Internal
problem
ID
[22447]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
1.
Differential
equations
in
general.
Section
1.3.
B
Exercises
at
page
22
Problem
number
:
3
Date
solved
:
Thursday, October 02, 2025 at 08:39:39 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)+y(x) = exp(-x^2); ic:=[y(0) = 0, D(y)(0) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+y[x]==Exp[-x^2]; ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) + Derivative(y(x), (x, 2)) - exp(-x**2),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics)