4.18.24 \(x y'(x)^2-(3 y(x)+2 x) y'(x)+6 y(x)=0\)

ODE
\[ x y'(x)^2-(3 y(x)+2 x) y'(x)+6 y(x)=0 \] ODE Classification

[_quadrature]

Book solution method
No Missing Variables ODE, Solve for \(y'\)

Mathematica
cpu = 0.00351953 (sec), leaf count = 21

\[\left \{\left \{y(x)\to c_1 x^3\right \},\left \{y(x)\to c_1+2 x\right \}\right \}\]

Maple
cpu = 0.008 (sec), leaf count = 17

\[ \left \{ y \relax (x ) ={\it \_C1}\,{x}^{3},y \relax (x ) =2\,x+{\it \_C1} \right \} \] Mathematica raw input

DSolve[6*y[x] - (2*x + 3*y[x])*y'[x] + x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> x^3*C[1]}, {y[x] -> 2*x + C[1]}}

Maple raw input

dsolve(x*diff(y(x),x)^2-(2*x+3*y(x))*diff(y(x),x)+6*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*x^3, y(x) = 2*x+_C1