A Solution Manual For

Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Nasser M. Abbasi

May 16, 2024

Contents

1	Chapter 1, Differential equations and their solutions. Exercises page 13	3
2	Chapter 1, section 1.3. Exercises page 22	19
3	Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37	31
4	Chapter 2, section 2.2 (Separable equations). Exercises page 47	51
5	Chapter 2, section 2.3 (Linear equations). Exercises page 56	81
6	Chapter 2, Miscellaneous Review. Exercises page 60	126
7	Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67	156
8	Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113	174
9	Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124	185
10	Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients. Exercises page 135	194
11	Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151	240
12	Chapter 4, Section 4.4. Variation of parameters. Exercises page 162	296
13	Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169	323
14	Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232	353
15	Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251	372

16	Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277	400
17	Chapter 7, Systems of linear differential equations. Section 7.3. Exercises page 299	418
18	Chapter 7, Systems of linear differential equations. Section 7.4. Exercises page 309	422
19	Chapter 7, Systems of linear differential equations. Section 7.7. Exercises page 375	427

1 Chapter 1, Differential equations and their solutions. Exercises page 13

1.1	problem I(a)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
1.2	problem 1(b)																																		5
1.3	problem 1(c)																																		6
1.4	problem 1(d)																																		7
1.5	problem 2(a)																																		8
1.6	problem 2(b)																																		9
1.7	problem 3(a)																																		10
1.8	problem 3(b)																																		11
1.9	problem 4(a)																																		12
1.10	problem 4(b)																																		13
1.11	problem 5(a)																																		14
1.12	problem 5(b)																																		15
1.13	problem 6(a)																																		16
1.14	problem 6(b)																																		17
1.15	problem 7(a)																																		18

1.1 problem 1(a)

Internal problem ID [11570]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 1(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = 1 + x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x)+y(x)=1+x,y(x), singsol=all)

$$y(x) = x + c_1 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 15

DSolve[y'[x]+y[x]==1+x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + c_1 e^{-x}$$

1.2 problem 1(b)

Internal problem ID [11571]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 7y' + 12y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-7*diff(y(x),x)+12*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{4x} + c_2 e^{3x}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 20

DSolve[y''[x]-7*y'[x]+12*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{3x}(c_2e^x + c_1)$$

1.3 problem 1(c)

Internal problem ID [11572]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 3y' + 2y = 4x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=4*x^2,y(x), singsol=all)$

$$y(x) = e^{2x}c_1 + c_2e^x + 2x^2 + 6x + 7$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 29

 $DSolve[y''[x]-3*y'[x]+2*y[x]==4*x^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow 2x^2 + 6x + c_1e^x + c_2e^{2x} + 7$$

1.4 problem 1(d)

Internal problem ID [11573]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x^2 + 1) y'' + 4y'x + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve((1+x^2)*diff(y(x),x$2)+4*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1 x + c_2}{x^2 + 1}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 20

 $DSolve[(1+x^2)*y''[x]+4*x*y'[x]+2*y[x]==0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to \frac{c_2 x + c_1}{x^2 + 1}$$

1.5 problem 2(a)

Internal problem ID [11574]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 2(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _Bernoulli]

$$2xyy' + y^2 = -x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

 $dsolve(2*x*y(x)*diff(y(x),x)+x^2+y(x)^2=0,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{3}\sqrt{-x(x^3 - 3c_1)}}{3x}$$
$$y(x) = \frac{\sqrt{3}\sqrt{-x(x^3 - 3c_1)}}{3x}$$

✓ Solution by Mathematica

Time used: 0.377 (sec). Leaf size: 60

 $DSolve[2*x*y[x]*y'[x]+x^2+y[x]^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt{-x^3 + 3c_1}}{\sqrt{3}\sqrt{x}}$$
$$y(x) \to \frac{\sqrt{-x^3 + 3c_1}}{\sqrt{3}\sqrt{x}}$$

1.6 problem 2(b)

Internal problem ID [11575]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 2(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y'x + y - y^3x^3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(x*diff(y(x),x)+y(x)=x^3*y(x)^3,y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{-2x + c_1} x}$$
$$y(x) = -\frac{1}{\sqrt{-2x + c_1} x}$$

✓ Solution by Mathematica

Time used: 0.6 (sec). Leaf size: 44

DSolve[x*y'[x]+y[x]==x^3*y[x]^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{1}{\sqrt{x^2(-2x+c_1)}}$$
$$y(x) \rightarrow \frac{1}{\sqrt{x^2(-2x+c_1)}}$$
$$y(x) \rightarrow 0$$

1.7 problem 3(a)

Internal problem ID [11576]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 3(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 3y = 3x^2 e^{-3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)+3*y(x)=3*x^2*exp(-3*x),y(x), singsol=all)$

$$y(x) = \left(x^3 + c_1\right) e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.098 (sec). Leaf size: 17

 $DSolve[y'[x]+3*y[x]==3*x^2*Exp[-3*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-3x} \left(x^3 + c_1 \right)$$

1.8 problem 3(b)

Internal problem ID [11577]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 3(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + 4yx = 8x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)+4*x*y(x)=8*x,y(x), singsol=all)

$$y(x) = 2 + e^{-2x^2} c_1$$

✓ Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 22

DSolve[y'[x]+4*x*y[x]==8*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 2 + c_1 e^{-2x^2}$$
$$y(x) \to 2$$

1.9 problem 4(a)

Internal problem ID [11578]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 4(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $\label{eq:diff} $$ $dsolve(diff(y(x),x$2)-2*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)$ $$$

$$y(x) = c_1 e^{4x} + e^{-2x} c_2$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 22

DSolve[y''[x]-2*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} (c_2 e^{6x} + c_1)$$

1.10 problem 4(b)

Internal problem ID [11579]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 4(b).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 2y'' - 4y' + 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$3)-2*diff(y(x),x\$2)-4*diff(y(x),x)+8*y(x)=0,y(x), singsol=all)

$$y(x) = (c_3x + c_2)e^{2x} + e^{-2x}c_1$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 27

 $DSolve[y'''[x]-2*y''[x]-4*y'[x]+8*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-2x} (e^{4x}(c_3x + c_2) + c_1)$$

1.11 problem 5(a)

Internal problem ID [11580]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 5(a).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 3y'' - 4y' + 12y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)-4*diff(y(x),x)+12*y(x)=0,y(x), singsol=all)

$$y(x) = (c_1 e^{5x} + c_2 e^{4x} + c_3) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: $29\,$

DSolve[y'''[x]-3*y''[x]-4*y'[x]+12*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} \left(e^{4x} (c_3 e^x + c_2) + c_1 \right)$$

1.12 problem 5(b)

Internal problem ID [11581]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 5(b).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _fully, _exact, _linear]]

$$x^3y''' + 2x^2y'' - 10y'x - 8y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

 $\frac{\text{dsolve}(x^3*\text{diff}(y(x),x\$3)+2*x^2*\text{diff}(y(x),x\$2)-10*x*\text{diff}(y(x),x)-8*y(x)=0,y(x)}{\text{dsolve}(x^3*\text{diff}(y(x),x\$3)+2*x^2*\text{diff}(y(x),x\$2)-10*x*\text{diff}(y(x),x)-8*y(x)=0,y(x)}, \text{ singsol=all})$

$$y(x) = \frac{c_1 x^6 + c_2 x + c_3}{x^2}$$

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 22

$$y(x) \to \frac{c_3 x^6 + c_2 x + c_1}{x^2}$$

1.13 problem 6(a)

Internal problem ID [11582]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 6(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 2y = 6e^x + 4xe^{-2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x)+2*y(x)=6*exp(x)+4*x*exp(-2*x),y(x), singsol=all)

$$y(x) = (2x^2 + 2e^{3x} + c_1)e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.129 (sec). Leaf size: 26

DSolve[y'[x]+2*y[x]==6*Exp[x]+4*x*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} (2x^2 + 2e^{3x} + c_1)$$

1.14 problem 6(b)

Internal problem ID [11583]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 6(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 4y = -8\sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=-8*sin(2*x),y(x), singsol=all)

$$y(x) = (c_1x + c_2)e^{2x} - \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 25

DSolve[y''[x]-4*y'[x]+4*y[x]==-8*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\cos(2x) + e^{2x}(c_2x + c_1)$$

1.15 problem 7(a)

Internal problem ID [11584]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 7(a).

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^2 - 4y = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 15

 $dsolve(diff(y(x),x)^2-4*y(x)=0,y(x), singsol=all)$

$$y(x) = 0$$
$$y(x) = (x - c_1)^2$$

✓ Solution by Mathematica

Time used: 0.079 (sec). Leaf size: 38

 $DSolve[(y'[x])^2-4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{4}(-2x + c_1)^2$$

 $y(x) \to \frac{1}{4}(2x + c_1)^2$
 $y(x) \to 0$

2	Chapter	•	1	,	S	S E	96	t	i	0	n	1.	.3	3.]	E	X	e	r	C	is	SE	S]	p	a	g	\mathbf{e}	4	2	2			
2.1	problem 1																																	20
2.2	problem 2(a)																																	21
2.3	problem 2(b)																																	22
2.4	problem 3(a)																																	23
2.5	problem 4(a)																																	24
2.6	problem 4(b)																																	25
2.7	problem 4(c)																																	26
2.8	problem 5																																	27
2.9	problem 6(a)																																	28
2.10	problem 6(b)																																	29
2.11	problem 8																																	30

2.1 problem 1

Internal problem ID [11585]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 6y = 0$$

With initial conditions

$$[y(0) = 6, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(x),x\$2)+diff(y(x),x)-6*y(x)=0,y(0) = 6, D(y)(0) = 2],y(x), singsol=all)

$$y(x) = (4e^{5x} + 2)e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 20

DSolve[$\{y''[x]+y'[x]-6*y[x]==0,\{y[0]==6,y'[0]==2\}\},y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to e^{-3x} (4e^{5x} + 2)$$

2.2 problem 2(a)

Internal problem ID [11586]

 $\bf Book:$ Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 2(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = 2x e^{-x}$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $\label{eq:decomposition} \\ \mbox{dsolve([diff(y(x),x)+y(x)=2*x*exp(-x),y(0) = 2],y(x), singsol=all)} \\$

$$y(x) = (x^2 + 2) e^{-x}$$

✓ Solution by Mathematica

Time used: 0.087 (sec). Leaf size: 16

DSolve[$\{y'[x]+y[x]==2*x*Exp[-x],\{y[0]==2\}\},y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to e^{-x} (x^2 + 2)$$

2.3 problem 2(b)

Internal problem ID [11587]

 $\bf Book:$ Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 2(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = 2x e^{-x}$$

With initial conditions

$$[y(-1) = e + 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(x),x)+y(x)=2*x*exp(-x),y(-1) = exp(1)+3],y(x), singsol=all)

$$y(x) = (x^2 + 3e^{-1})e^{-x}$$

✓ Solution by Mathematica

Time used: 0.086 (sec). Leaf size: 20

$$y(x) \to e^{-x-1}(ex^2+3)$$

2.4 problem 3(a)

Internal problem ID [11588]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 3(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 12y = 0$$

With initial conditions

$$[y(0) = 5, y'(0) = 6]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve([diff(y(x),x\$2)-diff(y(x),x)-12*y(x)=0,y(0) = 5, D(y)(0) = 6],y(x), singsol=all)

$$y(x) = (3e^{7x} + 2)e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 20

DSolve[{y''[x]-y'[x]-12*y[x]==0,{y[0]==5,y'[0]==6}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-3x} (3e^{7x} + 2)$$

2.5 problem 4(a)

Internal problem ID [11589]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 4(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With initial conditions

$$\left[y(0) = 0, y'\left(\frac{\pi}{2}\right) = 1\right]$$

X Solution by Maple

dsolve([diff(y(x),x\$2)+y(x)=0,y(0) = 0, D(y)(1/2*Pi) = 1],y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{y''[x]+y[x]==0,\{y[0]==0,y'[Pi/2]==1\}\},y[x],x,IncludeSingularSolutions] -> True]$

{}

2.6 problem 4(b)

Internal problem ID [11590]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 4(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With initial conditions

$$\left[y(0) = 0, y'\left(\frac{\pi}{2}\right) = -1\right]$$

X Solution by Maple

dsolve([diff(y(x),x\$2)+y(x)=0,y(0) = 0, D(y)(1/2*Pi) = -1],y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{y''[x]+y[x]==0,\{y[0]==0,y'[Pi/2]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

{}

2.7 problem 4(c)

Internal problem ID [11591]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 4(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With initial conditions

$$[y(0) = 0, y'(\pi) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

dsolve([diff(y(x),x\$2)+y(x)=0,y(0) = 0, D(y)(Pi) = 1],y(x), singsol=all)

$$y(x) = -\sin\left(x\right)$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: $9\,$

 $DSolve[\{y''[x]+y[x]==0,\{y[0]==0,y'[Pi]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sin(x)$$

2.8 problem 5

Internal problem ID [11592]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 5.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$x^3y''' - 3x^2y'' + 6y'x - 6y = 0$$

With initial conditions

$$[y(2) = 0, y'(2) = 2, y''(2) = 6]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve([x^3*diff(y(x),x$3)-3*x^2*diff(y(x),x$2)+6*x*diff(y(x),x)-6*y(x)=0,y(2) = 0, D(y)(2)$

$$y(x) = x^3 - 3x^2 + 2x$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 15

DSolve[$\{x^3*y'''[x]-3*x^2*y''[x]+6*x*y'[x]-6*y[x]==0,\{y[2]==0,y'[2]==2,y''[2]==6\}\},y[x],x,Ix$

$$y(x) \to x(x^2 - 3x + 2)$$

2.9 problem 6(a)

Internal problem ID [11593]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 6(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - x^2 \sin(y) = 0$$

With initial conditions

$$[y(1) = -2]$$

✓ Solution by Maple

Time used: 1.844 (sec). Leaf size: 97

 $dsolve([diff(y(x),x)=x^2*sin(y(x)),y(1) = -2],y(x), singsol=all)$

 $y(x) = \arctan\left(\frac{2\sin(2)e^{\frac{(-1+x)\left(x^2+x+1\right)}{3}}}{(-1+\cos(2))e^{\frac{2(-1+x)\left(x^2+x+1\right)}{3}}-1-\cos(2)}, \frac{(1-\cos(2))e^{\frac{2(-1+x)\left(x^2+x+1\right)}{3}}-1-\cos(2)}{(-1+\cos(2))e^{\frac{2(-1+x)\left(x^2+x+1\right)}{3}}-1-\cos(2)}\right)$

✓ Solution by Mathematica

Time used: 0.68 (sec). Leaf size: 23

DSolve[{y'[x]==x^2*Sin[y[x]],{y[1]==-2}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\arccos\left(\tanh\left(\arctanh(\cos(2)) - \frac{x^3}{3} + \frac{1}{3}\right)\right)$$

2.10 problem 6(b)

Internal problem ID [11594]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 6(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y^2}{x-2} = 0$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(x),x)=y(x)^2/(x-2),y(1) = 0],y(x), singsol=all)$

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

 $DSolve[\{y'[x]==y[x]^2/(x-2),\{y[1]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 0$$

2.11 problem 8

Internal problem ID [11595]

 $\bf Book:$ Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'-y^{\frac{1}{3}}=0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(x),x)=y(x)^(1/3),y(0) = 0],y(x), singsol=all)$

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 21

 $DSolve[\{y'[x]==y[x]^(1/3),\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2}{3} \sqrt{\frac{2}{3}} x^{3/2}$$

3 Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

3.1	$\operatorname{problem}$	1.	•	•		•	•							•						•		•	32
3.2	problem	2 .																					33
3.3	problem	3	•																				34
3.4	problem	4 .	•																				35
3.5	problem	5 .	•																				36
3.6	problem	7	•																				37
3.7	problem	8 .																					38
3.8	problem	9 .	•																				39
3.9	problem	10																					40
3.10	problem	11																					41
3.11	problem	12																					42
3.12	problem	13																					44
3.13	problem	14																					45
3.14	problem	15																					46
3.15	problem	16																					47
3.16	problem	21																					48
3.17	problem	22																					49
3.18	problem	24																					50

3.1 problem 1

Internal problem ID [11596]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${f Section}$: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, [_Abel, '2nd ty

$$2y + (2x + y)y' = -3x$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 49

dsolve((3*x+2*y(x))+(2*x+y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{-2c_1x - \sqrt{c_1^2x^2 + 1}}{c_1}$$
$$y(x) = \frac{-2c_1x + \sqrt{c_1^2x^2 + 1}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.781 (sec). Leaf size: 79

DSolve[(3*x+2*y[x])+(2*x+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -2x - \sqrt{x^2 + e^{2c_1}}$$

$$y(x) \to -2x + \sqrt{x^2 + e^{2c_1}}$$

$$y(x) \to -\sqrt{x^2} - 2x$$

$$y(x) \to \sqrt{x^2} - 2x$$

3.2 problem 2

Internal problem ID [11597]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${f Section}$: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]

$$y^2 + (2yx - 4)y' = -3$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 62

 $\label{eq:dsolve} $$ dsolve((y(x)^2+3)+(2*x*y(x)-4)*diff(y(x),x)=0,y(x), singsol=all) $$$

$$\frac{-ic_1(y(x)^2 x + 3x - 4y(x))\sqrt{3} + 12c_1 + i}{(-y(x)\sqrt{3}x + 4\sqrt{3} - 3ix)(\sqrt{3} + iy(x))} = 0$$

✓ Solution by Mathematica

Time used: 0.615 (sec). Leaf size: 79

 $\textbf{DSolve}[(y[x]^2+3)+(2*x*y[x]-4)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow \textbf{True}]$

$$y(x) \to \frac{2 - \sqrt{-3x^2 + c_1 x + 4}}{x}$$
$$y(x) \to \frac{2 + \sqrt{-3x^2 + c_1 x + 4}}{x}$$
$$y(x) \to -i\sqrt{3}$$
$$y(x) \to i\sqrt{3}$$

3.3 problem 3

Internal problem ID [11598]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${\bf Section} \colon$ Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_1st_order, '_with_symmetry_[F(x),G(x)]']

$$2yx + \left(x^2 + 4y\right)y' = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

 $dsolve((2*x*y(x)+1)+(x^2+4*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{x^2}{4} - \frac{\sqrt{x^4 - 8c_1 - 8x}}{4}$$
$$y(x) = -\frac{x^2}{4} + \frac{\sqrt{x^4 - 8c_1 - 8x}}{4}$$

✓ Solution by Mathematica

Time used: 0.223 (sec). Leaf size: 61

 $DSolve[(2*x*y[x]+1)+(x^2+4*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{4} \left(-x^2 - \sqrt{x^4 - 8x + 16c_1} \right)$$

 $y(x) \to \frac{1}{4} \left(-x^2 + \sqrt{x^4 - 8x + 16c_1} \right)$

3.4 problem 4

Internal problem ID [11599]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, '2nd type', 'class A']]

$$3x^{2}y - (x^{3} + y)y' = -2$$

X Solution by Maple

 $dsolve((3*x^2*y(x)+2)-(x^3+y(x))*diff(y(x),x)=0,y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $\label{eq:DSolve} DSolve [(3*x^2+2)-(x^3+y[x])*y'[x] == 0, y[x], x, Include Singular Solutions \ -> \ True]$

Not solved

3.5 problem 5

Internal problem ID [11600]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${f Section}$: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_Abel, '2nd type', 'class B']]

$$6yx + 2y^{2} + (3x^{2} + 4yx - 6)y' = 5$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 69

 $dsolve((6*x*y(x)+2*y(x)^2-5)+(3*x^2+4*x*y(x)-6)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{-3x^2 + 6 + \sqrt{9x^4 - 8c_1x + 4x^2 + 36}}{4x}$$
$$y(x) = \frac{-3x^2 + 6 - \sqrt{9x^4 - 8c_1x + 4x^2 + 36}}{4x}$$

✓ Solution by Mathematica

Time used: 0.709 (sec). Leaf size: 79

 $DSolve[(6*x*y[x]+2*y[x]^2-5)+(3*x^2+4*x*y[x]-6)*y'[x]==0,y[x],x,IncludeSingularSolutions ->$

$$y(x) \to -\frac{3x^2 + \sqrt{9x^4 + 4x^2 + 16c_1x + 36} - 6}{4x}$$
$$y(x) \to \frac{-3x^2 + \sqrt{9x^4 + 4x^2 + 16c_1x + 36} + 6}{4x}$$

3.6 problem 7

Internal problem ID [11601]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${\bf Section}\colon$ Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, [_Abel, '2nd type', 'class A']]

$$y \sec(x)^{2} + (\tan(x) + 2y) y' = -\sec(x) \tan(x)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 61

 $dsolve((y(x)*sec(x)^2+sec(x)*tan(x))+(tan(x)+2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{\tan(x)}{2} + \frac{\sec(x)\sqrt{-4\cos(x)^2 c_1 + \sin(x)^2 - 4\cos(x)}}{2}$$
$$y(x) = -\frac{\tan(x)}{2} - \frac{\sec(x)\sqrt{-4\cos(x)^2 c_1 + \sin(x)^2 - 4\cos(x)}}{2}$$

✓ Solution by Mathematica

Time used: 1.831 (sec). Leaf size: 101

$$y(x) \to \frac{1}{4} \left(-2\tan(x) - \sqrt{2}\sqrt{\sec^2(x)}\sqrt{-8\cos(x) + (-1 + 4c_1)\cos(2x) + 1 + 4c_1} \right)$$
$$y(x) \to \frac{1}{4} \left(-2\tan(x) + \sqrt{\sec^2(x)}\sqrt{-16\cos(x) + (-2 + 8c_1)\cos(2x) + 2 + 8c_1} \right)$$

3.7 problem 8

Internal problem ID [11602]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${f Section}$: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$\frac{x}{y^2} + \left(\frac{x^2}{y^3} + y\right)y' = -x$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 52

 $dsolve((x/y(x)^2+x)+(x^2/y(x)^3+y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$\frac{\left(-2y(x)^{2}-2\right) \ln \left(y(x)^{2}+1\right)+y(x)^{4}+\left(x^{2}+2c_{1}+1\right) y(x)^{2}+2c_{1}-1}{2 y\left(x\right)^{2}+2}=0$$

✓ Solution by Mathematica

Time used: 0.4 (sec). Leaf size: 55

 $DSolve[(x/y[x]^2+x)+(x^2/y[x]^3+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\frac{x^2 y(x)^2}{2(y(x)^2 + 1)} + \frac{y(x)^2}{2} - \frac{1}{2(y(x)^2 + 1)} - \log(y(x)^2 + 1) = c_1, y(x) \right]$$

3.8 problem 9

Internal problem ID [11603]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\frac{(2s-1)\,s'}{t} + \frac{s-s^2}{t^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

 $\label{eq:dsolve} $$ dsolve((2*s(t)-1)/t*diff(s(t),t)+(s(t)-s(t)^2)/t^2=0,s(t), singsol=all) $$ dsolve((2*s(t)-1)/t*diff(s(t)-s(t)^2)/t^2=0,s(t), singsol=all) $$ dsolve((2*s(t)-1)/t*diff(s(t)-s(t)^2)/t^2=0,s(t), singsol=all) $$ dsolve((2*s(t)-1)/t*diff(s(t)-s(t)^2)/t*diff(s$

$$s(t) = \frac{1}{2} - \frac{\sqrt{4c_1t + 1}}{2}$$
$$s(t) = \frac{1}{2} + \frac{\sqrt{4c_1t + 1}}{2}$$

Solution by Mathematica

Time used: 0.682 (sec). Leaf size: 59

DSolve[(2*s[t]-1)/t*s'[t]+(s[t]-s[t]^2)/t^2==0,s[t],t,IncludeSingularSolutions -> True]

$$s(t) \rightarrow \frac{1}{2} \big(1 - \sqrt{1 - 4e^{c_1}t}\big)$$

$$s(t) o rac{1}{2} (1 + \sqrt{1 - 4e^{c_1}t})$$

$$s(t) \rightarrow 0$$

$$s(t) \rightarrow 1$$

3.9 problem 10

Internal problem ID [11604]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$\frac{2y^{\frac{3}{2}} + 1}{x^{\frac{1}{3}}} + (3\sqrt{x}\sqrt{y} - 1)y' = 0$$

X Solution by Maple

 $dsolve((2*y(x)^(3/2)+1)/x^(1/3)+(3*x^(1/2)*y(x)^(1/2)-1)*diff(y(x),x)=0,y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[(2*y[x]^{(3/2)+1)/x^{(1/3)}+(3*x^{(1/2)}*y[x]^{(1/2)-1}*y'[x]==0,y[x],x,IncludeSingularSolve]$

Timed out

3.10 problem 11

Internal problem ID [11605]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${f Section}$: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_1st_order, '_with_symmetry_[F(x),G(x)]']

$$2yx + \left(x^2 + 4y\right)y' = 3$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 22

 $\label{eq:dsolve} $$\operatorname{dsolve}([(2*x*y(x)-3)+(x^2+4*y(x))*\operatorname{diff}(y(x),x)=0,y(1)=2],y(x),$ singsol=all)$$

$$y(x) = -\frac{x^2}{4} + \frac{\sqrt{x^4 + 24x + 56}}{4}$$

✓ Solution by Mathematica

Time used: 0.218 (sec). Leaf size: 27

$$y(x) \to \frac{1}{4} \Big(\sqrt{x^4 + 24x + 56} - x^2 \Big)$$

3.11 problem 12

Internal problem ID [11606]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

$$3x^{2}y^{2} - y^{3} + (2yx^{3} - 3y^{2}x + 1)y' = -2x$$

With initial conditions

$$[y(-2) = 1]$$

✓ Solution by Maple

Time used: 28.797 (sec). Leaf size: 210

$$dsolve([(3*x^2*y(x)^2-y(x)^3+2*x)+(2*x^3*y(x)-3*x*y(x)^2+1)*diff(y(x),x)=0,y(-2) = 1],y(x),$$

$$y(x) = -\frac{2^{\frac{2}{3}\left(1+i\sqrt{3}\right)\left(\left(2x^{7}+3\sqrt{3}\sqrt{\frac{4x^{10}+4x^{8}+44x^{5}+72x^{3}+27x-4}{x}}+36x^{2}+27\right)x^{2}\right)^{\frac{2}{3}}}{2} + x\left(2x^{2}\left(\left(2x^{7}+3\sqrt{3}\sqrt{\frac{4x^{10}+4x^{8}+44x^{5}+72x^{3}+27x-4}{x}}+36x^{2}+27\right)x^{2}\right)^{\frac{2}{3}}}{6\left(\left(2x^{7}+3\sqrt{3}\sqrt{\frac{4x^{10}+4x^{8}+44x^{5}+72x^{3}+27x-4}{x}}+36x^{2}+27\right)x^{2}\right)^{\frac{2}{3}}}$$

✓ Solution by Mathematica

Time used: 60.368 (sec). Leaf size: 250

$$y(x) \rightarrow \frac{2\sqrt[3]{2}(1-i\sqrt{3}) x^6 + 4\sqrt[3]{-2x^9 - 36x^4 - 27x^2 + 3\sqrt{3}\sqrt{x^3 (4x^{10} + 4x^8 + 44x^5 + 72x^3 + 27x - 4)}x^3 + (1-i\sqrt{3}) x^6 + 4\sqrt[3]{-2x^9 - 36x^4 - 27x^2 + 3\sqrt{3}\sqrt{x^3 (4x^{10} + 4x^8 + 44x^5 + 72x^3 + 27x - 4)}x^3 + (1-i\sqrt{3}) x^6 + 4\sqrt[3]{-2x^9 - 36x^4 - 27x^2 + 3\sqrt{3}\sqrt{x^3 (4x^{10} + 4x^8 + 44x^5 + 72x^3 + 27x - 4)}x^3 + (1-i\sqrt{3}) x^6 + 4\sqrt[3]{-2x^9 - 36x^4 - 27x^2 + 3\sqrt{3}\sqrt{x^3 (4x^{10} + 4x^8 + 44x^5 + 72x^3 + 27x - 4)}x^3 + (1-i\sqrt{3}) x^6 + 4\sqrt[3]{-2x^9 - 36x^4 - 27x^2 + 3\sqrt{3}\sqrt{x^3 (4x^{10} + 4x^8 + 44x^5 + 72x^3 + 27x - 4)}x^3 + (1-i\sqrt{3}) x^6 + 4\sqrt[3]{-2x^9 - 36x^4 - 27x^2 + 3\sqrt{3}\sqrt{x^3 (4x^{10} + 4x^8 + 44x^5 + 72x^3 + 27x - 4)}x^3 + (1-i\sqrt{3}) x^6 +$$

3.12 problem 13

Internal problem ID [11607]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${f Section}$: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, [_Abel, '2nd type', 'class B']]

$$2\sin(x)\cos(x)y + \sin(x)y^{2} + (\sin(x)^{2} - 2y\cos(x))y' = 0$$

With initial conditions

$$[y(0) = 3]$$

Solution by Maple

Time used: 11.656 (sec). Leaf size: 24

 $dsolve([(2*y(x)*sin(x)*cos(x)+y(x)^2*sin(x))+(sin(x)^2-2*y(x)*cos(x))*diff(y(x),x)=0,y(0)=0)$

$$y(x) = \frac{\sec(x) \left(\sin(x)^2 + \sqrt{\sin(x)^4 + 36\cos(x)}\right)}{2}$$

✓ Solution by Mathematica

Time used: 2.029 (sec). Leaf size: $34\,$

DSolve[{(2*y[x]*Sin[x]*Cos[x]+y[x]^2*Sin[x])+(Sin[x]^2-2*y[x]*Cos[x])*y'[x]==0,{y[0]==3}},y[

$$y(x) \to \frac{1}{4}\sec(x)\left(-\cos(2x) + 2\sqrt{\sin^4(x) + 36\cos(x)} + 1\right)$$

3.13 problem 14

Internal problem ID [11608]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${f Section}$: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, [_Abel, '2nd type', 'class B']]

$$y e^{x} + y^{2} + (e^{x} + 2yx) y' = -2 e^{x}$$

With initial conditions

$$[y(0) = 6]$$

✓ Solution by Maple

Time used: 0.344 (sec). Leaf size: 29

$$y(x) = \frac{-e^x + \sqrt{e^{2x} - 8e^x x + 32x}}{2x}$$

✓ Solution by Mathematica

Time used: 32.264 (sec). Leaf size: 37

$$y(x) \to \frac{\sqrt{-8e^x x + 32x + e^{2x}} - e^x}{2x}$$

3.14 problem 15

Internal problem ID [11609]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${f Section}$: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]

$$3 - y + \frac{(y^2 - 2x)y'}{y^2x} = 0$$

With initial conditions

$$[y(-1) = 2]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 21

 $dsolve([(3-y(x))/x^2+((y(x)^2-2*x)/(x*y(x)^2))*diff(y(x),x)=0,y(-1)=2],y(x), singsol=all)$

$$y(x) = x + \frac{3}{2} + \frac{\sqrt{4x^2 + 4x + 9}}{2}$$

✓ Solution by Mathematica

Time used: 1.961 (sec). Leaf size: 28

 $DSolve[{(3-y[x])/x^2+((y[x]^2-2*x)/(x*y[x]^2))*y'[x]==0,{y[-1]==2}},y[x],x,IncludeSingular]$

$$y(x) \to \frac{1}{2} \Big(\sqrt{4x^2 + 4x + 9} + 2x + 3 \Big)$$

3.15 problem 16

Internal problem ID [11610]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _exact, _rational]

$$\frac{1 + 8xy^{\frac{2}{3}}}{x^{\frac{2}{3}}y^{\frac{1}{3}}} + \frac{\left(2x^{\frac{4}{3}}y^{\frac{2}{3}} - x^{\frac{1}{3}}\right)y'}{y^{\frac{4}{3}}} = 0$$

With initial conditions

$$[y(1) = 8]$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 55

$$dsolve([(1+8*x*y(x)^(2/3))/(x^(2/3)*y(x)^(1/3))+((2*x^(4/3)*y(x)^(2/3)-x^(1/3))/(y(x)^(4/3)))$$

$$y(x) = \text{RootOf}\left(64 _Z_{3}^{\frac{7}{3}}x^{4} + 96 _Z_{3}^{\frac{5}{3}}x^{3} - 729 _Z_{3}^{\frac{4}{3}} + 48x^{2} _Z + 8x _Z_{3}^{\frac{1}{3}}\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

$$DSolve[{(1+8*x*y[x]^{(2/3)})/(x^{(2/3)*y[x]^{(1/3)}+((2*x^{(4/3)*y[x]^{(2/3)}-x^{(1/3)})/(y[x]^{(4/3)})}$$

{}

3.16 problem 21

Internal problem ID [11611]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$3y^2 + 2xyy' = -4x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

 $dsolve((4*x+3*y(x)^2)+(2*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = rac{\sqrt{x(-x^4 + c_1)}}{x^2}$$
 $y(x) = -rac{\sqrt{x(-x^4 + c_1)}}{x^2}$

✓ Solution by Mathematica

Time used: 0.349 (sec). Leaf size: 46

 $DSolve[(4*x+3*y[x]^2)+(2*x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt{-x^4 + c_1}}{x^{3/2}}$$

 $y(x) \to \frac{\sqrt{-x^4 + c_1}}{x^{3/2}}$

3.17 problem 22

Internal problem ID [11612]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y^2 + 2yx - x^2y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((y(x)^2+2*x*y(x))-x^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{x^2}{c_1 - x}$$

Solution by Mathematica

Time used: 0.221 (sec). Leaf size: 23 $\,$

 $DSolve[(y[x]^2+2*x*y[x])-x^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{x^2}{x - c_1}$$
$$y(x) \to 0$$

3.18 problem 24

Internal problem ID [11613]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${f Section}$: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

$$y + x(x^{2} + y^{2})^{2} + (y(x^{2} + y^{2})^{2} - x)y' = 0$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 28

 $dsolve((y(x)+x*(x^2+y(x)^2)^2)+(y(x)*(x^2+y(x)^2)^2-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \cot (\text{RootOf} (4c_1 \sin (\underline{Z})^4 - 4\underline{Z}\sin (\underline{Z})^4 - x^4)) x$$

✓ Solution by Mathematica

Time used: 0.144 (sec). Leaf size: 40

Solve
$$\left[\arctan\left(\frac{x}{y(x)}\right) + \frac{x^4}{4} + \frac{1}{2}x^2y(x)^2 + \frac{y(x)^4}{4} = c_1, y(x)\right]$$

Chapter 2, section 2.2 (Separable equations). 4 Exercises page 47 4.1 52 4.253 4.354 4.4 55 4.556 4.657 58 4.7problem 7 4.8 60 4.9problem 9 61 62 4.10 problem 10 63 4.11 problem 11 64 4.12 problem 12 4.13 problem 13 66 68 4.14 problem 14 4.15 problem 15 69 70 4.16 problem 16 4.17 problem 17 7172 4.18 problem 18 73 4.19 problem 19 74 4.20 problem 20 75 76

77

4.1 problem 1

Internal problem ID [11614]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$4yx + \left(x^2 + 1\right)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve((4*x*y(x))+(x^2+1)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{(x^2 + 1)^2}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 20

 $DSolve[(4*x*y[x])+(x^2+1)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1}{(x^2+1)^2}$$
$$y(x) \to 0$$

4.2 problem 2

Internal problem ID [11615]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 2.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$yx + y + (x^2 + 2x)y' = -2x - 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((x*y(x)+2*x+y(x)+2)+(x^2+2*x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -2 + \frac{c_1}{\sqrt{x(x+2)}}$$

✓ Solution by Mathematica

Time used: 0.149 (sec). Leaf size: 27

 $DSolve[(x*y[x]+2*x+y[x]+2)+(x^2+2*x)*y'[x]==0,y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \rightarrow -2 + \frac{c_1}{\sqrt{x}\sqrt{x+2}}$$

 $y(x) \rightarrow -2$

4.3 problem 3

Internal problem ID [11616]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 3.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2r(s^2+1) + (r^4+1) s' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(2*r*(s(r)^2+1)+(r^4+1)*diff(s(r),r)=0,s(r), singsol=all)$

$$s(r) = -\tan\left(\arctan\left(r^2\right) + 2c_1\right)$$

✓ Solution by Mathematica

Time used: 0.478 (sec). Leaf size: 31

DSolve $[2*r*(s[r]^2+1)+(r^4+1)*s'[r]==0,s[r],r,IncludeSingularSolutions -> True]$

$$s(r)
ightarrow - an \left(\arctan \left(r^2
ight) - c_1
ight)$$

$$s(r) \rightarrow -i$$

$$s(r) \rightarrow i$$

problem 4 4.4

Internal problem ID [11617]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\csc(y) + y'\sec(x) = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(csc(y(x))+sec(x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \arccos(\sin(x) + c_1)$$

Solution by Mathematica

Time used: 0.696 (sec). Leaf size: 27

DSolve[Csc[y[x]]+Sec[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

 $y(x) \to -\arccos(\sin(x) - c_1)$ $y(x) \to \arccos(\sin(x) - c_1)$

4.5 problem 5

Internal problem ID [11618]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\tan\left(\theta\right) + 2r\theta' = 0$$

✓ Solution by Maple

Time used: 0.313 (sec). Leaf size: 21

dsolve(tan(theta(r))+2*r*diff(theta(r),r)=0,theta(r), singsol=all)

$$\theta(r) = \arcsin\left(\frac{1}{\sqrt{c_1 r}}\right)$$

$$\theta(r) = -\arcsin\left(\frac{1}{\sqrt{c_1 r}}\right)$$

✓ Solution by Mathematica

Time used: 15.319 (sec). Leaf size: 21 $\,$

DSolve[Tan[theta[r]]+2*r*theta'[r]==0,theta[r],r,IncludeSingularSolutions -> True]

$$\theta(r) \to \arcsin\left(\frac{e^{c_1}}{\sqrt{r}}\right)$$
 $\theta(r) \to 0$

4.6 problem 6

Internal problem ID [11619]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(e^{v} + 1)\cos(u) + e^{v}(1 + \sin(u))v' = 0$$

✓ Solution by Maple

Time used: 0.64 (sec). Leaf size: 29

dsolve((exp(v(u))+1)*cos(u) + exp(v(u))*(1+sin(u))*diff(v(u),u)=0,v(u), singsol=all)

$$v(u) = -\ln\left(\frac{-1 - \sin(u)}{-1 + (1 + \sin(u))e^{c_1}}\right) - c_1$$

✓ Solution by Mathematica

Time used: 5.457 (sec). Leaf size: 37

DSolve[(Exp[v[u]]+1)*Cos[u] + Exp[v[u]]*(1+Sin[u])*v'[u]==0,v[u],u,IncludeSingularSolutions

$$v(u) \to \log \left(-1 + \frac{e^{c_1}}{\left(\sin\left(\frac{u}{2}\right) + \cos\left(\frac{u}{2}\right)\right)^2}\right)$$
 $v(u) \to i\pi$

4.7 problem 7

Internal problem ID [11620]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x+4)(1+y^2) + y(x^2 + 3x + 2)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 114

$$dsolve((x+4)*(y(x)^2+1) + y(x)*(x^2+3*x+2)*diff(y(x),x)=0,y(x), singsol=all)$$

$$y(x) = \frac{\sqrt{-x^6 - 6x^5 + x^4c_1 + (8c_1 + 100)x^3 + (24c_1 + 345)x^2 + (32c_1 + 474)x + 16c_1 + 239}}{(1+x)^3}$$

$$y(x) = \frac{\sqrt{-x^6 - 6x^5 + x^4c_1 + (8c_1 + 100)x^3 + (24c_1 + 345)x^2 + (32c_1 + 474)x + 16c_1 + 239}}{(1+x)^3}$$

✓ Solution by Mathematica

Time used: 5.501 (sec). Leaf size: 126

 $DSolve[(x+4)*(y[x]^2+1) + y[x]*(x^2+3*x+2)*y'[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt{-(x+1)^6 + e^{2c_1}(x+2)^4}}{(x+1)^3}$$

$$y(x) \to \frac{\sqrt{-(x+1)^6 + e^{2c_1}(x+2)^4}}{(x+1)^3}$$

$$y(x) \to -i$$

$$y(x) \to i$$

$$y(x) \to \frac{(x+1)^3}{\sqrt{-(x+1)^6}}$$

$$y(x) \to \frac{\sqrt{-(x+1)^6}}{(x+1)^3}$$

4.8 problem 8

Internal problem ID [11621]

 $\textbf{Book} \hbox{: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.} \\$

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y - y'x = -x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve((x+y(x))-x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = (\ln(x) + c_1) x$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 12

 $DSolve[(x+y[x])-x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x(\log(x) + c_1)$$

4.9 problem 9

Internal problem ID [11622]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$2yx + 3y^{2} - (2yx + x^{2})y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

 $dsolve((2*x*y(x)+3*y(x)^2)-(2*x*y(x)+x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{(1 + \sqrt{4c_1x + 1}) x}{2}$$
$$y(x) = \frac{(-1 + \sqrt{4c_1x + 1}) x}{2}$$

✓ Solution by Mathematica

Time used: 0.618 (sec). Leaf size: $61\,$

$$y(x) \to -\frac{1}{2}x \left(1 + \sqrt{1 + 4e^{c_1}x}\right)$$
$$y(x) \to \frac{1}{2}x \left(-1 + \sqrt{1 + 4e^{c_1}x}\right)$$
$$y(x) \to 0$$
$$y(x) \to -x$$

4.10 problem 10

Internal problem ID [11623]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 10.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\;Maple\;gives\;this\;as\;type\;[[_homogeneous,\; `class\;A'],\;_rational,\;_dAlembert]}$

$$v^{3} + (u^{3} - uv^{2})v' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 32

 $dsolve(v(u)^3+ (u^3-u*v(u)^2)*diff(v(u),u)=0,v(u), singsol=all)$

$$v(u) = rac{\mathrm{e}^{-c_1}}{\sqrt{-rac{\mathrm{e}^{-2c_1}}{u^2 \operatorname{LambertW}\left(-rac{\mathrm{e}^{-2c_1}}{u^2}
ight)}}}$$

✓ Solution by Mathematica

Time used: 9.023 (sec). Leaf size: 56

DSolve[v[u]^3+ (u^3-u*v[u]^2)*v'[u]==0,v[u],u,IncludeSingularSolutions -> True]

$$egin{aligned} v(u) &
ightarrow -iu \sqrt{W\left(-rac{e^{-2c_1}}{u^2}
ight)} \ v(u) &
ightarrow iu \sqrt{W\left(-rac{e^{-2c_1}}{u^2}
ight)} \ v(u) &
ightarrow 0 \end{aligned}$$

4.11 problem 11

Internal problem ID [11624]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$x \tan\left(\frac{y}{x}\right) + y - y'x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 10

dsolve((x*tan(y(x)/x)+y(x))-x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \arcsin(c_1 x) x$$

✓ Solution by Mathematica

Time used: 8.002 (sec). Leaf size: 19

DSolve[(x*Tan[y[x]/x]+y[x])- x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x \arcsin\left(e^{c_1}x\right)$$

$$y(x) \to 0$$

4.12 problem 12

Internal problem ID [11625]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 12.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _exact,\ _rational,\ _dAlembert]}$

$$(2s^{2} + 2st + t^{2}) s' + s^{2} + 2st = t^{2}$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 348

 $dsolve((2*s(t)^2+2*s(t)*t+t^2)*diff(s(t),t)+(s(t)^2+2*s(t)*t-t^2)=0,s(t), singsol=all)$

$$s(t) = \frac{\left(4t^3c_1^3 + 2 + \sqrt{17c_1^6t^6 + 16t^3c_1^3 + 4}\right)^{\frac{1}{3}} - \frac{t^2c_1^2}{\left(4t^3c_1^3 + 2 + \sqrt{17c_1^6t^6 + 16t^3c_1^3 + 4}\right)^{\frac{1}{3}}} - c_1t}{2c_1}$$

$$s(t) = \frac{2c_1}{s(t)} = \frac{\left(1 + i\sqrt{3}\right)\left(4t^3c_1^3 + 2 + \sqrt{17c_1^6t^6 + 16t^3c_1^3 + 4}\right)^{\frac{2}{3}} + c_1t\left(2\left(4t^3c_1^3 + 2 + \sqrt{17c_1^6t^6 + 16t^3c_1^3 + 4}\right)^{\frac{1}{3}} + (i\sqrt{3})\left(4t^3c_1^3 + 2 + \sqrt{17c_1^6t^6 + 16t^3c_1^3 + 4}\right)^{\frac{1}{3}}}{4\left(4t^3c_1^3 + 2 + \sqrt{17c_1^6t^6 + 16t^3c_1^3 + 4}\right)^{\frac{1}{3}}c_1}$$

$$=\frac{\left(i\sqrt{3}-1\right)\left(4t^3c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{2}{3}}+\left(-2\left(4t^3c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}+c_1t\left(1-\frac{1}{3}c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}$$

✓ Solution by Mathematica

Time used: 48.03 (sec). Leaf size: 616

$$\begin{split} s(t) & \to \frac{1}{2} \left(\sqrt[3]{4t^3 + \sqrt{17t^6 + 16e^{3c_1}t^3 + 4e^{6c_1}}} + 2e^{3c_1} \right. \\ & - \frac{t^2}{\sqrt[3]{4t^3 + \sqrt{17t^6 + 16e^{3c_1}t^3 + 4e^{6c_1}}} + 2e^{3c_1}} - t \right) \\ s(t) & \to \frac{1}{8} \left(2i \left(\sqrt{3} + i \right) \sqrt[3]{4t^3 + \sqrt{17t^6 + 16e^{3c_1}t^3 + 4e^{6c_1}}} + 2e^{3c_1} \right. \\ & + \frac{2\left(1 + i\sqrt{3} \right) t^2}{\sqrt[3]{4t^3 + \sqrt{17t^6 + 16e^{3c_1}t^3 + 4e^{6c_1}}} + 2e^{3c_1}} - 4t \right) \\ s(t) & \to \frac{1}{8} \left(-2\left(1 + i\sqrt{3} \right) \sqrt[3]{4t^3 + \sqrt{17t^6 + 16e^{3c_1}t^3 + 4e^{6c_1}}} + 2e^{3c_1} \right. \\ & + \frac{2\left(1 - i\sqrt{3} \right) t^2}{\sqrt[3]{4t^3 + \sqrt{17t^6 + 16e^{3c_1}t^3 + 4e^{6c_1}}} + 2e^{3c_1}} \right. \\ s(t) & \to \frac{1}{2} \left(\sqrt[3]{\sqrt{17}\sqrt{t^6} + 4t^3} - \frac{t^2}{\sqrt[3]{\sqrt{17}\sqrt{t^6} + 4t^3}} - t \right) \\ s(t) & \to \frac{1}{4} \left(\left(-1 - i\sqrt{3} \right) \sqrt[3]{\sqrt{17}\sqrt{t^6} + 4t^3} + \frac{\left(1 - i\sqrt{3} \right) t^2}{\sqrt[3]{\sqrt{17}\sqrt{t^6} + 4t^3}} - 2t \right) \\ s(t) & \to \frac{1}{4} \left(i \left(\sqrt{3} + i \right) \sqrt[3]{\sqrt{17}\sqrt{t^6} + 4t^3} + \frac{\left(1 + i\sqrt{3} \right) t^2}{\sqrt[3]{\sqrt{17}\sqrt{t^6} + 4t^3}} - 2t \right) \\ \end{split}$$

4.13 problem 13

Internal problem ID [11626]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y^2 \sqrt{x^2 + y^2} - xy \sqrt{x^2 + y^2} y' = -x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

 $\frac{dsolve((x^3+y(x)^2*sqrt(x^2+y(x)^2))-x*y(x)*sqrt(x^2+y(x)^2)*diff(y(x),x)=0,y}{(x), singsol=al}$

$$\frac{\left(-y(x)^{2}-x^{2}\right)\sqrt{y\left(x\right)^{2}+x^{2}}-x^{3}\left(c_{1}-3\ln\left(x\right)\right)}{x^{3}}=0$$

✓ Solution by Mathematica

Time used: 28.664 (sec). Leaf size: 265

 $DSolve[(x^3+y[x]^2*Sqrt[x^2+y[x]^2])-x*y[x]*Sqrt[x^2+y[x]^2]*y'[x]==0,y[x],x,IncludeSingular]$

$$y(x) \to -\sqrt{-x^2 - \frac{1}{2}\sqrt[6]{3}\left(\sqrt{3} + 3i\right)\sqrt[3]{x^6(\log(x) + c_1)^2}}$$

$$y(x) \to \sqrt{-x^2 - \frac{1}{2}\sqrt[6]{3}\left(\sqrt{3} + 3i\right)\sqrt[3]{x^6(\log(x) + c_1)^2}}$$

$$y(x) \to -\sqrt{-x^2 - \frac{1}{2}\sqrt[6]{3}\left(\sqrt{3} - 3i\right)\sqrt[3]{x^6(\log(x) + c_1)^2}}$$

$$y(x) \to \sqrt{-x^2 - \frac{1}{2}\sqrt[6]{3}\left(\sqrt{3} - 3i\right)\sqrt[3]{x^6(\log(x) + c_1)^2}}$$

$$y(x) \to -\sqrt{-x^2 + 3^{2/3}\sqrt[3]{x^6(\log(x) + c_1)^2}}$$

$$y(x) \to \sqrt{-x^2 + 3^{2/3}\sqrt[3]{x^6(\log(x) + c_1)^2}}$$

4.14 problem 14

Internal problem ID [11627]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$\sqrt{y+x} + \sqrt{-y+x} + \left(\sqrt{-y+x} - \sqrt{y+x}\right)y' = 0$$

✓ Solution by Maple

Time used: 2.796 (sec). Leaf size: 36

$$\ln(x) + \ln\left(\frac{y(x)}{x}\right) - \operatorname{arctanh}\left(\frac{1}{\sqrt{-\frac{-x^2 + y(x)^2}{x^2}}}\right) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 2.828 (sec). Leaf size: 84

DSolve[(Sqrt[x+y[x]]+Sqrt[x-y[x]])+(Sqrt[x-y[x]]-Sqrt[x+y[x]])*y'[x]==0,y[x],x,IncludeSingul

$$y(x) \to -\frac{1}{4} \left(\cosh\left(\frac{c_1}{2}\right) + \sinh\left(\frac{c_1}{2}\right) \right) \sqrt{-8ix + \cosh(c_1) + \sinh(c_1)}$$
$$y(x) \to \frac{1}{4} \left(\cosh\left(\frac{c_1}{2}\right) + \sinh\left(\frac{c_1}{2}\right) \right) \sqrt{-8ix + \cosh(c_1) + \sinh(c_1)}$$
$$y(x) \to 0$$

4.15 problem 15

Internal problem ID [11628]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y + y(x+4)y' = -2$$

With initial conditions

$$[y(-3) = -1]$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 18

dsolve([(y(x)+2)+(y(x)*(x+4))*diff(y(x),x)=0,y(-3) = -1],y(x), singsol=all)

$$y(x) = -2 \operatorname{LambertW}\left(-\frac{\sqrt{x+4} \operatorname{e}^{-\frac{1}{2}}}{2}\right) - 2$$

✓ Solution by Mathematica

Time used: 12.779 (sec). Leaf size: 26

 $DSolve[\{(y[x]+2)+(y[x]*(x+4))*y'[x]==0,\{y[-3]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -2\left(W\left(-\frac{\sqrt{x+4}}{2\sqrt{e}}\right) + 1\right)$$

4.16 problem 16

Internal problem ID [11629]

 $\bf Book:$ Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$8\cos(y)^{2} + \csc(x)^{2}y' = 0$$

With initial conditions

$$\left[y\Big(\frac{\pi}{12}\Big) = \frac{\pi}{4}\right]$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 20

 $dsolve([(8*cos(y(x))^2)+csc(x)^2*diff(y(x),x)=0,y(1/12*Pi) = 1/4*Pi],y(x), singsol=all)$

$$y(x) = -\arctan\left(-\frac{\pi}{3} + 4x - 2\sin(2x)\right)$$

✓ Solution by Mathematica

Time used: 1.156 (sec). Leaf size: 21

$$y(x) \to \arctan\left(-4x + 2\sin(2x) + \frac{\pi}{3}\right)$$

4.17 problem 17

Internal problem ID [11630]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(3x+8)(y^2+4) - 4y(x^2+5x+6)y' = 0$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 21

 $dsolve([(3*x+8)*(y(x)^2+4)-4*y(x)*(x^2+5*x+6)*diff(y(x),x)=0,y(1) = 2],y(x), singsol=all)$

$$y(x) = \frac{2\sqrt{-9 + (3x+6)\sqrt{x+3}}}{3}$$

✓ Solution by Mathematica

Time used: 4.88 (sec). Leaf size: 36

$$y(x) \to \frac{2\sqrt{\sqrt{x+3}x+2\sqrt{x+3}-3}}{\sqrt{3}}$$

4.18 problem 18

Internal problem ID [11631]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$3y^2 - 2xyy' = -x^2$$

With initial conditions

$$[y(2) = 6]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 13

 $dsolve([(x^2+3*y(x)^2)-2*x*y(x)*diff(y(x),x)=0,y(2) = 6],y(x), singsol=all)$

$$y(x) = \sqrt{5x - 1} \, x$$

✓ Solution by Mathematica

Time used: 0.455 (sec). Leaf size: 16

DSolve[{(x^2+3*y[x]^2)-2*x*y[x]*y'[x]==0,{y[2]==6}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x\sqrt{5x-1}$$

4.19 problem 19

Internal problem ID [11632]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$-5y + (4x - y)y' = -2x$$

With initial conditions

$$[y(1) = 4]$$

Solution by Maple

Time used: 0.218 (sec). Leaf size: 35

dsolve([(2*x-5*y(x))+(4*x-y(x))*diff(y(x),x)=0,y(1) = 4],y(x), singsol=all)

$$y(x) = 6 - 2x - 6\sqrt{1 - x}$$
$$y(x) = 6 - 2x + 6\sqrt{1 - x}$$

✓ Solution by Mathematica

Time used: 2.199 (sec). Leaf size: 41

$$y(x) \to -2x - 6i\sqrt{x - 1} + 6$$

$$y(x) \to -2x + 6i\sqrt{x-1} + 6$$

4.20 problem 20

Internal problem ID [11633]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$9yx + 5y^2 - (6x^2 + 4yx)y' = -3x^2$$

With initial conditions

$$[y(2) = -6]$$

✓ Solution by Maple

Time used: 0.265 (sec). Leaf size: 21

$$y(x) = -\frac{\left(3 + \sqrt{-3 + 6\sqrt{2}\sqrt{x}}\right)x}{2}$$

✓ Solution by Mathematica

Time used: 37.251 (sec). Leaf size: 30

 $DSolve[{(3*x^2+9*x*y[x]+5*y[x]^2)-(6*x^2+4*x*y[x])*y'[x]==0, {y[2]==-6}}, y[x], x, IncludeSingular = 0, {y[2]==-6}}, y[x], y[$

$$y(x) o -rac{1}{2} \left(\sqrt{6\sqrt{2}\sqrt{x}-3} + 3 \right) x$$

4.21 problem 22(a)

Internal problem ID [11634]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 22(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, [_Abel, '2nd ty

$$2y + (2x - y)y' = -x$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 51

 $\label{eq:decomposition} \\ \mbox{dsolve}((x+2*y(x))+(2*x-y(x))*\mbox{diff}(y(x),x)=0,y(x), \mbox{ singsol=all}) \\$

$$y(x) = \frac{2c_1x - \sqrt{5c_1^2x^2 + 1}}{c_1}$$
$$y(x) = \frac{2c_1x + \sqrt{5c_1^2x^2 + 1}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.777 (sec). Leaf size: 94

 $DSolve[(x+2*y[x])+(2*x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow 2x - \sqrt{5x^2 + e^{2c_1}}$$

$$y(x) \rightarrow 2x + \sqrt{5x^2 + e^{2c_1}}$$

$$y(x) \rightarrow 2x - \sqrt{5}\sqrt{x^2}$$

$$y(x) \rightarrow \sqrt{5}\sqrt{x^2} + 2x$$

4.22 problem 22(b)

Internal problem ID [11635]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 22(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, [_Abel, '2nd ty

$$-y - (y+x)y' = -3x$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 51

dsolve((3*x-y(x))-(x+y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{-c_1 x - \sqrt{4c_1^2 x^2 + 1}}{c_1}$$
$$y(x) = \frac{-c_1 x + \sqrt{4c_1^2 x^2 + 1}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.752 (sec). Leaf size: 85

 $DSolve[(3*x-y[x])-(x+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x - \sqrt{4x^2 + e^{2c_1}}$$

$$y(x) \to -x + \sqrt{4x^2 + e^{2c_1}}$$

$$y(x) \to -2\sqrt{x^2} - x$$

$$y(x) \to 2\sqrt{x^2} - x$$

4.23 problem 23(a)

Internal problem ID [11636]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 23(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$2y^{2} + (4yx - y^{2})y' = -x^{2}$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 439

 $dsolve((x^2+2*y(x)^2)+(4*x*y(x)-y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\frac{\left(4+68c_1^3x^3+4\sqrt{33c_1^6x^6+34c_1^3x^3+1}\right)^{\frac{1}{3}}}{2} + \frac{8x^2c_1^2}{\left(4+68c_1^3x^3+4\sqrt{33c_1^6x^6+34c_1^3x^3+1}\right)^{\frac{1}{3}}} + 2c_1x}{c_1}$$

$$y(x) = \frac{1}{c_1}$$

$$=\frac{-\frac{\left(4+68c_{1}^{3}x^{3}+4\sqrt{33c_{1}^{6}x^{6}+34c_{1}^{3}x^{3}+1}\right)^{\frac{1}{3}}}{4}-\frac{4x^{2}c_{1}^{2}}{\left(4+68c_{1}^{3}x^{3}+4\sqrt{33c_{1}^{6}x^{6}+34c_{1}^{3}x^{3}+1}\right)^{\frac{1}{3}}}+2c_{1}x-\frac{i\sqrt{3}\left(-16c_{1}^{2}x^{2}+\left(4+68c_{1}^{3}x^{3}+4\sqrt{33c_{1}^{6}x^{6}+34c_{1}^{3}x^{3}+1}\right)^{\frac{1}{3}}}{4\left(4+68c_{1}^{3}x^{3}+4\sqrt{33c_{1}^{6}x^{6}+34c_{1}^{3}x^{3}+1}\right)^{\frac{1}{3}}}$$

$$y(x) = \frac{16i\sqrt{3}c_1^2x^2 - i\sqrt{3}\left(4 + 68c_1^3x^3 + 4\sqrt{33c_1^6x^6 + 34c_1^3x^3 + 1}\right)^{\frac{2}{3}} + 16c_1^2x^2 - 8c_1x\left(4 + 68c_1^3x^3 + 4\sqrt{33c_1^6x^6 + 34c_1^3x^3 + 1}\right)}{4\left(4 + 68c_1^3x^3 + 4\sqrt{33c_1^6x^6 + 34c_1^3x^3 + 1}\right)}$$

✓ Solution by Mathematica

Time used: 33.481 (sec). Leaf size: 731

$$\begin{split} y(x) & \to \frac{\sqrt[3]{17x^3 + \sqrt{33x^6 + 34e^{3c_1}x^3 + e^{6c_1} + e^{3c_1}}}{\sqrt[3]{2}} \\ & + \frac{4\sqrt[3]{2}x^2}{\sqrt[3]{17x^3 + \sqrt{33x^6 + 34e^{3c_1}x^3 + e^{6c_1} + e^{3c_1}}}} \\ + 2x \\ y(x) & \to -\frac{\left(1 - i\sqrt{3}\right)\sqrt[3]{17x^3 + \sqrt{33x^6 + 34e^{3c_1}x^3 + e^{6c_1} + e^{3c_1}}}{2\sqrt[3]{2}} \\ & - \frac{2\sqrt[3]{2}\left(1 + i\sqrt{3}\right)x^2}{\sqrt[3]{17x^3 + \sqrt{33x^6 + 34e^{3c_1}x^3 + e^{6c_1} + e^{3c_1}}}} \\ y(x) & \to -\frac{\left(1 + i\sqrt{3}\right)\sqrt[3]{17x^3 + \sqrt{33x^6 + 34e^{3c_1}x^3 + e^{6c_1} + e^{3c_1}}}}{2\sqrt[3]{2}} \\ & - \frac{2\sqrt[3]{2}\left(1 - i\sqrt{3}\right)x^2}{\sqrt[3]{17x^3 + \sqrt{33x^6 + 34e^{3c_1}x^3 + e^{6c_1} + e^{3c_1}}}} \\ + 2x \\ y(x) & \to -\frac{2\sqrt[3]{2}\left(1 - i\sqrt{3}\right)x^2}{\sqrt[3]{17x^3 + \sqrt{33x^6 + 34e^{3c_1}x^3 + e^{6c_1} + e^{3c_1}}}} \\ + 2x \\ y(x) & \to \frac{8\sqrt[3]{2}x^2 + 4\sqrt[3]{\sqrt{33}\sqrt{x^6 + 17x^3}x + 2^{2/3}\left(\sqrt{33}\sqrt{x^6 + 17x^3}\right)^{2/3}}}{2\sqrt[3]{\sqrt{33}\sqrt{x^6 + 17x^3}}} \\ y(x) & \to \frac{8i\sqrt[3]{2}\sqrt[3]{3}x^2 - 8\sqrt[3]{2}x^2 + 8\sqrt[3]{\sqrt{33}\sqrt{x^6 + 17x^3}x - i2^{2/3}\sqrt{3}\left(\sqrt{33}\sqrt{x^6 + 17x^3}\right)^{2/3}} - 2^{2/3}\left(\sqrt{33}\sqrt{x^6 + 17x^3}\right)} \\ y(x) & \to \frac{\left(\sqrt{33}\sqrt{x^6 + 17x^3}\right)^{2/3}\operatorname{Root}\left[2\#1^3 - 18x, 3\right] - 4\sqrt[3]{-2x^2 + 2\sqrt[3]{\sqrt{33}\sqrt{x^6 + 17x^3}x}}}}{\sqrt[3]{\sqrt{33}\sqrt{x^6 + 17x^3}}} \\ y(x) & \to \frac{\left(\sqrt{33}\sqrt{x^6 + 17x^3}\right)^{2/3}\operatorname{Root}\left[2\#1^3 - 18x, 3\right] - 4\sqrt[3]{-2x^2 + 2\sqrt[3]{\sqrt{33}\sqrt{x^6 + 17x^3}x}}}}{\sqrt[3]{\sqrt{33}\sqrt{x^6 + 17x^3}}} \\ \end{split}$$

4.24 problem 23(b)

Internal problem ID [11637]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 23(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, [_Abel, '2nd ty

$$2yx + y^{2} + (2yx + x^{2})y' = -2x^{2}$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 80

 $dsolve((2*x^2+2*x*y(x)+y(x)^2)+(x^2+2*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{-3c_1^2x^2 + \sqrt{3}\sqrt{-5\left(c_1^3x^3 - \frac{4}{5}\right)c_1x}}{6c_1^2x}$$
$$y(x) = \frac{-3c_1^2x^2 - \sqrt{3}\sqrt{-5\left(c_1^3x^3 - \frac{4}{5}\right)c_1x}}{6c_1^2x}$$

✓ Solution by Mathematica

Time used: 1.277 (sec). Leaf size: 150

$$y(x) \to \frac{1}{6} \left(-3x - \frac{\sqrt{3}\sqrt{-5x^3 + 4e^{3c_1}}}{\sqrt{x}} \right)$$

$$y(x) \to \frac{1}{6} \left(-3x + \frac{\sqrt{3}\sqrt{-5x^3 + 4e^{3c_1}}}{\sqrt{x}} \right)$$

$$y(x) \to \frac{1}{6} x \left(\frac{\sqrt{15}x^{3/2}}{\sqrt{-x^3}} - 3 \right)$$

$$y(x) \to \frac{\sqrt{\frac{5}{3}}\sqrt{-x^3}}{2\sqrt{x}} - \frac{x}{2}$$

83

5.37	problem 41																																				1:	ا2	
	PICOLULE II	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	_	_	٦

5.1 problem 1

Internal problem ID [11638]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{3y}{x} = 6x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(diff(y(x),x)+3*y(x)/x=6*x^2,y(x), singsol=all)$

$$y(x) = \frac{x^6 + c_1}{x^3}$$

✓ Solution by Mathematica

Time used: 0.071 (sec). Leaf size: 15 $\,$

DSolve[y'[x]+3*y[x]/x==6*x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^6 + c_1}{x^3}$$

5.2 problem 2

Internal problem ID [11639]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x^4y' + 2yx^3 = 1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

 $dsolve(x^4*diff(y(x),x)+2*x^3*y(x)=1,y(x), singsol=all)$

$$y(x) = \frac{c_1 x - 1}{x^3}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 15

DSolve[x^4*y'[x]+2*x^3*y[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{-1 + c_1 x}{x^3}$$

5.3 problem 3

Internal problem ID [11640]

 $\textbf{Book} \hbox{: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.} \\$

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 3y = 3x^2 e^{-3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)+3*y(x)=3*x^2*exp(-3*x),y(x), singsol=all)$

$$y(x) = \left(x^3 + c_1\right) e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 17

DSolve[y'[x]+3*y[x]==3*x^2*Exp[-3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-3x} \left(x^3 + c_1 \right)$$

5.4 problem 4

Internal problem ID [11641]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + 4yx = 8x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)+4*x*y(x)=8*x,y(x), singsol=all)

$$y(x) = 2 + e^{-2x^2} c_1$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 22

DSolve[y'[x]+4*x*y[x]==8*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 2 + c_1 e^{-2x^2}$$
$$y(x) \to 2$$

5.5 problem 5

Internal problem ID [11642]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' + \frac{x}{t^2} = \frac{1}{t^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(x(t),t)+x(t)/t^2=1/t^2,x(t), singsol=all)$

$$x(t) = 1 + e^{\frac{1}{t}}c_1$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 20

DSolve[x'[t]+x[t]/t^2==1/t^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to 1 + c_1 e^{\frac{1}{t}}$$
$$x(t) \to 1$$

5.6 problem 6

Internal problem ID [11643]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\left(u^2+1\right)v'+4vu=3u$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((u^2+1)*diff(v(u),u)+4*u*v(u)=3*u,v(u), singsol=all)$

$$v(u) = \frac{3}{4} + \frac{c_1}{(u^2 + 1)^2}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 38

DSolve[(u^2+1)*v'[u]+4*u*v[u]==3*u,v[u],u,IncludeSingularSolutions -> True]

$$v(u) \to \frac{3u^4 + 6u^2 + 4c_1}{4(u^2 + 1)^2}$$

 $v(u) \to \frac{3}{4}$

5.7 problem 7

Internal problem ID [11644]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x + \frac{(2x+1)y}{1+x} = x - 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(x*diff(y(x),x)+(2*x+1)/(x+1)*y(x)=x-1,y(x), singsol=all)

$$y(x) = \frac{x^3 + 3c_1 - 3x}{3x(1+x)}$$

Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 28

 $DSolve[x*y'[x]+(2*x+1)/(x+1)*y[x]==x-1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^3 - 3x + 3c_1}{3x(x+1)}$$

5.8 problem 8

Internal problem ID [11645]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(x^2 + x - 2)y' + 3y(1+x) = x - 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $dsolve((x^2+x-2)*diff(y(x),x)+3*(x+1)*y(x)=x-1,y(x), singsol=all)$

$$y(x) = \frac{\frac{(-1+x)^3}{3} + c_1}{(x+2)(-1+x)^2}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 34

 $DSolve[(x^2+x-2)*y'[x]+3*(x+1)*y[x]==x-1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^3 - 3x^2 + 3x + 3c_1}{3x^3 - 9x + 6}$$

5.9 problem 9

Internal problem ID [11646]

 $\textbf{Book} \hbox{: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.} \\$

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x + yx + y = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(x*diff(y(x),x)+(x*y(x)+y(x)-1)=0,y(x), singsol=all)

$$y(x) = \frac{c_1 \mathrm{e}^{-x} + 1}{x}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 19

 $DSolve[x*y'[x]+(x*y[x]+y[x]-1)==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1 + c_1 e^{-x}}{x}$$

5.10 problem 10

Internal problem ID [11647]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$y + (y^2x + x - y)y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

 $dsolve(y(x)+(x*y(x)^2+x-y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = rac{\mathrm{e}^{\mathrm{RootOf}(c_1^2 \mathrm{e}^2 - Z + 2x^2 - Z + 2c_1 \mathrm{e}^{-Z} + 1)} c_1 + 1}{x}$$

✓ Solution by Mathematica

Time used: 0.206 (sec). Leaf size: $27\,$

 $DSolve[y[x]+(x*y[x]^2+x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[x = \frac{1}{y(x)} + \frac{c_1 e^{-\frac{1}{2}y(x)^2}}{y(x)}, y(x) \right]$$

5.11 problem 11

Internal problem ID [11648]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$r' + r \tan(t) = \cos(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(r(t),t)+r(t)*tan(t)=cos(t),r(t), singsol=all)

$$r(t) = (t + c_1)\cos(t)$$

✓ Solution by Mathematica

Time used: 0.06 (sec). Leaf size: 12

DSolve[r'[t]+r[t]*Tan[t]==Cos[t],r[t],t,IncludeSingularSolutions -> True]

$$r(t) \to (t + c_1)\cos(t)$$

5.12 problem 12

Internal problem ID [11649]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$\cos(t) r' + r \sin(t) = \cos(t)^4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(cos(t)*diff(r(t),t)+(r(t)*sin(t)-cos(t)^4)=0,r(t), singsol=all)$

$$r(t) = \frac{(2t + \sin(2t) + 4c_1)\cos(t)}{4}$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 22

DSolve[Cos[t]*r'[t]+(r[t]*Sin[t]-Cos[t]^4)==0,r[t],t,IncludeSingularSolutions -> True]

$$r(t) \rightarrow \frac{1}{2}\cos(t)(t+\sin(t)\cos(t)+2c_1)$$

5.13 problem 13

Internal problem ID [11650]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$-y\cos(x) - (1 + \sin(x))y' = -\cos(x)^{2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve((cos(x)^2-y(x)*cos(x))-(1+sin(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\sin(x)\cos(x) + 2c_1 + x}{2 + 2\sin(x)}$$

✓ Solution by Mathematica

Time used: 0.314 (sec). Leaf size: 25

DSolve[(Cos[x]^2-y[x]*Cos[x])-(1+Sin[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x + \sin(x)\cos(x) + 2c_1}{2\sin(x) + 2}$$

5.14 problem 14

Internal problem ID [11651]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y \sin(2x) + (1 + \sin(x)^2) y' = \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve((y(x)*sin(2*x)-cos(x))+(1+sin(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{-\sin(x) - c_1}{\cos(x)^2 - 2}$$

✓ Solution by Mathematica

Time used: 0.173 (sec). Leaf size: 21

DSolve[(y[x]*Sin[2*x]-Cos[x])+(1+Sin[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{-2\sin(x) + c_1}{\cos(2x) - 3}$$

problem 15 5.15

Internal problem ID [11652]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y}{x} + \frac{y^2}{x} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(diff(y(x),x)-y(x)/x=-y(x)^2/x,y(x), singsol=all)$

$$y(x) = \frac{x}{c_1 + x}$$

Solution by Mathematica

Time used: 0.238 (sec). Leaf size: 25

DSolve[y'[x]-y[x]/x==-y[x]^2/x,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{x}{x + e^{c_1}} \ y(x)
ightarrow 0 \ y(x)
ightarrow 1$$

$$y(x) \rightarrow 0$$

$$y(x) \to 1$$

problem 16 5.16

Internal problem ID [11653]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y'x + y + 2x^6y^4 = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 67

 $dsolve(x*diff(y(x),x)+y(x)=-2*x^6*y(x)^4,y(x), singsol=all)$

$$y(x) = \frac{1}{(2x^3 + c_1)^{\frac{1}{3}} x}$$

$$y(x) = -\frac{1 + i\sqrt{3}}{2(2x^3 + c_1)^{\frac{1}{3}} x}$$

$$y(x) = \frac{i\sqrt{3} - 1}{2(2x^3 + c_1)^{\frac{1}{3}} x}$$

✓ Solution by Mathematica

Time used: 0.87 (sec). Leaf size: 79

 $DSolve[x*y'[x]+y[x]==-2*x^6*y[x]^4,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{\sqrt[3]{x^3 (2x^3 + c_1)}}$$

$$y(x) \to -\frac{\sqrt[3]{-1}}{\sqrt[3]{x^3 (2x^3 + c_1)}}$$

$$y(x) \to \frac{(-1)^{2/3}}{\sqrt[3]{x^3 (2x^3 + c_1)}}$$

$$y(x) \to 0$$

5.17 problem 17

Internal problem ID [11654]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + \left(4y - \frac{8}{y^3}\right)x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 94

 $dsolve(diff(y(x),x)+(4*y(x)-8/y(x)^3)*x=0,y(x), singsol=all)$

$$y(x) = \left(2e^{8x^2} + c_1\right)^{\frac{1}{4}}e^{-2x^2}$$

$$y(x) = -\left(2e^{8x^2} + c_1\right)^{\frac{1}{4}}e^{-2x^2}$$

$$y(x) = -i\left(2e^{8x^2} + c_1\right)^{\frac{1}{4}}e^{-2x^2}$$

$$y(x) = i\left(2e^{8x^2} + c_1\right)^{\frac{1}{4}}e^{-2x^2}$$

✓ Solution by Mathematica

Time used: 1.939 (sec). Leaf size: 145

 $DSolve[y'[x]+(4*y[x]-8/y[x]^3)*x==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt[4]{2 + e^{-8x^2 + 4c_1}}$$

$$y(x) \to -i\sqrt[4]{2 + e^{-8x^2 + 4c_1}}$$

$$y(x) \to i\sqrt[4]{2 + e^{-8x^2 + 4c_1}}$$

$$y(x) \to \sqrt[4]{2 + e^{-8x^2 + 4c_1}}$$

$$y(x) \to -\sqrt[4]{2}$$

$$y(x) \to -i\sqrt[4]{2}$$

$$y(x) \to i\sqrt[4]{2}$$

$$y(x) \to \sqrt[4]{2}$$

5.18 problem 18

Internal problem ID [11655]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' + \frac{(1+t)x}{2t} - \frac{1+t}{xt} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 46

dsolve(diff(x(t),t)+(t+1)/(2*t)*x(t)=(t+1)/(x(t)*t),x(t), singsol=all)

$$x(t) = \frac{\sqrt{t e^{-t} c_1 + 2t^2}}{t}$$
$$x(t) = -\frac{\sqrt{t e^{-t} c_1 + 2t^2}}{t}$$

✓ Solution by Mathematica

Time used: 3.335 (sec). Leaf size: 78

 $DSolve[x'[t]+(t+1)/(2*t)*x[t]==(t+1)/(x[t]*t),x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) o -rac{\sqrt{2t + e^{-t + 2c_1}}}{\sqrt{t}}$$
 $x(t) o rac{\sqrt{2t + e^{-t + 2c_1}}}{\sqrt{t}}$
 $x(t) o -\sqrt{2}$
 $x(t) o \sqrt{2}$

5.19 problem 19

Internal problem ID [11656]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x - 2y = 2x^4$$

With initial conditions

$$[y(2) = 8]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve([x*diff(y(x),x)-2*y(x)=2*x^4,y(2) = 8],y(x), singsol=all)$

$$y(x) = \left(x^2 - 2\right)x^2$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 14

 $DSolve[\{x*y'[x]-2*y[x]==2*x^4,\{y[2]==8\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^2(x^2 - 2)$$

5.20 problem 20

Internal problem ID [11657]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + 3x^2y = x^2$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve([diff(y(x),x)+3*x^2*y(x)=x^2,y(0) = 2],y(x), singsol=all)$

$$y(x) = \frac{1}{3} + \frac{5e^{-x^3}}{3}$$

✓ Solution by Mathematica

Time used: 2.884 (sec). Leaf size: 20

 $DSolve[\{y'[x]+3*x^2*y[x]==x^2,\{y[0]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{5e^{-x^3}}{3} + \frac{1}{3}$$

5.21 problem 21

Internal problem ID [11658]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$e^{x}(y - 3(e^{x} + 1)^{2}) + (e^{x} + 1)y' = 0$$

With initial conditions

$$[y(0) = 4]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve([exp(x)*(y(x)-3*(exp(x)+1)^2)+(exp(x)+1)*diff(y(x),x)=0,y(0) = 4],y(x), singsol=all)$

$$y(x) = e^{2x} + 2e^x + 1$$

✓ Solution by Mathematica

Time used: 0.104 (sec). Leaf size: 12

 $DSolve[\{Exp[x]*(y[x]-3*(Exp[x]+1)^2)+(Exp[x]+1)*y'[x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]*(y[x]-3*(Exp[x]+1)^2)+(Exp[x]+1)*y'[x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]*(y[x]-3*(Exp[x]+1)^2)+(Exp[x]+1)*y'[x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]+1,x]+1,x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]+1,x]+1,x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]+1,x]+1,x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]+1,x]+1,x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]+1,x]+1,x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]+1,x]+1,x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]+1,x]+1,x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]+1,x]+1,x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]+1,x]+1,x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]+1,x]+1,x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]+1,x]+1,x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]+1,x]+1,x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]+1,x]+1,x]==0,\{y[0]==4\}\},y[x],x,IncludeSingularSolve[\{Exp[x]+1,x]+1,x]==0,\{y[x]+1,x]+1,x]==0,\{y[x]+1,x]+1,x$

$$y(x) \to (e^x + 1)^2$$

5.22 problem 22

Internal problem ID [11659]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2(y+1)x - (x^2+1)y' = 0$$

With initial conditions

$$[y(1) = -5]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

 $dsolve([2*x*(y(x)+1)-(x^2+1)*diff(y(x),x)=0,y(1) = -5],y(x), singsol=all)$

$$y(x) = -2x^2 - 3$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 12

$$y(x) \rightarrow -2x^2 - 3$$

5.23 problem 23

Internal problem ID [11660]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$r' + r \tan(t) = \cos(t)^2$$

With initial conditions

$$\left[r\Big(\frac{\pi}{4}\Big)=1\right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve([diff(r(t),t)+r(t)*tan(t)=cos(t)^2,r(1/4*Pi) = 1],r(t), singsol=all)$

$$r(t) = \frac{\left(2\sin\left(t\right) + \sqrt{2}\right)\cos\left(t\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.077 (sec). Leaf size: 16

DSolve[{r'[t]+r[t]*Tan[t]==Cos[t]^2,{r[Pi/4]==1}},r[t],t,IncludeSingularSolutions -> True]

$$r(t) \to \left(\sin(t) + \frac{1}{\sqrt{2}}\right)\cos(t)$$

5.24 problem 24

Internal problem ID [11661]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$-x + x' = \sin\left(2t\right)$$

With initial conditions

$$[x(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $\label{eq:decomposition} dsolve([diff(x(t),t)-x(t)=\sin(2*t),x(0) = 0],x(t), \ singsol=all)$

$$x(t) = -\frac{2\cos(2t)}{5} - \frac{\sin(2t)}{5} + \frac{2e^t}{5}$$

✓ Solution by Mathematica

Time used: 0.083 (sec). Leaf size: 27

 $DSolve[\{x'[t]-x[t]==Sin[2*t],\{x[0]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{1}{5} (2e^t - \sin(2t) - 2\cos(2t))$$

5.25 problem 25

Internal problem ID [11662]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y' + \frac{y}{2x} - \frac{x}{y^3} = 0$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 17

 $dsolve([diff(y(x),x)+y(x)/(2*x)=x/y(x)^3,y(1) = 2],y(x), singsol=all)$

$$y(x) = \sqrt{\frac{\sqrt{x^4 + 15}}{x}}$$

✓ Solution by Mathematica

Time used: $0.2\overline{77}$ (sec). Leaf size: 20

 $DSolve[\{y'[x]+y[x]/(2*x)==x/y[x]^3,\{y[1]==2\}\},y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \to \frac{\sqrt[4]{x^4 + 15}}{\sqrt{x}}$$

5.26 problem 26

Internal problem ID [11663]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$y'x + y - (yx)^{\frac{3}{2}} = 0$$

With initial conditions

$$[y(1) = 4]$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 9

 $dsolve([x*diff(y(x),x)+y(x)=(x*y(x))^(3/2),y(1) = 4],y(x), singsol=all)$

$$y(x) = \frac{4}{x^3}$$

✓ Solution by Mathematica

Time used: 0.258 (sec). Leaf size: 24

 $DSolve[\{x*y'[x]+y[x]==(x*y[x])^{(3/2)},\{y[1]==4\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{4}{x^3}$$
$$y(x) \to \frac{4}{(x-2)^2 x}$$

5.27 problem 27

Internal problem ID [11664]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = \begin{cases} 2 & 0 \le x < 1 \\ 0 & 1 \le x \end{cases}$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.328 (sec). Leaf size: 38

 $dsolve([diff(y(x),x)+y(x)=piecewise(0<=x \ and \ x<1,2,x>=1,0),y(0) = 0],y(x), \ singsol=all)$

$$y(x) = \left\{ egin{array}{ll} 0 & x < 0 \ & 2 - 2 \, \mathrm{e}^{-x} & x < 1 \ & 2 \, \mathrm{e}^{1-x} - 2 \, \mathrm{e}^{-x} & 1 \le x \end{array}
ight.$$

✓ Solution by Mathematica

Time used: 0.062 (sec). Leaf size: 38

$$y(x) \rightarrow \begin{cases} 0 & x \leq 0 \\ 2 - 2e^{-x} & 0 < x \leq 1 \\ 2(-1 + e)e^{-x} & \text{True} \end{cases}$$

5.28 problem 28

Internal problem ID [11665]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = \begin{cases} 5 & 0 \le x < 10 \\ 1 & 10 \le x \end{cases}$$

With initial conditions

$$[y(0) = 6]$$

Solution by Maple

Time used: 7.219 (sec). Leaf size: 40

dsolve([diff(y(x),x)+y(x)=piecewise(0<=x and x<10,5,x>=10,1),y(0) = 6],y(x), singsol=all)

$$y(x) = \begin{cases} 6e^{-x} & x < 0 \\ e^{-x} + 5 & x < 10 \\ e^{-x} + 1 + 4e^{10-x} & 10 \le x \end{cases}$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 45

$$y(x) \rightarrow \begin{cases} 6e^{-x} & x \leq 0 \\ e^{-x}(1+4e^{10}+e^x) & x > 10 \end{cases}$$

$$5+e^{-x} \qquad \text{True}$$

5.29 problem 29

Internal problem ID [11666]

 $\bf Book:$ Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 29.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = \begin{cases} e^{-x} & 0 \le x < 2 \\ e^{-2} & 2 \le x \end{cases}$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.359 (sec). Leaf size: 35

$$y(x) = \begin{cases} e^{-x} & x < 0 \\ e^{-x}(1+x) & x < 2 \\ 2e^{-x} + e^{-2} & 2 \le x \end{cases}$$

✓ Solution by Mathematica

Time used: 0.103 (sec). Leaf size: 40

 $DSolve[\{y'[x]+y[x]==Piecewise[\{\{Exp[-x],0<=x<2\},\{Exp[-2],x>=2\}\}],\{y[0]==1\}\},y[x],x,IncludeSince[\{x'[x]+y[x]==Piecewise[\{\{Exp[-x],0<=x<2\},\{Exp[-2],x>=2\}\}],\{y[0]==1\}\},y[x],x,IncludeSince[\{x'[x]+y[x]==Piecewise[\{\{Exp[-x],0<=x<2\},\{Exp[-2],x>=2\}\}],\{y[0]==1\}\},y[x],x,IncludeSince[\{x'[x]+y[x]==Piecewise[\{\{Exp[-x],0<=x<2\},\{Exp[-2],x>=2\}\}],\{y[0]==1\}\},y[x],x,IncludeSince[\{\{Exp[-x],0<=x<2\},\{Exp[-x],x>=2\}\}],\{y[0]==1\}\},y[x],x,IncludeSince[\{x'[x]+y[x]=x,x],x],x,IncludeSince[\{x'[x]+x,x],x],x,IncludeSince[\{x'[x]+x,x],x],x,IncludeSince[\{x'[x]+x,x],x],x,IncludeSince[\{x'[x]+x,x],x],x,IncludeSince[\{x'[x]+x,x],x],x,IncludeSince[\{x'[x]+x,x],x],x,IncludeSince[\{x'[x]+x,x],x],x,IncludeSince[\{x'[x]+x,x],x],x,IncludeSince[\{x'[x]+x,x],x],x,IncludeSince[\{x'[x]+x,x],x],x,IncludeSince[\{x'[x]+x,x],x],x,IncludeSince[\{x'[x]+x,x],x],x,IncludeSince[\{x'[x]+x,x],x,IncludeSince[\{x'[x]+x,x],x],x,IncludeSince[\{x'[x]+x,x],x],x,IncludeSince[\{x'[x]+x,x],x],x,IncludeSince[\{x'[x]+x,x],x,IncludeSince[[x]+x,x],x,IncludeSince[[x]+x,x],x,IncludeSince[[x]+x,x],x,IncludeSince[[x]+x,x],x,IncludeSince[[x]+x,x],x,IncludeSince[[x]+x,x],x,IncludeSince[[x]+x,x],x,IncludeSince[[x]+x,x],x,IncludeSince[[x]+x,x],x,IncludeSince[[x]+x,x],x,IncludeSince[[x]+x,x],x,IncludeSince[[x]+x,x$

$$y(x) \rightarrow \begin{array}{ccc} & e^{-x} & x \leq 0 \\ & \frac{1}{e^2} + 2e^{-x} & x > 2 \\ & e^{-x}(x+1) & \text{True} \end{array}$$

5.30 problem 30

Internal problem ID [11667]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 30.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(x+2)y' + y = \begin{cases} 2x & 0 \le x < 2 \\ 4 & 2 \le x \end{cases}$$

With initial conditions

$$[y(0) = 4]$$

✓ Solution by Maple

 $\overline{\text{Time used: 0.265 (sec)}}$. Leaf size: 31

dsolve([(x+2)*diff(y(x),x)+y(x)=piecewise(0<=x and x<2,2*x,x>=2,4),y(0) = 4],y(x), singsol=a

$$y(x) = \begin{cases} 8 & x < 0 \\ x^2 + 8 & x < 2 \\ 4 + 4x & 2 \le x \\ x + 2 \end{cases}$$

✓ Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 43

 $DSolve[{(x+2)*y'[x]+y[x]==Piecewise[{{2*x,0<=x<2},{4,x>=2}}],{y[0]==4}},y[x],x,IncludeSingularing of the context of the cont$

$$y(x) \rightarrow \begin{cases} \frac{8}{x+2} & x \leq 0 \\ \frac{4(x+1)}{x+2} & x > 2 \end{cases}$$

$$\frac{x^2+8}{x+2} \quad \text{True}$$

5.31 problem 31

Internal problem ID [11668]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 31.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$ay' + yb = k e^{-\lambda x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

dsolve(a*diff(y(x),x)+b*y(x)=k*exp(-lambda*x),y(x), singsol=all)

$$y(x) = rac{\left(-k\,\mathrm{e}^{-rac{x(a\lambda-b)}{a}} + c_1(a\lambda-b)
ight)\mathrm{e}^{-rac{bx}{a}}}{a\lambda-b}$$

✓ Solution by Mathematica

Time used: 0.087 (sec). Leaf size: 44

DSolve[a*y'[x]+b*y[x]==k*Exp[\[Lambda]*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{e^{-rac{bx}{a}} \left(ke^{x\left(rac{b}{a}+\lambda
ight)} + c_1(a\lambda+b)
ight)}{a\lambda+b}$$

5.32 problem 35 (b)

Internal problem ID [11669]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 35 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = 2\sin(x) + 5\sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x)+y(x)=2*sin(x)+5*sin(2*x),y(x), singsol=all)

$$y(x) = -\cos(x) - 2\cos(2x) + \sin(x) + \sin(2x) + c_1 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.131 (sec). Leaf size: 30

DSolve[y'[x]+y[x]==2*Sin[x]+5*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sin(x) + \sin(2x) - \cos(x) - 2\cos(2x) + c_1e^{-x}$$

5.33 problem 37 (a)

Internal problem ID [11670]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 37 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$\cos(y)y' + \frac{\sin(y)}{x} = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(cos(y(x))*diff(y(x),x)+1/x*sin(y(x))=1,y(x), singsol=all)

$$y(x) = -\arcsin\left(\frac{-x^2 + 2c_1}{2x}\right)$$

Solution by Mathematica

Time used: 8.67 (sec). Leaf size: 18

 $DSolve[Cos[y[x]]*y'[x]+1/x*Sin[y[x]] == 1, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \arcsin\left(\frac{x}{2} + \frac{c_1}{x}\right)$$

5.34 problem 37 (b)

Internal problem ID [11671]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 37 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(y+1)y' + x(y^2 + 2y) = x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 37

 $dsolve((y(x)+1)*diff(y(x),x)+x*(y(x)^2+2*y(x))=x,y(x), singsol=all)$

$$y(x) = -1 - \sqrt{2 + e^{-x^2}c_1}$$
$$y(x) = -1 + \sqrt{2 + e^{-x^2}c_1}$$

✓ Solution by Mathematica

Time used: 29.843 (sec). Leaf size: 163

DSolve[(y[x]+1)*y'[x]+x*(y[x]^2+2*y[x])==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -1 - e^{-x^2} \sqrt{e^{x^2} (2e^{x^2} + e^{2c_1})}$$

$$y(x) \to -1 + e^{-x^2} \sqrt{e^{x^2} (2e^{x^2} + e^{2c_1})}$$

$$y(x) \rightarrow -1 - \sqrt{2}$$

$$y(x) \to \sqrt{2} - 1$$

$$y(x) \to \sqrt{2}e^{-x^2}\sqrt{e^{2x^2}} - 1$$

$$y(x) \to -\sqrt{2}e^{-x^2}\sqrt{e^{2x^2}} - 1$$

5.35 problem 39

Internal problem ID [11672]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 39.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Riccati]

$$y' - (1 - x) y^2 - (2x - 1) y = -x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve(diff(y(x),x)=(1-x)*y(x)^2+(2*x-1)*y(x)-x,y(x), singsol=all)$

$$y(x) = \frac{(2x-2)e^x - c_1}{(2x-4)e^x - c_1}$$

✓ Solution by Mathematica

Time used: 0.197 (sec). Leaf size: $28\,$

 $DSolve[y'[x] == (1-x)*y[x]^2 + (2*x-1)*y[x]-x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 1 + \frac{e^x}{e^x(x-2) + c_1}$$
$$y(x) \to 1$$

5.36 problem 40

Internal problem ID [11673]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 40.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Riccati]

$$y' + y^2 - yx = 1$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 53

 $dsolve(diff(y(x),x)=-y(x)^2+x*y(x)+1,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{\pi}\sqrt{2}\operatorname{erf}\left(\frac{x\sqrt{2}}{2}\right)x + 2c_1x + 2\operatorname{e}^{-\frac{x^2}{2}}}{\sqrt{\pi}\sqrt{2}\operatorname{erf}\left(\frac{x\sqrt{2}}{2}\right) + 2c_1}$$

✓ Solution by Mathematica

Time used: 0.154 (sec). Leaf size: 45

 $DSolve[y'[x] == -y[x]^2 + x * y[x] + 1, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) o x + rac{e^{-rac{x^2}{2}}}{\sqrt{rac{\pi}{2}} \mathrm{erf}\left(rac{x}{\sqrt{2}}
ight) + c_1}$$
 $y(x) o x$

5.37 problem 41

Internal problem ID [11674]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56

Problem number: 41.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(x)]'], _Riccati]

$$y' + 8y^2x - 4x(4x+1)y = -8x^3 - 4x^2 + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 60

 $dsolve(diff(y(x),x)=-8*x*y(x)^2+4*x*(4*x+1)*y(x)-(8*x^3+4*x^2-1),y(x), singsol=all)$

$$y(x) = \frac{c_1(2x+1)e^{\frac{8}{3}x^3 + 2x^2} + 2e^{\frac{8x^3}{3}}x}{2c_1e^{\frac{8}{3}x^3 + 2x^2} + 2e^{\frac{8x^3}{3}}}$$

✓ Solution by Mathematica

Time used: 0.196 (sec). Leaf size: 30

$$y(x) \rightarrow \frac{1}{4} \left(\tanh \left(x^2 + ic_1 \right) + 4x + 1 \right)$$

 $y(x) \to \text{Indeterminate}$

6 Chapter 2, Miscellaneous Review. Exercises page 60

 127
 128
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 148
 149
 150
 151
 153
 155

6.1 problem 1

Internal problem ID [11675]

 $\bf Book:$ Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$6x^2y - (x^3 + 1)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(6*x^2*y(x)-(x^3+1)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = c_1(x^3 + 1)^2$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 20

 $DSolve [6*x^2*y[x]-(x^3+1)*y'[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to c_1 (x^3 + 1)^2$$
$$y(x) \to 0$$

6.2 problem 2

Internal problem ID [11676]

 $\bf Book:$ Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _exact, _rational]

$$(3x^{2}y^{2} - x)y' + 2y^{3}x - y = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 1127

 $dsolve((3*x^2*y(x)^2-x)*diff(y(x),x)+(2*x*y(x)^3-y(x))=0,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{3}\sqrt{2}\sqrt{\left(\left(3\sqrt{3}\sqrt{27c_1^2 - 4c_1x} + 27c_1 - 2x\right)x^2\right)^{\frac{1}{3}}\left(2x^22^{\frac{1}{3}} + 2^{\frac{2}{3}}\left(\left(3\sqrt{3}\sqrt{27c_1^2 - 4c_1x} + 27c_1 - 2x\right)x^2\right)^{\frac{1}{3}}x}}{6\left(\left(3\sqrt{3}\sqrt{27c_1^2 - 4c_1x} + 27c_1 - 2x\right)x^2\right)^{\frac{1}{3}}x}}$$

$$y(x)$$

$$= \frac{\sqrt{3}\sqrt{2}\sqrt{\left(\left(3\sqrt{3}\sqrt{27c_1^2 - 4c_1x} + 27c_1 - 2x\right)x^2\right)^{\frac{1}{3}}\left(2x^22^{\frac{1}{3}} + 2^{\frac{2}{3}}\left(\left(3\sqrt{3}\sqrt{27c_1^2 - 4c_1x} + 27c_1 - 2x\right)x^2\right)^{\frac{1}{3}}x}}{6\left(\left(3\sqrt{3}\sqrt{27c_1^2 - 4c_1x} + 27c_1 - 2x\right)x^2\right)^{\frac{1}{3}}x}}$$

$$y(x) = \frac{\sqrt{3}\sqrt{\left(i\left(-2x^22^{\frac{1}{3}} + 2^{\frac{2}{3}}\left(\left(3\sqrt{3}\sqrt{27c_1^2 - 4c_1x} + 27c_1 - 2x\right)^2x^4\right)^{\frac{1}{3}}\right)\sqrt{3} - 2x^22^{\frac{1}{3}} + 8x\left(\left(3\sqrt{3}\sqrt{27c_1^2 - 4c_1x} + 27c_1 - 2x\right)^2x^4\right)^{\frac{1}{3}}}}{6\left(\left(3\sqrt{3}\sqrt{27c_1^2 - 4c_1x} + 27c_1 - 2x\right)^2x^4\right)^{\frac{1}{3}}}\sqrt{3} - 2x^22^{\frac{1}{3}} + 8x\left(\left(3\sqrt{3}\sqrt{27c_1^2 - 4c_1x} + 27c_1 - 2x\right)^2x^4\right)^{\frac{1}{3}}}$$

$$y(x) = \frac{\sqrt{3}\sqrt{\left(i\left(-2x^22^{\frac{1}{3}} + 2^{\frac{2}{3}}\left(\left(3\sqrt{3}\sqrt{27c_1^2 - 4c_1x} + 27c_1 - 2x\right)^2x^4\right)^{\frac{1}{3}}\right)\sqrt{3} - 2x^22^{\frac{1}{3}} + 8x\left(\left(3\sqrt{3}\sqrt{27c_1^2 - 4c_1x} + 27c_1 - 2x\right)^2x^4\right)^{\frac{1}{3}}}}{6\left(\left(3\sqrt{3}\sqrt{27c_1^2 - 4c_1x} + 27c_1 - 2x\right)^2x^4\right)^{\frac{1}{3}}}\sqrt{3} - 2x^22^{\frac{1}{3}} + 8x\left(\left(3\sqrt{3}\sqrt{27c_1^2 - 4c_1x} + 27c_1 - 2x\right)^2x^4\right)^{\frac{1}{3}}}}$$

 $=\frac{\sqrt{3}\sqrt{\left(-i\left(-2x^{2}2^{\frac{1}{3}}+2^{\frac{2}{3}}\left(\left(3\sqrt{3}\sqrt{27c_{1}^{2}-4c_{1}x}+27c_{1}-2x\right)^{2}x^{4}\right)^{\frac{1}{3}}\right)\sqrt{3}-2x^{2}2^{\frac{1}{3}}+8x\left(\left(3\sqrt{3}\sqrt{27c_{1}^{2}-4c_{1}x}+27c_{1}-2x\right)^{2}x^{4}\right)^{\frac{1}{3}}}}{6\left(\left(3\sqrt{3}\sqrt{27c_{1}^{2}-4c_{1}x}+27c_{1}-2x\right)^{2}x^{4}\right)^{\frac{1}{3}}}$

✓ Solution by Mathematica

Time used: 30.566 (sec). Leaf size: 356

$$\begin{split} y(x) & \to \frac{2\sqrt[3]{3}x^3 + \sqrt[3]{2} \left(\sqrt{3}\sqrt{x^8\left(-4x + 27c_1^2\right)} + 9c_1x^4\right)^{2/3}}{6^{2/3}x^2\sqrt[3]{\sqrt{3}}\sqrt{x^8\left(-4x + 27c_1^2\right)} + 9c_1x^4} \\ y(x) & \to \frac{i\sqrt[3]{3}\left(\sqrt{3} + i\right)\left(2\sqrt{3}\sqrt{x^8\left(-4x + 27c_1^2\right)} + 18c_1x^4\right)^{2/3} - 2\sqrt[3]{2}\sqrt[6]{3}\left(\sqrt{3} + 3i\right)x^3}{12x^2\sqrt[3]{\sqrt{3}}\sqrt{x^8\left(-4x + 27c_1^2\right)} + 9c_1x^4} \\ y(x) & \to \frac{\sqrt[3]{3}\left(-1 - i\sqrt{3}\right)\left(2\sqrt{3}\sqrt{x^8\left(-4x + 27c_1^2\right)} + 18c_1x^4\right)^{2/3} - 2\sqrt[3]{2}\sqrt[6]{3}\left(\sqrt{3} - 3i\right)x^3}{12x^2\sqrt[3]{\sqrt{3}}\sqrt{x^8\left(-4x + 27c_1^2\right)} + 9c_1x^4} \end{split}$$

6.3 problem 3

Internal problem ID [11677]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y + x(1+x)y' = 1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

dsolve((y(x)-1)+(x*(x+1))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{c_1 x + c_1 - 1}{x}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 22

 $DSolve[(y[x]-1)+(x*(x+1))*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{-1 + c_1(x+1)}{x}$$
$$y(x) \to 1$$

6.4 problem 4

Internal problem ID [11678]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$-2y + y'x = -x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve((x^2-2*y(x))+(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = (-\ln(x) + c_1) x^2$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 16

 $DSolve[(x^2-2*y[x])+(x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^2(-\log(x) + c_1)$$

6.5 problem 5

Internal problem ID [11679]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 5.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$-5y + (y+x)y' = -3x$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 47

dsolve((3*x-5*y(x))+(x+y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{6c_1x - \sqrt{8c_1x + 1} + 1}{2c_1}$$
$$y(x) = \frac{6c_1x + 1 + \sqrt{8c_1x + 1}}{2c_1}$$

✓ Solution by Mathematica

Time used: 1.033 (sec). Leaf size: $80\,$

DSolve[(3*x-5*y[x])+(x+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} \left(6x - e^{\frac{c_1}{2}} \sqrt{-8x + e^{c_1}} - e^{c_1} \right)$$
$$y(x) \to \frac{1}{2} \left(6x + e^{\frac{c_1}{2}} \sqrt{-8x + e^{c_1}} - e^{c_1} \right)$$

6.6 problem 6

Internal problem ID [11680]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$e^{2x}y^2 + (ye^{2x} - 2y)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 58

 $dsolve((exp(2*x)*y(x)^2)+(exp(2*x)*y(x)-2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = 0$$

$$y(x) = \frac{\sqrt{2}\sqrt{-(e^{2x} - 2)c_1}}{e^{2x} - 2}$$

$$y(x) = -\frac{\sqrt{2}\sqrt{-(e^{2x} - 2)c_1}}{e^{2x} - 2}$$

✓ Solution by Mathematica

Time used: 0.071 (sec). Leaf size: 29

$$y(x) \to 0$$

$$y(x) \to \frac{c_1}{\sqrt{e^{2x} - 2}}$$

$$y(x) \to 0$$

problem 7 6.7

Internal problem ID [11681]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$8yx^3 + (x^4 + 1)y' = 12x^3$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((8*x^3*y(x)-12*x^3)+(1+x^4)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{3}{2} + \frac{c_1}{(x^4 + 1)^2}$$

Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 38

 $DSolve[(8*x^3*y[x]-12*x^3)+(1+x^4)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{3x^8 + 6x^4 + 2c_1}{2(x^4 + 1)^2}$$

 $y(x) \to \frac{3}{2}$

$$y(x) o rac{3}{2}$$

6.8 problem 8

Internal problem ID [11682]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$yx + y^2 + 2x^2y' = -2x^2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 49

 $dsolve((2*x^2+x*y(x)+y(x)^2)+(2*x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{(c_1 x - \sqrt{c_1 x} - 2) x}{c_1 x - 1}$$
$$y(x) = -\frac{(c_1 x + \sqrt{c_1 x} - 2) x}{c_1 x - 1}$$

✓ Solution by Mathematica

Time used: 2.203 (sec). Leaf size: 47

 $DSolve[(2*x^2+x*y[x]+y[x]^2)+(2*x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions] -> True]$

$$y(x)
ightarrow rac{x\left(\sqrt{x} - 2e^{c_1}
ight)}{-\sqrt{x} + e^{c_1}}$$
 $y(x)
ightarrow -2x$
 $y(x)
ightarrow -x$

6.9 problem 9

Internal problem ID [11683]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{4y^2x^3 - 3x^2y}{x^3 - 2yx^4} = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 41

 $dsolve(diff(y(x),x)=(4*x^3*y(x)^2-3*x^2*y(x))/(x^3-2*x^4*y(x)),y(x), singsol=all)$

$$y(x) = \frac{x - \sqrt{x^2 + 4c_1}}{2x^2}$$
$$y(x) = \frac{x + \sqrt{x^2 + 4c_1}}{2x^2}$$

✓ Solution by Mathematica

Time used: 0.575 (sec). Leaf size: 78

$$y(x) \to \frac{x^3 - \sqrt{x^2}\sqrt{x^4 + 4c_1x^2}}{2x^4}$$

 $y(x) \to \frac{x^3 + \sqrt{x^2}\sqrt{x^4 + 4c_1x^2}}{2x^4}$

6.10 problem 10

Internal problem ID [11684]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(1+x)y' + yx = e^{-x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve((x+1)*diff(y(x),x)+x*y(x)=exp(-x),y(x), singsol=all)

$$y(x) = e^{-x}(c_1x + c_1 - 1)$$

✓ Solution by Mathematica

Time used: 0.062 (sec). Leaf size: 19

DSolve[(x+1)*y'[x]+x*y[x]==Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x}(-1 + c_1(x+1))$$

6.11 problem 11

Internal problem ID [11685]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 11.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class\ A'],\ _rational,\ [_Abel,\ Abel,\ A$

$$y' - \frac{2x - 7y}{3y - 8x} = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 47

 $\label{eq:decomposition} $$ $ dsolve(diff(y(x),x)=(2*x-7*y(x))/(3*y(x)-8*x),y(x), $ singsol=all) $$ $ $ dsolve(diff(y(x),x)=(2*x-7*y(x))/(3*y(x)-8*x),y(x), $ singsol=all) $$ $ dsolve(diff(x),x)=(2*x-7*y(x))/(3*y(x)-8*x),y(x), $ singsol=all) $$ $ dsolve(x)=(2*x-7*y(x))/(3*y(x)-8*x),y(x), $ singsol=all) $$ $ dsolve(x)=(2*x-7*y(x))/(3*y(x)-8*x),y(x), $ singsol=all) $$ $ dsolve(x)=(2*x-7*y(x))/(3*y(x)-8*x),y(x), $ singsol=all) $$ $ dsolve(x)=(2*x-7*y(x))/(3*x), $ dsolve(x)=(2*x-7*y(x))/(2*x), $ dsolve(x)=(2*x-7*y(x))/(2*x), $ dsolve(x)=(2*x-7*y(x))/(2*x), $ dsolve(x)=(2*x-7*y(x))/(2*x), $ dsolve(x)=(2*x-7*y(x))/(2*x), $ dsolve(x)=(2*x-7*x)/(2*x), $ dsolve(x)=(2*x-7*x)$

$$y(x) = \frac{-12c_1x - \sqrt{-60c_1x + 1} + 1}{18c_1}$$
$$y(x) = \frac{-12c_1x + 1 + \sqrt{-60c_1x + 1}}{18c_1}$$

✓ Solution by Mathematica

Time used: 0.969 (sec). Leaf size: 80

 $DSolve[y'[x] == (2*x-7*y[x])/(3*y[x]-8*x), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{18} \left(-12x - e^{\frac{c_1}{2}} \sqrt{60x + e^{c_1}} - e^{c_1} \right)$$
$$y(x) \to \frac{1}{18} \left(-12x + e^{\frac{c_1}{2}} \sqrt{60x + e^{c_1}} - e^{c_1} \right)$$

6.12 problem 12

Internal problem ID [11686]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x^2y' + yx - y^3x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $dsolve(x^2*diff(y(x),x)+x*y(x)=x*y(x)^3,y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{c_1 x^2 + 1}}$$
$$y(x) = -\frac{1}{\sqrt{c_1 x^2 + 1}}$$

✓ Solution by Mathematica

Time used: 0.242 (sec). Leaf size: 58

DSolve[x^2*y'[x]+x*y[x]==x*y[x]^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{1}{\sqrt{1 + e^{2c_1}x^2}}$$

$$y(x) \rightarrow \frac{1}{\sqrt{1 + e^{2c_1}x^2}}$$

$$y(x) \rightarrow -1$$

$$y(x) \rightarrow 0$$

$$y(x) \rightarrow 1$$

6.13 problem 13

Internal problem ID [11687]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x^3 + 1) y' + 6x^2y = 6x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve((x^3+1)*diff(y(x),x)+6*x^2*y(x)=6*x^2,y(x), singsol=all)$

$$y(x) = \frac{x^6 + 2x^3 + c_1}{(x^3 + 1)^2}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 29

 $DSolve[(x^3+1)*y'[x]+6*x^2*y[x]==6*x^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^6 + 2x^3 + c_1}{(x^3 + 1)^2}$$

 $y(x) \to 1$

6.14 problem 14

Internal problem ID [11688]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{2x^2 + y^2}{2yx - x^2} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 57

dsolve(diff(y(x),x)= $(2*x^2+y(x)^2)/(2*x*y(x)-x^2)$,y(x), singsol=all)

$$y(x) = \frac{c_1 x - \sqrt{9c_1^2 x^2 + 4c_1 x}}{2c_1}$$
$$y(x) = \frac{c_1 x + \sqrt{9c_1^2 x^2 + 4c_1 x}}{2c_1}$$

✓ Solution by Mathematica

Time used: 2.748 (sec). Leaf size: 93

 $DSolve[y'[x] == (2*x^2+y[x]^2)/(2*x*y[x]-x^2), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2} \left(x - \sqrt{x \left(9x - 4e^{c_1} \right)} \right)$$
$$y(x) \to \frac{1}{2} \left(x + \sqrt{x \left(9x - 4e^{c_1} \right)} \right)$$
$$y(x) \to \frac{1}{2} \left(x - 3\sqrt{x^2} \right)$$
$$y(x) \to \frac{1}{2} \left(3\sqrt{x^2} + x \right)$$

6.15 problem 15

Internal problem ID [11689]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y^2 - 2xyy' = -x^2$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 13

 $dsolve([(x^2+y(x)^2)-2*x*y(x)*diff(y(x),x)=0,y(1) = 2],y(x), singsol=all)$

$$y(x) = \sqrt{(x+3) x}$$

✓ Solution by Mathematica

Time used: 0.175 (sec). Leaf size: 18

$$y(x) \to \sqrt{x}\sqrt{x+3}$$

6.16 problem 16

Internal problem ID [11690]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2y^{2} + (-x^{2} + 1)yy' = -8$$

With initial conditions

$$[y(3) = 0]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 45

 $\label{eq:dsolve} $$ dsolve([2*(y(x)^2+4)+(1-x^2)*y(x)*diff(y(x),x)=0,y(3) = 0],y(x), singsol=all) $$ $$ dsolve([2*(y(x)^2+4)+(1-x^2)*y(x)*diff(y(x),x)=0,y(3) = 0],y(x), singsol=all) $$ $$ dsolve([2*(y(x)^2+4)+(1-x^2)*y(x)*diff(y(x),x)=0,y(3) = 0],y(x), singsol=all) $$ dsolve([2*(y(x)^2+4)+(1-x^2)*y(x)*diff(y(x),x)=0,y(3) = 0], singsol=all) $$ dsolve([2*(y(x)^2+4)+(1-x^2)*y(x)*diff(x),x)=0, singsol=all) $$ dsolve([2*(y($

$$y(x) = -\frac{2\sqrt{3x^2 - 10x + 3}}{1 + x}$$
$$y(x) = \frac{2\sqrt{3x^2 - 10x + 3}}{1 + x}$$

✓ Solution by Mathematica

Time used: 0.886 (sec). Leaf size: 51

$$y(x) \to -\frac{2\sqrt{3x^2 - 10x + 3}}{x + 1}$$
$$y(x) \to \frac{2\sqrt{3x^2 - 10x + 3}}{x + 1}$$

6.17 problem 17

Internal problem ID [11691]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _Bernoulli]

$$e^{2x}y^2 + e^{2x}yy' = 2x$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 24

 $dsolve([(exp(2*x)*y(x)^2-2*x)+(exp(2*x)*y(x))*diff(y(x),x)=0,y(0) = 2],y(x), singsol=all)$

$$y(x) = e^{-2x}\sqrt{2}\sqrt{e^{2x}(x^2+2)}$$

✓ Solution by Mathematica

Time used: 0.337 (sec). Leaf size: 25

DSolve[{(Exp[2*x]*y[x]^2-2*x)+(Exp[2*x]*y[x])*y'[x]==0,{y[0]==2}},y[x],x,IncludeSingularSolv

$$y(x) \rightarrow \sqrt{2}e^{-x}\sqrt{x^2+2}$$

6.18 problem 18

Internal problem ID [11692]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

$$2y^{2}x + (2x^{2}y + 6y^{2})y' = -3x^{2}$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 87

 $dsolve([(3*x^2+2*x*y(x)^2)+(2*x^2*y(x)+6*y(x)^2)*diff(y(x),x)=0,y(1)=2],y(x), singsol=all)$

$$y(x) = \frac{\left(1134 - 54x^3 - x^6 + 6\sqrt{3x^9 + 18x^6 - 3402x^3 + 35721}\right)^{\frac{1}{3}}}{6} + \frac{x^4}{6\left(1134 - 54x^3 - x^6 + 6\sqrt{3x^9 + 18x^6 - 3402x^3 + 35721}\right)^{\frac{1}{3}}} - \frac{x^2}{6}$$

✓ Solution by Mathematica

Time used: 4.797 (sec). Leaf size: 103

 $DSolve[{(3*x^2+2*x*y[x]^2)+(2*x^2*y[x]+6*y[x]^2)*y'[x]==0,{y[1]==2}},y[x],x,IncludeSingularS$

$$y(x) \to \frac{1}{6} \left(-x^2 + \sqrt[3]{-x^6 - 54x^3 + 6\sqrt{3}\sqrt{x^9 + 6x^6 - 1134x^3 + 11907} + 1134} \right)$$
$$+ \frac{x^4}{\sqrt[3]{-x^6 - 54x^3 + 6\sqrt{3}\sqrt{x^9 + 6x^6 - 1134x^3 + 11907} + 1134}} \right)$$

6.19 problem 19

Internal problem ID [11693]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$4xyy' - y^2 = 1$$

With initial conditions

$$[y(2) = 1]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 15

 $dsolve([4*x*y(x)*diff(y(x),x)=y(x)^2+1,y(2) = 1],y(x), singsol=all)$

$$y(x) = \sqrt{\sqrt{2}\sqrt{x} - 1}$$

✓ Solution by Mathematica

Time used: 3.741 (sec). Leaf size: 22

 $DSolve[{4*x*y[x]*y'[x]==y[x]^2+1, {y[2]==1}}, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) o \sqrt{\sqrt{2}\sqrt{x}-1}$$

6.20 problem 20

Internal problem ID [11694]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{2x + 7y}{-2y + 2x} = 0$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: $18\,$

dsolve([diff(y(x),x)=(2*x+7*y(x))/(2*x-2*y(x)),y(1)=2],y(x), singsol=all)

$$y(x) = \frac{4\sqrt{16 - 15x}}{5} - 2x + \frac{16}{5}$$

✓ Solution by Mathematica

Time used: 1.383 (sec). Leaf size: 25

 $DSolve[\{y'[x]==(2*x+7*y[x])/(2*x-2*y[x]),\{y[1]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2}{5} \left(-5x + 2\sqrt{16 - 15x} + 8 \right)$$

6.21 problem 21

Internal problem ID [11695]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{xy}{x^2 + 1} = 0$$

With initial conditions

$$\left[y\left(\sqrt{15}\right) = 2\right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

 $dsolve([diff(y(x),x)=(x*y(x))/(x^2+1),y(15^{(1/2)}) = 2],y(x), singsol=all)$

$$y(x) = \frac{\sqrt{x^2 + 1}}{2}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: $18\,$

$$y(x) \to \frac{\sqrt{x^2 + 1}}{2}$$

6.22 problem 22

Internal problem ID [11696]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = \begin{cases} 1 & 0 \le x < 2 \\ 0 & 0 < x \end{cases}$$

With initial conditions

$$[y(0) = 0]$$

Solution by Maple

Time used: 0.313 (sec). Leaf size: 36

 $dsolve([diff(y(x),x)+y(x)=piecewise(0<=x \ and \ x<2,1,x>0,0),y(0) = 0],y(x), \ singsol=all)$

$$y(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-x} & x < 2 \\ e^{2-x} - e^{-x} & 2 \le x \end{cases}$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 39

$$y(x) \rightarrow \begin{cases} 0 & x \leq 0 \\ 1 - e^{-x} & 0 < x \leq 2 \end{cases}$$

$$e^{-x}(-1 + e^2) \quad \text{True}$$

6.23 problem 23

Internal problem ID [11697]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(x+2) y' + y = \begin{cases} 2x & 0 \le x \le 2 \\ 4 & 2 < x \end{cases}$$

With initial conditions

$$[y(0) = 4]$$

Solution by Maple

Time used: 0.063 (sec). Leaf size: 31

$$y(x) = \begin{cases} 8 & x < 0 \\ x^2 + 8 & x < 2 \\ 4 + 4x & 2 \le x \\ x + 2 \end{cases}$$

✓ Solution by Mathematica

Time used: 0.248 (sec). Leaf size: 43

 $DSolve[{(x+2)*y'[x]+y[x]==Piecewise[{{2*x,0<=x<=2},{4,x>2}}],{y[0]==4}},y[x],x,IncludeSingularing of the context of the cont$

$$y(x) \rightarrow \begin{cases} \frac{8}{x+2} & x \leq 0 \\ \frac{4(x+1)}{x+2} & x > 2 \end{cases}$$

$$\frac{x^2+8}{x+2} \quad \text{True}$$

6.24 problem 24

Internal problem ID [11698]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$x^2y' + yx - \frac{y^3}{x} = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 16

 $dsolve([x^2*diff(y(x),x)+x*y(x)=y(x)^3/x,y(1) = 1],y(x), singsol=all)$

$$y(x) = \frac{2x}{\sqrt{2x^4 + 2}}$$

✓ Solution by Mathematica

Time used: 0.355 (sec). Leaf size: 21

 $DSolve[\{x^2*y'[x]+x*y[x]==y[x]^3/x,\{y[1]==1\}\},y[x],x,IncludeSingularSolutions] \rightarrow True]$

$$y(x) o rac{\sqrt{2}x}{\sqrt{x^4 + 1}}$$

7 Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67 7.17.2158 7.3 160 7.4 161 7.5 163 7.6 164 7.7 166 problem 7 7.8 167 problem 9 168 7.10 problem 10 169 7.11 problem 11 170 7.12 problem 12 171 172 7.13 problem 13

173

7.14 problem 14

7.1 problem 1

Internal problem ID [11699]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, '2nd type', 'class B']]

$$5yx + 4y^{2} + (2yx + x^{2})y' = -1$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 59

 $dsolve((5*x*y(x)+4*y(x)^2+1)+(x^2+2*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{-x^3 - \sqrt{x^6 - x^4 - 4c_1}}{2x^2}$$
$$y(x) = \frac{-x^3 + \sqrt{x^6 - x^4 - 4c_1}}{2x^2}$$

Solution by Mathematica

Time used: 0.558 (sec). Leaf size: 84

$$y(x) o -rac{x^5 + \sqrt{x^3}\sqrt{x^7 - x^5 + 4c_1x}}{2x^4}$$
 $y(x) o -rac{x}{2} + rac{\sqrt{x^3}\sqrt{x^7 - x^5 + 4c_1x}}{2x^4}$

$$y(x) \to -\frac{x}{2} + \frac{\sqrt{x^3}\sqrt{x^7 - x^5 + 4c_1x}}{2x^4}$$

7.2 problem 2

Internal problem ID [11700]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(x)]']]

$$\tan(y) + (x - x^2 \tan(y)) y' = -2x$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 134

 $dsolve((2*x+tan(y(x)))+(x-x^2*tan(y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \arctan\left(\frac{-\sqrt{x^4 - c_1^2 + x^2} x - c_1}{(x^2 + 1) x}, \frac{-c_1 x + \sqrt{x^4 - c_1^2 + x^2}}{(x^2 + 1) x}\right)$$
$$y(x) = \arctan\left(\frac{\sqrt{x^4 - c_1^2 + x^2} x - c_1}{(x^2 + 1) x}, \frac{-c_1 x - \sqrt{x^4 - c_1^2 + x^2}}{(x^2 + 1) x}\right)$$

/ Solution by Mathematica

Time used: 38.283 (sec). Leaf size: 177

 $DSolve[(2*x+Tan[y[x]])+(x-x^2*Tan[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\arccos\left(-\frac{c_1x^2 + \sqrt{x^6 + x^4 - c_1^2x^2}}{x^4 + x^2}\right)$$
$$y(x) \to \arccos\left(-\frac{c_1x^2 + \sqrt{x^6 + x^4 - c_1^2x^2}}{x^4 + x^2}\right)$$
$$y(x) \to -\arccos\left(\frac{\sqrt{x^6 + x^4 - c_1^2x^2} - c_1x^2}{x^4 + x^2}\right)$$
$$y(x) \to \arccos\left(\frac{\sqrt{x^6 + x^4 - c_1^2x^2} - c_1x^2}{x^4 + x^2}\right)$$

7.3 problem 3

Internal problem ID [11701]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, '2nd type', 'class B']]

$$(1+x)y^2 + y + (2yx+1)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 56

 $\label{eq:dsolve} $$ dsolve((y(x)^2*(x+1)+y(x))+(2*x*y(x)+1)*diff(y(x),x)=0,y(x), singsol=all) $$ dsolve((y(x)^2*(x+1)+y(x))+(2*x*y(x)+1)*diff(y(x),x)=0,y(x), singsol=all) $$ dsolve((y(x)^2*(x+1)+y(x))+(2*x*y(x)+1)*diff(y(x),x)=0,y(x), singsol=all) $$ dsolve((y(x)^2*(x+1)+y(x))+(2*x*y(x)+1)*diff(y(x),x)=0,y(x), singsol=all) $$ dsolve((y(x)^2*(x+1)+y(x))+(2*x*y(x)+1)*diff(y(x)^2*(x+1)+y(x)^2) $$ diff(y(x)^2*(x+1)+y(x)^2) $$ diff(x)^2*(x+1)^2$

$$y(x) = \frac{-1 + \sqrt{e^x (-4c_1 x + e^x)} e^{-x}}{2x}$$
$$y(x) = \frac{-\sqrt{e^x (-4c_1 x + e^x)} e^{-x} - 1}{2x}$$

✓ Solution by Mathematica

Time used: 2.638 (sec). Leaf size: 69

 $DSolve[(y[x]^2*(x+1)+y[x])+(2*x*y[x]+1)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x)
ightarrow -rac{1+rac{\sqrt{e^x+4c_1x}}{\sqrt{e^x}}}{2x} \ y(x)
ightarrow rac{-1+rac{\sqrt{e^x+4c_1x}}{\sqrt{e^x}}}{2x}$$

7.4 problem 4

Internal problem ID [11702]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67

Problem number: 4.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational]

$$2y^{2}x + y + (2y^{3} - x)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 301

 $dsolve((2*x*y(x)^2+y(x))+(2*y(x)^3-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{-12x^2 - 12c_1 + \left(-108x + 12\sqrt{12x^6 + 36x^4c_1 + (36c_1^2 + 81)x^2 + 12c_1^3}\right)^{\frac{2}{3}}}{6\left(-108x + 12\sqrt{12x^6 + 36x^4c_1 + (36c_1^2 + 81)x^2 + 12c_1^3}\right)^{\frac{1}{3}}}$$

$$y(x) = \frac{\left(\frac{i\sqrt{3}}{12} + \frac{1}{12}\right)\left(-108x + 12\sqrt{12x^6 + 36x^4c_1 + (36c_1^2 + 81)x^2 + 12c_1^3}\right)^{\frac{2}{3}} + (x^2 + c_1)\left(i\sqrt{3} - 1\right)}{\left(-108x + 12\sqrt{12x^6 + 36x^4c_1 + (36c_1^2 + 81)x^2 + 12c_1^3}\right)^{\frac{1}{3}}}$$

$$y(x) = \frac{\frac{\left(i\sqrt{3} - 1\right)\left(-108x + 12\sqrt{12x^6 + 36x^4c_1 + (36c_1^2 + 81)x^2 + 12c_1^3}\right)^{\frac{2}{3}}}{12} + (x^2 + c_1)\left(1 + i\sqrt{3}\right)}{\left(-108x + 12\sqrt{12x^6 + 36x^4c_1 + (36c_1^2 + 81)x^2 + 12c_1^3}\right)^{\frac{1}{3}}}$$

✓ Solution by Mathematica

Time used: 6.163 (sec). Leaf size: 316

 $DSolve[(2*x*y[x]^2+y[x])+(2*y[x]^3-x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2^{2/3} \left(-27x + \sqrt{729x^2 + 108(x^2 - c_1)^3}\right)^{2/3} - 6\sqrt[3]{2}(x^2 - c_1)}{6\sqrt[3]{-27x + \sqrt{729x^2 + 108(x^2 - c_1)^3}}}$$

$$y(x) \to \frac{\left(1 - i\sqrt{3}\right)(x^2 - c_1)}{2^{2/3}\sqrt[3]{-27x + \sqrt{729x^2 + 108(x^2 - c_1)^3}}}$$

$$-\frac{\left(1 + i\sqrt{3}\right)\sqrt[3]{-27x + \sqrt{729x^2 + 108(x^2 - c_1)^3}}}{6\sqrt[3]{2}}$$

$$y(x) \to \frac{\left(1 + i\sqrt{3}\right)(x^2 - c_1)}{2^{2/3}\sqrt[3]{-27x + \sqrt{729x^2 + 108(x^2 - c_1)^3}}}$$

$$+\frac{\left(-1 + i\sqrt{3}\right)\sqrt[3]{-27x + \sqrt{729x^2 + 108(x^2 - c_1)^3}}}{6\sqrt[3]{2}}$$

$$y(x) \to 0$$

7.5 problem 5

Internal problem ID [11703]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'cl

$$4y^{2}x + 6y + (5x^{2}y + 8x)y' = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 23

 $dsolve((4*x*y(x)^2+6*y(x))+(5*x^2*y(x)+8*x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\operatorname{RootOf}\left(-\ln\left(x\right) + c_1 + \ln\left(\underline{Z} + 2\right) + 4\ln\left(\underline{Z}\right)\right)}{x}$$

✓ Solution by Mathematica

Time used: 1.767 (sec). Leaf size: 156

$$y(x) \to \text{Root}\left[-\#1^5 - \frac{2\#1^4}{x} + \frac{e^{c_1}}{x^4}\&, 1\right]$$

$$y(x) \to \text{Root}\left[-\#1^5 - \frac{2\#1^4}{x} + \frac{e^{c_1}}{x^4}\&, 2\right]$$

$$y(x) \to \text{Root}\left[-\#1^5 - \frac{2\#1^4}{x} + \frac{e^{c_1}}{x^4}\&, 3\right]$$

$$y(x) \to \text{Root}\left[-\#1^5 - \frac{2\#1^4}{x} + \frac{e^{c_1}}{x^4}\&, 4\right]$$

$$y(x) \to \text{Root}\left[-\#1^5 - \frac{2\#1^4}{x} + \frac{e^{c_1}}{x^4}\&, 5\right]$$

7.6 problem 6

Internal problem ID [11704]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises

page 67

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'cl

$$8y^3x^2 - 2y^4 + (5y^2x^3 - 8y^3x)y' = 0$$

✓ Solution by Maple

Time used: 0.703 (sec). Leaf size: 34

 $dsolve((8*x^2*y(x)^3-2*y(x)^4)+(5*x^3*y(x)^2-8*x*y(x)^3)*diff(y(x),x)=0,y(x),\\ singsol=all)$

$$y(x) = 0$$

$$y(x) = \text{RootOf} (x^6 _ Z^{48} - x^6 _ Z^{30} - c_1)^{18} x^2$$

✓ Solution by Mathematica

Time used: 3.924 (sec). Leaf size: 411

DSolve[(8*x^2*y[x]^3-2*y[x]^4)+(5*x^3*y[x]^2-8*x*y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolv

$$y(x) \to 0$$

$$y(x) \to \text{Root} \left[-\#1^8 + 3\#1^7 x^2 - 3\#1^6 x^4 + \#1^5 x^6 + \frac{e^{18c_1}}{x^2} \&, 1 \right]$$

$$y(x) \to \text{Root} \left[-\#1^8 + 3\#1^7 x^2 - 3\#1^6 x^4 + \#1^5 x^6 + \frac{e^{18c_1}}{x^2} \&, 2 \right]$$

$$y(x) \to \text{Root} \left[-\#1^8 + 3\#1^7 x^2 - 3\#1^6 x^4 + \#1^5 x^6 + \frac{e^{18c_1}}{x^2} \&, 3 \right]$$

$$y(x) \to \text{Root} \left[-\#1^8 + 3\#1^7 x^2 - 3\#1^6 x^4 + \#1^5 x^6 + \frac{e^{18c_1}}{x^2} \&, 4 \right]$$

$$y(x) \to \text{Root} \left[-\#1^8 + 3\#1^7 x^2 - 3\#1^6 x^4 + \#1^5 x^6 + \frac{e^{18c_1}}{x^2} \&, 5 \right]$$

$$y(x) \to \text{Root} \left[-\#1^8 + 3\#1^7 x^2 - 3\#1^6 x^4 + \#1^5 x^6 + \frac{e^{18c_1}}{x^2} \&, 6 \right]$$

$$y(x) \to \text{Root} \left[-\#1^8 + 3\#1^7 x^2 - 3\#1^6 x^4 + \#1^5 x^6 + \frac{e^{18c_1}}{x^2} \&, 7 \right]$$

$$y(x) \to \text{Root} \left[-\#1^8 + 3\#1^7 x^2 - 3\#1^6 x^4 + \#1^5 x^6 + \frac{e^{18c_1}}{x^2} \&, 7 \right]$$

$$y(x) \to \text{Root} \left[-\#1^8 + 3\#1^7 x^2 - 3\#1^6 x^4 + \#1^5 x^6 + \frac{e^{18c_1}}{x^2} \&, 8 \right]$$

$$y(x) \to 0$$

7.7 problem 7

Internal problem ID [11705]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _exact, _rational, [_Abel, '2nd ty

$$2y + (2x + y + 1)y' = -5x - 1$$

✓ Solution by Maple

Time used: 0.562 (sec). Leaf size: 32

dsolve((5*x+2*y(x)+1)+(2*x+y(x)+1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{-\sqrt{-(-1+x)^2 c_1^2 + 1} + (-2x - 1) c_1}{c_1}$$

✓ Solution by Mathematica

Time used: 0.134 (sec). Leaf size: 53

 $DSolve[(5*x+2*y[x]+1)+(2*x+y[x]+1)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{-x^2 + 2x + 1 + c_1} - 2x - 1$$

 $y(x) \to \sqrt{-x^2 + 2x + 1 + c_1} - 2x - 1$

7.8 problem 8

Internal problem ID [11706]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$-y - (6x - 2y - 3)y' = -3x - 1$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

dsolve((3*x-y(x)+1)-(6*x-2*y(x)-3)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\frac{\text{LambertW}(-2e^{5x-4-5c_1})}{2} + 3x - 2$$

✓ Solution by Mathematica

Time used: 3.097 (sec). Leaf size: 35

$$y(x) \to -\frac{1}{2}W(-e^{5x-1+c_1}) + 3x - 2$$

 $y(x) \to 3x - 2$

7.9 problem 9

Internal problem ID [11707]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$-2y + (2x + y - 1)y' = -x + 3$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 31

dsolve((x-2*y(x)-3)+(2*x+y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)

 $y(x) = -1 - \tan \left(\text{RootOf} \left(-4 Z + \ln \left(\sec \left(Z \right)^2 \right) + 2 \ln \left(-1 + x \right) + 2c_1 \right) \right) (-1 + x)$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 66

 $DSolve[(x-2*y[x]-3)+(2*x+y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[32 \arctan \left(\frac{2y(x) - x + 3}{y(x) + 2x - 1} \right) + 8 \log \left(\frac{x^2 + y(x)^2 + 2y(x) - 2x + 2}{5(x - 1)^2} \right) + 16 \log(x - 1) + 5c_1 = 0, y(x) \right]$$

7.10 problem 10

Internal problem ID [11708]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67

Problem number: 10.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$-4y - (x + 5y + 3) y' = -10x - 12$$

✓ Solution by Maple

Time used: 0.859 (sec). Leaf size: 129

dsolve((10*x-4*y(x)+12)-(x+5*y(x)+3)*diff(y(x),x)=0,y(x), singsol=all)

 $y(x) = \frac{(-3x - 4) \operatorname{RootOf} \left(-1 + (243c_1x^5 + 1620x^4c_1 + 4320c_1x^3 + 5760c_1x^2 + 3840c_1x + 1024c_1\right) Z^{25} + (14x^3 + 1620x^4c_1 + 1620x^$

✓ Solution by Mathematica

Time used: 60.443 (sec). Leaf size: 3061

Too large to display

7.11 problem 11

Internal problem ID [11709]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _exact, _rational, [_Abel, '2nd ty

$$4y + (4x + 2y + 2)y' = -6x - 1$$

With initial conditions

$$\left[y\left(\frac{1}{2}\right) = 3\right]$$

✓ Solution by Maple

Time used: 0.297 (sec). Leaf size: 23

dsolve([(6*x+4*y(x)+1)+(4*x+2*y(x)+2)*diff(y(x),x)=0,y(1/2) = 3],y(x), singsol=all)

$$y(x) = -2x - 1 + \frac{\sqrt{4x^2 + 12x + 93}}{2}$$

✓ Solution by Mathematica

Time used: 0.143 (sec). Leaf size: 28

$$y(x) \to \frac{1}{2} \Big(\sqrt{4x^2 + 12x + 93} - 4x - 2 \Big)$$

7.12 problem 12

Internal problem ID [11710]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$-y + (x + y + 2)y' = -3x + 6$$

With initial conditions

$$[y(2) = -2]$$

✓ Solution by Maple

Time used: 9.453 (sec). Leaf size: 120

 $\label{eq:dsolve} $$ dsolve([(3*x-y(x)-6)+(x+y(x)+2)*diff(y(x),x)=0,y(2) = -2],y(x), singsol=all)$ $$$

$$y(x) = -3 - \sqrt{3} \tan \left(\text{RootOf} \left(-3\sqrt{3} \ln (3) + 6\sqrt{3} \ln (2) - 3\sqrt{3} \ln \left(\sec \left(-Z \right)^2 (-1 + x)^2 \right) + \pi + 6 - Z \right) \right) (-1 + x)$$

✓ Solution by Mathematica

Time used: 0.141 (sec). Leaf size: 90

Solve
$$\left[\frac{\arctan\left(\frac{-y(x)+3x-6}{\sqrt{3}(y(x)+x+2)}\right)}{\sqrt{3}} + \log(2) = \frac{1}{2}\log\left(\frac{3x^2+y(x)^2+6y(x)-6x+12}{(x-1)^2}\right) + \log(x-1) + \frac{1}{18}\left(\sqrt{3}\pi + 18\log(2) - 9\log(4)\right), y(x) \right]$$

7.13 problem 13

Internal problem ID [11711]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$3y + (4x + 6y + 1)y' = -2x - 1$$

With initial conditions

$$[y(-2) = 2]$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 20

dsolve([(2*x+3*y(x)+1)+(4*x+6*y(x)+1)*diff(y(x),x)=0,y(-2) = 2],y(x), singsol=all)

$$y(x) = \frac{1}{3} - \frac{2x}{3} + \frac{\text{LambertW}\left(\frac{2e^{\frac{4}{3} + \frac{x}{3}}}{3}\right)}{2}$$

✓ Solution by Mathematica

Time used: 4.146 (sec). Leaf size: 30

DSolve $[{(2*x+3*y[x]+1)+(4*x+6*y[x]+1)*y'[x]==0,{y[-2]==2}},y[x],x,IncludeSingularSolutions -$

$$y(x) \to \frac{1}{6} \left(3W \left(\frac{2}{3} e^{\frac{x+4}{3}} \right) - 4x + 2 \right)$$

7.14 problem 14

Internal problem ID [11712]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67

Problem number: 14.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$3y + (x + y + 1)y' = -4x - 1$$

With initial conditions

$$[y(3) = -4]$$

✓ Solution by Maple

Time used: 0.265 (sec). Leaf size: 39

$$dsolve([(4*x+3*y(x)+1)+(x+y(x)+1)*diff(y(x),x)=0,y(3) = -4],y(x), singsol=all)$$

$$y(x) = \frac{-2x \operatorname{LambertW} (-(x-2) e^{-1}) + \operatorname{LambertW} (-(x-2) e^{-1}) - x + 2}{\operatorname{LambertW} (-(x-2) e^{-1})}$$

Solution by Mathematica

Time used: 65.902 (sec). Leaf size: 197

Solve
$$\frac{\left(-2\right)^{2/3} \left(-2x \log \left(\frac{3 (-2)^{2/3} (y(x)+2x-1)}{y(x)+x+1}\right)+\left(2x-1\right) \log \left(-\frac{3 (-2)^{2/3} (x-2)}{y(x)+x+1}\right)+\log \left(\frac{3 (-2)^{2/3} (y(x)+2x-1)}{y(x)+x+1}\right)+\log \left(\frac{3 (-2)^{2/3} (y(x)+2x-1)}{y(x)+x+1}\right)$$

8 Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113

8.1	problem	1 (a	,)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	175
8.2	problem	1 (b)																															176
8.3	problem	2 .																																177
8.4	problem	4 (a	,)																															178
8.5	problem	8.																																179
8.6	problem	9.																																180
8.7	problem	10																							•									181
8.8	problem	11																																182
8.9	problem	12																																183
8.10	problem	13																																184

8.1 problem 1 (a)

Internal problem ID [11713]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113

Problem number: 1 (a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 5y' + 6y = e^x$$

With initial conditions

$$[y(0) = 5, y'(0) = 7]$$

✓ Solution by Maple

 $\overline{\text{Time used: 0.015 (sec)}}$. Leaf size: 20

dsolve([diff(y(x),x\$2)+5*diff(y(x),x)+6*y(x)=exp(x),y(0) = 5, D(y)(0) = 7],y(x), singsol=all = 0

$$y(x) = \frac{(e^{4x} + 260 e^x - 201) e^{-3x}}{12}$$

✓ Solution by Mathematica

Time used: 0.057 (sec). Leaf size: $26\,$

DSolve[{y''[x]+5*y'[x]+6*y[x]==Exp[x],{y[0]==5,y'[0]==7}},y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{1}{12}e^{-3x}(260e^x + e^{4x} - 201)$$

8.2 problem 1 (b)

Internal problem ID [11714]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113

Problem number: 1 (b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 5y' + 6y = e^x$$

With initial conditions

$$[y(0) = 5, y'(1) = 7]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 55

dsolve([diff(y(x),x\$2)+5*diff(y(x),x)+6*y(x)=exp(x),y(0) = 5, D(y)(1) = 7],y(x), singsol=all = 0

$$y(x) = \frac{\left(-e^{4-x} + 84 e^{3-x} + e^4 + 2 e^{3x+1} - 84 e^3 + 118 e^{1-x} - 3 e^{3x} - 177\right) e^{-2x}}{24 e - 36}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: $68\,$

DSolve[{y''[x]+5*y'[x]+6*y[x]==Exp[x],{y[0]==5,y'[1]==7}},y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{e^{-3x}(-177e^x - 3e^{4x} - 84e^{x+3} + e^{x+4} + 2e^{4x+1} + 118e + 84e^3 - e^4)}{12(2e - 3)}$$

8.3 problem 2

Internal problem ID [11715]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y'x + x^2y = 0$$

With initial conditions

$$[y(1) = 0, y'(1) = 0]$$

✓ Solution by Maple

Time used: 0.641 (sec). Leaf size: 5

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.101 (sec). Leaf size: 6

$$y(x) \to 0$$

8.4 problem 4 (a)

Internal problem ID [11716]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113

Problem number: 4 (a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 3y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+3*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^x + c_2 e^{3x}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 20

 $\label{eq:DSolve} DSolve[y''[x]-4*y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^x (c_2 e^{2x} + c_1)$$

8.5 problem 8

Internal problem ID [11717]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 4]$$

✓ Solution by Maple

 $\overline{\text{Time used: 0.015 (sec)}}$. Leaf size: 12

dsolve([diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=0,y(0) = 1, D(y)(0) = 4],y(x), singsol=all)

$$y(x) = e^x(3x+1)$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 14

$$y(x) \rightarrow e^x(3x+1)$$

8.6 problem 9

Internal problem ID [11718]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113

Problem number: 9.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' - 2y'x + 2y = 0$$

With initial conditions

$$[y(1) = 3, y'(1) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

 $dsolve([x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,y(1) = 3, D(y)(1) = 2],y(x), singsol=al(x)=0$

$$y(x) = -x^2 + 4x$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 11

$$y(x) \rightarrow -((x-4)x)$$

8.7 problem 10

Internal problem ID [11719]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${\bf Section:}\ {\bf Chapter}\ 4,\ {\bf Section}\ 4.1.\ {\bf Basic}\ {\bf theory}\ {\bf of}\ {\bf linear}\ {\bf differential}\ {\bf equations}.\ {\bf Exercises}\ {\bf page}$

113

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' + y'x - 4y = 0$$

With initial conditions

$$[y(2) = 3, y'(2) = -1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve([x^2*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=0,y(2) = 3, D(y)(2) = -1],y(x), singsol=all = 0$

$$y(x) = \frac{x^4 + 32}{4x^2}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 17

DSolve[{x^2*y''[x]+x*y'[x]-4*y[x]==0,{y[2]==3,y'[2]==-1}},y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{x^4 + 32}{4x^2}$$

8.8 problem 11

Internal problem ID [11720]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 5y' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)-5*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{4x} + c_2 e^x$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 20

 $DSolve[y''[x]-5*y'[x]+4*y[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^x (c_2 e^{3x} + c_1)$$

8.9 problem 12

Internal problem ID [11721]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113

Problem number: 12.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 6y'' + 5y' + 12y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+5*diff(y(x),x)+12*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{4x} + c_2 e^{-x} + c_3 e^{3x}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 29

 $DSolve[y'''[x]-6*y''[x]+5*y'[x]+12*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-x} (e^{4x} (c_3 e^x + c_2) + c_1)$$

8.10 problem 13

Internal problem ID [11722]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113

Problem number: 13.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$x^3y''' - 4x^2y'' + 8y'x - 8y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

 $\frac{dsolve(x^3*diff(y(x),x$3)-4*x^2*diff(y(x),x$2)+8*x*diff(y(x),x)-8*y(x)=0,y(x)}{dsolve(x^3*diff(y(x),x$3)-4*x^2*diff(y(x),x$2)+8*x*diff(y(x),x)-8*y(x)=0,y(x)}$

$$y(x) = x(c_1x^3 + c_3x + c_2)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 20

DSolve[x^3*y'''[x]-4*x^2*y''[x]+8*x*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x(c_3x^3 + c_2x + c_1)$$

9 Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124

9.1	problem 1	L	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	186
9.2	problem 2	2																																					18'
9.3	problem 3	3																																					188
9.4	problem 4	1																																					189
9.5	problem 5	5																																					190
9.6	problem 6	3																																					19
9.7	problem 8	3																																					192
9.8	problem 9	9																																					193

9.1 problem 1

Internal problem ID [11723]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - 4y'x + 4y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve([x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+4*y(x)=0,x],singsol=all)$

$$y(x) = x(c_1x^3 + c_2)$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 16

 $DSolve[x^2*y''[x]-4*x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow x(c_2x^3 + c_1)$$

9.2 problem 2

Internal problem ID [11724]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(1+x)^2y'' - 3(1+x)y' + 3y = 0$$

Given that one solution of the ode is

$$y_1 = 1 + x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve([(x+1)^2*diff(y(x),x$2)-3*(x+1)*diff(y(x),x)+3*y(x)=0,x+1],singsol=all)$

$$y(x) = (1+x)(c_1 + c_2(1+x)^2)$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 20

 $DSolve[(x+1)^2*y''[x]-3*(x+1)*y'[x]+3*y[x] == 0, y[x], x, IncludeSingularSolutions \\ -> True]$

$$y(x) \to c_2(x+1)^3 + c_1(x+1)$$

9.3 problem 3

Internal problem ID [11725]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(x^2 - 1)y'' - 2y'x + 2y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $\label{eq:dsolve} $$ dsolve([(x^2-1)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,x], singsol=all)$ $$$

$$y(x) = c_2 x^2 + c_1 x + c_2$$

✓ Solution by Mathematica

Time used: 0.086 (sec). Leaf size: 39

 $DSolve[(x^2-1)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{\sqrt{x^2 - 1}(c_1(x - 1)^2 + c_2x)}{\sqrt{1 - x^2}}$$

9.4 problem 4

Internal problem ID [11726]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 - x + 1) y'' - (x^2 + x) y' + y(1 + x) = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve([(x^2-x+1)*diff(y(x),x$2)-(x^2+x)*diff(y(x),x)+(x+1)*y(x)=0,x],singsol=all)$

$$y(x) = c_1 x + c_2 e^x (-1 + x)$$

✓ Solution by Mathematica

Time used: 0.093 (sec). Leaf size: 19

 $DSolve[(x^2-x+1)*y''[x]-(x^2+x)*y'[x]+(x+1)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 x + c_2 e^x (x-1)$$

9.5 problem 5

Internal problem ID [11727]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(2x+1)y'' - 4(1+x)y' + 4y = 0$$

Given that one solution of the ode is

$$y_1 = e^{2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve([(2*x+1)*diff(y(x),x\$2)-4*(x+1)*diff(y(x),x)+4*y(x)=0,exp(2*x)],singsol=all)

$$y(x) = c_2 e^{2x} + c_1 x + c_1$$

✓ Solution by Mathematica

Time used: 0.125 (sec). Leaf size: 23

DSolve[(2*x+1)*y''[x]-4*(x+1)*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions] -> True]

$$y(x) \to c_1 e^{2x+1} - c_2(x+1)$$

9.6 problem 6

Internal problem ID [11728]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^3 - x^2)y'' - (x^3 + 2x^2 - 2x)y' + (2x^2 + 2x - 2)y = 0$$

Given that one solution of the ode is

$$y_1 = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve([(x^3-x^2)*diff(y(x),x$2)-(x^3+2*x^2-2*x)*diff(y(x),x)+(2*x^2+2*x-2)*y(x)=0,x^2],sing(x)=0,x^2=0,x^$

$$y(x) = x(c_2 e^x + c_1 x)$$

✓ Solution by Mathematica

Time used: 0.101 (sec). Leaf size: 36

$$y(x) \to -\frac{\sqrt{1-x}x(c_2x - c_1e^x)}{\sqrt{x-1}}$$

9.7 problem 8

Internal problem ID [11729]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 3y' + 2y = 4x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=4*x^2,y(x), singsol=all)$

$$y(x) = e^{2x}c_1 + c_2e^x + 2x^2 + 6x + 7$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 29

 $\label{eq:DSolve} DSolve[y''[x]-3*y'[x]+2*y[x]==4*x^2,y[x],x,IncludeSingularSolutions \ -> \ True]$

$$y(x) \rightarrow 2x^2 + 6x + c_1e^x + c_2e^{2x} + 7$$

9.8 problem 9

Internal problem ID [11730]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 5y' + 6y = 2 - 12x + 6e^x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)-5*diff(y(x),x)+6*y(x)=2-12*x+6*exp(x),y(x), singsol=all)

$$y(x) = c_2 e^{2x} + c_1 e^{3x} + 3 e^x - 2x - \frac{4}{3}$$

✓ Solution by Mathematica

Time used: 0.15 (sec). Leaf size: 33

DSolve[y''[x]-5*y'[x]+6*y[x]==2-12*x+6*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -2x + 3e^x + c_1e^{2x} + c_2e^{3x} - \frac{4}{3}$$

10 Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients. Exercises page 135

10.1 problem 1 .													 				196
10.2 problem 2 .													 				197
10.3 problem 3 .													 				198
10.4 problem 4 .													 				199
10.5 problem 5 .													 				200
10.6 problem 6 .													 				201
10.7 problem 7 .	, .												 				202
10.8 problem 8 .													 				203
10.9 problem 9 .	, .												 				204
10.10 problem 10													 				205
10.11 problem 11													 				206
10.12problem 12													 				207
10.13 problem 13													 				208
10.14problem 14													 				209
10.15 problem 15				 •			•						 				210
10.16 problem 16													 				211
10.17problem 17				 •			•						 				212
10.18 problem 18									 •								213
10.19 problem 19				 •			•						 				214
10.20 problem 20				 •			•		 •				 				215
10.21 problem 21				 •			•						 				216
10.22problem 22									 •								217
10.23 problem 23																	218
10.24 problem 24																	219
10.25 problem 25													 		•	•	220
10.26problem 26													 		•	•	221
10.27problem 27									 •								222
10.28 problem 28									 •								223
10.29 problem 29				 •			•		 •				 				224
10.30 problem 30									 •								225
10.31 problem 31									 •								226
10.32 problem 32				 •					 •								227
10.33 problem 33				 •					 •								228
10.34problem 34													 				229

10.35problem 35																		230
10.36problem 36																		231
10.37 problem 37																		232
10.38problem 38																		233
10.39problem 39																		234
10.40problem 40																		235
10.41 problem 41																		236
10.42 problem 42																		237
10.43 problem 45																		238
10.44 problem 46														_				239

10.1 problem 1

Internal problem ID [11731]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 5y' + 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-5*diff(y(x),x)+6*y(x)=0,y(x), singsol=all)

$$y(x) = e^{2x}c_1 + c_2e^{3x}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 20

DSolve[y''[x]-5*y'[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{2x}(c_2 e^x + c_1)$$

10.2 problem 2

Internal problem ID [11732]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' - 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^{-x} + c_2 \mathrm{e}^{3x}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 22

 $DSolve[y''[x]-2*y'[x]-3*y[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-x} (c_2 e^{4x} + c_1)$$

10.3 problem 3

Internal problem ID [11733]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$4y'' - 12y' + 5y = 0$$

✓ Solution by Maple

 $\overline{\text{Time used: 0.0 (sec)}}$. Leaf size: 17

dsolve(4*diff(y(x),x\$2)-12*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{\frac{x}{2}} + c_2 e^{\frac{5x}{2}}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 24

DSolve [4*y''[x]-12*y'[x]+5*y[x]==0, y[x], x, Include Singular Solutions -> True]

$$y(x) \to e^{x/2} (c_2 e^{2x} + c_1)$$

10.4 problem 4

Internal problem ID [11734]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$3y'' - 14y' - 5y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve(3*diff(y(x),x\$2)-14*diff(y(x),x)-5*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{5x} + c_2 e^{-\frac{x}{3}}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 24

DSolve [3*y''[x]-14*y'[x]-5*y[x] == 0, y[x], x, Include Singular Solutions -> True]

$$y(x) \rightarrow c_1 e^{-x/3} + c_2 e^{5x}$$

10.5 problem 5

Internal problem ID [11735]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 5.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 3y'' - y' + 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)-diff(y(x),x)+3*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-x} + c_2 e^x + c_3 e^{3x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 28

 $DSolve[y'''[x]-3*y''[x]-y'[x]+3*y[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-x} + c_2 e^x + c_3 e^{3x}$$

10.6 problem 6

Internal problem ID [11736]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 6.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 6y'' + 5y' + 12y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+5*diff(y(x),x)+12*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{4x} + c_2 e^{-x} + c_3 e^{3x}$$

✓ Solution by Mathematica

Time used: $0.\overline{003}$ (sec). Leaf size: 29

 $DSolve[y'''[x]-6*y''[x]+5*y'[x]+12*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-x} (e^{4x} (c_3 e^x + c_2) + c_1)$$

10.7 problem 7

Internal problem ID [11737]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 8y' + 16y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve(diff(y(x),x\$2)-8*diff(y(x),x)+16*y(x)=0,y(x), singsol=all)

$$y(x) = e^{4x}(c_2x + c_1)$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 18

 $\begin{tabular}{ll} DSolve[y''[x]-8*y'[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions \end{tabular} -> True] \\ \end{tabular}$

$$y(x) \to e^{4x}(c_2x + c_1)$$

10.8 problem 8

Internal problem ID [11738]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$4y'' + 4y' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(4*diff(y(x),x\$2)+4*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = e^{-\frac{x}{2}}(c_2x + c_1)$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 20

DSolve[4*y''[x]+4*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x/2}(c_2x + c_1)$$

10.9 problem 9

Internal problem ID [11739]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 13y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+13*y(x)=0,y(x), singsol=all)

$$y(x) = e^{2x}(c_1 \sin(3x) + c_2 \cos(3x))$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 26

 $\begin{tabular}{ll} DSolve[y''[x]-4*y'[x]+13*y[x]==0,y[x],x,IncludeSingularSolutions \end{tabular} -> True] \\ \end{tabular}$

$$y(x) \to e^{2x}(c_2\cos(3x) + c_1\sin(3x))$$

10.10 problem 10

Internal problem ID [11740]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 6y' + 25y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)+6*diff(y(x),x)+25*y(x)=0,y(x), singsol=all)

$$y(x) = e^{-3x}(c_1 \sin(4x) + c_2 \cos(4x))$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 26

 $\begin{tabular}{ll} DSolve[y''[x]+6*y'[x]+25*y[x]==0,y[x],x,IncludeSingularSolutions \end{tabular} -> True] \\ \end{tabular}$

$$y(x) \to e^{-3x}(c_2\cos(4x) + c_1\sin(4x))$$

10.11 problem 11

Internal problem ID [11741]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 9y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+9*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(3x) + c_2 \cos(3x)$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 20

DSolve[y''[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 \cos(3x) + c_2 \sin(3x)$$

10.12 problem 12

Internal problem ID [11742]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$4y'' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(4*diff(y(x),x\$2)+y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin\left(\frac{x}{2}\right) + c_2 \cos\left(\frac{x}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: $24\,$

 $DSolve [4*y''[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 \cos\left(\frac{x}{2}\right) + c_2 \sin\left(\frac{x}{2}\right)$$

10.13 problem 13

Internal problem ID [11743]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 13.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 5y'' + 7y' - 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x\$3)-5*diff(y(x),x\$2)+7*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{3x} + e^x (c_3 x + c_2)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 24

 $DSolve[y'''[x]-5*y''[x]+7*y'[x]-3*y[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^x (c_2 x + c_3 e^{2x} + c_1)$$

10.14 problem 14

Internal problem ID [11744]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 14.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$4y''' + 4y'' - 7y' + 2y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(4*diff(y(x),x\$3)+4*diff(y(x),x\$2)-7*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)

$$y(x) = \left((c_3 x + c_2) e^{\frac{5x}{2}} + c_1 \right) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 93 $\,$

 $DSolve[4*y'''[x]+4*y''[x]+7*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_1 \exp \left(x \operatorname{Root} \left[4 \# 1^3 + 4 \# 1^2 + 7 \# 1 + 2 \&, 1\right]\right) + c_2 \exp \left(x \operatorname{Root} \left[4 \# 1^3 + 4 \# 1^2 + 7 \# 1 + 2 \&, 2\right]\right) + c_3 \exp \left(x \operatorname{Root} \left[4 \# 1^3 + 4 \# 1^2 + 7 \# 1 + 2 \&, 3\right]\right)$$

10.15 problem 15

Internal problem ID [11745]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 15.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 6y'' + 12y' - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+12*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)

$$y(x) = e^{2x} (c_3 x^2 + c_2 x + c_1)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 23

 $DSolve[y'''[x]-6*y''[x]+12*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{2x}(x(c_3x + c_2) + c_1)$$

10.16 problem 16

Internal problem ID [11746]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 16.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 4y'' + 5y' + 6y = 0$$

✓ Solution by Maple

 $\overline{\text{Time used: 0.0 (sec)}}$. Leaf size: 37

dsolve(diff(y(x),x\$3)+4*diff(y(x),x\$2)+5*diff(y(x),x)+6*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-3x} + c_2 e^{-\frac{x}{2}} \sin\left(\frac{\sqrt{7}x}{2}\right) + c_3 e^{-\frac{x}{2}} \cos\left(\frac{\sqrt{7}x}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 56

$$y(x) \to e^{-3x} \left(c_2 e^{5x/2} \cos \left(\frac{\sqrt{7}x}{2} \right) + c_1 e^{5x/2} \sin \left(\frac{\sqrt{7}x}{2} \right) + c_3 \right)$$

10.17 problem 17

Internal problem ID [11747]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 17.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - y'' + y' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$3)-diff(y(x),x\$2)+diff(y(x),x)-y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^x + \sin(x) c_2 + c_3 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 22

 $DSolve[y'''[x]-y''[x]+y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_3 e^x + c_1 \cos(x) + c_2 \sin(x)$$

10.18 problem 18

Internal problem ID [11748]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 18.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 8y'' + 16y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$4)+8*diff(y(x),x\$2)+16*y(x)=0,y(x), singsol=all)

$$y(x) = (c_4x + c_2)\cos(2x) + \sin(2x)(c_3x + c_1)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

 $DSolve[y''''[x] + 8*y''[x] + 16*y[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to (c_2x + c_1)\cos(2x) + (c_4x + c_3)\sin(2x)$$

10.19 problem 19

Internal problem ID [11749]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 19.

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(5)} - 2y'''' + y''' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

dsolve(diff(y(x),x\$5)-2*diff(y(x),x\$4)+diff(y(x),x\$3)=0,y(x), singsol=all)

$$y(x) = (c_5x + c_4) e^x + c_3x^2 + c_2x + c_1$$

✓ Solution by Mathematica

Time used: 0.096 (sec). Leaf size: 30

DSolve[y''''[x]-2*y''''[x]+y'''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(c_2(x-3)+c_1)+x(c_5x+c_4)+c_3$$

10.20 problem 20

Internal problem ID [11750]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 20.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - y''' - 3y'' + y' + 2y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve(diff(y(x),x\$4)-diff(y(x),x\$3)-3*diff(y(x),x\$2)+diff(y(x),x)+2*y(x)=0,y(x), singsol=al(x)-al(x

$$y(x) = (c_4x + c_3)e^{-x} + c_1e^x + c_2e^{2x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 33

$$y(x) \to e^{-x} (c_2 x + e^{2x} (c_4 e^x + c_3) + c_1)$$

10.21 problem 21

Internal problem ID [11751]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 21.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 3y''' - 2y'' + 2y' + 12y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(x),x\$4)-3*diff(y(x),x\$3)-2*diff(y(x),x\$2)+2*diff(y(x),x)+12*y(x)=0,y(x), sings(x)=0

$$y(x) = e^{2x}c_1 + c_2e^{3x} + c_3e^{-x}\sin(x) + c_4e^{-x}\cos(x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 37

DSolve[y'''[x]-3*y'''[x]-2*y''[x]+2*y'[x]+12*y[x]==0,y[x],x,IncludeSingularSolutions -> Tru

$$y(x) \to e^{-x} (e^{3x} (c_4 e^x + c_3) + c_2 \cos(x) + c_1 \sin(x))$$

10.22 problem 22

Internal problem ID [11752]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 22.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 6y''' + 15y'' + 20y' + 12y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

dsolve(diff(y(x),x\$4)+6*diff(y(x),x\$3)+15*diff(y(x),x\$2)+20*diff(y(x),x)+12*y(x)=0,y(x), single (x,y,x)+12*y(x)=0,y(x), single (x,y,x)+12*y(x)=0,y(x)=

$$y(x) = c_4 e^{-x} \cos(x\sqrt{2}) + c_3 e^{-x} \sin(x\sqrt{2}) + e^{-2x}(c_2 x + c_1)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: $46\,$

DSolve[y'''[x]+6*y'''[x]+15*y''[x]+20*y'[x]+12*y[x]==0,y[x],x,IncludeSingularSolutions -> T

$$y(x) \rightarrow e^{-2x} \left(c_4 x + c_2 e^x \cos\left(\sqrt{2}x\right) + c_1 e^x \sin\left(\sqrt{2}x\right) + c_3 \right)$$

10.23 problem 23

Internal problem ID [11753]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients. Exercises page 135

Problem number: 23.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 61

dsolve(diff(y(x),x\$4)+y(x)=0,y(x), singsol=all)

$$y(x) = \left(-c_1 e^{-\frac{x\sqrt{2}}{2}} - c_2 e^{\frac{x\sqrt{2}}{2}}\right) \sin\left(\frac{x\sqrt{2}}{2}\right) + \left(c_3 e^{-\frac{x\sqrt{2}}{2}} + c_4 e^{\frac{x\sqrt{2}}{2}}\right) \cos\left(\frac{x\sqrt{2}}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 65

DSolve[y'''[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-\frac{x}{\sqrt{2}}} \left(\left(c_1 e^{\sqrt{2}x} + c_2 \right) \cos \left(\frac{x}{\sqrt{2}} \right) + \left(c_4 e^{\sqrt{2}x} + c_3 \right) \sin \left(\frac{x}{\sqrt{2}} \right) \right)$$

10.24 problem 24

Internal problem ID [11754]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${\bf Section:}\ {\bf Chapter}\ 4,\ {\bf Section}\ 4.2.\ {\bf The}\ {\bf homogeneous}\ {\bf linear}\ {\bf equation}\ {\bf with}\ {\bf constant}\ {\bf coefficients}.$

Exercises page 135

Problem number: 24.

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _quadrature]]

$$y^{(5)} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$5)=0,y(x), singsol=all)

$$y(x) = \frac{1}{24}x^4c_1 + \frac{1}{6}c_2x^3 + \frac{1}{2}c_3x^2 + c_4x + c_5$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.002 (sec). Leaf size: 27}}$

DSolve[y''''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x(x(x(c_5x + c_4) + c_3) + c_2) + c_1$$

10.25 problem 25

Internal problem ID [11755]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 12y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = 5]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([diff(y(x),x\$2)-diff(y(x),x)-12*y(x)=0,y(0) = 3, D(y)(0) = 5],y(x), singsol=all)

$$y(x) = (2e^{7x} + 1)e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 18

DSolve[{y''[x]-y'[x]-12*y[x]==0,{y[0]==3,y'[0]==5}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-3x} + 2e^{4x}$$

10.26 problem 26

Internal problem ID [11756]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 7y' + 10y = 0$$

With initial conditions

$$[y(0) = -4, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve([diff(y(x),x\$2)+7*diff(y(x),x)+10*y(x)=0,y(0) = -4, D(y)(0) = 2],y(x), singsol=all)

$$y(x) = 2e^{-5x} - 6e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 20

$$y(x) \to e^{-5x} (2 - 6e^{3x})$$

10.27 problem 27

Internal problem ID [11757]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 6y' + 8y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 6]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(x),x\$2)-6*diff(y(x),x)+8*y(x)=0,y(0) = 1, D(y)(0) = 6],y(x), singsol=all)

$$y(x) = 2e^{4x} - e^{2x}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 20

DSolve[{y''[x]-6*y'[x]+8*y[x]==0,{y[0]==1,y'[0]==6}},y[x],x,IncludeSingularSolutions -> True

$$y(x) \to e^{2x} \left(2e^{2x} - 1 \right)$$

10.28 problem 28

Internal problem ID [11758]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$3y'' + 4y' - 4y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = -4]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve([3*diff(y(x),x\$2)+4*diff(y(x),x)-4*y(x)=0,y(0) = 2, D(y)(0) = -4],y(x), singsol=all)

$$y(x) = 2e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: $12\,$

DSolve[{3*y''[x]+4*y'[x]-4*y[x]==0,{y[0]==2,y'[0]==-4}},y[x],x,IncludeSingularSolutions -> T

$$y(x) \to 2e^{-2x}$$

10.29 problem 29

Internal problem ID [11759]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 6y' + 9y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = -3]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

dsolve([diff(y(x),x\$2)+6*diff(y(x),x)+9*y(x)=0,y(0) = 2, D(y)(0) = -3],y(x), singsol=all)

$$y(x) = e^{-3x}(3x+2)$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 16

DSolve[{y''[x]+6*y'[x]+9*y[x]==0,{y[0]==2,y'[0]==-3}},y[x],x,IncludeSingularSolutions -> Tru

$$y(x) \to e^{-3x}(3x+2)$$

10.30 problem 30

Internal problem ID [11760]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 30.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$4y'' - 12y' + 9y = 0$$

With initial conditions

$$[y(0) = 4, y'(0) = 9]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([4*diff(y(x),x\$2)-12*diff(y(x),x)+9*y(x)=0,y(0) = 4, D(y)(0) = 9],y(x), singsol=all)

$$y(x) = e^{\frac{3x}{2}}(3x+4)$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 18

DSolve[{4*y''[x]-12*y'[x]+9*y[x]==0,{y[0]==4,y'[0]==9}},y[x],x,IncludeSingularSolutions -> T

$$y(x) \to e^{3x/2}(3x+4)$$

10.31 problem 31

Internal problem ID [11761]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 31.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y' + 4y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = 7]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve([diff(y(x),x\$2)+4*diff(y(x),x)+4*y(x)=0,y(0) = 3, D(y)(0) = 7],y(x), singsol=all)

$$y(x) = e^{-2x}(3 + 13x)$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 16

DSolve[{y''[x]+4*y'[x]+4*y[x]==0,{y[0]==3,y'[0]==7}},y[x],x,IncludeSingularSolutions -> True

$$y(x) \to e^{-2x}(13x+3)$$

10.32 problem 32

Internal problem ID [11762]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$9y'' - 6y' + y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

dsolve([9*diff(y(x),x\$2)-6*diff(y(x),x)+y(x)=0,y(0) = 3, D(y)(0) = -1],y(x), singsol=all)

$$y(x) = e^{\frac{x}{3}}(-2x+3)$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 18

DSolve[{9*y''[x]-6*y'[x]+y[x]==0,{y[0]==3,y'[0]==-1}},y[x],x,IncludeSingularSolutions -> Tru

$$y(x) \to e^{x/3}(3-2x)$$

10.33 problem 33

Internal problem ID [11763]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 29y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 5]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve([diff(y(x),x\$2)-4*diff(y(x),x)+29*y(x)=0,y(0) = 0, D(y)(0) = 5],y(x), singsol=all)

$$y(x) = e^{2x} \sin(5x)$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: $15\,$

$$y(x) \to e^{2x} \sin(5x)$$

10.34 problem 34

Internal problem ID [11764]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 6y' + 58y = 0$$

With initial conditions

$$[y(0) = -1, y'(0) = 5]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

dsolve([diff(y(x),x\$2)+6*diff(y(x),x)+58*y(x)=0,y(0) = -1, D(y)(0) = 5],y(x), singsol=all)

$$y(x) = \frac{e^{-3x}(2\sin(7x) - 7\cos(7x))}{7}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: $27\,$

DSolve[{y''[x]+6*y'[x]+58*y[x]==0,{y[0]==-1,y'[0]==5}},y[x],x,IncludeSingularSolutions -> Tr

$$y(x) \to \frac{1}{7}e^{-3x}(2\sin(7x) - 7\cos(7x))$$

10.35 problem 35

Internal problem ID [11765]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 35.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 6y' + 13y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

$$dsolve([diff(y(x),x$2)+6*diff(y(x),x)+13*y(x)=0,y(0) = 3, D(y)(0) = -1],y(x), singsol=all)$$

$$y(x) = e^{-3x} (4\sin(2x) + 3\cos(2x))$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: $24\,$

$$y(x) \to e^{-3x} (4\sin(2x) + 3\cos(2x))$$

10.36 problem 36

Internal problem ID [11766]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 36.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + 5y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 6]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve([diff(y(x),x\$2)+2*diff(y(x),x)+5*y(x)=0,y(0) = 2, D(y)(0) = 6],y(x), singsol=all)

$$y(x) = 2e^{-x}(2\sin(2x) + \cos(2x))$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 23

DSolve[{y''[x]+2*y'[x]+5*y[x]==0,{y[0]==2,y'[0]==6}},y[x],x,IncludeSingularSolutions -> True

$$y(x) \rightarrow 2e^{-x}(2\sin(2x) + \cos(2x))$$

10.37 problem 37

Internal problem ID [11767]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 37.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$9y'' + 6y' + 5y = 0$$

With initial conditions

$$[y(0) = 6, y'(0) = 0]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve([9*diff(y(x),x\$2)+6*diff(y(x),x)+5*y(x)=0,y(0) = 6, D(y)(0) = 0],y(x), singsol=all)

$$y(x) = 3e^{-\frac{x}{3}} \left(\sin\left(\frac{2x}{3}\right) + 2\cos\left(\frac{2x}{3}\right) \right)$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 29

$$y(x) \to 3e^{-x/3} \left(\sin\left(\frac{2x}{3}\right) + 2\cos\left(\frac{2x}{3}\right) \right)$$

10.38 problem 38

Internal problem ID [11768]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$4y'' + 4y' + 37y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = -4]$$

✓ Solution by Maple

 $\overline{\text{Time used: 0.015 (sec)}}$. Leaf size: 22

dsolve([4*diff(y(x),x\$2)+4*diff(y(x),x)+37*y(x)=0,y(0) = 2, D(y)(0) = -4],y(x), singsol=all)

$$y(x) = e^{-\frac{x}{2}}(-\sin(3x) + 2\cos(3x))$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: $26\,$

DSolve[{4*y''[x]+4*y'[x]+37*y[x]==0,{y[0]==2,y'[0]==-4}},y[x],x,IncludeSingularSolutions ->

$$y(x) \to e^{-x/2} (2\cos(3x) - \sin(3x))$$

10.39 problem 39

Internal problem ID [11769]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 39.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 6y'' + 11y' - 6y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y''(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(x),x\$3)-6*diff(y(x),x\$2)+11*diff(y(x),x)-6*y(x)=0,y(0)=0,D(y)(0)=0,(D@@(x,y)-6*y(x)

$$y(x) = e^x - 2e^{2x} + e^{3x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: $16\,$

$$y(x) \to e^x (e^x - 1)^2$$

10.40 problem 40

Internal problem ID [11770]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 40.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 2y'' + 4y' - 8y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 0, y''(0) = 0]$$

✓ Solution by Maple

 $\overline{\text{Time used: 0.015 (sec)}}$. Leaf size: 19

dsolve([diff(y(x),x\$3)-2*diff(y(x),x\$2)+4*diff(y(x),x)-8*y(x)=0,y(0) = 2, D(y)(0) = 0, (D@@2)

$$y(x) = e^{2x} - \sin(2x) + \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 21 $\,$

DSolve[{y'''[x]-2*y''[x]+4*y'[x]-8*y[x]==0,{y[0]==2,y'[0]==0,y''[0]==0}},y[x],x,IncludeSingu

$$y(x) \to e^{2x} - \sin(2x) + \cos(2x)$$

10.41 problem 41

Internal problem ID [11771]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 41.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 3y'' + 4y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -8, y''(0) = -4]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve([diff(y(x),x\$3)-3*diff(y(x),x\$2)+4*y(x)=0,y(0) = 1, D(y)(0) = -8, (D@@2)(y)(0) = -4],

$$y(x) = \frac{(6x - 23)e^{2x}}{9} + \frac{32e^{-x}}{9}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 27

$$y(x) \to \frac{1}{9}e^{-x}(e^{3x}(6x-23)+32)$$

10.42 problem 42

Internal problem ID [11772]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 42.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 5y'' + 9y' - 5y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1, y''(0) = 6]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

$$y(x) = e^x + (2\sin(x) - \cos(x))e^{2x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: $25\,$

DSolve
$$[\{y'''[x]-5*y''[x]+9*y'[x]-5*y[x]==0,\{y[0]==0,y'[0]==1,y''[0]==6\}\},y[x],x,IncludeSingularing$$

$$y(x) \rightarrow e^x (2e^x \sin(x) - e^x \cos(x) + 1)$$

10.43 problem 45

Internal problem ID [11773]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 45.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 2y''' + 6y'' + 2y' + 5y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$3)+6*diff(y(x),x\$2)+2*diff(y(x),x)+5*y(x)=0,y(x), singsolve(x)

$$y(x) = (2c_3\cos(x)\sin(x) + 2c_4\cos(x)^2 - c_4)e^{-x} + c_1\sin(x) + c_2\cos(x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 40

DSolve[y'''[x]+2*y'''[x]+6*y''[x]+2*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True

$$y(x) \to c_3 \cos(x) + e^{-x} (c_2 \cos(2x) + c_4 e^x \sin(x) + c_1 \sin(2x))$$

10.44 problem 46

Internal problem ID [11774]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 46.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 3y''' + y'' + 13y' + 30y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(y(x),x\$4)+3*diff(y(x),x\$3)+diff(y(x),x\$2)+13*diff(y(x),x)+30*y(x)=0,y(x), singso

$$y(x) = (c_3 e^{4x} \sin(2x) + c_4 e^{4x} \cos(2x) + c_2 e^x + c_1) e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 43

DSolve[y'''[x]+3*y'''[x]+y''[x]+13*y'[x]+30*y[x]==0,y[x],x,IncludeSingularSolutions -> True

$$y(x) \rightarrow c_2 e^x \cos(2x) + e^{-3x} (c_4 e^x + c_1 e^{4x} \sin(2x) + c_3)$$

11 Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

11.1 problem 1													 •								•	242
11.2 problem 2												•								•		243
11.3 problem 3												•								•		244
11.4 problem 4																						245
11.5 problem 5																		•				246
11.6 problem 6																						247
11.7 problem 7																						248
11.8 problem 8																		•				249
11.9 problem 9																						250
11.10 problem 10) .																			•		251
11.11problem 11												•								•		252
11.12 problem 12	: .											•								•		253
11.13 problem 13						•							 •								•	254
11.14 problem 14						•							 •								•	255
11.15 problem 15						•		•					 •					•			•	256
11.16 problem 16	.		•		 •	•							 •							•	•	257
11.17problem 17	•		•		 •	•							 •							•	•	258
11.18problem 18			•		 •	•							 •							•	•	259
11.19problem 19	١.	•	•		 •	•		•		•		•	 •	•						•	•	260
11.20 problem 20	١.		•		 •	•							 •							•	•	261
11.21 problem 21			•		 •	•		•				•	 •			•					•	262
11.22problem 22			•		 •	•		•				•	 •			•					•	263
11.23 problem 23					 •	•		•				•	 •	•		•		•			•	264
11.24problem 24			•		 •	•	•	•			 •		 •					•			•	265
11.25 problem 25					 •	•		•			 •		 •			•		•			•	266
11.26 problem 26			•		 •	•	•	•			 •	•	 •	•	 •			•		•	•	267
11.27 problem 27		•	•	•	 •	•	•	•	 •	•	 •	•	 •	•	 •	•	•	•		•	•	268
11.28problem 28			•		 •	•	•	•			 •		 •					•			•	269
11.29problem 29			•		 •	•	•	•			 •		 •					•			•	270
11.30 problem 30	١.				 •	•		•				•	 •	•		•		•			•	271
11.31 problem 31					 •	•		•			 •		 •			•		•			•	272
11.32 problem 32							•				 •		 •								•	273
11.33problem 33		•									 •	•	 •	•				•		•	•	274
11.34problem 34		•									 •	•	 •	•				•		•	•	275
11.35 problem 35		•					•				 •	•	 •	•				•			•	276
11.36 problem 36	.																					277

11.37 problem 37																		278
11.38 problem 38																		279
11.39 problem 39		•								 								280
11.40 problem 40																		281
11.41 problem 41		•								 								282
$11.42 \mathrm{problem}~42$																		283
11.43 problem 43		•								 								284
11.44problem 44																		285
11.45 problem 45		•								 								286
$11.46 \mathrm{problem}~46$																		287
$11.47 \mathrm{problem}\ 47$																		288
11.48 problem 48																		289
11.49problem 49																		290
11.50problem 50																		291
11.51 problem 51																		292
11.52 problem 52																		293
11.53 problem 53																		294
11.54 problem 54																		295

11.1 problem 1

Internal problem ID [11775]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 3y' + 8y = 4x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 40

 $dsolve(diff(y(x),x$2)-3*diff(y(x),x)+8*y(x)=4*x^2,y(x), singsol=all)$

$$y(x) = e^{\frac{3x}{2}} \sin\left(\frac{\sqrt{23}x}{2}\right) c_2 + e^{\frac{3x}{2}} \cos\left(\frac{\sqrt{23}x}{2}\right) c_1 + \frac{x^2}{2} + \frac{3x}{8} + \frac{1}{64}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 63

 $DSolve[y''[x]-3*y'[x]+8*y[x]==4*x^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o \frac{x^2}{2} + \frac{3x}{8} + c_2 e^{3x/2} \cos\left(\frac{\sqrt{23}x}{2}\right) + c_1 e^{3x/2} \sin\left(\frac{\sqrt{23}x}{2}\right) + \frac{1}{64}$$

11.2 problem 2

Internal problem ID [11776]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' - 8y = 4e^{2x} - 21e^{-3x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)-8*y(x)=4*exp(2*x)-21*exp(-3*x),y(x), singsol=all)

$$y(x) = \frac{(2c_2e^{7x} - e^{5x} + 2c_1e^x - 6)e^{-3x}}{2}$$

✓ Solution by Mathematica

Time used: 0.098 (sec). Leaf size: 38

$$y(x) \rightarrow -\frac{1}{2}e^{-3x}(e^{5x}+6) + c_1e^{-2x} + c_2e^{4x}$$

11.3 problem 3

Internal problem ID [11777]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 5y = 6\sin(2x) + 7\cos(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+5*y(x)=6*sin(2*x)+7*cos(2*x),y(x), singsol=all)

$$y(x) = (\cos(2x) c_1 + c_2 \sin(2x)) e^{-x} - \cos(2x) + 2\sin(2x)$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 38

DSolve[y''[x]+2*y'[x]+5*y[x]==6*Sin[2*x]+7*Cos[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x}((-e^x + c_2)\cos(2x) + (2e^x + c_1)\sin(2x))$$

11.4 problem 4

Internal problem ID [11778]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = 10\sin(4x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+2*y(x)=10*sin(4*x),y(x), singsol=all)

$$y(x) = e^{-x} \sin(x) c_2 + e^{-x} \cos(x) c_1 - \frac{7 \sin(4x)}{13} - \frac{4 \cos(4x)}{13}$$

Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 42

DSolve[y''[x]+2*y'[x]+2*y[x]==10*Sin[4*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{7}{13}\sin(4x) - \frac{4}{13}\cos(4x) + c_2e^{-x}\cos(x) + c_1e^{-x}\sin(x)$$

11.5 problem 5

Internal problem ID [11779]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 4y = \cos\left(4x\right)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+4*y(x)=cos(4*x),y(x), singsol=all)

$$y(x) = e^{-x} \sin\left(\sqrt{3}x\right) c_2 + e^{-x} \cos\left(\sqrt{3}x\right) c_1 + \frac{\sin(4x)}{26} - \frac{3\cos(4x)}{52}$$

Solution by Mathematica

Time used: 1.15 (sec). Leaf size: 54

 $DSolve[y''[x]+2*y'[x]+4*y[x] == Cos[4*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{26}\sin(4x) - \frac{3}{52}\cos(4x) + c_2e^{-x}\cos(\sqrt{3}x) + c_1e^{-x}\sin(\sqrt{3}x)$$

11.6 problem 6

Internal problem ID [11780]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 3y' - 4y = 16x - 12e^{2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)-4*y(x)=16*x-12*exp(2*x),y(x), singsol=all)

$$y(x) = c_2 e^{4x} + c_1 e^{-x} + 2 e^{2x} - 4x + 3$$

✓ Solution by Mathematica

Time used: 0.136 (sec). Leaf size: 33

 $DSolve[y''[x]-3*y'[x]-4*y[x] == 16*x-12*Exp[2*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -4x + 2e^{2x} + c_1e^{-x} + c_2e^{4x} + 3$$

11.7 problem 7

Internal problem ID [11781]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 5y = 2e^x + 10e^{5x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)+6*diff(y(x),x)+5*y(x)=2*exp(x)+10*exp(5*x),y(x), singsol=all)

$$y(x) = \frac{\left(e^{10x} + e^{6x} + 6c_1e^{4x} + 6c_2\right)e^{-5x}}{6}$$

✓ Solution by Mathematica

Time used: 0.089 (sec). Leaf size: 36

$$y(x) \to \frac{1}{6}e^x(e^{4x}+1) + c_1e^{-5x} + c_2e^{-x}$$

11.8 problem 8

Internal problem ID [11782]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 10y = 5x e^{-2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+10*y(x)=5*x*exp(-2*x),y(x), singsol=all)

$$y(x) = \frac{(10c_1\cos(3x) + 10c_2\sin(3x))e^{-x}}{10} + \frac{(5x+1)e^{-2x}}{10}$$

Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 41 $\,$

$$y(x) \to \frac{1}{10}e^{-2x}(5x + 10c_2e^x\cos(3x) + 10c_1e^x\sin(3x) + 1)$$

11.9 problem 9

Internal problem ID [11783]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 9.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' + 4y'' + y' - 6y = -18x^2 + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $dsolve(diff(y(x),x$3)+4*diff(y(x),x$2)+diff(y(x),x)-6*y(x)=-18*x^2+1,y(x), singsol=all)$

$$y(x) = e^{-3x} ((3x^2 + x + 4) e^{3x} + c_1 e^{4x} + c_3 e^x + c_2)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 35

 $DSolve[y'''[x]+4*y''[x]+y'[x]-6*y[x]==-18*x^2+1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 3x^2 + x + c_1e^{-3x} + c_2e^{-2x} + c_3e^x + 4$$

11.10 problem 10

Internal problem ID [11784]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 10.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + 2y'' - 3y' - 10y = 8x e^{-2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

 $\frac{dsolve(diff(y(x),x\$3)+2*diff(y(x),x\$2)-3*diff(y(x),x)-10*y(x)=8*x*exp(-2*x),y}{(x), singsol=al}$

$$y(x) = \frac{(2c_2\cos(x) + 2c_3\sin(x) - 4x - 1)e^{-2x}}{2} + e^{2x}c_1$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 40

$$y(x) \to \frac{1}{2}e^{-2x}(-4x + 2c_3e^{4x} + 2c_2\cos(x) + 2c_1\sin(x) - 1)$$

11.11 problem 11

Internal problem ID [11785]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 11.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + y'' + 3y' - 5y = 5\sin(2x) + 10x^2 + 3x + 7$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 49

 $dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)+3*diff(y(x),x)-5*y(x)=5*sin(2*x)+10*x^2+3*x+7,y(x), sin(x)=0$

$$y(x) = \frac{(17c_3e^{-x} - 9)\sin(2x)}{17} + c_2e^{-x}\cos(2x) - 2x^2 + c_1e^x - 3x + \frac{2\cos(2x)}{17} - 4$$

✓ Solution by Mathematica

Time used: 0.419 (sec). Leaf size: 55

$$y(x) \to -2x^2 - 3x + c_3 e^x + \left(\frac{2}{17} + c_2 e^{-x}\right) \cos(2x) + \left(-\frac{9}{17} + c_1 e^{-x}\right) \sin(2x) - 4$$

11.12 problem 12

Internal problem ID [11786]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 12.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$4y''' - 4y'' - 5y' + 3y = 3x^3 - 8x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

 $dsolve(4*diff(y(x),x$3)-4*diff(y(x),x$2)-5*diff(y(x),x)+3*y(x)=3*x^3-8*x,y(x), singsol=all)$

$$y(x) = \left(c_2 e^{\frac{3x}{2}} + c_3 e^{\frac{5x}{2}} + \left(x^3 + 5x^2 + 22x + 42\right) e^x + c_1\right) e^{-x}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 46

DSolve[4*y'''[x]-4*y''[x]-5*y'[x]+3*y[x]==3*x^3-8*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x^3 + 5x^2 + 22x + c_1e^{x/2} + c_2e^{3x/2} + c_3e^{-x} + 42$$

11.13 problem 13

Internal problem ID [11787]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' - 6y = 10e^{2x} - 18e^{3x} - 6x - 11$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve(diff(y(x),x\$2)+diff(y(x),x)-6*y(x)=10*exp(2*x)-18*exp(3*x)-6*x-11,y(x), singsol=all)

$$y(x) = e^{-3x} \left(\left(2x + c_1 - \frac{2}{5} \right) e^{5x} + (x+2) e^{3x} + c_2 - 3 e^{6x} \right)$$

✓ Solution by Mathematica

Time used: 0.299 (sec). Leaf size: 38

$$y(x) \to x - 3e^{3x} + c_1e^{-3x} + e^{2x}\left(2x - \frac{2}{5} + c_2\right) + 2$$

11.14 problem 14

Internal problem ID [11788]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' - 2y = 6e^{-2x} + 3e^x - 4x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

 $dsolve(diff(y(x),x$2)+diff(y(x),x)-2*y(x)=6*exp(-2*x)+3*exp(x)-4*x^2,y(x), singsol=all)$

$$y(x) = e^{-2x} \left(\left(2x^2 + 2x + 3 \right) e^{2x} + \left(c_2 + x - \frac{1}{3} \right) e^{3x} - 2x + c_1 - \frac{2}{3} \right)$$

✓ Solution by Mathematica

Time used: 0.163 (sec). Leaf size: 54

 $DSolve[y''[x]+y'[x]-2*y[x]==6*Exp[-2*x]+3*Exp[x]-4*x^2,y[x],x,IncludeSingularSolutions -> Trigonometric Trigonom$

$$y(x) \to \frac{1}{3}e^{-2x} \left(e^{2x} \left(6x^2 + 6x + 9 \right) - 6x + e^{3x} (3x - 1 + 3c_2) - 2 + 3c_1 \right)$$

11.15 problem 15

Internal problem ID [11789]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 15.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 3y'' + 4y = 4e^x - 18e^{-x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)+4*y(x)=4*exp(x)-18*exp(-x),y(x), singsol=all)

$$y(x) = \frac{(-6x + 3c_1 - 4)e^{-x}}{3} + (c_3x + c_2)e^{2x} + 2e^x$$

Solution by Mathematica

Time used: 0.078 (sec). Leaf size: 44

$$y(x) \to \frac{1}{3}e^{-x}(-6x + 6e^{2x} + 3e^{3x}(c_3x + c_2) - 4 + 3c_1)$$

11.16 problem 16

Internal problem ID [11790]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 16.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 2y'' - y' + 2y = 9e^{2x} - 8e^{3x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

dsolve(diff(y(x),x\$3)-2*diff(y(x),x\$2)-diff(y(x),x)+2*y(x)=9*exp(2*x)-8*exp(3*x),y(x), sings

$$y(x) = (3x + c_3 - 4)e^{2x} + c_1e^x + c_2e^{-x} - e^{3x}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 44

$$y(x) \to -e^{3x} + c_1 e^{-x} + \left(\frac{81}{32} + c_2\right) e^x + e^{2x} (3x - 4 + c_3)$$

11.17 problem 17

Internal problem ID [11791]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 17.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' + y' = 2x^2 + 4\sin(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

 $\label{eq:diff} $$ $dsolve(diff(y(x),x\$3)+diff(y(x),x)=2*x^2+4*sin(x),y(x), singsol=all)$ $$$

$$y(x) = (-2 - c_2)\cos(x) + (-2x + c_1)\sin(x) + \frac{2x^3}{3} - 4x + c_3$$

Solution by Mathematica

Time used: 0.233 (sec). Leaf size: 35

 $DSolve[y'''[x]+y'[x]==2*x^2+4*Sin[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{2x^3}{3} - 4x - (2 + c_2)\cos(x) + (-2x + c_1)\sin(x) + c_3$$

11.18 problem 18

Internal problem ID [11792]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 18.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y'''' - 3y''' + 2y'' = 3e^{-x} + 6e^{2x} - 6x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

$$y(x) = \frac{(6x + c_1 - 12)e^{2x}}{4} - \frac{x^3}{2} - \frac{9x^2}{4} + c_3x + c_2e^x + c_4 + \frac{e^{-x}}{2}$$

Solution by Mathematica

Time used: 0.372 (sec). Leaf size: 54

$$y(x) \to \frac{1}{4} \left(-\left((2x+9)x^2 \right) + 2e^{-x} + 4c_1e^x + e^{2x}(6x-12+c_2) \right) + c_4x + c_3$$

11.19 problem 19

Internal problem ID [11793]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 19.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 6y'' + 11y' - 6y = x e^x - 4 e^{2x} + 6 e^{4x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 42

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+11*diff(y(x),x)-6*y(x)=x*exp(x)-4*exp(2*x)+6*exp(4*x)

$$y(x) = (4x + c_2)e^{2x} + c_3e^{3x} + e^{4x} + \frac{(2x^2 + 8c_1 + 6x + 7)e^x}{8}$$

✓ Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 53

DSolve[y'''[x]-6*y''[x]+11*y'[x]-6*y[x]==x*Exp[x]-4*Exp[2*x]+6*Exp[4*x],y[x],x,IncludeSingul

$$y(x) \to \frac{1}{8}e^x(2x^2 + 6x + 8e^{3x} + 8e^x(4x + c_2) + 8c_3e^{2x} + 7 + 8c_1)$$

11.20 problem 20

Internal problem ID [11794]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 20.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 4y'' + 5y' - 2y = 3x^2 e^x - 7e^x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

 $dsolve(diff(y(x),x$3)-4*diff(y(x),x$2)+5*diff(y(x),x)-2*y(x)=3*x^2*exp(x)-7*exp(x),y(x), single (x,y,x) = 2*y(x) = 3*x^2*exp(x)-7*exp(x),y(x), single (x,y,x) = 2*y(x)-2*y(x) = 3*x^2*exp(x)-7*exp(x),y(x), single (x,y,x) = 2*y(x)-2*y$

$$y(x) = -\frac{e^x(x^4 + 4x^3 - 4c_2e^x - 4c_3x - 2x^2 - 4c_1)}{4}$$

Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 47

$$y(x) \to \frac{1}{4}e^x(-x^4 - 4x^3 + 2x^2 + 4(1+c_2)x + 4(c_3e^x + 1 + c_1))$$

11.21 problem 21

Internal problem ID [11795]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = x\sin\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)+y(x)=x*sin(x),y(x), singsol=all)

$$y(x) = \frac{(-x^2 + 4c_1)\cos(x)}{4} + \frac{\sin(x)(4c_2 + x)}{4}$$

Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 34

DSolve[y''[x]+y[x]==x*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{8} ((-2x^2 + 1 + 8c_1)\cos(x) + 2(x + 4c_2)\sin(x))$$

11.22 problem 22

Internal problem ID [11796]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = 12x^2 - 16x\cos(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

 $\label{eq:diff} $$ $dsolve(diff(y(x),x$2)+4*y(x)=12*x^2-16*x*cos(2*x),y(x), singsol=all)$ $$$

$$y(x) = -\frac{3}{2} + \frac{(-8x^2 + 4c_2 + 1)\sin(2x)}{4} + (c_1 - x)\cos(2x) + 3x^2$$

Solution by Mathematica

Time used: 0.251 (sec). Leaf size: 44

DSolve[y''[x]+4*y[x]==12*x^2-16*x*Cos[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 3x^2 + \frac{1}{4}(-8x^2 + 1 + 4c_2)\sin(2x) + (-x + c_1)\cos(2x) - \frac{3}{2}$$

11.23 problem 23

Internal problem ID [11797]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 23.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y'''' + 2y''' - 3y'' = 18x^2 + 16x e^x + 4 e^{3x} - 9$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 64

 $dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$3)-3*diff(y(x),x\$2)=18*x^2+16*x*exp(x)+4*exp(3*x)-9,y(x)+4*exp(x$

$$y(x) = \frac{\left(\left(x^4 + \frac{8}{3}x^3 + \frac{19}{3}x^2 - 2c_3x - 2c_4\right)e^{3x} + \left(-4x^2 + 18x - 2c_2 - \frac{57}{2}\right)e^{4x} - \frac{2c_1}{9} - \frac{2e^{6x}}{27}\right)e^{-3x}}{2}$$

✓ Solution by Mathematica

Time used: 1.232 (sec). Leaf size: 70

DSolve[y'''[x]+2*y'''[x]-3*y''[x]==18*x^2+16*x*Exp[x]+4*Exp[3*x]-9,y[x],x,IncludeSingularSo

$$y(x) \rightarrow -\frac{1}{6} (3x^2 + 8x + 19) x^2 + \frac{1}{4} e^x (8x^2 - 36x + 57 + 4c_2) + \frac{e^{3x}}{27} + c_4 x + \frac{1}{9} c_1 e^{-3x} + c_3$$

11.24 problem 24

Internal problem ID [11798]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 24.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' - 5y''' + 7y'' - 5y' + 6y = 5\sin(x) - 12\sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 51

dsolve(diff(y(x),x\$4)-5*diff(y(x),x\$3)+7*diff(y(x),x\$2)-5*diff(y(x),x)+6*y(x)=5*sin(x)-12*sin(

$$y(x) = \frac{5\cos(2x)}{13} + c_3 e^{2x} + c_4 e^{3x} + \frac{\sin(2x)}{13} + \frac{(-2 - 5x + 20c_1)\cos(x)}{20} + \frac{(1 + x + 4c_2)\sin(x)}{4}$$

✓ Solution by Mathematica

Time used: 0.232 (sec). Leaf size: 71

DSolve [y''''[x]-5*y'''[x]+7*y''[x]-5*y'[x]+6*y[x]==5*Sin[x]-12*Sin[2*x],y[x],x, IncludeSingul

$$y(x) \to -\frac{5\sin^2(x)}{13} + \frac{5\cos^2(x)}{13} + e^{2x}(c_4e^x + c_3) + \left(\frac{x}{4} + \frac{3}{8} + c_2\right)\sin(x) + \cos(x)\left(-\frac{x}{4} + \frac{2\sin(x)}{13} - \frac{1}{10} + c_1\right)$$

11.25 problem 25

Internal problem ID [11799]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y' + 3y = 9x^2 + 4$$

With initial conditions

$$[y(0) = 6, y'(0) = 8]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $dsolve([diff(y(x),x$2)-4*diff(y(x),x)+3*y(x)=9*x^2+4,y(0)=6, D(y)(0)=8],y(x), singsol=al(x)=0$

$$y(x) = -6e^x + 2e^{3x} + 3x^2 + 8x + 10$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 27

DSolve[{y''[x]-4*y'[x]+3*y[x]==9*x^2+4,{y[0]==6,y'[0]==8}},y[x],x,IncludeSingularSolutions -

$$y(x) \rightarrow 3x^2 + 8x - 6e^x + 2e^{3x} + 10$$

11.26 problem 26

Internal problem ID [11800]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 5y' + 4y = 16x + 20e^x$$

With initial conditions

$$[y(0) = 0, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

dsolve([diff(y(x),x\$2)+5*diff(y(x),x)+4*y(x)=16*x+20*exp(x),y(0) = 0, D(y)(0) = 3],y(x), sin(x)

$$y(x) = 3e^{-x} - 5 + 2e^{x} + 4x$$

✓ Solution by Mathematica

Time used: 0.125 (sec). Leaf size: 22

DSolve[{y''[x]+5*y'[x]+4*y[x]==16*x+20*Exp[x],{y[0]==0,y'[0]==3}},y[x],x,IncludeSingularSolu

$$y(x) \to 4x + 3e^{-x} + 2e^x - 5$$

11.27 problem 27

Internal problem ID [11801]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 8y' + 15y = 9e^{2x}x$$

With initial conditions

$$[y(0) = 5, y'(0) = 10]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

dsolve([diff(y(x),x\$2)-8*diff(y(x),x)+15*y(x)=9*x*exp(2*x),y(0) = 5, D(y)(0) = 10],y(x), sin(x) = 0

$$y(x) = -2e^{5x} + 3e^{3x} + (3x+4)e^{2x}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: $28\,$

$$y(x) \to e^{2x} (3x + 3e^x - 2e^{3x} + 4)$$

11.28 problem 28

Internal problem ID [11802]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 7y' + 10y = 4x e^{-3x}$$

With initial conditions

$$[y(0) = 0, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

$$y(x) = e^{-2x} + (-2x - 1)e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 19

 $DSolve[\{y''[x]+7*y'[x]+10*y[x]==4*x*Exp[-3*x],\{y[0]==0,y'[0]==-1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]+7*y'[x]+10*y[x]==4*x*Exp[-3*x],\{y[0]==0,y'[0]==-1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]+7*y'[x]+10*y[x]==4*x*Exp[-3*x],\{y[0]==0,y'[0]==-1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]+7*y'[x]+10*y[x]==4*x*Exp[-3*x],\{y[0]==0,y'[0]==-1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]+10*y[x]==4*x*Exp[-3*x],\{y[0]==0,y'[0]==-1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]+10*y[x]==4*x*Exp[-3*x],\{y[0]==0,y'[0]==-1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]+10*y[x]==4*x*Exp[-3*x],\{y[0]==0,y''[0]==-1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]==4*x*Exp[-3*x],\{y''[0]==0,y''[0]==-1\}\},y[x],x,Inc]udeSingularSolve[\{y''(x]==0,y''(x)=0$

$$y(x) \to e^{-3x}(-2x + e^x - 1)$$

11.29 problem 29

Internal problem ID [11803]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 8y' + 16y = 8e^{-2x}$$

With initial conditions

$$[y(0) = 2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve([diff(y(x),x\$2)+8*diff(y(x),x)+16*y(x)=8*exp(-2*x),y(0) = 2, D(y)(0) = 0],y(x), sings(x) = 0

$$y(x) = 4e^{-4x}x + 2e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 21 $\,$

$$y(x) \to 2e^{-4x}(2x + e^{2x})$$

11.30 problem 30

Internal problem ID [11804]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 30.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 9y = 27 e^{-6x}$$

With initial conditions

$$[y(0) = -2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve([diff(y(x),x\$2)+6*diff(y(x),x)+9*y(x)=27*exp(-6*x),y(0) = -2, D(y)(0) = 0],y(x), sing(x), fight = -2, fig

$$y(x) = (3x - 5)e^{-3x} + 3e^{-6x}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: $24\,$

 $DSolve[\{y''[x]+6*y'[x]+9*y[x]==27*Exp[-6*x], \{y[0]==-2,y'[0]==0\}\}, y[x], x, Include Singular Solution of the context of the$

$$y(x) \to e^{-6x} (e^{3x}(3x-5)+3)$$

11.31 problem 31

Internal problem ID [11805]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 31.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 13y = 18 e^{-2x}$$

With initial conditions

$$[y(0) = 0, y'(0) = 4]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

dsolve([diff(y(x),x\$2)+4*diff(y(x),x)+13*y(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),sing(x),x(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),sing(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),sing(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),sing(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),sing(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),sing(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),sing(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),sing(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),sing(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),sing(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),sing(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),y(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),y(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),y(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),y(x)=18*exp(-2*x),y(0)=0,D(y)(0)=4],y(x),y(x)=18*exp(-2*x),y(0)=0,D(y)

$$y(x) = \frac{2e^{-2x}(2\sin(3x) - 3\cos(3x) + 3)}{3}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: $28\,$

$$y(x) \to \frac{1}{3}e^{-2x}(4\sin(3x) - 6\cos(3x) + 6)$$

11.32 problem 32

Internal problem ID [11806]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 10y' + 29y = 8e^{5x}$$

With initial conditions

$$[y(0) = 0, y'(0) = 8]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve([diff(y(x),x\$2)-10*diff(y(x),x)+29*y(x)=8*exp(5*x),y(0) = 0, D(y)(0) = 8],y(x), sings(x)

$$y(x) = -2e^{5x}(-1 - 2\sin(2x) + \cos(2x))$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 24

DSolve[{y''[x]-10*y'[x]+29*y[x]==8*Exp[5*x],{y[0]==0,y'[0]==8}},y[x],x,IncludeSingularSoluti

$$y(x) \to -2e^{5x}(-2\sin(2x) + \cos(2x) - 1)$$

11.33 problem 33

Internal problem ID [11807]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 13y = 8\sin(3x)$$

With initial conditions

$$[y(0) = 1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 31

dsolve([diff(y(x),x\$2)-4*diff(y(x),x)+13*y(x)=8*sin(3*x),y(0) = 1, D(y)(0) = 2],y(x), singsolve([diff(y(x),x\$2)-4*diff(y(x),x)+13*y(x)=8*sin(3*x),y(0) = 1, D(y)(0) = 2],y(x), singsolve([diff(y(x),x\$2]-4*diff(y(x),x)+13*y(x)=8*sin(3*x),y(0) = 1, D(y)(0) = 2],y(x), singsolve([diff(y(x),x),x]+13*y(x)=8*sin(3*x),y(0) = 1, D(y)(0) = 2;y(x)=10*y(x)=10

$$y(x) = \frac{(2e^{2x} + 3)\cos(3x)}{5} + \frac{\sin(3x)(e^{2x} + 1)}{5}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: $36\,$

$$y(x) \to \frac{1}{5} ((e^{2x} + 1)\sin(3x) + (2e^{2x} + 3)\cos(3x))$$

11.34 problem 34

Internal problem ID [11808]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y' - 6y = 8e^{2x} - 5e^{3x}$$

With initial conditions

$$[y(0) = 3, y'(0) = 5]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

dsolve([diff(y(x),x\$2)-diff(y(x),x)-6*y(x)=8*exp(2*x)-5*exp(3*x),y(0) = 3, D(y)(0) = 5],y(x)

$$y(x) = -((-4+x)e^{5x} + 2e^{4x} - 1)e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.053 (sec). Leaf size: 28

$$y(x) \rightarrow -e^{3x}(x-4) + e^{-2x} - 2e^{2x}$$

11.35 problem 35

Internal problem ID [11809]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 35.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = 2e^{2x}x + 6e^x$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

dsolve([diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=2*x*exp(2*x)+6*exp(x),y(0) = 1, D(y)(0) = 0],y(x)

$$y(x) = (2x - 4) e^{2x} + e^{x} (3x^{2} + x + 5)$$

✓ Solution by Mathematica

Time used: 0.104 (sec). Leaf size: 25

$$y(x) \rightarrow e^{x}(3x^{2} + x + 2e^{x}(x - 2) + 5)$$

11.36 problem 36

Internal problem ID [11810]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 36.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = 3x^2 e^x$$

With initial conditions

$$[y(0) = 1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

 $dsolve([diff(y(x),x$2)-y(x)=3*x^2*exp(x),y(0) = 1, D(y)(0) = 2],y(x), singsol=all)$

$$y(x) = -\frac{e^{-x}}{8} + \frac{(4x^3 - 6x^2 + 6x + 9)e^x}{8}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 37

$$y(x) \to \frac{1}{8}e^{-x}(e^{2x}(4x^3 - 6x^2 + 6x + 9) - 1)$$

11.37 problem 37

Internal problem ID [11811]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 37.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = 3x^2 - 4\sin(x)$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $dsolve([diff(y(x),x$2)+y(x)=3*x^2-4*sin(x),y(0) = 0, D(y)(0) = 1],y(x), singsol=all)$

$$y(x) = (2x+6)\cos(x) + 3x^2 - \sin(x) - 6$$

Solution by Mathematica

Time used: 0.158 (sec). Leaf size: 23

$$y(x) \to 3x^2 - \sin(x) + 2(x+3)\cos(x) - 6$$

11.38 problem 38

Internal problem ID [11812]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = 8\sin(2x)$$

With initial conditions

$$[y(0) = 6, y'(0) = 8]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve([diff(y(x),x\$2)+4*y(x)=8*sin(2*x),y(0) = 6, D(y)(0) = 8],y(x), singsol=all)

$$y(x) = (-2x + 6)\cos(2x) + 5\sin(2x)$$

✓ Solution by Mathematica

Time used: 0.108 (sec). Leaf size: 19

$$y(x) \rightarrow 3\sin(x)\cos(x) - 2x\cos(2x)$$

11.39 problem 39

Internal problem ID [11813]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 39.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 4y'' + y' + 6y = 3x e^x + 2 e^x - \sin(x)$$

With initial conditions

$$\left[y(0) = \frac{33}{40}, y'(0) = 0, y''(0) = 0\right]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 30

dsolve([diff(y(x),x\$3)-4*diff(y(x),x\$2)+diff(y(x),x)+6*y(x)=3*x*exp(x)+2*exp(x)-sin(x),y(0))

$$y(x) = \frac{7e^{-x}}{20} - \frac{31e^{2x}}{40} + \frac{(3x+5)e^x}{4} - \frac{\sin(x)}{10}$$

✓ Solution by Mathematica

Time used: 0.285 (sec). Leaf size: 38

DSolve[{y'''[x]-4*y''[x]+y'[x]+6*y[x]==3*x*Exp[x]+2*Exp[x]-Sin[x],{y[0]==33/40,y'[0]==0,y''[

$$y(x) \to \frac{1}{40} (10e^x(3x+5) + 14e^{-x} - 31e^{2x} - 4\sin(x))$$

11.40 problem 40

Internal problem ID [11814]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 40.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 6y'' + 9y' - 4y = 8x^2 + 3 - 6e^{2x}$$

With initial conditions

$$[y(0) = 1, y'(0) = 7, y''(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

 $dsolve([diff(y(x),x$3)-6*diff(y(x),x$2)+9*diff(y(x),x)-4*y(x)=8*x^2+3-6*exp(2*x),y(0)=1, E(x),y(0)=1)$

$$y(x) = -2x^{2} - 9x + 3e^{2x} - 15 + \frac{44e^{x}}{3} - \frac{5e^{4x}}{3} + 2e^{x}x$$

✓ Solution by Mathematica

Time used: 0.21 (sec). Leaf size: 42

DSolve[{y'''[x]-6*y''[x]+9*y'[x]-4*y[x]==8*x^2+3-6*Exp[2*x],{y[0]==1,y'[0]==7,y''[0]==0}},y'

$$y(x) \rightarrow -2x^2 - 9x + 3e^{2x} - \frac{5e^{4x}}{3} + e^x \left(2x + \frac{44}{3}\right) - 15$$

11.41 problem 41

Internal problem ID [11815]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 41.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 6y' + 8y = x^3 + x + e^{-2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

 $dsolve(diff(y(x),x$2)-6*diff(y(x),x)+8*y(x)=x^3+x+exp(-2*x),y(x), singsol=all)$

$$y(x) = \frac{c_1 e^{4x}}{2} + \frac{e^{-2x}}{24} + \frac{69}{256} + \frac{29x}{64} + \frac{9x^2}{32} + \frac{x^3}{8} + c_2 e^{2x}$$

Solution by Mathematica

Time used: 0.699 (sec). Leaf size: 50

 $DSolve[y''[x]-6*y'[x]+8*y[x]==x^3+x+Exp[-2*x],y[x],x,IncludeSingularSolutions \ \ -> True]$

$$y(x) \to \frac{1}{256} (32x^3 + 72x^2 + 116x + 69) + \frac{e^{-2x}}{24} + c_1 e^{2x} + c_2 e^{4x}$$

11.42 problem 42

Internal problem ID [11816]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 42.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = e^{3x} + e^{-3x} + e^{3x} \sin(3x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

dsolve(diff(y(x),x\$2)+9*y(x)=exp(3*x)+exp(-3*x)+exp(3*x)*sin(3*x),y(x), singsol=all)

$$y(x) = c_2 \sin(3x) + c_1 \cos(3x) + \frac{(2\sin(3x) - 4\cos(3x) + 5)e^{3x}}{90} + \frac{e^{-3x}}{18}$$

✓ Solution by Mathematica

Time used: 0.997 (sec). Leaf size: 57

$$y(x) \to \frac{1}{90} \left(5e^{-3x} \left(e^{6x} + 1 \right) + \left(-4e^{3x} + 90c_1 \right) \cos(3x) + 2\left(e^{3x} + 45c_2 \right) \sin(3x) \right)$$

11.43 problem 43

Internal problem ID [11817]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 43.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 5y = e^{-2x}(\cos(x) + 1)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+5*y(x)=exp(-2*x)*(1+cos(x)),y(x), singsol=all)

$$y(x) = \frac{((2c_1 + 1)\cos(x) + 2 + (2c_2 + x)\sin(x))e^{-2x}}{2}$$

Solution by Mathematica

Time used: 0.122 (sec). Leaf size: 35

$$y(x) \to \frac{1}{4}e^{-2x}((1+4c_2)\cos(x)+2(x+2c_1)\sin(x)+4)$$

11.44 problem 44

Internal problem ID [11818]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 44.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 6y' + 9y = e^x x^4 + x^3 e^{2x} + e^{3x} x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 62

 $dsolve(diff(y(x),x$2)-6*diff(y(x),x)+9*y(x)=x^4*exp(x)+x^3*exp(2*x)+x^2*exp(3*x),y(x), sings(x)$

$$y(x) = (x^{3} + 6x^{2} + 18x + 24) e^{2x} + \frac{(x^{4} + 12c_{1}x + 12c_{2}) e^{3x}}{12} + \frac{(x^{4} + 4x^{3} + 9x^{2} + 12x + \frac{15}{2}) e^{x}}{4}$$

✓ Solution by Mathematica

Time used: 1.391 (sec). Leaf size: 70

$$y(x) \to e^x \left(\frac{x^4}{4} + e^{2x} \left(\frac{x^4}{12} + c_2 x + c_1\right) + x^3 + \frac{9x^2}{4} + e^x \left(x^3 + 6x^2 + 18x + 24\right) + 3x + \frac{15}{8}\right)$$

11.45 problem 45

Internal problem ID [11819]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 45.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 13y = x e^{-3x} \sin(2x) + x^2 e^{-2x} \sin(3x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 68

 $dsolve(diff(y(x),x$2)+6*diff(y(x),x)+13*y(x)=x*exp(-3*x)*sin(2*x)+x^2*exp(-2*x)*sin(3*x),y(x)=x*exp(-3*x)*sin(2*x)+x^2*exp(-2*x)*sin(3*x),y(x)=x*exp(-3*x)*sin(2*x)+x^2*exp(-2*x)*sin(3*x),y(x)=x*exp(-3*x)*sin(2*x)+x^2*exp(-2*x)*sin(3*x),y(x)=x*exp(-3*x)*sin(2*x)+x^2*exp(-2*x)*sin(3*x),y(x)=x*exp(-3*x)*sin(2*x)+x^2*exp(-2*x)*sin(3*x),y(x)=x*exp(-3*x)*sin(2*x)+x^2*exp(-2*x)*sin(3*x),y(x)=x*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x),y(x)=x*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x)+x^2*exp(-3*x)*sin(3*x)+x^2*exp(-$

$$y(x) = \frac{3\left(\left(\frac{13x^2}{12} - \frac{26c_1}{3} - \frac{39}{16}\right)\cos(2x) + e^x\left(x^2 - \frac{2}{13}x - \frac{180}{169}\right)\cos(3x) + \frac{2e^x\left(x^2 - \frac{41}{13}x + \frac{563}{338}\right)\sin(3x)}{3} - \frac{13\sin(2x)(x + 16c_2)}{24}}{26}$$

✓ Solution by Mathematica

Time used: 1.921 (sec). Leaf size: 82

 $DSolve[y''[x]+6*y'[x]+13*y[x] == x*Exp[-3*x]*Sin[2*x]+x^2*Exp[-2*x]*Sin[3*x],y[x],x,IncludeSin[3*x]+x^2*Exp[-2*x]*Sin[3*x],y[x],x,IncludeSin[3*x]+x^2*Exp[-2*x]*Sin[3*x],y[x],x,IncludeSin[3*x]+x^2*Exp[-2*x]*Sin[3*x],y[x],x,IncludeSin[3*x]+x^2*Exp[-2*x]*Sin[3*x],y[x],x,IncludeSin[3*x]+x^2*Exp[-2*x]*Sin[3*x]+x^2*Exp[-2*x]*Sin[3*x]+x^2*Exp[-3*x]+x^2*Ex$

$$y(x) \rightarrow \frac{e^{-3x}(-32e^x(338x^2 - 1066x + 563)\sin(3x) - 96e^x(169x^2 - 26x - 180)\cos(3x) - 2197(8x^2 - 1 - 64c_2)}{140608}$$

11.46 problem 46

Internal problem ID [11820]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 46.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 3y'' + 2y' = x^2 e^x + 3 e^{2x} x + 5x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 55

 $dsolve(diff(y(x),x$3)-3*diff(y(x),x$2)+2*diff(y(x),x)=x^2*exp(x)+3*x*exp(2*x)+5*x^2,y(x), since the context of the context o$

$$y(x) = \frac{(6x^2 + 4c_1 - 18x + 21)e^{2x}}{8} + \frac{(-x^3 + 3c_2 - 6x + 6)e^x}{3} + \frac{5x^3}{6} + \frac{15x^2}{4} + \frac{35x}{4} + c_3$$

✓ Solution by Mathematica

Time used: 0.885 (sec). Leaf size: 67

DSolve[y'''[x]-3*y''[x]+2*y'[x]==x^2*Exp[x]+3*x*Exp[2*x]+5*x^2,y[x],x,IncludeSingularSolution

$$y(x) o \frac{5x^3}{6} + e^x \left(-\frac{x^3}{3} - 2x + c_1 \right) + \frac{15x^2}{4} + \frac{1}{8}e^{2x} \left(6x^2 - 18x + 21 + 4c_2 \right) + \frac{35x}{4} + c_3$$

11.47 problem 47

Internal problem ID [11821]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 47.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 6y'' + 12y' - 8y = e^{2x}x + e^{3x}x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

 $dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+12*diff(y(x),x)-8*y(x)=x*exp(2*x)+x^2*exp(3*x),y(x),$

$$y(x) = \frac{(x^4 + 24c_3x^2 + 24c_2x + 24c_1)e^{2x}}{24} + e^{3x}(x^2 - 6x + 12)$$

✓ Solution by Mathematica

Time used: 0.084 (sec). Leaf size: 47

$$y(x) \to \frac{1}{24}e^{2x}(x^4 + 24e^x(x^2 - 6x + 12) + 24c_3x^2 + 24c_2x + 24c_1)$$

11.48 problem 48

Internal problem ID [11822]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 48.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 3y''' + 4y'' + 3y' + y = x^{2}e^{-x} + 3e^{-\frac{x}{2}}\cos\left(\frac{\sqrt{3}x}{2}\right)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 73

 $dsolve(diff(y(x),x\$4)+3*diff(y(x),x\$3)+4*diff(y(x),x\$2)+3*diff(y(x),x)+y(x)=x^2*exp(-x)+3*exp($

$$y(x) = -\frac{3e^{-\frac{x}{2}}\left(x - \frac{2c_3}{3} + \frac{1}{3}\right)\cos\left(\frac{\sqrt{3}x}{2}\right)}{2} - \frac{e^{-\frac{x}{2}}\left((x - 5)\sqrt{3} - 2c_4\right)\sin\left(\frac{\sqrt{3}x}{2}\right)}{2} + \frac{\left(-24 + x^4 + 4x^3 + 12(-2 + c_2)x + 12c_1\right)e^{-x}}{12}$$

✓ Solution by Mathematica

Time used: 2.054 (sec). Leaf size: 104

$$y(x) \to \frac{1}{12}e^{-x} \left(x^4 + 4x^3 - 24x + 12c_4x - 6e^{x/2}(3x + 1 - 2c_2)\cos\left(\frac{\sqrt{3}x}{2}\right) - 6e^{x/2}\left(\sqrt{3}x - 5\sqrt{3} - 2c_1\right)\sin\left(\frac{\sqrt{3}x}{2}\right) - 24 + 12c_3 \right)$$

11.49 problem 49

Internal problem ID [11823]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 49.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' - 16y = x^2 \sin(2x) + e^{2x}x^4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 79

 $\label{eq:diff} $$ $$ dsolve(diff(y(x),x$4)-16*y(x)=x^2*sin(2*x)+x^4*exp(2*x),y(x), singsol=all)$ $$$

$$y(x) = \frac{(128x^5 - 480x^4 + 800x^3 - 600x^2 + 20480c_3 + 60x + 105)e^{2x}}{20480} + \frac{(8x^3 + 768c_1 - 15x)\cos(2x)}{768} + \frac{(-6x^2 + 256c_4 - 11)\sin(2x)}{256} + e^{-2x}c_2$$

✓ Solution by Mathematica

Time used: 0.562 (sec). Leaf size: 92

 $DSolve[y''''[x]-16*y[x]==x^2*Sin[2*x]+x^4*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{1}{768} (8x^3 - 15x + 768c_2) \cos(2x) - \frac{1}{512} (24x^2 - 5 - 1024c_4) \sin(x) \cos(x) + \frac{e^{2x} (128x^5 - 480x^4 + 800x^3 - 600x^2 + 60x + 105 + 20480c_1)}{20480} + c_3 e^{-2x}$$

11.50 problem 50

Internal problem ID [11824]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 50.

ODE order: 6. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y^{(6)} + 2y^{(5)} + 5y'''' = x^3 + x^2 e^{-x} + e^{-x} \sin(2x)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 91

 $dsolve(diff(y(x),x\$6)+2*diff(y(x),x\$5)+5*diff(y(x),x\$4)=x^3+x^2*exp(-x)+exp(-x)*sin(2*x),y(x,x\$6)+2*diff(y(x),x\$6)+2*diff(y(x),x\$5)+5*diff(y(x),x\$4)=x^3+x^2*exp(-x)+exp(-x)*sin(2*x),y(x,x\$6)+2*diff(y(x),x\$6)+2*diff(x)+2*d$

$$y(x) = c_5 x + c_6 + \frac{\left(\int \left(\left(\left(-330x + 1320c_1 + 240c_2 + 69 \right)\cos(2x) + \left(60x - 240c_1 + 1320c_2 + 567 \right)\sin(2x) - 3750x^2 - 222 \right)}{15000} + \frac{\left(\int \left(\left(-330x + 1320c_1 + 240c_2 + 69 \right)\cos(2x) + \left(60x - 240c_1 + 1320c_2 + 567 \right)\sin(2x) - 3750x^2 - 222 \right)}{15000} + \frac{\left(\int \left(\left(-330x + 1320c_1 + 240c_2 + 69 \right)\cos(2x) + \left(60x - 240c_1 + 1320c_2 + 567 \right)\sin(2x) - 3750x^2 - 222 \right)}{15000} + \frac{\left(\int \left(\left(-330x + 1320c_1 + 240c_2 + 69 \right)\cos(2x) + \left(60x - 240c_1 + 1320c_2 + 567 \right)\sin(2x) - 3750x^2 - 222 \right)}{15000} + \frac{\left(\int \left(\left(-330x + 1320c_1 + 240c_2 + 69 \right)\cos(2x) + \left(60x - 240c_1 + 1320c_2 + 567 \right)\sin(2x) - 3750x^2 - 222 \right)}{15000} + \frac{1}{15000} + \frac{1}{150000} + \frac{1$$

✓ Solution by Mathematica

Time used: 11.809 (sec). Leaf size: 119

DSolve[y''''[x]+2*y''''[x]+5*y''''[x]==x^3+x^2*Exp[-x]+Exp[-x]*Sin[2*x],y[x],x,IncludeSin

$$y(x) \to c_6 x^3 + c_5 x^2 + \frac{e^{-x} (10(25e^x x^7 - 70e^x x^6 - 42e^x x^5 + 504e^x x^4 + 26250x^2 + 210000x + 511875) + 84(35x - 2(97 + 246x^2 +$$

11.51 problem 51

Internal problem ID [11825]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 51.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 2y'' + y = \cos(x) x^2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 46

 $dsolve(diff(y(x),x$4)+2*diff(y(x),x$2)+y(x)=x^2*cos(x),y(x), singsol=all)$

$$y(x) = \frac{\left(-4x^4 + 192c_4x + 36x^2 + 192c_1 - 21\right)\cos\left(x\right)}{192} + \frac{\left(x^3 + \left(12c_3 - 3\right)x + 12c_2\right)\sin\left(x\right)}{12}$$

✓ Solution by Mathematica

Time used: 0.138 (sec). Leaf size: 56

DSolve[y'''[x]+2*y''[x]+y[x]==x^2*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{12} \left(x^3 + 3(-1 + 4c_4)x + 12c_3\right) \sin(x) + \left(-\frac{x^4}{48} + \frac{3x^2}{16} + c_2x - \frac{5}{32} + c_1\right) \cos(x)$$

11.52 problem 52

Internal problem ID [11826]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 52.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 16y = x e^{\sqrt{2}x} \sin\left(\sqrt{2}x\right) + e^{-\sqrt{2}x} \cos\left(\sqrt{2}x\right)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 108

dsolve(diff(y(x),x\$4)+16*y(x)=x*exp(sqrt(2)*x)*sin(sqrt(2)*x)+exp(-sqrt(2)*x)*cos(sqrt(2)*x)

$$y(x) = \frac{\left(\left(2x\sqrt{2} + 128c_3 + 3\right)\cos\left(x\sqrt{2}\right) + 2\sin\left(x\sqrt{2}\right)\left(x\sqrt{2} + 64c_4\right)\right)e^{-x\sqrt{2}}}{128} - \frac{\left(\left(x^2\sqrt{2} - 128c_1 - \frac{5\sqrt{2}}{8}\right)\cos\left(x\sqrt{2}\right) + \sin\left(x\sqrt{2}\right)\left(x^2\sqrt{2} - 3x - 128c_2 + \frac{5\sqrt{2}}{8}\right)\right)e^{x\sqrt{2}}}{128}$$

✓ Solution by Mathematica

Time used: 2.857 (sec). Leaf size: 140

$$\xrightarrow{y(x)} \frac{e^{-\sqrt{2}x} \left(\left(e^{2\sqrt{2}x} \left(-8\sqrt{2}x^2 + 5\sqrt{2} + 1024c_1 \right) + 8\left(2\sqrt{2}x + 3 + 128c_2 \right) \right) \cos\left(\sqrt{2}x \right) - \left(e^{2\sqrt{2}x} \left(8\sqrt{2}x^2 - 24x + 1024c_1 \right) + 8\left(2\sqrt{2}x + 3 + 128c_2 \right) \right) \cos\left(\sqrt{2}x \right) - \left(e^{2\sqrt{2}x} \left(8\sqrt{2}x^2 - 24x + 1024c_1 \right) + 8\left(2\sqrt{2}x + 3 + 128c_2 \right) \right) \cos\left(\sqrt{2}x \right) - \left(e^{2\sqrt{2}x} \left(8\sqrt{2}x^2 - 24x + 1024c_1 \right) + 8\left(2\sqrt{2}x + 3 + 128c_2 \right) \right) \cos\left(\sqrt{2}x \right) - \left(e^{2\sqrt{2}x} \left(8\sqrt{2}x^2 - 24x + 1024c_1 \right) + 8\left(2\sqrt{2}x + 3 + 128c_2 \right) \right) \cos\left(\sqrt{2}x \right) - \left(e^{2\sqrt{2}x} \left(8\sqrt{2}x^2 - 24x + 1024c_1 \right) + 8\left(2\sqrt{2}x + 3 + 128c_2 \right) \right) \cos\left(\sqrt{2}x \right) - \left(e^{2\sqrt{2}x} \left(8\sqrt{2}x^2 - 24x + 1024c_1 \right) + 8\left(2\sqrt{2}x + 3 + 128c_2 \right) \right) \cos\left(\sqrt{2}x \right) - \left(e^{2\sqrt{2}x} \left(8\sqrt{2}x^2 - 24x + 1024c_1 \right) + 8\left(2\sqrt{2}x + 3 + 128c_2 \right) \right) \cos\left(\sqrt{2}x \right) - \left(e^{2\sqrt{2}x} \left(8\sqrt{2}x^2 - 24x + 1024c_1 \right) + 8\left(2\sqrt{2}x + 3 + 128c_2 \right) \right) \cos\left(\sqrt{2}x \right) - \left(e^{2\sqrt{2}x} \left(8\sqrt{2}x^2 - 24x + 1024c_1 \right) + 8\left(2\sqrt{2}x + 3 + 128c_2 \right) \right) \cos\left(\sqrt{2}x \right) \right)$$

11.53 problem 53

Internal problem ID [11827]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 53.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 3y'' - 4y = \cos(x)^{2} - \cosh(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 56

 $dsolve(diff(y(x),x\$4)+3*diff(y(x),x\$2)-4*y(x)=cos(x)^2-cosh(x),y(x), singsol=all)$

$$y(x) = -\frac{1}{8} + \frac{(10x + 200c_3 + 9)e^{-x}}{200} + \frac{(200c_2 - 9)\cos(2x)}{200} + \frac{(-x + 40c_4)\sin(2x)}{40} + \frac{(-10x + 200c_1 + 9)e^x}{200}$$

✓ Solution by Mathematica

Time used: 0.21 (sec). Leaf size: 75

DSolve[y'''[x]+3*y''[x]-4*y[x]==Cos[x]^2-Cosh[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{400}e^{-x} \left((-13 + 400c_1)e^x \cos(2x) + 2(10x - 25e^x + e^{2x}(-10x + 9 + 200c_4) - 5e^x(x - 40c_2)\sin(2x) + 9 + 200c_3) \right)$$

11.54 problem 54

Internal problem ID [11828]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

Problem number: 54.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 10y'' + 9y = \sin(x)\sin(2x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 45

dsolve(diff(y(x),x\$4)+10*diff(y(x),x\$2)+9*y(x)=sin(x)*sin(2*x),y(x), singsol=all)

$$y(x) = \frac{(11+1152c_3)\cos(3x)}{1152} + \frac{(x+96c_4)\sin(3x)}{96} + \frac{(-1+64c_1)\cos(x)}{64} + \frac{\sin(x)(x+32c_2)}{32}$$

✓ Solution by Mathematica

Time used: 0.079 (sec). Leaf size: 54

DSolve[y''''[x]+10*y''[x]+9*y[x]==Sin[x]*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{32}x\sin(x) + \frac{1}{96}x\sin(3x) + \left(-\frac{1}{64} + c_3\right)\cos(x) + \left(\frac{13}{576} + c_1\right)\cos(3x) + c_4\sin(x) + c_2\sin(3x)$$

12 Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

12.1 problem 1 .																297
12.2 problem 2 .													 			298
12.3 problem 3 .													 , •			299
12.4 problem 4 .													 , •			300
12.5 problem 5 .				•									 , •			301
12.6 problem 6 .													 , •			302
12.7 problem 7 .				•									 , •			303
12.8 problem 8 .													 , .			304
12.9 problem 9 .													 , .			305
12.10problem 10													 , .			306
12.11problem 11													 			307
12.12problem 12													 , .			308
12.13problem 13													 			309
12.14problem 14													 	•		310
12.15problem 15													 			311
12.16problem 16													 			312
12.17problem 17													 	•		313
12.18problem 18													 	•		314
12.19problem 19													 			315
12.20 problem 20				•									 , •			316
12.21 problem 21				•									 , •			317
12.22problem 22													 , •			318
12.23problem 23													 , •			319
12.24 problem 24				•									 , •			320
12.25 problem 25													 , •			321
12.26problem 26													 			322

12.1 problem 1

Internal problem ID [11829]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \cot(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+y(x)=cot(x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + c_1 \cos(x) + \sin(x) \ln(\csc(x) - \cot(x))$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 33

DSolve[y''[x]+y[x]==Cot[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \cos(x) + \sin(x) \left(\log \left(\sin \left(\frac{x}{2} \right) \right) - \log \left(\cos \left(\frac{x}{2} \right) \right) + c_2 \right)$$

12.2 problem 2

Internal problem ID [11830]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \tan(x)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(y(x),x$2)+y(x)=tan(x)^2,y(x), singsol=all)$

$$y(x) = \sin(x) c_2 + c_1 \cos(x) - 2 + \sin(x) \ln(\sec(x) + \tan(x))$$

✓ Solution by Mathematica

Time used: 0.124 (sec). Leaf size: 23

 $DSolve[y''[x]+y[x]==Tan[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \sin(x)\operatorname{arctanh}(\sin(x)) + c_1\cos(x) + c_2\sin(x) - 2$$

12.3 problem 3

Internal problem ID [11831]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sec(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)+y(x)=sec(x),y(x), singsol=all)

$$y(x) = -\ln\left(\sec\left(x\right)\right)\cos\left(x\right) + c_1\cos\left(x\right) + \sin\left(x\right)\left(c_2 + x\right)$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 22

DSolve[y''[x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (x + c_2)\sin(x) + \cos(x)(\log(\cos(x)) + c_1)$$

12.4 problem 4

Internal problem ID [11832]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sec(x)^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(diff(y(x),x$2)+y(x)=sec(x)^3,y(x), singsol=all)$

$$y(x) = (-1 + c_1)\cos(x) + \sin(x)c_2 + \frac{\sec(x)}{2}$$

✓ Solution by Mathematica

Time used: 0.065 (sec). Leaf size: 25

DSolve[$y''[x]+y[x]==Sec[x]^3,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to -\frac{\sec(x)}{2} + c_1 \cos(x) + \sin(x)(\tan(x) + c_2)$$

12.5 problem 5

Internal problem ID [11833]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \sec(x)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

 $dsolve(diff(y(x),x$2)+4*y(x)=sec(x)^2,y(x), singsol=all)$

 $y(x) = (-2\cos(x)^{2} + 1)\ln(\sec(x)) + 2\cos(x)^{2}c_{1} + 2\sin(x)(c_{2} + x)\cos(x) - \sin(x)^{2} - c_{1}$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.098 (sec). Leaf size: 33}}$

DSolve[y''[x]+4*y[x]==Sec[x]^2,y[x],x,IncludeSingularSolutions -> True]

 $y(x) \to \cos(2x)(\log(\cos(x)) + c_1) + \sin(x)(-\sin(x) + 2(x + c_2)\cos(x))$

12.6 problem 6

Internal problem ID [11834]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sec(x)\tan(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)+y(x)=tan(x)*sec(x),y(x), singsol=all)

$$y(x) = \ln(\sec(x))\sin(x) + (c_2 - 1)\sin(x) + \cos(x)(c_1 + x)$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 29

DSolve[y''[x]+y[x]==Tan[x]*Sec[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \cos(x)\arctan(\tan(x)) + c_1\cos(x) + \sin(x)(-\log(\cos(x)) - 1 + c_2)$$

12.7 problem 7

Internal problem ID [11835]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 5y = e^{-2x} \sec(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+5*y(x)=exp(-2*x)*sec(x),y(x), singsol=all)

$$y(x) = e^{-2x}(-\ln(\sec(x))\cos(x) + c_1\cos(x) + \sin(x)(c_2 + x))$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: $28\,$

 $DSolve[y''[x]+4*y'[x]+5*y[x]==Exp[-2*x]*Sec[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-2x}((x+c_1)\sin(x) + \cos(x)(\log(\cos(x)) + c_2))$$

12.8 problem 8

Internal problem ID [11836]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + 5y = e^x \tan(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+5*y(x)=exp(x)*tan(2*x),y(x), singsol=all)

$$y(x) = \frac{e^{x}(4c_{2}\sin(2x) - \ln(\sec(2x) + \tan(2x))\cos(2x) + 4\cos(2x)c_{1})}{4}$$

✓ Solution by Mathematica

Time used: 0.069 (sec). Leaf size: 42

DSolve[y''[x]-2*y'[x]+5*y[x]==Exp[x]*Tan[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{4}e^x(\cos(2x)\operatorname{arctanh}(\sin(2x)) - 4c_2\cos(2x) + (1 - 4c_1)\sin(2x))$$

12.9 problem 9

Internal problem ID [11837]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 9y = \frac{e^{-3x}}{x^3}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(diff(y(x),x$2)+6*diff(y(x),x)+9*y(x)=exp(-3*x)/x^3,y(x), singsol=all)$

$$y(x) = \frac{e^{-3x}(2c_1x^2 + 2c_2x + 1)}{2x}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 31

 $DSolve[y''[x]+6*y'[x]+9*y[x] == Exp[-3*x]/x^3,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{e^{-3x}(2c_2x^2 + 2c_1x + 1)}{2x}$$

12.10 problem 10

Internal problem ID [11838]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = x e^x \ln(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=x*exp(x)*ln(x),y(x), singsol=all)

$$y(x) = \frac{\left(\ln(x) x^3 - \frac{5x^3}{6} + 6c_1x + 6c_2\right) e^x}{6}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 32

DSolve[y''[x]-2*y'[x]+y[x]==x*Exp[x]*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{36}e^x(x^3(6\log(x) - 5) + 36c_2x + 36c_1)$$

12.11 problem 11

Internal problem ID [11839]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sec(x)\csc(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $\label{eq:diff} \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x$\$2$}) + \mbox{y}(\mbox{x}) = \mbox{sec}(\mbox{x}) * \mbox{csc}(\mbox{x}), \mbox{y}(\mbox{x}), \mbox{singsol=all}) \\$

 $y(x) = \sin(x) c_2 + c_1 \cos(x) + \sin(x) \ln(\csc(x) - \cot(x)) - \cos(x) \ln(\sec(x) + \tan(x))$

✓ Solution by Mathematica

Time used: 0.127 (sec). Leaf size: 30

DSolve[y''[x]+y[x]==Sec[x]*Csc[x],y[x],x,IncludeSingularSolutions -> True]

 $y(x) \rightarrow -\sin(x)\operatorname{arctanh}(\cos(x)) + c_1\cos(x) + c_2\sin(x) + \cos(x)\left(-\coth^{-1}(\sin(x))\right)$

12.12 problem 12

Internal problem ID [11840]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \tan(x)^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve(diff(y(x),x$2)+y(x)=tan(x)^3,y(x), singsol=all)$

$$y(x) = \sin(x) c_2 + c_1 \cos(x) + \frac{\tan(x)}{2} + \frac{3\cos(x)\ln(\sec(x) + \tan(x))}{2}$$

✓ Solution by Mathematica

Time used: 0.078 (sec). Leaf size: 39

DSolve[y''[x]+y[x]==Tan[x]^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}\sec(x) \left(3\cos^2(x)\operatorname{arctanh}(\sin(x)) + \sin(x) + c_1\cos(2x) + c_2\sin(2x) + c_1\right)$$

12.13 problem 13

Internal problem ID [11841]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = \frac{1}{e^x + 1}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x)=1/(1+exp(x)),y(x), singsol=all)

$$y(x) = e^{-2x} (\ln(e^x + 1)(e^x + 1) - \ln(e^x)e^x + (c_2 + x)e^x - c_1)$$

✓ Solution by Mathematica

Time used: 0.074 (sec). Leaf size: $34\,$

DSolve[y''[x]+3*y'[x]+2*y[x]==1/(1+Exp[x]),y[x],x,IncludeSingularSolutions -> True

$$y(x) \to e^{-2x}((e^x + 1)\log(e^x + 1) + (-1 + c_2)e^x + c_1)$$

12.14 problem 14

Internal problem ID [11842]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = \frac{1}{e^{2x} + 1}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 38

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x)=1/(1+exp(2*x)),y(x), singsol=all)

$$y(x) = -\frac{(\ln(e^{2x} + 1)e^{-x} + 2c_1e^{-x} - 2\arctan(e^x) - 2c_2)e^{-x}}{2}$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.074 (sec). Leaf size: 45}}$

$$y(x) \to \frac{1}{2}e^{-2x}(2e^x \arctan(e^x) - \log(e^{2x} + 1) + 2(c_2e^x + c_1))$$

12.15 problem 15

Internal problem ID [11843]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \frac{1}{1 + \sin(x)}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)+y(x)=1/(1+sin(x)),y(x), singsol=all)

$$y(x) = \ln(1 + \sin(x))\sin(x) + (-x + c_1 - 1)\cos(x) - 1 + (c_2 + 1)\sin(x)$$

✓ Solution by Mathematica

Time used: 0.188 (sec). Leaf size: 40

 $DSolve[y''[x]+y[x]==1/(1+Sin[x]),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to (-x+1+c_1)\cos(x) + \sin(x)\left(2\log\left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right) + 1 + c_2\right) - 1$$

12.16 problem 16

Internal problem ID [11844]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = e^x \arcsin(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 37

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=exp(x)*arcsin(x),y(x), singsol=all)

$$y(x) = \frac{e^{x} \left(2x^{2} \arcsin(x) + 3x\sqrt{-x^{2} + 1} + 4c_{1}x + \arcsin(x) + 4c_{2}\right)}{4}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 45

DSolve[y''[x]-2*y'[x]+y[x]==Exp[x]*ArcSin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}e^x \Big(2x^2\arcsin(x) + \arcsin(x) + 3\sqrt{1-x^2}x + 4c_2x + 4c_1\Big)$$

12.17 problem 17

Internal problem ID [11845]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = \frac{e^{-x}}{x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x)=exp(-x)/x,y(x), singsol=all)

$$y(x) = \left(-\left(\int \mathrm{e}^{-x}(\mathrm{expIntegral}_1\left(-x
ight) - c_1
ight)dx
ight) + c_2
ight)\mathrm{e}^{-x}$$

Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 30

 $DSolve[y''[x]+3*y'[x]+2*y[x] == Exp[-x]/x, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow e^{-2x}(-\text{ExpIntegralEi}(x) + e^x \log(x) + c_2 e^x + c_1)$$

12.18 problem 18

Internal problem ID [11846]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = x \ln(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=x*ln(x),y(x), singsol=all)

$$y(x) = -(x-2) e^x \exp \operatorname{Integral}_1(x) + (c_1 x + c_2) e^x + 3 + (x+2) \ln(x)$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 37

 $DSolve[y''[x]-2*y'[x]+y[x]==x*Log[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^x(x-2)$$
 ExpIntegralEi $(-x) + (x+2)\log(x) + c_1e^x + c_2e^x + 3$

12.19 problem 19

Internal problem ID [11847]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^2y'' - 6y'x + 10y = 3x^4 + 6x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(x^2*diff(y(x),x$2)-6*x*diff(y(x),x)+10*y(x)=3*x^4+6*x^3,y(x), singsol=all)$

$$y(x) = -\frac{3}{2}x^4 - 3x^3 + \frac{1}{3}c_1x^5 + c_2x^2$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 28

 $DSolve[x^2*y''[x]-6*x*y'[x]+10*y[x]==3*x^4+6*x^3,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_2 x^5 - \frac{3}{2}(x+2)x^3 + c_1 x^2$$

12.20 problem 20

Internal problem ID [11848]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(1+x)^2y'' - 2(1+x)y' + 2y = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve((x+1)^2*diff(y(x),x$2)-2*(x+1)*diff(y(x),x)+2*y(x)=1,y(x), singsol=all)$

$$y(x) = (1+x)^2 c_1 + c_2 x + c_2 + \frac{1}{2}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 23

 $DSolve[(x+1)^2*y''[x]-2*(x+1)*y'[x]+2*y[x]==1,y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \to c_2(x+1)^2 + c_1(x+1) + \frac{1}{2}$$

12.21 problem 21

Internal problem ID [11849]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2} + 2x) y'' - 2(x+1) y' + 2y = (x+2)^{2}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $dsolve((x^2+2*x)*diff(y(x),x$2)-2*(x+1)*diff(y(x),x)+2*y(x)=(x+2)^2,y(x), singsol=all)$

$$y(x) = \ln(x) x^2 + (c_2 - 1) x^2 + (-2 + c_1) x + c_1$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 31

$$y(x) \to x^2 \log(x) + (-1 + c_1)x^2 - (2 + c_2)x - c_2$$

12.22 problem 22

Internal problem ID [11850]

 $\textbf{Book} \hbox{: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.} \\$

2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - x(x+2)y' + (x+2)y = x^{3}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x$2)-x*(x+2)*diff(y(x),x)+(x+2)*y(x)=x^3,y(x), singsol=all)$

$$y(x) = x(-x + c_1 e^x + c_2)$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 22

 $DSolve[x^2*y''[x]-x*(x+2)*y'[x]+(x+2)*y[x]==x^3,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -x(x - c_2 e^x + 1 - c_1)$$

12.23 problem 23

Internal problem ID [11851]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x(x-2)y'' - (x^2-2)y' + 2y(x-1) = 3x^2(x-2)^2 e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(x*(x-2)*diff(y(x),x$2)-(x^2-2)*diff(y(x),x)+2*(x-1)*y(x)=3*x^2*(x-2)^2*exp(x),y(x),s(x))$

$$y(x) = (x^3 - 3x^2 + c_1) e^x + c_2 x^2$$

✓ Solution by Mathematica

Time used: 0.1 (sec). Leaf size: 27

DSolve $[x*(x-2)*y''[x]-(x^2-2)*y'[x]+2*(x-1)*y[x]==3*x^2*(x-2)^2*Exp[x],y[x],x$, IncludeSingular

$$y(x) \rightarrow c_2 x^2 + e^x (x^3 - 3x^2 + c_1)$$

12.24 problem 24

Internal problem ID [11852]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$(2x+1)(x+1)y'' + 2y'x - 2y = (2x+1)^{2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

 $dsolve((2*x+1)*(x+1)*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=(2*x+1)^2,y(x), singsol=all)$

$$y(x) = \frac{4x^3 + (6c_1 + 24c_2 + 4)x^2 + (6c_1 + 24c_2 + 1)x + 6c_2}{6x + 6}$$

✓ Solution by Mathematica

Time used: 1.049 (sec). Leaf size: 72

 $DSolve[(2*x+1)*(x+1)*y''[x]+2*x*y'[x]-2*y[x] == (2*x+1)^2, y[x], x, Include Singular Solutions -> Triangle Singular Solutions -> Triangle Singular Solution -> Triangle Singular Soluti$

$$y(x) \to \frac{\sqrt{-2x-1}(4x+3)x^2 - 6c_2(x+1)\sqrt{2x+1}x + 6c_1\sqrt{2x+1}}{6\sqrt{-2x-1}(x+1)}$$

12.25 problem 25

Internal problem ID [11853]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$\sin(x)^{2}y'' - 2\sin(x)\cos(x)y' + (\cos(x)^{2} + 1)y = \sin(x)^{3}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(sin(x)^2*diff(y(x),x$2)-2*sin(x)*cos(x)*diff(y(x),x)+(cos(x)^2+1)*y(x)=sin(x)^3,y(x),$

$$y(x) = \sin(x) \left(c_2 + c_1 x + \frac{1}{2} x^2 \right)$$

✓ Solution by Mathematica

Time used: 0.092 (sec). Leaf size: 24

DSolve[Sin[x]^2*y''[x]-2*Sin[x]*Cos[x]*y'[x]+(Cos[x]^2+1)*y[x]==Sin[x]^3,y[x],x,IncludeSingu

$$y(x) \to \frac{1}{2}(x^2 + 2c_2x + 2c_1)\sin(x)$$

12.26 problem 26

Internal problem ID [11854]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162

Problem number: 26.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 3y'' - y' + 3y = x^2 e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)-diff(y(x),x)+3*y(x)=x^2*exp(x),y(x), singsol=all)$

$$y(x) = c_2 e^{-x} + c_3 e^{3x} - \frac{(x^3 + \frac{3}{2}x - 12c_1) e^x}{12}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 41

 $DSolve[y'''[x]-3*y''[x]-y'[x]+3*y[x]==x^2*Exp[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to e^x \left(-\frac{x^3}{12} - \frac{x}{8} + c_2 \right) + c_1 e^{-x} + c_3 e^{3x}$$

13 Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

13.1 problem	1.	•			•						 •									324
13.2 problem	2 .																			325
13.3 problem	3.						 													326
13.4 problem	4 .						 													327
13.5 problem	5 .						 													328
13.6 problem	6.						 				 •									329
13.7 problem	7.	•				•					 •				•					330
13.8 problem	8.	•				•					 •				•					331
13.9 problem	9 .						 													332
$13.10 \\ problem$	10						 													333
$13.11 \mathrm{problem}$	11	•				•									•					334
$13.12 \mathrm{problem}$	12						 													335
$13.13 \\ problem$	13	•				•									•					336
$13.14 \mathrm{problem}$	14						 													337
$13.15 \mathrm{problem}$	15	•				•									•					338
$13.16 \\ problem$	16						 													339
$13.17 \mathrm{problem}$	17						 													340
$13.18 \\ problem$	18						 													341
$13.19 \\ problem$	19						 													342
$13.20 {\rm problem}$	20						 													343
$13.21 \mathrm{problem}$	21						 													344
$13.22 \mathrm{problem}$	22						 													345
$13.23 \\ problem$	23						 													346
$13.24 \mathrm{problem}$	24						 													347
$13.25 \mathrm{problem}$	25						 													348
$13.26 {\rm problem}$	26						 													349
$13.27 \mathrm{problem}$	27																			350
$13.28 \\ problem$	28							•												351
$13.29 \\ problem$	29						 													352

13.1 problem 1

Internal problem ID [11855]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - 3y'x + 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+3*y(x)=0,y(x), singsol=all)$

$$y(x) = x(c_2x^2 + c_1)$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 16

 $DSolve[x^2*y''[x]-3*x*y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to x(c_2x^2 + c_1)$$

13.2 problem 2

Internal problem ID [11856]

 $\textbf{Book} \hbox{: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.} \\$

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$\boxed{x^2y'' + y'x - 4y = 0}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{x^4 c_1 + c_2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 18

 $DSolve[x^2*y''[x]+x*y'[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_2 x^4 + c_1}{x^2}$$

13.3 problem 3

Internal problem ID [11857]

 $\bf Book:$ Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$4x^2y'' - 4y'x + 3y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

 $dsolve(4*x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+3*y(x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{x} \left(c_2 x + c_1 \right)$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 18

DSolve[4*x^2*y''[x]-4*x*y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \sqrt{x}(c_2x + c_1)$$

13.4 problem 4

Internal problem ID [11858]

 $\bf Book:$ Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' - 3y'x + 4y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)$

$$y(x) = x^2(c_1 + c_2 \ln(x))$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 18

DSolve[x^2*y''[x]-3*x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2 (2c_2 \log(x) + c_1)$$

13.5 problem 5

Internal problem ID [11859]

 $\textbf{Book} \hbox{: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.} \\$

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' + y'x + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 \sin(2\ln(x)) + c_2 \cos(2\ln(x))$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 22

DSolve[x^2*y''[x]+x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 \cos(2\log(x)) + c_2 \sin(2\log(x))$$

13.6 problem 6

Internal problem ID [11860]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - 3y'x + 13y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+13*y(x)=0,y(x), singsol=all)$

$$y(x) = x^{2}(c_{1}\sin(3\ln(x)) + c_{2}\cos(3\ln(x)))$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 26

DSolve[x^2*y''[x]-3*x*y'[x]+13*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2(c_2\cos(3\log(x)) + c_1\sin(3\log(x)))$$

13.7 problem 7

Internal problem ID [11861]

 $\bf Book:$ Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$3x^2y'' - 4y'x + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(3*x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^2 + c_2 x^{\frac{1}{3}}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: $20\,$

 $DSolve[3*x^2*y''[x]-4*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to c_2 x^2 + c_1 \sqrt[3]{x}$$

13.8 problem 8

Internal problem ID [11862]

 $\textbf{Book} \hbox{: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.} \\$

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' + y'x + 9y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+9*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 \sin(3\ln(x)) + c_2 \cos(3\ln(x))$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 22

DSolve[x^2*y''[x]+x*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \cos(3\log(x)) + c_2 \sin(3\log(x))$$

13.9 problem 9

Internal problem ID [11863]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$9x^2y'' + 3y'x + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(9*x^2*diff(y(x),x$2)+3*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$y(x) = (c_1 + c_2 \ln(x)) x^{\frac{1}{3}}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 24

DSolve[9*x^2*y''[x]+3*x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{3} \sqrt[3]{x} (c_2 \log(x) + 3c_1)$$

13.10 problem 10

Internal problem ID [11864]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - 5y'x + 10y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(x^2*diff(y(x),x$2)-5*x*diff(y(x),x)+10*y(x)=0,y(x), singsol=all)$

$$y(x) = x^{3}(c_{1} \sin(\ln(x)) + \cos(\ln(x)) c_{2})$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 22

DSolve[x^2*y''[x]-5*x*y'[x]+10*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x^3(c_2 \cos(\log(x)) + c_1 \sin(\log(x)))$$

13.11 problem 11

Internal problem ID [11865]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 11.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$x^3y''' - 3x^2y'' + 6y'x - 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $\frac{\text{dsolve}(x^3*\text{diff}(y(x),x$3)-3*x^2*\text{diff}(y(x),x$2)+6*x*\text{diff}(y(x),x)-6*y(x)=0,y(x)}{\text{singsol=all}}$

$$y(x) = x(c_3x^2 + c_2x + c_1)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 19

DSolve[x^3*y'''[x]-3*x^2*y''[x]+6*x*y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x(x(c_3x + c_2) + c_1)$$

13.12 problem 12

Internal problem ID [11866]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 12.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _fully, _exact, _linear]]

$$x^3y''' + 2x^2y'' - 10y'x - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $\frac{\text{dsolve}(x^3*\text{diff}(y(x),x\$3)+2*x^2*\text{diff}(y(x),x\$2)-10*x*\text{diff}(y(x),x)-8*y(x)=0,y(x)}{\text{dsolve}(x^3*\text{diff}(y(x),x\$3)+2*x^2*\text{diff}(y(x),x\$2)-10*x*\text{diff}(y(x),x)-8*y(x)=0,y(x)}, \text{ singsol=all})$

$$y(x) = \frac{c_1 x^6 + c_2 x + c_3}{x^2}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

$$y(x) \to \frac{c_3 x^6 + c_2 x + c_1}{x^2}$$

13.13 problem 13

Internal problem ID [11867]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 13.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$x^3y''' - x^2y'' - 6y'x + 18y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $\frac{\text{dsolve}(x^3*\text{diff}(y(x),x$3)-x^2*\text{diff}(y(x),x$2)-6*x*\text{diff}(y(x),x)+18*y(x)=0,y(x),}{\text{singsol=all})}$

$$y(x) = \frac{c_3 x^5 \ln(x) + c_2 x^5 + c_1}{x^2}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 26

$$y(x) \to \frac{c_2 x^5 + c_3 x^5 \log(x) + c_1}{x^2}$$

13.14 problem 14

Internal problem ID [11868]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' - 4y'x + 6y = 4x - 6$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

 $dsolve(x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=4*x-6,y(x), singsol=all)$

$$y(x) = c_1 x^3 + c_2 x^2 + 2x - 1$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 22

DSolve[$x^2*y''[x]-4*x*y'[x]+6*y[x]==4*x-6,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \rightarrow c_2 x^3 + c_1 x^2 + 2x - 1$$

13.15 problem 15

Internal problem ID [11869]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' - 5y'x + 8y = 2x^3$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

 $dsolve(x^2*diff(y(x),x$2)-5*x*diff(y(x),x)+8*y(x)=2*x^3,y(x), singsol=all)$

$$y(x) = x^2 (c_2 x^2 + c_1 - 2x)$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 21

DSolve[x^2*y''[x]-5*x*y'[x]+8*y[x]==2*x^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2 (c_2 x^2 - 2x + c_1)$$

13.16 problem 16

Internal problem ID [11870]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x^{2}y'' + 4y'x + 2y = 4\ln(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(x^2*diff(y(x),x$2)+4*x*diff(y(x),x)+2*y(x)=4*ln(x),y(x), singsol=all)$

$$y(x) = 2\ln(x) + \frac{c_1}{x} - 3 + \frac{c_2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 23

 $DSolve[x^2*y''[x]+4*x*y'[x]+2*y[x]==4*Log[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1}{x^2} + 2\log(x) + \frac{c_2}{x} - 3$$

13.17 problem 17

Internal problem ID [11871]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + 4y = 2x \ln(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $\label{local_decomposition} \\ \mbox{dsolve}(\mbox{x^2*diff}(\mbox{y}(\mbox{x}),\mbox{x$\$2$}) + \mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x}) + 4\mbox{x*y}(\mbox{x}) = 2\mbox{x*ln}(\mbox{x}),\mbox{y}(\mbox{x}),\mbox{singsol=all}) \\$

$$y(x) = \sin(2\ln(x)) c_2 + \cos(2\ln(x)) c_1 + \frac{2\ln(x) x}{5} - \frac{4x}{25}$$

✓ Solution by Mathematica

Time used: 0.11 (sec). Leaf size: 33

DSolve[x^2*y''[x]+x*y'[x]+4*y[x]==2*x*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{2}{25}x(5\log(x) - 2) + c_1\cos(2\log(x)) + c_2\sin(2\log(x))$$

13.18 problem 18

Internal problem ID [11872]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' + y'x + 4y = 4\sin(\ln(x))$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+4*y(x)=4*sin(ln(x)),y(x), singsol=all)$

$$y(x) = \sin(2\ln(x)) c_2 + \cos(2\ln(x)) c_1 + \frac{4\sin(\ln(x))}{3}$$

✓ Solution by Mathematica

Time used: 0.176 (sec). Leaf size: 29

DSolve[x^2*y''[x]+x*y'[x]+4*y[x]==4*Sin[Log[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{4}{3}\sin(\log(x)) + c_1\cos(2\log(x)) + c_2\sin(2\log(x))$$

13.19problem 19

Internal problem ID [11873]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 19.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$x^3y''' - x^2y'' + 2y'x - 2y = x^3$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

 $dsolve(x^3*diff(y(x),x$3)-x^2*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=x^3,y(x), singsol=all)$

$$y(x) = \frac{x(4c_3 \ln(x) + 4c_2x + x^2 + 4c_1)}{4}$$

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 29

DSolve[x^3*y'''[x]-x^2*y''[x]+2*x*y'[x]-2*y[x]==x^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}x(x^2 + 4c_3x + 4c_2\log(x) + 4c_1)$$

13.20 problem 20

Internal problem ID [11874]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' - 2y'x - 10y = 0$$

With initial conditions

$$[y(1) = 5, y'(1) = 4]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve([x^2*diff(y(x),x$2)-2*x*diff(y(x),x)-10*y(x)=0,y(1)=5,\ D(y)(1)=4],y(x),\ singsol=3,y(x),y(x),y(x)=1,y(x)$

$$y(x) = 2x^5 + \frac{3}{x^2}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 16

$$y(x) \to \frac{2x^7 + 3}{x^2}$$

13.21 problem 21

Internal problem ID [11875]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.

2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' - 4y'x + 6y = 0$$

With initial conditions

$$[y(2) = 0, y'(2) = 4]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

 $dsolve([x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=0,y(2) = 0, D(y)(2) = 4],y(x), singsol=al(x)+al(x$

$$y(x) = x^2(x-2)$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 12

DSolve[{x^2*y''[x]-4*x*y'[x]+6*y[x]==0,{y[2]==0,y'[2]==4}},y[x],x,IncludeSingularSolutions -

$$y(x) \to (x-2)x^2$$

13.22 problem 22

Internal problem ID [11876]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x^2y'' + 5y'x + 3y = 0$$

With initial conditions

$$[y(1) = 1, y'(1) = -5]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve([x^2*diff(y(x),x$2)+5*x*diff(y(x),x)+3*y(x)=0,y(1) = 1, D(y)(1) = -5], y(x), singsol=3, y(x), y(x),$

$$y(x) = \frac{-x^2 + 2}{x^3}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 16

DSolve $[\{x^2*y''[x]+5*x*y'[x]+3*y[x]==0,\{y[1]==1,y'[1]==-5\}\},y[x],x,IncludeSingularSolutions]$

$$y(x) \to \frac{2 - x^2}{x^3}$$

13.23 problem 23

Internal problem ID [11877]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x^2y'' - 2y = 4x - 8$$

With initial conditions

$$[y(1) = 4, y'(1) = -1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve([x^2*diff(y(x),x$2)-2*y(x)=4*x-8,y(1) = 4, D(y)(1) = -1],y(x), singsol=all)$

$$y(x) = x^2 + 4 - 2x + \frac{1}{x}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 16

$$y(x) \rightarrow x^2 - 2x + \frac{1}{x} + 4$$

13.24 problem 24

Internal problem ID [11878]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' - 4y'x + 4y = -6x^3 + 4x^2$$

With initial conditions

$$[y(2) = 4, y'(2) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

$$y(x) = -\frac{23}{24}x^4 + 3x^3 - 2x^2 + \frac{5}{3}x$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 28

$$y(x) \rightarrow -\frac{23x^4}{24} + 3x^3 - 2x^2 + \frac{5x}{3}$$

13.25 problem 25

Internal problem ID [11879]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + 2y'x - 6y = 10x^2$$

With initial conditions

$$[y(1) = 1, y'(1) = -6]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

$$y(x) = \frac{2x^{5} \ln(x) - x^{5} + 2}{x^{3}}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 23

 $DSolve[\{x^2*y''[x]+2*x*y'[x]-6*y[x]==10*x^2,\{y[1]==1,y'[1]==-6\}\},y[x],x,IncludeSingularSolut]$

$$y(x) \to \frac{-x^5 + 2x^5 \log(x) + 2}{x^3}$$

13.26 problem 26

Internal problem ID [11880]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' - 5y'x + 8y = 2x^3$$

With initial conditions

$$[y(2) = 0, y'(2) = -8]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve([x^2*diff(y(x),x$2)-5*x*diff(y(x),x)+8*y(x)=2*x^3,y(2) = 0, D(y)(2) = -8],y(x), sings(x)$

$$y(x) = -2x^3 + 4x^2$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 13

DSolve[{x^2*y''[x]-5*x*y'[x]+8*y[x]==2*x^3,{y[2]==0,y'[2]==-8}},y[x],x,IncludeSingularSoluti

$$y(x) \to -2(x-2)x^2$$

13.27 problem 27

Internal problem ID [11881]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' - 6y = \ln\left(x\right)$$

With initial conditions

$$\left[y(1) = \frac{1}{6}, y'(1) = -\frac{1}{6}\right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

 $dsolve([x^2*diff(y(x),x$2)-6*y(x)=ln(x),y(1) = 1/6, D(y)(1) = -1/6],y(x), singsol=all)$

$$y(x) = \frac{1}{12x^2} + \frac{x^3}{18} - \frac{\ln(x)}{6} + \frac{1}{36}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 29

DSolve[{x^2*y''[x]-6*y[x]==Log[x],{y[1]==1/6,y'[1]==-1/6}},y[x],x,IncludeSingularSolutions -

$$y(x) \to \frac{2x^5 + x^2 - 6x^2 \log(x) + 3}{36x^2}$$

13.28 problem 28

Internal problem ID [11882]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x+2)^{2}y'' - (x+2)y' - 3y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

 $dsolve((x+2)^2*diff(y(x),x^2)-(x+2)*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1 + c_2(x+2)^4}{x+2}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 22

 $DSolve[(x+2)^2*y''[x]-(x+2)*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1(x+2)^3 + \frac{c_2}{x+2}$$

13.29 problem 29

Internal problem ID [11883]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

Problem number: 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(2x-3)^2y'' - 6(2x-3)y' + 12y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve((2*x-3)^2*diff(y(x),x$2)-6*(2*x-3)*diff(y(x),x)+12*y(x)=0,y(x), singsol=all)$

$$y(x) = \left(x - \frac{3}{2}\right) \left(c_1 + c_2\left(x - \frac{3}{2}\right)^2\right)$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 24

DSolve[(2*x-3)^2*y''[x]-6*(2*x-3)*y'[x]+12*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2(3-2x)^3 + c_1(3-2x)$$

14 Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

14.1 problem 1 .																	354
14.2 problem 2 .																	355
14.3 problem 3 .																	356
14.4 problem 4 .																	357
14.5 problem 5 .																	358
14.6 problem 6 .																	359
14.7 problem 7 .																	360
14.8 problem 8 .																	361
14.9 problem 9 .																	362
14.10 problem 10																	363
14.11 problem 11																	364
14.12 problem 12																	365
14.13problem 13																	366
14.14problem 14																	367
14.15problem 15																	368
14.16problem 16																	369
14.17problem 17																	370
14.18problem 18																	371

14.1 problem 1

Internal problem ID [11884]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + y'x + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

Order:=6;

dsolve(diff(y(x),x\$2)+x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{8}x^4\right)y(0) + \left(x - \frac{1}{3}x^3 + \frac{1}{15}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 42

AsymptoticDSolveValue[$y''[x]+x*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{15} - \frac{x^3}{3} + x\right) + c_1 \left(\frac{x^4}{8} - \frac{x^2}{2} + 1\right)$$

14.2 problem 2

Internal problem ID [11885]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 8y'x - 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)+8*x*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(-2x^4 + 2x^2 + 1\right)y(0) + \left(x - \frac{2}{3}x^3 + \frac{2}{3}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 38

AsymptoticDSolveValue[$y''[x]+8*x*y'[x]-4*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{2x^5}{3} - \frac{2x^3}{3} + x\right) + c_1 \left(-2x^4 + 2x^2 + 1\right)$$

14.3 problem 3

Internal problem ID [11886]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y'x + (2x^2 + 1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)+x*diff(y(x),x)+(2*x^2+1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 - \frac{1}{24}x^4\right)y(0) + \left(x - \frac{1}{3}x^3 - \frac{1}{30}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$y''[x]+x*y'[x]+(2*x^2+1)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(-\frac{x^5}{30} - \frac{x^3}{3} + x\right) + c_1 \left(-\frac{x^4}{24} - \frac{x^2}{2} + 1\right)$$

14.4 problem 4

Internal problem ID [11887]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y'x + (x^2 - 4)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; $dsolve(diff(y(x),x$2)+x*diff(y(x),x)+(x^2-4)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 + 2x^2 + \frac{1}{4}x^4\right)y(0) + \left(x + \frac{1}{2}x^3 - \frac{1}{40}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: $40\,$

AsymptoticDSolveValue[$y''[x]+x*y'[x]+(x^2-4)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_2 \left(-rac{x^5}{40} + rac{x^3}{2} + x
ight) + c_1 \left(rac{x^4}{4} + 2x^2 + 1
ight)$$

14.5 problem 5

Internal problem ID [11888]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y'x + (3x+2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6; dsolve(diff(y(x),x\$2)+x*diff(y(x),x)+(3*x+2)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - x^2 - \frac{1}{2}x^3 + \frac{1}{3}x^4 + \frac{11}{40}x^5\right)y(0) + \left(x - \frac{1}{2}x^3 - \frac{1}{4}x^4 + \frac{1}{8}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 61

AsymptoticDSolveValue[$y''[x]+x*y'[x]+(3*x+2)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_2 \left(rac{x^5}{8} - rac{x^4}{4} - rac{x^3}{2} + x
ight) + c_1 \left(rac{11x^5}{40} + rac{x^4}{3} - rac{x^3}{2} - x^2 + 1
ight)$$

14.6 problem 6

Internal problem ID [11889]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y'x + (3x - 2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

Order:=6; dsolve(diff(y(x),x\$2)-x*diff(y(x),x)+(3*x-2)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + x^2 - \frac{1}{2}x^3 + \frac{1}{3}x^4 - \frac{11}{40}x^5\right)y(0) + \left(x + \frac{1}{2}x^3 - \frac{1}{4}x^4 + \frac{1}{8}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 59

AsymptoticDSolveValue[$y''[x]-x*y'[x]+(3*x-2)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{8} - \frac{x^4}{4} + \frac{x^3}{2} + x\right) + c_1 \left(-\frac{11x^5}{40} + \frac{x^4}{3} - \frac{x^3}{2} + x^2 + 1\right)$$

14.7 problem 7

Internal problem ID [11890]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 1)y'' + y'x + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

Order:=6; dsolve((x^2+1)*diff(y(x),x\$2)+x*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{6}x^3 + \frac{3}{40}x^5\right)y(0) + \left(x - \frac{1}{6}x^3 - \frac{1}{12}x^4 + \frac{3}{40}x^5\right)D(y)(0) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 49

AsymptoticDSolveValue[$(x^2+1)*y''[x]+x*y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(\frac{3x^5}{40} - \frac{x^3}{6} + 1 \right) + c_2 \left(\frac{3x^5}{40} - \frac{x^4}{12} - \frac{x^3}{6} + x \right)$$

14.8 problem 8

Internal problem ID [11891]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x-1)y'' - (3x-2)y' + 2yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

Order:=6; dsolve((x-1)*diff(y(x),x\$2)-(3*x-2)*diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{3}x^3 + \frac{1}{3}x^4 + \frac{11}{60}x^5\right)y(0) + \left(x + x^2 + \frac{1}{2}x^3 + \frac{1}{6}x^4 + \frac{1}{24}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 59

AsymptoticDSolveValue[$(x-1)*y''[x]-(3*x-2)*y'[x]+2*x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{11x^5}{60} + \frac{x^4}{3} + \frac{x^3}{3} + 1\right) + c_2 \left(\frac{x^5}{24} + \frac{x^4}{6} + \frac{x^3}{2} + x^2 + x\right)$$

14.9 problem 9

Internal problem ID [11892]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^3 - 1)y'' + x^2y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

Order:=6; dsolve((x^3-1)*diff(y(x),x\$2)+x^2*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^3}{6}\right)y(0) + \left(x + \frac{1}{6}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: $28\,$

AsymptoticDSolveValue[$(x^3-1)*y''[x]+x^2*y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^4}{6} + x\right) + c_1 \left(\frac{x^3}{6} + 1\right)$$

14.10 problem 10

Internal problem ID [11893]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x+3)y'' + (x+2)y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6; dsolve((x+3)*diff(y(x),x\$2)+(x+2)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{6}x^2 + \frac{1}{18}x^3 - \frac{1}{216}x^4 - \frac{7}{3240}x^5\right)y(0) + \left(x - \frac{1}{3}x^2 + \frac{1}{36}x^4 - \frac{1}{108}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 63

AsymptoticDSolveValue[$(x+3)*y''[x]+(x+2)*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightharpoonup c_2 \left(-rac{x^5}{108} + rac{x^4}{36} - rac{x^2}{3} + x
ight) + c_1 \left(-rac{7x^5}{3240} - rac{x^4}{216} + rac{x^3}{18} - rac{x^2}{6} + 1
ight)$$

14.11 problem 11

Internal problem ID [11894]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' - y'x - y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6;

dsolve([diff(y(x),x\$2)-x*diff(y(x),x)-y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0);

$$y(x) = 1 + \frac{1}{2}x^2 + \frac{1}{8}x^4 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

$$y(x) \to \frac{x^4}{8} + \frac{x^2}{2} + 1$$

14.12 problem 12

Internal problem ID [11895]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y'x - 2y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6;

dsolve([diff(y(x),x\$2)+x*diff(y(x),x)-2*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0,y(0)=0, D(y)(0) = 1,y(x),type='series',x=0,y(0)

$$y(x) = x + \frac{1}{6}x^3 - \frac{1}{120}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

AsymptoticDSolveValue[$\{y''[x]+x*y'[x]-2*y[x]==0,\{y[0]==0,y'[0]==1\}\},y[x],\{x,0,5\}$]

$$y(x) \to -\frac{x^5}{120} + \frac{x^3}{6} + x$$

14.13 problem 13

Internal problem ID [11896]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 1)y'' + y'x + 2yx = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 3]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

Order:=6;

 $dsolve([(x^2+1)*diff(y(x),x$2)+x*diff(y(x),x)+2*x*y(x)=0,y(0) = 2, D(y)(0) = 3],y(x),type='stype='$

$$y(x) = 2 + 3x - \frac{7}{6}x^3 - \frac{1}{2}x^4 + \frac{21}{40}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 29

AsymptoticDSolveValue[$\{(x^2+1)*y''[x]+x*y'[x]+2*x*y[x]==0,\{y[0]==2,y'[0]==3\}\},y[x],\{x,0,5\}$]

$$y(x) \to \frac{21x^5}{40} - \frac{x^4}{2} - \frac{7x^3}{6} + 3x + 2$$

14.14 problem 14

Internal problem ID [11897]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(2x^2 - 3)y'' - 2y'x + y = 0$$

With initial conditions

$$[y(0) = -1, y'(0) = 5]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

Order:=6;

 $dsolve([(2*x^2-3)*diff(y(x),x$2)-2*x*diff(y(x),x)+y(x)=0,y(0) = -1, D(y)(0) = 5],y(x),type='(x,y)+y(x)=0,y(0) = -1,D(y)(0) = -1,D(y)($

$$y(x) = -1 + 5x - \frac{1}{6}x^2 - \frac{5}{18}x^3 - \frac{1}{216}x^4 - \frac{7}{216}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 36

AsymptoticDSolveValue[$\{(2*x^2-3)*y''[x]-2*x*y'[x]+y[x]=0,\{y[0]=-1,y'[0]==5\}\},y[x],\{x,0,5\}$]

$$y(x) \rightarrow -\frac{7x^5}{216} - \frac{x^4}{216} - \frac{5x^3}{18} - \frac{x^2}{6} + 5x - 1$$

14.15 problem 15

Internal problem ID [11898]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' + y'x + y = 0$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

Order:=6;

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+y(x)=0,y(x),type='series',x=1);$

$$y(x) = \left(1 - \frac{(-1+x)^2}{2} + \frac{(-1+x)^3}{2} - \frac{5(-1+x)^4}{12} + \frac{(-1+x)^5}{3}\right)y(1) + \left(-1 + x - \frac{(-1+x)^2}{2} + \frac{(-1+x)^3}{6} - \frac{(-1+x)^5}{12}\right)D(y)(1) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 78

$$y(x) \to c_1 \left(\frac{1}{3} (x-1)^5 - \frac{5}{12} (x-1)^4 + \frac{1}{2} (x-1)^3 - \frac{1}{2} (x-1)^2 + 1 \right)$$
$$+ c_2 \left(-\frac{1}{12} (x-1)^5 + \frac{1}{6} (x-1)^3 - \frac{1}{2} (x-1)^2 + x - 1 \right)$$

14.16 problem 16

Internal problem ID [11899]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$x^2y'' + 3y'x - y = 0$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 54

Order:=6; $dsolve(x^2*diff(y(x),x$2)+3*x*diff(y(x),x)-y(x)=0,y(x),type='series',x=1);$

$$y(x) = \left(1 + \frac{(-1+x)^2}{2} - \frac{5(-1+x)^3}{6} + \frac{7(-1+x)^4}{6} - \frac{91(-1+x)^5}{60}\right)y(1)$$

$$+ \left(-1 + x - \frac{3(-1+x)^2}{2} + \frac{13(-1+x)^3}{6} - \frac{35(-1+x)^4}{12} + \frac{56(-1+x)^5}{15}\right)D(y)(1)$$

$$+ O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 87

AsymptoticDSolveValue[$x^2*y''[x]+3*x*y'[x]-y[x]==0,y[x],\{x,1,5\}$]

$$y(x) \to c_1 \left(-\frac{91}{60} (x-1)^5 + \frac{7}{6} (x-1)^4 - \frac{5}{6} (x-1)^3 + \frac{1}{2} (x-1)^2 + 1 \right)$$

+ $c_2 \left(\frac{56}{15} (x-1)^5 - \frac{35}{12} (x-1)^4 + \frac{13}{6} (x-1)^3 - \frac{3}{2} (x-1)^2 + x - 1 \right)$

14.17 problem 17

Internal problem ID [11900]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$xy'' + y' + 2y = 0$$

With initial conditions

$$[y(1) = 2, y'(1) = 4]$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

Order:=6;

dsolve([x*diff(y(x),x\$2)+diff(y(x),x)+2*y(x)=0,y(1) = 2, D(y)(1) = 4],y(x),type='series',x=1

$$y(x) = 2 + 4(-1+x) - 4(-1+x)^{2} + \frac{4}{3}(-1+x)^{3} - \frac{1}{3}(-1+x)^{4} + \frac{2}{15}(-1+x)^{5} + O\left((-1+x)^{6}\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 44

$$y(x) \to \frac{2}{15}(x-1)^5 - \frac{1}{3}(x-1)^4 + \frac{4}{3}(x-1)^3 - 4(x-1)^2 + 4(x-1) + 2$$

14.18 problem 18

Internal problem ID [11901]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(-x^2+1)y'' - 2y'x + n(n+1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 101

Order:=6; $dsolve((1-x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+n*(n+1)*y(x)=0,y(x),type='series',x=0);$

$$\begin{split} y(x) &= \left(1 - \frac{n(n+1)\,x^2}{2} + \frac{n(n^3 + 2n^2 - 5n - 6)\,x^4}{24}\right)y(0) \\ &\quad + \left(x - \frac{\left(n^2 + n - 2\right)x^3}{6} + \frac{\left(n^4 + 2n^3 - 13n^2 - 14n + 24\right)x^5}{120}\right)D(y)\left(0\right) + O\left(x^6\right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 120

$$y(x) \to c_2 \left(\frac{1}{120} (n^2 + n)^2 x^5 + \frac{7}{60} (-n^2 - n) x^5 + \frac{1}{6} (-n^2 - n) x^3 + \frac{x^5}{5} + \frac{x^3}{3} + x\right) + c_1 \left(\frac{1}{24} (n^2 + n)^2 x^4 + \frac{1}{4} (-n^2 - n) x^4 + \frac{1}{2} (-n^2 - n) x^2 + 1\right)$$

15 Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

15.1 problem 1	373
15.2 problem 2	374
15.3 problem 3	376
15.4 problem 4	377
15.5 problem 5	378
15.6 problem 6	379
15.7 problem 7	
15.8 problem 8	381
15.9 problem 9	382
15.10problem 10	383
15.11 problem 11	384
15.12problem 12	385
15.13problem 13	386
15.14problem 14	387
15.15problem 15	388
15.16problem 16	389
15.17problem 17	390
15.18problem 18	391
15.19problem 19	392
15.20problem 20	393
15.21 problem 21	394
15.22problem 22	395
15.23problem 23	396
15.24problem 24	397
15.25problem 25	398
15.26problem 26	399

15.1 problem 1

Internal problem ID [11902]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 - 3x) y'' + (x + 2) y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 44

Order:=6; dsolve((x^2-3*x)*diff(y(x),x\$2)+(x+2)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{5}{3}} \left(1 + \frac{17}{36} x + \frac{1241}{7128} x^2 + \frac{80665}{1347192} x^3 + \frac{972725}{48498912} x^4 + \frac{5797441}{872980416} x^5 + O(x^6) \right) + c_2 \left(1 - \frac{1}{2} x - \frac{1}{2} x^2 - \frac{5}{24} x^3 - \frac{25}{336} x^4 - \frac{17}{672} x^5 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 85

AsymptoticDSolveValue[$(x^2-3*x)*y''[x]+(x+2)*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(-\frac{17x^5}{672} - \frac{25x^4}{336} - \frac{5x^3}{24} - \frac{x^2}{2} - \frac{x}{2} + 1 \right)$$

+ $c_1 \left(\frac{5797441x^5}{872980416} + \frac{972725x^4}{48498912} + \frac{80665x^3}{1347192} + \frac{1241x^2}{7128} + \frac{17x}{36} + 1 \right) x^{5/3}$

15.2 problem 2

Internal problem ID [11903]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).

Exercises page 251

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{3} + x^{2}) y'' + (x^{2} - 2x) y' + 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 1227

Order:=6; dsolve((x^3+x^2)*diff(y(x),x\$2)+(x^2-2*x)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);

$$y(x) = x^{\frac{3}{2}} \left(c_2 x^{\frac{i\sqrt{7}}{2}} \left(1 + \frac{3\sqrt{7} - i}{-2\sqrt{7} + 2i} x + \frac{-4\sqrt{7} - 12i}{(-\sqrt{7} + i) (i\sqrt{7} + 2)} x^2 + \frac{224}{3} \frac{1}{(\sqrt{7} - 2i) (-\sqrt{7} + i) (3 + i\sqrt{7})} x^3 + \frac{84\sqrt{7} - \frac{1036i}{3}}{(-\sqrt{7} + i) (i\sqrt{7} + 2) (3 + i\sqrt{7}) (4 + i\sqrt{7})} x^4 + \frac{\frac{2576i\sqrt{7}}{3} + \frac{6608}{5}}{(-4i + \sqrt{7}) (-\sqrt{7} + i) (i\sqrt{7} + 2) (3 + i\sqrt{7}) (i\sqrt{7} + 5)} x^5 + O(x^6) \right) + c_1 x^{-\frac{i\sqrt{7}}{2}} \left(1 + \frac{-3\sqrt{7} - i}{2\sqrt{7} + 2i} x + \frac{12 + 4i\sqrt{7}}{5 + 3i\sqrt{7}} x^2 + \frac{224}{3} \frac{1}{(i\sqrt{7} - 2) (\sqrt{7} + 3i) (\sqrt{7} + i)} x^3 + \frac{63i\sqrt{7} - 259}{15i\sqrt{7} - 129} x^4 + \frac{-1239i - 805\sqrt{7}}{675i + 255\sqrt{7}} x^5 + O(x^6) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 5834

AsymptoticDSolveValue[$(x^3+x^2)*y''[x]+(x^2-2*x)*y'[x]+4*y[x]==0,y[x],\{x,0,5\}$]

Too large to display

15.3 problem 3

Internal problem ID [11904]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).

Exercises page 251

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^4 - 2x^3 + x^2)y'' + 2(x - 1)y' + x^2y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

Order:=6; dsolve((x^4-2*x^3+x^2)*diff(y(x),x\$2)+2*(x-1)*diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0

No solution found

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 71

AsymptoticDSolveValue[$(x^4-2*x^3+x^2)*y''[x]+2*(x-1)*y'[x]+x^2*y[x]==0,y[x],{x,0,5}$]

$$y(x) \rightarrow c_1 \left(\frac{3x^5}{10} + \frac{x^4}{4} + \frac{x^3}{6} + 1 \right) + c_2 e^{-2/x} \left(-\frac{429x^5}{5} + \frac{91x^4}{4} - \frac{31x^3}{6} + 3x^2 + 1 \right) x^4$$

15.4 problem 4

Internal problem ID [11905]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).

Exercises page 251

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^5 + x^4 - 6x^3)y'' + x^2y' + y(x - 2) = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

```
Order:=6;
dsolve((x^5+x^4-6*x^3)*diff(y(x),x$2)+x^2*diff(y(x),x)+(x-2)*y(x)=0,y(x),type='series',x=0);
```

No solution found

✓ Solution by Mathematica

Time used: 0.226 (sec). Leaf size: 282

AsymptoticDSolveValue[
$$(x^5+x^4-6*x^3)*y''[x]+x^2*y'[x]+(x-2)*y[x]==0,y[x],\{x,0,5\}$$
]

15.5 problem 5

Internal problem ID [11906]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2x^{2}y'' + y'x + y(x^{2} - 1) = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

Order:=6; dsolve(2*x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2-1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 \left(1 - \frac{1}{2}x^2 + \frac{1}{40}x^4 + \mathcal{O}\left(x^6\right)\right)}{\sqrt{x}} + c_2 x \left(1 - \frac{1}{14}x^2 + \frac{1}{616}x^4 + \mathcal{O}\left(x^6\right)\right)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 48

$$y(x) \to c_1 x \left(\frac{x^4}{616} - \frac{x^2}{14} + 1\right) + \frac{c_2 \left(\frac{x^4}{40} - \frac{x^2}{2} + 1\right)}{\sqrt{x}}$$

15.6 problem 6

Internal problem ID [11907]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).

Exercises page 251

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2x^{2}y'' + y'x + (2x^{2} - 3)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

Order:=6; $dsolve(2*x^2*diff(y(x),x$2)+x*diff(y(x),x)+(2*x^2-3)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \frac{c_2 x^{\frac{5}{2}} \left(1 - \frac{1}{9} x^2 + \frac{1}{234} x^4 + \mathcal{O}\left(x^6\right)\right) + c_1 \left(1 + x^2 - \frac{1}{6} x^4 + \mathcal{O}\left(x^6\right)\right)}{x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 46

AsymptoticDSolveValue $[2*x^2*y''[x]+x*y'[x]+(2*x^2-3)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to \frac{c_2\left(-\frac{x^4}{6} + x^2 + 1\right)}{x} + c_1\left(\frac{x^4}{234} - \frac{x^2}{9} + 1\right)x^{3/2}$$

15.7 problem 7

Internal problem ID [11908]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - y'x + \left(x^{2} + \frac{8}{9}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

Order:=6; $dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+(x^2+8/9)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x^{\frac{2}{3}} \left(1 - \frac{3}{8} x^2 + \frac{9}{320} x^4 + \mathcal{O}\left(x^6\right) \right) + c_2 x^{\frac{4}{3}} \left(1 - \frac{3}{16} x^2 + \frac{9}{896} x^4 + \mathcal{O}\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 52

$$y(x) \to c_1 \left(\frac{9x^4}{896} - \frac{3x^2}{16} + 1\right) x^{4/3} + c_2 \left(\frac{9x^4}{320} - \frac{3x^2}{8} + 1\right) x^{2/3}$$

15.8 problem 8

Internal problem ID [11909]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${\bf Section:}\ {\bf Chapter}\ 6,\ {\bf Series}\ {\bf solutions}\ {\bf of}\ {\bf linear}\ {\bf differential}\ {\bf equations}.\ {\bf Section}\ {\bf 6.2}\ ({\bf Frobenius}).$

Exercises page 251

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - y'x + \left(2x^{2} + \frac{5}{9}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

Order:=6; dsolve(x^2*diff(y(x),x\$2)-x*diff(y(x),x)+(2*x^2+5/9)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{1}{3}} \left(1 - \frac{3}{2} x^2 + \frac{9}{32} x^4 + \mathcal{O}\left(x^6\right) \right) + c_2 x^{\frac{5}{3}} \left(1 - \frac{3}{10} x^2 + \frac{9}{320} x^4 + \mathcal{O}\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 52

$$y(x)
ightarrow c_2 \left(rac{9x^4}{32} - rac{3x^2}{2} + 1
ight) \sqrt[3]{x} + c_1 \left(rac{9x^4}{320} - rac{3x^2}{10} + 1
ight) x^{5/3}$$

15.9 problem 9

Internal problem ID [11910]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(x^{2} - \frac{1}{9}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-1/9)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \frac{x^{\frac{2}{3}} \left(1 - \frac{3}{16}x^2 + \frac{9}{896}x^4 + \mathcal{O}\left(x^6\right)\right) c_2 + \left(1 - \frac{3}{8}x^2 + \frac{9}{320}x^4 + \mathcal{O}\left(x^6\right)\right) c_1}{x^{\frac{1}{3}}}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 52

AsymptoticDSolveValue $[x^2*y''[x]+x*y'[x]+(x^2-1/9)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \rightarrow c_1 \sqrt[3]{x} \left(\frac{9x^4}{896} - \frac{3x^2}{16} + 1 \right) + \frac{c_2 \left(\frac{9x^4}{320} - \frac{3x^2}{8} + 1 \right)}{\sqrt[3]{x}}$$

15.10 problem 10

Internal problem ID [11911]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).

Exercises page 251

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$2xy'' + y' + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 44

Order:=6;

dsolve(2*x*diff(y(x),x\$2)+diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 \sqrt{x} \left(1 - \frac{2}{3}x + \frac{2}{15}x^2 - \frac{4}{315}x^3 + \frac{2}{2835}x^4 - \frac{4}{155925}x^5 + \mathcal{O}\left(x^6\right) \right)$$
$$+ c_2 \left(1 - 2x + \frac{2}{3}x^2 - \frac{4}{45}x^3 + \frac{2}{315}x^4 - \frac{4}{14175}x^5 + \mathcal{O}\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 83

AsymptoticDSolveValue $[2*x*y''[x]+y'[x]+2*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \sqrt{x} \left(-\frac{4x^5}{155925} + \frac{2x^4}{2835} - \frac{4x^3}{315} + \frac{2x^2}{15} - \frac{2x}{3} + 1 \right)$$
$$+ c_2 \left(-\frac{4x^5}{14175} + \frac{2x^4}{315} - \frac{4x^3}{45} + \frac{2x^2}{3} - 2x + 1 \right)$$

15.11 problem 11

Internal problem ID [11912]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$3xy'' - (x-2)y' - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 44

Order:=6; dsolve(3*x*diff(y(x),x\$2)-(x-2)*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{1}{3}} \left(1 + \frac{7}{12} x + \frac{5}{36} x^2 + \frac{13}{648} x^3 + \frac{1}{486} x^4 + \frac{19}{116640} x^5 + \mathcal{O}(x^6) \right)$$
$$+ c_2 \left(1 + x + \frac{3}{10} x^2 + \frac{1}{20} x^3 + \frac{1}{176} x^4 + \frac{3}{6160} x^5 + \mathcal{O}(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 81

AsymptoticDSolveValue[$3*x*y''[x]-(x-2)*y'[x]-2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \sqrt[3]{x} \left(\frac{19x^5}{116640} + \frac{x^4}{486} + \frac{13x^3}{648} + \frac{5x^2}{36} + \frac{7x}{12} + 1 \right) + c_2 \left(\frac{3x^5}{6160} + \frac{x^4}{176} + \frac{x^3}{20} + \frac{3x^2}{10} + x + 1 \right) + c_3 \left(\frac{3x^5}{6160} + \frac{x^4}{176} + \frac{x^3}{20} + \frac{3x^2}{10} + x + 1 \right)$$

15.12 problem 12

Internal problem ID [11913]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' + 2y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 32

Order:=6; dsolve(x*diff(y(x),x\$2)+2*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 \left(1 - \frac{1}{6}x^2 + \frac{1}{120}x^4 + \mathcal{O}\left(x^6\right) \right) + \frac{c_2 \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + \mathcal{O}\left(x^6\right) \right)}{x}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 42

AsymptoticDSolveValue[$x*y''[x]+2*y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_1 \left(\frac{x^3}{24} - \frac{x}{2} + \frac{1}{x} \right) + c_2 \left(\frac{x^4}{120} - \frac{x^2}{6} + 1 \right)$$

15.13 problem 13

Internal problem ID [11914]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(x^{2} - \frac{1}{4}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 35

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-1/4)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \frac{c_1 \left(1 - \frac{1}{6}x^2 + \frac{1}{120}x^4 + \mathcal{O}(x^6)\right)x + c_2 \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + \mathcal{O}(x^6)\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 58

AsymptoticDSolveValue $[x^2*y''[x]+x*y'[x]+(x^2-1/4)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) o c_1 \left(\frac{x^{7/2}}{24} - \frac{x^{3/2}}{2} + \frac{1}{\sqrt{x}} \right) + c_2 \left(\frac{x^{9/2}}{120} - \frac{x^{5/2}}{6} + \sqrt{x} \right)$$

15.14 problem 14

Internal problem ID [11915]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + (x^{4} + x)y' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Order:=6;

Time used: 0.031 (sec). Leaf size: 29

 $dsolve(x^2*diff(y(x),x$2)+(x^4+x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);\\$

$$y(x) = c_1 x \left(1 - \frac{1}{15} x^3 + O(x^6) \right) + \frac{c_2 \left(-2 - \frac{2}{3} x^3 + O(x^6) \right)}{x}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 30

AsymptoticDSolveValue[$x^2*y''[x]+(x^4+x)*y'[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^4}{15} \right) + c_1 \left(\frac{x^2}{3} + \frac{1}{x} \right)$$

15.15 problem 15

Internal problem ID [11916]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' - (x^2 + 2)y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 32

Order:=6;

 $dsolve(x*diff(y(x),x$2)-(x^2+2)*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);\\$

$$y(x) = c_1 x^3 \left(1 + \frac{1}{5} x^2 + \frac{1}{35} x^4 + O(x^6) \right) + c_2 \left(12 + 6x^2 + \frac{3}{2} x^4 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 44

AsymptoticDSolveValue[$x*y''[x]-(x^2+2)*y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_1 \left(\frac{x^4}{8} + \frac{x^2}{2} + 1 \right) + c_2 \left(\frac{x^7}{35} + \frac{x^5}{5} + x^3 \right)$$

15.16 problem 16

Internal problem ID [11917]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + x^2y' - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 45

Order:=6;

$$y(x) = c_1 x^2 \left(1 - \frac{1}{2}x + \frac{3}{20}x^2 - \frac{1}{30}x^3 + \frac{1}{168}x^4 - \frac{1}{1120}x^5 + \mathcal{O}\left(x^6\right) \right) + \frac{c_2 \left(12 - 6x + x^3 - \frac{1}{2}x^4 + \frac{3}{20}x^5 + \mathcal{O}\left(x^6\right) \right)}{x}$$

 $dsolve(x^2*diff(y(x),x$2)+x^2*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 63

 $\label{eq:asymptoticDSolveValue} A symptotic DSolveValue [x^2*y''[x]+x^2*y''[x]-2*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \rightarrow c_1 \left(-\frac{x^3}{24} + \frac{x^2}{12} + \frac{1}{x} - \frac{1}{2} \right) + c_2 \left(\frac{x^6}{168} - \frac{x^5}{30} + \frac{3x^4}{20} - \frac{x^3}{2} + x^2 \right)$$

15.17 problem 17

Internal problem ID [11918]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).

Exercises page 251

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(2x^{2} - x)y'' + (2x - 2)y' + (-2x^{2} + 3x - 2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 44

$$y(x) = c_1 \left(1 - x + \frac{1}{2}x^2 - \frac{1}{6}x^3 + \frac{1}{24}x^4 - \frac{1}{120}x^5 + O\left(x^6\right) \right) + \frac{c_2 \left(1 - 2x + \frac{7}{2}x^2 - \frac{4}{3}x^3 + \frac{13}{24}x^4 - \frac{7}{60}x^5 + O\left(x^6\right) \right)}{x}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 60

AsymptoticDSolveValue[$(2*x^2-x)*y''[x]+(2*x-2)*y'[x]+(-2*x^2+3*x-2)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(\frac{7x^3}{8} - \frac{7x^2}{3} + \frac{11x}{2} + \frac{1}{x} - 4 \right) + c_2 \left(\frac{x^4}{24} - \frac{x^3}{6} + \frac{x^2}{2} - x + 1 \right)$$

15.18 problem 18

Internal problem ID [11919]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).

Exercises page 251

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' - y'x + \frac{3y}{4} = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 27

Order:=6; dsolve(x^2*diff(y(x),x\$2)-x*diff(y(x),x)+3/4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \sqrt{x} \left(c_1 x + c_2 \right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 20

 $\label{eq:asymptoticDSolveValue} A symptotic DSolveValue [x^2*y''[x]-x*y'[x]+3/4*y[x] ==0, y[x], \{x,0,5\}]$

$$y(x) \to c_2 x^{3/2} + c_1 \sqrt{x}$$

15.19 problem 19

Internal problem ID [11920]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${\bf Section:}\ {\bf Chapter}\ 6,\ {\bf Series}\ {\bf solutions}\ {\bf of}\ {\bf linear}\ {\bf differential}\ {\bf equations}.\ {\bf Section}\ {\bf 6.2}\ ({\bf Frobenius}).$

Exercises page 251

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + y'x + y(x-1) = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 63

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x-1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^2 \left(1 - \frac{1}{3}x + \frac{1}{24}x^2 - \frac{1}{360}x^3 + \frac{1}{8640}x^4 - \frac{1}{302400}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right)\left(x^2 - \frac{1}{3}x^3 + \frac{1}{24}x^4 - \frac{1}{360}x^5 + \mathcal{O}\left(x^6\right)\right)}{x}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 83

AsymptoticDSolveValue[$x^2*y''[x]+x*y'[x]+(x-1)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{31x^4 - 176x^3 + 144x^2 + 576x + 576}{576x} - \frac{1}{48}x(x^2 - 8x + 24)\log(x) \right) + c_2 \left(\frac{x^5}{8640} - \frac{x^4}{360} + \frac{x^3}{24} - \frac{x^2}{3} + x \right)$$

15.20 problem 20

Internal problem ID [11921]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + (x^{3} - x)y' - 3y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

Order:=6; $dsolve(x^2*diff(y(x),x$2)+(x^3-x)*diff(y(x),x)-3*y(x)=0,y(x),type='series',x=0);$

 $y(x) = \frac{c_1 x^4 \left(1 - \frac{1}{4} x^2 + \frac{5}{128} x^4 + \mathcal{O}(x^6)\right) + c_2 \left(\ln\left(x\right) \left((-9) x^4 + \mathcal{O}(x^6)\right) + \left(-144 + 36 x^2 + \mathcal{O}(x^6)\right)\right)}{x}$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 55

$$y(x) \to c_2 \left(\frac{5x^7}{128} - \frac{x^5}{4} + x^3\right) + c_1 \left(\frac{1}{16}x^3 \log(x) - \frac{x^4 + 16x^2 - 64}{64x}\right)$$

15.21 problem 21

Internal problem ID [11922]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${\bf Section:}\ {\bf Chapter}\ 6,\ {\bf Series}\ {\bf solutions}\ {\bf of}\ {\bf linear}\ {\bf differential}\ {\bf equations}.\ {\bf Section}\ {\bf 6.2}\ ({\bf Frobenius}).$

Exercises page 251

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - y'x + 8y(x^{2} - 1) = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

Order:=6; dsolve(x^2*diff(y(x),x\$2)-x*diff(y(x),x)+8*(x^2-1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^4 \left(1 - \frac{1}{2} x^2 + \frac{1}{10} x^4 + \mathcal{O}\left(x^6\right) \right) + \frac{c_2 \left(-86400 - 86400 x^2 - 86400 x^4 + \mathcal{O}\left(x^6\right) \right)}{x^2}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 36

AsymptoticDSolveValue[$x^2*y''[x]-x*y'[x]+8*(x^2-1)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_1 \left(x^2 + \frac{1}{x^2} + 1 \right) + c_2 \left(\frac{x^8}{10} - \frac{x^6}{2} + x^4 \right)$$

15.22 problem 22

Internal problem ID [11923]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).

Exercises page 251

Problem number: 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + x^2y' - \frac{3y}{4} = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 65

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x^2*diff(y(x),x)-3/4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^2 \left(1 - \frac{1}{2}x + \frac{5}{32}x^2 - \frac{7}{192}x^3 + \frac{7}{1024}x^4 - \frac{11}{10240}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right)\left(-\frac{1}{4}x^2 + \frac{1}{8}x^3 - \frac{5}{128}x^4 + \frac{7}{768}x^5 + \mathcal{O}\left(x^6\right)\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 103

$$y(x) \to c_2 \left(\frac{7x^{11/2}}{1024} - \frac{7x^{9/2}}{192} + \frac{5x^{7/2}}{32} - \frac{x^{5/2}}{2} + x^{3/2} \right) + c_1 \left(\frac{1}{256} x^{3/2} \left(5x^2 - 16x + 32 \right) \log(x) - \frac{91x^4 - 224x^3 + 192x^2 + 1536x - 3072}{3072\sqrt{x}} \right)$$

15.23 problem 23

Internal problem ID [11924]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

Problem number: 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$xy'' + y' + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 59

Order:=6;

 $\label{eq:decomposition} \\ \text{dsolve}(\texttt{x}*\texttt{diff}(\texttt{y}(\texttt{x}),\texttt{x}\$2)+\texttt{diff}(\texttt{y}(\texttt{x}),\texttt{x})+2*\texttt{y}(\texttt{x})=\texttt{0},\texttt{y}(\texttt{x}),\texttt{type='series'},\texttt{x=0}); \\$

$$y(x) = (c_1 + c_2 \ln(x)) \left(1 - 2x + x^2 - \frac{2}{9}x^3 + \frac{1}{36}x^4 - \frac{1}{450}x^5 + O(x^6) \right)$$
$$+ \left(4x - 3x^2 + \frac{22}{27}x^3 - \frac{25}{216}x^4 + \frac{137}{13500}x^5 + O(x^6) \right) c_2$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 101

 $A symptotic D Solve Value [x*y''[x]+y'[x]+2*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(-\frac{x^5}{450} + \frac{x^4}{36} - \frac{2x^3}{9} + x^2 - 2x + 1 \right)$$

+ $c_2 \left(\frac{137x^5}{13500} - \frac{25x^4}{216} + \frac{22x^3}{27} - 3x^2 + \left(-\frac{x^5}{450} + \frac{x^4}{36} - \frac{2x^3}{9} + x^2 - 2x + 1 \right) \log(x) + 4x \right)$

15.24 problem 24

Internal problem ID [11925]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).

Exercises page 251

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$2xy'' + 6y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 62

Order:=6; dsolve(2*x*diff(y(x),x\$2)+6*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 \left(1 - \frac{1}{6}x + \frac{1}{96}x^2 - \frac{1}{2880}x^3 + \frac{1}{138240}x^4 - \frac{1}{9676800}x^5 + O\left(x^6\right)\right)x^2 + c_2 \left(\ln\left(x\right)\left(\frac{1}{4}x^2 - \frac{1}{24}x^3 + \frac{1}{384}x^4 - \frac{1}{11520}x\right)}{x^2}$$

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 80

$$y(x) \to c_2 \left(\frac{x^4}{138240} - \frac{x^3}{2880} + \frac{x^2}{96} - \frac{x}{6} + 1 \right)$$

+ $c_1 \left(\frac{31x^4 - 352x^3 + 576x^2 + 4608x + 9216}{9216x^2} - \frac{1}{768} (x^2 - 16x + 96) \log(x) \right)$

15.25 problem 25

Internal problem ID [11926]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - y'x + (x^{2} + 1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 45

Order:=6; dsolve(x^2*diff(y(x),x\$2)-x*diff(y(x),x)+(x^2+1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left((c_1 + c_2 \ln(x)) \left(1 - \frac{1}{4}x^2 + \frac{1}{64}x^4 + O(x^6) \right) + \left(\frac{1}{4}x^2 - \frac{3}{128}x^4 + O(x^6) \right) c_2 \right) x$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 65

AsymptoticDSolveValue[$x^2*y''[x]-x*y'[x]+(x^2+1)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 x \left(\frac{x^4}{64} - \frac{x^2}{4} + 1\right) + c_2 \left(x \left(\frac{x^2}{4} - \frac{3x^4}{128}\right) + x \left(\frac{x^4}{64} - \frac{x^2}{4} + 1\right) \log(x)\right)$$

15.26 problem 26

Internal problem ID [11927]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - y'x + (x^{2} - 3)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 47

Order:=6; $dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+(x^2-3)*y(x)=0,y(x),type='series',x=0);$

 $= \frac{c_1 x^4 \left(1 - \frac{1}{12} x^2 + \frac{1}{384} x^4 + \mathcal{O}\left(x^6\right)\right) + c_2 (\ln\left(x\right) \left(9 x^4 + \mathcal{O}\left(x^6\right)\right) + \left(-144 - 36 x^2 + \mathcal{O}\left(x^6\right)\right)\right)}{x}$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 52

$$y(x) \to c_1 \left(\frac{(x^2 + 8)^2}{64x} - \frac{1}{16}x^3 \log(x) \right) + c_2 \left(\frac{x^7}{384} - \frac{x^5}{12} + x^3 \right)$$

16 Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

16.1 problem 1	:01
16.2 problem 2	02
16.3 problem 3	03
16.4 problem 4	04
16.5 problem 5	05
16.6 problem 6	06
16.7 problem 7	07
16.8 problem 8	08
16.9 problem 9	09
$16.10 problem 10 \dots $	10
16.11 problem 11	11
16.12problem 12	12
16.13problem 13	13
16.14problem 14	14
$16.15 problem 15 \dots $	15
16.16problem 16	16
16.17problem 17	17

16.1 problem 1

Internal problem ID [11928]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 1.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) + y'(t) = 2x(t) + 4y(t) + e^{t}$$

 $x'(t) + y'(t) = y(t) + e^{4t}$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

$$x(t) = c_1 e^{-2t}$$
$$y(t) = \frac{e^{4t}}{3} - \frac{e^t}{3} - \frac{2c_1 e^{-2t}}{3}$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 52

 $DSolve[{x'[t]+y'[t]-2*x[t]-4*y[t]==Exp[t],x'[t]+y'[t]-y[t]==Exp[4*t]},{x[t],y[t]},t,IncludeStands{a}$

$$x(t) \to \frac{1}{12}(3+4c_1)e^{-2t}$$

 $y(t) \to \frac{1}{18}e^{-2t}(-6e^{3t}+6e^{6t}-3-4c_1)$

16.2 problem 2

Internal problem ID [11929]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 2.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) + y'(t) = x(t) - 2t$$

$$x'(t) + y'(t) = t^2 + 3x(t) + y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

$$x(t) = -2 + e^{-t}c_1$$

$$y(t) = -t^2 + 4 - 2e^{-t}c_1 - 2t$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 42

$$x(t) \to -2 - \frac{1}{4}c_1e^{-t}$$

 $y(t) \to -t^2 - 2t + \frac{c_1e^{-t}}{2} + 4$

16.3 problem 3

Internal problem ID [11930]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 3.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) + y'(t) = x(t) + 3y(t) + e^{t}$$

 $x'(t) + y'(t) = -x(t) + e^{3t}$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 37

$$x(t) = \frac{e^t}{4} + c_1 e^{-3t}$$
$$y(t) = \frac{e^{3t}}{3} - \frac{e^t}{2} - \frac{2c_1 e^{-3t}}{3}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 55

 $DSolve[\{x'[t]+y'[t]-x[t]-3*y[t]==Exp[t],x'[t]+y'[t]+x[t]==Exp[3*t]\},\{x[t],y[t]\},t,IncludeSing(x)=IncludeSing($

$$x(t) \to \frac{e^t}{4} + \frac{3}{16}c_1e^{-3t}$$
$$y(t) \to -\frac{e^t}{2} + \frac{e^{3t}}{3} - \frac{1}{8}c_1e^{-3t}$$

16.4 problem 4

Internal problem ID [11931]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 4.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) + y'(t) = x(t) + 2y(t) + 2e^{t}$$

$$x'(t) + y'(t) = 3x(t) + 4y(t) + e^{2t}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

dsolve([diff(x(t),t)+diff(y(t),t)-x(t)-2*y(t)=2*exp(t),diff(x(t),t)+diff(y(t),t)-3*x(t)-4*y(t)=2*exp(t),diff(x(t),t)+diff(y(t),t)-3*x(t)-4*y(t)=2*exp(t),diff(x(t),t)+diff(y(t),t)-3*x(t)-4*y(t)=2*exp(t),diff(x(t),t)+diff(y(t),t)-3*x(t)-4*y(t)=2*exp(t),diff(x(t),t)+diff(y(t),t)-3*x(t)-4*y(t)=2*exp(t),diff(x(t),t)+diff(y(t),t)-3*x(t)-4*y(t)=2*exp(t),diff(x(t),t)+diff(y(t),t)-3*x(t)-4*y(t)=2*exp(t),diff(x(t),t)+diff(y(t),t)-3*x(t)-4*y(t)=2*exp(t),diff(x(t),t)+diff(y(t),t)-3*x(t)-4*y(t)=2*exp(t),diff(x(t),t)+diff(y(t),t)-3*x(t)-4*y(t)=2*exp(t),diff(x(t),t)+diff(y(t),t)-3*x(t)-4*y(t)=2*exp(t),diff(x(t),t)+diff(x(t),t)-3*x(t)-4*y(t)=2*exp(t),diff(x(t),t)+diff(x(t),t)-3*x(t)-4*y(t)=2*exp(t),diff(x(t),t)-2*y(t)=2*exp(t)-2*y(t)=2*exp(t)-

$$x(t) = 3 e^{t}$$
 $y(t) = -\frac{e^{2t}}{2} - 2 e^{t}$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 25

 $DSolve[\{x'[t]+y'[t]-x[t]-2*y[t]==2*Exp[t],x'[t]+y'[t]-3*x[t]-4*y[t]==Exp[2*t]\},\{x[t],y[t]\},t$

$$x(t) \rightarrow 3e^t$$

 $y(t) \rightarrow -\frac{1}{2}e^t(e^t + 4)$

16.5 problem 5

Internal problem ID [11932]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 5.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t) + 2y(t) - e^{t} + e^{-t}$$
$$y'(t) = -5x(t) - 3y(t) + 2e^{t} - e^{-t}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 48

dsolve([2*diff(x(t),t)+diff(y(t),t)-x(t)-y(t)=exp(-t),diff(x(t),t)+diff(y(t),t)+2*x(t)+y(t)=f(x(t),t)+f(

$$x(t) = c_1 \sin(t) + c_2 \cos(t)$$

$$y(t) = \frac{c_1 \cos(t)}{2} - \frac{3c_2 \cos(t)}{2} - \frac{3c_1 \sin(t)}{2} - \frac{c_2 \sin(t)}{2} + \frac{e^t}{2} - \frac{e^{-t}}{2}$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.229 (sec). Leaf size: 60}}$

DSolve[{2*x'[t]+y'[t]-x[t]-y[t]==Exp[-t],x'[t]+y'[t]+2*x[t]+y[t]==Exp[t]},{x[t],y[t]},t,Incl

$$x(t) \to c_1 \cos(t) + (3c_1 + 2c_2)\sin(t)$$

$$y(t) \to \frac{1}{2} \left(-e^{-t} + e^t + 2c_2 \cos(t) - 2(5c_1 + 3c_2)\sin(t) \right)$$

16.6 problem 6

Internal problem ID [11933]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 6.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) + t - e^{t}$$

 $y'(t) = 5x(t) + y(t) - t + 2e^{t}$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 42

dsolve([2*diff(x(t),t)+diff(y(t),t)-3*x(t)-y(t)=t,diff(x(t),t)+diff(y(t),t)-4*x(t)-y(t)=exp(t)+diff(x(t),t)+diff(y(t),t)-4*x(t)-y(t)=exp(t)+diff(x(t),t)+diff(y(t),t)-4*x(t)-y(t)=exp(t)+diff(x(t),t)+diff(y(t),t)-4*x(t)-y(t)=exp(t)+diff(x(t),t)+diff(y(t),t)-4*x(t)-y(t)=exp(t)+diff(x(t),t)+diff(y(t),t)-4*x(t)-y(t)=exp(t)+diff(x(t),t)+diff(x(t),t)-4*x(t)-y(t)=exp(t)+diff(x(t),t)+diff(x(t),t)-4*x(t)-y(t)=exp(t)+diff(x(t),t)+diff(x(t),t)-4*x(t)-y(t)=exp(t)+diff(x(t),t)+diff(x(t),t)-4*x(t)-y(t)=exp(t)+diff(x(t),t)+diff(x(t),t)-4*x(t)-y(t)=exp(t)+diff(x(t),t)-diff

$$x(t) = t - 1 - \frac{e^t}{2} + c_2 e^{-t}$$
$$y(t) = -\frac{5c_2 e^{-t}}{2} - 4t + 1 + c_1 e^t - \frac{e^t t}{2}$$

✓ Solution by Mathematica

Time used: 0.665 (sec). Leaf size: 72

$$x(t) \to -\frac{t}{7} + \frac{e^t}{6} + c_1 e^{7t} - \frac{1}{49}$$

$$y(t) \to -\frac{4t}{7} - \frac{11}{6}c_1 e^{7t} + \frac{1}{36}e^t(6t - 11 + 66c_1 + 36c_2) - \frac{39}{49}$$

16.7 problem 7

Internal problem ID [11934]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 7.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -t + 2e^{3t} + 6y(t)$$
$$y'(t) = x(t) + t - e^{3t}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 66

dsolve([diff(x(t),t)+diff(y(t),t)-x(t)-6*y(t)=exp(3*t),diff(x(t),t)+2*diff(y(t),t)-2*x(t)-6*y(t)=exp(3*t),diff(x(t),t)+2*diff(y(t),t)-2*x(t)-6*y(t)=exp(3*t),diff(x(t),t)+2*diff(y(t),t)-2*x(t)-6*y(t)=exp(3*t),diff(x(t),t)+2*diff(y(t),t)-2*x(t)-6*y(t)=exp(3*t),diff(x(t),t)+2*diff(y(t),t)-2*x(t)-6*y(t)=exp(3*t),diff(x(t),t)+2*diff(y(t),t)-2*x(t)-6*y(t)=exp(3*t),diff(x(t),t)+2*diff(y(t),t)-2*x(t)-6*y(t)=exp(3*t),diff(x(t),t)+2*diff(y(t),t)-2*x(t)-6*y(t)=exp(3*t),diff(x(t),t)+2*diff(y(t),t)-2*x(t)-6*y(t)=exp(3*t),diff(x(t),t)+2*diff(y(t),t)-2*x(t)-6*y(t)=exp(3*t),diff(x(t),t)+2*diff(y(t),t)-2*x(t)-6*y(t)=exp(3*t),diff(x(t),t)+2*diff(x(t),t)-2*x(t)-6*y(t)-

$$x(t) = e^{\sqrt{6}t}c_2 + e^{-\sqrt{6}t}c_1 - t + \frac{1}{6}$$
$$y(t) = \frac{\sqrt{6}e^{\sqrt{6}t}c_2}{6} - \frac{\sqrt{6}e^{-\sqrt{6}t}c_1}{6} - \frac{1}{6} + \frac{t}{6} - \frac{e^{3t}}{3}$$

✓ Solution by Mathematica

Time used: 8.119 (sec). Leaf size: 142

 $DSolve[\{x'[t]+y'[t]-x[t]-6*y[t]==Exp[3*t],x'[t]+2*y'[t]-2*x[t]-6*y[t]==t\},\{x[t],y[t]\},t,Inc]$

$$x(t) \to \frac{1}{6} \left(-6t + 3\left(c_1 - \sqrt{6}c_2\right) e^{-\sqrt{6}t} + 3\left(c_1 + \sqrt{6}c_2\right) e^{\sqrt{6}t} + 1 \right)$$
$$y(t) \to \frac{1}{12} e^{-\sqrt{6}t} \left(2e^{\sqrt{6}t}(t-1) - 4e^{\left(3+\sqrt{6}\right)t} + \left(\sqrt{6}c_1 + 6c_2\right) e^{2\sqrt{6}t} - \sqrt{6}c_1 + 6c_2 \right)$$

16.8 problem 8

Internal problem ID [11935]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 8.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 6t - 1 + 3y(t)$$
$$y'(t) = x(t) - 3t + 1$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 60

dsolve([diff(x(t),t)+diff(y(t),t)-x(t)-3*y(t)=3*t,diff(x(t),t)+2*diff(y(t),t)-2*x(t)-3*y(t)=3*t,diff(x(t),t)+2*diff(y(t),t)-2*x(t)-3*y(t)=3*t,diff(x(t),t)+2*diff(y(t),t)-2*x(t)-3*y(t)=3*t,diff(x(t),t)+2*diff(y(t),t)-2*x(t)-3*y(t)=3*t,diff(x(t),t)+2*diff(y(t),t)-2*x(t)-3*y(t)=3*t,diff(x(t),t)+2*diff(y(t),t)-2*x(t)-3*y(t)=3*t,diff(x(t),t)+2*diff(y(t),t)-2*x(t)-3*y(t)=3*t,diff(x(t),t)+2*diff(y(t),t)-2*x(t)-3*y(t)=3*t,diff(x(t),t)+2*diff(y(t),t)-2*x(t)-3*y(t)=3*t,diff(x(t),t)+2*diff(y(t),t)-2*x(t)-3*y(t)=3*t,diff(x(t),t)+2*diff(y(t),t)-2*x(t)-3*y(t)=3*t,diff(x(t),t)+2*diff(y(t),t)-2*x(t)-3*y(t)=3*t,diff(x(t),t)+2*diff(x(t),t)-2*x(t)-3*y(t)=3*t,diff(x(t),t)-2*x(t)-3*y(

$$x(t) = e^{\sqrt{3}t}c_2 + e^{-\sqrt{3}t}c_1 + 3t - 3$$
$$y(t) = \frac{\sqrt{3}e^{\sqrt{3}t}c_2}{3} - \frac{\sqrt{3}e^{-\sqrt{3}t}c_1}{3} + \frac{4}{3} - 2t$$

✓ Solution by Mathematica

Time used: 6.866 (sec). Leaf size: 137

 $DSolve[\{x'[t]+y'[t]-x[t]-3*y[t]==3*t,x'[t]+2*y'[t]-2*x[t]-3*y[t]==1\},\{x[t],y[t]\},t,IncludeSi=2*t,x'[t]+2*y'[t]-2*x[t]-3*y[t]==1\},\{x[t],y[t]\},t,IncludeSi=2*t,x'[t]+2*y'[t]-2*x[t]-3*y[t]==1\},\{x[t],y[t]\},t,IncludeSi=2*t,x'[t]+2*y'[t]-2*x[t]-3*y[t]==1\},\{x[t],y[t]\},t,IncludeSi=2*t,x'[t]+2*y'[t]-2*x[t]-3*y[t]==1\},\{x[t],y[t]\},t,IncludeSi=2*t,x'[t]+2*y'[t]-2*x[t]-3*y[t]==1\},\{x[t],y[t]\},t,IncludeSi=2*t,x'[t]+2*y'[t]-2*x[t]-3*y[t]==1\},\{x[t],y[t]\},t,IncludeSi=2*t,x'[t]+2*y'[t]-2*x[t]-3*y[t]==1\},\{x[t],y[t]\},t,IncludeSi=2*t,x'[t]+2*y'[t]-2*x[t]-3*y[t]==1\},\{x[t],y[t]\},t,IncludeSi=2*t,x'[t]-3*y[t]=1*t,x'[t]$

$$x(t) \to \frac{1}{2}e^{-\sqrt{3}t} \left(6e^{\sqrt{3}t}(t-1) + \left(c_1 + \sqrt{3}c_2 \right) e^{2\sqrt{3}t} + c_1 - \sqrt{3}c_2 \right)$$
$$y(t) \to \frac{1}{6}e^{-\sqrt{3}t} \left(e^{\sqrt{3}t}(8-12t) + \left(\sqrt{3}c_1 + 3c_2 \right) e^{2\sqrt{3}t} - \sqrt{3}c_1 + 3c_2 \right)$$

16.9 problem 9

Internal problem ID [11936]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 9.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) + y'(t) = -2y(t) + \sin(t)$$

$$x'(t) + y'(t) = x(t) + y(t)$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 27

dsolve([diff(x(t),t)+diff(y(t),t)+2*y(t)=sin(t),diff(x(t),t)+diff(y(t),t)-x(t)-y(t)=0],sings(t)=0

$$x(t) = c_1 e^t - \frac{\sin(t)}{2}$$

 $y(t) = -\frac{c_1 e^t}{3} + \frac{\sin(t)}{2}$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 38

$$x(t) \to \frac{1}{2} \left(-\sin(t) + 3c_1 e^t \right)$$
$$y(t) \to \frac{1}{2} \left(\sin(t) - c_1 e^t \right)$$

16.10 problem 10

Internal problem ID [11937]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 10.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{3x(t)}{2} - \frac{3y(t)}{2} + \frac{t}{2} + \frac{1}{2}$$
$$y'(t) = -\frac{x(t)}{2} + \frac{5y(t)}{2} - \frac{t}{2} + \frac{1}{2}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 40

dsolve([diff(x(t),t)-diff(y(t),t)-2*x(t)+4*y(t)=t,diff(x(t),t)+diff(y(t),t)-x(t)-y(t)=1],sin(t)=0

$$x(t) = c_2 e^t + c_1 e^{3t} - \frac{t}{6} - \frac{13}{18}$$
$$y(t) = \frac{c_2 e^t}{3} - c_1 e^{3t} - \frac{5}{18} + \frac{t}{6}$$

✓ Solution by Mathematica

Time used: 0.083 (sec). Leaf size: 74

$$x(t) \to \frac{1}{36} \left(-6t + 9(c_1 - 3c_2)e^{3t} + 27(c_1 + c_2)e^t - 26 \right)$$
$$y(t) \to \frac{1}{36} \left(6t - 9(c_1 - 3c_2)e^{3t} + 9(c_1 + c_2)e^t - 10 \right)$$

16.11 problem 11

Internal problem ID [11938]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 11.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2 + x(t) - 3y(t) + 4t$$
$$y'(t) = 4 - 3x(t) + y(t) - 4t$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 40

dsolve([2*diff(x(t),t)+diff(y(t),t)+x(t)+5*y(t)=4*t,diff(x(t),t)+diff(y(t),t)+2*x(t)+2*y(t)=4*t,diff(x(t),t)+diff(y(t),t)+2*x(t)+2*y(t)=4*t,diff(x(t),t)+diff(y(t),t)+2*x(t)+2*y(t)=4*t,diff(x(t),t)+diff(y(t),t)+2*x(t)+2*y(t)=4*t,diff(x(t),t)+diff(y(t),t)+2*x(t)+2*y(t)=4*t,diff(x(t),t)+diff(y(t),t)+2*x(t)+2*y(t)=4*t,diff(x(t),t)+diff(y(t),t)+2*x(t)+2*y(t)=4*t,diff(x(t),t)+diff(y(t),t)+2*x(t)+2*y(t)=4*t,diff(x(t),t)+diff(y(t),t)+2*x(t)+2*y(t)=4*t,diff(x(t),t)+diff(y(t),t)+2*x(t)+2*y(t)=4*t,diff(x(t),t)+diff(y(t),t)+2*x(t)+2*y(t)=4*t,diff(x(t),t)+

$$x(t) = c_2 e^{4t} + c_1 e^{-2t} - t + 1$$

$$y(t) = -c_2 e^{4t} + c_1 e^{-2t} + t$$

✓ Solution by Mathematica

Time used: 0.078 (sec). Leaf size: 80

 $DSolve[{2*x'[t]+y'[t]+x[t]+5*y[t]==4*t,x'[t]+y'[t]+2*x[t]+2*y[t]==2},{x[t],y[t]},t,IncludeSites[t]=0$

$$x(t) \to \frac{1}{2}e^{-2t}\left(-2e^{2t}(t-1) + (c_1 - c_2)e^{6t} + c_1 + c_2\right)$$
$$y(t) \to \frac{1}{2}e^{-2t}\left(2e^{2t}t + (c_2 - c_1)e^{6t} + c_1 + c_2\right)$$

16.12 problem 12

Internal problem ID [11939]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 12.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2t^{2} - 6y(t) - 2t - 1$$

$$y'(t) = -t^{2} + x(t) + y(t) + 2t + 1$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 116

 $dsolve([diff(x(t),t)+diff(y(t),t)-x(t)+5*y(t)=t^2,diff(x(t),t)+2*diff(y(t),t)-2*x(t)+4*y(t)=t^2,diff(x(t),t)+2*diff(y(t),t)-2*x(t)+4*y(t)=t^2,diff(x(t),t)+2*diff(y(t),t)-2*x(t)+4*y(t)=t^2,diff(x(t),t)+2*diff(y(t),t)-2*x(t)+4*y(t)=t^2,diff(x(t),t)+2*diff(y(t),t)-2*x(t)+4*y(t)=t^2,diff(x(t),t)+2*diff(y(t),t)-2*x(t)+4*y(t)=t^2,diff(x(t),t)+2*diff(y(t),t)-2*x(t)+4*y(t)=t^2,diff(x(t),t)+2*diff(y(t),t)-2*x(t)+4*y(t)=t^2,diff(x(t),t)+2*diff(y(t),t)-2*x(t)+4*y(t)=t^2,diff(x(t),t)+2*diff(x(t),t)-2*x(t)+4*y(t)=t^2,diff(x(t),t)-2*x(t)+4*y(t)=t^2,diff(x(t),t)-2*x(t)+4*y(t)$

$$x(t) = e^{\frac{t}{2}} \sin\left(\frac{\sqrt{23}t}{2}\right) c_2 + e^{\frac{t}{2}} \cos\left(\frac{\sqrt{23}t}{2}\right) c_1 + \frac{2t^2}{3} - \frac{7t}{9} - \frac{41}{27}$$

$$y(t) = \frac{t^2}{3} - \frac{e^{\frac{t}{2}} \sin\left(\frac{\sqrt{23}t}{2}\right) c_2}{12} - \frac{e^{\frac{t}{2}} \sqrt{23} \cos\left(\frac{\sqrt{23}t}{2}\right) c_2}{12} - \frac{e^{\frac{t}{2}} \cos\left(\frac{\sqrt{23}t}{2}\right) c_1}{12} + \frac{e^{\frac{t}{2}} \sqrt{23} \sin\left(\frac{\sqrt{23}t}{2}\right) c_1}{12} - \frac{5t}{9} - \frac{1}{27}$$

✓ Solution by Mathematica

Time used: 11.178 (sec). Leaf size: 143

$$x(t) \to \frac{1}{27} \left(18t^2 - 21t - 41 \right) + c_1 e^{t/2} \cos \left(\frac{\sqrt{23}t}{2} \right) - \frac{(c_1 + 12c_2)e^{t/2} \sin \left(\frac{\sqrt{23}t}{2} \right)}{\sqrt{23}}$$

$$y(t) \to \frac{1}{27} (9t^2 - 15t - 1) + c_2 e^{t/2} \cos\left(\frac{\sqrt{23}t}{2}\right) + \frac{(2c_1 + c_2)e^{t/2} \sin\left(\frac{\sqrt{23}t}{2}\right)}{\sqrt{23}}$$

16.13 problem 13

Internal problem ID [11940]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 13.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -t^{2} + x(t) + y(t) + 6t$$
$$y'(t) = 3t^{2} - 3x(t) - 3y(t) - 8t$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 43

 $dsolve([2*diff(x(t),t)+diff(y(t),t)+x(t)+y(t)=t^2+4*t,diff(x(t),t)+diff(y(t),t)+2*x(t)+2*y($

$$x(t) = -\frac{c_1 e^{-2t}}{2} + 2t^2 + t + c_2$$
$$y(t) = -t^2 + \frac{3c_1 e^{-2t}}{2} - 3t + 1 - c_2$$

✓ Solution by Mathematica

Time used: 0.101 (sec). Leaf size: 82

 $DSolve[{2*x'[t]+y'[t]+x[t]+y[t]==t^2+4*t,x'[t]+y'[t]+2*x[t]+2*y[t]==2*t^2-2*t}, {x[t],y[t]}, t=0$

$$x(t) \to \frac{1}{2}e^{-2t} \left(e^{2t} \left(4t^2 + 2t - 1 + 3c_1 + c_2 \right) - c_1 - c_2 \right)$$

$$y(t) \to \frac{1}{2} \left(-2t^2 - 6t + 3(c_1 + c_2)e^{-2t} + 3 - 3c_1 - c_2 \right)$$

16.14 problem 14

Internal problem ID [11941]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 14.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -5 - x(t) - t - y(t)$$

$$y'(t) = 7 + 2x(t) + 2t + y(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 42

$$x(t) = c_2 \sin(t) + c_1 \cos(t) - 3 - t$$

$$y(t) = -c_2 \cos(t) + c_1 \sin(t) - 1 - c_2 \sin(t) - c_1 \cos(t)$$

✓ Solution by Mathematica

Time used: 0.106 (sec). Leaf size: $44\,$

DSolve[{3*x'[t]+2*y'[t]-x[t]+y[t]==t-1,x'[t]+y'[t]-x[t]==t+2},{x[t],y[t]},t,IncludeSingularS

$$x(t) \to -t + c_1 \cos(t) - (c_1 + c_2) \sin(t) - 3$$

 $y(t) \to c_2 \cos(t) + (2c_1 + c_2) \sin(t) - 1$

16.15 problem 15

Internal problem ID [11942]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 15.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -\frac{7x(t)}{2} - \frac{9y(t)}{2} + \frac{e^t}{2}$$
$$y'(t) = \frac{3x(t)}{2} + \frac{5y(t)}{2} + \frac{e^t}{2}$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 45

dsolve([2*diff(x(t),t)+4*diff(y(t),t)+x(t)-y(t)=3*exp(t),diff(x(t),t)+diff(y(t),t)+2*x(t)+2

$$x(t) = c_2 e^t + c_1 e^{-2t} - e^t t$$

$$y(t) = -c_2 e^t - \frac{c_1 e^{-2t}}{3} + e^t t + \frac{e^t}{3}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 76

 $DSolve[{2*x'[t]+4*y'[t]+x[t]-y[t]==3*Exp[t],x'[t]+y'[t]+2*x[t]+2*y[t]==Exp[t]},{x[t],y[t]},t$

$$x(t) \to \frac{3}{2}(c_1 + c_2)e^{-2t} - \frac{1}{2}e^t(2t - 1 + c_1 + 3c_2)$$
$$y(t) \to \frac{1}{6}e^t(6t - 1 + 3c_1 + 9c_2) - \frac{1}{2}(c_1 + c_2)e^{-2t}$$

16.16 problem 16

Internal problem ID [11943]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 16.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) - 2t - t^{2}$$
$$y'(t) = -3x(t) + y(t) + 2t + 2t^{2}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 45

 $dsolve([2*diff(x(t),t)+diff(y(t),t)-x(t)-y(t)=-2*t,diff(x(t),t)+diff(y(t),t)+x(t)-y(t)=t^2],\\$

$$x(t) = \frac{t^2}{2} + \frac{3t}{2} + \frac{3}{4} + c_2 e^{2t}$$
$$y(t) = \frac{15}{4} - 3c_2 e^{2t} + \frac{3t}{2} - \frac{t^2}{2} + c_1 e^{t}$$

✓ Solution by Mathematica

Time used: 0.215 (sec). Leaf size: 67

DSolve[{2*x'[t]+y'[t]-x[t]-y[t]==-2*t,x'[t]+y'[t]+x[t]-y[t]==t^2},{x[t],y[t]},t,IncludeSingu

$$x(t) \to \frac{1}{4} (2t^2 + 6t + 4c_1e^{2t} + 3)$$

$$y(t) \to -\frac{t^2}{2} + \frac{3t}{2} - 3c_1e^{2t} + (3c_1 + c_2)e^t + \frac{15}{4}$$

16.17 problem 17

Internal problem ID [11944]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

Problem number: 17.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t) - t + 1$$
$$y'(t) = -5x(t) + y(t) + 2t - 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve([2*diff(x(t),t)+diff(y(t),t)-x(t)-y(t)=1,diff(x(t),t)+diff(y(t),t)+2*x(t)-y(t)=t],sing(t)

$$x(t) = \frac{t}{3} - \frac{2}{9} + c_2 e^{3t}$$
$$y(t) = -\frac{4}{9} - \frac{5c_2 e^{3t}}{2} - \frac{t}{3} + c_1 e^{t}$$

✓ Solution by Mathematica

Time used: 0.147 (sec). Leaf size: 58

DSolve[{2*x'[t]+y'[t]-x[t]-y[t]==1,x'[t]+y'[t]+2*x[t]-y[t]==t},{x[t],y[t]},t,IncludeSingular

$$x(t) \to \frac{t}{3} + c_1 e^{3t} - \frac{2}{9}$$

$$y(t) \to -\frac{t}{3} - \frac{5}{2} c_1 e^{3t} + \left(\frac{5c_1}{2} + c_2\right) e^t - \frac{4}{9}$$

17	Cha	\mathbf{p}	t	e	r	7	7,	(S	y	S	t€	91	m	ıs		0	f	li	ir	16	39	ı	•	d	i	ff	ė	r	e:	n	ti	ia	ιl				
	equa	at	i	o	n	S	•	S	ίe	ec	\mathbf{t}	i)]	n	7	7.	3		I	D :	X	e:	r	ci	S	\mathbf{e}	S	ŀ	o	ą	g	e	2	26	99	9		
17.1	problem	1																																				419
17.2	problem	2																																				420
17.3	$\operatorname{problem}$	3																																				421

17.1 problem 1

Internal problem ID [11945]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.3. Exercises page 299

Problem number: 1.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t) + 4y(t)$$

$$y'(t) = 2x(t) + y(t)$$

With initial conditions

$$[x(0) = 1, y(0) = 2]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 30

dsolve([diff(x(t),t) = 3*x(t)+4*y(t), diff(y(t),t) = 2*x(t)+y(t), x(0) = 1, y(0) = 2], sings

$$x(t) = 2e^{5t} - e^{-t}$$

$$y(t) = e^{5t} + e^{-t}$$

Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 34

DSolve[{x'[t]==3*x[t]+4*y[t],y'[t]==2*x[t]+y[t]},{x[0]==1,y[0]==2},{x[t],y[t]},t,IncludeSing

$$x(t) \to e^{-t} \left(2e^{6t} - 1 \right)$$

$$y(t) \to e^{-t} + e^{5t}$$

17.2 problem 2

Internal problem ID [11946]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.3. Exercises page 299

Problem number: 2.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = 5x(t) + 3y(t)$$

$$y'(t) = 4x(t) + y(t)$$

With initial conditions

$$[x(0) = 0, y(0) = 8]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

dsolve([diff(x(t),t) = 5*x(t)+3*y(t), diff(y(t),t) = 4*x(t)+y(t), x(0) = 0, y(0) = 8], sings

$$x(t) = 3e^{7t} - 3e^{-t}$$

$$y(t) = 2e^{7t} + 6e^{-t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 36

$$x(t) \to 3e^{-t} \left(e^{8t} - 1 \right)$$

$$y(t) \to 2e^{-t}(e^{8t} + 3)$$

17.3 problem 3

Internal problem ID [11947]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.3. Exercises page 299

Problem number: 3.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 5x(t) + 2y(t) + 5t$$
$$y'(t) = 3x(t) + 4y(t) + 17t$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 41

dsolve([diff(x(t),t)=5*x(t)+2*y(t)+5*t,diff(y(t),t)=3*x(t)+4*y(t)+17*t],singsol=all)

$$x(t) = c_2 e^{7t} + c_1 e^{2t} + t + 1$$
$$y(t) = c_2 e^{7t} - \frac{3c_1 e^{2t}}{2} - 2 - 5t$$

✓ Solution by Mathematica

Time used: 0.086 (sec). Leaf size: 84

 $DSolve[\{x'[t] == 5*x[t] + 2*y[t] + 5*t, y'[t] == 3*x[t] + 4*y[t] + 17*t\}, \{x[t], y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == 5*x[t] + 2*y[t] + 5*t, y'[t] == 3*x[t] + 4*y[t] + 17*t\}, \{x[t], y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == 5*x[t] + 2*y[t] + 5*t, y'[t] == 3*x[t] + 4*y[t] + 17*t\}, \{x[t], y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == 5*x[t] + 2*y[t] + 5*t, y'[t] == 3*x[t] + 4*y[t] + 17*t\}, \{x[t], y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == 5*x[t] + 2*y[t] + 17*t\}, \{x[t], y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == 5*x[t] + 2*y[t] + 17*t\}, \{x[t], y[t]\}, \{x[t],$

$$x(t) \to t + \frac{1}{5} (2(c_1 - c_2)e^{2t} + (3c_1 + 2c_2)e^{7t} + 5)$$
$$y(t) \to -5t - \frac{3}{5}(c_1 - c_2)e^{2t} + \frac{1}{5}(3c_1 + 2c_2)e^{7t} - 2$$

18	Chapter 7, Sy	stems of	linear differential	
	equations. Sec	ction 7.4.	Exercises page 309	
18.1	problem 1			423
18.2	problem 2			424
18.3	problem 23			425
18.4	problem 24			426

18.1 problem 1

Internal problem ID [11948]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.4. Exercises page 309

Problem number: 1.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 5x(t) - 2y(t)$$

$$y'(t) = 4x(t) - y(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 31

 $\label{eq:diff} $$ $dsolve([diff(x(t),t)=5*x(t)-2*y(t),diff(y(t),t)=4*x(t)-y(t)],singsol=all)$$

$$x(t) = c_1 e^t + c_2 e^{3t}$$

$$y(t) = 2c_1 e^t + c_2 e^{3t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 63

$$x(t) \to e^t (c_1(2e^{2t} - 1) - c_2(e^{2t} - 1))$$

$$y(t) \to e^t (2c_1(e^{2t} - 1) - c_2(e^{2t} - 2))$$

18.2 problem 2

Internal problem ID [11949]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.4. Exercises page 309

Problem number: 2.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 5x(t) - y(t)$$

$$y'(t) = 3x(t) + y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve([diff(x(t),t)=5*x(t)-y(t),diff(y(t),t)=3*x(t)+y(t)],singsol=all)

$$x(t) = c_1 e^{4t} + c_2 e^{2t}$$
$$y(t) = c_1 e^{4t} + 3c_2 e^{2t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 73

$$x(t) \to \frac{1}{2}e^{2t}(c_1(3e^{2t}-1)-c_2(e^{2t}-1))$$

$$y(t) \rightarrow \frac{1}{2}e^{2t}(3c_1(e^{2t}-1)-c_2(e^{2t}-3))$$

18.3 problem 23

Internal problem ID [11950]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.4. Exercises page 309

Problem number: 23.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) + 7y(t)$$

$$y'(t) = 3x(t) + 2y(t)$$

With initial conditions

$$[x(0) = 9, y(0) = -1]$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 34

dsolve([diff(x(t),t) = -2*x(t)+7*y(t), diff(y(t),t) = 3*x(t)+2*y(t), x(0) = 9), y(0) = -1], s(0)

$$x(t) = 2e^{5t} + 7e^{-5t}$$

$$u(t) = 2e^{5t} - 3e^{-5t}$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 38

 $DSolve[\{x'[t]==-2*x[t]+7*y[t],y'[t]==3*x[t]+2*y[t]\},\{x[0]==9,y[0]==-1\},\{x[t],y[t]\},t,Include[\{x'[t]==-2*x[t]+7*y[t],y'[t]==3*x[t]+2*y[t]\},\{x[0]==9,y[0]==-1\},\{x[t],y'[t]\},t,Include[\{x'[t]==-2*x[t]+7*y[t],y'[t]==3*x[t]+2*y[t]\},\{x[0]==9,y[0]==-1\},\{x[t],y'[t]\},t,Include[\{x'[t]==-2*x[t]+7*y[t],y'[t]==3*x[t]+2*y[t]\},\{x[0]==9,y[0]==-1\},\{x[t],y'[t]==3*x[t]+2*y[t]\},\{x[0]==9,y[0]==-1\},\{x[t],y'[t]==3*x[t]+2*y[t]\},\{x[0]==9,y[0]==-1\},\{x[t],y'[t]=3*x[t]+2*y[t]\},\{x[0]==9,y[0]==-1\},\{x[t],y'[t]=3*x[t]+2*y[t]\},\{x[0]==9,y[0]==-1\},\{x[t],y'[t]=3*x[t]+2*y[t]\},\{x[0]==9,y[0]==-1\},\{x[t],y'[t]=3*x[t]+2*y[t]$

$$x(t) \to 7e^{-5t} + 2e^{5t}$$

 $y(t) \to 2e^{5t} - 3e^{-5t}$

$$y(t) \to 2e^{5t} - 3e^{-5t}$$

18.4 problem 24

Internal problem ID [11951]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.4. Exercises page 309

Problem number: 24.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) + y(t)$$

$$y'(t) = 7x(t) + 4y(t)$$

With initial conditions

$$[x(0) = 6, y(0) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

$$x(t) = e^{5t} + 5e^{-3t}$$

$$y(t) = 7e^{5t} - 5e^{-3t}$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 36

 $DSolve[\{x'[t] == -2*x[t] + y[t], y'[t] == 7*x[t] + 4*y[t]\}, \{x[0] == 6, y[0] == 2\}, \{x[t], y[t]\}, t, IncludeSing(x) = -2*x[t] + y[t], t$

$$x(t) \to e^{-3t} \left(e^{8t} + 5 \right)$$

$$y(t) \to e^{-3t} (7e^{8t} - 5)$$

19	Chapter 7, Systems of linear differential
	equations. Section 7.7. Exercises page 375
19.1	roblem 1
19.2	$\operatorname{roblem} 2 \ldots $

19.1 problem 1

Internal problem ID [11966]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.7. Exercises page 375

Problem number: 1.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + y(t) - z(t)$$

$$y'(t) = 2x(t) + 3y(t) - 4z(t)$$

$$z'(t) = 4x(t) + y(t) - 4z(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 65

dsolve([diff(x(t),t)=x(t)+y(t)-z(t),diff(y(t),t)=2*x(t)+3*y(t)-4*z(t),diff(z(t),t)=4*x(t)+y(t)+y(t)-2*x(t)+3*y(t)-4*z(t),diff(z(t),t)=4*x(t)+y(t)-2*x(t)+3*y(t)-4*z(t),diff(z(t),t)=4*x(t)+y(t)-2*x(t)+3*y(t)-4*z(t),diff(z(t),t)=4*x(t)+y(t)-2*x(t)+3*y(t)-4*z(t),diff(z(t),t)=4*x(t)+y(t)-2*x(t)+3*y(t)-4*z(t),diff(z(t),t)=4*x(t)+y(t)-2*x(t)+3*y(t)-4*z(t)-4*z(t)

$$x(t) = c_1 e^t + c_2 e^{2t} + c_3 e^{-3t}$$

$$y(t) = c_1 e^t + 2c_2 e^{2t} + 7c_3 e^{-3t}$$

$$z(t) = c_1 e^t + c_2 e^{2t} + 11c_3 e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: $198\,$

$$x(t) \to \frac{1}{10}e^{-3t} \left(c_1 \left(15e^{4t} - 4e^{5t} - 1 \right) + 2(5c_2 - 3c_3)e^{5t} + 5(c_3 - 2c_2)e^{4t} + c_3 \right)$$

$$y(t) \to \frac{1}{10}e^{-3t} \left(c_1 \left(15e^{4t} - 8e^{5t} - 7 \right) + 4(5c_2 - 3c_3)e^{5t} + 5(c_3 - 2c_2)e^{4t} + 7c_3 \right)$$

$$z(t) \to \frac{1}{10}e^{-3t} \left(c_1 \left(15e^{4t} - 4e^{5t} - 11 \right) + 2(5c_2 - 3c_3)e^{5t} + 5(c_3 - 2c_2)e^{4t} + 11c_3 \right)$$

19.2 problem 2

Internal problem ID [11967]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.7. Exercises page 375

Problem number: 2.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) - y(t) - z(t)$$

$$y'(t) = x(t) + 3y(t) + z(t)$$

$$z'(t) = -3x(t) - 6y(t) + 6z(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 74

$$x(t) = c_1 e^{3t} + c_2 e^{2t} + c_3 e^{5t}$$

$$y(t) = -c_1 e^{3t} - \frac{7c_2 e^{2t}}{10} - c_3 e^{5t}$$

$$z(t) = -c_1 e^{3t} - \frac{3c_2 e^{2t}}{10} - 3c_3 e^{5t}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 217

 $DSolve[{x'[t] == x[t] - y[t] - z[t], y'[t] == x[t] + 3*y[t] + z[t], z'[t] == 3*x[t] - 6*y[t] + 6*z[t]}, {x[t], y[t] == x[t] + 3*y[t] + z[t]}, {x[t], y[t] == x[t] + 3*y[t] + z[t]}, {x[t], y[t] == x[t] + 3*y[t] == x[t] + x[t] + x[t] == x[t] + x[t] + x[t] + x[t] == x[t] + x[t] + x[t] + x[t] == x[t] + x[t]$

$$x(t) \to -\frac{1}{45}e^{2t} \Big(5(c_1 + 10c_2)e^{2t} \cos\left(\sqrt{5}t\right) + \sqrt{5}(7c_1 - 11c_2 + 9c_3)e^{2t} \sin\left(\sqrt{5}t\right) \\ - 50(c_1 + c_2) \Big) \\ y(t) \to \frac{1}{45}e^{2t} \Big(5(c_1 + 10c_2)e^{2t} \cos\left(\sqrt{5}t\right) + \sqrt{5}(7c_1 - 11c_2 + 9c_3)e^{2t} \sin\left(\sqrt{5}t\right) - 5(c_1 + c_2) \Big) \\ z(t) \to (c_1 + c_2) \left(-e^{2t} \right) + (c_1 + c_2 + c_3)e^{4t} \cos\left(\sqrt{5}t\right) + \frac{(c_1 - 8c_2 + 2c_3)e^{4t} \sin\left(\sqrt{5}t\right)}{\sqrt{5}}$$