4.11.1 \((21 y(x)+9 x+3) y'(x)=-5 y(x)+7 x+45\)

ODE
\[ (21 y(x)+9 x+3) y'(x)=-5 y(x)+7 x+45 \] ODE Classification

[[_homogeneous, `class C`], _rational, [_Abel, `2nd type``class A`]]

Book solution method
Equation linear in the variables, \(y'(x)=f\left (\frac {X_1}{X_2} \right ) \)

Mathematica
cpu = 2.63321 (sec), leaf count = 7715

\[\left \{\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,1\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,2\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,3\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,4\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,5\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,6\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,7\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,8\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,9\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,10\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,11\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,12\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,13\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,14\right ]}-3\right )\right \}\right \}\]

Maple
cpu = 0.03 (sec), leaf count = 47

\[ \left \{ -{\frac {3}{7}\ln \left ({\frac {-y \relax (x ) -3-x}{5+x}} \right ) }-{\frac {4}{7}\ln \left ({\frac {-3\,y \relax (x ) +11+x}{5+x}} \right ) }-\ln \left (5+x \right ) -{\it \_C1}=0 \right \} \] Mathematica raw input

DSolve[(3 + 9*x + 21*y[x])*y'[x] == 45 + 7*x - 5*y[x],y[x],x]

Mathematica raw output

{{y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2
 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000
*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 4520320000
0*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4
142656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744
000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000
000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 12383551
48800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975
411200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 258827878400000
0*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 591606579
20*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*
x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2
042055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9
)*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000
*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000
*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 
360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 69759
6641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167
423193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 13
39385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 35716948
0335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 27396522
6393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3
 - 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 67505031783383040
00000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292
072960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 4675673197117
44*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 
219172181114880000000000000*x + 284923835449344000000000000*x^2 + 22793906835947
5200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000
*x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 60175914
0469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10
 + 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x
^13 + 12824703626379264*x^14)*#1^14 & , 1]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[
1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 6
72000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 1114624
0*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 361
6256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 497118720000
0*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 
265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2
 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6
 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 2588278784
0000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5
 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-3798466560
00000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^
3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 17503
3339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000
000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000
*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x
^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 72042
70768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596
641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46
878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133
938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 649399055155
2*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361
749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*
x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 115722911628656
6400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 77148607752
4377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (782757789
69600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000
*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 1253664
87597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200
000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 8023
4552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^
11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^1
4)*#1^14 & , 2]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (280
0 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3
 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + 
(-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4
 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 6
62824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (1842
79040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 103
19626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (
-23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 1035311513600
0000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 236
6426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 6837239808000000
00*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 -
 15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 8751666954
240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000
*x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000
*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7
 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317
089382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 41855
7984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 93
75698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 89292
37008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177
664000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 20
0907832688640000000000*x^3 - 90408524709888000000000*x^4 - 289307279071641600000
00*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 1446536395358
20800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 280540391827
04640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 1282470
3626379264*E^(168*C[1]) + 219172181114880000000000000*x + 2849238354493440000000
00000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 
50146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 34386236598229
40160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 8
023455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x
^12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 3]^(-1))/21}, 
{y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 
+ (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*
x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000
*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (41
42656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 994237440
00*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 2579906560000
00*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 123835514
8800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 369754
11200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000
*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 5916065792
0*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x
^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 20
42055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)
*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*
x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*
x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 3
60213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596
641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 1674
23193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 133
9385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480
335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226
393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 
- 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 675050317833830400
0000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 128581012920
72960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 46756731971174
4*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 2
19172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475
200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*
x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140
469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 
+ 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^
13 + 12824703626379264*x^14)*#1^14 & , 4]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1
 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 67
2000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240
*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 3616
256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000
*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 2
65129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 
+ 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 
+ 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 25882787840
000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 
- 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-37984665600
0000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3
 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 175033
339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (703542067200000000
00 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*
x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^
6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 720427
0768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 6975966
41280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 468
78494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 1339
38555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552
*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 3013617
49032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x
^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 1157229116286566
400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 771486077524
377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (7827577896
9600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*
x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 12536648
7597711360000000000*x^4 + 50146595039084544000000000*x^5 + 150439785117253632000
00000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 80234
552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^1
1 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14
)*#1^14 & , 5]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800
 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 
+ (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (
-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 
- 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 66
2824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (18427
9040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 1031
9626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-
23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000
000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366
426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 68372398080000000
0*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 
15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 87516669542
40*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*
x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*
x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 
+ 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (3170
89382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557
984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 937
5698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 892923
7008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-1141521776
64000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200
907832688640000000000*x^3 - 90408524709888000000000*x^4 - 2893072790716416000000
0*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 14465363953582
0800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 2805403918270
4640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703
626379264*E^(168*C[1]) + 219172181114880000000000000*x + 28492383544934400000000
0000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 5
0146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 343862365982294
0160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 80
23455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^
12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 6]^(-1))/21}, {
y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 +
 (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x
 - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*
x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (414
2656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 9942374400
0*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 25799065600000
0*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148
800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 3697541
1200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*
x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920
*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^
2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 204
2055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*
#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x
^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x
^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 36
0213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 6975966
41280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 16742
3193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 1339
385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 3571694803
35360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 2739652263
93600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 -
 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 6750503178338304000
000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 1285810129207
2960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744
*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 21
9172181114880000000000000*x + 284923835449344000000000000*x^2 + 2279390683594752
00000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x
^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 6017591404
69014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 +
 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^1
3 + 12824703626379264*x^14)*#1^14 & , 7]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 
+ (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672
000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*
x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 36162
56000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*
x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 26
5129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 +
 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 +
 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 258827878400
00000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 -
 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000
000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 
- 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 1750333
39084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (7035420672000000000
0 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x
^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6
 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270
768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 69759664
1280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 4687
8494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 13393
8555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*
x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 30136174
9032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^
4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 11572291162865664
00000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 7714860775243
77600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969
600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x
 + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487
597711360000000000*x^4 + 50146595039084544000000000*x^5 + 1504397851172536320000
0000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 802345
52062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11
 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)
*#1^14 & , 8]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 
+ 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 +
 (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-
45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 -
 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 662
824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279
040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319
626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-2
3109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 103531151360000
00*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 23664
26316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 683723980800000000
*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 1
5315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 875166695424
0*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*x
 + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x
^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 +
 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (31708
9382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 4185579
84768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 9375
698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 8929237
008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-11415217766
4000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 2009
07832688640000000000*x^3 - 90408524709888000000000*x^4 - 28930727907164160000000
*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 144653639535820
800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 28054039182704
640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 128247036
26379264*E^(168*C[1]) + 219172181114880000000000000*x + 284923835449344000000000
000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 50
146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 3438623659822940
160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 802
3455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^1
2 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 9]^(-1))/21}, {y
[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + 
(5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x 
- 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x
 - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142
656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000
*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000000
*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 12383551488
00*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411
200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x
^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*
x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^2
 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042
055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#
1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x^
2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^
5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360
213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 69759664
1280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167423
193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 13393
85551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 35716948033
5360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 27396522639
3600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 - 
90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 67505031783383040000
00*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292072
960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744*
x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 219
172181114880000000000000*x + 284923835449344000000000000*x^2 + 22793906835947520
0000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x^
5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 60175914046
9014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 + 
583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^13
 + 12824703626379264*x^14)*#1^14 & , 10]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 
+ (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672
000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*
x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 36162
56000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*
x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 26
5129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 +
 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 +
 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 258827878400
00000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 -
 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000
000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 
- 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 1750333
39084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (7035420672000000000
0 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x
^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6
 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270
768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 69759664
1280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 4687
8494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 13393
8555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*
x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 30136174
9032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^
4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 11572291162865664
00000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 7714860775243
77600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969
600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x
 + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487
597711360000000000*x^4 + 50146595039084544000000000*x^5 + 1504397851172536320000
0000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 802345
52062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11
 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)
*#1^14 & , 11]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800
 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 
+ (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (
-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 
- 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 66
2824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (18427
9040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 1031
9626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-
23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000
000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366
426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 68372398080000000
0*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 
15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 87516669542
40*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*
x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*
x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 
+ 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (3170
89382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557
984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 937
5698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 892923
7008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-1141521776
64000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200
907832688640000000000*x^3 - 90408524709888000000000*x^4 - 2893072790716416000000
0*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 14465363953582
0800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 2805403918270
4640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703
626379264*E^(168*C[1]) + 219172181114880000000000000*x + 28492383544934400000000
0000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 5
0146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 343862365982294
0160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 80
23455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^
12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 12]^(-1))/21}, 
{y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 
+ (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*
x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000
*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (41
42656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 994237440
00*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 2579906560000
00*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 123835514
8800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 369754
11200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000
*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 5916065792
0*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x
^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 20
42055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)
*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*
x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*
x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 3
60213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596
641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 1674
23193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 133
9385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480
335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226
393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 
- 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 675050317833830400
0000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 128581012920
72960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 46756731971174
4*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 2
19172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475
200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*
x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140
469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 
+ 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^
13 + 12824703626379264*x^14)*#1^14 & , 13]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[
1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 6
72000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 1114624
0*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 361
6256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 497118720000
0*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 
265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2
 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6
 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 2588278784
0000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5
 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-3798466560
00000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^
3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 17503
3339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000
000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000
*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x
^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 72042
70768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596
641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46
878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133
938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 649399055155
2*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361
749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*
x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 115722911628656
6400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 77148607752
4377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (782757789
69600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000
*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 1253664
87597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200
000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 8023
4552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^
11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^1
4)*#1^14 & , 14]^(-1))/21}}

Maple raw input

dsolve((3+9*x+21*y(x))*diff(y(x),x) = 45+7*x-5*y(x), y(x),'implicit')

Maple raw output

-3/7*ln((-y(x)-3-x)/(5+x))-4/7*ln((-3*y(x)+11+x)/(5+x))-ln(5+x)-_C1 = 0