internal problem ID [5165]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95 Problem number: Problem 11.3.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y' - 2y = \sin\left(2x\right)$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=sin(2*x),y(x), singsol=all)

$$y(x) = c_2 e^{-x} + e^{2x} c_1 + \frac{\cos(2x)}{20} - \frac{3\sin(2x)}{20}$$

Solution by Mathematica

Time used: 0.116 (sec). Leaf size: 37

DSolve[y''[x]-y'[x]-2*y[x]==Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-x} + c_2 e^{2x} + \frac{1}{20} (\cos(2x) - 3\sin(2x))$$

1.4 problem Problem 11.4

Internal problem ID [5166]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95 Problem number: Problem 11.4.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 6y' + 25y = 2\sin\left(\frac{t}{2}\right) - \cos\left(\frac{t}{2}\right)$$

Solution by Maple Time used: 0.578 (sec). Leaf size: 37

dsolve(diff(y(t),t)=0*diff(y(t),t)+25*y(t)=2*sin(t/2)-cos(t/2),y(t), singsol=all)

$$y(t) = e^{3t} \sin(4t) c_2 + e^{3t} \cos(4t) c_1 + \frac{56 \sin\left(\frac{t}{2}\right)}{663} - \frac{20 \cos\left(\frac{t}{2}\right)}{663}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 51

DSolve[y''[t]-6*y'[t]+25*y[t]==2*Sin[t/2]-Cos[t/2],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{663} \left(56 \sin\left(\frac{t}{2}\right) - 20 \cos\left(\frac{t}{2}\right) \right) + c_2 e^{3t} \cos(4t) + c_1 e^{3t} \sin(4t)$$

1.5 problem Problem 11.5

Internal problem ID [5167]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95 Problem number: Problem 11.5.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 6y' + 25y = 64 \,\mathrm{e}^{-t}$$

Solution by Maple Time used: 0.016 (sec). Leaf size: 31

dsolve(diff(y(t),t\$2)-6*diff(y(t),t)+25*y(t)=64*exp(-t),y(t), singsol=all)

$$y(t) = e^{3t} \sin(4t) c_2 + e^{3t} \cos(4t) c_1 + 2 e^{-t}$$

Solution by Mathematica Time used: 0.023 (sec). Leaf size: 37

DSolve[y''[t]-6*y'[t]+25*y[t]==64*Exp[-t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t} (c_2 e^{4t} \cos(4t) + c_1 e^{4t} \sin(4t) + 2)$$

1.6 problem Problem 11.6

Internal problem ID [5168]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95 Problem number: Problem 11.6.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 6y' + 25y = 50t^3 - 36t^2 - 63t + 18$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(t),t\$2)-6*diff(y(t),t)+25*y(t)=50*t^3-36*t^2-63*t+18,y(t), singsol=all)

$$y(t) = e^{3t} \sin(4t) c_2 + e^{3t} \cos(4t) c_1 + 2t^3 - 3t$$

Solution by Mathematica Time used: 0.019 (sec). Leaf size: 38

DSolve[y''[t]-6*y'[t]+25*y[t]==50*t^3-36*t^2-63*t+18,y[t],t,IncludeSingularSolutions -> True

$$y(t) \rightarrow 2t^3 - 3t + c_2 e^{3t} \cos(4t) + c_1 e^{3t} \sin(4t)$$

1.7 problem Problem 11.7

Internal problem ID [5169]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95 Problem number: Problem 11.7.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 6y'' + 11y' - 6y = 2x e^{-x}$$

Solution by Maple Time used: 0.016 (sec). Leaf size: 32

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+11*diff(y(x),x)-6*y(x)=2*x*exp(-x),y(x), singsol=all)

$$y(x) = \frac{(-12x - 13)e^{-x}}{144} + e^x c_1 + c_2 e^{2x} + c_3 e^{3x}$$

Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 42

DSolve[y'''[x]-6*y''[x]+11*y'[x]-6*y[x]==2*x*Exp[-x],y[x],x,IncludeSingularSolutions -> True

$$y(x) \rightarrow -\frac{1}{144}e^{-x}(12x+13) + c_1e^x + c_2e^{2x} + c_3e^{3x}$$

1.8 problem Problem 11.8

Internal problem ID [5170]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95 Problem number: Problem 11.8.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' = 9x^2 + 2x - 1$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)=9*x^2+2*x-1,y(x), singsol=all)

$$y(x) = \frac{3}{4}x^4 + \frac{1}{3}x^3 - \frac{1}{2}x^2 + c_1x + c_2$$

Solution by Mathematica Time used: 0.002 (sec). Leaf size: 33

DSolve[y''[x]==9*x^2+2*x-1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{3x^4}{4} + \frac{x^3}{3} - \frac{x^2}{2} + c_2 x + c_1$$

1.9 problem Problem 11.10

Internal problem ID [5171]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95 Problem number: Problem 11.10.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 5y = 2 e^{5x}$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x\$2)-5*y(x)=2*exp(5*x),y(x), singsol=all)

$$y(x) = e^{\sqrt{5}x}c_2 + e^{-\sqrt{5}x}c_1 + rac{e^{5x}}{10}$$

Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 40

DSolve[y''[x]-5*y[x]==2*Exp[5*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^{5x}}{10} + c_1 e^{\sqrt{5}x} + c_2 e^{-\sqrt{5}x}$$

1.10 problem Problem 11.12

Internal problem ID [5172]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95 Problem number: Problem 11.12.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 5y = (x - 1)\sin(x) + (x + 1)\cos(x)$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x)-5*y(x)=(x-1)*sin(x)+(x+1)*cos(x),y(x), singsol=all)

$$y(x) = c_1 e^{5x} + \frac{(-78x - 69)\cos(x)}{338} + \frac{(-52x + 71)\sin(x)}{338}$$

Solution by Mathematica Time used: 0.229 (sec). Leaf size: 36

DSolve[y'[x]-5*y[x]==(x-1)*Sin[x]+(x+1)*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{338}((71 - 52x)\sin(x) - 3(26x + 23)\cos(x)) + c_1e^{5x}$$

1.11 problem Problem 11.13

Internal problem ID [5173]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95 Problem number: Problem 11.13.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 5y = 3e^x - 2x + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x)-5*y(x)=3*exp(x)-2*x+1,y(x), singsol=all)

$$y(x) = rac{2x}{5} - rac{3}{25} - rac{3 \,\mathrm{e}^x}{4} + c_1 \mathrm{e}^{5x}$$

✓ Solution by Mathematica

Time used: 0.112 (sec). Leaf size: 29

DSolve[y'[x]-5*y[x]==3*Exp[x]-2*x+1,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{2x}{5} - rac{3e^x}{4} + c_1 e^{5x} - rac{3}{25}$$

1.12 problem Problem 11.14

Internal problem ID [5174]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95 Problem number: Problem 11.14.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 5y = x^2 e^x - e^{5x} x$$

Solution by Maple Time used: 0.016 (sec). Leaf size: 34

 $dsolve(diff(y(x),x)-5*y(x)=x^2*exp(x)-x*exp(5*x),y(x), singsol=all)$

$$y(x) = -\frac{(x^2 - 2c_1)e^x e^{4x}}{2} + \frac{(-8x^2 - 4x - 1)e^x}{32}$$

Solution by Mathematica

Time used: 0.209 (sec). Leaf size: 39

DSolve[y'[x]-5*y[x]==x^2*Exp[x]-x*Exp[5*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow -rac{1}{32}e^{x}ig(8x^{2}+4x+1ig)+e^{5x}igg(-rac{x^{2}}{2}+c_{1}igg)$$

2 Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101

2.1	problem Problem 11.44	. 16
2.2	problem Problem 11.45	. 17
2.3	problem Problem 11.46	. 18
2.4	problem Problem 11.47	. 19
2.5	problem Problem 11.48	. 20
2.6	problem Problem 11.49	. 21
2.7	problem Problem 11.50	. 22
2.8	problem Problem 11.51	. 23
2.9	problem Problem 11.52	. 24

2.1 problem Problem 11.44

Internal problem ID [5175]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101

Problem number: Problem 11.44.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y^{\prime\prime}-2y^{\prime}+y=x^2-1$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 20

 $dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=x^2-1,y(x), singsol=all)$

$$y(x) = (c_1 x + c_2) e^x + x^2 + 4x + 5$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 26

DSolve[y''[x]-2*y'[x]+y[x]==x^2-1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x^2 + x(4 + c_2 e^x) + c_1 e^x + 5$$

2.2 problem Problem 11.45

Internal problem ID [5176]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101

Problem number: Problem 11.45. **ODE order**: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' + y = 4 e^{2x}$$

Solution by Maple Time used: 0.016 (sec). Leaf size: 19

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=4*exp(2*x),y(x), singsol=all)

$$y(x) = 4 e^{2x} + (c_1 x + c_2) e^x$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 21

DSolve[y''[x]-2*y'[x]+y[x]==4*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x (4e^x + c_2 x + c_1)$$

2.3 problem Problem 11.46

Internal problem ID [5177]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101

Problem number: Problem 11.46.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = 4\cos\left(x\right)$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=4*cos(x),y(x), singsol=all)

$$y(x) = (c_1 x + c_2) e^x - 2 \sin(x)$$

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 21

DSolve[y''[x]-2*y'[x]+y[x]==4*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -2\sin(x) + e^x(c_2x + c_1)$$

2.4 problem Problem 11.47

Internal problem ID [5178]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101

Problem number: Problem 11.47. ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' + y = 3 e^x$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=3*exp(x),y(x), singsol=all)

$$y(x) = \mathrm{e}^x igg(c_2 + c_1 x + rac{3}{2} x^2 igg)$$

Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 27

DSolve[y''[x]-2*y'[x]+y[x]==3*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{1}{2} e^x (3x^2 + 2c_2x + 2c_1)$$

2.5 problem Problem 11.48

Internal problem ID [5179]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101

Problem number: Problem 11.48.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = e^x x$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=x*exp(x),y(x), singsol=all)

$$y(x) = \mathrm{e}^x \left(c_2 + c_1 x + \frac{1}{6} x^3 \right)$$

Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 25

DSolve[y''[x]-2*y'[x]+y[x]==x*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{6}e^x(x^3 + 6c_2x + 6c_1)$$

2.6 problem Problem 11.49

Internal problem ID [5180]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101

Problem number: Problem 11.49.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = e^x$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(x),x)-y(x)=exp(x),y(x), singsol=all)

$$y(x) = (x + c_1) e^x$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 13

DSolve[y'[x]-y[x]==Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^x(x+c_1)$$

2.7 problem Problem 11.50

Internal problem ID [5181]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101

Problem number: Problem 11.50.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = e^{2x}x + 1$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x)-y(x)=x*exp(2*x)+1,y(x), singsol=all)

$$y(x) = (x - 1)e^{2x} + e^{x}c_{1} - 1$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 22

DSolve[y'[x]-y[x]==x*Exp[2*x]+1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{2x}(x-1) + c_1 e^x - 1$$

2.8 problem Problem 11.51

Internal problem ID [5182]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101

Problem number: Problem 11.51. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = \sin\left(x\right) + \cos\left(2x\right)$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x)-y(x)=sin(x)+cos(2*x),y(x), singsol=all)

$$y(x) = e^{x}c_{1} - \frac{\cos(x)}{2} - \frac{\sin(x)}{2} + \frac{2\sin(2x)}{5} - \frac{\cos(2x)}{5}$$

✓ Solution by Mathematica

Time used: 0.16 (sec). Leaf size: 37

DSolve[y'[x]-y[x]==Sin[x]+Cos[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{10}(-5\sin(x) + 4\sin(2x) - 5\cos(x) - 2\cos(2x) + 10c_1e^x)$$

2.9 problem Problem 11.52

Internal problem ID [5183]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101

Problem number: Problem 11.52. ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - 3y'' + 3y' - y = 1 + e^x$$

Solution by Maple Time used: 0.015 (sec). Leaf size: 27

dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)+3*diff(y(x),x)-y(x)=exp(x)+1,y(x), singsol=all)

$$y(x) = -1 + rac{(6c_3x^2 + x^3 + 6c_2x + 6c_1)e^x}{6}$$

✓ Solution by Mathematica

Time used: 0.067 (sec). Leaf size: 31

DSolve[y'''[x]-3*y''[x]+3*y'[x]-y[x]==Exp[x]+1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -1 + e^x \left(\frac{x^3}{6} + c_3 x^2 + c_2 x + c_1 \right)$$

3 Chapter 12. VARIATION OF PARAMETERS. page 104

3.1	problem Problem 12.1			•	•	•	•		•	•	•	•	•			•	•	•	•		•	•	•	26
3.2	problem Problem 12.2	•		•			•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	27
3.3	problem Problem 12.3	•		•			•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	28
3.4	problem Problem 12.4			•					•	•	•		•			•	•	•	•		•	•	•	29
3.5	problem Problem 12.5	•		•					•	•	•		•		•	•	•	•	•		•	•	•	30
3.6	problem Problem 12.6			•					•	•	•		•			•	•	•	•		•	•	•	31
3.7	problem Problem 12.7			•					•	•	•		•			•	•	•	•		•	•	•	32
3.8	problem Problem 12.8			•		•	•		•	•		•	•			•	•	•	•		•			33

3.1 problem Problem 12.1

Internal problem ID [5184]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104 Problem number: Problem 12.1. ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y^{\prime\prime\prime} + y^{\prime} = \sec\left(x\right)$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 83

dsolve(diff(y(x),x\$3)+diff(y(x),x)=sec(x),y(x), singsol=all)

$$y(x) = \frac{i(e^{ix} - e^{-ix})\ln\left(\frac{e^{ix}}{e^{2ix} + 1}\right)}{2} - \frac{ie^{-ix}}{2} - 2i\arctan(e^{ix}) + \frac{ie^{ix}}{2} + (1 + c_1 - \ln(2))\sin(x) + (-x - c_2)\cos(x) + c_3$$

Solution by Mathematica Time used: 0.061 (sec). Leaf size: 57

DSolve[y'''[x]+y'[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -(x+c_2)\cos(x) - \log\left(\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right) \\ + \log\left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right) + \sin(x)(\log(\cos(x)) + c_1) + c_3$$

3.2 problem Problem 12.2

Internal problem ID [5185]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104

Problem number: Problem 12.2.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 3y'' + 2y' = \frac{e^x}{1 + e^{-x}}$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 56

dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)+2*diff(y(x),x)=exp(x)/(1+exp(-x)),y(x), singsol=all)

$$y(x) = \frac{(-2e^x - e^{2x} - 1)\ln(1 + e^{-x})}{2} + \frac{(2e^x + 1)\ln(e^{-x})}{2} + \frac{e^{2x}c_1}{2} + \frac{(2c_2 + 1)e^x}{2} + c_3$$

Solution by Mathematica Time used: 0.137 (sec). Leaf size: 59

DSolve[y'''[x]-3*y''[x]+2*y'[x]==Exp[x]/(1+Exp[-x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} \left(-2e^{2x} \operatorname{arctanh}(2e^x + 1) - (2e^x + 1) \log(e^x + 1) + e^x(c_2e^x + 1 + 2c_1) \right) + c_3$$

3.3 problem Problem 12.3

Internal problem ID [5186]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104 Problem number: Problem 12.3.

Froblem number: Froblem

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = \frac{\mathrm{e}^x}{x}$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=exp(x)/x,y(x), singsol=all)

$$y(x) = (\ln (x) x + x(c_1 - 1) + c_2) e^x$$

✓ Solution by Mathematica Time used: 0.02 (sec). Leaf size: 22

DSolve[y''[x]-2*y'[x]+y[x]==Exp[x]/x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(x\log(x) + (-1 + c_2)x + c_1)$$

3.4 problem Problem 12.4

Internal problem ID [5187]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104 Problem number: Problem 12.4.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 2y = \mathrm{e}^{3x}$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=exp(3*x),y(x), singsol=all)

$$y(x) = c_2 e^{-x} + e^{2x} c_1 + \frac{e^{3x}}{4}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 31

DSolve[y''[x]-y'[x]-2*y[x]==Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to rac{e^{3x}}{4} + c_1 e^{-x} + c_2 e^{2x}$$

3.5 problem Problem 12.5

Internal problem ID [5188]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104 Problem number: Problem 12.5.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 4x = \sin\left(2t\right)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(x(t),t$2)+4*x(t)=sin(2*t)^2,x(t), singsol=all)$

$$x(t) = \sin(2t) c_2 + \cos(2t) c_1 + \frac{1}{8} + \frac{\cos(4t)}{24}$$

Solution by Mathematica

Time used: 0.09 (sec). Leaf size: 31

DSolve[x''[t]+4*x[t]==Sin[2*t]^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow \frac{1}{24}\cos(4t) + c_1\cos(2t) + c_2\sin(2t) + \frac{1}{8}$$

3.6 problem Problem 12.6

Internal problem ID [5189]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104

Problem number: Problem 12.6.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$t^{2}N'' - 2tN' + 2N = t\ln(t)$$

Solution by Maple Time used: 0.016 (sec). Leaf size: 24

 $dsolve(t^2*diff(N(t),t^2)-2*t*diff(N(t),t)+2*N(t)=t*ln(t),N(t), singsol=all)$

$$N(t) = -\frac{t(\ln(t)^2 - 2c_1t + 2\ln(t) - 2c_2 + 2)}{2}$$

Solution by Mathematica Time used: 0.019 (sec). Leaf size: 30

DSolve[t²*n''[t]-2*t*n'[t]+2*n[t]==t*Log[t],n[t],t,IncludeSingularSolutions -> True]

$$n(t) \rightarrow -\frac{1}{2}t\log^2(t) - t\log(t) + t(c_2t - 1 + c_1)$$

3.7 problem Problem 12.7

Internal problem ID [5190]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104Problem number: Problem 12.7.ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{4y}{x} = x^4$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(x),x)+(4/x)*y(x)=x^4,y(x), singsol=all)$

$$y(x) = \frac{x^9 + 9c_1}{9x^4}$$

Solution by Mathematica Time used: 0.027 (sec). Leaf size: 19

DSolve[y'[x]+(4/x)*y[x]==x^4,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{x^5}{9} + \frac{c_1}{x^4}$$

3.8 problem Problem 12.8

Internal problem ID [5191]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104 Problem number: Problem 12.8.

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _quadrature]]

$$y'''' = 5x$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(y(x),x\$4)=5*x,y(x), singsol=all)

$$y(x) = \frac{x^5}{24} + \frac{c_1 x^3}{6} + \frac{c_2 x^2}{2} + \frac{(3c_1^2 + 10c_3)x}{10} + c_4$$

Solution by Mathematica Time used: 0.003 (sec). Leaf size: 31

DSolve[y''''[x]==5*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow rac{x^5}{24} + c_4 x^3 + c_3 x^2 + c_2 x + c_1$$

4 Chapter 12. VARIATION OF PARAMETERS. Supplementary Problems. page 109

4.1	roblem Problem 12.9	35
4.2	roblem Problem 12.10	36
4.3	roblem Problem 12.11	37
4.4	roblem Problem 12.12	38
4.5	roblem Problem 12.13	39
4.6	roblem Problem 12.14	1 0
4.7	roblem Problem 12.15	41
4.8	roblem Problem 12.16	12

4.1 problem Problem 12.9

Internal problem ID [5192]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. Supplementary Problems. page 109 Problem number: Problem 12.9.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = \frac{\mathrm{e}^x}{x^5}$$

Solution by Maple Time used: 0.015 (sec). Leaf size: 25

 $dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=exp(x)/x^5,y(x), singsol=all)$

$$y(x) = \frac{e^x(12c_1x^4 + 12c_2x^3 + 1)}{12x^3}$$

Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 25

DSolve[y''[x]-2*y'[x]+y[x]==Exp[x]/x^5,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{12}e^x \left(\frac{1}{x^3} + 12c_2x + 12c_1\right)$$

4.2 problem Problem 12.10

Internal problem ID [5193]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. Supplementary Problems. page 109 Problem number: Problem 12.10.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sec\left(x\right)$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)+y(x)=sec(x),y(x), singsol=all)

 $y(x) = -\ln(\sec(x))\cos(x) + \cos(x)c_1 + \sin(x)(x + c_2)$

Solution by Mathematica Time used: 0.021 (sec). Leaf size: 22

DSolve[y''[x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]

 $y(x) \to (x + c_2)\sin(x) + \cos(x)(\log(\cos(x)) + c_1)$

4.3 problem Problem 12.11

Internal problem ID [5194]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. Supplementary Problems. page 109 Problem number: Problem 12.11.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 2y = e^{3x}$$

Solution by Maple Time used: 0.016 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=exp(3*x),y(x), singsol=all)

$$y(x) = c_2 e^{-x} + e^{2x} c_1 + \frac{e^{3x}}{4}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 31

DSolve[y''[x]-y'[x]-2*y[x]==Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^{3x}}{4} + c_1 e^{-x} + c_2 e^{2x}$$

4.4 problem Problem 12.12

Internal problem ID [5195]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. Supplementary Problems. page 109 Problem number: Problem 12.12.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 60y' - 900y = 5 e^{10x}$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(x),x\$2)-60*diff(y(x),x)-900*y(x)=5*exp(10*x),y(x), singsol=all)

$$y(x) = e^{30(1+\sqrt{2})x}c_2 + e^{-30(\sqrt{2}-1)x}c_1 - \frac{e^{10x}}{280}$$

Solution by Mathematica Time used: 0.027 (sec). Leaf size: 45

DSolve[y''[x]-60*y'[x]-900*y[x]==5*Exp[10*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{e^{10x}}{280} + c_1 e^{-30(\sqrt{2}-1)x} + c_2 e^{30(1+\sqrt{2})x}$$

4.5 problem Problem 12.13

Internal problem ID [5196]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. Supplementary Problems. page 109 Problem number: Problem 12.13.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 7y' = -3$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x\$2)-7*diff(y(x),x)=-3,y(x), singsol=all)

$$y(x) = \frac{\mathrm{e}^{7x}c_1}{7} + \frac{3x}{7} + c_2$$

Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 24

DSolve[y''[x]-7*y'[x]==-3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{3x}{7} + \frac{1}{7}c_1e^{7x} + c_2$$

4.6 problem Problem 12.14

Internal problem ID [5197]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. Supplementary Problems. page 109 Problem number: Problem 12.14.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$y'' + \frac{y'}{x} - \frac{y}{x^2} = \ln\left(x\right)$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(x),x$2)+1/x*diff(y(x),x)-1/x^2*y(x)=ln(x),y(x), singsol=all)$

$$y(x) = c_1 x + \frac{c_2}{x} + \frac{x^2(3\ln(x) - 4)}{9}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 32

DSolve[y''[x]+1/x*y'[x]-1/x^2*y[x]==Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{4x^2}{9} + \frac{1}{3}x^2\log(x) + c_2x + \frac{c_1}{x}$$

4.7 problem Problem 12.15

Internal problem ID [5198]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. Supplementary Problems. page 109 Problem number: Problem 12.15.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x^2y'' - xy' = x^3 e^x$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)=x^3*exp(x),y(x), singsol=all)$

$$y(x) = (x - 1)e^{x} + \frac{c_{1}x^{2}}{2} + c_{2}$$

Solution by Mathematica

Time used: 0.086 (sec). Leaf size: 24

DSolve[x²*y''[x]-x*y'[x]==x³*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1 x^2}{2} + e^x (x-1) + c_2$$

4.8 problem Problem 12.16

Internal problem ID [5199]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. Supplementary Problems. page 109 Problem number: Problem 12.16.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - rac{y}{x} = x^2$$

Solution by Maple Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)-1/x*y(x)=x^2,y(x), singsol=all)$

$$y(x) = rac{x(x^2 + 2c_1)}{2}$$

Solution by Mathematica Time used: 0.025 (sec). Leaf size: 17

DSolve[y'[x]-1/x*y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^3}{2} + c_1 x$$

5	Chapter 24. Solutions of linear DE by Laplace	y Laplace								
	transforms. Supplementary Problems. page 248									
5.1	problem Problem 24.17	14								
5.2	problem Problem 24.18	15								
5.3	problem Problem 24.19	1 6								
5.4	problem Problem 24.26	17								
5.5	problem Problem 24.27	18								
5.6	problem Problem 24.28	19								
5.7	problem Problem 24.29	50								
5.8	problem Problem 24.30	51								
5.9	problem Problem 24.31	52								
5.10	problem Problem 24.32	53								
5.11	problem Problem 24.33	54								
5.12	problem Problem 24.35	55								
5.13	problem Problem 24.36	56								
5.14	problem Problem 24.37	57								
		58								
5.16	problem Problem 24.46	59								

5.1 problem Problem 24.17

Internal problem ID [5200]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.17. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + 2y = 0$$

With initial conditions

[y(0) = 1]

Solution by Maple Time used: 0.391 (sec). Leaf size: 8

dsolve([diff(y(x),x)+2*y(x)=0,y(0) = 1],y(x), singsol=all)

$$y(x) = e^{-2x}$$

Solution by Mathematica Time used: 0.023 (sec). Leaf size: 10

DSolve[{y'[x]+2*y[x]==0,{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x}$$

5.2 problem Problem 24.18

Internal problem ID [5201]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.18. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + 2y = 2$$

With initial conditions

$$[y(0) = 1]$$

Solution by Maple Time used: 0.312 (sec). Leaf size: 5

dsolve([diff(y(x),x)+2*y(x)=2,y(0) = 1],y(x), singsol=all)

y(x) = 1

Solution by Mathematica Time used: 0.001 (sec). Leaf size: 6

DSolve[{y'[x]+2*y[x]==2,{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 1$$

5.3 problem Problem 24.19

Internal problem ID [5202]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.19. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 2y = e^x$$

With initial conditions

$$[y(0) = 1]$$

Solution by Maple Time used: 0.343 (sec). Leaf size: 15

dsolve([diff(y(x),x)+2*y(x)=exp(x),y(0) = 1],y(x), singsol=all)

$$y(x) = \frac{(e^{3x} + 2)e^{-2x}}{3}$$

Solution by Mathematica Time used: 0.04 (sec). Leaf size: 21

DSolve[{y'[x]+2*y[x]==Exp[x],{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{3}e^{-2x}(e^{3x}+2)$$

5.4 problem Problem 24.26

Internal problem ID [5203]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.26. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

Solution by Maple Time used: 0.359 (sec). Leaf size: 6

dsolve([diff(y(x),x\$2)-y(x)=0,y(0) = 1, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = e^x$$

Solution by Mathematica Time used: 0.046 (sec). Leaf size: 26

DSolve[{y''[x]-y[x]==Sin[x],{y[0]==1,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4} \left(-e^{-x} + 5e^x - 2\sin(x) \right)$$

5.5 problem Problem 24.27

Internal problem ID [5204]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.27. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = \sin\left(x\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

Solution by Maple Time used: 0.406 (sec). Leaf size: 13

dsolve([diff(y(x),x\$2)-y(x)=sin(x),y(0) = 0, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = -\frac{\sin(x)}{2} + \frac{3\sinh(x)}{2}$$

Solution by Mathematica Time used: 0.034 (sec). Leaf size: 26

DSolve[{y''[x]-y[x]==Sin[x],{y[0]==1,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4} \left(-e^{-x} + 5e^x - 2\sin(x) \right)$$

5.6 problem Problem 24.28

Internal problem ID [5205]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.28. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y = e^x$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

Solution by Maple Time used: 0.391 (sec). Leaf size: 20

dsolve([diff(y(x),x\$2)-y(x)=exp(x),y(0) = 1, D(y)(0) = 0],y(x), singsol=all)

$$y(x) = \frac{3e^{-x}}{4} + \frac{e^x(2x+1)}{4}$$

Solution by Mathematica Time used: 0.017 (sec). Leaf size: 27

DSolve[{y''[x]-y[x]==Exp[x],{y[0]==1,y'[0]==0}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{1}{4} e^{-x} (e^{2x}(2x+1)+3)$$

5.7 problem Problem 24.29

Internal problem ID [5206]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.29. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' - 3y = \sin\left(2x\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

Solution by Maple Time used: 0.454 (sec). Leaf size: 27

dsolve([diff(y(x),x\$2)+2*diff(y(x),x)-3*y(x)=sin(2*x),y(0) = 0, D(y)(0) = 0],y(x), singsol=a

$$y(x) = -\frac{4e^{-3x}\left(\left(\cos\left(2x\right) + \frac{7\sin(2x)}{4}\right)e^{3x} - \frac{13e^{4x}}{8} + \frac{5}{8}\right)}{65}$$

Solution by Mathematica Time used: 0.109 (sec). Leaf size: 36

DSolve[{y''[x]-2*y'[x]-3*y[x]==Sin[2*x],{y[0]==0,y'[0]==0}},y[x],x,IncludeSingularSolutions

$$y(x) \rightarrow \frac{1}{130} \left(-13e^{-x} + 5e^{3x} - 14\sin(2x) + 8\cos(2x) \right)$$

5.8 problem Problem 24.30

Internal problem ID [5207]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.30. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sin\left(x\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 2]$$

Solution by Maple Time used: 0.375 (sec). Leaf size: 14

dsolve([diff(y(x),x\$2)+y(x)=sin(x),y(0) = 0, D(y)(0) = 2],y(x), singsol=all)

$$y(x) = \frac{5\sin(x)}{2} - \frac{\cos(x)x}{2}$$

Solution by Mathematica Time used: 0.027 (sec). Leaf size: 19

DSolve[{y''[x]+y[x]==Sin[x],{y[0]==0,y'[0]==2}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{2}(5\sin(x) - x\cos(x))$$

5.9 problem Problem 24.31

Internal problem ID [5208]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.31. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' + y = 0$$

With initial conditions

$$[y(0) = 4, y'(0) = -3]$$

Solution by Maple Time used: 0.453 (sec). Leaf size: 32

dsolve([diff(y(x),x\$2)+diff(y(x),x)+y(x)=0,y(0) = 4, D(y)(0) = -3],y(x), singsol=all)

$$y(x) = -\frac{2\left(\sqrt{3}\sin\left(\frac{\sqrt{3}x}{2}\right) - 6\cos\left(\frac{\sqrt{3}x}{2}\right)\right)e^{-\frac{x}{2}}}{3}$$

Solution by Mathematica Time used: 0.023 (sec). Leaf size: 47

DSolve[{y''[x]+y'[x]==0,{y[0]==4,y'[0]==-3}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{2}{3}e^{-x/2}\left(\sqrt{3}\sin\left(\frac{\sqrt{3}x}{2}\right) - 6\cos\left(\frac{\sqrt{3}x}{2}\right)\right)$$

5.10 problem Problem 24.32

Internal problem ID [5209]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.32. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' + 5y = 3 e^{-2x}$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

Solution by Maple Time used: 0.469 (sec). Leaf size: 30

dsolve([diff(y(x),x\$2)+2*diff(y(x),x)+5*y(x)=3*exp(-2*x),y(0) = 1, D(y)(0) = 1],y(x), singsc

$$y(x) = \frac{3e^{-2x}}{5} + \frac{e^{-x}(4\cos(2x) + 13\sin(2x))}{10}$$

Solution by Mathematica Time used: 0.025 (sec). Leaf size: 34

DSolve[{y''[x]+2*y'[x]+5*y[x]==3*Exp[-2*x],{y[0]==1,y'[0]==1}},y[x],x,IncludeSingularSolutio

$$y(x) \to \frac{1}{10}e^{-2x}(13e^x\sin(2x) + 4e^x\cos(2x) + 6)$$

5.11 problem Problem 24.33

Internal problem ID [5210]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.33. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y'' + 5y' - 3y =Heaviside (-4 + x)

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

Solution by Maple Time used: 0.531 (sec). Leaf size: 45

dsolve([diff(y(x),x\$2)+5*diff(y(x),x)-3*y(x)=Heaviside(x-4),y(0) = 0, D(y)(0) = 0],y(x), sin

$$y(x) = \frac{\text{Heaviside}\left(x-4\right)\left(-1+\frac{5\sqrt{37}\sinh\left(\frac{(x-4)\sqrt{37}}{2}\right)e^{-\frac{5x}{2}+10}}{37}+\cosh\left(\frac{(x-4)\sqrt{37}}{2}\right)e^{-\frac{5x}{2}+10}\right)}{3}$$

Solution by Mathematica Time used: 0.051 (sec). Leaf size: 70

DSolve[{y''[x]+5*y'[x]-3*y[x]==UnitStep[x-4],{y[0]==0,y'[0]==0}},y[x],x,IncludeSingularSolut

y(x)

5.12 problem Problem 24.35

Internal problem ID [5211]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.35. ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - y = 5$$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y''(0) = 0]$$

Solution by Maple Time used: 0.422 (sec). Leaf size: 23

 $dsolve([diff(y(x),x^3)-y(x)=5,y(0) = 0, D(y)(0) = 0, (D@@2)(y)(0) = 0],y(x), singsol=all)$

$$y(x) = -5 + rac{5 \, \mathrm{e}^x}{3} + rac{10 \, \mathrm{e}^{-rac{x}{2}} \cos \left(rac{\sqrt{3} \, x}{2}
ight)}{3}$$

Solution by Mathematica Time used: 0.004 (sec). Leaf size: 34

DSolve[{y'''[x]-y[x]==5,{y[0]==0,y'[0]==0,y''[0]==0}},y[x],x,IncludeSingularSolutions -> Tru

$$y(x) \rightarrow \frac{5}{3}\left(e^x + 2e^{-x/2}\cos\left(\frac{\sqrt{3}x}{2}\right) - 3\right)$$

5.13 problem Problem 24.36

Internal problem ID [5212]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.36. ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y''''-y=0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0, y''(0) = 0, y'''(0) = 0]$$

Solution by Maple Time used: 0.422 (sec). Leaf size: 13

dsolve([diff(y(x),x\$4)-y(x)=0,y(0) = 1, D(y)(0) = 0, (D@@2)(y)(0) = 0, (D@@3)(y)(0) = 0],y(x)

$$y(x) = \frac{\cos\left(x\right)}{2} + \frac{\cosh\left(x\right)}{2}$$

Solution by Mathematica Time used: 0.003 (sec). Leaf size: 22

DSolve[{y'''[x]-y[x]==0,{y[0]==1,y'[0]==0,y''[0]==0,y'''[0]==0}},y[x],x,IncludeSingularSolu

$$y(x) \rightarrow \frac{1}{4} \left(e^{-x} + e^x + 2\cos(x) \right)$$

5.14 problem Problem 24.37

Internal problem ID [5213]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.37. ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 3y'' + 3y' - y = x^2 e^x$$

With initial conditions

$$[y(0) = 1, y'(0) = 2, y''(0) = 3]$$

Solution by Maple Time used: 0.453 (sec). Leaf size: 16

 $dsolve([diff(y(x),x$3)-3*diff(y(x),x$2)+3*diff(y(x),x)-y(x)=x^2*exp(x),y(0) = 1, D(y)(0) = 2$

$$y(x) = \frac{e^x(x^5 + 60x + 60)}{60}$$

Solution by Mathematica Time used: 0.008 (sec). Leaf size: 20

DSolve[{y'''[x]-3*y''[x]+3*y'[x]-y[x]==x^2*Exp[x],{y[0]==1,y'[0]==2,y''[0]==3}},y[x],x,Inclu

$$y(x) \to rac{1}{60} e^x (x^5 + 60x + 60)$$

5.15 problem Problem 24.44

Internal problem ID [5214]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.44. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + 4x' + 4x = 0$$

With initial conditions

$$[x(0) = 2, x'(0) = -2]$$

Solution by Maple Time used: 0.453 (sec). Leaf size: 13

dsolve([diff(x(t),t\$2)+4*diff(x(t),t)+4*x(t)=0,x(0) = 2, D(x)(0) = -2],x(t), singsol=all)

$$x(t) = 2(t+1) e^{-2t}$$

Solution by Mathematica Time used: 0.024 (sec). Leaf size: 47

DSolve[{x''[t]+3*x'[t]+4*x[t]==0,{x[0]==2,x'[0]==-2}},x[t],t,IncludeSingularSolutions -> Tru

$$x(t) \rightarrow \frac{2}{7}e^{-3t/2}\left(\sqrt{7}\sin\left(\frac{\sqrt{7}t}{2}\right) + 7\cos\left(\frac{\sqrt{7}t}{2}\right)\right)$$

5.16 problem Problem 24.46

Internal problem ID [5215]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.46. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$q'' + 9q' + 14q = \frac{\sin{(t)}}{2}$$

With initial conditions

$$[q(0) = 0, q'(0) = 1]$$

Solution by Maple Time used: 0.531 (sec). Leaf size: 25

dsolve([diff(q(t),t\$2)+9*diff(q(t),t)+14*q(t)=1/2*sin(t),q(0) = 0, D(q)(0) = 1],q(t), singso

$$q(t) = -\frac{9\cos\left(t\right)}{500} + \frac{13\sin\left(t\right)}{500} - \frac{101\,\mathrm{e}^{-7t}}{500} + \frac{11\,\mathrm{e}^{-2t}}{500}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 32

DSolve[{q''[t]+9*q'[t]+14*q[t]==1/2*Sin[t],{q[0]==0,q'[0]==1}},q[t],t,IncludeSingularSolution

$$q(t) \rightarrow \frac{1}{500} \left(-101e^{-7t} + 110e^{-2t} + 13\sin(t) - 9\cos(t) \right)$$

6 Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

C 1		D 1.1	07.00	,																												C1
0.1	problem	Problem	27.28).	•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	01
6.2	$\operatorname{problem}$	Problem	27.30).		•		•	•	•	•		•	•			•	•			•		•	•	•	•	•		•	•	•	62
6.3	problem	Problem	27.36	;.	•	•		•	•	•	•	•	•	•				•			•	•	•	•	•	•	•		•	•		63
6.4	problem	Problem	27.37	΄.	•	•		•	•	•	•	•	•	•				•			•	•	•	•	•	•	•		•	•		64
6.5	problem	Problem	27.38	8.				•			•		•	•							•		•	•	•		•			•		65
6.6	problem	Problem	27.39).		•		•	•	•	•		•	•				•			•		•	•	•	•	•			•		66
6.7	$\operatorname{problem}$	Problem	27.40).	•	•	•	•	•	•	•		•	•				•			•		•	•	•	•	•		•	•		67
6.8	problem	Problem	27.41		•	•		•	•	•	•	•	•	•				•			•	•	•	•	•	•	•		•	•		68
6.9	problem	Problem	27.42	2.	•	•		•	•	•	•	•	•	•				•			•	•	•	•	•	•	•		•	•		69
6.10	problem	Problem	27.48	;.										•											•							70

6.1 problem Problem 27.28

Internal problem ID [5216]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.28. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x+1) y'' + \frac{y'}{x} + xy = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple Time used: 0.015 (sec). Leaf size: 49

Order:=6; dsolve((x+1)*diff(y(x),x\$2)+1/x*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = (c_2 \ln (x) + c_1) \left(1 - \frac{1}{9}x^3 + \frac{1}{24}x^4 - \frac{1}{50}x^5 + O(x^6) \right) + \left(x + \frac{2}{27}x^3 - \frac{11}{144}x^4 + \frac{33}{1000}x^5 + O(x^6) \right) c_2$$

Solution by Mathematica Time used: 0.005 (sec). Leaf size: 82

AsymptoticDSolveValue[(1+x)*y''[x]+1/x*y'[x]+x*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(-\frac{x^5}{50} + \frac{x^4}{24} - \frac{x^3}{9} + 1 \right) \\ + c_2 \left(\frac{33x^5}{1000} - \frac{11x^4}{144} + \frac{2x^3}{27} + \left(-\frac{x^5}{50} + \frac{x^4}{24} - \frac{x^3}{9} + 1 \right) \log(x) + x \right)$$

6.2 problem Problem 27.30

Internal problem ID [5217]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.30. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^3y'' + y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

Order:=6; dsolve(x^3*diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=0);

No solution found

Solution by Mathematica Time used: 0.035 (sec). Leaf size: 222

AsymptoticDSolveValue $[x^3*y''[x]+y[x]==0,y[x],\{x,0,5\}]$

6.3 problem Problem 27.36

Internal problem ID [5218]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.36. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + xy = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^3}{6}\right)y(0) + \left(x - \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

 $AsymptoticDSolveValue[y''[x]+x*y[x]==0,y[x], \{x,0,5\}]$

$$y(x) \to c_2\left(x - \frac{x^4}{12}\right) + c_1\left(1 - \frac{x^3}{6}\right)$$

6.4 problem Problem 27.37

Internal problem ID [5219]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.37. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' - 2xy' - 2y = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple Time used: 0.0 (sec). Leaf size: 32

Order:=6; dsolve(diff(y(x),x\$2)-2*x*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + x^2 + \frac{1}{2}x^4\right)y(0) + \left(x + \frac{2}{3}x^3 + \frac{4}{15}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 38

AsymptoticDSolveValue[y''[x]-2*x*y'[x]-2*y[x]==0,y[x],{x,0,5}]

$$y(x) \rightarrow c_2\left(\frac{4x^5}{15} + \frac{2x^3}{3} + x\right) + c_1\left(\frac{x^4}{2} + x^2 + 1\right)$$

6.5 problem Problem 27.38

Internal problem ID [5220]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.38. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + x^2y' + 2xy = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+x^2*diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^3}{3}\right)y(0) + \left(x - \frac{1}{4}x^4\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

 $AsymptoticDSolveValue[y''[x]+x^{2*y'}[x]+2*x*y[x]==0,y[x], \{x,0,5\}]$

$$y(x)
ightarrow c_2\left(x - rac{x^4}{4}
ight) + c_1\left(1 - rac{x^3}{3}
ight)$$

6.6 problem Problem 27.39

Internal problem ID [5221]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.39. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - x^2y' - y = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple Time used: 0.016 (sec). Leaf size: 44

Order:=6; dsolve(diff(y(x),x\$2)-x^2*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x^2 + \frac{1}{24}x^4 + \frac{1}{20}x^5\right)y(0) + \left(x + \frac{1}{6}x^3 + \frac{1}{12}x^4 + \frac{1}{120}x^5\right)D(y)(0) + O\left(x^6\right)y(0) + O\left(x^6\right$$

Solution by Mathematica Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue[y''[x]- $x^2*y'[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2\left(\frac{x^5}{120} + \frac{x^4}{12} + \frac{x^3}{6} + x\right) + c_1\left(\frac{x^5}{20} + \frac{x^4}{24} + \frac{x^2}{2} + 1\right)$$

6.7 problem Problem 27.40

Internal problem ID [5222]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.40. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + 2yx^2 = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+2*x^2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^4}{6}\right)y(0) + \left(x - \frac{1}{10}x^5\right)D(y)(0) + O(x^6)$$

Solution by Mathematica Time used: 0.001 (sec). Leaf size: 28

 $AsymptoticDSolveValue[y''[x]+2*x^2*y[x]==0,y[x], \{x,0,5\}]$

$$y(x) \to c_2\left(x - \frac{x^5}{10}\right) + c_1\left(1 - \frac{x^4}{6}\right)$$

6.8 problem Problem 27.41

Internal problem ID [5223]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.41. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$\left(x^2-1\right)y''+xy'-y=0$$

With the expansion point for the power series method at x = 0.

Solution by Maple Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve((x^2-1)*diff(y(x),x\$2)+x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 - \frac{1}{8}x^4\right)y(0) + D(y)(0)x + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 27

AsymptoticDSolveValue[(x^2-1)*y''[x]+x*y'[x]-y[x]==0,y[x],{x,0,5}]

$$y(x) o c_1 \left(-rac{x^4}{8} - rac{x^2}{2} + 1
ight) + c_2 x$$

6.9 problem Problem 27.42

Internal problem ID [5224]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.42. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' - xy = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)-x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^3}{6}\right)y(0) + \left(x + \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]-x*y[x]==0, y[x], \{x, 0, 5\}$]

$$y(x) \to c_2\left(\frac{x^4}{12} + x\right) + c_1\left(\frac{x^3}{6} + 1\right)$$

6.10 problem Problem 27.48

Internal problem ID [5225]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.48. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2xy' + yx^2 = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

With the expansion point for the power series method at x = 0.

Solution by Maple Time used: 0.0 (sec). Leaf size: 18

Order:=6; dsolve([diff(y(x),x\$2)-2*x*diff(y(x),x)+x^2*y(x)=0,y(0) = 1, D(y)(0) = -1],y(x),type='series

$$y(x) = 1 - x - \frac{1}{3}x^3 - \frac{1}{12}x^4 - \frac{1}{20}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 29

AsymptoticDSolveValue[{y''[x]-2*x*y'[x]+x^2*y[x]==0,{y[0]==1,y'[0]==-1}},y[x],{x,0,5}]

$$y(x) \rightarrow -\frac{x^5}{20} - \frac{x^4}{12} - \frac{x^3}{3} - x + 1$$