A Solution Manual For

An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

AN ELEMENTARY TREATISE

ON

DIFFERENTIAL EQUATIONS

BY

ABRAHAM COHEN, Ph.D.
ASSOCIATE PROFESSOR OF MATHEMATICS
JOHNS HOPKINS UNIVERSITY

D. C. HEATH & CO., PUBLISHERS

BOSTON NEW YORK CHICAGO

General of Google

Nasser M. Abbasi

May 16, 2024

Contents

1	Chapter 2, differential equations of the first order and the first degree. Article 8. Exact differential equations. Page 11	4
2	Chapter 2, differential equations of the first order and the first degree. Article 9. Variables searated or separable. Page 13	11
3	Chapter 2, differential equations of the first order and the first degree. Article 10. Homogeneous equations. Page 15	16
4	Chapter 2, differential equations of the first order and the first degree. Article 11. Equations in which M and N are linear but not homogeneous. Page 16	2 4
5	Chapter 2, differential equations of the first order and the first degree. Article 12. Equations of form $yf_1(xy) + xf_2(xy)y' = 0$. Page 18	28
6	Chapter 2, differential equations of the first order and the first degree. Article 13. Linear equations of first order. Page 19	32
7	Chapter 2, differential equations of the first order and the first degree. Article 14. Equations reducible to linear equations (Bernoulli). Page 21	38
8	Chapter 2, differential equations of the first order and the first degree. Article 15. Page 22	45
9	Chapter 2, differential equations of the first order and the first degree. Article 16. Integrating factors by inspection. Page 23	50
10	Chapter 2, differential equations of the first order and the first degree. Article 17. Other forms which Integrating factors can be found. Page 25	57
11	Chapter 2, differential equations of the first order and the first degree. Article 18. Transformation of variables. Page 26	65
12	Chapter 2, differential equations of the first order and the first degree. Article 19. Summary. Page 29	70

13	Chapter IV, differential equations of the first order and higher degree than the first. Article 24. Equations solvable for p . Page 49	103
14	Chapter IV, differential equations of the first order and higher degree than the first. Article 25. Equations solvable for y . Page 52	110
15	Chapter IV, differential equations of the first order and higher degree than the first. Article 26. Equations solvable for x . Page 55	119
16	Chapter IV, differential equations of the first order and higher degree than the first. Article 27. Clairaut equation. Page 56	127
17	Chapter IV, differential equations of the first order and higher degree than the first. Article 28. Summary. Page 59	142
18	Chapter V, Singular solutions. Article 30. Page 63	156
19	Chapter V, Singular solutions. Article 32. Page 69	159
20	Chapter V, Singular solutions. Article 33. Page 73	161
21	Chapter VII, Linear differential equations with constant coefficients. Article 43. Page 92	166
22	Chapter VII, Linear differential equations with constant coefficients. Article 44. Roots of auxiliary equation repeated. Page 94	171
23	Chapter VII, Linear differential equations with constant coefficients. Article 45. Roots of auxiliary equation complex. Page 95	176
24	Chapter VII, Linear differential equations with constant coefficients. Article 47. Particular integral. Page 100	179
2 5	Chapter VII, Linear differential equations with constant coefficients. Article 48. Page 103	184
26	Chapter VII, Linear differential equations with constant coefficients. Article 49. Variation of parameters. Page 106	189
27	Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107	192

28	Chapter VII, Linear differential equations with constant coefficients. Article 51. Cauchy linear equation. Page 114	202
29	Chapter VII, Linear differential equations with constant coefficients. Article 52. Summary. Page 117	207
30	Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125	221
31	Chapter VIII, Linear differential equations of the second order. Article 54. Change of independent variable. Page 127	230
32	Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129	236
33	Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 57. Dependent variable absent. Page 132	247
34	Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 58. Independent variable absent. Page 135	25 3
35	Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 59. Linear equations with particular integral known. Page 136	258
36	Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 60. Exact equation. Integrating factor. Page 139	261
37	Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 61. Transformation of variables. Page 143	271
38	Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 62. Summary. Page 144	276
39	Chapter X, System of simulataneous equations. Article 64. Systems of linear equations with constant coefficients. Page 150	289

1 Chapter 2, differential equations of the first order and the first degree. Article 8. Exact differential equations. Page 11

1.1	problem Ex 1		•		•		•									•	•			•	,
1.2	problem Ex 2																				6
1.3	problem Ex 3																				8
1.4	problem Ex 4																				Ć
1.5	problem Ex 5																				10

1.1 problem Ex 1

Internal problem ID [11122]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 8.

Exact differential equations. Page 11

Problem number: Ex 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _exact, _rational, [_Abel, '2nd ty

$$\frac{2yx+1}{y} + \frac{(y-x)y'}{y^2} = 0$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 18

 $dsolve((2*x*y(x)+1)/y(x)+ (y(x)-x)/y(x)^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{x}{\text{LambertW}\left(-e^{x^2}c_1x\right)}$$

✓ Solution by Mathematica

Time used: 7.151 (sec). Leaf size: 29

 $DSolve[(2*x*y[x]+1)/y[x]+ (y[x]-x)/y[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\frac{x}{W(x(-e^{x^2-c_1}))}$$

 $y(x) \rightarrow 0$

1.2 problem Ex 2

Internal problem ID [11123]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 8.

Exact differential equations. Page 11

Problem number: Ex 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$y^{2} - 2x^{2}$$

$$y^{2}x - x^{3} + \frac{(2y^{2} - x^{2})y'}{y^{3} - x^{2}y} = 0$$

✓ Solution by Maple

Time used: 0.266 (sec). Leaf size: 71

 $dsolve((y(x)^2-2*x^2)/(x*y(x)^2-x^3)+ (2*y(x)^2-x^2)/(y(x)^3-x^2*y(x))*diff(y(x),x)=0,y(x),$

$$y(x) = rac{\sqrt{rac{2c_1x^3 - 2\sqrt{c_1^2x^6 + 4}}{c_1x^3}} \, x}{2} \ y(x) = rac{\sqrt{2}\,\sqrt{rac{c_1x^3 + \sqrt{c_1^2x^6 + 4}}{c_1x^3}} \, x}{2}$$

✓ Solution by Mathematica

Time used: 15.598 (sec). Leaf size: 277

$$y(x) \to -\frac{\sqrt{x^2 - \frac{\sqrt{x^6 - 4e^{2c_1}}}{x}}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{x^2 - \frac{\sqrt{x^6 - 4e^{2c_1}}}{x}}}{\sqrt{2}}$$

$$y(x) \to -\frac{\sqrt{\frac{x^3 + \sqrt{x^6 - 4e^{2c_1}}}{x}}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{\frac{x^3 + \sqrt{x^6 - 4e^{2c_1}}}{x}}}{\sqrt{2}}$$

$$y(x) \to -\frac{\sqrt{x^2 - \frac{\sqrt{x^6}}{x}}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{x^2 - \frac{\sqrt{x^6}}{x}}}{\sqrt{2}}$$

$$y(x) \to -\frac{\sqrt{\frac{\sqrt{x^6 + x^3}}{x}}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{\sqrt{x^6 + x^3}}}{\sqrt{2}}$$

1.3 problem Ex 3

Internal problem ID [11124]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 8.

Exact differential equations. Page 11

Problem number: Ex 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$\boxed{\frac{1}{\sqrt{x^2 + y^2}} + \left(\frac{1}{y} - \frac{x}{y\sqrt{x^2 + y^2}}\right)y' = 0}$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 18

 $dsolve(1/sqrt(x^2+y(x)^2)+ (1/y(x)-(x/(y(x)*sqrt(x^2+y(x)^2))))*diff(y(x),x)=0,y(x), singsolve(1/sqrt(x^2+y(x)^2)+(1/y(x)-(x/(y(x)*sqrt(x^2+y(x)^2)))))*diff(y(x),x)=0,y(x), singsolve(1/sqrt(x^2+y(x)^2)+(1/y(x)-(x/(y(x)*sqrt(x^2+y(x)^2)))))*diff(y(x),x)=0,y(x), singsolve(1/sqrt(x^2+y(x)^2)+(1/y(x)-(x/(y(x)*sqrt(x^2+y(x)^2)))))*diff(y(x),x)=0,y(x), singsolve(1/sqrt(x^2+y(x)^2)+(1/y(x)-(x/(y(x)*sqrt(x^2+y(x)^2)))))*diff(y(x),x)=0,y(x), singsolve(1/sqrt(x^2+y(x)^2)+(1/y(x)^2)))$

$$-c_1 + \sqrt{y(x)^2 + x^2} + x = 0$$

✓ Solution by Mathematica

Time used: 0.893 (sec). Leaf size: 62

DSolve $[1/Sqrt[x^2+y[x]^2] + (1/y[x]-(x/(y[x]*Sqrt[x^2+y[x]^2])))*y'[x]==0,y[x],x,IncludeSingth{\columnwidth}{...}$

$$y(x) \to -e^{\frac{c_1}{2}} \sqrt{-2x + e^{c_1}}$$

$$y(x) \to e^{\frac{c_1}{2}} \sqrt{-2x + e^{c_1}}$$

$$y(x) \to 0$$

 $y(x) \to \text{ComplexInfinity}$

1.4 problem Ex 4

Internal problem ID [11125]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

 ${f Section}$: Chapter 2, differential equations of the first order and the first degree. Article 8.

Exact differential equations. Page 11

Problem number: Ex 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y + y'x = -x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve((y(x)+x)+ x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\frac{x}{2} + \frac{c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 17

 $DSolve[(y[x]+x)+ x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\frac{x}{2} + \frac{c_1}{x}$$

1.5 problem Ex 5

Internal problem ID [11126]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 8.

Exact differential equations. Page 11

Problem number: Ex 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _exact, _rational, [_Abel, '2nd ty

$$-2y + (2y - 2x - 3)y' = -6x - 1$$

✓ Solution by Maple

Time used: 0.469 (sec). Leaf size: 33

dsolve((6*x-2*y(x)+1)+(2*y(x)-2*x-3)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{-\sqrt{1 - 8\left(x - \frac{1}{2}\right)^2 c_1^2} + (2x + 3)c_1}{2c_1}$$

✓ Solution by Mathematica

Time used: 0.208 (sec). Leaf size: 67

DSolve[(6*x-2*y[x]+1)+(2*y[x]-2*x-3)*y'[x] == 0, y[x], x, IncludeSingularSolutions] -> True]

$$y(x) \rightarrow -\frac{1}{2}i\sqrt{8x^2 - 8x - 9 - 4c_1} + x + \frac{3}{2}$$

 $y(x) \rightarrow \frac{1}{2}i\sqrt{8x^2 - 8x - 9 - 4c_1} + x + \frac{3}{2}$

2	Chapter 2, differential equations of the first
	order and the first degree. Article 9. Variables
	searated or separable. Page 13

2.1	problem Ex 1	12
2.2	problem Ex $2 \ldots \ldots \ldots \ldots$	13
2.3	problem Ex 3	14
24	problem Ex 4	15

problem Ex 1 2.1

Internal problem ID [11127]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 9.

Variables searated or separable. Page 13

Problem number: Ex 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\sec(x)\cos(y)^2 - \cos(x)\sin(y)y' = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

 $dsolve((sec(x)*cos(y(x))^2)-(cos(x)*sin(y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \arccos\left(\frac{1}{\tan(x) + c_1}\right)$$

Solution by Mathematica

Time used: 1.366 (sec). Leaf size: 45

 $DSolve[(Sec[x]*Cos[y[x]]^2)-(Cos[x]*Sin[y[x]])*y'[x]==0,y[x],x,IncludeSingular Solutions -> Tolumber The content of the con$

$$y(x) \to -\sec^{-1}(\tan(x) + 2c_1)$$

$$y(x) \to \sec^{-1}(\tan(x) + 2c_1)$$

$$y(x) \to \sec^2$$

$$y(x) \to -\frac{\pi}{2}$$

$$y(x) \to \frac{\pi}{2}$$

$$y(x) o rac{\pi}{2}$$

2.2 problem Ex 2

Internal problem ID [11128]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 9.

Variables searated or separable. Page 13

Problem number: Ex 2.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(1+x)y^2 - y'x^3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve((1+x)*y(x)^2-x^3*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{2x^2}{2c_1x^2 + 2x + 1}$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.231 (sec). Leaf size: 29}}$

DSolve[$(1+x)*y[x]^2-x^3*y'[x]==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to \frac{2x^2}{-2c_1x^2 + 2x + 1}$$

 $y(x) \to 0$

2.3 problem Ex 3

Internal problem ID [11129]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 9.

Variables searated or separable. Page 13

Problem number: Ex 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2(1-y^2) xy + (x^2+1) (1+y^2) y' = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 61

 $dsolve(2*(1-y(x)^2)*x*y(x)+(1+x^2)*(1+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1 x^2}{2} + \frac{c_1}{2} - \frac{\sqrt{4 + (x^2 + 1)^2 c_1^2}}{2}$$
$$y(x) = \frac{c_1 x^2}{2} + \frac{c_1}{2} + \frac{\sqrt{4 + (x^2 + 1)^2 c_1^2}}{2}$$

✓ Solution by Mathematica

Time used: 8.437 (sec). Leaf size: 98

$$\begin{split} y(x) &\to \frac{1}{2} \bigg(-e^{c_1} \big(x^2 + 1 \big) - \sqrt{4 + e^{2c_1} \left(x^2 + 1 \right)^2} \bigg) \\ y(x) &\to \frac{1}{2} \bigg(\sqrt{4 + e^{2c_1} \left(x^2 + 1 \right)^2} - e^{c_1} \big(x^2 + 1 \big) \bigg) \\ y(x) &\to -1 \\ y(x) &\to 0 \\ y(x) &\to 1 \end{split}$$

problem Ex 4 2.4

Internal problem ID [11130]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 9.

Variables searated or separable. Page 13

Problem number: Ex 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\sin(x)\cos(y)^{2} + \cos(x)^{2}y' = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(sin(x)*cos(y(x))^2+cos(x)^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\arctan\left(\sec\left(x\right) + c_1\right)$$

Solution by Mathematica

Time used: 2.833 (sec). Leaf size: 31

DSolve[Sin[x]*Cos[y[x]]^2+Cos[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o \arctan(-\sec(x) + c_1)$$

 $y(x) o -\frac{\pi}{2}$
 $y(x) o \frac{\pi}{2}$

$$y(x) \to -\frac{\pi}{2}$$

$$y(x) o \frac{\pi}{2}$$

3 Chapter 2, differential equations of the first order and the first degree. Article 10. Homogeneous equations. Page 15

3.1	problem Ex 1																		17
3.2	problem Ex 2																		18
3.3	problem Ex 3																		20
3.4	problem Ex 4																		21
3.5	problem Ex 5																		22
3.6	problem Ex 6																		23

3.1 problem Ex 1

Internal problem ID [11131]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 10.

Homogeneous equations. Page 15

Problem number: Ex 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$x e^{\frac{y}{x}} + y - y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve((x*exp(y(x)/x)+y(x))-x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \ln\left(-\frac{1}{\ln(x) + c_1}\right)x$$

✓ Solution by Mathematica

Time used: 0.527 (sec). Leaf size: $18\,$

DSolve[(x*Exp[y[x]/x]+y[x])-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x \log(-\log(x) - c_1)$$

3.2 problem Ex 2

Internal problem ID [11132]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 10.

Homogeneous equations. Page 15

Problem number: Ex 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$2x^{2}y + 3y^{3} - (x^{3} + 2y^{2}x)y' = 0$$

✓ Solution by Maple

Time used: 0.641 (sec). Leaf size: 89

 $dsolve((2*x^2*y(x)+3*y(x)^3)-(x^3+2*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{-2 - 2\sqrt{4c_1x^2 + 1}} x}{2}$$

$$y(x) = \frac{\sqrt{-2 - 2\sqrt{4c_1x^2 + 1}} x}{2}$$

$$y(x) = -\frac{\sqrt{-2 + 2\sqrt{4c_1x^2 + 1}} x}{2}$$

$$y(x) = \frac{\sqrt{-2 + 2\sqrt{4c_1x^2 + 1}} x}{2}$$

✓ Solution by Mathematica

Time used: 47.499 (sec). Leaf size: 277

$$y(x) \to -\frac{\sqrt{-x^2 - \sqrt{x^4 + 4e^{2c_1}x^6}}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{-x^2 - \sqrt{x^4 + 4e^{2c_1}x^6}}}{\sqrt{2}}$$

$$y(x) \to -\frac{\sqrt{-x^2 + \sqrt{x^4 + 4e^{2c_1}x^6}}}{\sqrt{2}}$$

$$y(x) \to \sqrt{-\frac{x^2}{2} + \frac{1}{2}\sqrt{x^4 + 4e^{2c_1}x^6}}}$$

$$y(x) \to -\frac{\sqrt{-\sqrt{x^4} - x^2}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{-\sqrt{x^4} - x^2}}{\sqrt{2}}$$

$$y(x) \to -\frac{\sqrt{\sqrt{x^4} - x^2}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{\sqrt{x^4} - x^2}}{\sqrt{2}}$$

problem Ex 3 3.3

Internal problem ID [11133]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 10.

Homogeneous equations. Page 15

Problem number: Ex 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y^2 - yx + y'x^2 = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $dsolve((y(x)^2-x*y(x))+x^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{x}{\ln(x) + c_1}$$

Solution by Mathematica

Time used: 0.15 (sec). Leaf size: 19

 $DSolve[(y[x]^2-x*y[x])+x^2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x}{\log(x) + c_1}$$

$$y(x) \to 0$$

3.4 problem Ex 4

Internal problem ID [11134]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 10.

Homogeneous equations. Page 15

Problem number: Ex 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$2x^2y + y^3 - y'x^3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $dsolve(2*x^2*y(x)+y(x)^3-x^3*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{x^2}{\sqrt{-x^2 + c_1}}$$
$$y(x) = -\frac{x^2}{\sqrt{-x^2 + c_1}}$$

✓ Solution by Mathematica

Time used: 0.181 (sec). Leaf size: 47

 $DSolve[2*x^2*y[x]+y[x]^3-x^3*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{x^2}{\sqrt{-x^2 + c_1}}$$
$$y(x) \to \frac{x^2}{\sqrt{-x^2 + c_1}}$$
$$y(x) \to 0$$

3.5 problem Ex 5

Internal problem ID [11135]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 10.

Homogeneous equations. Page 15

Problem number: Ex 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y^3 + y'x^3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(y(x)^3+x^3*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{x}{\sqrt{c_1 x^2 - 1}}$$
$$y(x) = -\frac{x}{\sqrt{c_1 x^2 - 1}}$$

✓ Solution by Mathematica

Time used: 0.356 (sec). Leaf size: 45

DSolve[y[x]^3+x^3*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{x}{\sqrt{-1 - 2c_1 x^2}}$$
$$y(x) \to \frac{x}{\sqrt{-1 - 2c_1 x^2}}$$
$$y(x) \to 0$$

3.6 problem Ex 6

Internal problem ID [11136]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 10.

Homogeneous equations. Page 15

Problem number: Ex 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y\cos\left(\frac{y}{x}\right) - x\cos\left(\frac{y}{x}\right)y' = -x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve((x+y(x)*cos(y(x)/x))-x*cos(y(x)/x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \arcsin\left(\ln\left(x\right) + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.395 (sec). Leaf size: 13

DSolve[(x+y[x]*Cos[y[x]/x])-x*Cos[y[x]/x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x \arcsin(\log(x) + c_1)$$

4.1 problem Ex 1

Internal problem ID [11137]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 11.

Equations in which M and N are linear but not homogeneous. Page 16

Problem number: Ex 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$3y + (x + y + 1) y' = -4x - 1$$

✓ Solution by Maple

Time used: 0.328 (sec). Leaf size: 29

dsolve((4*x+3*y(x)+1)+(x+y(x)+1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -3 - \frac{(x-2)(2 \text{ LambertW}(c_1(x-2)) + 1)}{\text{LambertW}(c_1(x-2))}$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 1.385 (sec). Leaf size: 159}}$

 $DSolve[(4*x+3*y[x]+1)+(x+y[x]+1)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\frac{\left(-2\right)^{2/3} \left(-2x \log \left(\frac{3(-2)^{2/3} (y(x)+2x-1)}{y(x)+x+1}\right) + (2x-1) \log \left(-\frac{3(-2)^{2/3} (x-2)}{y(x)+x+1}\right) + \log \left(\frac{3(-2)^{2/3} (y(x)+2x-1)}{y(x)+x+1}\right) + \log \left(\frac{3(-2)^{2/3} (y(x)+2x-1)}{y(x$$

4.2 problem Ex 2

Internal problem ID [11138]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 11.

Equations in which M and N are linear but not homogeneous. Page 16

Problem number: Ex 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y + (x + y + 3) y' = -4x - 2$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 36

dsolve((4*x-y(x)+2)+(x+y(x)+3)*diff(y(x),x)=0,y(x), singsol=all)

 $y(x) = -2 + \tan \left(\text{RootOf} \left(2 \ln (2) + \ln \left(\sec \left(\underline{Z} \right)^2 \right) - \underline{Z} + 2 \ln (1 + x) + 2c_1 \right) \right) (-2x - 2)$

✓ Solution by Mathematica

Time used: 0.07 (sec). Leaf size: 67

DSolve[(4*x-y[x]+2)+(x+y[x]+3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[2 \arctan \left(\frac{1}{2} - \frac{5(x+1)}{2(y(x)+x+3)} \right) + 2 \log \left(\frac{4x^2 + y(x)^2 + 4y(x) + 8x + 8}{5(x+1)^2} \right) + 4 \log(x+1) + 5c_1 = 0, y(x) \right]$$

4.3 problem Ex 3

Internal problem ID [11139]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 11.

Equations in which M and N are linear but not homogeneous. Page 16

Problem number: Ex 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y - (4x + 2y - 1)y' = -2x$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

dsolve((2*x+y(x))-(4*x+2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\frac{\text{LambertW}(-2e^{4-25x+25c_1})}{10} + \frac{2}{5} - 2x$$

Solution by Mathematica

Time used: 4.725 (sec). Leaf size: 39

 $DSolve[(2*x+y[x])-(4*x+2*y[x]-1)*y'[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{10}W(-e^{-25x-1+c_1}) - 2x + \frac{2}{5}$$

 $y(x) \to \frac{2}{5} - 2x$

5.1 problem Ex 1

Internal problem ID [11140]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 12.

Equations of form $yf_1(xy) + xf_2(xy)y' = 0$. Page 18

Problem number: Ex 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Riccati]

$$y + 2y^2x - y^3x^2 + 2x^2yy' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve((y(x)+2*x*y(x)^2-x^2*y(x)^3)+(2*x^2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = 0$$

$$y(x) = \frac{ anh\left(-\frac{\ln(x)}{2} + \frac{c_1}{2}\right)}{x}$$

✓ Solution by Mathematica

Time used: 1.44 (sec). Leaf size: 71

DSolve[(y[x]+2*x*y[x]^2-x^2*y[x]^3)+(2*x^2*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions ->

$$y(x) \to 0$$
 $y(x) \to \frac{i \tan\left(\frac{1}{2}i \log(x) + c_1\right)}{x}$
 $y(x) \to 0$
 $y(x) \to \frac{-x + e^{2i\operatorname{Interval}[\{0,\pi\}]}}{x^2 + xe^{2i\operatorname{Interval}[\{0,\pi\}]}}$

5.2 problem Ex 2

Internal problem ID [11141]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 12.

Equations of form $yf_1(xy) + xf_2(xy)y' = 0$. Page 18

Problem number: Ex 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'cl

$$2y + 3y^{2}x + (x + 2x^{2}y)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 45

 $\label{eq:dsolve} $$ dsolve((2*y(x)+3*x*y(x)^2)+(x+2*x^2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$ $$$

$$y(x) = \frac{-x + \sqrt{x(4c_1 + x)}}{2x^2}$$
$$y(x) = \frac{-x - \sqrt{x(4c_1 + x)}}{2x^2}$$

✓ Solution by Mathematica

Time used: 0.888 (sec). Leaf size: 69

$$y(x)
ightarrow -rac{x^{3/2}+\sqrt{x^2(x+4c_1)}}{2x^{5/2}} \ y(x)
ightarrow rac{-x^{3/2}+\sqrt{x^2(x+4c_1)}}{2x^{5/2}}$$

5.3 problem Ex 3

Internal problem ID [11142]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 12.

Equations of form $yf_1(xy) + xf_2(xy)y' = 0$. Page 18

Problem number: Ex 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'cl

$$y + y^2x + \left(x - x^2y\right)y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

 $\label{eq:decomposition} \\ \mbox{dsolve((y(x)+x*y(x)^2)+(x-x^2*y(x))*diff(y(x),x)=0,y(x), singsol=all)} \\$

$$y(x) = -\frac{1}{\text{LambertW}\left(-\frac{c_1}{x^2}\right)x}$$

✓ Solution by Mathematica

Time used: 8.358 (sec). Leaf size: 35

 $DSolve[(y[x]+x*y[x]^2)+(x-x^2*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{xW\left(\frac{e^{-1+\frac{9c_1}{2^2/3}}}{x^2}\right)}$$
$$y(x) \to 0$$

6	Chapter 2, differential equations of the first
	order and the first degree. Article 13. Linear
	equations of first order. Page 19
6.1	problem Ex 1

0.1	problem Ex 1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	30
6.2	problem Ex 2																																			34
6.3	problem Ex 3																																			35
6.4	problem Ex 4																																			36
6.5	problem Ex 5																																			37

6.1 problem Ex 1

Internal problem ID [11143]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 13.

Linear equations of first order. Page 19

Problem number: Ex 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y \cot(x) = \sec(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve(diff(y(x),x)+y(x)*cot(x)=sec(x),y(x), singsol=all)

$$y(x) = \csc(x) \left(-\ln(\cos(x)) + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.081 (sec). Leaf size: 16

DSolve[y'[x]+y[x]*Cot[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \csc(x)(-\log(\cos(x)) + c_1)$$

6.2 problem Ex 2

Internal problem ID [11144]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

 ${\bf Section:}\ {\bf Chapter}\ 2,\ {\bf differential}\ {\bf equations}\ {\bf of}\ {\bf the}\ {\bf first}\ {\bf order}\ {\bf and}\ {\bf the}\ {\bf first}\ {\bf degree}.\ {\bf Article}\ {\bf 13}.$

Linear equations of first order. Page 19

Problem number: Ex 2.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x + y(1+x) = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(x*diff(y(x),x)+(1+x)*y(x)=exp(x),y(x), singsol=all)

$$y(x) = \frac{\mathrm{e}^x + 2c_1\mathrm{e}^{-x}}{2x}$$

Solution by Mathematica

Time used: 0.078 (sec). Leaf size: 25

 $DSolve[x*y'[x]+(1+x)*y[x]==Exp[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{e^x + 2c_1e^{-x}}{2x}$$

6.3 problem Ex 3

Internal problem ID [11145]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 13. Linear equations of first order. Page 19

Problem number: Ex 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{2y}{1+x} = (1+x)^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(y(x),x)-2*y(x)/(1+x)=(x+1)^3,y(x), singsol=all)$

$$y(x) = \left(x + \frac{1}{2}x^2 + c_1\right)(1+x)^2$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 22

 $DSolve[y'[x]-2*y[x]/(1+x)==(x+1)^3,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to (x+1)^2 \left(\frac{x^2}{2} + x + c_1\right)$$

6.4 problem Ex 4

Internal problem ID [11146]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 13. Linear equations of first order. Page 19

Problem number: Ex 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(x^3 + x) y' + 4x^2 y = 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve((x+x^3)*diff(y(x),x)+4*x^2*y(x)=2,y(x), singsol=all)$

$$y(x) = \frac{x^2 + 2\ln(x) + c_1}{(x^2 + 1)^2}$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 23

 $DSolve[(x+x^3)*y'[x]+4*x^2*y[x]==2,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{x^2 + 2\log(x) + c_1}{(x^2 + 1)^2}$$

6.5 problem Ex 5

Internal problem ID [11147]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 13.

Linear equations of first order. Page 19

Problem number: Ex 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x^2 + (-2x+1)y = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $\label{eq:dsolve} dsolve(x^2*diff(y(x),x)+(1-2*x)*y(x)=x^2,y(x), singsol=all)$

$$y(x) = x^2 \Big(1 + \mathrm{e}^{\frac{1}{x}} c_1 \Big)$$

✓ Solution by Mathematica

Time used: $0.\overline{06}$ (sec). Leaf size: 19

DSolve $[x^2*y'[x]+(1-2*x)*y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]$

$$y(x)
ightarrow x^2 \Big(1 + c_1 e^{rac{1}{x}}\Big)$$

7 Chapter 2, differential equations of the first order and the first degree. Article 14. Equations reducible to linear equations (Bernoulli). Page 21

7.1	problem Ex 1		 														39
7.2	problem Ex 2		 														40
7.3	problem Ex 3		 														41
7.4	problem Ex 4		 														42
7.5	problem Ex 5																44

7.1 problem Ex 1

Internal problem ID [11148]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 14.

Equations reducible to linear equations (Bernoulli). Page 21

Problem number: Ex 1.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

$$(-x^2+1)y'-2y(1+x)-y^{\frac{5}{2}}=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 64

 $dsolve((1-x^2)*diff(y(x),x)-2*(1+x)*y(x)=y(x)^(5/2),y(x), singsol=all)$

$$-\frac{-1 + \left(-\frac{3(-1+x)^3 \ln(-1+x)}{32} + \frac{3(-1+x)^3 \ln(1+x)}{32} + c_1 x^3 + \left(-3c_1 - \frac{3}{16}\right) x^2 + \left(3c_1 + \frac{9}{16}\right) x - c_1 - \frac{5}{8}\right) y(x)^{\frac{3}{2}}}{y(x)^{\frac{3}{2}}} = 0$$

✓ Solution by Mathematica

Time used: 1.042 (sec). Leaf size: 76

 $DSolve[(1-x^2)*y'[x]-2*(1+x)*y[x]==y[x]^(5/2),y[x],x,IncludeSingularSolutions] -> True]$

 $y(x) \rightarrow \frac{8\sqrt[3]{2}}{(32c_1x^3 - 6x^2 - 96c_1x^2 + 18x - 3(x-1)^3\log(x-1) + 3(x-1)^3\log(x+1) + 96c_1x - 20 - 32c_1)^{2/3}}$ $y(x) \rightarrow 0$

problem Ex 2 7.2

Internal problem ID [11149]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 14. Equations reducible to linear equations (Bernoulli). Page 21

Problem number: Ex 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$yy' + y^2x = x$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

 $dsolve(y(x)*diff(y(x),x)+x*y(x)^2=x,y(x), singsol=all)$

$$y(x) = \sqrt{e^{-x^2}c_1 + 1}$$

 $y(x) = -\sqrt{e^{-x^2}c_1 + 1}$

Solution by Mathematica

Time used: 2.1 (sec). Leaf size: 57

DSolve[y[x]*y'[x]+x*y[x]^2==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sqrt{1 + e^{-x^2 + 2c_1}}$$

 $y(x) \to \sqrt{1 + e^{-x^2 + 2c_1}}$

$$y(x) \to \sqrt{1 + e^{-x^2 + 2c_1}}$$

$$y(x) \rightarrow -1$$

$$y(x) \rightarrow 1$$

7.3 problem Ex 3

Internal problem ID [11150]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 14. Equations reducible to linear equations (Bernoulli). Page 21

Problem number: Ex 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'\sin(y) + \sin(x)\cos(y) = \sin(x)$$

✓ Solution by Maple

Time used: 0.14 (sec). Leaf size: 14

dsolve(sin(y(x))*diff(y(x),x)+sin(x)*cos(y(x))=sin(x),y(x), singsol=all)

$$y(x) = \arccos\left(e^{-\cos(x)}c_1 + 1\right)$$

✓ Solution by Mathematica

Time used: 1.53 (sec). Leaf size: 81

DSolve[Sin[y[x]]*y'[x]+Sin[x]*Cos[y[x]]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$\begin{aligned} y(x) &\to 0 \\ \text{Solve} \left[2\cos(x) \tan\left(\frac{y(x)}{2}\right) e^{\operatorname{arctanh}(\cos(y(x)))} \\ &- \sqrt{\sin^2(y(x))} \csc\left(\frac{y(x)}{2}\right) \sec\left(\frac{y(x)}{2}\right) \left(\log\left(\sec^2\left(\frac{y(x)}{2}\right)\right) \\ &- 2\log\left(\tan\left(\frac{y(x)}{2}\right)\right) \right) = c_1, y(x) \\ y(x) &\to 0 \end{aligned}$$

7.4 problem Ex 4

Internal problem ID [11151]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

 ${\bf Section:}\ {\bf Chapter}\ 2,\ {\bf differential}\ {\bf equations}\ {\bf of}\ {\bf the}\ {\bf first}\ {\bf order}\ {\bf and}\ {\bf the}\ {\bf first}\ {\bf degree}.\ {\bf Article}\ {\bf 14}.$

Equations reducible to linear equations (Bernoulli). Page 21

Problem number: Ex 4.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$4y'x + 3y + e^x x^4 y^5 = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 67

 $dsolve(4*x*diff(y(x),x)+3*y(x)+exp(x)*x^4*y(x)^5=0,y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{\sqrt{(e^x + c_1) x} x}}$$

$$y(x) = \frac{1}{\sqrt{-\sqrt{(e^x + c_1) x} x}}$$

$$y(x) = -\frac{1}{\sqrt{\sqrt{(e^x + c_1) x} x}}$$

$$y(x) = -\frac{1}{\sqrt{-\sqrt{(e^x + c_1) x} x}}$$

✓ Solution by Mathematica

Time used: 14.931 (sec). Leaf size: 88

DSolve[4*x*y'[x]+3*y[x]+Exp[x]*x^4*y[x]^5==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{\sqrt[4]{x^3 (e^x + c_1)}}$$

$$y(x) \to -\frac{i}{\sqrt[4]{x^3 (e^x + c_1)}}$$

$$y(x) \to \frac{i}{\sqrt[4]{x^3 (e^x + c_1)}}$$

$$y(x) \to \frac{1}{\sqrt[4]{x^3 (e^x + c_1)}}$$

$$y(x) \to 0$$

7.5 problem Ex 5

Internal problem ID [11152]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 14. Equations reducible to linear equations (Bernoulli). Page 21

Problem number: Ex 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y' - \frac{y+1}{1+x} - \sqrt{y+1} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 81

dsolve(diff(y(x),x)-(y(x)+1)/(x+1)=sqrt(1+y(x)),y(x), singsol=all)

$$\frac{\left(-c_{1}y(x)+1+c_{1}x^{2}+\left(2c_{1}+1\right)x\right)\sqrt{y(x)+1}-\left(1+x\right)\left(-c_{1}y(x)-1+c_{1}x^{2}+\left(2c_{1}-1\right)x\right)}{\left(x^{2}+2x-y(x)\right)\left(-\sqrt{y(x)+1}+1+x\right)}$$

$$=0$$

✓ Solution by Mathematica

Time used: 0.418 (sec). Leaf size: 60

 $DSolve[y'[x]-(y[x]+1)/(x+1) == Sqrt[1+y[x]], y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\frac{2\sqrt{y(x)+1}\arctan\left(\frac{x+1}{\sqrt{-y(x)-1}}\right)}{\sqrt{-y(x)-1}} + \log\left(y(x)-(x+1)^2+1\right) - \log(x+1) = c_1, y(x) \right]$$

8	8 Chapter 2, differential equations of the first													
	order and the first degree. Article 15. Page 22													
8.1	problem Ex 1	46												
8.2	problem Ex 2	48												
8.3	problem Ex 3	49												

8.1 problem Ex 1

Internal problem ID [11153]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 15.

Page 22

Problem number: Ex 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'cl

$$x^{4}y(3y + 2y'x) + x^{2}(4y + 3y'x) = 0$$

✓ Solution by Maple

Time used: 1.547 (sec). Leaf size: 39

 $dsolve(x^4*y(x)*(3*y(x)+2*x*diff(y(x),x))+x^2*(4*y(x)+3*x*diff(y(x),x))=0,y(x), singsol=all(x)+2*x*diff(y(x),x)+2*x*diff(x)+2*x*$

$$y(x) = \frac{\text{RootOf} (x^2 _ Z^8 - 2 _ Z^2 c_1 - c_1)^6 x^2 - 2c_1}{x^2 c_1}$$

Solution by Mathematica

Time used: 60.464 (sec). Leaf size: 1769

$$y(x) \rightarrow -\frac{1}{2x^2}$$

$$+\frac{\sqrt{\frac{3}{x^4} - \frac{2}{\sqrt[3]{e^{-6c_1} \left(\sqrt{48e^{6c_1}x^{18} + 81e^{8c_1}x^{16}} - 9e^{4c_1}x^8\right)}}}{2\sqrt{3}} + \frac{\sqrt[3]{e^{-6c_1} \left(\sqrt{48e^{6c_1}x^{18} + 81e^{8c_1}x^{16}} - 9e^{4c_1}x^8\right)}}{2\sqrt{3}}$$

$$-\frac{1}{2} \begin{bmatrix} \frac{2}{x^4} + \frac{2}{\sqrt[3]{3}\sqrt[3]{e^{-6c_1} \left(\sqrt{48e^{6c_1}x^{18} + 81e^{8c_1}x^{16}} - 9e^{4c_1}x^8\right)}}}{\sqrt[3]{4e^{-6c_1} \left(\sqrt{48e^{6c_1}x^{18} + 81e^{8c_1}x^{16}} - 9e^{4c_1}x^8\right)}} \end{bmatrix} - \frac{\sqrt[3]{2}\sqrt[3]{e^{-6c_1} \left(\sqrt{48e^{6c_1}x^{18} + 81e^{8c_1}x^{16}} - 9e^{4c_1}x^8\right)}}{3^{2/3}x^6}$$

$$y(x) \rightarrow -\frac{1}{2x^2}$$

$$+\frac{\sqrt{2}\sqrt[3]{e^{-6c_1} \left(\sqrt{48e^{6c_1}x^{18} + 81e^{8c_1}x^{16}} - 9e^{4c_1}x^8\right)}}}{2\sqrt{3}} + \frac{\sqrt[3]{2}\sqrt[3]{e^{-6c_1} \left(\sqrt{48e^{6c_1}x^{18} + 81e^{8c_1}x^{16}} - 9e^{4c_1}x^8\right)}}}{2\sqrt{3}}$$

$$+\frac{1}{2} \frac{2}{x^4} + \frac{2}{\sqrt[3]{3}\sqrt[3]{e^{-6c_1} \left(\sqrt{48e^{6c_1}x^{18} + 81e^{8c_1}x^{16}} - 9e^{4c_1}x^8\right)}}}{\sqrt[3]{3}\sqrt[3]{e^{-6c_1} \left(\sqrt{48e^{6c_1}x^{18} + 81e^{8c_1}x^{16}} - 9e^{4c_1}x^8\right)}}} - \frac{\sqrt[3]{2}\sqrt[3]{e^{-6c_1} \left(\sqrt{48e^{6c_1}x^{18} + 81e^{8c_1}x^{16}} - 9e^{4c_1}x^8\right)}}}{3^{2/3}x^6}$$

$$y(x) \rightarrow -\frac{1}{2x^2}$$

$$\sqrt{\frac{3}{4}e^{-6c_1} \left(\sqrt{48e^{6c_1}x^{18} + 81e^{8c_1}x^{16}} - 9e^{4c_1}x^8\right)}}}{3^{2/3}x^6}} - \frac{\sqrt[3]{2}\sqrt[3]{e^{-6c_1} \left(\sqrt{48e^{6c_1}x^{18} + 81e^{8c_1}x^{16}} - 9e^{4c_1}x^8\right)}}}{3^{2/3}x^6}}$$

 $-\frac{1}{2} \left| \frac{2}{x^4} + \frac{2 \ 2^{2/3} e^{-2c_1} 47}{\sqrt[3]{3} \sqrt[3]{e^{-6c_1} \left(\sqrt{48e^{6c_1} x^{18} + 81e^{8c_1} x^{16}} - 9e^{4c_1} x^8\right)}} \right. -$

 $\sqrt[3]{2}\sqrt[3]{e^{-6c_1}\left(\sqrt{48e^{6c_1}x^{18}+81e^{8c_1}x^{16}}-9e^{6c_1}x^{18}+81e^{8c_1}x^{16}-9e^{6c_1}x^{18}+81e^{8c_1}x^{16}}-9e^{6c_1}x^{18}+81e^{8c_1}x^{16}-9e^{6c_1}x^{18}+81e^{8c_1}x^{16}-9e^{6c_1}x^{18}+81e^{8c_1}x^{16}-9e^{6c_1}x^{18}+81e^{8c_1}x^{16}-9e^{6c_1}x^{18}+81e^{8c_1}x^{16}-9e^{6c_1}x^{18}+81e^{8c_1}x^{16}-9e^{6c_1}x^{18}+81e^{8c_1}x^{16}-9e^{6c_1}x^{18}+81e^{8c_1}x^{16}-9e^{6c_1}x^{18}+81e^{6c_1}x^{18}-9e^{6c_1}x^{18}+81e^{6c_1}x^{18}-9e^$

8.2 problem Ex 2

Internal problem ID [11154]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 15.

Page 22

Problem number: Ex 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y^{2}(3y - 6y'x) - x(y - 2y'x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve(y(x)^2*(3*y(x)-6*x*diff(y(x),x))-x*(y(x)-2*x*diff(y(x),x))=0,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{3}\sqrt{x}}{3}$$
$$y(x) = \frac{\sqrt{3}\sqrt{x}}{3}$$
$$y(x) = c_1\sqrt{x}$$

✓ Solution by Mathematica

Time used: 6.194 (sec). Leaf size: 74

DSolve[y[x]^2*(3*y[x]-6*x*y'[x])- x*(4*y[x]-2*x*y'[x])==0,y[x],x,IncludeSingularSolutions ->

$$y(x) \to -\frac{i\sqrt{x}\sqrt{W(-3e^{-3c_1}x^3)}}{\sqrt{3}}$$
$$y(x) \to \frac{i\sqrt{x}\sqrt{W(-3e^{-3c_1}x^3)}}{\sqrt{3}}$$
$$y(x) \to 0$$

8.3 problem Ex 3

Internal problem ID [11155]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 15.

Page 22

Problem number: Ex 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'cl

$$2yx^{3} - y^{2} - (2x^{4} + yx)y' = 0$$

✓ Solution by Maple

Time used: 0.594 (sec). Leaf size: 47

 $dsolve((2*x^3*y(x)-y(x)^2)-(2*x^4+x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1\left(\sqrt{4x^4 + c_1^2} + c_1\right)}{2x}$$
$$y(x) = -\frac{c_1\left(-c_1 + \sqrt{4x^4 + c_1^2}\right)}{2x}$$

✓ Solution by Mathematica

Time used: 1.279 (sec). Leaf size: 76

$$y(x) \to \frac{2x^4}{-x + \frac{\sqrt{1+4c_1x^4}}{\sqrt{\frac{1}{x^2}}}}$$
$$y(x) \to -\frac{2x^4}{x + \frac{\sqrt{1+4c_1x^4}}{\sqrt{\frac{1}{x^2}}}}$$
$$y(x) \to 0$$

9	Chapter 2, differential equations of the first
	order and the first degree. Article 16.
	Integrating factors by inspection. Page 23
9.1	problem Ex 1
9.2	problem Ex 2
9.3	problem Ex 3
9.4	problem Ex 4
9.5	problem Ex 5
96	problem Ex 6

9.1 problem Ex 1

Internal problem ID [11156]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 16. Integrating factors by inspection. Page 23

Problem number: Ex 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y^2 - yx + y'x^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

 $dsolve((y(x)^2-x*y(x))+x^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{x}{\ln(x) + c_1}$$

✓ Solution by Mathematica

Time used: 0.227 (sec). Leaf size: 19

 $DSolve[(y[x]^2-x*y[x])+x^2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x}{\log(x) + c_1}$$

 $y(x) \to 0$

9.2 problem Ex 2

Internal problem ID [11157]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 16.

Integrating factors by inspection. Page 23

Problem number: Ex 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [' $y=_G(x,y')$ ']

$$\frac{y'x - y}{\sqrt{x^2 - y^2}} - y'x = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 27

 $dsolve((x*diff(y(x),x)-y(x))/sqrt(x^2-y(x)^2)=x*diff(y(x),x),y(x), singsol=all)$

$$y(x) - \arctan\left(\frac{y(x)}{\sqrt{x^2 - y(x)^2}}\right) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.896 (sec). Leaf size: 29

DSolve[(x*y'[x]-y[x])/Sqrt[x^2-y[x]^2]==x*y'[x],y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\arctan\left(\frac{\sqrt{x^2-y(x)^2}}{y(x)}\right)+y(x)=c_1,y(x)\right]$$

9.3 problem Ex 3

Internal problem ID [11158]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 16.

Integrating factors by inspection. Page 23

Problem number: Ex 3.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class\ A'],\ _rational,\ [_Abel,\ Abel,\ A$

$$y - (-y + x)y' = -x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

dsolve((x+y(x))-(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \tan (\text{RootOf}(-2_Z + \ln (\sec (_Z)^2) + 2\ln (x) + 2c_1)) x$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 36

 $DSolve[(x+y[x])-(x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\frac{1}{2}\log\left(\frac{y(x)^2}{x^2}+1\right) - \arctan\left(\frac{y(x)}{x}\right) = -\log(x) + c_1, y(x)\right]$$

9.4 problem Ex 4

Internal problem ID [11159]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 16.

Integrating factors by inspection. Page 23

Problem number: Ex 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y^2 - 2xyy' = -x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve((x^2+y(x)^2)-2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{(c_1 + x) x}$$
$$y(x) = -\sqrt{(c_1 + x) x}$$

✓ Solution by Mathematica

Time used: 0.304 (sec). Leaf size: 38

 $DSolve[(x^2+y[x]^2)-2*x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow -\sqrt{x}\sqrt{x+c_1}$$

 $y(x) \rightarrow \sqrt{x}\sqrt{x+c_1}$

9.5 problem Ex 5

Internal problem ID [11160]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 16. Integrating factors by inspection. Page 23

Problem number: Ex 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y^2 + 2xyy' = -x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

 $dsolve((x-y(x)^2)+2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{-x (\ln(x) - c_1)}$$

 $y(x) = -\sqrt{(-\ln(x) + c_1) x}$

✓ Solution by Mathematica

Time used: 0.298 (sec). Leaf size: 44

 $DSolve[(x-y[x]^2)+2*x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{x}\sqrt{-\log(x) + c_1}$$

 $y(x) \to \sqrt{x}\sqrt{-\log(x) + c_1}$

9.6 problem Ex 6

Internal problem ID [11161]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 16.

Integrating factors by inspection. Page 23

Problem number: Ex 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Riccati]

$$y'x - y - y^2 = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

 $dsolve(x*diff(y(x),x)-y(x)=x^2+y(x)^2,y(x), singsol=all)$

$$y(x) = \tan(c_1 + x) x$$

✓ Solution by Mathematica

Time used: 0.277 (sec). Leaf size: $12\,$

DSolve[x*y'[x]-y[x]==x^2+y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x \tan(x + c_1)$$

10 Chapter 2, differential equations of the first order and the first degree. Article 17. Other forms which Integrating factors can be found. Page 25

10.1	problem	$\mathbf{E}\mathbf{x}$	1																	58
10.2	problem	$\mathbf{E}\mathbf{x}$	2																	59
10.3	problem	$\mathbf{E}\mathbf{x}$	3																	60
10.4	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	4																	62
10.5	nroblem	$\mathbf{E}_{\mathbf{v}}$	6																	64

10.1 problem Ex 1

Internal problem ID [11162]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 17.

Other forms which Integrating factors can be found. Page 25

Problem number: Ex 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$6yx + 3y^2 + (2x^2 + 3yx)y' = -3x^2$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 63

 $dsolve((3*x^2+6*x*y(x)+3*y(x)^2)+(2*x^2+3*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{-4c_1x^2 - \sqrt{-2c_1^2x^4 + 6}}{6c_1x}$$
$$y(x) = \frac{-4c_1x^2 + \sqrt{-2c_1^2x^4 + 6}}{6c_1x}$$

✓ Solution by Mathematica

Time used: 2.7 (sec). Leaf size: 135

DSolve[(3*x^2+6*x*y[x]+3*y[x]^2)+(2*x^2+3*x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -

$$y(x) \to -\frac{4x^2 + \sqrt{-2x^4 + 6e^{4c_1}}}{6x}$$

$$y(x) \to \frac{-4x^2 + \sqrt{-2x^4 + 6e^{4c_1}}}{6x}$$

$$y(x) \to -\frac{\sqrt{2}\sqrt{-x^4 + 4x^2}}{6x}$$

$$y(x) \to \frac{\sqrt{2}\sqrt{-x^4 - 4x^2}}{6x}$$

10.2 problem Ex 2

Internal problem ID [11163]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 17.

Other forms which Integrating factors can be found. Page 25

Problem number: Ex 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$\left(x^2 + y^2 + 2y\right)y' = -2x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

 $dsolve((2*x)+(x^2+y(x)^2+2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$(y(x)^2 + x^2) e^{y(x)} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.245 (sec). Leaf size: 24

 $DSolve[(2*x)+(x^2+y[x]^2+2*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$[x^2 e^{y(x)} + e^{y(x)} y(x)^2 = c_1, y(x)]$$

10.3 problem Ex 3

Internal problem ID [11164]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 17.

Other forms which Integrating factors can be found. Page 25

Problem number: Ex 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$y^{4} + 2y + (y^{3}x + 2y^{4} - 4x)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $dsolve((y(x)^4+2*y(x))+(x*y(x)^3+2*y(x)^4-4*x)*diff(y(x),x)=0,y(x), singsol=all)$

$$x - \frac{(-y(x)^{2} + c_{1}) y(x)^{2}}{y(x)^{3} + 2} = 0$$

✓ Solution by Mathematica

Time used: 60.318 (sec). Leaf size: 2021

$$y(x) \rightarrow \\ -\frac{1}{2} \sqrt{ \sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } + \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(24x + c_1^2)^3 + 144c_1x - 2c_1^3} } } - \frac{1}{3\sqrt[3]{54x^3 + \sqrt{(54x^3 + 144c_1x - 2c_1^3)^2 - 4(2$$

10.4 problem Ex 4

Internal problem ID [11165]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 17.

Other forms which Integrating factors can be found. Page 25

Problem number: Ex 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$yx^{3} - y^{4} + (y^{3}x - x^{4})y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

 $dsolve((x^3*y(x)-y(x)^4)+(y(x)^3*x-x^4)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{\left(1 + i\sqrt{3}\right)x}{2}$$
$$y(x) = \frac{\left(i\sqrt{3} - 1\right)x}{2}$$
$$y(x) = x$$

 $y(x) = c_1 x$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 99

 $DSolve[(x^3*y[x]-y[x]^4)+(y[x]^3*x-x^4)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x$$

$$y(x) \to -\frac{1}{2}i\left(\sqrt{3} - i\right)x$$

$$y(x) \to \frac{1}{2}i\left(\sqrt{3} + i\right)x$$

$$y(x) \to c_1x$$

$$y(x) \to x$$

$$y(x) \to -\frac{1}{2}i\left(\sqrt{3} - i\right)x$$

$$y(x) \to \frac{1}{2}i\left(\sqrt{3} + i\right)x$$

10.5 problem Ex 6

Internal problem ID [11166]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 17.

Other forms which Integrating factors can be found. Page 25

Problem number: Ex 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y^{2} + 2ymx + (y^{2}m - mx^{2} - 2yx)y' = x^{2}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 59

 $dsolve((y(x)^2-x^2+2*m*x*y(x))+(m*y(x)^2-m*x^2-2*x*y(x))*diff(y(x),x)=0,y(x),\\ singsol=all)$

$$y(x) = \frac{m - \sqrt{-4c_1^2x^2 - 4c_1x + m^2}}{2c_1}$$
$$y(x) = \frac{m + \sqrt{-4c_1^2x^2 - 4c_1x + m^2}}{2c_1}$$

✓ Solution by Mathematica

Time used: 3.604 (sec). Leaf size: 89

$$y(x) \to \frac{1}{2} \left(-\sqrt{e^{2c_1}m^2 - 4x^2 + 4e^{c_1}x} - e^{c_1}m \right)$$
$$y(x) \to \frac{1}{2} \left(\sqrt{e^{2c_1}m^2 - 4x^2 + 4e^{c_1}x} - e^{c_1}m \right)$$

11.1	problem	Ex	1												•	•					66
11.2	${\bf problem}$	$\mathbf{E}\mathbf{x}$	2																		67
11.3	${\bf problem}$	$\mathbf{E}\mathbf{x}$	3																		68
11 4	problem	$\mathbf{E}\mathbf{x}$	4																		60

11.1 problem Ex 1

Internal problem ID [11167]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 18.

Transformation of variables. Page 26

Problem number: Ex 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x - y + 2x^2y = x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x*diff(y(x),x)-y(x)+2*x^2*y(x)-x^3=0,y(x), singsol=all)$

$$y(x) = \frac{x}{2} + x e^{-x^2} c_1$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 21

 $DSolve[x*y'[x]-y[x]+2*x^2*y[x]-x^3==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) o x \left(rac{1}{2} + c_1 e^{-x^2}
ight)$$

11.2 problem Ex 2

Internal problem ID [11168]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 18.

Transformation of variables. Page 26

Problem number: Ex 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], [_Abel, '2nd type', 'class C'], _c

$$(y+x)y'=1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve((x+y(x))*diff(y(x),x)-1=0,y(x), singsol=all)

$$y(x) = -\text{LambertW}\left(-c_1e^{-x-1}\right) - 1 - x$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 24

DSolve[(x+y[x])*y'[x]-1==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -W(c_1(-e^{-x-1})) - x - 1$$

11.3 problem Ex 3

Internal problem ID [11169]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 18.

Transformation of variables. Page 26

Problem number: Ex 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$yy' - y'x + y = -x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(x+y(x)*diff(y(x),x)+y(x)-x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \tan (\text{RootOf}(-2_Z + \ln (\sec (_Z)^2) + 2\ln (x) + 2c_1)) x$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 36

 $DSolve[x+y[x]*y'[x]+y[x]-x*y'[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

Solve
$$\left[\frac{1}{2}\log\left(\frac{y(x)^2}{x^2}+1\right) - \arctan\left(\frac{y(x)}{x}\right) = -\log(x) + c_1, y(x)\right]$$

11.4 problem Ex 4

Internal problem ID [11170]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 18.

Transformation of variables. Page 26

Problem number: Ex 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, _Riccati]

$$y'x - ay + y^2b = c x^{2a}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

 $dsolve(x*diff(y(x),x)-a*y(x)+b*y(x)^2=c*x^2(2*a),y(x), singsol=all)$

$$y(x) = \frac{\tanh\left(\frac{x^a\sqrt{b}\sqrt{c}+ic_1a}{a}\right)\sqrt{c}x^a}{\sqrt{b}}$$

✓ Solution by Mathematica

Time used: 0.533 (sec). Leaf size: 153

DSolve[x*y'[x]-a*y[x]+b*y[x]^2==c*x^(2*a),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{\sqrt{c}x^a \left(-\cos\left(\frac{\sqrt{-b}\sqrt{c}x^a}{a}\right) + c_1\sin\left(\frac{\sqrt{-b}\sqrt{c}x^a}{a}\right)\right)}{\sqrt{-b}\left(\sin\left(\frac{\sqrt{-b}\sqrt{c}x^a}{a}\right) + c_1\cos\left(\frac{\sqrt{-b}\sqrt{c}x^a}{a}\right)\right)}$$
$$y(x) \to \frac{\sqrt{c}x^a \tan\left(\frac{\sqrt{-b}\sqrt{c}x^a}{a}\right)}{\sqrt{-b}}$$

12 Chapter 2, differential equations of the first order and the first degree. Article 19. Summary. Page 29

12.1 problem Ex	1														71
12.2 problem Ex	2					 									72
12.3 problem Ex	3					 									73
12.4 problem Ex	4							 •							74
12.5 problem Ex	5					 									75
12.6 problem Ex	6														77
12.7 problem Ex	7														78
12.8 problem Ex 8	8														79
12.9 problem Ex	10 .														80
12.10problem Ex	11 .							 •							81
12.11 problem Ex	12 .														82
12.12problem Ex	13 .							 •							83
12.13problem Ex	14 .														84
12.14problem Ex	15 .							 •							85
12.15problem Ex	16 .								•						86
12.16problem Ex	17 .							 •							87
12.17problem Ex	18 .							 •							88
12.18problem Ex	19 .								•						89
12.19problem Ex 2	20 .							 •							90
12.20 problem Ex	21 .								•						91
12.21 problem Ex 2	22 .							 •							92
12.22problem Ex 2	23 .							 •							93
12.23problem Ex 2	24 .							 •							94
12.24problem Ex 2	25 .							 •							96
12.25problem Ex 2	26 .							 •							98
12.26problem Ex 2	27 .							 •							99
12.27problem Ex 2	28 .														100
12.28problem Ex 2	29 .														101
12.29problem Ex	30 .														102

12.1 problem Ex 1

Internal problem ID [11171]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x\sqrt{1-y^2} + y\sqrt{-x^2 + 1}y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 40

 $dsolve(x*sqrt(1-y(x)^2)+y(x)*sqrt(1-x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$\frac{(-1+x)(1+x)}{\sqrt{-x^2+1}} + \frac{(-1+y(x))(y(x)+1)}{\sqrt{1-y(x)^2}} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 3.778 (sec). Leaf size: 77

DSolve[x*Sqrt[1-y[x]^2]+y[x]*Sqrt[1-x^2]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow -\sqrt{x^2-c_1\left(2\sqrt{1-x^2}+c_1
ight)}$$
 $y(x)
ightarrow \sqrt{x^2-c_1\left(2\sqrt{1-x^2}+c_1
ight)}$
 $y(x)
ightarrow -1$
 $y(x)
ightarrow 1$

12.2 problem Ex 2

Internal problem ID [11172]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\sqrt{1 - y^2} + \sqrt{-x^2 + 1} \, y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(sqrt(1-y(x)^2)+sqrt(1-x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\sin\left(\arcsin\left(x\right) + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.496 (sec). Leaf size: 47

DSolve[Sqrt[1-y[x]^2]+Sqrt[1-x^2]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \cos\left(2\arctan\left(\frac{\sqrt{1-x^2}}{x+1}\right) + c_1\right)$$

$$y(x) \to -1$$

$$y(x) \to 1$$

$$y(x) \to \text{Interval}[\{-1,1\}]$$

12.3 problem Ex 3

Internal problem ID [11173]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - x^2 y = x^5$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)-x^2*y(x)=x^5,y(x), singsol=all)$

$$y(x) = -x^3 - 3 + e^{\frac{x^3}{3}}c_1$$

✓ Solution by Mathematica

Time used: 0.111 (sec). Leaf size: 24

DSolve[y'[x]-x^2*y[x]==x^5,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x^3 + c_1 e^{\frac{x^3}{3}} - 3$$

12.4 problem Ex 4

Internal problem ID [11174]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$(y-x)^2 y' = 1$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 29

 $dsolve((y(x)-x)^2*diff(y(x),x)=1,y(x), singsol=all)$

$$y(x) + \frac{\ln(y(x) - x - 1)}{2} - \frac{\ln(y(x) - x + 1)}{2} - c_1 = 0$$

Solution by Mathematica

Time used: 0.23 (sec). Leaf size: 33

 $DSolve[(y[x]-x)^2*y'[x]==1,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[y(x) + \frac{1}{2} \log(-y(x) + x + 1) - \frac{1}{2} \log(y(x) - x + 1) = c_1, y(x) \right]$$

12.5 problem Ex 5

Internal problem ID [11175]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y'x + y + e^x x^4 y^4 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 64

 $dsolve(x*diff(y(x),x)+y(x)+x^4*y(x)^4*exp(x)=0,y(x), singsol=all)$

$$y(x) = \frac{1}{(3e^x + c_1)^{\frac{1}{3}}x}$$
$$y(x) = -\frac{1 + i\sqrt{3}}{2(3e^x + c_1)^{\frac{1}{3}}x}$$
$$y(x) = \frac{i\sqrt{3} - 1}{2(3e^x + c_1)^{\frac{1}{3}}x}$$

✓ Solution by Mathematica

Time used: 11.276 (sec). Leaf size: 79

DSolve[x*y'[x]+y[x]+x^4*y[x]^4*Exp[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{\sqrt[3]{x^3 (3e^x + c_1)}}$$
$$y(x) \to -\frac{\sqrt[3]{-1}}{\sqrt[3]{x^3 (3e^x + c_1)}}$$
$$y(x) \to \frac{(-1)^{2/3}}{\sqrt[3]{x^3 (3e^x + c_1)}}$$
$$y(x) \to 0$$

12.6 problem Ex 6

Internal problem ID [11176]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(1-x)y + (1-y)xy' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve((1-x)*y(x)+(1-y(x))*x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\text{LambertW}\left(-\frac{c_1 e^x}{x}\right)$$

✓ Solution by Mathematica

Time used: 4.764 (sec). Leaf size: 26

 $DSolve[(1-x)*y[x]+(1-y[x])*x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -W\left(-\frac{e^{x-c_1}}{x}\right)$$

 $y(x) \to 0$

12.7 problem Ex 7

Internal problem ID [11177]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y' + y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve((y(x)-x)*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = -\frac{x}{\text{LambertW}(-x e^{-c_1})}$$

✓ Solution by Mathematica

Time used: 5.289 (sec). Leaf size: 25

 $DSolve[(y[x]-x)*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{x}{W(-e^{-c_1}x)}$$
$$y(x) \to 0$$

12.8 problem Ex 8

Internal problem ID [11178]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y'x - y - \sqrt{x^2 + y^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(x*diff(y(x),x)-y(x)=sqrt(x^2+y(x)^2),y(x), singsol=all)$

$$\frac{-c_1x^2 + y(x) + \sqrt{y(x)^2 + x^2}}{x^2} = 0$$

✓ Solution by Mathematica

Time used: 0.582 (sec). Leaf size: 27

 $DSolve[x*y'[x]-y[x]==Sqrt[x^2+y[x]^2],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}e^{-c_1}(-1 + e^{2c_1}x^2)$$

12.9 problem Ex 10

Internal problem ID [11179]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y'x - y - \sqrt{x^2 - y^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $dsolve(x*diff(y(x),x)-y(x)=sqrt(x^2-y(x)^2),y(x), singsol=all)$

$$-\arctan\left(\frac{y(x)}{\sqrt{x^2 - y(x)^2}}\right) + \ln(x) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.395 (sec). Leaf size: 18

$$y(x) \to -x \cosh(i \log(x) + c_1)$$

12.10 problem Ex 11

Internal problem ID [11180]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$x \sin\left(\frac{y}{x}\right) - y \cos\left(\frac{y}{x}\right) + x \cos\left(\frac{y}{x}\right) y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve((x*sin(y(x)/x)-y(x)*cos(y(x)/x))+x*cos(y(x)/x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = x \arcsin\left(\frac{1}{xc_1}\right)$$

✓ Solution by Mathematica

Time used: 15.438 (sec). Leaf size: 21

$$y(x) \to x \arcsin\left(\frac{e^{c_1}}{x}\right)$$

 $y(x) \to 0$

12.11 problem Ex 12

Internal problem ID [11181]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$-2y + (2x - y + 4)y' = -x - 5$$

✓ Solution by Maple

Time used: 0.766 (sec). Leaf size: 117

dsolve((x-2*y(x)+5)+(2*x-y(x)+4)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{\left(i\sqrt{3}-1\right)\left(3\sqrt{3}\sqrt{27c_{1}^{2}\left(1+x\right)^{2}-1}+27c_{1}(1+x)\right)^{\frac{2}{3}}-3i\sqrt{3}-3+6\left(3\sqrt{3}\sqrt{27c_{1}^{2}\left(1+x\right)^{2}-1}+27c_{1}(1+x)\right)^{\frac{1}{3}}}{6\left(3\sqrt{3}\sqrt{27c_{1}^{2}\left(1+x\right)^{2}-1}+27c_{1}\left(1+x\right)\right)^{\frac{1}{3}}c_{1}}$$

✓ Solution by Mathematica

Time used: 60.282 (sec). Leaf size: 1601

 $DSolve[(x-2*y[x]+5)+(2*x-y[x]+4)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Too large to display

12.12 problem Ex 13

Internal problem ID [11182]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{(-x^2+1)^{\frac{3}{2}}} = \frac{x+\sqrt{-x^2+1}}{(-x^2+1)^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 56

 $dsolve(diff(y(x),x)+y(x)/(1-x^2)^(3/2)=(x+(1-x^2)^(1/2))/(1-x^2)^2,y(x), singsol=all)$

$$y(x) = \left(\int \frac{e^{\frac{x}{\sqrt{-x^2+1}}} \left(x + \sqrt{-x^2+1} \right)}{\left(-1 + x \right)^2 \left(1 + x \right)^2} dx + c_1 \right) e^{-\frac{x}{\sqrt{-x^2+1}}}$$

✓ Solution by Mathematica

Time used: 0.358 (sec). Leaf size: 38

DSolve[y'[x]+y[x]/ $(1-x^2)^(3/2)$ == $(x+(1-x^2)^(1/2))/(1-x^2)^2$,y[x],x,IncludeSingularSolution

$$y(x)
ightarrow rac{x}{\sqrt{1-x^2}}+c_1e^{-rac{x}{\sqrt{1-x^2}}}$$

problem Ex 14 12.13

Internal problem ID [11183]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(-x^{2} + 1) y' - yx - y^{2}ax = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve((1-x^2)*diff(y(x),x)-x*y(x)=a*x*y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{-1+x}\sqrt{1+x}\,c_1 - a}$$

Solution by Mathematica

Time used: 4.13 (sec). Leaf size: 47

 $DSolve[(1-x^2)*y'[x]-x*y[x]==a*x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow -\frac{e^{c_1}}{-\sqrt{1-x^2}+ae^{c_1}}$$

 $y(x) \rightarrow 0$
 $y(x) \rightarrow -\frac{1}{a}$

$$y(x) \to 0$$

$$y(x) \to -\frac{1}{a}$$

12.14 problem Ex 15

Internal problem ID [11184]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$xy^{2}(3y + y'x) - 2y + y'x = 0$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 45

 $dsolve((x*y(x)^2)*(3*y(x)+x*diff(y(x),x))-(2*y(x)-x*diff(y(x),x))=0,y(x), singsol=all)$

$$y(x) = \frac{c_1 - \sqrt{4x^5 + c_1^2}}{2x^3}$$
$$y(x) = \frac{c_1 + \sqrt{4x^5 + c_1^2}}{2x^3}$$

✓ Solution by Mathematica

Time used: 1.836 (sec). Leaf size: 75

 $DSolve[(x*y[x]^2)*(3*y[x]+x*y'[x])-(2*y[x]-x*y'[x])==0,y[x],x,IncludeSingularSolutions \rightarrow Tr$

$$y(x)
ightarrow -rac{\sqrt{4x^5 + e^{5c_1}} + e^{rac{5c_1}{2}}}{2x^3} \ y(x)
ightarrow rac{\sqrt{4x^5 + e^{5c_1}} - e^{rac{5c_1}{2}}}{2x^3}$$

12.15 problem Ex 16

Internal problem ID [11185]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(x^2+1) y' + y = \arctan(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((1+x^2)*diff(y(x),x)+y(x)=arctan(x),y(x), singsol=all)$

$$y(x) = \arctan(x) - 1 + e^{-\arctan(x)}c_1$$

✓ Solution by Mathematica

Time used: 0.23 (sec). Leaf size: 18

 $\label{eq:DSolve} DSolve[(1+x^2)*y'[x]+y[x]==ArcTan[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \arctan(x) + c_1 e^{-\arctan(x)} - 1$$

12.16 problem Ex 17

Internal problem ID [11186]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$5yx - 3y^3 + (3x^2 - 7y^2x)y' = 0$$

✓ Solution by Maple

Time used: 1.453 (sec). Leaf size: 49

 $dsolve((5*x*y(x)-3*y(x)^3)+(3*x^2-7*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = ext{RootOf}\left(x^{rac{3}{2}}_Z^7 - _Z^3x^{rac{5}{2}} - c_1
ight)^2$$
 $y(x) = ext{RootOf}\left(x^{rac{3}{2}}_Z^7 - _Z^3x^{rac{5}{2}} + c_1
ight)^2$

✓ Solution by Mathematica

Time used: 7.756 (sec). Leaf size: 288

$$\begin{split} y(x) &\to \text{Root} \left[4\#1^7 x^3 - 8\#1^5 x^4 + 4\#1^3 x^5 - c_1{}^2 \&, 1 \right] \\ y(x) &\to \text{Root} \left[4\#1^7 x^3 - 8\#1^5 x^4 + 4\#1^3 x^5 - c_1{}^2 \&, 2 \right] \\ y(x) &\to \text{Root} \left[4\#1^7 x^3 - 8\#1^5 x^4 + 4\#1^3 x^5 - c_1{}^2 \&, 3 \right] \\ y(x) &\to \text{Root} \left[4\#1^7 x^3 - 8\#1^5 x^4 + 4\#1^3 x^5 - c_1{}^2 \&, 4 \right] \\ y(x) &\to \text{Root} \left[4\#1^7 x^3 - 8\#1^5 x^4 + 4\#1^3 x^5 - c_1{}^2 \&, 5 \right] \\ y(x) &\to \text{Root} \left[4\#1^7 x^3 - 8\#1^5 x^4 + 4\#1^3 x^5 - c_1{}^2 \&, 6 \right] \\ y(x) &\to \text{Root} \left[4\#1^7 x^3 - 8\#1^5 x^4 + 4\#1^3 x^5 - c_1{}^2 \&, 6 \right] \\ y(x) &\to \text{Root} \left[4\#1^7 x^3 - 8\#1^5 x^4 + 4\#1^3 x^5 - c_1{}^2 \&, 7 \right] \end{split}$$

12.17 problem Ex 18

Internal problem ID [11187]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y\cos(x) = \frac{\sin(2x)}{2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x)+y(x)*cos(x)=1/2*sin(2*x),y(x), singsol=all)

$$y(x) = \sin(x) - 1 + e^{-\sin(x)}c_1$$

Solution by Mathematica

Time used: 0.089 (sec). Leaf size: 18

DSolve[y'[x]+y[x]*Cos[x]==1/2*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sin(x) + c_1 e^{-\sin(x)} - 1$$

12.18 problem Ex 19

Internal problem ID [11188]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Bernoulli]

$$y^2x + y - y'x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve((x*y(x)^2+y(x))-x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{2x}{x^2 - 2c_1}$$

✓ Solution by Mathematica

Time used: 0.207 (sec). Leaf size: 23

 $DSolve[(x*y[x]^2+y[x])-x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{2x}{x^2 - 2c_1}$$
$$y(x) \to 0$$

12.19 problem Ex 20

Internal problem ID [11189]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(1-x)y - (y+1)xy' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve((1-x)*y(x)-(1+y(x))*x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \text{LambertW}\left(\frac{e^{-x}x}{c_1}\right)$$

✓ Solution by Mathematica

Time used: 5.134 (sec). Leaf size: 21

 $DSolve[(1-x)*y[x]-(1+y[x])*x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to W(xe^{-x+c_1})$$
$$y(x) \to 0$$

12.20 problem Ex 21

Internal problem ID [11190]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$3x^{2}y + (x^{3} + y^{2}x^{3})y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

$$y(x) = rac{1}{\sqrt{rac{1}{ ext{LambertW}\left(rac{c_1}{x^6}
ight)}}}$$

✓ Solution by Mathematica

Time used: 6.245 (sec). Leaf size: 46

 $DSolve[3*x^2*y[x]+(x^3+x^3*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o -\sqrt{W\left(rac{e^{2c_1}}{x^6}
ight)}$$
 $y(x) o \sqrt{W\left(rac{e^{2c_1}}{x^6}
ight)}$
 $y(x) o 0$

12.21 problem Ex 22

Internal problem ID [11191]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$(x^2 + y^2)(x + yy') - (x^2 + y^2 + x)(y'x - y) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 45

$$y(x) = -\cot \left(\text{RootOf} \left(-2 Z + 2 \ln \left(2 \csc \left(Z \right)^2 x^2 + \cot \left(Z \right) x + x \right) - \ln \left(\csc \left(Z \right)^2 x^2 \right) + 2c_1 \right) \right) x$$

✓ Solution by Mathematica

Time used: 0.548 (sec). Leaf size: 53

Solve
$$\left[\frac{1}{2}\arctan\left(\frac{x}{y(x)}\right) - \frac{1}{4}\log\left(x^2 + y(x)^2\right) + \frac{1}{2}\log\left(2x^2 + 2y(x)^2 - y(x) + x\right) = c_1, y(x)\right]$$

12.22 problem Ex 23

Internal problem ID [11192]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$3y + (2x + 3y - 5)y' = -2x + 1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve((2*x+3*y(x)-1)+(2*x+3*y(x)-5)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\frac{2x}{3} - 4 \text{ LambertW} \left(-\frac{c_1 e^{\frac{x}{12} - \frac{7}{12}}}{12} \right) - \frac{7}{3}$$

✓ Solution by Mathematica

Time used: 5.457 (sec). Leaf size: 43

$$y(x) \to -4W\left(-e^{\frac{x}{12}-1+c_1}\right) - \frac{2x}{3} - \frac{7}{3}$$

 $y(x) \to \frac{1}{3}(-2x-7)$

12.23 problem Ex 24

Internal problem ID [11193]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y^3 - 2x^2y + (2y^2x - x^3)y' = 0$$

✓ Solution by Maple

Time used: 0.266 (sec). Leaf size: 71

 $\label{eq:dsolve} $$ dsolve((y(x)^3-2*x^2*y(x))+(2*x*y(x)^2-x^3)*diff(y(x),x)=0,y(x), singsol=all)$$

$$y(x) = rac{\sqrt{rac{2c_1x^3 - 2\sqrt{c_1^2x^6 + 4}}{c_1x^3}}\,x}{2} \ y(x) = rac{\sqrt{2}\,\sqrt{rac{c_1x^3 + \sqrt{c_1^2x^6 + 4}}{c_1x^3}}\,x}{2}$$

✓ Solution by Mathematica

Time used: 15.638 (sec). Leaf size: 277

$$y(x) o -rac{\sqrt{x^2 - rac{\sqrt{x^6 - 4e^{2c_1}}{x}}}}{\sqrt{2}}$$
 $y(x) o rac{\sqrt{x^2 - rac{\sqrt{x^6 - 4e^{2c_1}}}{x}}}{\sqrt{2}}$
 $y(x) o -rac{\sqrt{\frac{x^3 + \sqrt{x^6 - 4e^{2c_1}}}{x}}}{\sqrt{2}}$
 $y(x) o rac{\sqrt{\frac{x^3 + \sqrt{x^6 - 4e^{2c_1}}}{x}}}{\sqrt{2}}$
 $y(x) o -rac{\sqrt{x^2 - rac{\sqrt{x^6}}{x}}}{\sqrt{2}}$
 $y(x) o -rac{\sqrt{x^2 - rac{\sqrt{x^6}}{x}}}{\sqrt{2}}$
 $y(x) o -rac{\sqrt{\sqrt{x^6 + x^3}}}{\sqrt{2}}$
 $y(x) o rac{\sqrt{\sqrt{x^6 + x^3}}}{x}$

12.24 problem Ex 25

Internal problem ID [11194]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$2y^{2}x^{3} - y + (2y^{3}x^{2} - x)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 361

$$dsolve((2*x^3*y(x)^2-y(x))+(2*x^2*y(x)^3-x)*diff(y(x),x)=0,y(x), singsol=all)$$

$$y(x) = \frac{\left(-\left(\left(-9 + \sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{2}{3}} + x^212^{\frac{1}{3}}(x^2 - c_1)\right)12^{\frac{1}{3}}}{6\left(\left(-9 + \sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}x}$$

$$y(x) = \frac{\left((1 + i\sqrt{3})\left(\left(-9 + \sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{2}{3}} + \left(i3^{\frac{5}{6}} - 3^{\frac{1}{3}}\right)2^{\frac{2}{3}}x^2(x^2 - c_1)\right)2^{\frac{1}{3}}}{12\left(\left(-9 + \sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}x}$$

$$y(x)$$

$$=\frac{2^{\frac{2}{3}}3^{\frac{1}{3}}\left(\left(i\sqrt{3}-1\right)\left(\left(-9+\sqrt{12x^{8}-36c_{1}x^{6}+36c_{1}^{2}x^{4}-12c_{1}^{3}x^{2}+81}\right)x^{2}\right)^{\frac{2}{3}}+2^{\frac{2}{3}}x^{2}(x^{2}-c_{1})\left(i3^{\frac{5}{6}}+3^{\frac{1}{3}}\right)}{12\left(\left(-9+\sqrt{12x^{8}-36c_{1}x^{6}+36c_{1}^{2}x^{4}-12c_{1}^{3}x^{2}+81}\right)x^{2}\right)^{\frac{1}{3}}x}$$

✓ Solution by Mathematica

Time used: 46.278 (sec). Leaf size: 358

$$y(x) \to \frac{\sqrt[3]{2}(-x^3 + c_1 x)}{\sqrt[3]{-27x^2 + \sqrt{729x^4 + 108x^3 (x^3 - c_1 x)^3}}} + \frac{\sqrt[3]{-27x^2 + \sqrt{729x^4 + 108x^3 (x^3 - c_1 x)^3}}}{3\sqrt[3]{2x}}$$

$$y(x) \to \frac{(1 + i\sqrt{3}) (x^3 - c_1 x)}{2^{2/3} \sqrt[3]{-27x^2 + \sqrt{729x^4 + 108x^3 (x^3 - c_1 x)^3}}} - \frac{(1 - i\sqrt{3}) \sqrt[3]{-27x^2 + \sqrt{729x^4 + 108x^3 (x^3 - c_1 x)^3}}}{6\sqrt[3]{2x}}$$

$$y(x) \to \frac{(1 - i\sqrt{3}) (x^3 - c_1 x)}{2^{2/3} \sqrt[3]{-27x^2 + \sqrt{729x^4 + 108x^3 (x^3 - c_1 x)^3}}} - \frac{(1 + i\sqrt{3}) \sqrt[3]{-27x^2 + \sqrt{729x^4 + 108x^3 (x^3 - c_1 x)^3}}}{6\sqrt[3]{2x}}$$

12.25 problem Ex 26

Internal problem ID [11195]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$(x^{2} + y^{2})(x + yy') + \sqrt{1 + x^{2} + y^{2}}(y - y'x) = 0$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 25

 $dsolve((x^2+y(x)^2)*(x+y(x)*diff(y(x),x))+(1+x^2+y(x)^2)^(1/2)*(y(x)-x*diff(y(x),x))=0,y(x),$

$$\arctan\left(\frac{x}{y\left(x\right)}\right) + \sqrt{1 + x^{2} + y\left(x\right)^{2}} - c_{1} = 0$$

✓ Solution by Mathematica

Time used: 0.454 (sec). Leaf size: 27

DSolve $[(x^2+y[x]^2)*(x+y[x]*y'[x])+(1+x^2+y[x]^2)^(1/2)*(y[x]-x*y'[x])==0,y[x],x,IncludeSing(x)=0,y[x]$

Solve
$$\left[\arctan\left(\frac{x}{y(x)}\right) + \sqrt{x^2 + y(x)^2 + 1} = c_1, y(x)\right]$$

12.26 problem Ex 27

Internal problem ID [11196]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$e^{\frac{y}{x}} + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) y' = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

dsolve((1+exp(y(x)/x))+exp(x/y(x))*(1-x/y(x))*diff(y(x),x)=0,y(x), singsol=all))

$$y(x) = \text{RootOf}\left(\int^{-Z} \frac{e^{\frac{1}{-a}}(\underline{a}-1)}{\underline{a}(\underline{a}e^{\frac{1}{-a}} + e^{-a} - e^{\frac{1}{-a}} + 1)} d\underline{a} + \ln(x) + c_1\right) x$$

✓ Solution by Mathematica

Time used: 0.429 (sec). Leaf size: 63

Solve
$$\left[\int_{1}^{\frac{y(x)}{x}} \frac{e^{\frac{1}{K[1]}}(K[1]-1)}{K[1]\left(e^{\frac{1}{K[1]}}K[1]+e^{K[1]}-e^{\frac{1}{K[1]}}+1\right)} dK[1] = -\log(x) + c_1, y(x) \right]$$

12.27 problem Ex 28

Internal problem ID [11197]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y'x + y - y^2 \ln(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(x*diff(y(x),x)+y(x)-y(x)^2*ln(x)=0,y(x), singsol=all)$

$$y(x) = \frac{1}{1 + c_1 x + \ln(x)}$$

Solution by Mathematica

Time used: 0.233 (sec). Leaf size: 20

 $DSolve[x*y'[x]+y[x]-y[x]^2*Log[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{\log(x) + c_1 x + 1}$$
$$y(x) \to 0$$

12.28 problem Ex 29

Internal problem ID [11198]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 29.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$x^{3}y^{4} + y^{3}x^{2} + y^{2}x + y + (y^{3}x^{4} - y^{2}x^{3} - yx^{3} + x)y' = 0$$

X Solution by Maple

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

Not solved

12.29 problem Ex 30

Internal problem ID [11199]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter 2, differential equations of the first order and the first degree. Article 19.

Summary. Page 29

Problem number: Ex 30.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$(2\sqrt{yx} - x)y' + y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

dsolve((2*sqrt(x*y(x))-x)*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$\ln(y(x)) + \frac{x}{\sqrt{y(x) x}} - c_1 = 0$$

Solution by Mathematica

Time used: 0.376 (sec). Leaf size: 33

DSolve[(2*Sqrt[x*y[x]]-x)*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\frac{2}{\sqrt{\frac{y(x)}{x}}} + 2\log\left(\frac{y(x)}{x}\right) = -2\log(x) + c_1, y(x)\right]$$

13 Chapter IV, differential equations of the first order and higher degree than the first. Article 24. Equations solvable for p. Page 49

13.1	problem	$\mathbf{E}\mathbf{x}$	1			•	•	•		•		•			•				•	•	•	•	•	104
13.2	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	2																					105
13.3	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	3																					106
13.4	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	4																					107
13.5	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	5																					108
13.6	problem	$\mathbf{E}\mathbf{x}$	6																					109

13.1 problem Ex 1

Internal problem ID [11200]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publications and the second seco

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 24. Equations solvable for p. Page 49

Problem number: Ex 1.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^{2} + (y+x)y' + yx = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(x),x)^2 + (x+y(x))* \\ \text{diff}(y(x),x) + x*y(x) = 0, \\ y(x), \text{ singsol=all}) \\$

$$y(x) = -\frac{x^2}{2} + c_1$$

 $y(x) = c_1 e^{-x}$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: $32\,$

 $DSolve[(y'[x])^2+(x+y[x])*y'[x]+x*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-x}$$
$$y(x) \to -\frac{x^2}{2} + c_1$$
$$y(x) \to 0$$

13.2 problem Ex 2

Internal problem ID [11201]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 24. Equations solvable for p. Page 49

Problem number: Ex 2.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy'^2 - 2yy' = x$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 32

 $\label{eq:decomposition} \\ \mbox{dsolve}(\mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x})^2-2*\mbox{y}(\mbox{x})*\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})-\mbox{x=0,y}(\mbox{x}), \\ \mbox{singsol=all}) \\$

$$y(x) = -ix$$
 $y(x) = ix$
 $y(x) = \frac{-c_1^2 + x^2}{2c_1}$

✓ Solution by Mathematica

Time used: 0.225 (sec). Leaf size: 71

 $\label{eq:DSolve} DSolve[x*(y'[x])^2-2*y[x]*y'[x]-x==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{1}{2}e^{-c_1}(-x^2 + e^{2c_1})$$

$$y(x) \to \frac{1}{2}e^{-c_1}(-1 + e^{2c_1}x^2)$$

$$y(x) \to -ix$$

$$y(x) \to ix$$

13.3 problem Ex 3

Internal problem ID [11202]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 24. Equations solvable for p. Page 49

Problem number: Ex 3.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y^2 + y'^2 = 1$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 29

 $dsolve(y(x)^2+diff(y(x),x)^2=1,y(x), singsol=all)$

$$y(x) = -1$$

$$y(x) = 1$$

$$y(x) = -\sin(c_1 - x)$$

$$y(x) = \sin(c_1 - x)$$

✓ Solution by Mathematica

Time used: 0.211 (sec). Leaf size: 39

 $DSolve[y[x]^2+(y'[x])^2==1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \cos(x + c_1)$$

 $y(x) \rightarrow \cos(x - c_1)$
 $y(x) \rightarrow -1$
 $y(x) \rightarrow 1$
 $y(x) \rightarrow \text{Interval}[\{-1, 1\}]$

13.4 problem Ex 4

Internal problem ID [11203]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 24. Equations solvable for p. Page 49

Problem number: Ex 4.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_linear]

$$\left(2y'x - y\right)^2 = 8x^3$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 30

 $dsolve((2*x*diff(y(x),x)-y(x))^2=8*x^3,y(x), singsol=all)$

$$y(x) = \left(-x\sqrt{2} + c_1\right)\sqrt{x}$$
$$y(x) = \left(x\sqrt{2} + c_1\right)\sqrt{x}$$

✓ Solution by Mathematica

Time used: 0.128 (sec). Leaf size: 42

DSolve[(2*x*y'[x]-y[x])^2==8*x^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sqrt{x} \left(-\sqrt{2}x + c_1 \right)$$

 $y(x) \to \sqrt{x} \left(\sqrt{2}x + c_1 \right)$

13.5 problem Ex 5

Internal problem ID [11204]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 24. Equations solvable for p. Page 49

Problem number: Ex 5.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$\left(x^2+1\right)y'^2=1$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 17

 $dsolve((1+x^2)*diff(y(x),x)^2=1,y(x), singsol=all)$

$$y(x) = \operatorname{arcsinh}(x) + c_1$$

 $y(x) = -\operatorname{arcsinh}(x) + c_1$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 45

DSolve[(1+x^2)*(y'[x])^2==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\log\left(\sqrt{x^2+1} - x\right) + c_1$$

 $y(x) \to \log\left(\sqrt{x^2+1} - x\right) + c_1$

13.6 problem Ex 6

Internal problem ID [11205]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 24. Equations solvable for p. Page 49

Problem number: Ex 6.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [_quadrature]

$$y'^{3} - (2x + y^{2}) y'^{2} + (x^{2} - y^{2} + 2y^{2}x) y' - (x^{2} - y^{2}) y^{2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

 $dsolve(diff(y(x),x)^3-(2*x+y(x)^2)*diff(y(x),x)^2+(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2+2*x*y(x)^2)*diff(x)-(x^2-x)^2+$

$$y(x) = \frac{1}{c_1 - x}$$

$$y(x) = -x - 1 + c_1 e^x$$

$$y(x) = x - 1 + c_1 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.276 (sec). Leaf size: 48

 $DSolve[(y'[x])^3 - (2*x+y[x]^2)*(y'[x])^2 + (x^2-y[x]^2 + 2*x*y[x]^2)*y'[x] - (x^2-y[x]^2)*y[x]^2 = 0$

$$y(x) \to -\frac{1}{x+c_1}$$

$$y(x) \to x + c_1 e^{-x} - 1$$

$$y(x) \to -x + c_1 e^x - 1$$

$$y(x) \to 0$$

14	Chapter IV, differential equations of the firs	t
	order and higher degree than the first. Artic	le
	25. Equations solvable for y . Page 52	
1 1 1	11 D 1	-1 -

14.1	problem	$\mathbf{E}\mathbf{x}$	1						•					•		•				 		111
14.2	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	2																	 , .		112
14.3	problem	$\mathbf{E}\mathbf{x}$	3											•						 		113
14.4	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	4																	 , ,		114
14.5	problem	$\mathbf{E}\mathbf{x}$	5											•						 		115
14.6	problem	$\mathbf{E}\mathbf{x}$	6																			117

14.1 problem Ex 1

Internal problem ID [11206]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 25. Equations solvable for y. Page 52

Problem number: Ex 1.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$2y'x - y + \ln(y') = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 69

dsolve(2*diff(y(x),x)*x-y(x)+ln(diff(y(x),x))=0,y(x), singsol=all)

$$y(x) = -1 + \sqrt{4c_1x + 1} - \ln(2) + \ln\left(\frac{-1 + \sqrt{4c_1x + 1}}{x}\right)$$
$$y(x) = -1 - \sqrt{4c_1x + 1} - \ln(2) + \ln\left(\frac{-1 - \sqrt{4c_1x + 1}}{x}\right)$$

✓ Solution by Mathematica

Time used: 0.157 (sec). Leaf size: 32

DSolve[2*y'[x]*x-y[x]+Log[y'[x]]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$[W(2xe^{y(x)}) - \log(W(2xe^{y(x)}) + 2) - y(x) = c_1, y(x)]$$

14.2 problem Ex 2

Internal problem ID [11207]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 25. Equations solvable for y. Page 52

Problem number: Ex 2.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$4xy'^2 + 2y'x - y = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 35

 $dsolve(4*x*diff(y(x),x)^2+2*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y(x) = -\frac{x}{4}$$
$$y(x) = 4c_1 + 2\sqrt{c_1x}$$
$$y(x) = 4c_1 - 2\sqrt{c_1x}$$

✓ Solution by Mathematica

Time used: 0.196 (sec). Leaf size: 72

 $DSolve [4*x*(y'[x])^2+2*x*y'[x]-y[x]==0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to \frac{1}{4}e^{2c_1} \left(-2\sqrt{x} + e^{2c_1} \right)$$
$$y(x) \to \frac{1}{4}e^{-4c_1} \left(1 + 2e^{2c_1}\sqrt{x} \right)$$
$$y(x) \to 0$$
$$y(x) \to -\frac{x}{4}$$

14.3 problem Ex 3

Internal problem ID [11208]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 25. Equations solvable for y. Page 52

Problem number: Ex 3.

ODE order: 1.
ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy'^2 - 2yy' = x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

 $\label{eq:decomposition} \\ \mbox{dsolve}(\mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x})^2-2*\mbox{y}(\mbox{x})*\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})-\mbox{x=0,y}(\mbox{x}), \\ \mbox{singsol=all}) \\$

$$y(x) = -ix$$
 $y(x) = ix$
 $y(x) = \frac{-c_1^2 + x^2}{2c_1}$

✓ Solution by Mathematica

Time used: 0.186 (sec). Leaf size: 71

 $\label{eq:DSolve} DSolve[x*(y'[x])^2-2*y[x]*y'[x]-x==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow \frac{1}{2}e^{-c_1}\left(-x^2 + e^{2c_1}\right)$$

$$y(x) \rightarrow \frac{1}{2}e^{-c_1}\left(-1 + e^{2c_1}x^2\right)$$

$$y(x) \rightarrow -ix$$

$$y(x) \rightarrow ix$$

14.4 problem Ex 4

Internal problem ID [11209]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 25. Equations solvable for y. Page 52

Problem number: Ex 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _Riccati]

$$y' + 2yx - y^2 = x^2$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 29

 $dsolve(diff(y(x),x)+2*x*y(x)=x^2+y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{c_1(-1+x)e^{2x} - x - 1}{-1 + e^{2x}c_1}$$

Solution by Mathematica

Time used: 0.208 (sec). Leaf size: $29\,$

DSolve[y'[x]+2*x*y[x]==x^2+y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + \frac{1}{\frac{1}{2} + c_1 e^{2x}} - 1$$

 $y(x) \to x - 1$

14.5 problem Ex 5

Internal problem ID [11210]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 25. Equations solvable for y. Page 52

Problem number: Ex 5.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$y + y'x - x^4y'^2 = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 81

 $dsolve(y(x)=-x*diff(y(x),x)+x^4*diff(y(x),x)^2,y(x), singsol=all)$

$$y(x) = -\frac{1}{4x^2}$$

$$y(x) = \frac{-c_1 i - x}{c_1^2 x}$$

$$y(x) = \frac{c_1 i - x}{x c_1^2}$$

$$y(x) = \frac{c_1 i - x}{x c_1^2}$$

$$y(x) = \frac{-c_1 i - x}{c_1^2 x}$$

✓ Solution by Mathematica

Time used: 0.809 (sec). Leaf size: 123

 $DSolve[y[x] == -x*y'[x] + x^4*(y'[x])^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[-\frac{x\sqrt{4x^2y(x) + 1}\operatorname{arctanh}\left(\sqrt{4x^2y(x) + 1}\right)}{\sqrt{4x^4y(x) + x^2}} - \frac{1}{2}\log(y(x)) = c_1, y(x) \right]$$
Solve
$$\left[\frac{x\sqrt{4x^2y(x) + 1}\operatorname{arctanh}\left(\sqrt{4x^2y(x) + 1}\right)}{\sqrt{4x^4y(x) + x^2}} - \frac{1}{2}\log(y(x)) = c_1, y(x) \right]$$

$$y(x) \to 0$$

14.6 problem Ex 6

Internal problem ID [11211]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 25. Equations solvable for y. Page 52

Problem number: Ex 6.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$y'^2 + 2y'x - y = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 650

 $dsolve(diff(y(x),x)^2+2*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{\left(x^{2} - x\left(-x^{3} + 2\sqrt{3}\sqrt{-c_{1}(x^{3} - 3c_{1})} + 6c_{1}\right)^{\frac{1}{3}} + \left(-x^{3} + 2\sqrt{3}\sqrt{-c_{1}(x^{3} - 3c_{1})} + 6c_{1}\right)^{\frac{2}{3}}\right)\left(x^{2} + 3x\left(-x^{3} + 2\sqrt{3}\sqrt{-c_{1}(x^{3} - 3c_{1})} + 6c_{1}\right)^{\frac{2}{3}}\right)$$

$$=\frac{\left(i\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}\sqrt{3}-i\sqrt{3}\,x^{2}+\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}+2x\left(-x^{3}+2\sqrt{3}\sqrt{-c_{1}\left(x^{3}-3c_{1}\right)}+6c_{1}\right)^{\frac{2}{3}}}$$

$$y(x) = \frac{\left(i\sqrt{3}x^2 - i\left(-x^3 + 2\sqrt{3}\sqrt{-c_1(x^3 - 3c_1)} + 6c_1\right)^{\frac{2}{3}}\sqrt{3} + x^2 + 2x\left(-x^3 + 2\sqrt{3}\sqrt{-c_1(x^3 - 3c_1)} + 6c_1\right)^{\frac{2}{3}}\sqrt{3}}{\sqrt{3}} + x^2 + 2x\left(-x^3 + 2\sqrt{3}\sqrt{-c_1(x^3 - 3c_1)} + 6c_1\right)^{\frac{2}{3}}\sqrt{3}} + x^2 + 2x\left(-x^3 + 2\sqrt{3}\sqrt{-c_1(x^3 - 3c_1)} + 6c_1\right)^{\frac{2}{3}}\sqrt{3} + x^2 + 2x\left(-x^3 + 2\sqrt{3}\sqrt{-c_1(x^3 - 3c_1)} + 6c_1\right)^{\frac{2}{3}}$$

Solution by Mathematica

Time used: 60.154 (sec). Leaf size: 931

DSolve $[(y'[x])^2+2*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$\begin{split} y(x) & \to \frac{1}{4} \left(-x^2 + \frac{x(x^3 + 8e^{3c_1})}{\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}} \right. \\ & + \sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}} \\ y(x) & \to \frac{1}{72} \left(-18x^2 - \frac{9i\left(\sqrt{3} - i\right)x\left(x^3 + 8e^{3c_1}\right)}{\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}}} \right. \\ & + 9i\left(\sqrt{3} + i\right)\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}} \\ y(x) & \to \frac{1}{72} \left(-18x^2 + \frac{9i\left(\sqrt{3} + i\right)x\left(x^3 + 8e^{3c_1}\right)}{\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}}} \right. \\ & - 9\left(1 + i\sqrt{3}\right)\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}} \\ y(x) & \to \frac{1}{4} \left(-x^2 + \frac{x\left(x^3 - 8e^{3c_1}\right)}{\sqrt[3]{-x^6 - 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}}} \right. \\ & + \sqrt[3]{-x^6 - 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}} \\ y(x) & \to \frac{1}{72} \left(-18x^2 + \frac{9(1 + i\sqrt{3})x\left(-x^3 + 8e^{3c_1}\right)}{\sqrt[3]{-x^6 - 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}}} \right. \\ & + 9i\left(\sqrt{3} + i\right)\sqrt[3]{-x^6 - 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}}} \\ & - 9\left(1 + i\sqrt{3}\right)\sqrt[3]{-x^6 - 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}} \\ & - 9\left(1 + i\sqrt{3}\right)\sqrt[3]{-x^6 - 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}}} \right. \\ & - 9\left(1 + i\sqrt{3}\right)\sqrt[3]{-x^6 - 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}} \\ & - 9\left(1 + i\sqrt{3}\right)\sqrt[3]{-x^6 - 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}}} \right. \\ & - 9\left(1 + i\sqrt{3}\right)\sqrt[3]{-x^6 - 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}}} \\ & - 9\left(1 + i\sqrt{3}\right)\sqrt[3]{-x^6 - 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}}} \right. \\ & - 9\left(1 + i\sqrt{3}\right)\sqrt[3]{-x^6 - 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}}} \\ & - 9\left(1 + i\sqrt{3}\right)\sqrt[3]{-x^6 - 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}} \right. \\ & - 9\left(1 + i\sqrt{3}\right)\sqrt[3]{-x^6 - 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(x^3 + e^{3c_1}\right)^3 + 8e^{6c_1}}} \right.$$

15	Chapter IV, differential equations of the first														
	order and higher degree than the first. Article														
	26. Equations solvable for x . Page 55														
15.1	problem Ex 1	120													
15.2	problem Ex 2	123													
15.3	problem Ex 3 \dots	125													
15.4	problem Ex 4 \dots	126													

15.1 problem Ex 1

Internal problem ID [11212]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 26. Equations solvable for x. Page 55

Problem number: Ex 1.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y'y(2y'^2+3) = -x$$

Solution by Maple

Time used: 0.14 (sec). Leaf size: 776

$$\begin{aligned} & \operatorname{dsolve}(\mathbf{x} + \operatorname{diff}(\mathbf{y}(\mathbf{x}), \mathbf{x}) * \mathbf{y}(\mathbf{x}) * (2*\operatorname{diff}(\mathbf{y}(\mathbf{x}), \mathbf{x})^2 + 3) = 0, \mathbf{y}(\mathbf{x}), & \operatorname{singsol=all}) \end{aligned}$$

$$y(x) = -\frac{i\sqrt{2}x}{2}$$

$$y(x) = \operatorname{RootOf}\left(-\ln(x) + \int_{-x}^{-x} \frac{i\sqrt{2}x}{2} + 2\left(\frac{(-a^2 - \sqrt{2} - a^2 + 1 + 1}) - a}{(2 - a^2 + 1)^{\frac{3}{2}}}\right)^{\frac{1}{3}} - a^3 - \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1 + 1}) - a}{(2 - a^2 + 1)^{\frac{3}{2}}}\right)^{\frac{2}{3}} + -\frac{(-a^2 - \sqrt{2} - a^2 + 1 + 1}) - a}{\left(\frac{(-a^2 - \sqrt{2} - a^2 + 1 + 1}) - a}{(2 - a^2 + 1)^{\frac{3}{2}}}\right)^{\frac{1}{3}}} (2 - a^4 + 3 - a^2 + 1) + c_1$$

$$y(x) = \operatorname{RootOf}\left(-2\ln(x)\right)$$

$$y(x) = \text{RootOf}\left(-2\ln(x)\right) \\ + \int_{-Z}^{-Z} \frac{2i\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1} + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - a^2 + i\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1} + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1} + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1} + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1} + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1} + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} - 2\left(\frac{\left(-a^2 - \sqrt{2} - a^2 + 1\right) - a}{\left(2 - a^2 + 1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}}}$$

$$+2c_1$$

$$y(x) = \text{RootOf} \left(-2\ln(x) - 2\ln(x) \right) - \left(\frac{-2\ln\left(\frac{a^2 - \sqrt{2} - a^2 + 1} + 1\right) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{2}{3}} \sqrt{3} - a^2 + i \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1} + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{2}{3}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1} + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1} + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1} + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1} + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1} + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1} + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1} + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1} + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1} + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1} + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \sqrt{3} + 2 \left(\frac{(-a^2 - \sqrt{2} - a^2 + 1) - a}{(2 - a^2 + 1)^{\frac{3}{2}}} \right)^{\frac{3}{2$$

X Solution by Mathematica

 $\overline{\text{Time used: 0.0 (sec). Leaf size: 0}}$

 $DSolve[x+y'[x]*y[x]*(2*(y'[x])^2+3)==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Timed out

15.2 problem Ex 2

Internal problem ID [11213]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 26. Equations solvable for x. Page 55

Problem number: Ex 2.

ODE order: 1. ODE degree: 2.

 ${\rm CAS\;Maple\;gives\;this\;as\;type\;[[_homogeneous,\; `class\;A'],\;_rational,\;_dAlembert]}$

$$a^2 y y'^2 - 2y'x + y = 0$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 51

 $\label{eq:decomposition} \\ \mbox{dsolve}(\mbox{a^2*y(x)*diff(y(x),x)^2-2*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)} \\$

$$\begin{split} y(x) &= -\frac{x}{a} \\ y(x) &= \frac{x}{a} \\ y(x) &= 0 \\ y(x) &= \mathrm{e}^{\mathrm{RootOf}\left(\mathrm{e}^{2-Z}\sinh(--Z+c_1-\ln(x))^2a^2+1\right)}x \end{split}$$

✓ Solution by Mathematica

Time used: 30.099 (sec). Leaf size: 244

 $DSolve[a^2*y[x]*(y'[x])^2-2*x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$\begin{split} y(x) &\to -\frac{\left(\cosh\left(\frac{a^2c_1}{2}\right) + \sinh\left(\frac{a^2c_1}{2}\right)\right)\sqrt{\cosh\left(a^2c_1\right) + \sinh\left(a^2c_1\right) - 8ix}}{4a} \\ y(x) &\to \frac{\left(\cosh\left(\frac{a^2c_1}{2}\right) + \sinh\left(\frac{a^2c_1}{2}\right)\right)\sqrt{\cosh\left(a^2c_1\right) + \sinh\left(a^2c_1\right) - 8ix}}{4a} \\ y(x) &\to -\frac{\left(\cosh\left(\frac{a^2c_1}{2}\right) + \sinh\left(\frac{a^2c_1}{2}\right)\right)\sqrt{\cosh\left(a^2c_1\right) + \sinh\left(a^2c_1\right) + 8ix}}{4a} \\ y(x) &\to -\frac{\left(\cosh\left(\frac{a^2c_1}{2}\right) + \sinh\left(\frac{a^2c_1}{2}\right)\right)\sqrt{\cosh\left(a^2c_1\right) + \sinh\left(a^2c_1\right) + 8ix}}{4a} \\ y(x) &\to -\frac{x}{a} \\ y(x) &\to -\frac{x}{a} \end{split}$$

15.3 problem Ex 3

Internal problem ID [11214]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 26. Equations solvable for x. Page 55

Problem number: Ex 3.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy'^2 - 2yy' = x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

 $\label{eq:decomposition} \\ \mbox{dsolve}(\mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x})^2-2*\mbox{y}(\mbox{x})*\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})-\mbox{x=0,y}(\mbox{x}), \\ \mbox{singsol=all}) \\$

$$y(x) = -ix$$
 $y(x) = ix$
 $y(x) = \frac{-c_1^2 + x^2}{2c_1}$

✓ Solution by Mathematica

Time used: 0.213 (sec). Leaf size: 71

DSolve[$x*(y'[x])^2-2*y[x]*y'[x]-x==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \rightarrow \frac{1}{2}e^{-c_1}\left(-x^2 + e^{2c_1}\right)$$

$$y(x) \rightarrow \frac{1}{2}e^{-c_1}\left(-1 + e^{2c_1}x^2\right)$$

$$y(x) \rightarrow -ix$$

$$y(x) \rightarrow ix$$

15.4 problem Ex 4

Internal problem ID [11215]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 26. Equations solvable for x. Page 55

Problem number: Ex 4.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y'^3 - 4xyy' + 8y^2 = 0$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 29

 $\label{local-control} \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})^3-4*\mbox{x*y}(\mbox{x})*\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})+8*\mbox{y}(\mbox{x})^2=0,\\ \mbox{y}(\mbox{x}),\mbox{singsol=all}) \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})^3-4*\mbox{x*y}(\mbox{x})*\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})+8*\mbox{y}(\mbox{x})^2=0,\\ \mbox{y}(\mbox{x}),\mbox{x}) \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}))^3-4*\mbox{x*y}(\mbox{x})^3-4*\mbox{x*y}(\mbox{x})^3+4*\mbox{x*y}(\mbox{x})^3+4*\mbox{x}) \\ \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) \\ \mbox{diff}(\mbox{x}) \\ \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) \\ \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) \\ \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) \\ \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) \\ \mbox{diff}(\mbox{x}) \\ \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) \\ \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) \\ \mbox{diff}(\mbox{x}) \\ \mbox{diff}$

$$y(x) = \frac{4x^3}{27}$$

$$y(x) = 0$$

$$y(x) = \frac{(4c_1x - 1)^2}{64c_1^3}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[(y'[x])^3-4*x*y[x]*y'[x]+8*y[x]^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Timed out

16 Chapter IV, differential equations of the first order and higher degree than the first. Article 27. Clairaut equation. Page 56

16.1	problem Ex 1		•		•				•										128
16.2	problem Ex 2																		129
16.3	problem Ex 3 $$																		130
16.4	problem Ex 4																		132
16.5	problem Ex 5																		133
16.6	problem Ex 6																		135
16.7	problem Ex 7																		137
16.8	problem Ex 8																		139
16.9	problem Ex 9														_				141

16.1 problem Ex 1

Internal problem ID [11216]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 27. Clairaut equation. Page 56

Problem number: Ex 1.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

$$(y'x - y)^2 - y'^2 = 1$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 57

 $dsolve((diff(y(x),x)*x-y(x))^2=diff(y(x),x)^2+1,y(x), singsol=all)$

$$y(x) = \sqrt{-x^2 + 1}$$

$$y(x) = -\sqrt{-x^2 + 1}$$

$$y(x) = c_1 x - \sqrt{c_1^2 + 1}$$

$$y(x) = c_1 x + \sqrt{c_1^2 + 1}$$

✓ Solution by Mathematica

Time used: 0.192 (sec). Leaf size: 73

 $DSolve[(y'[x]*x-y[x])^2==(y'[x])^2+1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 x - \sqrt{1 + c_1^2}$$

$$y(x) \to c_1 x + \sqrt{1 + c_1^2}$$

$$y(x) \to -\sqrt{1 - x^2}$$

$$y(x) \to \sqrt{1 - x^2}$$

16.2 problem Ex 2

Internal problem ID [11217]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 27. Clairaut equation. Page 56

Problem number: Ex 2.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(y)]']]

$$4 e^{2y} y'^2 + 2y'x = 1$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 23

 $\label{eq:dsolve} \\ \text{dsolve}(4*\exp(2*y(x))*\text{diff}(y(x),x)^2+2*x*\text{diff}(y(x),x)-1=0,y(x), \text{ singsol=all}) \\$

$$y(x) = rac{\ln{(2)}}{2} - rac{\ln{\left(rac{1}{2\operatorname{e}^{2c_1}+x}
ight)}}{2} + c_1$$

✓ Solution by Mathematica

Time used: 12.616 (sec). Leaf size: 119

DSolve[4*Exp[2*y[x]]*(y'[x])^2+2*x*y'[x]-1==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to \log\left(-e^{\frac{c_1}{2}}\sqrt{-x+e^{c_1}}\right) \\ y(x) &\to \log\left(e^{\frac{c_1}{2}}\sqrt{-x+e^{c_1}}\right) \\ y(x) &\to \log\left(-e^{\frac{c_1}{2}}\sqrt{x+e^{c_1}}\right) \\ y(x) &\to \log\left(e^{\frac{c_1}{2}}\sqrt{x+e^{c_1}}\right) \\ y(x) &\to \frac{1}{2}\log\left(-\frac{x^2}{4}\right) \end{split}$$

16.3 problem Ex 3

Internal problem ID [11218]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 27. Clairaut equation. Page 56

Problem number: Ex 3.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$4 e^{2y} y'^2 + 2 e^{2x} y' = e^{2x}$$

✓ Solution by Maple

Time used: 1.171 (sec). Leaf size: 87

 $dsolve(4*exp(2*y(x))*diff(y(x),x)^2+2*exp(2*x)*diff(y(x),x)-exp(2*x)=0,y(x), singsol=all)$

$$y(x) = \operatorname{arctanh} \left(\operatorname{RootOf} \left(-1 + \left(e^4 + 4 e^{\operatorname{RootOf} \left(-4 e^{-Z} \sinh \left(-\frac{Z}{2} + 2 + c_1 - x \right)^2 + e^4 \right)} \right) - Z^2 \right) e^2 \right) + c_1$$

$$y(x) = -\operatorname{arctanh}\left(\operatorname{RootOf}\left(-1\right.\right.\right.$$

$$\left. + \left(e^4 + 4e^{\operatorname{RootOf}\left(-4e^{-Z}\sinh\left(-\frac{Z}{2} + 2 + c_1 - x\right)^2 + e^4\right)}\right) - Z^2\right)e^2\right) + c_1$$

✓ Solution by Mathematica

Time used: 2.772 (sec). Leaf size: 332

Solve
$$\begin{bmatrix} -\frac{2e^{-x}\sqrt{4e^{2(y(x)+x)}} + e^{4x} \operatorname{arctanh}\left(\frac{-\sqrt{4e^{2y(x)}} + e^{2x}}{\sqrt{4e^{2y(x)}} + e^{2x}} + e^{x} + 1}\right)}{\sqrt{4e^{2y(x)}} + e^{2x}} \\ -\frac{e^{-x}\sqrt{4e^{2(y(x)+x)}} + e^{4x}}{\sqrt{4e^{2y(x)}} + e^{2x}}} + y(x) = c_1, y(x) \end{bmatrix}$$
Solve
$$\begin{bmatrix} \frac{2e^{-x}\sqrt{4e^{2(y(x)+x)}} + e^{4x}} \operatorname{arctanh}\left(\frac{-\sqrt{4e^{2y(x)}} + e^{2x}} + e^{x} + 1}{\sqrt{4e^{2y(x)}} + e^{2x}} + e^{x} + 1}\right)}{\sqrt{4e^{2y(x)}} + e^{2x}} \\ +\frac{e^{-x}\sqrt{4e^{2(y(x)+x)}} + e^{4x}}y(x)}{\sqrt{4e^{2y(x)}} + e^{2x}}} + y(x) = c_1, y(x) \end{bmatrix}$$

$$y(x) \to \frac{1}{2} \left(\log\left(-\frac{e^{4x}}{4}\right) - 2x\right)$$

16.4 problem Ex 4

Internal problem ID [11219]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 27. Clairaut equation. Page 56

Problem number: Ex 4.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type ['y=G(x,y')']

$$e^{2y}y'^3 + (e^{2x} + e^{3x})y' = e^{3x}$$

✓ Solution by Maple

Time used: 1.188 (sec). Leaf size: 24

 $\frac{1}{dsolve(exp(2*y(x))*diff(y(x),x)^3+(exp(2*x)+exp(3*x))*diff(y(x),x)-exp(3*x)=0},y(x), singsol=0$

$$y(x) = \frac{\ln\left(-(c_1+1)(c_1e^{-x}-1)^2\right)}{2} + x$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve [Exp[2*y[x]]*(y'[x])^3+(Exp[2*x]+Exp[3*x])*y'[x]-Exp[3*x]==0,y[x],x,Inc]udeSingularSol

Timed out

16.5 problem Ex 5

Internal problem ID [11220]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 27. Clairaut equation. Page 56

Problem number: Ex 5.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$xy^2y'^2 - y^3y' = -x$$

✓ Solution by Maple

Time used: 0.188 (sec). Leaf size: 140

 $dsolve(x*y(x)^2*diff(y(x),x)^2-y(x)^3*diff(y(x),x)+x=0,y(x), singsol=all)$

$$\begin{split} y(x) &= \sqrt{2} \sqrt{-x} \\ y(x) &= -\sqrt{2} \sqrt{-x} \\ y(x) &= \sqrt{2} \sqrt{x} \\ y(x) &= -\sqrt{2} \sqrt{x} \\ y(x) &= -\frac{e^{\frac{c_1}{2}} + \frac{\text{RootOf}\left(16x \, e^{2-Z+2c_1} + e^{2-Z}x^3 - 4 \, e^{3-Z+2c_1}\right)}{2}}{\sqrt{x}} \\ y(x) &= \frac{e^{\frac{c_1}{2}} + \frac{\text{RootOf}\left(x^2 \left(16x^2 e^{2-Z-2c_1} + e^{2-Z-4} e^{3-Z-2c_1}x\right)\right)}{2}}{2} \end{split}$$

✓ Solution by Mathematica

Time used: 6.367 (sec). Leaf size: 187

 $DSolve[x*y[x]^2*(y'[x])^2-y[x]^3*y'[x]+x==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\sqrt{-2e^{-c_1}x^2 - \frac{e^{c_1}}{2}}$$

$$y(x) \rightarrow \sqrt{-2e^{-c_1}x^2 - \frac{e^{c_1}}{2}}$$

$$y(x) \rightarrow -\frac{\sqrt{4e^{-c_1}x^2 + e^{c_1}}}{\sqrt{2}}$$

$$y(x) \rightarrow \frac{\sqrt{4e^{-c_1}x^2 + e^{c_1}}}{\sqrt{2}}$$

$$y(x) \rightarrow -\sqrt{2}\sqrt{x}$$

$$y(x) \rightarrow -i\sqrt{2}\sqrt{x}$$

$$y(x) \rightarrow i\sqrt{2}\sqrt{x}$$

$$y(x) \rightarrow \sqrt{2}\sqrt{x}$$

$$y(x) \rightarrow \sqrt{2}\sqrt{x}$$

16.6 problem Ex 6

Internal problem ID [11221]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 27. Clairaut equation. Page 56

Problem number: Ex 6.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$(x^{2} + y^{2}) (1 + y')^{2} - 2(y + x) (1 + y') (x + yy') + (x + yy')^{2} = 0$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 103

$$dsolve((x^2+y(x)^2)*(1+diff(y(x),x))^2-2*(x+y(x))*(1+diff(y(x),x))*(x+y(x)*diff(y(x),x))+(x+y(x)^2)*(1+diff(y(x),x))^2-2*(x+y(x))*(1+diff(y(x),x))*(x+y(x)^2)*(1+diff(y(x),x))^2-2*(x+y(x))*(1+diff(y(x),x))*(x+y(x)^2)*(1+diff(y(x),x))^2-2*(x+y(x))*(1+diff(y(x),x))*(x+y(x)^2)*(1+diff(y(x),x))^2-2*(x+y(x))*(1+diff(y(x),x))*(x+y(x)^2)*(1+diff(y(x),x))^2-2*(x+y(x))^2+(x+y(x))$$

$$y(x) = 0$$

$$y(x) = \text{RootOf}\left(-2\ln(x) - \left(\int^{-Z} \frac{2_a^2 + \sqrt{2}\sqrt{_a(_a - 1)^2}}{_a(_a^2 + 1)}d_a\right) + 2c_1\right)x$$

$$y(x) = \text{RootOf}\left(-2\ln(x) + \int^{-Z} \frac{\sqrt{2}\sqrt{_a(_a - 1)^2} - 2_a^2}{_a(_a^2 + 1)}d_a + 2c_1\right)x$$

✓ Solution by Mathematica

Time used: 7.379 (sec). Leaf size: 167

 $DSolve[(x^2+y[x]^2)*(1+y'[x])^2-2*(x+y[x])*(1+y'[x])*(x+y[x]*y'[x])+(x+y[x]*y'[x])^2==0,y[x]$

$$y(x)
ightarrow -\sqrt{-x\left(x+2e^{rac{c_1}{2}}
ight)} - e^{rac{c_1}{2}}$$
 $y(x)
ightarrow \sqrt{-x\left(x+2e^{rac{c_1}{2}}
ight)} - e^{rac{c_1}{2}}$
 $y(x)
ightarrow e^{rac{c_1}{2}} - \sqrt{x\left(-x+2e^{rac{c_1}{2}}
ight)}$
 $y(x)
ightarrow \sqrt{x\left(-x+2e^{rac{c_1}{2}}
ight)} + e^{rac{c_1}{2}}$
 $y(x)
ightarrow -\sqrt{-x^2}$
 $y(x)
ightarrow \sqrt{-x^2}$

16.7 problem Ex 7

Internal problem ID [11222]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 27. Clairaut equation. Page 56

Problem number: Ex 7.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y - 2y'x - y^2{y'}^3 = 0$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 97

 $dsolve(y(x)=2*diff(y(x),x)*x+y(x)^2*diff(y(x),x)^3,y(x), singsol=all)$

$$y(x) = -rac{2(-x^3)^{rac{1}{4}}6^{rac{1}{4}}}{3}$$
 $y(x) = rac{2(-x^3)^{rac{1}{4}}6^{rac{1}{4}}}{3}$
 $y(x) = -rac{2i(-x^3)^{rac{1}{4}}6^{rac{1}{4}}}{3}$
 $y(x) = rac{2i(-x^3)^{rac{1}{4}}6^{rac{1}{4}}}{3}$
 $y(x) = 0$
 $y(x) = \sqrt{c_1(c_1^2 + 2x)}$
 $y(x) = -\sqrt{c_1(c_1^2 + 2x)}$

Solution by Mathematica

Time used: 0.183 (sec). Leaf size: 119

 $DSolve[y[x] == 2*y'[x]*x+y[x]^2*(y'[x])^3,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{2c_1x + c_1^3}$$

$$y(x) \to \sqrt{2c_1x + c_1^3}$$

$$y(x) \to (-1 - i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

$$y(x) \to (1 - i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

$$y(x) \to (-1 + i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

$$y(x) \to (1 + i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

16.8 problem Ex 8

Internal problem ID [11223]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 27. Clairaut equation. Page 56

Problem number: Ex 8.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$a^2 y y'^2 - 2y'x + y = 0$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 51

 $\label{eq:decomposition} \\ \mbox{dsolve}(\mbox{a^2*y(x)*diff(y(x),x)^2-2*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)} \\$

$$\begin{split} y(x) &= -\frac{x}{a} \\ y(x) &= \frac{x}{a} \\ y(x) &= 0 \\ y(x) &= \mathrm{e}^{\mathrm{RootOf}\left(\mathrm{e}^{2-Z}\sinh\left(--Z+c_{1}-\ln(x)\right)^{2}a^{2}+1\right)}x \end{split}$$

✓ Solution by Mathematica

Time used: 31.661 (sec). Leaf size: 244

 $DSolve[a^2*y[x]*(y'[x])^2-2*x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$\begin{split} y(x) &\to -\frac{\left(\cosh\left(\frac{a^2c_1}{2}\right) + \sinh\left(\frac{a^2c_1}{2}\right)\right)\sqrt{\cosh\left(a^2c_1\right) + \sinh\left(a^2c_1\right) - 8ix}}{4a} \\ y(x) &\to \frac{\left(\cosh\left(\frac{a^2c_1}{2}\right) + \sinh\left(\frac{a^2c_1}{2}\right)\right)\sqrt{\cosh\left(a^2c_1\right) + \sinh\left(a^2c_1\right) - 8ix}}{4a} \\ y(x) &\to -\frac{\left(\cosh\left(\frac{a^2c_1}{2}\right) + \sinh\left(\frac{a^2c_1}{2}\right)\right)\sqrt{\cosh\left(a^2c_1\right) + \sinh\left(a^2c_1\right) + 8ix}}{4a} \\ y(x) &\to -\frac{\left(\cosh\left(\frac{a^2c_1}{2}\right) + \sinh\left(\frac{a^2c_1}{2}\right)\right)\sqrt{\cosh\left(a^2c_1\right) + \sinh\left(a^2c_1\right) + 8ix}}{4a} \\ y(x) &\to -\frac{x}{a} \\ y(x) &\to -\frac{x}{a} \end{split}$$

16.9 problem Ex 9

Internal problem ID [11224]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 27. Clairaut equation. Page 56

Problem number: Ex 9.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type ['y=G(x,y')']

$$(x - y' - y)^{2} - x^{2}(2yx - x^{2}y') = 0$$

X Solution by Maple

 $dsolve((x-diff(y(x),x)-y(x))^2=x^2*(2*x*y(x)-x^2*diff(y(x),x)),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

Not solved

17 Chapter IV, differential equations of the first order and higher degree than the first. Article 28. Summary. Page 59

17.1	problem	$\mathbf{E}\mathbf{x}$	1			•	•		•		•	•	•		•		•	•	•	•		•	•	•	143
17.2	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	2																						144
17.3	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	3																						145
17.4	${\bf problem}$	$\mathbf{E}\mathbf{x}$	4																						147
17.5	${\bf problem}$	$\mathbf{E}\mathbf{x}$	5																						148
17.6	${\bf problem}$	$\mathbf{E}\mathbf{x}$	6																						149
17.7	${\bf problem}$	$\mathbf{E}\mathbf{x}$	7																						150
17.8	${\bf problem}$	$\mathbf{E}\mathbf{x}$	8																						151
17.9	${\bf problem}$	$\mathbf{E}\mathbf{x}$	9																						152
17.10)problem	$\mathbf{E}\mathbf{x}$	10)																					153
17.11	problem	$\mathbf{E}\mathbf{x}$	11																						155

17.1 problem Ex 1

Internal problem ID [11225]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 28. Summary. Page 59 **Problem number**: Ex 1.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y^2(y'^2+1)=a^2$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 54

 $dsolve(y(x)^2*(1+diff(y(x),x)^2)=a^2,y(x), singsol=all)$

$$y(x) = -a$$

$$y(x) = a$$

$$y(x) = \sqrt{a^2 - c_1^2 + 2c_1x - x^2}$$

$$y(x) = -\sqrt{(a + x - c_1)(c_1 + a - x)}$$

✓ Solution by Mathematica

Time used: 0.344 (sec). Leaf size: 101

 $DSolve[y[x]^2*(1+(y'[x])^2)==a^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\sqrt{a^2 - (x + c_1)^2}$$

$$y(x) \rightarrow \sqrt{a^2 - (x + c_1)^2}$$

$$y(x) \rightarrow -\sqrt{a^2 - (x - c_1)^2}$$

$$y(x) \rightarrow \sqrt{a^2 - (x - c_1)^2}$$

$$y(x) \rightarrow -a$$

$$y(x) \rightarrow a$$

17.2 problem Ex 2

Internal problem ID [11226]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 28. Summary. Page 59 **Problem number**: Ex 2.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$yy' - (x - b)y'^2 = a$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 49

 $dsolve(y(x)*diff(y(x),x)=(x-b)*diff(y(x),x)^2+a,y(x), singsol=all)$

$$y(x) = -2\sqrt{-a(b-x)}$$

 $y(x) = 2\sqrt{-a(b-x)}$
 $y(x) = \frac{(-b+x)c_1^2 + a}{c_1}$

✓ Solution by Mathematica

Time used: 0.1 (sec). Leaf size: 59

$$y(x) \to \frac{a}{c_1} + c_1(x - b)$$

$$y(x) \to \text{Indeterminate}$$

$$y(x) \to -2\sqrt{a(x-b)}$$

$$y(x) \to 2\sqrt{a(x-b)}$$

17.3 problem Ex 3

Internal problem ID [11227]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 28. Summary. Page 59 **Problem number**: Ex 3.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$x^3y'^2 + x^2yy' = -1$$

✓ Solution by Maple

Time used: 0.281 (sec). Leaf size: 53

 $dsolve(x^3*diff(y(x),x)^2+x^2*y(x)*diff(y(x),x)+1=0,y(x), singsol=all)$

$$y(x) = -\frac{2}{\sqrt{x}}$$

$$y(x) = \frac{2}{\sqrt{x}}$$

$$y(x) = \frac{c_1^2 x + 4}{2c_1 x}$$

$$y(x) = \frac{c_1^2 + 4x}{2c_1 x}$$

/ 5

Solution by Mathematica

Time used: 0.934 (sec). Leaf size: 77

 $DSolve[x^3*(y'[x])^2+x^2*y[x]*y'[x]+1==0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\frac{e^{-\frac{c_1}{2}}(x+16e^{c_1})}{4x}$$

$$y(x) \rightarrow \frac{e^{-\frac{c_1}{2}}(x+16e^{c_1})}{4x}$$

$$y(x) \rightarrow -\frac{2}{\sqrt{x}}$$

$$y(x) \rightarrow \frac{2}{\sqrt{x}}$$

17.4 problem Ex 4

Internal problem ID [11228]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 28. Summary. Page 59 **Problem number**: Ex 4.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$3xy'^2 - 6yy' + 2y = -x$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 32

 $\label{eq:decomposition} \\ \mbox{dsolve}(3*x*\mbox{diff}(y(x),x)^2-6*y(x)*\mbox{diff}(y(x),x)+x+2*y(x)=0,\\ y(x), \mbox{ singsol=all}) \\ \mbox{dsolve}(3*x*\mbox{diff}(y(x),x)^2-6*y(x)) \\ \mbox{diff}(y(x),x)+x+2*y(x)=0,\\ \mbox{diff}(x),x) \\ \mbox{diff}(y(x),x)+x+2*y(x)=0,\\ \mbox{diff}(x),x) \\ \mbox{diff}(x) \\ \mbox{diff}(x),x) \\ \mbox{diff}(x) \\ \mbox{diff}(x)$

$$y(x) = x$$

$$y(x) = -\frac{x}{3}$$

$$y(x) = \frac{4c_1^2 + 2c_1x + x^2}{6c_1}$$

✓ Solution by Mathematica

Time used: 0.505 (sec). Leaf size: 67

$$y(x) \to -\frac{1}{3}x\left(-1 + 2\cosh\left(-\log(x) + \sqrt{3}c_1\right)\right)$$
$$y(x) \to -\frac{1}{3}x\left(-1 + 2\cosh\left(\log(x) + \sqrt{3}c_1\right)\right)$$
$$y(x) \to -\frac{x}{3}$$
$$y(x) \to x$$

17.5 problem Ex 5

Internal problem ID [11229]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 28. Summary. Page 59 **Problem number**: Ex 5.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, _dAlembert]

$$y - {y'}^2(1+x) = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 53

 $dsolve(y(x)=diff(y(x),x)^2*(x+1),y(x), singsol=all)$

$$y(x) = 0$$

$$y(x) = \frac{\left(x + 1 + \sqrt{(1+x)(c_1+1)}\right)^2}{1+x}$$

$$y(x) = \frac{\left(-x - 1 + \sqrt{(1+x)(c_1+1)}\right)^2}{1+x}$$

✓ Solution by Mathematica

Time used: 0.1 (sec). Leaf size: 57

DSolve[$y[x] == (y'[x])^2*(x+1), y[x], x, IncludeSingularSolutions -> True$]

$$y(x) \to x - c_1 \sqrt{x+1} + 1 + \frac{{c_1}^2}{4}$$

 $y(x) \to x + c_1 \sqrt{x+1} + 1 + \frac{{c_1}^2}{4}$
 $y(x) \to 0$

problem Ex 6 17.6

Internal problem ID [11230]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 28. Summary. Page 59 Problem number: Ex 6.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_rational]

$$(y'x - y)(x + yy') - a^2y' = 0$$

Solution by Maple

 $dsolve((diff(y(x),x)*x-y(x))*(diff(y(x),x)*y(x)+x)=a^2*diff(y(x),x),y(x), singsol=all)$

No solution found

Solution by Mathematica

Time used: 0.6 (sec). Leaf size: 75

 $DSolve[(y'[x]*x-y[x])*(y'[x]*y[x]+x)==a^2*y'[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) o \sqrt{c_1 \left(x^2 - rac{a^2}{1 + c_1}
ight)}$$

$$y(x) \rightarrow -i(a-x)$$

 $y(x) \rightarrow i(a-x)$

$$y(x) \to i(a-x)$$

$$y(x) \rightarrow -i(a+x)$$

$$y(x) \rightarrow i(a+x)$$

17.7 problem Ex 7

Internal problem ID [11231]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 28. Summary. Page 59 **Problem number**: Ex 7.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_separable]

$$y'^{2} + 2y'y \cot(x) - y^{2} = 0$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 39

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(x),x)^2 + 2* \text{diff}(y(x),x)*y(x)* \\ \cot(x) = y(x)^2, y(x), \text{ singsol=all}) \\$

$$y(x) = 0$$

$$y(x) = \frac{\operatorname{csgn}(\sin(x)) c_1}{\cos(x) + \operatorname{csgn}(\sec(x))}$$

$$y(x) = \operatorname{csc}(x)^2 (\cos(x) + \operatorname{csgn}(\sec(x))) \operatorname{csgn}(\sin(x)) c_1$$

✓ Solution by Mathematica

Time used: 0.241 (sec). Leaf size: 36

DSolve[(y'[x])^2+2*y'[x]*y[x]*Cot[x]==y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \csc^2\left(\frac{x}{2}\right)$$

 $y(x) \to c_1 \sec^2\left(\frac{x}{2}\right)$
 $y(x) \to 0$

17.8 problem Ex 8

Internal problem ID [11232]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 28. Summary. Page 59 **Problem number**: Ex 8.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

$$(x^2 + 1) y'^2 - 2xyy' + y^2 = 1$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 57

 $dsolve((1+x^2)*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)+y(x)^2-1=0,y(x), singsol=all)$

$$y(x) = \sqrt{x^2 + 1}$$

 $y(x) = -\sqrt{x^2 + 1}$
 $y(x) = c_1 x - \sqrt{-c_1^2 + 1}$
 $y(x) = c_1 x + \sqrt{-c_1^2 + 1}$

✓ Solution by Mathematica

Time used: 0.168 (sec). Leaf size: 73

DSolve[(1+x^2)*(y'[x])^2-2*x*y[x]*y'[x]+y[x]^2-1==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 x - \sqrt{1 - c_1^2}$$

 $y(x) \rightarrow c_1 x + \sqrt{1 - c_1^2}$
 $y(x) \rightarrow -\sqrt{x^2 + 1}$
 $y(x) \rightarrow \sqrt{x^2 + 1}$

17.9 problem Ex 9

Internal problem ID [11233]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 28. Summary. Page 59 **Problem number**: Ex 9.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_separable]

$$x^{2}y'^{2} - 2(yx + 2y')y' + y^{2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x^2*diff(y(x),x)^2-2*(x*y(x)+2*diff(y(x),x))*diff(y(x),x)+y(x)^2=0,y(x), singsol=all)$

$$y(x) = c_1(x-2)$$

 $y(x) = c_1(x+2)$

✓ Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 26

$$y(x) \rightarrow c_1(x-2)$$

$$y(x) \rightarrow c_1(x+2)$$

$$y(x) \to 0$$

17.10 problem Ex 10

Internal problem ID [11234]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 28. Summary. Page 59 **Problem number**: Ex 10.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y - y'x - \frac{yy'^2}{x^2} = 0$$

✓ Solution by Maple

Time used: 0.344 (sec). Leaf size: 89

 $dsolve(y(x)=x*diff(y(x),x)+y(x)*diff(y(x),x)^2/x^2,y(x), singsol=all)$

$$y(x) = -\frac{ix^2}{2}$$

$$y(x) = \frac{ix^2}{2}$$

$$y(x) = 0$$

$$y(x) = -\frac{\sqrt{c_1(-4x^2 + c_1)}}{4}$$

$$y(x) = \frac{\sqrt{c_1(-4x^2 + c_1)}}{4}$$

$$y(x) = -\frac{2\sqrt{c_1x^2 + 4}}{c_1}$$

$$y(x) = \frac{2\sqrt{c_1x^2 + 4}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.986 (sec). Leaf size: 244

 $DSolve[y[x] == x*y'[x] + y[x]*(y'[x])^2/x^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\frac{\sqrt{x^6 + 4x^2y(x)^2} \log \left(\sqrt{x^4 + 4y(x)^2} + x^2 \right)}{2x\sqrt{x^4 + 4y(x)^2}} + \frac{1}{2} \left(1 - \frac{\sqrt{x^6 + 4x^2y(x)^2}}{x\sqrt{x^4 + 4y(x)^2}} \right) \log(y(x)) = c_1, y(x) \right]$$
Solve
$$\left[\frac{1}{2} \left(\frac{\sqrt{x^6 + 4x^2y(x)^2}}{x\sqrt{x^4 + 4y(x)^2}} + 1 \right) \log(y(x)) - \frac{\sqrt{x^6 + 4x^2y(x)^2} \log \left(\sqrt{x^4 + 4y(x)^2} + x^2 \right)}{2x\sqrt{x^4 + 4y(x)^2}} = c_1, y(x) \right]$$

$$y(x) \to -\frac{ix^2}{2}$$

$$y(x) \to \frac{ix^2}{2}$$

17.11 problem Ex 11

Internal problem ID [11235]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IV, differential equations of the first order and higher degree than the first.

Article 28. Summary. Page 59 **Problem number**: Ex 11.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x),G(x)*y+H(x)]']]

$$x^2y'^2 - 2xyy' + y^2 - x^2y^2 = x^4$$

✓ Solution by Maple

Time used: 0.578 (sec). Leaf size: 58

 $\label{eq:dsolve} \\ \text{dsolve}(x^2*\text{diff}(y(x),x)^2-2*x*y(x)*\text{diff}(y(x),x)+y(x)^2=x^2*y(x)^2+x^4,y(x), \text{ singsol=all}) \\ \text{dsolve}(x^2*\text{diff}(y(x),x)^2-2*x*y(x)*\text{diff}(y(x),x)+y(x)^2=x^2*y(x)^2+x^4,y(x), \text{ singsol=all}) \\ \text{dsolve}(x^2*\text{diff}(y(x),x)^2-2*x*y(x)*\text{diff}(y(x),x)+y(x)^2=x^2*y(x)^2+x^4,y(x), \text{ singsol=all}) \\ \text{dsolve}(x^2*\text{diff}(y(x),x)^2-2*x*y(x)*\text{diff}(y(x),x)+y(x)^2=x^2*y(x)^2+x^4,y(x), \text{ singsol=all}) \\ \text{dsolve}(x^2*\text{diff}(y(x),x)^2-2*x*y(x)) \\ \text{dsolve}(x^2*\text{diff}(x),x) \\$

$$y(x) = -ix$$

$$y(x) = ix$$

$$y(x) = -\frac{x(e^{x} - c_{1}^{2}e^{-x})}{2c_{1}}$$

$$y(x) = \frac{x(c_{1}^{2}e^{x} - e^{-x})}{2c_{1}}$$

✓ Solution by Mathematica

Time used: 0.366 (sec). Leaf size: 60

DSolve[x^2*(y'[x])^2-2*x*y[x]*y'[x]+y[x]^2==x^2*y[x]^2+x^4,y[x],x,IncludeSingularSolutions -

$$y(x) \to \frac{1}{2} x e^{-x-c_1} \left(-1 + e^{2(x+c_1)} \right)$$

 $y(x) \to \frac{1}{2} \left(x e^{-x+c_1} - x e^{x-c_1} \right)$

18	Cha	\mathbf{pt}	\mathbf{er}	7	V	, :	Si	'n	g	U	ıl	\mathbf{a}	r	S	O	lı	ıt	i	OI	ns	5.	4	A	r	ti	C	le	•	3	0	•	F	a	ge
	63																																	
18.1	problem	Ex :	1.																															157
18.2	problem	Ex 3	2.																															158

18.1 problem Ex 1

Internal problem ID [11236]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter V, Singular solutions. Article 30. Page 63

Problem number: Ex 1.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Clairaut]

$$y - y'x - \frac{1}{y'} = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 27

 $\label{eq:decomposition} dsolve(y(x) = diff(y(x), x) * x + 1/diff(y(x), x), y(x), singsol = all)$

$$y(x) = -2\sqrt{x}$$

$$y(x) = 2\sqrt{x}$$

$$y(x) = c_1 x + \frac{1}{c_1}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 41

DSolve[y[x]==y'[x]*x+1/y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x + \frac{1}{c_1}$$

 $y(x) \to \text{Indeterminate}$

$$y(x) \to -2\sqrt{x}$$

$$y(x) \to 2\sqrt{x}$$

18.2 problem Ex 2

Internal problem ID [11237]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter V, Singular solutions. Article 30. Page 63

Problem number: Ex 2.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy'^2 - 2yy' = x$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 32

 $dsolve(x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)-x=0,y(x), singsol=all)$

$$y(x) = -ix$$
 $y(x) = ix$
 $y(x) = \frac{-c_1^2 + x^2}{2c_1}$

✓ Solution by Mathematica

Time used: 0.213 (sec). Leaf size: 71 $\,$

 $DSolve[x*(y'[x])^2-2*y[x]*y'[x]-x==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x)
ightarrow rac{1}{2}e^{-c_1} \left(-x^2 + e^{2c_1}
ight)$$
 $y(x)
ightarrow rac{1}{2}e^{-c_1} \left(-1 + e^{2c_1}x^2
ight)$
 $y(x)
ightarrow -ix$
 $y(x)
ightarrow ix$

19	Chapte	r	1	√,	5	Si	\mathbf{n}	g	u.	la	ar	·	SC)	u	ti	Ol	ns	з.	1	A	rt	i	cl	le	3	2	•	\mathbf{P}	a	ge
	69																														
19.1	problem Ex 5																														160

19.1 problem Ex 5

Internal problem ID [11238]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter V, Singular solutions. Article 32. Page 69

Problem number: Ex 5.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _Clairaut]

$$x^{2}y'^{2} - 2(yx - 2)y' + y^{2} = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 35

 $dsolve(x^2*diff(y(x),x)^2-2*(x*y(x)-2)*diff(y(x),x)+y(x)^2=0,y(x), singsol=all)$

$$y(x) = \frac{1}{x}$$

$$y(x) = c_1 x - 2\sqrt{-c_1}$$

$$y(x) = c_1 x + 2\sqrt{-c_1}$$

✓ Solution by Mathematica

Time used: 0.416 (sec). Leaf size: 43

DSolve[x^2*(y'[x])^2-2*(x*y[x]-2)*y'[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{4(-x+c_1)}{{c_1}^2}$$

$$y(x) \rightarrow -\frac{4(x+c_1)}{{c_1}^2}$$

$$y(x) \rightarrow 0$$

$$y(x) \rightarrow \frac{1}{x}$$

20	Cha	\mathbf{pt}	eı	r	1	7 ,	,	\mathbf{S}	i	ng	zı	ıl	\mathbf{a}	r	S	О	1	u1	ti	io	r	ıs		A	4	rí	i	cl	le	!	3	3.	•	P	a	ge
	73																																			
20.1	problem	$\mathbf{E}\mathbf{x}$	1																																	162
20.2	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	2																																	163
20.3	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	3																				•													164
20.4	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	4																																	165

problem Ex 1 20.1

Internal problem ID [11239]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter V, Singular solutions. Article 33. Page 73

Problem number: Ex 1.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$x^2 {y'}^2 = (x-1)^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(x^2*diff(y(x),x)^2-(x-1)^2=0,y(x), singsol=all)$

$$y(x) = x - \ln(x) + c_1$$

 $y(x) = -x + \ln(x) + c_1$

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 25

 $DSolve[x^2*(y'[x])^2-(x-1)^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow x - \log(x) + c_1$$

 $y(x) \rightarrow -x + \log(x) + c_1$

20.2 problem Ex 2

Internal problem ID [11240]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter V, Singular solutions. Article 33. Page 73

Problem number: Ex 2.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$8(1+y')^3 - 27(x+y)(1-y')^3 = 0$$

✓ Solution by Maple

Time used: 0.344 (sec). Leaf size: 140

 $dsolve(8*(1+diff(y(x),x))^3=27*(x+y(x))*(1-diff(y(x),x))^3,y(x), singsol=all)$

$$y(x) = -x$$

$$\frac{x}{2} - \frac{4\ln(27y(x) + 27x + 8)}{27} + \frac{4\ln\left(2 + 3(x + y(x))^{\frac{1}{3}}\right)}{27}$$

$$+ \frac{4\ln\left(9(x + y(x))^{\frac{2}{3}} - 6(x + y(x))^{\frac{1}{3}} + 4\right)}{27} - \frac{y(x)}{2} - \frac{(x + y(x))^{\frac{2}{3}}}{2} - c_1 = 0$$

$$\frac{x}{2} - \frac{y(x)}{2} - \frac{i\sqrt{3}(x + y(x))^{\frac{2}{3}}}{4} + \frac{(x + y(x))^{\frac{2}{3}}}{4} - c_1 = 0$$

$$\frac{x}{2} - \frac{y(x)}{2} + \frac{i\sqrt{3}(x + y(x))^{\frac{2}{3}}}{4} + \frac{(x + y(x))^{\frac{2}{3}}}{4} - c_1 = 0$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve [8*(1+y'[x])^3 == 27*(x+y[x])*(1-y'[x])^3, y[x], x, Include Singular Solutions \rightarrow True]$

Timed out

problem Ex 3 20.3

Internal problem ID [11241]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter V, Singular solutions. Article 33. Page 73

Problem number: Ex 3.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$4y'^2 = 9x$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 19

 $dsolve(4*diff(y(x),x)^2=9*x,y(x), singsol=all)$

$$y(x) = -x^{rac{3}{2}} + c_1 \ y(x) = x^{rac{3}{2}} + c_1$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 27

DSolve[4*y'[x]^2==9*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x^{3/2} + c_1$$

$$y(x) \to x^{3/2} + c_1$$

20.4 problem Ex 4

Internal problem ID [11242]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter V, Singular solutions. Article 33. Page 73

Problem number: Ex 4.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y(3-4y)^2y'^2+4y=4$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 58

 $dsolve(y(x)*(3-4*y(x))^2*diff(y(x),x)^2=4*(1-y(x)),y(x), singsol=all)$

$$y(x) = 1$$

$$x + \frac{y(x)^{2}(-1 + y(x))}{\sqrt{-y(x)(-1 + y(x))}} - c_{1} = 0$$

$$x - \frac{y(x)^{2}(-1 + y(x))}{\sqrt{-y(x)(-1 + y(x))}} - c_{1} = 0$$

✓ Solution by Mathematica

Time used: 60.436 (sec). Leaf size: 3751

Too large to display

21 Chapter VII, Linear differential equations with constant coefficients. Article 43. Page 92

21.1	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	1																		167
21.2	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	2																		168
21.3	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	3																		169
21.4	problem	$\mathbf{E}\mathbf{x}$	4			_															170

21.1 problem Ex 1

Internal problem ID [11243]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 43.

Page 92

Problem number: Ex 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 3y' + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^x + c_2 e^{2x}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 18

 $DSolve[y''[x]-3*y'[x]+2*y[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^x(c_2 e^x + c_1)$$

21.2 problem Ex 2

Internal problem ID [11244]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 43.

Page 92

Problem number: Ex 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 6y' + 25y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)-6*diff(y(x),x)+25*y(x)=0,y(x), singsol=all)

$$y(x) = e^{3x}(c_1 \sin(4x) + c_2 \cos(4x))$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 26

 $\begin{tabular}{ll} DSolve[y''[x]-6*y'[x]+25*y[x]==0,y[x],x,IncludeSingularSolutions \end{tabular} -> True] \\ \end{tabular}$

$$y(x) \to e^{3x}(c_2\cos(4x) + c_1\sin(4x))$$

21.3 problem Ex 3

Internal problem ID [11245]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 43.

Page 92

Problem number: Ex 3.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve(diff(y(x),x\$3)-diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{-x} + c_3 e^x$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 23

DSolve[y'''[x]-y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x - c_2 e^{-x} + c_3$$

21.4 problem Ex 4

Internal problem ID [11246]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 43.

Page 92

Problem number: Ex 4.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 2y'' - y' + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$3)-2*diff(y(x),x\$2)-diff(y(x),x)+2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-x} + c_2 e^x + c_3 e^{2x}$$

✓ Solution by Mathematica

Time used: $0.\overline{005}$ (sec). Leaf size: 28

 $DSolve[y'''[x]-2*y''[x]-y'[x]+2*y[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-x} + c_2 e^x + c_3 e^{2x}$$

22 Chapter VII, Linear differential equations with constant coefficients. Article 44. Roots of auxiliary equation repeated. Page 94

22.1	problem	$\mathbf{E}\mathbf{x}$	1																		172
22.2	${\bf problem}$	$\mathbf{E}\mathbf{x}$	2																		173
22.3	${\bf problem}$	$\mathbf{E}\mathbf{x}$	3																		174
22.4	problem	$\mathbf{E}\mathbf{x}$	4												_						175

22.1 problem Ex 1

Internal problem ID [11247]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

 ${\bf Section:}\ {\bf Chapter}\ {\bf VII},\ {\bf Linear}\ {\bf differential}\ {\bf equations}\ {\bf with}\ {\bf constant}\ {\bf coefficients}.\ {\bf Article}\ {\bf 44}.$

Roots of auxiliary equation repeated. Page 94

Problem number: Ex 1.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$4y''' - 3y' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(4*diff(y(x),x\$3)-3*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x} \left((c_3 x + c_2) e^{\frac{3x}{2}} + c_1 \right)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 29

DSolve[4*y'''[x]-3*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} (e^{3x/2}(c_2x + c_1) + c_3)$$

22.2 problem Ex 2

Internal problem ID [11248]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 44.

Roots of auxiliary equation repeated. Page 94

Problem number: Ex 2.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - y'' - y' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x\$3)-diff(y(x),x\$2)-diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-x} + (c_3 x + c_2) e^x$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 25

 $DSolve[y'''[x]-y''[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-x} + e^x (c_3 x + c_2)$$

22.3 problem Ex 3

Internal problem ID [11249]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 44.

Roots of auxiliary equation repeated. Page 94

Problem number: Ex 3.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 2y''' - 2y' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$3)-2*diff(y(x),x)-y(x)=0,y(x), singsol=all)

$$y(x) = (c_4x^2 + c_3x + c_2) e^{-x} + c_1e^x$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 32

 $DSolve[y''''[x]+2*y'''[x]-2*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow e^{-x}(c_3x^2 + c_2x + c_4e^{2x} + c_1)$$

22.4 problem Ex 4

Internal problem ID [11250]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 44.

Roots of auxiliary equation repeated. Page 94

Problem number: Ex 4.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 6y'' + 9y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+9*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = (c_3x + c_2)e^{3x} + c_1$$

✓ Solution by Mathematica

Time used: 0.078 (sec). Leaf size: 30

 $DSolve[y'''[x]-6*y''[x]+9*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{9}e^{3x}(c_2(3x-1)+3c_1)+c_3$$

23	Chapter VII, Linear differential equations with constant coefficients. Article 45. Roots of	\mathbf{n}
	auxiliary equation complex. Page 95	
	problem Ex 2	

23.1 problem Ex 2

Internal problem ID [11251]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 45.

Roots of auxiliary equation complex. Page 95

Problem number: Ex 2.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 2y'' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$2)+y(x)=0,y(x), singsol=all)

$$y(x) = \left(c_4 x + c_2\right) \cos\left(x\right) + \sin\left(x\right) \left(c_3 x + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 26

 $DSolve[y''''[x]+2*y''[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to (c_2 x + c_1)\cos(x) + (c_4 x + c_3)\sin(x)$$

23.2 problem Ex 3

Internal problem ID [11252]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 45. Roots of auxiliary equation complex. Page 95

Problem number: Ex 3.

ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - y'' + y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(y(x),x\$3)-diff(y(x),x\$2)+diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{\frac{x}{2}} \sin\left(\frac{\sqrt{3}x}{2}\right) + c_3 e^{\frac{x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.799 (sec). Leaf size: 75

 $DSolve[y'''[x]-y''[x]+y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{1}{2} \Big(c_1 - \sqrt{3}c_2 \Big) \, e^{x/2} \cos \left(rac{\sqrt{3}x}{2}
ight) + rac{1}{2} \Big(\sqrt{3}c_1 + c_2 \Big) \, e^{x/2} \sin \left(rac{\sqrt{3}x}{2} \right) + c_3$$

24 Chapter VII, Linear differential equations with constant coefficients. Article 47. Particular integral. Page 100

24.1	problem	Ex	1									 									180
24.2	${\bf problem}$	$\mathbf{E}\mathbf{x}$	2									 									181
24.3	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	3									 									182
24.4	problem	$\mathbf{E}\mathbf{x}$	4			_					_	 				_					183

24.1 problem Ex 1

Internal problem ID [11253]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 47.

Particular integral. Page 100 Problem number: Ex 1.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - y'' - 2y' = e^{-x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$3)-diff(y(x),x\$2)-2*diff(y(x),x)=exp(-x),y(x), singsol=all)

$$y(x) = \frac{(2x - 6c_2 + 2)e^{-x}}{6} + \frac{e^{2x}c_1}{2} + c_3$$

Solution by Mathematica

 $\overline{\text{Time used: 0.166 (sec). Leaf size: 37}}$

 $DSolve[y'''[x]-y''[x]-2*y'[x] == Exp[-x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{9}e^{-x}(3x+4-9c_1) + \frac{1}{2}c_2e^{2x} + c_3$$

24.2 problem Ex 2

Internal problem ID [11254]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 47.

Particular integral. Page 100 Problem number: Ex 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = e^{e^x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x)=exp(exp(x)),y(x), singsol=all)

$$y(x) = (e^{e^x} + c_2 e^x - c_1) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: $25\,$

DSolve[y''[x]+3*y'[x]+2*y[x]==Exp[Exp[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} (e^{e^x} + c_2 e^x + c_1)$$

24.3 problem Ex 3

Internal problem ID [11255]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 47.

Particular integral. Page 100 Problem number: Ex 3.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + 3y'' + 3y' + y = 2e^{-x} - x^2e^{-x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)+3*diff(y(x),x)+y(x)=2*exp(-x)-x^2*exp(-x),y(x), sings

$$y(x) = -\frac{e^{-x}(x^5 - 60c_2x^2 - 20x^3 - 60c_3x - 60c_1)}{60}$$

Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 41

$$y(x) \to \frac{1}{60}e^{-x}(-x^5 + 20x^3 + 60c_3x^2 + 60c_2x + 60c_1)$$

24.4 problem Ex 4

Internal problem ID [11256]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 47.

Particular integral. Page 100 Problem number: Ex 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = \frac{e^x}{(1-x)^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(x),x\$2)-2*\text{diff}(y(x),x)+y(x)=\exp(x)/(1-x)^2,y(x)\,,\,\, \text{singsol=all})$

$$y(x) = e^{x}(-1 + c_1x - \ln(-1 + x) + c_2)$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 23

 $DSolve[y''[x]-2*y'[x]+y[x]==Exp[x]/(1-x)^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^x(-\log(x-1) + c_2x - 1 + c_1)$$

25 Chapter VII, Linear differential equations with constant coefficients. Article 48. Page 103

25.1	problem	$\mathbf{E}\mathbf{x}$	1																		185
25.2	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	2																		186
25.3	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	3																		187
25.4	problem	$\mathbf{E}\mathbf{x}$	4																		188

25.1 problem Ex 1

Internal problem ID [11257]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 48.

Page 103

Problem number: Ex 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 3y' + 2y = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=exp(x),y(x), singsol=all)

$$y(x) = (-x + c_1 e^x + c_2) e^x$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 22

DSolve[y''[x]-3*y'[x]+2*y[x]==Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(-x + c_2e^x - 1 + c_1)$$

25.2 problem Ex 2

Internal problem ID [11258]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 48. Page 103

Problem number: Ex 2.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - 3y'' - y' + 3y = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)-diff(y(x),x)+3*y(x)=x^2,y(x), singsol=all)$

$$y(x) = \frac{x^2}{3} + \frac{2x}{9} + \frac{20}{27} + c_1 e^x + c_2 e^{-x} + c_3 e^{3x}$$

Solution by Mathematica

 $\overline{\text{Time used: 0.013 (sec). Leaf size: 42}}$

DSolve[y'''[x]-3*y''[x]-y'[x]+3*y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{27} (9x^2 + 6x + 20) + c_1 e^{-x} + c_2 e^x + c_3 e^{3x}$$

25.3 problem Ex 3

Internal problem ID [11259]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

 ${\bf Section:}\ {\bf Chapter}\ {\bf VII},\ {\bf Linear}\ {\bf differential}\ {\bf equations}\ {\bf with}\ {\bf constant}\ {\bf coefficients}.\ {\bf Article}\ {\bf 48}.$

Page 103

Problem number: Ex 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sec(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)+y(x)=sec(x),y(x), singsol=all)

$$y(x) = -\ln\left(\sec\left(x\right)\right)\cos\left(x\right) + c_1\cos\left(x\right) + \sin\left(x\right)\left(c_2 + x\right)$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: $22\,$

DSolve[y''[x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (x + c_2)\sin(x) + \cos(x)(\log(\cos(x)) + c_1)$$

25.4 problem Ex 4

Internal problem ID [11260]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 48. Page 103

Problem number: Ex 4.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - 4y'' + 5y' - 2y = x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)-4*diff(y(x),x\$2)+5*diff(y(x),x)-2*y(x)=x,y(x), singsol=all)

$$y(x) = -\frac{5}{4} + c_2 e^{2x} + (c_3 x + c_1) e^x - \frac{x}{2}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 35

DSolve[y'''[x]-4*y''[x]+5*y'[x]-2*y[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + x \left(-\frac{1}{2} + c_2 e^x \right) + c_3 e^{2x} - \frac{5}{4}$$

26	Chapter VII, Linear differential equations with	n
	constant coefficients. Article 49. Variation of	
	parameters. Page 106	
26.1	problem Ex 1) (

26.1	problem	$\mathbf{E}\mathbf{x}$	1	 																190
26.2	problem	$\mathbf{E}\mathbf{x}$	2																	193

26.1 problem Ex 1

Internal problem ID [11261]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 49.

Variation of parameters. Page 106

Problem number: Ex 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sec(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)+y(x)=sec(x),y(x), singsol=all)

$$y(x) = -\ln\left(\sec\left(x\right)\right)\cos\left(x\right) + c_1\cos\left(x\right) + \sin\left(x\right)\left(c_2 + x\right)$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 22

DSolve[y''[x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (x + c_2)\sin(x) + \cos(x)(\log(\cos(x)) + c_1)$$

26.2 problem Ex 2

Internal problem ID [11262]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 49.

Variation of parameters. Page 106

Problem number: Ex 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \tan(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)+y(x)=tan(x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + c_1 \cos(x) - \cos(x) \ln(\sec(x) + \tan(x))$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 23

DSolve[y''[x]+y[x]==Tan[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \cos(x)(-\arctan(\sin(x))) + c_1\cos(x) + c_2\sin(x)$$

27 Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107

27.1	problem	$\mathbf{E}\mathbf{x}$	1																			193
27.2	${\bf problem}$	$\mathbf{E}\mathbf{x}$	2																			194
27.3	${\bf problem}$	$\mathbf{E}\mathbf{x}$	3																			195
27.4	${\bf problem}$	$\mathbf{E}\mathbf{x}$	4																			196
27.5	${\bf problem}$	$\mathbf{E}\mathbf{x}$	5																			197
27.6	${\bf problem}$	$\mathbf{E}\mathbf{x}$	6																			198
27.7	${\rm problem}$	$\mathbf{E}\mathbf{x}$	7													•			•			199
27.8	${\bf problem}$	$\mathbf{E}\mathbf{x}$	8																			200
27 9	problem	$\mathbf{E}\mathbf{x}$	9																			20

27.1 problem Ex 1

Internal problem ID [11263]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107

Problem number: Ex 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = x^2 + \cos(x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

 $dsolve(diff(y(x),x\$2)+4*y(x)=x^2+cos(x),y(x), singsol=all)$

$$y(x) = \sin(2x) c_2 + c_1 \cos(2x) + \frac{x^2}{4} - \frac{1}{8} + \frac{\cos(x)}{3}$$

Solution by Mathematica

Time used: 0.321 (sec). Leaf size: 36

DSolve[y''[x]+4*y[x]==x^2+Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^2}{4} + \frac{\cos(x)}{3} + c_1 \cos(2x) + c_2 \sin(2x) - \frac{1}{8}$$

27.2 problem Ex 2

Internal problem ID [11264]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107

Problem number: Ex 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = 2e^{2x}x - \sin(x)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

 $dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=2*x*exp(2*x)-sin(x)^2,y(x), singsol=all)$

$$y(x) = -\frac{1}{2} + 2(x-2)e^{2x} - \frac{3\cos(2x)}{50} - \frac{2\sin(2x)}{25} + (c_1x + c_2)e^x$$

Solution by Mathematica

Time used: 1.17 (sec). Leaf size: 53

DSolve[y''[x]-2*y'[x]+y[x]==2*x*Exp[2*x]-Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 2e^{2x}x - 4e^{2x} - \frac{2}{25}\sin(2x) - \frac{3}{50}\cos(2x) + c_2e^xx + c_1e^x - \frac{1}{2}$$

27.3 problem Ex 3

Internal problem ID [11265]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107

Problem number: Ex 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = 2e^x + x^3 - x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(diff(y(x),x$2)+y(x)=2*exp(x)+x^3-x,y(x), singsol=all)$

$$y(x) = \sin(x) c_2 + c_1 \cos(x) + x^3 + e^x - 7x$$

✓ Solution by Mathematica

Time used: 0.234 (sec). Leaf size: 25

 $DSolve[y''[x]+y[x] == 2*Exp[x]+x^3-x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^3 - 7x + e^x + c_1 \cos(x) + c_2 \sin(x)$$

27.4 problem Ex 4

Internal problem ID [11266]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107

Problem number: Ex 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = 3e^{2x} - \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=3*exp(2*x)-cos(x),y(x), singsol=all)

$$y(x) = (c_1x + c_2)e^{-x} - \frac{\sin(x)}{2} + \frac{e^{2x}}{3}$$

✓ Solution by Mathematica

Time used: 0.454 (sec). Leaf size: 38

DSolve[y''[x]+2*y'[x]+y[x]==3*Exp[2*x]-Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{6}e^{-x}(2e^{3x} - 3e^x\sin(x) + 6c_2x + 6c_1)$$

27.5 problem Ex 5

Internal problem ID [11267]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107

Problem number: Ex 5.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - y = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 40

 $dsolve(diff(y(x),x$3)-y(x)=x^2,y(x), singsol=all)$

$$y(x) = -x^2 + c_1 e^x + c_2 e^{-\frac{x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right) + c_3 e^{-\frac{x}{2}} \sin\left(\frac{\sqrt{3}x}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 59

DSolve[y'''[x]-y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x^2 + c_1 e^x + c_2 e^{-x/2} \cos\left(\frac{\sqrt{3}x}{2}\right) + c_3 e^{-x/2} \sin\left(\frac{\sqrt{3}x}{2}\right)$$

27.6 problem Ex 6

Internal problem ID [11268]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107

Problem number: Ex 6.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 2y'' - 3y' = 3x^2 + \sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

 $dsolve(diff(y(x),x\$3)-2*diff(y(x),x\$2)-3*diff(y(x),x)=3*x^2+sin(x),y(x), singsol=all)$

$$y(x) = -\frac{x^3}{3} + \frac{2x^2}{3} - c_1 e^{-x} + \frac{c_2 e^{3x}}{3} + \frac{\sin(x)}{10} + \frac{\cos(x)}{5} - \frac{14x}{9} + c_3$$

Solution by Mathematica

Time used: 0.68 (sec). Leaf size: 58

DSolve[y'''[x]-2*y''[x]-3*y'[x]==3*x^2+Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{9} \left(-3x^3 + 6x^2 - 14x - 9c_1e^{-x} + 3c_2e^{3x} + 9c_3 \right) + \frac{\sin(x)}{10} + \frac{\cos(x)}{5}$$

27.7 problem Ex 7

Internal problem ID [11269]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107

Problem number: Ex 7.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _with_linear_symmetries]]

$$y'''' - 2y'' + y = e^x + 4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

dsolve(diff(y(x),x\$4)-2*diff(y(x),x\$2)+y(x)=exp(x)+4,y(x), singsol=all)

$$y(x) = 4 + (c_4x + c_2)e^{-x} + \frac{(3 + 2x^2 + 4(-1 + 4c_3)x + 16c_1)e^x}{16}$$

Solution by Mathematica

Time used: $0.\overline{174}$ (sec). Leaf size: 47

 $\textbf{DSolve}[y''''[x]-2*y''[x]+y[x]==\texttt{Exp}[x]+4,y[x],x, \textbf{IncludeSingularSolutions} \rightarrow \textbf{True}]$

$$y(x) \to e^x \left(\frac{x^2}{8} + \left(-\frac{1}{4} + c_4\right)x + \frac{3}{16} + c_3\right) + e^{-x}((2 + c_2)x + c_1) + 4$$

27.8 problem Ex 8

Internal problem ID [11270]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107

Problem number: Ex 8.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - 2y' = e^{2x} + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)=exp(2*x)+1,y(x), singsol=all)

$$y(x) = \frac{(2x + 2c_1 - 1)e^{2x}}{4} - \frac{x}{2} + c_2$$

/ Solution by Mathematica

Time used: 0.126 (sec). Leaf size: 31

 $DSolve[y''[x]-2*y'[x] == Exp[2*x]+1, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\frac{x}{2} + \frac{1}{4}e^{2x}(2x - 1 + 2c_1) + c_2$$

27.9 problem Ex 9

Internal problem ID [11271]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107

Problem number: Ex 9.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 2y'' + y = \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$2)+y(x)=cos(x),y(x), singsol=all)

$$y(x) = \frac{(8c_4x - x^2 + 8c_1 + 2)\cos(x)}{8} + \left(\left(c_3 + \frac{1}{8}\right)x + c_2\right)\sin(x)$$

✓ Solution by Mathematica

Time used: 0.065 (sec). Leaf size: 43

DSolve[y'''[x]+2*y''[x]+y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \left(-\frac{x^2}{8} + c_2 x + \frac{5}{16} + c_1\right) \cos(x) + \frac{1}{4}(x + 4c_4 x + 4c_3) \sin(x)$$

28 Chapter VII, Linear differential equations with constant coefficients. Article 51. Cauchy linear equation. Page 114

28.1	problem	Ex	1			•			•										•			203
28.2	${\rm problem}$	$\mathbf{E}\mathbf{x}$	2																			204
28.3	${\rm problem}$	$\mathbf{E}\mathbf{x}$	3																			205
28.4	problem	Ex	4																			206

28.1 problem Ex 1

Internal problem ID [11272]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 51.

Cauchy linear equation. Page 114

Problem number: Ex 1.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$x^3y''' + y'x - y = x\ln(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $\label{local_decomposition} \\ \mbox{dsolve}(\mbox{x^3*diff}(\mbox{y}(\mbox{x}),\mbox{x$\$3$}) + \mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{y}-\mbox{y}(\mbox{x}) - \mbox{y}(\mbox{x}) = \mbox{x*ln}(\mbox{x}),\mbox{y}(\mbox{x}),\mbox{singsol=all}) \\ \\ \mbox{dsolve}(\mbox{x^3*diff}(\mbox{y}(\mbox{x}),\mbox{x$\$3$}) + \mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x}) - \mbox{y}(\mbox{x}) - \mbox{y}(\mbox{x}) + \mbox{x*ln}(\mbox{x}),\mbox{y}(\mbox{x}) + \mbox{x*ln}(\mbox{x}),\mbox{y}(\mbox{x}) - \mbox{y}(\mbox{x}) - \mbox{x}(\mbox{x}) - \mbox{y}(\mbox{x}) - \mbox{x}(\mbox{x}) - \mbox{x}$

$$y(x) = x \left(\frac{\ln(x)^4}{24} + c_1 + c_2 \ln(x) + c_3 \ln(x)^2 \right)$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 33

DSolve[x^3*y'''[x]+x*y'[x]-y[x]==x*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{24} x \log^4(x) + c_1 x + c_3 x \log^2(x) + c_2 x \log(x)$$

28.2 problem Ex 2

Internal problem ID [11273]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 51. Cauchy linear equation. Page 114

Problem number: Ex 2.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _exact, _linear, _nonhomogeneous]]

$$x^{3}y''' + 2x^{2}y'' + 2y = 10x + \frac{10}{x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 120

 $dsolve(x^3*diff(y(x),x$3)+2*x^2*diff(y(x),x$2)+2*y(x)=10*(x+1/x),y(x), singsol=all)$

$$y(x) = \frac{\left(\left(20 - 10i\right)\ln\left(x\right) + 6 - 8i + \left(2 - i\right)c_{1}\right)\left(i\cos\left(\ln\left(x\right)\right) - \sin\left(\ln\left(x\right)\right)\right)x^{-1 - i}}{10} \\ + \frac{\left(\left(20 + 10i\right)\ln\left(x\right) + 6 + 8i + \left(2 + i\right)c_{1}\right)\left(-\sin\left(\ln\left(x\right)\right) - i\cos\left(\ln\left(x\right)\right)\right)x^{-1 + i}}{10} \\ + \frac{5x^{1 - i}\left(i\sin\left(\ln\left(x\right)\right) + \cos\left(\ln\left(x\right)\right)\right)}{2} \\ + \frac{5\left(-i\sin\left(\ln\left(x\right)\right) + \cos\left(\ln\left(x\right)\right)\right)x^{1 + i}}{2} + x\left(\cos\left(\ln\left(x\right)\right)c_{2} + \sin\left(\ln\left(x\right)\right)c_{3}\right)$$

✓ Solution by Mathematica

Time used: 0.187 (sec). Leaf size: 42

 $DSolve[x^3*y'''[x]+2*x^2*y''[x]+2*y[x]==10*(x+1/x),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{25x^2 + 10\log(x) + 8 + 5c_3}{5x} + c_2x\cos(\log(x)) + c_1x\sin(\log(x))$$

28.3 problem Ex 3

Internal problem ID [11274]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 51. Cauchy linear equation. Page 114

Problem number: Ex 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x^{2}y'' + 3y'x + y = \frac{1}{(1-x)^{2}}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(x^2*diff(y(x),x$2)+3*x*diff(y(x),x)+y(x)=1/(1-x)^2,y(x), singsol=all)$

$$y(x) = \frac{c_1 \ln(x) - \ln(-1 + x) + \ln(x) + c_2}{x}$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: $27\,$

 $DSolve[x^2*y''[x]+3*x*y'[x]+y[x]==1/(1-x)^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{-\log(1-x) + \log(x) + c_2 \log(x) + c_1}{x}$$

28.4 problem Ex 4

Internal problem ID [11275]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 51.

Cauchy linear equation. Page 114

Problem number: Ex 4. ODE order: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(1+x)^2y'' - (1+x)y' + 6y = x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 37

 $\label{local-condition} $$ dsolve((x+1)^2*diff(y(x),x$2)-(x+1)*diff(y(x),x)+6*y(x)=x,y(x), $$ singsol=all) $$ dsolve((x+1)^2*diff(y(x),x$2)-(x+1)*diff(y(x),x)+6*y(x)=x,y(x), $$ singsol=all) $$ dsolve((x+1)^2*diff(y(x),x)+6*y(x))=x,y(x), $$ diff(y(x),x)+6*y(x)=x,y(x), $$ diff(y(x),x)+6*y(x)=x,y(x), $$ diff(y(x),x)+6*y(x)=x,y(x), $$ diff(y(x),x)+6*y(x)=x,y(x), $$ diff(y(x),x)+6*y(x)=x,y(x), $$ diff(y(x),x)+6*y(x)=x,y(x), $$ diff(x)=x,y(x), $$ diff(x)=x,y(x)=x,y(x), $$ diff(x)=x,y(x), $$ diff(x)=x,y(x)=x,y(x), $$ diff(x)=x,y(x)=x,y(x), $$ diff(x)=x,y(x)=x,$

$$y(x) = (1+x)\sin\left(\sqrt{5}\ln(1+x)\right)c_2 + (1+x)\cos\left(\sqrt{5}\ln(1+x)\right)c_1 + \frac{x}{5} + \frac{1}{30}$$

✓ Solution by Mathematica

Time used: 0.508 (sec). Leaf size: 49

$$y(x) \to \frac{1}{30}(6x+1) + c_2(x+1)\cos\left(\sqrt{5}\log(x+1)\right) + c_1(x+1)\sin\left(\sqrt{5}\log(x+1)\right)$$

29 Chapter VII, Linear differential equations with constant coefficients. Article 52. Summary.

Page 117

29.1	problem	$\mathbf{E}\mathbf{x}$	1													•					208
29.2	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	2																		209
29.3	problem	$\mathbf{E}\mathbf{x}$	3																		210
29.4	problem	$\mathbf{E}\mathbf{x}$	5																		211
29.5	problem	$\mathbf{E}\mathbf{x}$	6																		212
29.6	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	7																		213
29.7	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	8																		214
29.8	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	9																		215
29.9	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	10																		216
29.10)problem	$\mathbf{E}\mathbf{x}$	12																		217
29.11	l problem	$\mathbf{E}\mathbf{x}$	13																		218
29.12	2problem	$\mathbf{E}\mathbf{x}$	14																		219
29.13	3problem	$\mathbf{E}\mathbf{x}$	15																		220

29.1 problem Ex 1

Internal problem ID [11276]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.

Summary. Page 117

Problem number: Ex 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 5y' + 6y = \cos(x) - e^{2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x\$2)-5*diff(y(x),x)+6*y(x)=cos(x)-exp(2*x),y(x), singsol=all)

$$y(x) = (1 + x + c_2) e^{2x} + c_1 e^{3x} + \frac{\cos(x)}{10} - \frac{\sin(x)}{10}$$

Solution by Mathematica

Time used: 0.345 (sec). Leaf size: 34

DSolve[y''[x]-5*y'[x]+6*y[x]==Cos[x]-Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{10} \left(-\sin(x) + \cos(x) + 10e^{2x} (x + c_2 e^x + 1 + c_1) \right)$$

29.2 problem Ex 2

Internal problem ID [11277]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.

Summary. Page 117

Problem number: Ex 2.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' - y = e^x \cos(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve(diff(y(x),x\$4)-y(x)=exp(x)*cos(x),y(x), singsol=all)

$$y(x) = c_4 e^{-x} + \frac{(5c_1 - e^x)\cos(x)}{5} + c_2 e^x + c_3\sin(x)$$

Solution by Mathematica

Time used: 0.071 (sec). Leaf size: 38

 $DSolve[y''''[x]-y[x] == Exp[x] * Cos[x], y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to c_1 e^x + c_3 e^{-x} + \left(-\frac{e^x}{5} + c_2\right) \cos(x) + c_4 \sin(x)$$

29.3 problem Ex 3

Internal problem ID [11278]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.

Summary. Page 117

Problem number: Ex 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = 2x^3 - x e^{3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 40

 $dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=2*x^3-x*exp(3*x),y(x), singsol=all)$

$$y(x) = -48 + (c_1x + c_2)e^{-x} + \frac{(1 - 2x)e^{3x}}{32} + 2x^3 - 12x^2 + 36x$$

Solution by Mathematica

Time used: 0.335 (sec). Leaf size: 48

DSolve[y''[x]+2*y'[x]+y[x]==2*x^3-x*Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow 2(x^3 - 6x^2 + 18x - 24) + \frac{1}{32}e^{3x}(1 - 2x) + e^{-x}(c_2x + c_1)$$

29.4 problem Ex 5

Internal problem ID [11279]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.

Summary. Page 117

Problem number: Ex 5.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 4y' = x^2 - 3e^{2x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

 $dsolve(diff(y(x),x$3)-4*diff(y(x),x)=x^2-3*exp(2*x),y(x), singsol=all)$

$$y(x) = \frac{(9 - 12x + 16c_1)e^{2x}}{32} - \frac{x^3}{12} - \frac{e^{-2x}c_2}{2} - \frac{x}{8} + c_3$$

✓ Solution by Mathematica

Time used: 0.311 (sec). Leaf size: 49

 $DSolve[y'''[x]-4*y'[x]==x^2-3*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow -\frac{x^3}{12} - \frac{x}{8} + \frac{1}{32}e^{2x}(-12x + 9 + 16c_1) - \frac{1}{2}c_2e^{-2x} + c_3$$

29.5 problem Ex 6

Internal problem ID [11280]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.

Summary. Page 117

Problem number: Ex 6.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' - 2y'' + y = \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$4)-2*diff(y(x),x\$2)+y(x)=cos(x),y(x), singsol=all)

$$y(x) = (c_4x + c_2) e^{-x} + (c_3x + c_1) e^x + \frac{\cos(x)}{4}$$

Solution by Mathematica

Time used: 0.131 (sec). Leaf size: 42

$$y(x) \to \frac{\cos(x)}{4} + e^{-x} (c_2 x + c_3 e^{2x} + c_4 e^{2x} x + c_1)$$

29.6 problem Ex 7

Internal problem ID [11281]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.

Summary. Page 117

Problem number: Ex 7.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$x^{4}y'''' + 6x^{3}y''' + 9x^{2}y'' + 3y'x + y = (\ln(x) + 1)^{2}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

 $dsolve(x^4*diff(y(x),x$4)+6*x^3*diff(y(x),x$3)+9*x^2*diff(y(x),x$2)+3*x*diff(y(x),x)+y(x)=(1.5)$

$$y(x) = (c_3 \ln(x) + c_1) \cos(\ln(x)) + (c_4 \ln(x) + c_2) \sin(\ln(x)) + \ln(x)^2 + 2\ln(x) - 3$$

✓ Solution by Mathematica

Time used: 0.27 (sec). Leaf size: 39

DSolve[$x^4*y'''[x]+6*x^3*y'''[x]+9*x^2*y''[x]+3*x*y'[x]+y[x]==(1+Log[x])^2,y[x],x,IncludeSi$

 $y(x) \to \log^2(x) + 2\log(x) + (c_2\log(x) + c_1)\cos(\log(x)) + (c_4\log(x) + c_3)\sin(\log(x)) - 3$

29.7 problem Ex 8

Internal problem ID [11282]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.

Summary. Page 117

Problem number: Ex 8.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' + 2y'' + y' = x^2 - x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

 $dsolve(diff(y(x),x\$3)+2*diff(y(x),x\$2)+diff(y(x),x)=x^2-x,y(x), singsol=all)$

$$y(x) = (-c_1x - c_1 - c_2)e^{-x} + \frac{x^3}{3} - \frac{5x^2}{2} + 8x + c_3$$

✓ Solution by Mathematica

Time used: 0.243 (sec). Leaf size: 39

 $DSolve[y'''[x]+2*y''[x]+y'[x]==x^2-x,y[x],x,IncludeSingularSolutions \rightarrow True] \\$

$$y(x) \to \frac{1}{6}x(2x^2 - 15x + 48) - e^{-x}(c_2(x+1) + c_1) + c_3$$

29.8 problem Ex 9

Internal problem ID [11283]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.

Summary. Page 117

Problem number: Ex 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \sin(x)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(diff(y(x),x$2)+4*y(x)=sin(x)^2,y(x), singsol=all)$

$$y(x) = \frac{(8c_1 - 1)\cos(2x)}{8} + \frac{1}{8} + \frac{(8c_2 - x)\sin(2x)}{8}$$

Solution by Mathematica

Time used: 0.16 (sec). Leaf size: 34

DSolve[$y''[x]+4*y[x]==Sin[x]^2,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to \frac{1}{8}((-1+8c_1)\cos(2x) - (x-8c_2)\sin(2x) + 1)$$

29.9 problem Ex 10

Internal problem ID [11284]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.

Summary. Page 117

Problem number: Ex 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \sec(x)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

 $\label{eq:decomposition} \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x$\$2$}) + 4 * \mbox{y}(\mbox{x}) = \mbox{sec}(\mbox{x})^2, \\ \mbox{y}(\mbox{x}), \mbox{ singsol=all}) \\$

 $y(x) = (-2\cos(x)^{2} + 1)\ln(\sec(x)) + 2\cos(x)^{2}c_{1} + 2\sin(x)(c_{2} + x)\cos(x) - \sin(x)^{2} - c_{1}$

✓ Solution by Mathematica

Time used: 0.168 (sec). Leaf size: 33

DSolve[y''[x]+4*y[x]==Sec[x]^2,y[x],x,IncludeSingularSolutions -> True]

 $y(x) \to \cos(2x)(\log(\cos(x)) + c_1) + \sin(x)(-\sin(x) + 2(x + c_2)\cos(x))$

29.10 problem Ex 12

Internal problem ID [11285]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.

Summary. Page 117

Problem number: Ex 12.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _with_linear_symmetries]]

$$y'''' - y''' - 3y'' + 5y' - 2y = e^{3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(y(x),x\$4)-diff(y(x),x\$3)-3*diff(y(x),x\$2)+5*diff(y(x),x)-2*y(x)=exp(3*x),y(x), s

$$y(x) = \left(\left(c_3 x^2 + c_4 x + c_1 \right) e^{3x} + c_2 + \frac{e^{5x}}{40} \right) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.091 (sec). Leaf size: 39

DSolve[y''''[x]-y'''[x]-3*y''[x]+5*y'[x]-2*y[x]==Exp[3*x],y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{e^{3x}}{40} + c_1 e^{-2x} + e^x (x(c_4 x + c_3) + c_2)$$

29.11 problem Ex 13

Internal problem ID [11286]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.

Summary. Page 117

Problem number: Ex 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \cos(x) x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)+y(x)=x*cos(x),y(x), singsol=all)

$$y(x) = \frac{(x^2 + 4c_2 - 1)\sin(x)}{4} + \frac{\cos(x)(4c_1 + x)}{4}$$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 34

DSolve[y''[x]+y[x]==x*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{8} ((2x^2 - 1 + 8c_2)\sin(x) + 2(x + 4c_1)\cos(x))$$

29.12 problem Ex 14

Internal problem ID [11287]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.

Summary. Page 117

Problem number: Ex 14.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _exact, _linear, _nonhomogeneous]]

$$x^{3}y''' + 2x^{2}y'' - y'x + y = \frac{1}{x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(x^3*diff(y(x),x$3)+2*x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=1/x,y(x), singsol=all)$

$$y(x) = \frac{4\ln(x)c_2x^2 + 4c_3x^2 + \ln(x) + c_1 + 1}{4x}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 33

 $DSolve[x^3*y'''[x]+2*x^2*y''[x]-x*y'[x]+y[x]==1/x,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{\log(x) + 1}{4x} + \frac{c_1}{x} + c_2 x + c_3 x \log(x)$$

29.13 problem Ex 15

Internal problem ID [11288]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.

Summary. Page 117

Problem number: Ex 15.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - y = x e^x + \cos(x)^2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 61

 $dsolve(diff(y(x),x\$3)-y(x)=x*exp(x)+cos(x)^2,y(x), singsol=all)$

$$y(x) = -\frac{1}{2} + c_2 e^{-\frac{x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right) + c_3 e^{-\frac{x}{2}} \sin\left(\frac{\sqrt{3}x}{2}\right)$$
$$-\frac{\cos(2x)}{130} - \frac{4\sin(2x)}{65} + \frac{(3x^2 + 18c_1 - 6x + 4)e^x}{18}$$

✓ Solution by Mathematica

Time used: 7.274 (sec). Leaf size: 98

DSolve[y'''[x]-y[x]==x*Exp[x]+Cos[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^x x^2}{6} - \frac{e^x x}{3} + \frac{2e^x}{9} - \frac{4}{65}\sin(2x) - \frac{1}{130}\cos(2x) + c_1 e^x + c_2 e^{-x/2}\cos\left(\frac{\sqrt{3}x}{2}\right) + c_3 e^{-x/2}\sin\left(\frac{\sqrt{3}x}{2}\right) - \frac{1}{2}$$

30 Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125

30.1	problem	$\mathbf{E}\mathbf{x}$	1			•										•		•			•	222
30.2	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	2																			223
30.3	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	3																			22^{2}
30.4	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	4																			22!
30.5	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	5																			220
30.6	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	6																			22'
30.7	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	7																			228
30.8	problem	$\mathbf{E}\mathbf{x}$	8																			229

30.1 problem Ex 1

Internal problem ID [11289]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125

Problem number: Ex 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - x^2y' + yx = x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 57

 $dsolve(diff(y(x),x$2)-x^2*diff(y(x),x)+x*y(x)=x,y(x), singsol=all)$

$$y(x) = -\frac{\left(-3^{\frac{1}{3}} \mathrm{e}^{\frac{x^3}{3}} c_1 - c_2 x - 1\right) \left(-x^3\right)^{\frac{2}{3}} + x^3 c_1 \left(\Gamma\left(\frac{2}{3}\right) - \Gamma\left(\frac{2}{3}, -\frac{x^3}{3}\right)\right)}{\left(-x^3\right)^{\frac{2}{3}}}$$

✓ Solution by Mathematica

Time used: 0.286 (sec). Leaf size: $42\,$

DSolve[y''[x]-x^2*y'[x]+x*y[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o -rac{c_2\sqrt[3]{-x^3}\Gamma\left(-rac{1}{3}, -rac{x^3}{3}
ight)}{3\sqrt[3]{3}} + c_1x + 1$$

30.2 problem Ex 2

Internal problem ID [11290]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125

Problem number: Ex 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' - (2x+1)y' + y(1+x) = x^2 - x - 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(x*diff(y(x),x$2)-(2*x+1)*diff(y(x),x)+(x+1)*y(x)=x^2-x-1,y(x), singsol=all)$

$$y(x) = (c_1 x^2 + c_2) e^x + x$$

✓ Solution by Mathematica

Time used: 0.275 (sec). Leaf size: 25

$$y(x) \to \frac{1}{2}c_2e^xx^2 + x + c_1e^x$$

30.3 problem Ex 3

Internal problem ID [11291]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125

Problem number: Ex 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 1) y'' + 2y'x - 2y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $\label{eq:dsolve} $$ $ dsolve((1+x^2)*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,y(x), singsol=all) $$ $ dsolve((1+x^2)*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,y(x), singsol=all) $$ $ dsolve((1+x^2)*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,y(x), singsol=all) $$ $ dsolve((1+x^2)*diff(y(x),x)-2*y(x)=0,y(x), singsol=all) $$ $ dsolve((1+x^2)*diff(x)-2*y(x)-2*y(x)=0,y(x), singsol=all) $$ $ dsolve((1+x^2)*diff(x)-2*y(x)-2*y(x)=0,y(x)-2*y($

$$y(x) = c_1 x + \arctan(x) x c_2 + c_2$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 48

 $DSolve[(1+x^2)*y''[x]+2*x*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}i(2c_1x - c_2x\log(1 - ix) + c_2x\log(1 + ix) + 2ic_2)$$

30.4 problem Ex 4

Internal problem ID [11292]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125

Problem number: Ex 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(1-x)y'' + y'x - y = (1-x)^{2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $\label{eq:decomposition} \\ \mbox{dsolve}((1-x)*\mbox{diff}(y(x),x\$2) + x*\mbox{diff}(y(x),x) - y(x) = (1-x)^2, \\ y(x), \ \mbox{singsol=all}) \\ \mbox{dsolve}((1-x)*\mbox{diff}(y(x),x\$2) + x*\mbox{diff}(y(x),x) - y(x) = (1-x)^2, \\ y(x), \ \mbox{singsol=all}) \\ \mbox{dsolve}((1-x)*\mbox{diff}(y(x),x\$2) + x*\mbox{diff}(y(x),x) - y(x) = (1-x)^2, \\ y(x), \ \mbox{singsol=all}) \\ \mbox{dsolve}((1-x)*\mbox{diff}(y(x),x\$2) + x*\mbox{diff}(y(x),x) - y(x) = (1-x)^2, \\ y(x), \ \mbox{singsol=all}) \\ \mbox{dsolve}((1-x)*\mbox{diff}(y(x),x\$2) + x*\mbox{diff}(y(x),x) - y(x) = (1-x)^2, \\ y(x), \ \mbox{dsolve}(x), \ \mbox{dsolve}(x) + x*\mbox{diff}(x) + x*\mbox{diff}($

$$y(x) = c_2 x + c_1 e^x + x^2 + 1$$

✓ Solution by Mathematica

Time used: 0.067 (sec). Leaf size: 22

 $DSolve[(1-x)*y''[x]+x*y'[x]-y[x]==(1-x)^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^2 + x - c_2 x + c_1 e^x + 1$$

30.5 problem Ex 5

Internal problem ID [11293]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125

Problem number: Ex 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$\sin(x) y'' + 2\cos(x) y' + 3\sin(x) y = e^x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

dsolve(sin(x)*diff(y(x),x\$2)+2*cos(x)*diff(y(x),x)+3*sin(x)*y(x)=exp(x),y(x),singsol=all)

$$y(x) = \frac{\csc(x) (10\cos(x)^2 c_1 + 10\sin(x)\cos(x) c_2 + e^x - 5c_1)}{5}$$

✓ Solution by Mathematica

Time used: 0.229 (sec). Leaf size: 56

DSolve[Sin[x]*y''[x]+2*Cos[x]*y'[x]+3*Sin[x]*y[x]==Exp[x],y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{e^{-ix} \left(4ie^{(1+2i)x} + 5c_2e^{4ix} + 20ic_1\right)}{10\left(-1 + e^{2ix}\right)}$$

30.6 problem Ex 6

Internal problem ID [11294]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125

Problem number: Ex 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' \tan(x) - (a^2 + 1) y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $\label{local-control} \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x$)$-2*tan($\mbox{x})$*diff}(\mbox{y}(\mbox{x}),\mbox{x})$-(a^2+1)*y(\mbox{x})=0,y(\mbox{x}), singsol=all) \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})=0,y(\mbox{x}), singsol=all) \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})=0,y(\mbox{dsolve}(\mbox{x}), singsol=all) \\ \mbox{dsolve}(\mbox{dsolve}(\mbox{x}),\mbox{dsolve}(\mbox{dsolve}(\mbox{x}),\mbox{dsolve}(\mbox{dsolve}(\mbox{x}),\mbox{dsolve}(\mbox{dsolve$

$$y(x) = \sec(x) \left(c_1 \sinh(ax) + c_2 \cosh(ax)\right)$$

✓ Solution by Mathematica

Time used: 0.117 (sec). Leaf size: 32

$$y(x) \to \sec(x) \left(c_1 e^{-ax} + \frac{c_2 e^{ax}}{2a} \right)$$

30.7 problem Ex 7

Internal problem ID [11295]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125

Problem number: Ex 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^{2}y'' + 4y'x^{3} + (x^{2} + 1)y = 0$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 35

 $dsolve(4*x^2*diff(y(x),x$2)+4*x^3*diff(y(x),x)+(x^2+1)*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{e^{-\frac{x^2}{4}} \left(\text{WhittakerM} \left(-\frac{1}{8}, 0, \frac{x^2}{2} \right) c_1 + \text{WhittakerW} \left(-\frac{1}{8}, 0, \frac{x^2}{2} \right) c_2 \right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.239 (sec). Leaf size: 60

 $DSolve [4*x^2*y''[x]+4*x^3*y'[x]+(x^2+1)*y[x]==0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \rightarrow c_2 G_{1,2}^{2,0} \left(\frac{x^2}{16} \begin{vmatrix} \frac{7}{8} \\ \frac{1}{4}, \frac{1}{4} \end{vmatrix}\right) + \frac{1}{2} \sqrt[4]{-1} c_1 \sqrt{x} \text{ Hypergeometric1F1} \left(\frac{3}{8}, 1, -\frac{x^2}{16}\right)$$

30.8 problem Ex 8

Internal problem ID [11296]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125

Problem number: Ex 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$xy'' + 2y' - yx = 2e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(x*diff(y(x),x\$2)+2*diff(y(x),x)-x*y(x)=2*exp(x),y(x), singsol=all)

$$y(x) = \frac{e^x x + \sinh(x) c_2 + \cosh(x) c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 35

 $DSolve[x*y''[x]+2*y'[x]-x*y[x]==2*Exp[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{e^{-x}(e^{2x}(2x-1+c_2)+2c_1)}{2x}$$

31 Chapter VIII, Linear differential equations of the second order. Article 54. Change of independent variable. Page 127

31.1	problem	$\mathbf{E}\mathbf{x}$	1										•	•		•		•			•	231
31.2	problem	$\mathbf{E}\mathbf{x}$	2													•						232
31.3	problem	$\mathbf{E}\mathbf{x}$	3													•						233
31.4	problem	$\mathbf{E}\mathbf{x}$	4													•		•			•	234
31.5	problem	$\mathbf{E}\mathbf{x}$	5																			235

31.1 problem Ex 1

Internal problem ID [11297]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 54. Change of independent variable. Page 127

Problem number: Ex 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + (2e^x - 1)y' + ye^{2x} = e^{4x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

dsolve(diff(y(x),x\$2)+(2*exp(x)-1)*diff(y(x),x)+exp(2*x)*y(x)=exp(4*x),y(x), singsol=all)

$$y(x) = e^{\frac{x}{2} - e^x} \sinh\left(\frac{x}{2}\right) c_2 + e^{\frac{x}{2} - e^x} \cosh\left(\frac{x}{2}\right) c_1 + e^{2x} - 4e^x + 6$$

✓ Solution by Mathematica

Time used: 0.121 (sec). Leaf size: 39

 $DSolve[y''[x]+(2*Exp[x]-1)*y'[x]+Exp[2*x]*y[x]==Exp[4*x],y[x],x,IncludeSingularSolutions \rightarrow$

$$y(x) \rightarrow -4e^x + e^{2x} + c_1e^{-e^x} + c_2e^{x-e^x} + 6$$

31.2 problem Ex 2

Internal problem ID [11298]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 54. Change of independent variable. Page 127

Problem number: Ex 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer, [_2nd_order, _linear, '_with_symmetry_[0,F(x)]']

$$(-x^2 + 1) y'' - y'x + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 50

 $dsolve((1-x^2)*diff(y(x),x$2)-x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{(8x^3 - 4x)c_2\sqrt{x^2 - 1} + (8x^4 - 8x^2 + 1)c_2 + c_1}{(x + \sqrt{x^2 - 1})^2}$$

✓ Solution by Mathematica

Time used: 0.316 (sec). Leaf size: 97

 $\textbf{DSolve}[(1-x^2)*y''[x]-x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x)
ightarrow c_1 \cosh \left(rac{4\sqrt{1-x^2} \arctan \left(rac{\sqrt{1-x^2}}{x+1}
ight)}{\sqrt{x^2-1}}
ight) - i c_2 \sinh \left(rac{4\sqrt{1-x^2} \arctan \left(rac{\sqrt{1-x^2}}{x+1}
ight)}{\sqrt{x^2-1}}
ight)$$

31.3 problem Ex 3

Internal problem ID [11299]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 54. Change of independent variable. Page 127

Problem number: Ex 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' \tan(x) + \cos(x)^2 y = 0$$

✓ Solution by Maple

Time used: 0.093 (sec). Leaf size: 15

 $\label{localization} \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x$\$2$}) + \mbox{tan}(\mbox{x}) * \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{cos}(\mbox{x}) ^2 * \mbox{y}(\mbox{x}) = 0, \\ \mbox{y}(\mbox{x}), \mbox{singsol=all}) \\ \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{cos}(\mbox{x}) ^2 * \mbox{y}(\mbox{x}) = 0, \\ \mbox{y}(\mbox{x}), \mbox{singsol=all}) \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{cos}(\mbox{x}) ^2 * \mbox{y}(\mbox{x}) = 0, \\ \mbox{y}(\mbox{x}), \mbox{singsol=all}) \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{diff}(\mbox{x}) + \$

$$y(x) = c_1 \sin(\sin(x)) + c_2 \cos(\sin(x))$$

✓ Solution by Mathematica

Time used: 0.078 (sec). Leaf size: 18

DSolve[y''[x]+Tan[x]*y'[x]+Cos[x]^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2 \sin(\sin(x)) + c_1 \cos(\sin(x))$$

31.4 problem Ex 4

Internal problem ID [11300]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 54. Change of independent variable. Page 127

Problem number: Ex 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^6y'' + 3x^5y' + y = \frac{1}{x^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(x^6*diff(y(x),x$2)+3*x^5*diff(y(x),x)+y(x)=1/x^2,y(x), singsol=all)$

$$y(x) = \sin\left(\frac{1}{2x^2}\right)c_2 + \cos\left(\frac{1}{2x^2}\right)c_1 + \frac{1}{x^2}$$

✓ Solution by Mathematica

Time used: 0.099 (sec). Leaf size: 32

DSolve[$x^6*y''[x]+3*x^5*y'[x]+y[x]==1/x^2,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) o rac{1}{x^2} + c_1 \cos\left(rac{1}{2x^2}
ight) - c_2 \sin\left(rac{1}{2x^2}
ight)$$

31.5 problem Ex 5

Internal problem ID [11301]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 54. Change of independent variable. Page 127

Problem number: Ex 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$xy'' - (2x^2 + 1)y' - 8yx^3 = 4x^3e^{-x^2}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

 $dsolve(x*diff(y(x),x$2)-(2*x^2+1)*diff(y(x),x)-8*x^3*y(x)=4*x^3*exp(-x^2),y(x), singsol=all)$

$$y(x) = \frac{(-x^2 + 3c_1)e^{-x^2}}{3} + e^{2x^2}c_2$$

✓ Solution by Mathematica

Time used: 0.105 (sec). Leaf size: $38\,$

 $DSolve[x*y''[x]-(2*x^2+1)*y'[x]-8*x^3*y[x] == 4*x^3*Exp[-x^2], y[x], x, IncludeSingularSolutions$

$$y(x) \to \frac{1}{9}e^{-x^2} \left(-3x^2 + 9c_1e^{3x^2} - 1 + 9c_2 \right)$$

32 Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129

32.1	problem	$\mathbf{E}\mathbf{x}$	1																			237
32.2	problem	$\mathbf{E}\mathbf{x}$	2											•								238
32.3	problem	$\mathbf{E}\mathbf{x}$	3																			239
32.4	problem	$\mathbf{E}\mathbf{x}$	4											•								240
32.5	problem	$\mathbf{E}\mathbf{x}$	5																			241
32.6	problem	$\mathbf{E}\mathbf{x}$	6											•								242
32.7	problem	$\mathbf{E}\mathbf{x}$	7											•								243
32.8	problem	$\mathbf{E}\mathbf{x}$	8											•								244
32.9	problem	$\mathbf{E}\mathbf{x}$	9											•								245
32.10)problem	$\mathbf{E}\mathbf{x}$	10)																		246

32.1 problem Ex 1

Internal problem ID [11302]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129

Problem number: Ex 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Laguerre]

$$xy'' - (x+3)y' + 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(x*diff(y(x),x\$2)-(x+3)*diff(y(x),x)+3*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^x + c_2 (x^3 + 3x^2 + 6x + 6)$$

✓ Solution by Mathematica

Time used: 0.087 (sec). Leaf size: 29

 $DSolve[x*y''[x]-(x+3)*y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^x - c_2 (x^3 + 3x^2 + 6x + 6)$$

32.2 problem Ex 2

Internal problem ID [11303]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129

Problem number: Ex 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x-3)y'' - (4x-9)y' + (3x-6)y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve((x-3)*diff(y(x),x\$2)-(4*x-9)*diff(y(x),x)+(3*x-6)*y(x)=0,y(x), singsol=all)

$$y(x) = 4c_2\left(x^3 - \frac{21}{2}x^2 + \frac{75}{2}x - \frac{183}{4}\right)e^{3x} + c_1e^x$$

✓ Solution by Mathematica

Time used: 0.091 (sec). Leaf size: 42

DSolve [(x-3)*y''[x]-(4*x-9)*y'[x]+(3*x-6)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{8}c_2e^{3x-9}(4x^3 - 42x^2 + 150x - 183) + c_1e^{x-3}$$

32.3 problem Ex 3

Internal problem ID [11304]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129

Problem number: Ex 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y''x^{2} + 4y'x + (-x^{2} + 2)y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $\label{eq:dsolve} $$ dsolve(x^2*diff(y(x),x$2)+4*x*diff(y(x),x)+(2-x^2)*y(x)=0,y(x), singsol=all)$ $$$

$$y(x) = \frac{c_1 \sinh(x) + c_2 \cosh(x)}{x^2}$$

Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 28

 $DSolve[x^2*y''[x]+4*x*y'[x]+(2-x^2)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2c_1e^{-x} + c_2e^x}{2x^2}$$

32.4 problem Ex 4

Internal problem ID [11305]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 55. Sum-

mary. Page 129

Problem number: Ex 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 1) y'' - 2y'x + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve((x^2+1)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)$

$$y(x) = c_2 x^2 + c_1 x - c_2$$

✓ Solution by Mathematica

Time used: 0.07 (sec). Leaf size: 21

 $DSolve[(x^2+1)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_2 x - c_1 (x - i)^2$$

32.5 problem Ex 5

Internal problem ID [11306]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 55. Sum-

mary. Page 129

Problem number: Ex 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' - (2x - 1)y' + y(x - 1) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(x*diff(y(x),x\$2)-(2*x-1)*diff(y(x),x)+(x-1)*y(x)=0,y(x), singsol=all)

$$y(x) = e^x(c_1 + c_2 \ln(x))$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 17

 $DSolve[x*y''[x]-(2*x-1)*y'[x]+(x-1)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow e^x(c_2 \log(x) + c_1)$$

32.6 problem Ex 6

Internal problem ID [11307]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129

Problem number: Ex 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y''x^2 - 4y'x + (x^2 + 6)y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

 $\label{local-control} \\ \mbox{dsolve}(\mbox{x^2*diff}(\mbox{y}(\mbox{x}),\mbox{x$\$2$}) - 4*\mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x}) + (6+\mbox{x^2})*\mbox{y}(\mbox{x}) = 0, \\ \mbox{y}(\mbox{x}), \mbox{singsol=all}) \\$

$$y(x) = x^{2}(c_{1}\sin(x) + c_{2}\cos(x))$$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 37

 $DSolve[x^2*y''[x]-4*x*y'[x]+(6+x^2)*y[x] ==0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}e^{-ix}x^2(2c_1 - ic_2e^{2ix})$$

32.7 problem Ex 7

Internal problem ID [11308]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129

Problem number: Ex 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(2x^3 - 1)y'' - 6x^2y' + 6yx = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve((2*x^3-1)*diff(y(x),x$2)-6*x^2*diff(y(x),x)+6*x*y(x)=0,y(x), singsol=all)$

$$y(x) = c_2 x^3 + c_1 x + c_2$$

✓ Solution by Mathematica

Time used: 2.452 (sec). Leaf size: 19

 $DSolve[(2*x^3-1)*y''[x]-6*x^2*y'[x]+6*x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to c_1 x - c_2 (x^3 + 1)$$

32.8 problem Ex 8

Internal problem ID [11309]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 55. Sum-

mary. Page 129

Problem number: Ex 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y''x^2 - 2x(1+x)y' + 2y(1+x) = x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(x^2*diff(y(x),x$2)-2*x*(1+x)*diff(y(x),x)+2*(1+x)*y(x)=x^3,y(x), singsol=all)$

$$y(x) = -\frac{x(-2e^{2x}c_1 - 2c_2 + x)}{2}$$

Solution by Mathematica

Time used: 0.051 (sec). Leaf size: $28\,$

$$y(x) \to -\frac{1}{4}x(2x - 2c_2e^{2x} + 1 - 4c_1)$$

32.9 problem Ex 9

Internal problem ID [11310]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129

Problem number: Ex 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y''x^2 - 2nx(1+x)y' + (a^2x^2 + n^2 + n)y = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 89

 $dsolve(x^2*diff(y(x),x$2)-2*n*x*(1+x)*diff(y(x),x)+(n^2+n+a^2*x^2)*y(x)=0,y(x), singsol=all)$

$$y(x) = e^{xn} x^n \left(\text{WhittakerM} \left(\frac{in^2}{\sqrt{a-n}\sqrt{a+n}}, \frac{1}{2}, 2i\sqrt{a-n}\sqrt{a+n} x \right) c_1 + \text{WhittakerW} \left(\frac{in^2}{\sqrt{a-n}\sqrt{a+n}}, \frac{1}{2}, 2i\sqrt{a-n}\sqrt{a+n} x \right) c_2 \right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve $[x^2*y''[x]-2*n*x*(1+x)*y'[x]+(n^2+n+a^2*x^2)*y[x]==0,y[x],x,IncludeSingularSolutions]$

Not solved

32.10 problem Ex 10

Internal problem ID [11311]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

 ${\bf Section:}\ {\bf Chapter\ VIII,\ Linear\ differential\ equations\ of\ the\ second\ order.\ Article\ 55.\ Sum-$

mary. Page 129 **Problem number**: Ex 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{4}y'' + 2x^{3}(1+x)y' + yn^{2} = 0$$

✓ Solution by Maple

Time used: 0.422 (sec). Leaf size: 297

$$dsolve(x^4*diff(y(x),x$2)+2*x^3*(1+x)*diff(y(x),x)+n^2*y(x)=0,y(x), singsol=all)$$

$$y(x) = c_1 \operatorname{HeunD}\left(8(-n^2)^{\frac{1}{4}}, \frac{-8i(-n^2)^{\frac{3}{4}} - n + 8\sqrt{-n^2}n}{n}, -\frac{16i(-n^2)^{\frac{3}{4}}}{n}, \frac{n - 8i(-n^2)^{\frac{3}{4}} - 8\sqrt{-n^2}n}{n}, \frac{(-n^2)^{\frac{1}{4}}x - in}{(-n^2)^{\frac{1}{4}}x + in}\right) e^{\frac{i\sqrt{-n^2}x^2 + in^2 - nx^2}{xn}}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

Not solved

33 Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 57. Dependent variable absent. Page 132

33.1	problem	$\operatorname{Ex} 1$	•	•				•												248
33.2	${\bf problem}$	Ex 2																		249
33.3	$\operatorname{problem}$	Ex 3																		250
33.4	${\bf problem}$	Ex 4																		251
33.5	${\bf problem}$	Ex 5																		252

33.1 problem Ex 1

Internal problem ID [11312]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 57. Dependent variable absent. Page 132

Problem number: Ex 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

$$(x^2 + 1) y'' + {y'}^2 = -1$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 33

 $dsolve((1+x^2)*diff(y(x),x$2)+1+diff(y(x),x)^2=0,y(x), singsol=all)$

$$y(x) = \frac{\ln(c_1x - 1)c_1^2 + c_2c_1^2 + c_1x + \ln(c_1x - 1)}{c_1^2}$$

✓ Solution by Mathematica

Time used: 12.052 (sec). Leaf size: 33

 $DSolve[(1+x^2)*y''[x]+1+(y'[x])^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x \cot(c_1) + \csc^2(c_1) \log(-x \sin(c_1) - \cos(c_1)) + c_2$$

33.2 problem Ex 2

Internal problem ID [11313]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 57. Dependent variable absent. Page 132

Problem number: Ex 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries

✓ Solution by Maple

Time used: 0.093 (sec). Leaf size: 94

 $dsolve((x*diff(y(x),x$3)-diff(y(x),x$2))^2=diff(y(x),x$3)^2+1,y(x), singsol=all)$

$$y(x) = \frac{(x^2 + 2)\sqrt{-x^2 + 1}}{6} + c_1 x + \frac{x \arcsin(x)}{2} + c_2$$

$$y(x) = -\frac{x^2\sqrt{-x^2 + 1}}{6} - \frac{\sqrt{-x^2 + 1}}{3} - \frac{x \arcsin(x)}{2} + c_1 x + c_2$$

$$y(x) = \frac{\sqrt{c_1^2 - 1}x^3}{6} + \frac{c_1 x^2}{2} + c_2 x + c_3$$

✓ Solution by Mathematica

Time used: 0.241 (sec). Leaf size: 75

 $DSolve[(x*y'''[x]-y''[x])^2==(y'''[x])^2+1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1 x^3}{6} - \frac{1}{2} \sqrt{1 + c_1^2} x^2 + c_3 x + c_2$$
$$y(x) \to \frac{c_1 x^3}{6} + \frac{1}{2} \sqrt{1 + c_1^2} x^2 + c_3 x + c_2$$

33.3 problem Ex 3

Internal problem ID [11314]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 57. Dependent variable absent. Page 132

Problem number: Ex 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + y'x = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)+x*diff(y(x),x)=x,y(x), singsol=all)

$$y(x) = \frac{c_1\sqrt{\pi}\sqrt{2}\operatorname{erf}\left(\frac{x\sqrt{2}}{2}\right)}{2} + x + c_2$$

✓ Solution by Mathematica

Time used: 0.137 (sec). Leaf size: 29

DSolve[y''[x]+x*y'[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o \sqrt{\frac{\pi}{2}} c_1 \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) + x + c_2$$

33.4 problem Ex 4

Internal problem ID [11315]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 57. Dependent variable absent. Page 132

Problem number: Ex 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' = x e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $\label{eq:decomposition} dsolve(diff(y(x),x\$2)=x*exp(x),y(x), singsol=all)$

$$y(x) = (x-2)e^x + c_1x + c_2$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 19

DSolve[y''[x]==x*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(x-2) + c_2x + c_1$$

33.5 problem Ex 5

Internal problem ID [11316]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 57. Dependent variable absent. Page 132

Problem number: Ex 5.

ODE order: 2. ODE degree: 2.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$(y' - xy'')^2 - y''^2 = 1$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 63

 $dsolve((diff(y(x),x)-x*diff(y(x),x$2))^2=1+diff(y(x),x$2)^2,y(x), singsol=all)$

$$y(x) = \frac{x\sqrt{-x^2 + 1}}{2} + \frac{\arcsin(x)}{2} + c_1$$
$$y(x) = -\frac{x\sqrt{-x^2 + 1}}{2} - \frac{\arcsin(x)}{2} + c_1$$
$$y(x) = \frac{\sqrt{c_1^2 - 1} x^2}{2} + c_1 x + c_2$$

✓ Solution by Mathematica

Time used: 0.215 (sec). Leaf size: $58\,$

 $DSolve[(y'[x]-x*y''[x])^2==1+(y''[x])^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o \frac{c_1 x^2}{2} - \sqrt{1 + c_1^2} x + c_2$$

$$y(x) \to \frac{c_1 x^2}{2} + \sqrt{1 + c_1^2} x + c_2$$

34 Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 58. Independent variable absent. Page 135

34.1	problem	$\mathbf{E}\mathbf{x}$	1																254
34.2	$\operatorname{problem}$	$\mathbf{E}\mathbf{x}$	2																255
34.3	problem	$\mathbf{E}\mathbf{x}$	3																256
34.4	problem	$\mathbf{E}\mathbf{x}$	4								_								257

34.1 problem Ex 1

Internal problem ID [11317]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 58. Independent variable absent. Page 135

Problem number: Ex 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmet

$$yy'' - y'^2 - y^2y' = 0$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 27

 $dsolve(y(x)*diff(y(x),x$2)-diff(y(x),x)^2-y(x)^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = 0$$
$$y(x) = -\frac{c_1 e^{c_1(c_2 + x)}}{-1 + e^{c_1(c_2 + x)}}$$

✓ Solution by Mathematica

Time used: 2.444 (sec). Leaf size: 43

DSolve[y[x]*y''[x]-y'[x]^2-y[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o -rac{c_1 e^{c_1(x+c_2)}}{-1+e^{c_1(x+c_2)}}$$

 $y(x) o -rac{1}{x+c_2}$

34.2 problem Ex 2

Internal problem ID [11318]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 58. Independent variable absent. Page 135

Problem number: Ex 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$yy'' - y'^2 = -1$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 59

 $dsolve(y(x)*diff(y(x),x$2)-diff(y(x),x)^2+1=0,y(x), singsol=all)$

$$y(x) = rac{c_1 \left(-\mathrm{e}^{rac{c_2 + x}{c_1}} + \mathrm{e}^{rac{-c_2 - x}{c_1}}
ight)}{2} \ y(x) = -rac{c_1 \left(-\mathrm{e}^{rac{c_2 + x}{c_1}} + \mathrm{e}^{rac{-c_2 - x}{c_1}}
ight)}{2}$$

✓ Solution by Mathematica

Time used: 60.222 (sec). Leaf size: 85

DSolve[y[x]*y''[x]-y'[x]^2+1==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{ie^{-c_1} \tanh (e^{c_1}(x+c_2))}{\sqrt{-\mathrm{sech}^2 (e^{c_1}(x+c_2))}}$$
$$y(x) \to \frac{ie^{-c_1} \tanh (e^{c_1}(x+c_2))}{\sqrt{-\mathrm{sech}^2 (e^{c_1}(x+c_2))}}$$

34.3 problem Ex 3

Internal problem ID [11319]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 58. Independent variable absent. Page 135

Problem number: Ex 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$2y'' - e^y = 0$$

✓ Solution by Maple

Time used: 0.469 (sec). Leaf size: 20

dsolve(2*diff(y(x),x\$2)=exp(y(x)),y(x), singsol=all)

$$y(x) = \ln \left(\frac{\sec\left(\frac{c_2 + x}{2c_1}\right)^2}{c_1^2} \right)$$

✓ Solution by Mathematica

Time used: 60.049 (sec). Leaf size: 30

DSolve[2*y''[x]==Exp[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \log\left(-c_1 \mathrm{sech}^2\left(\frac{1}{2}\sqrt{c_1(x+c_2)^2}\right)\right)$$

34.4 problem Ex 4

Internal problem ID [11320]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 58. Independent variable absent. Page 135

Problem number: Ex 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1],

$$yy'' + 2y' - y'^2 = 0$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 20

 $\label{local_decomposition} \\ \mbox{dsolve}(\mbox{y}(\mbox{x}) * \mbox{diff}(\mbox{y}(\mbox{x}) , \mbox{x}) + 2 * \mbox{diff}(\mbox{y}(\mbox{x}) , \mbox{x}) - \mbox{diff}(\mbox{y}(\mbox{x}) , \mbox{x})^2 = 0 \,, \\ \mbox{y}(\mbox{x}) \,, \mbox{singsol=all}) \\ \mbox{dsolve}(\mbox{y}(\mbox{x}) + 2 * \mbox{diff}(\mbox{y}(\mbox{x}) , \mbox{x}) - \mbox{diff}(\mbox{y}(\mbox{x}) , \mbox{x})^2 = 0 \,, \\ \mbox{y}(\mbox{x}) \,, \mbox{singsol=all}) \\ \mbox{dsolve}(\mbox{y}(\mbox{x}) + 2 * \mbox{diff}(\mbox{y}(\mbox{x}) , \mbox{x}) - \mbox{diff}(\mbox{y}(\mbox{x}) , \mbox{x})^2 = 0 \,, \\ \mbox{y}(\mbox{x}) \,, \mbox{singsol=all}) \\ \mbox{dsolve}(\mbox{y}(\mbox{x}) + 2 * \mbox{diff}(\mbox{y}(\mbox{x}) , \mbox{x}) - \mbox{diff}(\mbox{y}(\mbox{x}) , \mbox{x})^2 = 0 \,, \\ \mbox{y}(\mbox{x}) \,, \mbox{x} \,, \mb$

$$y(x) = 0$$

 $y(x) = \frac{e^{c_1(c_2+x)} - 2}{c_1}$

✓ Solution by Mathematica

Time used: 2.726 (sec). Leaf size: 26

$$y(x) \to \frac{-2 + e^{c_1(x+c_2)}}{c_1}$$

 $y(x) \to \text{Indeterminate}$

35.1 problem Ex 1

Internal problem ID [11321]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 59. Linear equations with particular integral known. Page 136

Problem number: Ex 1.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$(x^2 - 2x + 2)y''' - y''x^2 + 2y'x - 2y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

 $dsolve((x^2-2*x+2)*diff(y(x),x$3)-x^2*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,y(x), singsolve(x^2-2*x+2)*diff(y(x),x$3)-x^2*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,y(x), singsolve(x^2-2*x+2)*diff(y(x),x$3)-x^2*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,y(x), singsolve(x^2-2*x+2)*diff(y(x),x$3)-x^2*diff(x)-x^2*dif$

$$y(x) = c_1 x + c_2 x^2 + c_3 e^x$$

✓ Solution by Mathematica

Time used: 0.124 (sec). Leaf size: 27

DSolve[(x^2-2*x+2)*y'''[x]-x^2*y''[x]+2*x*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{1}{2} (c_2 x^2 + 2c_1 x + c_3 e^x)$$

35.2 problem Ex 2

Internal problem ID [11322]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 59. Linear equations with particular integral known. Page 136

Problem number: Ex 2.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$xy''' - y'' - y'x + y = -x^2 + 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

 $dsolve(x*diff(y(x),x$3)-diff(y(x),x$2)-x*diff(y(x),x)+y(x)=1-x^2,y(x), singsol=all)$

$$y(x) = x^2 + 3 + c_1 x + c_2 e^x + c_3 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.242 (sec). Leaf size: 28

DSolve[x*y'''[x]-y''[x]-x*y'[x]+y[x]==1-x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2 + c_1 x - c_2 \cosh(x) + ic_3 \sinh(x) + 3$$

Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 60. Exact equation. Integrating factor. Page 139

36.1	problem	$\mathbf{E}\mathbf{x}$	1																	262
36.2	problem	Ex	2																	263
36.3	problem	Ex	3																	264
36.4	problem	Ex	4																	265
36.5	problem	Ex	5																	266
36.6	problem	Ex	6																	267
36.7	problem	$\mathbf{E}\mathbf{x}$	7																	268
36.8	problem	Ex	8																	269
36.9	problem	Ex	10																	270

36.1 problem Ex 1

Internal problem ID [11323]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 60. Exact equation. Integrating factor. Page 139

Problem number: Ex 1.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$(x+2)^2 y''' + (x+2) y'' + y' = 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

 $dsolve((x+2)^2*diff(y(x),x$3)+(x+2)*diff(y(x),x$2)+diff(y(x),x)=1,y(x), singsol=all)$

$$y(x) = \frac{(c_1 - c_2)(x+2)\cos(\ln(x+2))}{2} + \frac{(c_2 + c_1)(x+2)\sin(\ln(x+2))}{2} + x + c_3$$

✓ Solution by Mathematica

Time used: 0.202 (sec). Leaf size: 45

 $DSolve[(x+2)^2*y'''[x]+(x+2)*y''[x]+y'[x]==1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x + \frac{1}{2}(c_1 - c_2)(x+2)\cos(\log(x+2)) + \frac{1}{2}(c_1 + c_2)(x+2)\sin(\log(x+2)) + c_3$$

36.2 problem Ex 2

Internal problem ID [11324]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 60. Exact equation. Integrating factor. Page 139

Problem number: Ex 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$y''x^2 + 3y'x + y = x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

 $dsolve(x^2*diff(y(x),x$2)+3*x*diff(y(x),x)+y(x)=x,y(x), singsol=all)$

$$y(x) = \frac{c_2}{x} + \frac{x}{4} + \frac{\ln(x) c_1}{x}$$

Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 26

 $DSolve[x^2*y''[x]+3*x*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^2 + 4c_2 \log(x) + 4c_1}{4x}$$

36.3 problem Ex 3

Internal problem ID [11325]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 60. Exact equation. Integrating factor. Page 139

Problem number: Ex 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$(x-1)^{2}y'' + 4(x-1)y' + 2y = \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve((x-1)^2*diff(y(x),x$2)+4*(x-1)*diff(y(x),x)+2*y(x)=cos(x),y(x), singsol=all)$

$$y(x) = \frac{c_2 + c_1 x - \cos(x)}{(-1+x)^2}$$

✓ Solution by Mathematica

Time used: 0.134 (sec). Leaf size: 24

 $DSolve[(x-1)^2*y''[x]+4*(x-1)*y'[x]+2*y[x] == Cos[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{-\cos(x) + c_1(x-1) + c_2}{(x-1)^2}$$

36.4 problem Ex 4

Internal problem ID [11326]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 60. Exact equation. Integrating factor. Page 139

Problem number: Ex 4.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _fully, _exact, _linear]]

$$(x^3 - x) y''' + (8x^2 - 3) y'' + 14y'x + 4y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 41

$$y(x) = rac{rac{c_3}{\sqrt{1+x}\sqrt{-1+x}} + c_1 + rac{c_2 \ln\left(x+\sqrt{x^2-1}
ight)}{\sqrt{x^2-1}}}{x}$$

✓ Solution by Mathematica

Time used: 0.135 (sec). Leaf size: 51

$$y(x)
ightarrow rac{-rac{c_2}{\sqrt{x^2-1}} + rac{c_3 \log \left(\sqrt{x^2-1}-x
ight)}{\sqrt{x^2-1}} + c_1}{x}$$

36.5 problem Ex 5

Internal problem ID [11327]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 60. Exact equation. Integrating factor. Page 139

Problem number: Ex 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_s

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 56

dsolve(2*x^3*y(x)*diff(y(x),x\$3)+6*x^3*diff(y(x),x)*diff(y(x),x\$2)+18*x^2*y(x)*diff(y(x),x\$2

$$y(x) = 0$$

$$y(x) = \frac{\sqrt{-x(c_1x^2 + 2c_2x - 2c_3)}}{x^2}$$

$$y(x) = -\frac{\sqrt{-x(c_1x^2 + 2c_2x - 2c_3)}}{x^2}$$

✓ Solution by Mathematica

Time used: 0.389 (sec). Leaf size: 60

DSolve[2*x^3*y[x]*y'''[x]+6*x^3*y'[x]*y''[x]+18*x^2*y[x]*y''[x]+18*x^2*y'[x]^2+36*x*y[x]*y'[

$$y(x) o -\frac{\sqrt{c_1 x^2 + c_3 x + 2c_2}}{x^{3/2}}$$
 $y(x) o \frac{\sqrt{c_1 x^2 + c_3 x + 2c_2}}{x^{3/2}}$

36.6 problem Ex 6

Internal problem ID [11328]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 60. Exact equation. Integrating factor. Page 139

Problem number: Ex 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{5}y'' + (2x^{4} - x)y' - (2x^{3} - 1)y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(x^5*diff(y(x),x$2)+(2*x^4-x)*diff(y(x),x)-(2*x^3-1)*y(x)=0,y(x), singsol=all)$

$$y(x) = x \left(c_1 + c_2 e^{-\frac{1}{3x^3}} \right)$$

✓ Solution by Mathematica

Time used: 0.152 (sec). Leaf size: 22

$$y(x) \to x \left(c_2 e^{-\frac{1}{3x^3}} + c_1 \right)$$

36.7 problem Ex 7

Internal problem ID [11329]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 60. Exact equation. Integrating factor. Page 139

Problem number: Ex 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}(-x^{3}+1)y''-y'x^{3}-2y=0$$

X Solution by Maple

 $dsolve(x^2*(1-x^3)*diff(y(x),x^2)-x^3*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

$$DSolve[x^2*(1-x^3)*y''[x]-x^3*y'[x]-2*y[x] == 0, y[x], x, IncludeSingularSolutions \ \ -> True]$$

Not solved

36.8 problem Ex 8

Internal problem ID [11330]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 60. Exact equation. Integrating factor. Page 139

Problem number: Ex 8.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$x^{2}y''' - 5xy'' + (4x^{4} + 5)y' - 8yx^{3} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

 $dsolve(x^2*diff(y(x),x$3)-5*x*diff(y(x),x$2)+(4*x^4+5)*diff(y(x),x)-8*x^3*y(x)=0,y(x), sings(x)+(4*x^4+5)*diff(y(x),x)-8*x^3*y(x)=0,y(x), sings(x)+(4*x^4+5)*diff(y(x),x)-8*x^3*y(x)=0,y(x), sings(x)+(4*x^4+5)*diff(y(x),x)-8*x^3*y(x)=0,y(x), sings(x)+(4*x^4+5)*diff(y(x),x)-8*x^3*y(x)=0,y(x), sings(x)+(4*x^4+5)*diff(y(x),x)-8*x^3*y(x)=0,y(x)+(4*x^4+5)*diff(y(x),x)-8*x^3*y(x)=0,y(x)+(4*x^4+5)*diff(y(x),x)-8*x^3*y(x)=0,y(x)+(4*x^4+5)*diff(y(x),x)-8*x^4+(4*x^4+5)*diff(y(x),x)-8*x^4+(4*x^4+5)*diff(y(x),x)-8*x^4+(4*x^4+5)*diff(y(x),x)-8*x^4+(4*x^4+5)*diff(y(x),x)-8*x^4+(4*x^4+5)*diff(y(x),x)-8*x^4+(4*x^4+5)*diff(y(x),x)-8*x^4+(4*x^4+5)*diff(y(x),x)-8*x^4+(4*x^4+5)*diff(x)-(4*$

$$y(x) = c_1 x^2 + c_2 \cos(x^2) + c_3 \sin(x^2)$$

✓ Solution by Mathematica

Time used: 0.507 (sec). Leaf size: 44

$$y(x) \to c_1 x^2 + \frac{1}{2} i c_2 e^{-ix^2} - \frac{1}{8} c_3 e^{ix^2}$$

36.9 problem Ex 10

Internal problem ID [11331]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 60. Exact equation. Integrating factor. Page 139

Problem number: Ex 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + 2\cot(x)y' + 2\tan(x)y'^{2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(diff(y(x),x\$2)+2*cot(x)*diff(y(x),x)+2*tan(x)*diff(y(x),x)^2=0,y(x), singsol=all)$

$$y(x) = -rac{\mathrm{e}^{rac{c_1}{2}} \operatorname{expIntegral}_1\left(\ln\left(an\left(x
ight)
ight) + rac{c_1}{2}
ight)}{2} + c_2$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y''[x]+2*Cot[x]*y'[x]+2*Tan[x]*y'[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

Not solved

37.1 problem Ex 1		•										•			•	•	•	•		272	,
37.2 problem Ex 2																				273)
37.3 problem Ex 3																				274	Ļ
37.4 problem Ex 4																				275	,

37.1 problem Ex 1

Internal problem ID [11332]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 61. Transformation of variables. Page 143

Problem number: Ex 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducib]

$$x^2yy'' + (y'x - y)^2 = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 44

 $\label{local-condition} \\ \mbox{dsolve}(\mbox{x^2*y(x)*diff(y(x),x$2)+(x*diff(y(x),x)-y(x))^2=0,y(x), singsol=all)} \\$

$$y(x) = 0$$

$$y(x) = \sqrt{2} \sqrt{-x (c_1 x - c_2)}$$

$$y(x) = -\sqrt{2} \sqrt{-x (c_1 x - c_2)}$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.388 (sec). Leaf size: 23}}$

DSolve $[x^2*y[x]*y''[x]+(x*y'[x]-y[x])^2==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow c_2 \sqrt{x} \sqrt{2x + c_1}$$

37.2 problem Ex 2

Internal problem ID [11333]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 61. Transformation of variables. Page 143

Problem number: Ex 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducibl

$$x^{3}y'' - (y'x - y)^{2} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

 $dsolve(x^3*diff(y(x),x$2)-(x*diff(y(x),x)-y(x))^2=0,y(x), singsol=all)$

$$y(x) = -x \ln \left(\frac{c_1 x - c_2}{x} \right)$$

✓ Solution by Mathematica

Time used: 1.65 (sec). Leaf size: 21

DSolve $[x^3*y''[x]-(x*y'[x]-y[x])^2==0,y[x],x$, IncludeSingularSolutions -> True

$$y(x) \to -x \log \left(-\frac{c_2 x + c_1}{x}\right)$$

37.3 problem Ex 3

Internal problem ID [11334]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 61. Transformation of variables. Page 143

Problem number: Ex 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _reducible, _mu_xy]]

$$yy'' - y'^{2} - y^{2} \ln(y) + x^{2}y^{2} = 0$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 22

 $dsolve(y(x)*diff(y(x),x$2)-diff(y(x),x)^2=y(x)^2*ln(y(x))-x^2*y(x)^2,y(x), singsol=all)$

$$y(x) = e^{x^2 + 2 - \frac{c_2 e^x}{2} + \frac{c_1 e^{-x}}{2}}$$

✓ Solution by Mathematica

Time used: 1.156 (sec). Leaf size: 30

$$y(x) \to e^{x^2 - \frac{c_1 e^x}{2} - c_2 e^{-x} + 2}$$

37.4 problem Ex 4

Internal problem ID [11335]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 61. Transformation of variables. Page 143

Problem number: Ex 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\sin\left(x\right)^2 y'' - 2y = 0$$

✓ Solution by Maple

Time used: 0.344 (sec). Leaf size: 31

 $dsolve(sin(x)^2*diff(y(x),x$2)-2*y(x)=0,y(x), singsol=all)$

$$y(x) = -i \cot(x) \ln(\cos(2x) + i \sin(2x)) c_2 - 2c_2 + c_1 \cot(x)$$

✓ Solution by Mathematica

Time used: 0.339 (sec). Leaf size: 46

 $DSolve[Sin[x]^2*y''[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{\cos(x)\left(c_1 - c_2\log\left(\sqrt{-\sin^2(x)} - \cos(x)\right)\right)}{\sqrt{-\sin^2(x)}} - c_2$$

38 Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 62. Summary. Page 144

38.1	problem	$\mathbf{E}\mathbf{x}$	Ι	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	277
38.2	problem	$\mathbf{E}\mathbf{x}$	2																																	278
38.3	problem	$\mathbf{E}\mathbf{x}$	3																																	279
38.4	problem	$\mathbf{E}\mathbf{x}$	4																																	280
38.5	problem	$\mathbf{E}\mathbf{x}$	5																																	281
38.6	problem	$\mathbf{E}\mathbf{x}$	6																															•		282
38.7	problem	$\mathbf{E}\mathbf{x}$	7																															•		283
38.8	problem	$\mathbf{E}\mathbf{x}$	8																																	284
38.9	problem	$\mathbf{E}\mathbf{x}$	9																																	285
38.10)problem	$\mathbf{E}\mathbf{x}$	10)																														•		286
38.11	l problem	$\mathbf{E}\mathbf{x}$	11																																	287
38.12	2 problem	$\mathbf{E}\mathbf{x}$	12)																																288

38.1 problem Ex 1

Internal problem ID [11336]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 62. Summary. Page 144 **Problem number**: Ex 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

$$y'' - y'^2 = 1$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 17

 $\label{eq:diff} $$ $dsolve(diff(y(x),x$)=diff(y(x),x)^2+1,y(x), singsol=all)$$

$$y(x) = -\ln\left(c_1\sin\left(x\right) - c_2\cos\left(x\right)\right)$$

✓ Solution by Mathematica

Time used: 3.079 (sec). Leaf size: 16

DSolve[y''[x]==y'[x]^2+1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2 - \log(\cos(x + c_1))$$

38.2 problem Ex 2

Internal problem ID [11337]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 62. Summary. Page 144 **Problem number**: Ex 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$(-x^2+1)y''-y'x=2$$

✓ Solution by Maple

Time used: 0.235 (sec). Leaf size: 59

 $dsolve((1-x^2)*diff(y(x),x$2)-x*diff(y(x),x)=2,y(x), singsol=all)$

$$y(x) = -\left(\int -\frac{-2\sqrt{x^2 - 1} \ln\left(x + \sqrt{x^2 - 1}\right)\sqrt{-1 + x}\sqrt{1 + x} + c_1(x^2 - 1)}{(-1 + x)^{\frac{3}{2}}(1 + x)^{\frac{3}{2}}}dx\right) + c_2$$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 48

DSolve $[(1-x^2)*y''[x]-x*y'[x]==2,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to c_2 - \frac{1}{4} \left(\log \left(1 - \frac{x}{\sqrt{x^2 - 1}} \right) - \log \left(\frac{x}{\sqrt{x^2 - 1}} + 1 \right) + c_1 \right)^2$$

38.3 problem Ex 3

Internal problem ID [11338]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 62. Summary. Page 144 **Problem number**: Ex 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _

$$y'' + yy' = 0$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)+y(x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = rac{ anh\left(rac{(c_2+x)\sqrt{2}}{2c_1}
ight)\sqrt{2}}{c_1}$$

✓ Solution by Mathematica

Time used: 20.03 (sec). Leaf size: 34

DSolve[y''[x]+y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sqrt{2}\sqrt{c_1} \tanh\left(\frac{\sqrt{c_1}(x+c_2)}{\sqrt{2}}\right)$$

38.4 problem Ex 4

Internal problem ID [11339]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 62. Summary. Page 144 Problem number: Ex 4.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _fully, _exact, _linear]]

$$(x^3 + 1)y''' + 9y''x^2 + 18y'x + 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $\frac{dsolve((1+x^3)*diff(y(x),x$3)+9*x^2*diff(y(x),x$2)+18*x*diff(y(x),x)+6*y(x)=0}{},y(x), singsol=0$

$$y(x) = \frac{c_1 x^2 + c_2 x + c_3}{(1+x)(x^2 - x + 1)}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: $31\,$

DSolve[(1+x^3)*y'''[x]+9*x^2*y''[x]+18*x*y'[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{c_3 x^2 + 2c_2 x + 2c_1}{2x^3 + 2}$$

38.5 problem Ex 5

Internal problem ID [11340]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 62. Summary. Page 144

Problem number: Ex 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x^{2} - x)y'' + (4x + 2)y' + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

 $dsolve((x^2-x)*diff(y(x),x$2)+(4*x+2)*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{12\ln(x)c_1x^3 + (-3x^4 + 18x^2 - 6x + 1)c_1 + c_2x^3}{(-1+x)^5}$$

✓ Solution by Mathematica

Time used: 0.086 (sec). Leaf size: 52

$$y(x) \to \frac{-3c_2x^4 - 3c_1x^3 + 12c_2x^3\log(x) + 18c_2x^2 - 6c_2x + c_2}{3(x-1)^5}$$

problem Ex 6 **38.6**

Internal problem ID [11341]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 62. Summary. Page 144 Problem number: Ex 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible

$$y(1 - \ln(y))y'' + (1 + \ln(y))y'^2 = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

 $dsolve(y(x)*(1-ln(y(x)))*diff(y(x),x$2)+(1+ln(y(x)))*diff(y(x),x)^2=0,y(x), singsol=all)$

$$y(x) = e^{\frac{c_1 x + c_2 - 1}{c_1 x + c_2}}$$

Solution by Mathematica

Time used: 1.021 (sec). Leaf size: 34

$$y(x) \rightarrow e^{rac{c_1x-1+c_2c_1}{c_1(x+c_2)}} \ y(x) \rightarrow e$$

$$y(x) \to \epsilon$$

38.7 problem Ex 7

Internal problem ID [11342]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 62. Summary. Page 144 Problem number: Ex 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + \frac{y'}{x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(x),x\$2)+1/x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 \ln (x)$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: $13\,$

DSolve[y''[x]+1/x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \log(x) + c_2$$

38.8 problem Ex 8

Internal problem ID [11343]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 62. Summary. Page 144 Problem number: Ex 8.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _m

$$x(x+2y)y'' + 2xy'^{2} + 4(y+x)y' + 2y = -x^{2}$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 80

 $dsolve(x*(x+2*y(x))*diff(y(x),x$2)+2*x*(diff(y(x),x))^2+4*(x+y(x))*diff(y(x),x)+2*y(x)+x^2=0$

$$y(x) = \frac{-3x^2 + \sqrt{3}\sqrt{-x(x^4 - 3x^3 + 12c_2x - 12c_1)}}{6x}$$
$$y(x) = \frac{-3x^2 - \sqrt{3}\sqrt{-x(x^4 - 3x^3 + 12c_2x - 12c_1)}}{6x}$$

✓ Solution by Mathematica

Time used: 2.35 (sec). Leaf size: 104

DSolve $[x*(x+2*y[x])*y''[x]+2*x*(y'[x])^2+4*(x+y[x])*y'[x]+2*y[x]+x^2==0,y[x],x$, IncludeSingul

$$y(x) \to \frac{1}{6} \left(-3x - \sqrt{3}\sqrt{\frac{1}{x^2}} \sqrt{x(-x^4 + 3x^3 + 12c_2x + 12c_1)} \right)$$

$$y(x) \to \frac{1}{6} \left(-3x + \sqrt{3}\sqrt{\frac{1}{x^2}}\sqrt{x(-x^4 + 3x^3 + 12c_2x + 12c_1)} \right)$$

38.9 problem Ex 9

Internal problem ID [11344]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 62. Summary. Page 144 Problem number: Ex 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

$$y'' + y'^2 = -1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $\label{eq:diff} $$ $dsolve(diff(y(x),x$)+diff(y(x),x)^2+1=0,y(x), singsol=all)$ $$$

$$y(x) = \ln\left(-c_1\sin\left(x\right) + c_2\cos\left(x\right)\right)$$

✓ Solution by Mathematica

Time used: 3.113 (sec). Leaf size: 16

DSolve[y''[x]+y'[x]^2+1==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \log(\cos(x - c_1)) + c_2$$

38.10 problem Ex 10

Internal problem ID [11345]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 62. Summary. Page 144 **Problem number**: Ex 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$(-x^2+1)y''-\frac{y'}{x}=-x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve((1-x^2)*diff(y(x),x$2)-1/x*diff(y(x),x)+x^2=0,y(x), singsol=all)$

$$y(x) = \frac{x^2}{2} + \sqrt{-1+x}\sqrt{1+x}c_1 + c_2$$

✓ Solution by Mathematica

Time used: 0.084 (sec). Leaf size: 30

 $DSolve[(1-x^2)*y''[x]-1/x*y'[x]+x^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^2}{2} - c_1 \sqrt{1 - x^2} + c_2$$

38.11 problem Ex 11

Internal problem ID [11346]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 62. Summary. Page 144 **Problem number**: Ex 11.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$4x^2y''' + 8xy'' + y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(4*x^2*diff(y(x),x$3)+8*x*diff(y(x),x$2)+diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = (c_3 \ln(x) + c_2) \sqrt{x} + c_1$$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 28

DSolve[4*x^2*y'''[x]+8*x*y''[x]+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sqrt{x}(c_2 \log(x) + 2c_1 - 2c_2) + c_3$$

38.12 problem Ex 12

Internal problem ID [11347]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath pub-

lishers. 1906

Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.

Article 62. Summary. Page 144 **Problem number**: Ex 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$\sin(x) y'' - \cos(x) y' + 2\sin(x) y = 0$$

✓ Solution by Maple

Time used: 0.14 (sec). Leaf size: 39

dsolve(sin(x)*diff(y(x),x\$2)-cos(x)*diff(y(x),x)+2*sin(x)*y(x)=0,y(x), singsol=all)

$$y(x) = \ln(\cos(x) - 1)c_2\sin(x)^2 - \ln(\cos(x) + 1)c_2\sin(x)^2 + c_1\sin(x)^2 - 2c_2\cos(x)$$

✓ Solution by Mathematica

Time used: 0.235 (sec). Leaf size: 45

DSolve[Sin[x]*y''[x]-Cos[x]*y'[x]+2*Sin[x]*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -c_1 \sin^2(x) - \frac{1}{4}c_2(2\cos(x) + \sin^2(x)(\log(\cos(x) + 1) - \log(1 - \cos(x))))$$

39	Chapter X, System of simulataneous equations
	Article 64. Systems of linear equations with
	constant coefficients. Page 150
39.1	problem Ex 1

39.1 problem Ex 1

Internal problem ID [11348]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

Section: Chapter X, System of simulataneous equations. Article 64. Systems of linear equations with constant coefficients. Page 150

Problem number: Ex 1.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) - \frac{2y(t)}{3} + \frac{e^t}{3}$$
$$y'(t) = \frac{4x(t)}{3} + y(t) - t$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 47

dsolve([3*diff(x(t),t)+3*x(t)+2*y(t)=exp(t),4*x(t)-3*diff(y(t),t)+3*y(t)=3*t], singsol=all)

$$x(t) = -\frac{e^{\frac{t}{3}}c_2}{2} - e^{-\frac{t}{3}}c_1 - 6t$$
$$y(t) = e^{\frac{t}{3}}c_2 + e^{-\frac{t}{3}}c_1 + 9t + 9 + \frac{e^t}{2}$$

✓ Solution by Mathematica

Time used: 1.125 (sec). Leaf size: 90

$$x(t) \to e^{-t/3} \left(-6e^{t/3}t - (c_1 + c_2)e^{2t/3} + 2c_1 + c_2 \right)$$

$$y(t) \to 9(t+1) + \frac{e^t}{2} + 2(c_1 + c_2)e^{t/3} - (2c_1 + c_2)e^{-t/3}$$