89.28.15 problem 15

Internal problem ID [24903]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 16. Equations of order one and higher degree. Exercises at page 229
Problem number : 15
Date solved : Thursday, October 02, 2025 at 10:49:18 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2}&=4 x^{2} y^{2} \end{align*}
Maple. Time used: 0.114 (sec). Leaf size: 255
ode:=(x^2+y(x)^2)^2*diff(y(x),x)^2 = 4*x^2*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {1-\sqrt {4 c_1^{2} x^{2}+1}}{2 c_1} \\ y &= \frac {1+\sqrt {4 c_1^{2} x^{2}+1}}{2 c_1} \\ y &= -\frac {2 \left (c_1 \,x^{2}-\frac {\left (4+4 \sqrt {4 c_1^{3} x^{6}+1}\right )^{{2}/{3}}}{4}\right )}{\sqrt {c_1}\, \left (4+4 \sqrt {4 c_1^{3} x^{6}+1}\right )^{{1}/{3}}} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) \left (4+4 \sqrt {4 c_1^{3} x^{6}+1}\right )^{{1}/{3}}}{4 \sqrt {c_1}}-\frac {\sqrt {c_1}\, \left (i \sqrt {3}-1\right ) x^{2}}{\left (4+4 \sqrt {4 c_1^{3} x^{6}+1}\right )^{{1}/{3}}} \\ y &= \frac {4 i \sqrt {3}\, c_1 \,x^{2}+i \sqrt {3}\, \left (4+4 \sqrt {4 c_1^{3} x^{6}+1}\right )^{{2}/{3}}+4 c_1 \,x^{2}-\left (4+4 \sqrt {4 c_1^{3} x^{6}+1}\right )^{{2}/{3}}}{4 \left (4+4 \sqrt {4 c_1^{3} x^{6}+1}\right )^{{1}/{3}} \sqrt {c_1}} \\ \end{align*}
Mathematica. Time used: 11.638 (sec). Leaf size: 345
ode=(x^2+y[x]^2)^2*D[y[x],x]^2 ==4*x^2*y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} \left (-\sqrt {4 x^2+e^{2 c_1}}-e^{c_1}\right )\\ y(x)&\to \frac {1}{2} \left (\sqrt {4 x^2+e^{2 c_1}}-e^{c_1}\right )\\ y(x)&\to \frac {\sqrt [3]{\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}}}{\sqrt [3]{2}}-\frac {\sqrt [3]{2} x^2}{\sqrt [3]{\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}}}\\ y(x)&\to \frac {i 2^{2/3} \left (\sqrt {3}+i\right ) \left (\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}\right ){}^{2/3}+\sqrt [3]{2} \left (2+2 i \sqrt {3}\right ) x^2}{4 \sqrt [3]{\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}}}\\ y(x)&\to \frac {\left (1-i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}}}{2 \sqrt [3]{2}}\\ y(x)&\to 0 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*x**2*y(x)**2 + (x**2 + y(x)**2)**2*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out