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| 1
CHAPTER

INTRODUCTION

This gives detailed description of all supported differential equations in my ode solver.
Whenever possible, each ode type algorithm is described using flow chart.

Each ode type is given an internal code name. This internal name is used by the solver to
determine which specific solver to call to solve the ode.

A differential equation is classified as one of the following types.
1. First order ode.
2. Second and higher order ode.

For first order ode, the following are the main classifications used.
1. First order ode f(z,y,y’) = 0 which is linear in y/(x).

2. First order ode not linear in 3/(x) (such as d’Alembert, Clairaut). But it is important
to note that in this case the ode is nonlinear in ¢y when written in the form y =
g(z,y’). For an example, lets look at this ode

, x +\/a:2+4a:—|—4y
2 2

Which is linear in 4’ as it stands. But in d’Alembert, Clairaut we always look at
the ode in the form y = g(z,y’). Hence, if we solve for y first, the above ode now
becomes

y=ay + () +2/ +1)
=g(z,y)

Now we see that g(z,y’) is nonlinear in 3. The above ode happens to be of type
Clairaut.

For second order and higher order ode’s, further classification is
1. Linear ode.
2. non-linear ode.

Another classification for second order and higher order ode’s is
1. Constant coefficients ode.
2. Varying coefficients ode

Another classification for second order and higher order ode’s is
1. Homogeneous ode. (the right side is zero).
2. Non-homogeneous ode. (the right side is not zero).

All of the above can be combined to give this classification

1
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1. First order ode.
(a) First order ode linear in y/(z).
(b) First order ode not linear in y/'(x) (such as d’Alembert, Clairaut).
2. Second and higher order ode
(a) Linear second order ode.
i. Linear homogeneous ode. (the right side is zero).
ii. Linear homogeneous and constant coefficients ode.
iii. Linear homogeneous and non-constant coefficients ode.
iv. Linear non-homogeneous ode. (the right side is not zero).
v. Linear non-homogeneous and constant coefficients ode.
vi. Linear non-homogeneous and non-constant coefficients ode.
(b) Nonlinear second order ode.
i. Nonlinear homogeneous ode.
ii. Nonlinear non-homogeneous ode.
For system of differential equation the following classification is used.
1. System of first order odes.
(a) Linear system of odes.
(b) non-linear system of odes.
2. System of second order odes.
(a) Linear system of odes.
(b) non-linear system of odes.

Currently the program does not support Nonlinear higher order ode. It also does not
support nonlinear system of first order odes and does not support system of second order
odes.

The following is the top level chart of supported solvers.

Figure 1.1: Top level flow chart for ode solver

This diagram illustrate some of the plots generated for direction field and phase plots.
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Figure 1.2: Direction and slope fields generated

1.1 Types of solutions supported

For a differential equation, there are three types of solutions

1. General solution. This is the solution y(z) which contains arbitrary number of
constants up to the order of the ode.

2. Particular solution. This is the general solution after determining specific values
for the constant of integrations from the given initial or boundary conditions. This
solution will then contain no arbitrary constants.

3. singular solutions. These are solutions to the ode which satisfy the ode itself and
contain no arbitrary constants but can not be found from the general solution using
any specific values for the constants of integration. These solutions are found using
different methods than those used to finding the general solution. Singular solution
are hence not found from the general solution like the case is with particular solution.

The solver currently finds the general and Particular solution (if initial conditions are
given). It also finds singular solutions but for very limited first order ode’s. More support
for finding singular solutions using the p-discriminant and c-discriminant methods will be
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added.
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CHAPTER

DESIGN OF THE ODE SOLVER PROGRAM

This gives high level view of my differential equations solver program which is in develop-

ment for academic use. The program design is based on top-down modular design.

There are a number of public API’s. The main API is dsolve(). But there are other API’s

such as for finding eigenvalues and eigenvectors.

This diagram shows the top level design

->| dsolve_sys()

|—>| system of ode solver |—>| IC process

->| dsolve_series()

dsolve_bvp() (not
] .
yet implemented)

main

API

b»| dsolve_reduction() |—> solved using reduc-

|—>| series ode solver |—>| IC process |
second order ode
| boundary value
problem module
second order ode
| IC process

tion of order

parse_ode() and de-
termined ode order

higher order ode

->| dsolve()

solver

—>| IC process

factor_ode() to

handle cases such as | | second order ode

|_>

f@,y,9)9(z, 9, 9") ]
0 as separate odes
f(z,y,y') = 0 and
9(z,y,9') =0

different module for
each ode type

--—>| IC process

| first order ode

nonlinear in 3’ ode

(different module for fr

each ode type)

find singular solu-
tions

Il ->| IC process

linear in y" ode (dif-
ferent module for
each ode type)

Figure 2.1: High level design

--->| IC process

The following is the pseudo code of the dsolve() procedure. This is one of main calls into
the main module for solving a single differential equation. It returns back all solutions
found.
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dsolve:=proc(ode,y(x),IC,hint: :string)

-- This CALL validates the ode itself. IC are validated by each separate
-- module below this throws parse error if any fail
ode_MGR:-parse_ode (ode) ;

parse_IC_mgr:-parse_IC(ode,func,IC);

IF hint is given THEN
IF ode_order =1 THEN
latex,solver_name,solution :
ELIF ode_order =2 THEN

first_order_ode_solver(ode,y(x),IC,hint);

latex,solver_name,solution := second_order_ode_solver(ode,y(x),IC,hint);
ELSE

ERROR; -- hint is only now supported for first and second order, not higher
END IF;

ELSE -- no hint
-- the following factors ode if possible. For example for y''xy'=0 gives
--— y''=0 and y'=0 factors. If not possible to factor, ode itself is only
-- factor. in 99% of the times, ode do not factor and ode_factors list
-- will just contain the original ode. But this makes it much easier
-- to solve an ode if it can be factored.

ode_factors := factor_ode(ode);
FOR each factor DO
IF ode_order=1 THEN
latex,solver_name,solution :
ELIF ode_order=2 THEN
latex,solver_name,solution :
ELSE
latex,solver_name,solution :
END IF;
END LOOP;
END IF;

first_order_ode_solver(factor,y(x),IC,""

)

second_order_ode_solver(factor,y(x),IC,"");

higher_order_ode_solver(factor,y(x),IC,"");

RETURN latex, solver_used, solution;

END proc;

N\ J

The following is the main module for first order ode. Similar one for second order and similar
one for higher order.
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first_order_ode_solver:=proc(ode,y(x),IC,hint)

IF hint is given THEN
latex,solution := CALL the solver given in hit(ode,y(x),IC);
ELSE
-- check the ode type and call the lower level solver to solve it.
IF first_order_ode_quadrature:-is_quadrature(ode,y(x)) THEN
solutions := first_order_ode_quadrature:-dsolve(ode,y(x),IC);
solutions := FIRST_ORDER_POST_PROCESS(solutions,ode,y(x),IC);
IF list of solution not empty THEN
RETURN solutions --done
END IF
END IF

IF first_order_linear:-is_linear(ode,y(x)) THEN

solution := first_order_ode_linear:-dsolve(ode,y(x),IC);
FIRST_ORDER_POST_PROCESS (solution,ode,y(x),IC);
IF list of solution not empty THEN

RETURN solutions --done
END IF

END IF

solution :

IF ... same for all other first order solvers. There are 16 solvers now.

END IF

END proc;

The following is the post processing function for first order, called after each specific solver have
generated the solutions.
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FIRST_ORDER_POST_PROCESS:=proc(solutions,ode,y(x),IC)

-- This is called after each specific found the solution.

-- Each solver only find the solution and it does not do anything else.

-- it takes as input list of solutions found, and returns list of solutions
-- after post processing.

IF initial condition are given THEN
FOR each solution found DO
Update solution for initial conditions (this resolves constant of integration)
END LOOP
END IF

FOR each solution DO
IF solution is implicit then convert to explicit if possible and if solution
remains valid against the ode and IC's if any. This means the solution
if not already explicit, can remain implicit.
END IF
END LOOP

FOR each solution DO
Verify solution using odetest.
IF not verified THEN
remove solution.
END IF
END LOOP

RETURN solutions (this could be empty list if solution(s) could not be verified.)

END proc;
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3.1 Existence and uniqueness for first order ode

There are two theorems that we will be using. One is for first order ode which is linear in
y and one for first order ode which is not linear in y.

3.1.1 Existence and uniqueness for non linear first order ode in
()

Given a first order ode ¥’ = f(z,y) (where y enters the ode as nonlinear, for example 32
or i) and with initial conditions y(zy) = yo then we say a solution exists somewhere in
vicinity of initial point (zo,yo) if f(x,y) is continuous at (zo,yo). But we do not know yet
if there is only one solution or infinite number of solutions. If f(z,y) is not continuous at
(x0,yo) then we say the theory does not apply and we do not do the next check. Solution
could still exist and even be unique, but theory does not say anything about this.

If we found that f(z,y) is continuous at (zo,yo) then now we check if f,(z,y) is also
continuous at (xo, yo). If it is, then we say there is only one solution curve (i.e. a unique
solution) that passes through the initial point (zo,yy) and in some region around it.

If f,(z,y) turns out not to be continuous at (zo,yo) then theory does not guarantee
uniqueness. Solution could still be unique but theory does not say anything about this.
We have to solve the ode to find out.

3.1.1.1 Example 1

Y =2y
y(0) =0

First we find the region where solution exists and is unique. Domain of f(z,y) = 2,/y is
y > 0 (since we do not want complex numbers). Since yo = 0 is inside this domain, then
we know solution exists. The domain of f, = \/%7 is y > 0. We see that the region is all x
and y > 0. i.e. the top half of the plane not including z-axis.

Since the point given is (0,0) then the theory do not apply. The point zg, yo have to be
inside the region and not on the edge.

There is no guarantee that solution will be unique. Solving this ode gives
2y=2z+c
Vy=z+a

At IC
0201

Hence solution is

vz

T
y 2

X

But y = 0 is another solution. Notice that y = 0 can not be obtained from ,/y = = + ¢
for any choice of ¢;. So it is a singular solution and not trivial solution. This shows that
solution exists but is not unique. In this example, theory predicted that solution exists
but did not say anything about uniqueness. Only by solving it, we found the solution is

not unique.
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3.1.1.2 Example 2

/ 1
y =ys
y(0) =0

First we find the region where solution exists and is unique. f(z,y) = y3. The domain

of y% is y > 0 since we do not want complex values. Hence solution exists. The domain

of f, = %ig is y > 0. Hence the region is all  and y > 0. i.e. the top half of the plane
y3

not including z-axis. Since the point given is (0,0) on the z-axis, then the theory do not
apply. There is no guarantee solution is unique. Only way to find out is to try to solve the
ode and find out. Solving the ode gives

[4-]e
y§
3

§y§ =z+C
Applying IC gives C' = 0. Hence solution is
3 2
§y3 =T

Solving for y

9\ 2
=*(§x)

So there are two solutions. There is also a trivial solution y = 0. We see that the solution
exists but not unique.

3.1.1.3 Example 3

Y=oy =3
y(4) =3

First we find the region where solution exists and is unique. Domain of f(z,y) = z/y — 3

isy—3 > 0or y > 3 since we do not want complex numbers and all « values. This

shows solution exists. Domain of f, = 5-%= is y > 3. Since point (4, 3) is not inside this

domain (it can not be on the edge, it has to be fully inside), then theory do not apply. No

guarantee that unique solution exist. Solving this gives

1
2 y—3=§a:2+c

At initial conditions
0=8+c

Hence ¢ = —8 and the solution becomes

1
2 y—3:§x2—8

1
\/y—3=1x2—4
1 2
y—3= (Zm2—4>
1 2
Y= (1x2—4> +3

Is this the only solution? Is this solution unique? No. By inspection we see that y = 3 is
also a solution. Hence the solution exist but is not unique.
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3.1.1.4 Example 4

/o -1 2 + 1
y= 1+ zy z—1
y(0)=0
flz,y) = ﬁyz + ﬁ is continuous in = everywhere except at £ = —1 and x = 1. And
fy= 1:_—2zy is continuous except at x = —1. Since initial conditions at zo = 0,yo = 0 then

there is a unique solution in some rectangle inside the rectangle —1 < x < 1 and for all y.
Solving the ode gives
x .
VysinT
2i= [ v
v 0 VY

At x = 0,y = 0 the above gives

Hence the solution is

3.1.1.5 Example 5

f(z,y) = v/1 — 42 is continuous in z everywhere. For y we want 1 —y2 > 0 or y?> < 1. The
point yo = 1 satisfies this. Now f, = 2\/_%7 We want 1 — 42 > 1 or y2 < 1. The point
does not satisfy this. Hence theory says nothing about uniqueness. Solution can be unique
or not. When the ode has form y’ = f(y) we always check if IC satisfies the ode. In this
case y(z) = 1 does satisfy the ode. So this means y(z) = 1 is solution. We do not need to
solve by integration. But if we did, we will obtain the following

_dy
VI— ¢

arcsin (y) =z + ¢

=dz

y = sin (z + ¢)

At initial conditions the above gives 1 = sinc. Hence ¢ = 7. Therefore solution is y =
sin (:c + ’2—') = cosz. So this is another solution that satisfies the ode. Solution is not
unique.

3.1.1.6 Example 6

y=vVi-y’+uz
y(0)=1
f(z,y) = /1 —y2 + z is continuous in z everywhere. For y we want 1 —y? > 0 or y? < 1.

The point yo = 1 satisfies this. Now f, = - _fi’yQ. We want 1 —y? > 1 or y?> < 1. The
point yy does not satisfy this. Hence theory does not apply.

In this case the ode has form y' = f(z,y) and not ¥’ = f(y). So we can not just check if
initial conditions satisfies the ode and use that as solution. If we did, we see that y(z) =1
does satisfy the ode at £ = 0 but this will be wrong solution. In this case we have to go
ahead and solve the ode. In this case we will find that no general solution exists.
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3.1.1.7 Example 7

y(0) =2

f(z,y) = v/1 — 32 is continuous in z everywhere. For y we want 1 —y2 > 0 or 3> < 1. The
point yo = 2 does not satisfy. Hence theorem does not apply. We just need any solution
that satisfies the ode. Since the ode has form ¥’ = f(y) and not ¥’ = f(x,y) then we
always try y(x) = yo to see if it satisfies the ode. Substituting y = 2 into the ode gives

0=+v1—1y?
=+v1-4
Therefore this solution did not work. In this case we have to solve the ode by integration
which gives
dy
VI-7

arcsin (y) =z + ¢

=dz

y = sin (z + ¢)
At initial conditions the above gives 2 = sinc. Or ¢ = arcsin (2). Hence the solution is

y(z) = sin (z + arcsin (2))

3.1.1.8 Example 8

y(1)=0

By Existence and uniqueness, we see f(x,y) is not defined at yo = 0. Hence theorem
does not apply. Since ode has form y' = f(y) we now check if IC satisfies the ode itself.
Plugging in y = 0 into the ode is not satisfied due to %. So we have to solve the ode in
this case. integrating gives

/ydy=/dz
1

—_ 2 —
2y Tr+c
At IC this gives
0=1+c
c=-—1
Hence solution is
1,
—y‘=z—-1
2y =%

We see solution is not unique.
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3.1.2 Existence and uniqueness for linear first order ode in y

These are ode’s in the form

y' +p()y = q(z)
The theorem says that if both p(z), ¢(x) are continuous at z, then solution exists and is
unique. Notice that now we do not check on yy but only on x,. We get both existence and
uniqueness all in one test. If either p or ¢ are not continuous, then no guarantee solution
exist or be unique.

3.1.2.1 Example 1

y:

y(0) =1
In standard form y' — p(z)y = ¢q(z). So p = =},¢q = 0. Hence the domain of p is all z
except £ = 0. Domain of q is all . Since the IC includes x = 0 then no guarantee solution
exists or be unique. Theory does not say anything. We have to try to solve the ode to find
out. Solving gives

Y
xr

y=cx
As solution. Applying I.C. gives
1=0
Not possible. Therefore no solution exist.
3.1.2.2 Example 2
y =2
x
y(0)=0

In standard form ¢ — p(z) y = ¢(z). So p = =}, ¢ = 0. Domain of p is z # 0. Domain of ¢
is all z. Since IC includes z = 0 then theory says nothing about existence and uniqueness.
We have to solve the ode to find out. Solving gives

y=cr
Applying I.C. gives

0=0
Which is true for any c. Hence solution exist which is y = cx for any c. Hence solution is
not unique. There are oo number of solutions.

3.1.2.3 Example 3
y =2
x
y(1) =0
In standard form y' — p(z)y = ¢(z). So p = =}, ¢ = 0. The domain of p is all z except

x = 0. Domain of g is all z. Since IC does not include z = 0 then solution is guaranteed
to exist and be unique in some region near x = 1. Solving gives

y=cx
As solution. Applying I.C. gives
0=c
Hence the unique solution is
y=0 x>0

Solution exists and is unique. Solution can only be in the right hand plan which includes
z =1 and it can not cross x = 0. i.e. solution is y = 0 for all z > 0. If IC was y(—1) =0
then the solution would have been y = 0 for all z < 0.
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3.1.2.4 Example 4

b

V=57
y(0) =

In standard form y' — p(z) y = q(x). Hence p = %, q = 0. Domain of p is > 0 (to avoid
complex numbers) and the domain for ¢ is all z. Combining these gives z > 0. Since IC
includes = 0 then the theory does not apply. Solving the ode gives

y=+T+c

At (zo,y0) the above gives
l=c

Hence solution is
y=+vz+1 x>0

So here solution exists and is unique. Even though theory did not apply.
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3.2 On the choice of which method to use when
solving an ode

When a given ode can be solved using a number of different methods, we need to decide
which is the best method to use. In general, it is best to avoid having to solve for the
derivative. In other words, for ode’s which are first order and non-linear in 3’ to make
progress, we have to first solve for the derivative. But it is also possible to solve the ode
as is without solving for the derivative. Here is an example. Given this ode

y=2xz+3In(y) (1)

This is non-linear in the derivative. Lets solve this as separable and then as dAlembert.
As separable, we have to first solve for ¥’ which gives

Yy T
In(yY=2-=
n(y') 373
Taking exponential of both sides gives
y/ = e(%_%)
/ Yy =z
Yy =e3es

y=-3In <e_T — —) (2)

This solution as it stands could not be verified by Maple as valid solution to the ode unless
we assume that e — 5 > 0 and also assuming z > 0. Only then Maple odetest verifies the
solution as valid. Now lets see what happens if we solve the same ode above as dAlembert
using original form as is. Eq. (1) is

y=1z+3In(p) (3)

Where p = 3. Comparing to dAlembert for y = zf + g shows that f = 1,9 = 31n (p).
Taking derivative of the above w.r.t. z gives

y—f+wf—+ Zp
€T
p= f+d($f+ )

—f— (ﬂff +4')

But f =1, =3Inp, hence f'(p) = 0,¢'(p) = 2. The above becomes

1-2()

b which gives p = 1. Hence (3) becomes y = z. This is the
singular solution. General solution is when g—;’ # 0 in (4). This gives the ode

Singular solution when

dp 1
% = gp(p— 1)



CHAPTER 3. FIRST ORDER ODE F(z,y,y') =0 17

Which is quadrature. Solving for p gives

B 1
N 1+ ces

p

Substituting this into (3) gives

1
=z+3In =
Y (1+C€3)

This solution was verified as is in Maple with no assumptions. We see now the difference
in the solution solutions

—x Cc
sep = —31 (7——>
Ysep nles 3

1
embert = T+ 31n T
Yd Atembert (1+ces)

The difference is that for verification, the separable solution requires giving assumptions
while the dAlembert does not. In this case, the dAlembert is preferable.

3.3 First order linear in derivative
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These are first order ode’s which are linear in 3’ but can be nonlinear in y.

3.3.1 Flow charts

3.3.1.1 First low chart

First order ODE f(z,y,y’)

N3

Figure 3.1: Flow chart for first order linear in 3’ solver

Solved by integration
y' = f(x)

y:/fdz+c

Linear. Solved by find-
ing an integrating factor.

Y + f@)y = g(a)

2

Exact. ODE has the

form
,_ —M(z,y)
Y7 N
Or as typically written
M(z,y)dx
+ N(z,y)dy =0

M _ ON
Where Dy = oz

Separable. Solved by
separation and then inte-
gration.

y = F(z,y)
= f(z)g(y)

Homogeneous type A.

v=s(2)
T
Solved using substitution

y = ux which converts to
separable ODE.

Homogeneous type C.
ODE has the form

y’:(a+bz+y)%
Yy =(a+bz+y)"

Where n is integer not
one. Solve by substitu-
tion z = (a4 bz +y). See
example

Homogeneous type
Maple C. This is differ-
ent from what is called
just homogeneous type
C above. ODE has the
form

,_ f(=z,y)

" g(zy)

Solved using transfor-
mation x = X + zg,

y =Y + yo to convert to
homogeneous type A. See
this

Bernoulli ¥+ Py = Qy"
where n # 1,n # 0.
Solved using substituion
v = y'~" which converts
the ODE to linear one
v'+(1=n)Pv = (1-n)Q.

3.3.1.2 Second flow chart

This flow chart contains more details on the exact solver for first order ode.

02

02

Not Exact, but can find
integrating factor which
makes it exact. ODE has
the form

,_ —M(z,y)
Y7 N
Or as typically written
M(z,y)dz
+ N(z,y)dy =0

oM N
Where - # B

but can find integrat-
ing factor p such that
AuM) _ 9(uN)

9y T Oz

Riccati. ODE has any
of these forms

y' = fo(z) + fi(z)y

+ fo(x)y?

Yy = fo(@) + f2(2)y?
Where fo # 0. An exam-
ple if y' = 22 —y2. Solved
by using transformation

_
Y= Fou

second order ODE in u
to solve.

which generates

Isobaric. Generaliza-
tion of homogeneous
where the substitution
y = va™ makes the ODE
separable. The weight
m here need not be 1 as
the case with homoge-
neous. An example is
223y’ = 1+ /1 + 422y
where weight m = —2
here and y = va( — 2)
makes the ODE separa-
ble.

SpecialFormIDOne
ODE of form

Yy = g(@)e* T 4 f(2)

Solved by substitution
u = e~% which con-
verts the ODE to linear.
b must not depend on z.

2

2

02

L2

First order differential
type. These are special
ODE'’s which can written
as complete differential
d(f(z.)) = d(g(x,y))
which is then solved by
just integrating. For

an example y/ = ﬁ
can be written ydy =

d (%zz — xy) which is
now solved by integrating
both sides. See this

Polynomial ODE.
ODE of the form

1,_a11+b1y+()1
a2z + bay + c2

‘Where the two lines can
be either parallel or not.

First order g(z)y’ +
r(z)y = f(z) solved us-
ing series method. Sub-
methods supported are
1. Irregular singular
point
2. Ordinary point
3. Ordinary point
Regular singular point
Expansion around point
other than zero is also
supported, including ini-
tial conditions.

Abel first kind. ODE
of the form

Y = fo(x) + fi(a)y
+ fo(@)y® + fa(2)y®

Currently the solver de-
tect this ODE and eval-
uates the Abel invariant
only.

First order ODE q(z)y’ +
r(z)y = f(z) solved us-
ing Laplace method.
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Figure 3.2: Additional flow chart for first order linear in 3’ and exact solver

3.3.2 ODE of form ¢y = B+ Cf(ax + by + ¢)

Solve
Yy =B+ Cflax+by+c)

Where A, B, C' are parameters. Examples below show the method.
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3.3.2.1 Examples
3.3.2.1.1 Example 1 Solve

Y =B+ Cf(ax+by+c) (1)

This form of ode can be solved by letting u = ax + by 4+ ¢ which makes the ode separable.

du
b b
dz @+ by
Or
, U —a
Y=7%
The ode becomes
I—
¢ - ¢ — B+CF()

v =bB+bCF(u)+a
du

bB—}-bC’F(u)—I—a:dw

Integrating gives

/ du =z+c
bB+bCF (u)+a

az+by+c dr
/ bBB+oCE(r) +a 1€

If initial conditions are given as y(zo) = yo, the above becomes

axo+byo+c dr
/0 bB+bC’F(7’)-|-a_xo—i_c1

azo+byo+c dr
C1=/0 bB—i—bCF(T)—i-a_xO

Substituting this into (2) gives

az+by+c dr azxo+byo+c dr
/ =+ / — X
0 bB + bCF (1) +a 0 bB + bCF (1) +a

Note that when IC are given, the integrals are changed to have lower limit start from zero.
If no initial conditions are given, lower limit is not used. This uses Maple’s Intat notation
for integral at a point notation. See Maple help for Intat command.

3.3.2.1.2 Example 2 Solve

1
y = ?F(3x + 5y)
y(zo) = w0

Comparing the above to (1) shows that

Q
[
S Ot W g~ O

[S S
Il

o
|
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Plugging these into (2) gives

az+by+c dr
/ bB+CF (1) +a ¢

3z+5y dr
T 5 =%+c¢
/ %F (t)+3 !
3zo+5y0 dr
-_— =
/0 SF(r)+3
Hence the solution is

3x+5y d’T 3x0+5y0 dT
_— = + -
/0 SF (1) +3 /0 SF(r)+3

If IC were given as y(0) = 0 then we see that ¢; = 0 because upper limit becomes zero

and the above solution becomes
3x+5y d’T
[ s
0 F (1) +3

y' = sin (3z + 5y)

Applying IC gives

3.3.2.1.3 Example 3

Comparing the above to (1) shows that

B=0
c=1
a=3
b=5
c=0
Plugging these into (2) gives
az+by+c dr
/ bB—l—bC’sin(7‘)+azm_*_c1

3z+5y dr
/ E’)sin('/')+3:%+Cl

3.3.2.1.4 Example 4
Yy =8+ 3F(3z+ 5y +9)

Comparing the above to (1) shows that

Plugging these into (2) gives

az+by+c dr
/ bBB+oCF(r) +a 14

3z-+5y+9 dr
/ W0IBF(N+3 7@
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3.3.2.1.5 Example 5 This method works only when the argument of F(-) is linear
in z and y. Lets see why. Assuming the ode is

y' = F(z* + 5y)
Let u = x? + 5y then Z—'; = 2z + 5y’. Hence y' = % and the ode becomes

u — 2z
5

= Fw
' =5F(u) + 2z
Which is no longer separable. Lets see what happens if y was not linear. Let the ode be
y =Fle+y)
Let u = x + y? then ‘3—’; =1+ 2yy'. Hence ¢y = % and the ode becomes

u -1

2y

= F(u)
' =2yF(u)+1

We see that the term y did not vanish and this can not work. This shows that for this
method to work, the argument of the function F' must be linear in z,y

3.3.3 ODE of form y + p(z)y = q(z) (yIny)

Solve
y' +p(2)y =q(z) (ylny) (1)
The substitution y = e* transforms the ode to linear ode.
dy _du,
de dx

And the ode becomes

uu u u
—e~ +pe” = que

dz
d_u + = qu
Which is linear ode.
du

The integrating factor is I = e/ ~9%*. Hence the above becomes
d(ul) = —pI
Integrating gives
ul = —/pIdac—i—cl
u=-—I1 /pldx + 1

u=—el 1% ( / pef _qdwdx) + cief 1

But y = €* or u = Iny. Hence the final solution is

In(y) = —e/ 9% ( / pel _qudw) + el 9k
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Or

y = e_ef qdz (fpef —qdzdw) +ciel 99z

e_ef qdz (fpef _qdmd.’l:) eo1 of adz

c ej'qd:z:
e 1

eef qdz (f pel _qdmdm)
exp (clef qdm)
 exp (e 94 ([ pel ~adedy))

If initial conditions y(x¢) = yo are given then the above becomes

exp (cwfowo da)
Yo = exp (efowo qdr (fowo D (7_) elo —q(z)dsz))

T T Zo -
exp (clefo 0 da) = o exp (efo 0 qdr (/ p(T) efo —q(z)dsz> )
0
Clefozo gdr _ In <y0 exp <efg”0 qdt (/ p(T) efc;r —q(z)dzd,r> ) )
0

1n.(yoexp (eﬁfoqdr(ﬁfOP(T)eﬁg_q(@dzd7)>)

efgco qdt

(3)

Cci =

Substituting the above in (2) gives

B exp (c el 992)
v= exp (e/ 99= ([ pel ~9d2dz))

Where ¢; is given by (3).

3.3.4 Quadrature ode

Y = f(z)
y = f(y)

The following flow chart gives the algorithm for solving quadrature ode.

Figure 3.3: Flow chart for first order quadrature

ode internal name "quadrature"
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Solved by direct integration. There are two forms. They are

y = f(z)
y =)
For first form, the solution is
y = / f(z)dz +c
For the second form the solution is

dy
o /dz f(y) #0

/f =z+c

These two forms are special cases of separable first order ode ¥’ = f(x) g(y) .

For the form ' = f(y) and if IC are given, we should always check if IC satisfies the ODE
itself first. If so, then the solution is simply y = yo. i.e. there is no need to integrate and
solve for constant of integration and any of this. This only works for ¥’ = f(y) form. Not

for y = f(z).

Given an ode y = f(z) and if it is not possible to integrate [ f(z)dz, then the final
solution should be left as
= / f(z)dz + ¢

If initial conditions are given as y(zo) = yo then the above is adjusted to become

- [ se)dr+v,

This is only when the integration of f(z) can not be computed.

On the other hand, if the ode is ¥ = g(y) and it is also not possible to integrate [ ﬁ

then the final answer now becomes

y(@) p
/ —(7') T=T+C

If initial conditions are given as y(zo) = yo then the above is adjusted to become

/y(w) 1 R /yo 1 p
T+ —aT =T — X
0 g(7) o 9(7) °

y(z) = RootOf (/yzo ﬁdT +z— xo)

For the case where it is not possible to solve for 3’ explicitly, then RootOf is used. For
example, given
sin(y) +y' =z

This is quadrature, since it has only ¢ and x. But it is not possible to isolate y’. The
solution will be in terms of RootOf given by

y' = RootOf (sin(_Z)+_Z — x)

We now still continue as before and integrate both sides which results in

y(x) = /RootOf (sin(_2Z)+_Z—=z)dz+c
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If initial conditions are given as y(zo) = yo the above is modified to become

y(x) —yo = / RootOf (sin(_Z)+_Z —1)dr

(0]

What happens if the ode had a missing x instead? For an example
sin (i) +y' =y
Now solving for y' gives
y' = RootOf (sin(_2Z) +_Z —y)
Integrating as before results in

dy
RootOf (sin(_Z)+_Z —y)

o s
RootOf (sin (_Z)+_Z —y) ’
y(z) dr

o RootOf(sin(_Z)+_Z—71)

If initial conditions y(xy) = yo are given, the above becomes

dz

r+c

Yo dr y(z) dr
/0 RootOf (sin(_2Z)+_Z — 1) + / RootOf (sin(_Z)+_Z —17) v

Yo
3.3.4.1 Example 1
y =y
y(0) =1

Solution exists and unique. Integrating gives

[2-fu v

lny=z+c
y=ce®
Applying IC gives
l=c
Hence solution is
y=¢"
3.3.4.2 Example 2
y=y-1
y(0)=1

Solution exists and unique. Integrating gives

ﬂ—/dx y—1+#0

y—1
In(y—1)=z+c
y—1=rce”
y=ce®*+1
Applying IC gives
l=c+1
c=0
Hence solution is
y—1=0

y=1
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3.3.4.3 Example 3

y=
y(0) =1
Integrating gives
22
Yy = ? +c
Applying IC gives
l=c¢
Hence solution is
@=2+1
3.3.4.4 Example 4
y =siny +1
y(m) =1

This has unique solution. Integrating and solving for ¢ results in the solution

dy
_— = i 1
/siny—l—l /dx siny+1#0

2
c1+zx
Applying IC gives
2
c+m

Solving for ¢; and substituting in the general solution gives

(z—m+2)tan (3) +z—m )

= —2arctan
v <—7r—|—:c—2—|—tan(%)(w—7r)

3.3.4.5 Example 5

Yy =yly—1)(y—3)
y(0) =4

A solution exist an is unique. Integrating gives

dy B . B B
/y(y—l)(y—3)_/d yy—1)(y—-3)#0
%lny+%ln(y—3)—%1n(y_1):x+cl

Applying initial conditions gives

1 1 1
§In4—|—61n(1)—§ln(3)=cl
1 1

gln4—§ln(3):cl

Hence the solution from (1) is

1 1
%lny+éln(y—3)—%ln(y—1):z+§ln4—§ln(3)
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Lets see what happens if we convert to exponential first. Applying exponential to both

sides of (1) gives

exp <lny% +ln(y—3)% +In(y— 1)%1> = co€”
1
yi(y — 3)° y—l) = cpe”
1 1
ys(y—3)6 = cye”
y—1
At IC
43(4 — 3)s
:C2
4-1
43
—=C
3@

Hence the solution from (2) is

y%(y_?))é 4% b

z = L = ¢

Vy—1 3

2)

And this is also correct. I prefer to convert to exponential when the solution has the form
f(y) = cg(x) where f(y) is made up of all In as functions of y. This makes finding constant

of integration easier in all cases.
3.3.4.6 Example 6

y = ay — by’
y(0) = %o

A solution exist an is unique. Integrating gives

dy _ 2
[t a-wito

1lny—lln(by—a)zﬂv—i-cl
a a
Iny —In(by — a) = ax + ac

y — axr+acy
by —a ¢
y axr
= co€
by —a 2
y = cobye®™ — acge®™
Y(1 — cobe®™) = —acqye™
_ —acee™
y= 1 — cybes=
_acge™
 cobest — 1
. acy
b — e
B a
Cb— cie“”’
2
B a
"~ b4 czea®
Applying IC
_a
Yo= b+ C3
(b+c3)yo=a
byo +c3y0 = a
a —byo
C3 =

Yo



CHAPTER 3. FIRST ORDER ODE F(z,y,y') =0 28

Hence the solution becomes

a
y =
b + (a—by0> e—az

Yo
_ ayYo
byo + (a — byp) e~*

3.3.4.7 Example 7

Yy =siny
y(0) ==

Since this is of form y' = f(y) and IC is given then we check if y = 7 satisfies the ode
itself or not. We see that 0 = sin (7) = 0. Hence it does. Hence the solution is

Y=1Y

=7
3.3.4.8 Example 8

¥ —2y=2Vy
y(0)=1

This one is tricky. As it is also Bernoulli ode. The Bernoulli ode has form 3’ + py = qy"
where here p = —2 and ¢ =2 and n = % It turns out solving this as quadrature causes
a problem with IC due to how the integration works out. Let solve it both ways to show
this.

y = f(y)
=2y +2y
We see right away that by existence and uniqueness, f and g—f are defined at IC. Hence
y

solution exist and unique on some region that includes the point (0,1). To solve as
quadrature we just need to integrate. This gives (using Mathematica’s Integrate)

dy /
= [ 2dx
VY +y
2In(1+/y) =2z +c

Now we need to find c. At IC we have
2In(2) =c
Hence the solution is

2In(1+4/y) =2z +2In(2)
In(1++/y) =z+1n(2)
1+ /Yy = e"e"?
= 2e”

Hence

Vy=2e" -1
y=(2¢" ~1)°
=4e®® — 46" + 1
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This is valid for 2e* — 1 > 0. So it might be better to keep the solution implicit as
VY = 2e® — 1. Let look at Maple’s integrate. It gives

dy /
= [ 2dz
vyt
In(y — 1) + 2arctanh (/y) =2z + ¢

Here is the problem. At y =1 we get In (0). Even though both antiderivatives are correct,
since they both differentiate back to ﬁ, using Maple’s result causes problem solving
for the constant of integration since its anti-derivative is complex valued for all y. Let now
solve the same ode using Bernoulli method. The form is

Yy +py=qy"

where here p = —2 and ¢ = 2 and n = 3. Starting by dividing by y2 gives

Let v = y'~" = y2 and therefore v/ = %y_%y’ or i = 2v'yz. Hence the above becomes
20" — 20 =2
vV—v=1

Integrating factor is e~*. Hence d%(e‘% e ?orve ® = —e *+c. Therefore v = —1+ce”.

) =
Which means /y = —1+ ce®. At =0,y = 1 this gives

l1=-1+4c¢
c=2
Hence the solution is
Vy=-—-1+42€"

Which is the same solution using the integration result given by Mathematica. We see
that using Bernoulli in this example makes the integration easier and solving for constant
of integration is also easier.

3.3.4.9 Example 9

cos(y)y =1
y(0) =2

Since this is of form ¢’ = f(y) = Colsy and IC is given then we check if y = 2 satisfies the

ode itself or not. 0 = %(2) does not. Hence we need solve the ode. Integrating gives

/cosydy = /dx

sihny=z+c¢ (1)

Here we can solve for y or keep it implicit until finding c. Let see what happens if we try
to first solve for y.
y = arcsin (z + ¢)
Applying IC gives
2 = arcsin (c)

No solution for c. Lets now go back to (1) and solve for c first from (1) before solving for
y. We obtain
sin (2) =c¢
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This was much easier. Substituting this into (1) gives
siny = z + sin (2) (2)
Now we can solve for y using sin (y) = A = y = — arcsin (A) + 27n + 7. Using this gives
y = —arcsin (z +sin (2)) + 2nw + 7
For n integer. Trying n = 0 gives
y = —arcsin (z +sin (2)) + 7

Which satisfies the ode and the IC. It is also possible to keep the solution implicit as in (2)
in this case also as (2) satisfies both the ode and IC as is and there is no need to explicitly
solve for y.

3.3.4.10 Example 10

Yy =ay -
Integrating gives
1 d
—/%=/dﬂ:
a Y a
1 a
- a.%l :$+Cl
(I/y a
1?—1 =r+a
y a
a—1
yl_(T)=z+cl
a—a+1
Yy o =+
y%:x+01
y=(z+c1)"

3.3.4.11 Example 11

y'sin (') +cos () =y
Since x is missing then this is of the form ' = f(y) we just need to solve for 3. The
solution is in terms of RootOf

y' = RootOf (_Zsin(_Z) +cos(_Z) —y)

Integrating gives

@y = / dz
RootOf (_Zsin(_Z) 4+ cos(_2Z) —y)
y(z) dr
RootOf (_Zsin(_Z)+cos(_Z) — ) ot
Hence the solution is implicit
y(z) dr
v / RootOf (_Zsin(_Z) +cos(_Z) — 1) te=0

We should also find the singular solution since we divided by RootOf (_Zsin (_Z) + cos (_Z) — y).
i.e. ask what is y which will make this zero? Solving

RootOf (_Zsin(_Z)+cos(_Z)—y)=0
For y gives
y=1

Hence this is solution also. We see that if we plug in y = 1 in the ode, this is correct
solution.
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3.3.4.12 Example 12

W) +4y(¥)’ +68°(y) - (1-4°) v — (3-9") y =0
With IC
Y(To) = Yo
Since z is missing then this is of the form ¢y’ = f(y) we just need to solve for y'. The
solution is in terms of RootOf
y' =RootOf (_Z*+4y_Z° +6y>_ 2> — (1-4y°) _Z— (3—¢°) y)
Integrating gives

dy
= [ d
RootOf (_Z4+4y_Z3+6y>_ 22— (1—-4y®)_Z—-(3—-9%)y) / !

y(z) dr
/ RootOf (_Zi+ 41 254612 22— (1—41%) Z—-(3-19)r) -1 °¢
Applying IC the above becomes

v dr
/o RootOf (_Z4+47_Z3+672_22— (1—413)_Z — (3—73)7T)

y(z) dr
M / RootOf (_Z4+4r_Z3+612_22— (1—473)_Z — (3—1%) 1) =T — T

Yo

3.3.5 Linear ode

Y +p(z)y = q(r)

ode internal name 'linear"

Solved by finding integration factor u = e/?®4 The ode then becomes d%(uy) = ugq.
Integrating gives py = [ pgdz + ¢ or

Y= (/uqderc) L
L
_ ( / o(z) &/ P& gy 4 C) oJ —p()dz

If 1 can not be evaluated explicitly and initial conditions are given as y(zo) = yo then the

integration factor is written as
= elaoP(T)dr

And the solution become

y = (/ q(7) efZO p(r)dr g + y()) a0 —P(T)dr

zo

For an example, if the ode was y' + p(x) y = sin (z) with IC y(z¢) = yo then the solution

is
Y= (/ sin (7) elao P g o yo) eJo —P(T)dT

Zo
On the other hand, If u can be evaluated explicitly (i.e. the integration can be done) but
| pgdz can not (may be because g(z) is too complicated or given as unknown function,
with IC y(zg) = yo then the solution is

v=(/ o) () dr + nlan)) 15

For an example, given ode y' + sin (z) y = ¢(z) with IC y(zo) = yo then the solution is

“" 1

20 e— cos(z)
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3.3.5.1 Example 1

N
y(0)=1

In normal form the ode is

y +p(x)y = q(z)
Hence here we have p(z) = % and ¢(z) = z. The domain of p(z) is all the real line
except £ = 0 and domain of g(z) is all the real line. Combining domains gives all the real
line except x = 0. Since initial xq is £ = 0 which is outside the domain, then uniqueness
and existence theory do not apply. Solving gives

Y= 232 — 12¢/7 — 62 — 12+ c1eV®
Applying IC

1:—12+Cl
01:13

Hence solution is
y=—-272 — 127 — 6z —12+13e¥®* z#0

In this case, solution exists and unique.

3.3.5.2 Example 2

y -2 =0
X
y(0) =1

In normal form the ode is
Y +p(z)y = q(z)
The above shows that p(z) = —1.The domain of p(z) is all the real line except z = 0.

Since initial zy is * = 0 then uniqueness and existence theory do not apply. We are not
guaranteed solution exist or if it exist, is unique. Solving gives

Yy =acax
Applying IC gives
1=0

Which is not possible. Hence no solution exist.

3.3.5.3 Example 3
' + 2y cot (27) = 4z csc () sec? ()
In normal form the ode is
y' +p(x)y = q(z)

Hence here we have p(z) = 2 cot (2z) , g(z) = 4z csc (z) sec (z)°. Therefore the integrating
factor is

— ef p(z)dz

— ef 2 cot(2z)dx

L

—1In(1+cot?(27))
1

/14 cot? (2z)

=e
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Then the ode becomes

< (ym) = i csc () sec” (o)
d 1 1 2
%(y\/u—t@x)) = vt ag) @) 2)

4z csc () sec? (x)

y —_—
1+ cot? (2z) 1 + cot? (2z)
4
1+ cot? (2z)c1 + \/HT/ @ csc (z) sec (x)d
1+ cot2 21)

3.3.5.4 Example 4

y' +ycot (z) = cosz
y(0) =0

In normal form the ode is
Y +p(z)y = q(x)

Hence p = cot(z). Because cot (z) is ( 5 which is not defined at = 0 then uniqueness
and existence theory do not apply. Here we have p = cot (z),q = cos (x). Therefore the

integrating factor is

— ef p(z)dz

_ ef cot(z)dx

I
eln(sinm)

=sinz
Then the ode becomes

d —(yu) = pcosx
dz Yu) = p
d

—(ysinx) =sinxcosz
dz y

ysinz = /sin:ccosx dz +c;

1 1 )
y=—c + — sinzcosx dz
sinx sin z
1 1 sin’z
= - C1 .
sin x sinx 2
1 sin x
= — C1
sinzx 2

ysinx =c¢; + §sinx

At y(0) = 0 the above results ¢; = 0. Hence the solution is

sin x
2

y:
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3.3.5.5 Example 5

sin x

Y —yeot (z) = ——3

y(o0) =

In normal form the ode is
Y +p(x)y = q(z)

sinx

Hence p(z) = — cot (z) and g(z) = —=;*. Not defined at IC, hence then uniqueness and
existence theory do not apply. The integrating factor is

p=e [ p(z)de

_ ef—cot(x)dx

— o~ In(sinz)
1

 sinz

Then the ode becomes

d

75 k) = pa(z)
d 1 . 1 sinz
dx ysinx " sinz \ 22

1
.y =—/—2dx—|—c
sin x x

Applying IC gives
1
O = qj —_
sin () (x + c)

Either sinz =0 or (% + c) = 0. We look only at second equation, since that one has the
c in it which we want to solve. hence

1
(— + c) =0
z
As £ — oo then % — 0 and we obtain ¢ = 0. Hence the solution is

_ sin ()

3.3.6 Separable ode

= f(=) 9(y)

The following flow chart gives the algorithm for solving separable ode.
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Figure 3.4: Flow chart for first order separable

ode internal name "separable"

Solved by separating and integrating. %ﬁ = f(z). Integrating gives | édy = [ fdz. If
it is possible to do the integration of the LHS then explicit solution in y is obtained else
the solution is implicit. The most difficult part is to determine that a given expression
F(z,y) is separable or not. i.e. given ¢’ = F(z,y) to find f(z) and g(y) . Code in solver is

over 600 lines long just to determine this due to many edge cases.

Singular solutions are found by solving for y from g(y) = 0.

3.3.6.1 Example 1

Solve

y =1y’sinz
y(0)=0

From uniqueness and existence theory we see that solution to 3 = y3sinz exist and is
unique. This is because f = y®sinz is continuous everywhere (hence solution exist) and
fy = 3y*sinz is also continuous everywhere (hence uniqueness is guaranteed).

This is little more tricky than it looks. Notice that y = 0 at z = 0. This is special IC,
because this means if we start by dividing both sides by y? to separate them as we normally

do, this gives
d

y_:;’/ = sin zdx
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But when we get to later on (after integration and adding constant of integration) to solve
for ¢ we will have problems. The reason is, we should not divide by y in first place, since
y = 0 at initial conditions. In this special IC case, then at = 0 the ode is

y=0

Hence y = C. But since the solution is guaranteed to be unique, then C; must be zero
to give y = 0 as only one value of y(z) can exist. Hence this is the solution. This way we
do not even have to integrate or solve for constant of integration. If we were not given IC,
then we do as normal and now can divide by y. Assuming y # 0 then the ode becomes

@zsinxdx y#0

Y3
Integrating gives
1
_2_y2 = —cosx+c
1
— = 2cosz — 2¢
]
1
— =2c0sT + ¢ (1)
Y
Hence . 1
vy = 2cosx + c;
Therefore
1
y==+ (2)

V2cosz + ¢

So we should always start, when IC are given, by checking uniqueness and existence and
never divide by y if y = 0 at initial conditions. In all other cases, we can divide to separate.
Lets do more examples on this to practice.

3.3.6.2 Example 2

Solve

y =ylz—1)
y(2) =0
f =1y(z — 1) which is clearly continuous everywhere and so is f,. Hence it is guaranteed

that solution exist and unique. Since y = 0 at initial conditions, then we can’t divide by
y to separate. So we use the alternative method. At IC the ode itself becomes

y' =0
Hence
y=c
Since y is constant, then y = 0 because it can only have one value due to uniqueness.

Therefore the solution is
y=0

Let now look at the general case to make things more clear.
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3.3.6.3 Example 3

Solve
y = f(y) g(z)
Such that f(y) g(x) is continuous everywhere and f,g is also. Hence it is guaranteed that

solution exist and unique. Let initial conditions be such that f(yo) = 0. For example, if
f(y) =y and y(0) = 0. In this case, we can not separate using

dy

5 =9 fly) #0
W (z) (v) #
Since f(y) = 0 at I.C. So we use the short cut method. Substituting IC into the ode gives
y'=0
y=c

But since the solution is unique, then C; = 0 since y = 0 is given and only one solution
y(x) can exist. Hence this is the solution.

y=0

So the bottom line is this: Given a first order ode ¥’ = f(y) g(z) where the solution exist
and unique and f(y) = 0 at IC, then the solution is always

y=0
Lets look at another special case ode.
3.3.6.4 Example 4
Solve
y =2
x
y(0) =1

We see that f = £ is not continuous at = 0. Hence by uniqueness and existence theorem,
there is no guarantee that solution exist. (Notice we do not say that no solution exist,
as there might be one, but there is no guarantee that one exists using the theorem).
Integrating gives

d 1
/—yz/—d:c y#0

Y x

Iny=Inz+c

y=cx

Applying IC gives 1 = 0, hence no solution exist. When no solution exist, we do not need
to consider singular solutions.

3.3.6.5 Example 5

Solve
Yy =2z/1—19y?

Integrating gives

/\/;i—fin:/Qxdw VI—12#£0

arcsin (y) = 2° + ¢

y = sin (3:2 + c)



CHAPTER 3. FIRST ORDER ODE F(z,y,y') =0 38

The singular solution is found by solving for y from /1 — y2 = 0. This gives y> = 1 or
y = £1. Hence the solution is

y = sin (:v2 + c)

y =
y=-1
3.3.6.6 Example 6
Solve
,  1—cos(2y)
10
y(oo) = gﬂ

The ode becomes

1 1 +
—_ — — s
2tany T
Applying IC
1
— =cC
2tan (P)
_ 1
2V/3
Hence solution (1) becomes
1 1 1

If we want explicit solution then
2 1
y = arccot (— + g\/g) +nm
x

By checking few n, it turns out that n = 3 is the one needed such that IC are satisfied.
Hence

2 1
y = arccot (5 + g\/§> + 37

3.3.6.7 Example 7

Solve

23y —siny =1

y(o0) = b
Writing the ode as
1+ s
VEECL VR
x
Shows it is separable
dy dx

1+siny s
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/ dy  [dz
1+siny J a3

Integrating gives

—2 = L +c
tan (¥) + 1 22
2 1
tan (¥) + 1 T 22
2 _1-2z%
tan (¥) + 1 T 2x2
Yy 42
-
anly) t =1 0
y 42
(l) -
M\2) T 1222
Y 4% — (1 — 2z%¢)
tan () =
M\ 1— 22%
y 4z? — 1+ 2x°%c
w(t)-
M\ 1— 22%
Hence
472 — 1 + 222
gzarctan(xl_;;cxc)—i-wn n e 7z
472 — 1 + 222
y = 2<arctan ( ° - 2—;203: c) + wn) (1)
Applying IC gives, and taking limit lim,_,., (%) = —*£2 assuming c # 0 then
(1) above becomes
4+ 2
5t = Q(arctan <— + c> + wn)
2c
442
= 2arctan (— + c) + 271n
c
5T — 21N arcta 4+ 2¢
2 2c
2mn — 57 (4 -+ 26)
T = arctan

The range of arctan is —5 to 7. Hence we need WT_M to be in this range. This means
27mn — 57 should be between —r- - - w but not including the edge points. Value of n which
allows this is n = —2. (but n should be an integer. There is no integer solution.) Hence
this leads to no solution.

Now we go back to (1) and take the limit assuming ¢ = 0.

422 —1+42z2¢

oy ) assuming ¢ = 0 gives co. Hence

Applying IC gives, and taking limit lim,_, (

(1) becomes

5t = 2(arctan (00) + 7n)
57 =2(7 ) +2mn
Om =T+ 27N

om — T = 27N

n=2
Hence (1) becomes (using ¢ = 0,n = 2)
Y= 2(arctan (41'2 — 1) + 27r)
= 2arctan (42 — 1) + 4

This solution satisfies the ode now and the IC.
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3.3.7 Homogeneous ode (class A)

/-r()

This is called Homogeneous type A in Maple. Solved by substituting y = ux which converts
it to separable ode. A homogeneous ode has the form ¢ = f(z,y) where t f(z,y) = f(tz, ty).
In solving these types of problems, separable is called. It is best to return implicit solution
from separable and not explicit. This makes the substitution u = ¥ easier. If explicit

solution is needed, it can be done after this operation is done.

ode internal name "homogA"

3.3.7.1 Example 1

zy' —y—2yz =0

Y. 2
y_x—'_xvyx
For real z
dy YT
hut: 2./2=
dx + x2

Let u = ¥, hence % = xg—g + u and the above ode becomes

T— +u=u+2u
dx
zd—u=2ﬁ
dx
d—?zgda: Vu #0
uz X

Which is separable. If we do not obtain separable ode, then we have made mistake.

Integrating gives
-1 2
/ uzdu= / —dx
x

2u? =2Inz + ¢
u: =Inz + co
Replacing u = £ gives
\/Q =Inz+c
x

The singular solution is u = 0. Which implies y = 0. Hence the solutions are

SHES

=Ilnz+c

=0

<
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3.3.7.2 Example 2

dy 2y —wy
dr ~ 3wy — 222
Let y = uzx or u = £, hence fily = 3—’; + u and the above ode becomes

du 2u2z? — 22u

dz "7 3z2u— 202

xd_u+u:2u2—u

dx 3u—2

du 2u2 —u
dm 3u—2
C2u—u u(3u—2)
T 3u—-2  3u-2
(2 —u) —u(3u—2)
B 3u—2
_2u2—u—3u2+2u
B 3u— 2
_ —ul4u
T 3u-—2
~u(l—u)
T 3u-—2
Hence

du (1Y) [(u(l—u)
dr (E) ( 3u — 2 )
Which is separable. If we do not obtain separable ode, then we have made mistake.
Integrating gives
3u—2 1 u(l —u)
/u(l_u)du=/5dz 3u—2 70
—2lhu—In(u—1)=hz+c

Replacing u = £ gives

Y Y _

—2In <5> —In <——1> =lnzx+c
2 _

In (x_z) —In (y z) =lnz+c
Y
2

ln(x)+1n( ):lnx—i—cl
y? y—x

Applying exponential to each side gives

) (5=5) -
u(l-u) U) _

Singular solution is when = —* = 0. This gives v = 0 and u = 1. Hence this implies y = 0
and y = x. Therefore the solutlons are

() (yfx)

=0
y=x
Lets say that we had also initial conditions y(1) = —1, then the above gives
(1) =
1
—— = C
g =@

Therefore the solution (1) becomes

() (Z2) =
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3.3.7.3 Example 3

dy _ 2(2y — )
dr  z+y
y(0) =2

Let y = uzx or u = £, hence d—Z = mg—z + u and the above ode becomes

du 2(2uz — x)
r—+u=—"-—-
dzx T+ uzr
xd—u—i-u: 2(2u —1)
dx 14+u
xd_u= 2(2u —1) B
dx 14+u
C22u—1) —u(l+u)
N 14+u
_ —u?+3u—2
N 1+u
This is separable
1+u —u?+3u—2
_u2+3u_2du=5da: 1+u 7

Integrating
1+u 1
/—u2+3u—2d“_/5d”"
—3ln(u—2)+2In(u—1)=Ihz+c

Replacing u = £ gives

—3ln(%—2)+2ln<%—1> —Inz+c

—31ln (y—?a:) +21n <u) =lnz+e¢
T T

3 2
T y—z\
In (y—Zx) —I—ln( - ) =lnz+c (1)

Singular solution is when % =0or u = 1,u = 2. This implies y = =,y = 2x. Hence

the solutions are
T 3 —z\?
ln( ) —I—ln(y ) =lnz+c¢
Yy —2x T

y==z
y=2

Note on the power rule for log. nln (m) = In (m") is valid for m > 0 and in real domain. So

in this above we implicitly assumed this is true in order to write —31n (%2””) as In <y_“”2w) .

Now, taking exponential of (1) gives

3 2
x y—z\"_
=) (57) ==

2 (y—az)° .
(y—22)° 2
sly—a° _
(y — 2z)°
(y - .’I?) =¢ (2)

(y —2z)°
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At y(0) = 2 then

(2)°

1
p=a
Hence the solution from (2) becomes
-2 _1
(y—22)° 2

It is important in these kind of problems where left side has In as function of y(z) is to
take exponential. Lets see what happens of we do not. Starting again from (1) and let us
try to solve for IC from (1) as is

3 2
ln< v ) +ln<y x) =lnz+c
Yy —2x T

At y(0) = 2 the above becomes

2 2
In (0)* +In (6) =In0+c
We see this will not work. These types of issues are easy to work around when solving by

hand and looking at equations. But very hard to program since the code has to handle
any form of expression.

3.3.7.4 Example 4

dy Y
Z =14+
dx +2x
y(0)=0

The RHS is not defined at x = 0, therefore existence and uniqueness theorem does not
apply. Lets solve this as linear ode and not as homogeneous first to show that we obtain
same solution. It is much easier to solve this as linear ode.

dy y

-~ _ 2 1

dr 2z

Integrating factor is I = e/ —2d® = gmanT = g3 = \/LE Hence the above becomes

Z(uyl) =
)
Integrating
Y 1
< — | —d
=2Vz+c
y=2r+cVzx
At y(0) =0
0=0+(0)c

Which is true for any c. Therefore there are infinite number of solutions. The solution is

y=2x+cyz
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Now we solve as homogeneous ode. Let y = ux or u = ¥, hence

above ode becomes

T +u—1+um
dx o 2x
xdu+u—1+u
dx o 2
xdu_1+u U
dr 2
du_2—u
de 2
This is separable
2 1 2—u
2_udu—5dw 5 # 0

Integrating

/ 2 du=/ldx
2—u T
—2In(u—2)=lhz+c

=In(c1z)
Replacing u = £ gives
—2In (g —2) =In(cx)
x

—2In (% - 2) —In(cz) =0
(G —ara) =

_r
o (y — 2z)°
T =ci(y — 2z)°

Taking exponential

=1

Singular solution is when u = 2 or y = 2z. Hence solutions are

z=ci(y — 2z)°
y =2

Apply IC y(0) = 0 on the above general solution gives
0= C1 (0)

Which is true for any c¢;. Hence solution is

1
—Vr=y—2z
6]
1
y=2z+—+x
C1
Or
Yy = 2T + co\/x

dy _

de —

x% + u and the

Which is same as earlier solution. Note that when ¢, = 0 we obtain the singular solution
y = 2z. Hence this is not really a singular solution as it can be obtained from the general

solution for some value of ¢, and should be removed now.
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3.3.7.5 Example 5

dy _y*—2*—2uxy
dr  y? —z2+2zy
y(1) = -

At x =1,y = —1 then f(z,y) = V=220 io defined. And fy is also defined at z =1,y =

2 $2+2
—1. Hence a unique solution ex1st

Let y = ux or u = ¥, hence l = z - +u and the above ode becomes

w?r? — 22 — 2ux?

U
xﬁ—i—u u?x? — 12 + 2ux?
. u+u_u2—1—2u
dzx u?2—1+2u

du u?—1-2u
x_ —_— e —_—
dr u?—-14+2u
u? —1—2u—u(u? — 1+ 2u)

w2 —1+42u
v +u+l
u2 —14+2u

This is separable.

du/ uw+2u-—1 -1
de\wd+uw+u+1l) =z

Integrating gives

u? +2u—1 1
du=— [ —dz
w4u+u+1 x
—In(l+u)+lh(1+v’)=—-lnz+q
Replacing u = £ gives

2
—ln(l—}-%)—l—ln <1+%) =—lnz+e¢

Applying exponential to each side gives
@+ ( >
(753) () =
rT+y B
(5) () -
r+y

2’ +y’ = a(z+y)
x—l—y

= 1
=" (1

Applying IC y(1) = —1 to the above does not work to solve for ¢; due to § which means
c; = oo. In this case we have to solve explicitly for y and then take the limit as ¢; — oo.
Solving for y from (1) gives gives

1 1
Y1 = 561 + 5\/6% +4zc) — 412
—1c 1\/cz+4xc 4x2?
Y2 = 21~ 5Va 1
Taking limit lim., ., y; does not give finite solution. But lim., ., y2 = —x Hence the

solution is
y=-z
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3.3.7.6 Example 6

At £ =0,y = 1 then f(z,y) =

@ _ —3yx
dr  3x2 +12
y(0) =1
—3y—x

3x2+y2

Hence a unique solution exist.

is defined. And f, is also defined at z = 0,y = 1.

Let y = ux or u = %, hence % = zg—’; + w and the above ode becomes

This is separable.

Integrating

Solving for u gives

Hence

m@+u=—_3uw2
dx 3x? + u?x?
du _ —3u
x%+u—3+u2
du  —3u
dr ~ 3+u?
—3u — u(3 + u?)
N 3+ u?
_ —bu—u?
34wl
3+ u? 1
——6':_— 5 du = de
3+ u? 1
[ e
1 1.,
—ilnu—zln(u +6)=Inz+c

1 1
—élnu — Zln (u2 +6) —Inz=Inz+In¢

U = — —3—% 36+x4id11
Uy = —3—% 36+x4ic‘11
Uz = — —3+% 36 + fc%
Uy = —3+% 36+m4ic‘11
%:— —3—% 36 + fc%
%: —3—% 36+x4ic%
B —3+% 36+96%11
L —3+% 36+mfc4
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or forzx >0

h=— —3z2——‘/36w4+—
Yo = —3:02——“ x4+—
Y3 = — 3z2+—1/36x4+—
Ys = | =323 + —1 /364 +

Applying IC y(0) =1

|

—_

[l

|
r—(\?hl =

—
I
|
r—(\?ul =

|
—_
I

)—QM =

or

|

—_

[
.—\Qﬁl =

|

—_

I
.—\Qﬁl =

—_
I
.—\Qpl =

—
[l
| —

1
&

Throwing the first 2 since complex. Then ¢; = 1. Hence
1
y= \/—3m3 + §v36m4 +4
= \/—3z3 + vzt +1
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3.3.7.7 Example 7

d_y_x+y
dr z—y
y(1) =0

Let y = ux or u = %, hence %;1 = zg—’; + w and the above ode becomes

U T+ ux

T— +u=
dz T — U
du 14w
z£+U— 1—u
du 14+u

x£=1—u_“

du  14+u  u(l—u)
x%— l-u 1—u
(14+u)—u(l—u)
(1—u)

[aroatizan= /=
[ ai= G

1
3 In (u® + 1) — arctan (u) = —In(z) + ¢

This is separable.

But v = £, hence the above becomes

1. [y Y\ _
3 In (; + 1) — arctan <5> =—In(z)+c
Applying IC
1
3 In (1) —arctan (0) = —In(1) +¢
c=0

Hence the solution becomes
2

1. (Y AN
Eln (; + 1) — arctan <E> = —1In(z)

3.3.7.8 Example 8

dy —y*— 3ty
dt 2 +yt
y(2) =1
Let y = ut or u = ¥, hence %zt%—l—uamd the above ode becomes
td_u+u=—u2t2—3t2u
dt 12 4 ut?
-
dt 14+u
du  —u®—3u
dt - 1+u
_ —u?—3u—u(l+u)
B 1+u
_ —u?—3u—u—u?
B 1+u
—2u? — 4u

1+u
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Which is separable.

Tt
1 14+ u 1
5/(u2+2u)du__/zdt
1
Eln(2u+u2):—21nt+cl
In (2u—|—u2) =—4Int+cy

Or
2u+u? = Cy
But u = % Hence the above becomes
Yy (Y\? 1
o (3 =k 1
t T\ T%n (1)

Hence (1) becomes

() -

22 ==
t+ t

V420
B t
—t2 — Vt1 420

t
Whenever we get more than one solution, we should verify each solution satisfies the ode
and IC as some can be extraneous When we do this, we will find both solutions satisfy
the ode itself, but y, does not satisfy the IC. Hence it is now removed. The final solution

is therefore
2+ VR 420
N t

Or

n

Yo =

Y1

3.3.7.9 Example 9

zyy =1 +z\/42? + ¢
Let y = ux or u = £, hence 3 = zu’ + u and the above ode becomes
?u(zu + v) = v’z? + 2v42? + ula?
g?u(zu’ + v) = wz? + 224 + u? >0
u(zu +u) = v+ VA +u?
uzy’ +u? = u? + Vi +u?
uzy' = VA4 +u?
S LVt
T u

Y du = 1dac
V4 +u? T

/ Y du—/ldx
Vita p
Vi+ui=lnz+¢
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But v = £, hence the above becomes

Y2
4+—2=Inx+cl
T

Az? 2
x——;y=lnx—|—cl
T
Or forx >0
VT
— =Inz+¢

T

3.3.8 Homogeneous type C ¢y = (a + bx + cy)%

ode internal name "homogeneousTypeC"

Ode has the form ¢y = (a + bz + cy)% where n, m integers. Solved by substituting z =
(a+ bz + cy) .

3.3.8.1 Introduction

This note is about solving a first order ode of the form y' = (a + bx + cy)% and ¢y =
(a + bz + cy)™ where n,m # 1 and are integers. This is of the form ¢’ = f (x,y)% and
v = f(z,y)". Where f(z,y) must be linear in both y and z. The reason it needs to be
linear in x so that the transformed ode in z becomes separable.

One way to solve y' = (a + bx + cy)% is to raise both sides to n. For example for n = 2
the ode becomes (y')* = (a + bz + cy) which can be solved as d’Alembert.

This is what Maple seems to do based on what the Maple advisor says about the type of
this ode being d’Alembert.

But the problem with squaring both sides or raising both sides of ode to some power is
that this will introduce extraneous solutions to the original ode. Hence it is will be better
to avoid doing this if at all possible.

The following methods solve these odes without having to square or raise both sides to
same power and eliminate the introduction of extraneous solutions.

It is important to note that f(x,y) must be linear in z,y and not have product terms zy.

3.3.8.2 Solving ¢ = (a + bz + cy)%

For n integer # 1 which can be negative or positive, the ode is

% = (a—i—bx—i—cy)% (1)
Let z = a + bx + cy then
dz dy
d——b+C£

Hence (1) becomes

/czrlcziz-l— b N /dx @
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If the left side is integrable, then the solution to (1) can be found. For n integer it is
possible to find antiderivative. For example for n = 2 then (2) becomes

%\/E— 2b1n (b + cy/2)

Replacing back z = a + bx + cy the above becomes

=z+C

c2?

2bIn (b+cva+b
%x/a-l—bw—l-cy— n(b+evatbo+oy) =z+C (3)

c2

Which is the implicit solution to (1).

To show that the above does not work if we had zy term, lets give an example. Let
1 dz _

Yy = (a+zy)?, then following the above, let z = a + zy and 3—; =y+axy ory = d”Ty
dz

Hence 22 = da = Yor zz2 + y = &£ and this is not separable. (it is Chini ode, where is very

hard to solve)
for n=2. Usinga=1,b=1,c=1 Eq. (1) becomes

dy
dr

N

=1+z+y)
And (3) becomes
2/1+e+y—2ln(1+/I+z+y) =2+C (4)
And for n = 3 Eq. (2) becomes
3(—2b+ cz3 362In (b + cz3
(arved) | wmfored)

2c2 c3

Replacing back z = a + bx + cy the above becomes

=z +C)

3<—2b+c(a+bz+cy)%> 3v” In <b+c(a+bx+cy)é>

1
2c2 2 3 =z+C (5)
Which is the implicit solution to (1) for n = 3. Using a = 1,b = 1,c¢ =1 then (1) becomes
dy 1
-1 3
0y = (L+z+y)

And its solution (5) becomes

3 . . .
5<—2+(1+ac+y)§>(1+:c+y)§+31n<1+(1+ae+y)§> —z+C

And so on for higher values of n. This also works negative values of n. For example, for
n = —2 then (1) becomes

dy
dz
And the integral equation (2) now becomes

/ /d:c
czw +b

b_lg(—ch\/E +b%2+2P1n (c + b\/E)) =z+ C4

= (a—l—bac+cy)_7l

Which for n = 2 gives

Replacing back z = a + bx + cy the above becomes

%(—%c\/a—l-bx+cy+b2(a+bz+cy)—|—2czln <c+b\/a+bx—|—cy)) =z+C)

For a =1,b=1,c =1 the above becomes

<—2 1+x+y+(1+w+y)+21n<1+\/m>> =z+Cy

And so on.
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3.3.8.3 Solving ¢ = (a + bz +cy)™

For m integer # 1 which can be negative or positive, the ode is

dy

i (a+bx+cy)™ (1)
Let z = a + bx + cy then
dz dy
% —b+0%

Hence (1) becomes

/cz’jz—i-b =/d:c @)

If the left side is integrable, then the solution to (1) can be found. For m integer it is
possible to find antiderivative. For example for n = 2 then (2) becomes

L arctan (\/§z> =z+C
Ve b '

Replacing back z = a + bx + cy the above becomes

1

N arctan (\/%(a + bz + cy)) =z+C (3)

Which is the implicit solution to (1).
for m = 2. For an example, for a = 1,b=1,c¢ =1 Eq. (1) becomes

dy_ 2
dm—(l-i-z-l-y)

And (3) becomes

arctan (1+z+y) =z + C;
1+ z+y=tan(z+ Cy)
y=tan(z+C))—1—2x (4)

And for m = 3 Eq. (2) becomes

- 1-2(¢)s L o
%Tlc(%/garctan (%) —92In <b§ +c§z> +1n <b§ — b3cs +c3z2>> — 2+C,

Replacing back z = a + bx + cy the above becomes

W=

—_— 1_2 £ % b 1 1 2 11 2
! (2\/§arctan( () (a+ w—i—cy)) —2In <b§ +c§(a+bx+cy)> +In (b§ —b3cs +c3(a+ b

6b3c3 V3
(5)
Which is the implicit solution to (1) for m = 3. Using a = 1,b = 1,¢ = 1 then (1) becomes
dy 3
% _ 1
Ir (14+z+vy)

And its solution (5) now simplifies to

-1 1-2(14+z+y) 2\ = 4
?(2\/§arctan( 7 )—21n(2—|—z+y)+ln((1+x+y) ))— +
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And so on for higher values of m, but solution get complicated very quickly. This method
also works for negative m.

For example, for m = —2 then (1) becomes

Z_:Z =(a+bz+cy)”

And the integral equation (2) now becomes

/cz_2 +b /d:c
\/carctan <\/§z>

z
E— b% =x+01

Replacing back z = a + bx + cy the above becomes

a+bz+ ey \/carctan <\/§(a+bx+cy)>
; _

Which gives

=x+C’1

S
Nlw

For a =1,b=1,c =1 the above becomes

(l+z+4+y)—arctan(l+z+y)=z+C
arctan(l+z+y)=(1+z+y) —z—C;
arctan (1+z+y)=1+y—-C;

( )

arctan (1+x+y) =y + Cs

And and so on for = —3,—4,--- as all of these are integrable but become complicated
very quickly and the computer is needed to find the antiderivatives in these cases.

3.3.8.4 Examples

=

3.3.8.4.1 Example 1 ¢ = (1+5z+y)
simplifies to

Let z=1+5z+y, then % =5+ /. This

y=2-95
1
(1+2°+y)> =2 -5
zi=27 -5
d
ézz%-l—S
Which is separable. Hence
d
1Z =dx z%+57é0
z2 +9

2y/z—5In (5++/2) +5In (vz2—5) —5In(z — 25) =z + C;

Hence the implicit solution is

2145z +y 5ln<5+\/1+5x+ >+5ln<\/1+5x+y—5> _5ln(14+bhrt+y—25)=xz+C
2\/1+5x+y—5ln<5+\/1+5az+y>+5ln<\/1+5x+y—5> 5z +y—24)=z+C)
(1)

The above method is now compared to using d’Alembert for solving the ode, which results
after squaring both sides of the given ode. Squaring the ode gives
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()" = (L+5z +y)
y=(y)—-1-5z
=a(=5)+ (P - 1)
= zf(p) + 9(p) (2)
Where p = Z—Z. This is d’Alembert of the form y = zf(p) + g(p) where f(p) = 5 and
g(p) = p? — 1. Taking derivative of (2) w.r.t. = gives
daf dp | dgdp
dpdx  dpdx
p-10)= (a5 + ) 2 Q
Using f(p) = 5 and g(p) = p? — 1 the above becomes

dp
—5=9p-2
P m

dp _p—5

dr  2p

p=f(p)+=z

Which is separable. Solving for p gives
p = 5 LambertW <%elwo_l) +5

Substituting this back into (2) gives

2
y=—bz+ ((5 LambertW (ge%*) + 5) - 1) (4)

This is an explicit general solution for the ode y' = (1 + 5z + y)%. The singular solution
is found when 2 = 0 in (3) which gives
p—5=0
p=2>5
Eq (2) now becomes

y=-5z+ (5°—1)

=24 — b5z (5)
However, and this is the problem with squaring the ode, it can be shown that both solution
(4) and (5) do not verify the given y' = (1 + 5z + y)%. What went wrong? They do verify
the ode ¥y = —(1+ 5z + y)% (with minus sign). This example shows why one must be
careful when squaring both sides of an ode and solving the squared version. Therefore It
is better to avoid the squaring operation and to try to find a method to solve the original
ode in its original form.

3.3.8.5 References

1. will-squaring-both-sides-of-the-ode-change-its-type| Thanks to this answer which gave

the main hint on how to solve such ode. I expanded this idea for a more general
cases and different exponents.

2. |Wikipedia entry on D’Alembert’s equation| This show alternative method to solve
the ode for 1.

3. |Wikipedia entry on Riccati equation|

4. |Wikipedia entry on Abel ode|

5. paper: Exactness of Second Order Ordinary Differential Equations and Integrating
Factors by R. AlAhmad, M. Al-Jararha and H. Almefleh


https://math.stackexchange.com/questions/4489716/will-squaring-both-sides-of-the-ode-change-its-type
https://en.wikipedia.org/wiki/D%27Alembert%27s_equation
https://en.wikipedia.org/wiki/Riccati_equation
https://en.wikipedia.org/wiki/Abel_equation_of_the_first_kind
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3.3.9 Homogeneous Maple type C

,_ (=)
9(z,9)
ode internal name "homogeneousTypeMapleC"
This is different than the above homogeneous type C. This has the form 3y’ = % solved

by transformation x = X + xg,y = Y + yo. If able to solve for yq, o then the ode becomes
Homogeneous type A.

So what is homogeneous ode of class C ? It is an ode y' = F'(x, y) which is not homogeneous
ode of class A but using the transformation z = X + zo,y =Y + 1o it can become one.

This means if given an ode and it is not homogeneous ode of class A then if such trans-
formation can be found to convert it to one, it is called homogeneous ode of class C.
The transformed ode is then solved in Y (X) as homogeneous ode and the solution is
transformed back to y(z) using x = X + zo,y = Y + yo. This however required finding (if
possible) the xg, yo. This section illustrates this method with an example.

3.3.9.1 Example 1

; 8y? + 122y — 10y — 6z + 3
v= Y2+ 6zxy — 2y + 922 — 6z + 1
Using methods in earlier sections it can be shown that this is not isobaric for any degree
including m = 1 (which means it is not even homogeneous ode of class A, which is special
case of isobaric). Let

.’E:X-i-xo
y=Y +yo

The above ode becomes

v 8(Y + o) +12(X +20) (¥ +30) = 10(Y +3y0) — 6(X +0) +3 "
(Y +50)* + 6 (X + 20) (Y +50) —2(Y +50) +9(X +20)° —6 (X + o) +1

= F(X,Y)

The question now becomes how to find zg, yg such that the above ode is isobaric of degree
1. (i.e. homogeneous ode of class A). Earlier section showed that this becomes the condition
that yor
_ox

Y 5

Where m = 1. Applying the above to (1) and setting m = 1 gives

m =

2)

(Y +0)%46(X+z0) (Y +y0)—2(Y +y0)+9(X +20) 2 —6(X +z0)+1

% i( 8(Y +10)2+12(X +20) (Y +90)—10(Y +y0) —6(X +20)+3 )
(Y +90)2 +6(X +20) (Y +y0) —2(Y +y0)+9(X +z0) > —6(X +z0) +1

ay
¢ ((=8(BX+3Y +3x0+3y0—2) (2Y +2y0—1)
(yo—1+3z0+Y +3X)°

y (2BX+3Y+320+3y0—2)(6X +6z0-1)
(yo—1+3zo+Y +3X)3

X(—6(3X +3Y +3z0+3y0 —2) (2Y +2yo — 1))
Y (2(3X 4+ 3Y + 3z + 3yo — 2) (6X + 6z0 — 1))

1=322_ 1207 -
Y6X+6130—1

. . e 2Y+2y0—1 _ 1Y . 6Y+6y0—3 __ Y R PR
The above is satisfied if {5 6ol — 3% Which means g 6ol — X This implies if

6yo — 3 = 0 and 6z¢ — 1 = 0 then the equation is satisfied. Therefore a solution is found
which is

Xi( 8(Y +y0)*+12(X+x0) (Y +10)—10(Y +y0)—6(X +20)+3 )
1= — dXx

6yo— 3 =0

Yo =

N~
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And
61170—1:0
:L__l
°7 6

Since transformation is found, then substituting the above 2 equations back in (1) gives
(Y + 1) +12(X+1) (Y+1) —10(Y +1) —6(X + 1) +3

Y+ +6(X+H Y+ -2+ +9(X+1) —6(X+1)+1

3XY +2Y?

(3X +Y)?

=G(X,Y)

I

=4

The above ode is now homogeneous ode of class A. We can verify this using method from
above section as follows

Yy
—X%x@%)
R
< (3X+Y) X+Y))

( 3X+Y)3 X+Y))

We see that this is indeed homogeneous ode of class A. Now this is solved easily using the
substitution Y = u.X. This results in

Y+ X Y 3X-Y
—ln< X )+3ln<x>—31n(— e )—lnX—cl (3)

But from earlier

X =x—x
_ 1
_x_é

Y=y—w
. 1
_y_§

Hence the solution (3) in y(x) now becomes

_ln(y—-+$—%)+3ln(3’ %)—3111(—3(“’_%)_1(?’_%))—m(x—l):cz
T— 2 T—3 T 6

o) o (920 o0 (B (o)

e12-0) i (322) - (85) (o) -

The above is the solution (implicit) to the original ode. The main difficulty with this
method is in solving (if possible) equation (2) when m = 1 which is

For zg,yo. In other words, to find explicit values for x,yo which makes the RHS above 1.
If we can find such xg, yy then the original ode can now be solved. If not, then this method
will not work and we say the ode is not homogeneous ode of class C. Using the software
Maple this can be found as follows
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‘restart;
\eq:=1=3*X/Y*(2*Y+2*y0—1)/(6*X+6*x0-1);
‘solve(identity(eq,x),[xO,yO])

Which gives

L[[xo = 1/6, y0 = 1/2]1]

And Using Mathematica

‘eq = 1 == 3xX/Y*(2%Y + 2%xy0 - 1)/(6*%X + 6%x0 - 1);
‘SolveAlways [eq, {X, Y}]

Which gives

L{{xo -> 1/6, y0 -> 1/2}}

-/

3.3.10 Homogeneous type D

ode internal name "homogeneousTypeD"

The given ode has the form

v =Yt 1 (bY)" (1)

x
Where b is scalar and g(x) is function of z and n,m are integers. The solution is given in
Kamke page 20. Using the substitution y(z) = u(z) z then

@_du

dx_%m—Fu

Hence the given ode becomes

du

o+ u=ut g(z) f(bu)*

o = g(z) (ou)* ()

The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = uz.

3.3.10.1 Examples

3.3.10.1.1 Example 1 The first step is to see if we can write the above as

v =249 f(b2)" (1)
Hence
! Yy 2 _Ty
y = z 56 (2)

Comparing (2) to (1) shows that

n=1

=1
g(z) = —%
b=-1
102) -+
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Hence the solution is

Where u is the solution to

r_ 2 —u
u = —EC
This is separable.
e*du = ——2dx
1
/e“du = -2 —2dx
T
w 2
e =—=40C

Hence (A) becomes
y=zln (E + cl>
x

3.3.10.1.2 Example 2 Solve

y

yr—y—2e""=z=0

The first step is to see if the above can be written as

3B

y = % +9(z) f(bg>

x
Or
/ =Y
yr—y—2"= =0
2 . -
o = Y _ 2o
r x
Comparing (2) to (1) shows that
n=1
m=1
2 T
g(z) = %

Hence the solution is

Where u is the solution to 1
W' = g(a) )

Therefore f(u) = e and (3) becomes

U = — " efe

3)

3)
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This is separable.

2
e"du = ——2e”dx
T
/e“du = -2 e—2dx
T
e

e’ = -2 (—; + Ei (a:)) +c

Where Ei (z) is the exponential integral Ei (z) = [ "'T_tdt. Hence

u=1In (01 —2<—§+Ei(x)))
y=zln (cl —2(—§+E1(x)))

3.3.10.1.3 Example 3 Solve

And (A) becomes

y'r —y — 2sin <3Q> =0
T

The first step is to see if we can write the above as

Y A
v =249 f (b)) (1)
Hence
. Yy
, — — —_— ==
yxr—1y—2sin <3x) 0
Y2 Yy
== — - = 2
y T T St <3:p) (2)
Comparing (2) to (1) shows that
n=1
m=1
2
g(z) = T
b=3
Y\ _ gin (39
£(b7) =sin(3;)
Hence the solution is
Y = uz (A)
Where u is the solution to 1
W = g(@) f(u) Q

Therefore f(u) = sin (3u) and (3) becomes

2
u = — 2 sin (3u)
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This is separable.
1 2
d ——d
sin (3u) “ 22
1 1
———du = -2 d
/ sin (3u) “ / 2%
1 3u 3u 2
3 Insin{ — | —Incos | — =——4q
In sin 3_u —Incos 3— = —§ +c
2 2) 7
i (3u
SLCY R
cos (7“)
<3u
Intan [ — | = —— + ¢
2
tan S—U =c e‘g
5 | = C3
3u _s6
7 = arctan <03e z)
2 _6
u = — arctan (c3e w)
3
And (A) becomes
= gx arctan <c e_g)
Y= 3 3
3.3.10.1.4 Example 4 Solve
y = y_2 sin <3Q>
T x
The first step is to see if we can write the above as
Y Y\m
v =249 f (b)) (1)
Hence )
=Y —(sin (39» ’ 2)
T T T
Comparing (2) to (1) shows that
n=1
m=2
2
g(z) = T
b=3
f(bg) = sin <3Q>
z x
Hence the solution is
Yy = ux (A)
Where u is the solution to 1 1
u'=_g(z) f(u)* 3)

Therefore f(u) = sin (3u) and (3) becomes

u = — 2 sin (3u)

N[
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This is separable.
1 2

sin(3u) a2

1 1
[ e [ L
/sin (3u) x

2
= — —|— Cl

| Fammt=s

Leaving the integral as is, since it is too complicated to solve, then using y = ux where u
is the solution of the above.

3.3.10.1.5 Example 5 Solve

y — 22° tan (Q) —yz=0
x
The first step is to see if we can write the above as
=¥ (+?) " 1
y =" +9() f(b (1)

Hence

y — 2z% tan <%> —yz=0

y'r =y —2z3tan (Q)
x

r_ Y _ 52 y
y = . 2z° tan (x> (2)
Comparing (2) to (1) shows that
n =
m =
g(z) = —24°
b=1
Y\ _ o (Y
£(b3) =tan (3)
Hence the solution is
y=us (4)
Where u is the solution to 1
u' = —g(x) f(u) 3)
Therefore f(u) = tanwu and (3) becomes
u = —2zrtanu

This is separable.

1
—du = —2zdz
tan

idu = —2/xdw

tan
In (sinu) = —2* +¢;
. 2
sinu = cye™*

. 2
u = arcsin (cze r )

Hence (A) becomes

. 2
y = T arcsin (@e x )
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3.3.10.1.6 Example 6 Solve
y = Y + T sin (Q)
x x
The first step is to see if we can write the above as
Y (by> m 1
y = +9()f(b (1)
Hence
y =Y 4 zsin <Q> (2)
x x
Comparing (2) to (1) shows that
n=1
m=1
g(z) =z
b=
1) =0 %)
x x
Hence the solution is
Yy =uzw (A)
Where u is the solution to 1
u'=—g(z) f(u) 3)

Therefore f(u) = sinu and (3) becomes

u = %(w) sin (u)

This is separable.

1
——du =dzx
sinu

/ _1 du=/dm
sinu

In si u lcosu +
nsin — —In —=z+c
2 2 !

U
lnta,ni =zx+c

5 = Cg€

u

5= arctan (cpe”)
u = 2arctan (c€e”)

Hence (A) becomes

y = 2z arctan (ce”)

3.3.11 Homogeneous type D2

v = f(z,y)

ode internal name "homogeneousTypeD2"

These are ode of any form, in which the change of variables results in either separable or
quadrature ode. Hence given an ode ¢y = f(z,y) the change of variables y(z) = u(z) x is
made and the resulting ode in u(z) is examined. If it is separable or quadrature, then it

is solved for v and hence the solution y = uz is found.
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3.3.11.1 Examples
3.3.11.1.1 Example 1 Solve

,_ y(y® + 32® + 21)
N 2+ y?

Applying change of variables y = ux results in

;o u(wr+3)z+1
w+1l z

Which is separable. Solving this for u(z) by integration gives
1 1 2
/—du:/m—l— da _M¢0

_ w(u?+3) T u2+1
u241

%ln((u2+3)u)+x+ln(w)=01

Hence the solution in y(z) is

%ln((<%>2+3) g) +z+1n(z) =

Singular solution is when u(u?+3) = 0 or u = 0,u = +iy/3 which implies y = 0 and
y = +iv/3z. Hence the solutions are

%ln((<%>2+3> %) +z+In(z) =c

y=0
Y= iV3z
Y= —iV3z
3.3.12 Homogeneous type G
This is what Maple calls this ode of this form
_Up(Y
v= a:F (z"‘)
The solution is implicit as
1 " L dr=20
Il.’IT—Cl-i-/ T(—a—F(T)) T =

Lets look at some examples to better understand the method.

3.3.12.1 Examples
3.3.12.1.1 Example 1 Solve

,_ —y(22%y° +3)
v z (z2y3 + 1)

The first step is to identify if this is class G and find F'. We start by multiplying the RHS
by ¥ (regardless of what is in the RHS) which gives

R e O )
SERTANFICET Y
22?3

o+
= F(z,y)
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Next we check if F'(z,y) has y or not in it. If so, then let the RHS above be F(z,y) and
now do

B 2y3x2
(22y® +1)°
And let

oF
fy - ya_y

B 3722
B y((x2y3 + 1)2)
3y
(@ + 1)

Now we check, if f, = 0 then this is not Homogeneous type G. Else we now need to
determine value of . This is done as follows.

_J=
-7
2

(07

3
If o comes out not to have in it  nor y as in this case, then we are done. This ode is
Homogeneous type G. But we have to do one more check. We have to check that F(z,y)
found above ends up with no z in it. Hence the solution is

(o7

yz 1
Inz — dr=0 1
nzr cl—l-/ T(—a—F(T))T (1)
Now let yz* = 7 or y = 7 and substituting this into F'(z,y) gives
—222(Z)* -3
F(r) = (m 2
2 (=) +1

We see that F(z,y) ends up as F(7) = =22-2 after the transformation. It has no x left

i1
in it. If we end up with x then this method can not be used.

The solution (1) becomes

(o3

yx 1
lnx—cl—|—/ —5 547 =0
T (—a—( 723+13))
2
ve? 3% +3
111113—Cl+/ de:O

Solving the integral gives
Inx —c; + §ln (yx%> + iln (4x2y3 + 7) =0
7 28
And this is the final answer. Now if earlier we have F(z,y) not have y in it. In this case
we check if F'(z,y) has z. If not, then a = 0 and we do the same as above. But if F(z,y)
has x and not has y then it is not not Homogeneous type G.
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3.3.12.1.2 Example 2 Solve

, 2z(—zt - 227y +¢P)
Yy 2 + 222y — ot

The first step is to identify if this is class G and find F'. We start by multiplying the RHS
by ¥ (regardless of what is in the RHS) which gives

oz (2z(=2* - 22%y + %)
vy = yz + 2x2y — rh
_ 2% (z* + 222y — y?)
y (% — 227y — y?)
= F(z,y)

Next we check if F'(z,y) has y or not in it. If so, then let the RHS above be F(z,y) and
now do

OF
fa: - IL‘%

. <4x(x8 — 428y — 6xty? — 4223 + y4))
y (2t — 222y — 1%)°

Az (2® — 42y — 62'y? — 42%y® + )

N y (24 — 202y — %)’

And let

_y < —222%(28 — 428y — 62*y? — 42%y? — 42?3 + y4)>
y? (z* — 222y — y?)*

_ —22%(a® — 42y — 62%y? — 4a?y? — 42’y + o)

N y (24 — 2%y — y?)*

Now we check, if f, = 0 then this is not Homogeneous type G. Else we now need to
determine value of . This is done as follows.

0ol
Jy
=2

If & comes out not to have in it « nor y as in this case, then we are done. This ode is
Homogeneous type G and the ode can be written as

/- 1e(2)
T xe

Hence the solution is

yr 1
lnx—cl-l—/ dr =0 (1)
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Now let y = = and substitute this into F'(x,y) which results in
2 4 2T T
2z (z +2z° 5 — (—

)
O e )

& (ot - 225 - (55)')
2% (z* + 2z — 2472
T2 (24 — 22471 — 7224

2(z* + 2zt — z7?)

|
N—

(

214271 —7?)
:;(1—27'—7'2)
_2(r?-21-1)
S (P +2r—1)

22 1
Inx —c; + / . dr=0
T (2 . (2(7’ —27'—1)))
T (T2427-1)

21 724271
Inz — = dr =0
nx cl-l-/ 27_3_|_7_2+7_+17'

Solving the integral gives

1 2 1 4 2
lnx—cl—éln(x +y)—|——ln<aC 1Yy ) =0

z2 2

3.3.12.1.3 Example 3 Solve

ylz_l 3y2—x
2y (y* — 3z)

The first step is to identify if this is class G and find F'. We start by multiplying the RHS
by ¥ (regardless of what is in the RHS) which gives

J = z(_l?’yz_—w>
y\ 2y(y*>—3z)

_ 13xy*—a?
 2y% — 322
= F(z,y)

Next we check if F'(z,y) has y or not in it. If so, then let the RHS above be F(z,y) and
now do

oF
fx - xa_.’I?

_ 1a(=38y* + 2zy* — 32?)
2 (42 +30)°

And let
OF
fy - ya_y
_ 3zy* — 3a?y? + 323
Y2 (—y? + 3z)°
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Now we check, if f, = 0 then this is not Homogeneous type G. Else we now need to
determine value of . This is done as follows.

If a comes out not to have in it  nor y as in this case, then we are done. This ode is
Homogeneous type G and the ode can be written as

/=25 (%)
x T

(o7

yz 1
lnx—cl+/ 7_(_O[_F‘(T))ah':O (1)

Hence the solution is

Now let y = = and substitute this into F'(x,y) which results in
_ 13xy* —2°

2 y* — 3xy?

1 3:v(zia)2 — 22

2(%)" =3 (%)

F(r) =

The solution(1) becomes

(o3

yx 1
lnx—cl+/ T(—a—F(a))dTZO

v 1
lnx—cl—l—/ - dr =0
(3~ (-375%))

2 74-372

2

Y
e _3
lnx—cl+/f27'T4 dr=0
Tt —1

Solving the integral gives
lnx—cl—lln i—1 —In i—|—1 +21In y_2+1 =0
2 NZ7 NZ7 x
3.3.12.1.4 Example 4 Solve

,_ 1y(1++a% +1)
2 z
The first step is to identify if this is class G and find F'. We start by multiplying the RHS
by % (regardless of what is in the RHS) which gives

, @ (_ly(1+x/x2y"‘+ 1))

_5 2 z

1
= 5 (1+ Ve 1)

= F(z,y)
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Next we check if F'(z,y) has y or not in it. If so, then let the RHS above be F(z,y) and
now do

oF
fac = $%
1 2
2 1
And let
oF
fy = ya_y
—x2y4

IRVZZT RS
Now we check, if f, = 0 then this is not Homogeneous type G. Else we now need to
determine value of . This is done as follows.

1

2

If o comes out not to have in it x nor y as in this case, then we are done. This ode is
Homogeneous type G and the ode can be written as

/- Le(2)
Hence the solution is
yz 1
lnx—cl+/ T(_a_F(T))ch':O (1)

Now let y = = and substitute this into F'(x,y) which results in
1
F(r)= —§<1 + /22yt + 1)
1 4
= —>[1+ /o2 (L) +1>
2 x
1 4
-z 1+\/x2 (;) +1)
2 xr2
1 [ T

= (1+v7I)

The solution(1) becomes

yz* 1
ln:c—cl+/ T(—Oz—F(Oz))dT:O

1 +/M . dr =0
nr—c =
e S )

YV 2
Inz —c —|—/ ————dr =0
' TVTi+1

Solving the integral gives

Inz —c arctanh( 1 )—0
! V1)
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3.3.12.1.5 Example 5 Solve

2 2
y’=x<1+—y+y—4)
X X

The first step is to identify if this is class G and find F'. We start by multiplying the RHS
by ¥ (regardless of what is in the RHS) which gives

x 2 2
y r oz

2

= CC—+2ac+£2
Yy z
_ @ +y)’
3y
= F(z,y)

Next we check if F(z,y) has y or not in it. If so, then let the RHS above be F(z,y) and
now do

oF
f z = 3_x
24 — 22
x2y
And let
oF
f y = ya_y
_ —z* + y?
= 2y
Now we check, if f, = 0 then this is not Homogeneous type G. Else we now need to
determine value of . This is done as follows.

_fz
=7
=2

(07

If & comes out not to have in it « nor y as in this case, then we are done. This ode is
Homogeneous type G and the ode can be written as

/= Lr(%)
x T

Hence the solution is

yz* 1
lnx—cl—i-/ T(—Oz—F(’T))dT_O (1)

Now let y = = and substitute this into F'(x,y) which results in

xAT
zt + 22t + 272*
AT
147427
=
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The solution(1) becomes

o

yx 1
lnx—cl+/ T(—a—F(a))dTZO

Y

lllalc—cl—l—/z2 =547 =0
( <1+ +2 ))

1 - L d
_ _ =0
nx cl+/ 7_2+1T

21
lnx—cl—/ 7_2_|_1d7'=0

Solving the integral gives

Inxz — ¢; — arctan (i) =
x?
y = —tan(c; — Inz) 2?
3.3.12.1.6 Example 6 Solve
¥)" =4y — 2°

Hence
Yy = +\/4y — 12

For the first ode, the first step is to identify if this is class G and find F. We start by
multiplying the RHS by £ (regardless of what is in the RHS) which gives

Next we check if F'(z,y) has y or not in it. If so, then let the RHS above be F(z,y) and
now do

OF
Je = wa
_ 2z(z% — 2y)
R
And let
OF
fy - ya_y
z(x? — 2y)

T iy — a2

Now we check, if f, = O then this is not Homogeneous type G. Else we now need to
determine value of «. This is done as follows.

fz
Iy
=2

a =

If o comes out not to have in it x nor y as in this case, then we are done. This ode is
Homogeneous type G and the ode can be written as

/=25 (%)
x T

Hence the solution is

yx
lnx—cl—l—/ ! . dr =0 (1)
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Now let y = = and substitute this into F'(x,y) which results in

F(r)= E\/41;—:1:2
Y
N P
oV z

Since the requirement is that F'(7) ends up free of z, then the only way to use this method
and simplify the above to eliminate x is to assume x > 0. Now the above simplifies to

F(T):;\/m
The solution(1) becomes
1 - L d 0
nx—cl—l—/ T(—a—F(a)) T=
P 1

— -

A r2-L/Ir—1)"
1 - ! d 0

”‘Cﬁ/ A1

Solving the integral gives long complicated expression which is verified correct. So better
to keep the solution implicit as the above. Now we solve the second ode ¢y = —v/4y — x?
in similar way.

3.3.13 isobaric ode

3.3.13.1 Introduction

ode internal name "isobaric"

This is a generalization of the homogeneous ODE, where the substitution y = v(x) 2™
makes the ODE separable. The weight m needs to be found first.

These are examples showing how to solve isobaric ode’s step by step method. The same
method is also used to solve homogeneous ode, which is special case of isobaric.

The hardest part is to determine if the ode is isobaric or homogeneous and to find the
degree of the isobaric. If the weight (or degree) m is one then it is just homogeneous ode.
If the weight is not 1 then it is isobaric ode. An ode ¢y’ = f(z,y) is called isobaric of degree
m if

f(t.’L‘, tmy) = tm_lf(xa y)

It is called homogeneous ode if m = 1

f(tz, ty) = f(z,y)

So homogeneous ode is special case of isobaric ode when m = 1. Another common definition
of a homogeneous ode is that when writing the ode as

yl = f(z',y)
_ M(z,y)
N (z,y)

Then M, N must both be homogeneous functions of same degree. Care is needed here,
Homogeneous function is not the same as a homogeneous ode. A function M(z,y) is
homogeneous function of degree n if M(tz,ty) = t"M(z,y) where n here do not have to
be zero.
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Using this second definition of homogeneous ode of 3y = %,

M (z,y) and N(z,y) are both homogeneous functions and also have same degree (whatever
this degree happened to be). If this is the case, then we say the ode itself is homogeneous
ode.

we can now check if

It is possible to have an ode 3y’ = AA{((;”;)) where M, N are both homogeneous functions but

with different degrees. In this case the ode is not homogeneous ode even though both

M, N are each homogeneous functions.

We can use similar way to view isobaric ode. By saying that an isobaric ode is one when
it is written as

yl = f('T:y)
_ M(z,y)

N (z,y)

Then given M (tz,t™y) = t"M (x,y) is homogeneous function of degree r and N (tz,t™y) =
t'~™*1N(z,y) is homogeneous function of degree r — m + 1. In this case we say that the
ode itself is isobaric of degree m, since

rM
f(tw,t"y) = tv‘—tm+1§$ (ga/c) y)
M(z,y)

N (z,y)
= tm_lf(m7 y)

_ gm-—1

The above gives us another method to determine if an ode is homogeneous ode or isobaric
ode. We start by writing the ode as ¢/ = %((:z)) If M, N are both homogeneous functions

of same degree, then the ode is homogeneous ode and we stop.

If however M satisfies M (tz,t™y) = t"M(z,y) and N satisfies N (tz, t™y) = t" ™ N(z,y)
where r is positive integer, then we say the ode is isobaric of degree m.

Why is it important to know if an ode is homogeneous or isobaric? This is because if an
ode is isobaric of degree m then the substitution y = uz™ or u = % converts to separable
ode in u. If an ode is homogeneous then the substitution y = uz or u = ¥ converts to
separable ode in wu.

This is why it is very useful to determine if an ode is isobaric or homogeneous ode. Because
it allows us to use this substitution to convert it to separable. Separable ode’s are easy to
solve, since they involve only integration. Of course the integrals can be very difficult to
solve, but this is another issue.

How to determine if an ode is homogeneous or isobaric in practice? To check if an ode is
homogeneous, we start with the definition that ode y' = f(z,y) is homogeneous ode if in

fltz, t™y) =™ f(z,y) (A)

then if m = 1 then the ode is homogenous. If not, then the ode is not homogenous and
we check if it is isobaric by solving for m. How to find m?

This is done by taking derivative of both sides of equation (A) w.r.t. ¢ and setting ¢t = 1
after that. This results in

zfy +myfy=m-—-1)f
zfe +myfy=mf—f
zfe+ f=m(f —yf,)
Hence
_[+al
f_yfy
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Here is the important point. If it is possible to simplify the RHS above to an actual
numerical value, then m is the degree of isobaric and the ode is indeed isobaric. If it is
not possible to obtain a numerical m value, then the ode is not isobaric. The best way
to learn how to do this is by examples. Note in the above f, is partial derivative. Which
means taking derivative of f w.r.t z while keeping y fized.

3.3.13.2 Examples

3.3.13.2.1 Example 1
dy _—(v’+2)

= 1
dx 2yzx (1)

— 2
Here f(z,y) = % We start by checking if it is isobaric or not. To find m such that

f(tz,t™y) = t™ ! f(x,y) we do (as given in the introduction)

_ftafs
m =
f - yfy
_(y2+%) zy?+4
2yx + ( 2x3y )
T -+ 23
2yx -y (_212112 )

1

T2y

2)

2

2y
1
2
Hence this is isobaric of index m = —% because it has a numerical solution as a result.

To verify this result, here M (z,y) = (—y*> — 2) , N(z,y) = 2yz. Let us start by checking
for isobaric (since homogeneous is special case).

2

Mt tm — _t2m2 -
(tz, t"y) ( y+m)

1 2
= (_t2m+1y2 + _)
T
T
2

The above is same as (—y2 — 5) when 2m+1=0o0rm = —%. From the above we also see

that » = —1. This is by comparing the last result above to t"M(z,y). Now that we found
candidate m and r, then all what we have to do is check N(tz,t™y) =™ 1N(z,y) or
not. If it is, then we are done and the ode is isobaric of degree m

N(tz,t™y) = 2t™ytx
= 2t_71yta:
=2 (2yzx)
= t2N(z,y)

Now we check if £ = 7 —m+ 1. Which it is. Sincer —m +1 = —1— (—3) +1 = 1. Hence
this ode is isobaric. From now on Eq (2) will be used to find m.

Hence the substitution y = vx™ will make the ode separable. This is the whole point of
isobaric ode’s. The hardest part is to find m. Substituting y = vz® in (1) results in

dv__l

V— =
dx T

This is solved for v easily since separable, and then y is found from y = vz
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3.3.13.2.2 Example 2
d
d—y=x\/$4—|—4y—x3 (1)
x
We start by checking if it is isobaric or not. Using

_f+af
f=yly
(2v/a 4y — o*) + o (VET F Ay + —H — 30?)
- (2T + 2y — 2°) — 2% — ZL
- 4@(2y—x2\/m+x4)
2 (2 — 202/ + Ay + o)

Therefore this is isobaric of order 4. Substituting y = v2™ = vz* in (1) results in

o — —4v++1+4v -1

X

Which is separable. This is solved easily for v(z) and then y is found from y = vz*.

3.3.13.2.3 Example 3

d
x(x—y3) d—z = (3x+y3) Y
dy Bz+y3)y

&= a@e—v) W

We start by checking if it is isobaric or not. Using

_ftah
f_yfy

(3$+y3))y + .’L‘< 3y (y3+3w)y (y3+3x)y >

z(z—y3 z(—y3+z) - z2(—y3+z) o ar:(—y3+a:)2

Bz+y®)y _ 3y3 y3+3x 3(y3+3z)y3
z(z—y3) Y (m(—y3+z) + z(—y3+c) + w(—y3+w)2)

4

oyt
(z—y?)°

—19 ¥

(z—y3)*

1
3
% makes each term the same weight %. Hence the substitution y = vzs will make the
ode separable. Substituting this in (1) results in

m =

dv _ —4v(v®+2)

de ~ 3z (v¥—1)

Which is separable. This is solved for v, and then y is found from y = VT3,
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3.3.13.2.4 Example 4

y = n(ay 1) (1)
x
We start by checking if it is isobaric or not. Using
_f+af
f - yfy
Lin(oy — 1) + o RN 4 2 )
YIn(zy—1)—y (%—Fzﬁ_ﬁ)
y2
_ xy—-1
=
_xy—l
=-1

Hence the substitution y = 2 will make the ode separable. Substituting this in (1) results
in !
o)
T

Which is separable. This is solved for v, and then y is found from y = 2.

3.3.13.2.5 Example 5

)’ =yly—2y'z)° (1)
One way to handle this is to first solve for y’ and then apply the above method. This will
result in m = —1.

3.3.13.2.6 Example 6

(z—y)y —z—y=0

r_ Tty
= 1
" 1)
= f(z,y)
We start by checking if it homogenous or not. Using
_f+af
f - yf y

Since m = 1 then this is homogeneous ode (special case of isobaric). Hence the substitution
v = ¥ makes the ode (1) separable.
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3.3.13.2.7 Example 7

yr—y—2,ty=0

y+ 2Ty
Y= (1)

We start by checking if it homogenous or not. Using

m = f+zfe
f_yfy
y+2./zy y  _ y+2/my

T

y+2/Ty <1+,/Laccy>
-z Y\ ——
=1

Since m = 1 then this is homogeneous ode (special case of isobaric). Hence the substitution
v = ¥ makes the ode (1) separable.

3.3.13.2.8 Example 8

, —y(y? 4 32° + 2x) 0
y .’L'2 + y2
We start by checking if it homogenous or not. Using
L]z
_f+af
f - yf Y
—y(y2+3z2+2z) d { —y(y?+322+22)
___?EF__+x£<__F§T_J
N —y(y?4+3c24+2z) 4 (—y(y2+322+2m)>
z2+y? Yay z2+y2
_y(y2+3w2+22) y(_m2+2zy2+y2)
_ :1:2-1-y2 + T <_2 ((E2+y2)2 )
- —y(y?+3c2+2x) _ 3zt+42x3—2zy2+yt
z2+y? (z2+y2)?

3zt 4 8%y + day® + ¢t
B 4z2y? + 4ay?

Since this does not simplify to numerical value, it is not homogenous ode. This turns out
to be homogenous type D. See earlier note on this. There is a slight difference in definition
between homogenous ode and homogenous type D. In Maple terms, homogenous ode is
called homogenous ode type A. A homogenous type D is one in which the substitution
y = ux makes the ode separable or quadrature.

3.3.13.2.9 Example 9

(~108y? + 12/—108%2% + 81y7) * + 12zy "
y = .
6 (—108y? + 124/—108y3z?® + 81y?)*®

/

We start by checking if it homogenous or not. Using

_ftzf
"= f—yfy

Which simplifies to
m =3

Hence the substitution y = vz™ will make the ode separable. Substituting y = vz in (1)
results in separable ode. But for this case, we have to assume x > 0 in order to simplify it.
The resulting ode is too long to write now, but verified to be separable using the computer.
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3.3.14 First order special form ID 1 3y = g(z) e®®*+% 1 f(z)

ode internal name "first order special form ID 1"

This is special form which did not fit in any of the above ones. Solved by the substitution
u = e~% which converts the ode to a linear first order ode in u(z) which is solved, then y
is found. b must not depend on z for this to work.

3.3.14.1 Example

y =5e” 2% 4 ging (1)

Here a(z) = z?,b = 20, f(z) = sinz, g(z) = 5. Hence let

u=e
— e—20y
Therefore
du
R _20 / —20y
dx ye
= —20y'u
Or ,
u
T @)
Comparing (1,2) gives
ul

2 .
=5 2% 4 ging

20u
2 )
= 5e*We® L+ ging

1
—5-¢” +sinz

u
Or
—o' =100 + 20usinz
u' = —100e*" — 20u sin x
v + 20usinz = —100e”” (3)

This is linear first order ode. The integrating factor is
I = ef?Osinzdz

— 6_20 cosx

(3) becomes
d
J-(ul) = —I1100e™
ue—?Ocosm — _100/6m26—20cosmdx +ec

2_
u = _100620cosx/6x 20cosxdw+0620cosx

— e20cosm(_100/612—2000smdx+c)
But u = e2% therefore

e—20y — e20cosx(_100/ex2—2000szd1, + C)

_20y —1In (eZOcosx(_100/6x2—20coswdx+C>)
Y= _lln eQOCOS:E _100/ex2—20cosmdx+c
20
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a1z+b1y+cy

. !/ __
3.3.15 Polynomial ode y' = P S

ode internal name "polynomial'

Special form for first order ode where the lines a1z + biy +¢; = 0,097 + byy +c2 = 0
can be either parallel or not parallel. If the lines are not parallel then the transformation
X =z —1xy,Y =y — yo transforms the ode to homogeneous ode. If the lines are parallel
then the transformation U(z) = a1x + b1y converts the ode to separable in U(z). The not
parallel case is when 3 # 72 and the second case is when {* = 2.

3.3.15.1 Example lines are not parallel

,_ —6z+y—3

2z —y—1
Comparing to 3y’ = Z;iig—;zj_; shows that a; = —6,b; = 1,ap = 2,b, = —1. Hence
3 = —06, 3> = —2. This shows the lines are not parallel. Let

X=xz—x

Y=y—-1y
The constant xg,yo are found by solving

a1xg + b1y0 +c = 0
azTo +boyo +c2 =0

—6$0+y0—3=0
2$0—y0—1=0

Solving for zg, yo gives

Ty = -1
Yo = —3
Hence
X=z+1
Y=y+3
Using this transformation in ¢y’ = _23;””_;;/__13 results in the ode
dY 6X-Y

dX 22X +Y

This is a homogeneous ode
v _o-%
dX -2+

Let u = }/—( Now it is solved as was shown in the above sections. At the end, Y is replaced
by y — yo to obtain the solution in y(z).
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3.3.15.2 Example lines are parallel

N
Y= 3013y -4
Comparing to 3y’ = Z;iii—;zig shows that a; = —1,bp = —1,a, = 3,b, = 3. Hence

7+ = 1,32 = 1. This shows the lines are parallel. Let
1 2

U(x) = a1x + by

= —Tr — y
Hence y' = —1 — U’(z). Hence the ode becomes
U
1y -2 _
v -3U —4 0
U +4

S 3U+4
This is separable. After solving for U(x), then y is found from U(z) = —z — y

y=—x-U

3.3.16 Bernoulli ode ¥ + Py = Qy"

ode internal name "bernoulli"

This has the form ' + Py = Qy" where n # 1,n # 0. Solved by dividing by y™ and then
using the substitution v = y'~™. This converts the ode to linear ode v’ + (1 —n) Pv =
(1 — n) @ which is solved for v, then y is found.

3.3.16.1 Example 1

v +ycotz =y* (1)
y(0) =0
Comparing to 3 +py = qy" shows that p=cotz,q=1,n =4. Let v = y' " = y'~* =y =3,

,U/

3,1 The ode becomes

Then % = -3y~ or ¢/ =

/
“3y—*
Multiplying both sides by y~—* gives

/
Y iy Beotz=1
-3
But y~3 = v and the above becomes
,Ul
— +vcotz =1
3

+ycotz = y*

v/ —3vcotx = —3

Which is linear in v. Solving gives

1
v = 1(3 sin z — sin (3z)) (g cscx cot T — gln (csc (z) — cotx) + cl)

3 3
= (sinz)® (5 cscz cot x — 3 In (csc (x) — cotz) + cl)
But v = y%, Hence the solution is
1 3 3
i (sinz)® <§ cscx cot T — 3 In (csc (z) — cot z) + cl>
Was not able to solve for ¢; at the given IC since gives 1/0. Hence only trivial solution

exist, which is
y=0
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3.3.17 Exact ode M(z,y) + N(z,y)y' =0

ode internal name "exact"

To solve an ode of the form

M(z,) + N(z,) 2 =0 1)

If the above ODE is exact, then there it can be written as a complete differential

dy

_Opde 0oy
~ Ozdx  Oydx
_0¢_ 0bdy
- Ox + Oy dz 2
Comparing (1,2) shows that
0p
- M 3)
0p
oy = N (4)

But since 22 = 2¢ then this implies

Oydr ~ Oxzdy
0 (99 _ 9 (9
oy\odz) 0Oz \0Oy

oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = 6‘9;—8"; is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
might not exist. Given the ode is exact, then integrating (3) gives

6= / Mdz + f(y) (5)

Where f(y) is arbitrary function to be found. Taking derivative of the above w.r.t. y gives
op d
—=— [ Md !
o~ dy / z+ f'(y)

Comparing the above to (4) gives an equation to solve for f

(d%/de) +f'ly) =N (6)

Once f(y) is found then from (5) and since ¢ is constant it becomes

c=/Mda:+f(y)

This is an implicit solution for y(z).
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3.3.17.1 Examples
3.3.17.1.1 Examplel

(32% +2zy°) + (22%y + 49°) ' =0

Hence M = (3z% + 2zy?) , N = (2z%y + 4y3). We see that %—A; = 4zy and 2¥ = 4zy, hence
exact. Then (5) gives

o= [ s+ (0
= / 32 + 2zy’dz + f(y)
=z’ + 2%y’ + f()

Hence (6) gives

e ) = N

2ya® + f'(y) = 22%y + 4¢°
f'(y) = 4¢°

Therefore f(y) = y* + ¢;. Therefore

6= [ Miz+ 1(w)

= 2" +2%" + f(y)
=+ +y' +a

But ¢ = ¢, since constant. Hence combining constants the above becomes
?+y’ +yt=C
Which is implicit solution for y(z).

3.3.17.1.2 Example2

y+z\ y+a y+o),
(ln(m+3> z+3> dz+ln(:c+3) dy =0

_ +x +z _ + oM __ 3— ON __
Hence M = (In (&%) — %) N = In (25). We see that B = oy and G =
m, hence the ode is exact. Eq (5) gives

¢=/de+f(y)

J (o (25) 2o

=@B-y)ln (z—l?) +(y+2)ln (%) +B—y)In(z+3)—z+ f(y)

=(3—vy) <ln (%) +ln(x+3)) +(y+z)ln (%) —z+ f(y)

=B8-y)n(y—3)+(y+2)hn (%) —z+ f(y)
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Hence (6) gives

d

d—y(¢) =N

A(6-vme-9+@ram (L) —orsw) =1 (LE2)

H(Ziz) —In(y—3)+ f(y)=In (x+3)

—In(y—3)+ f'(y) =0
f'(y) =In(y—3)

+

+ +
8 w

< 8

Therefore
f0) = [y -3)dy
=ln(y-3)(y—3)+3-y+ac

Hence from above

¢=(3—y>ln<y—3)+(y+x)ln(L o+ f(y)

+x

z+3
=(3—y)ln(y—3)+(y+x)ln<%>—x+ln(y—3)(y—3)+3—y—|—c1
—(y—3)ln(y—3)+(y+x)ln(%)—x+1n(y—3)(y—3)+3—y+cl
_ y+z\ _

—(y+x)ln<x+3> z+3—y+c

+x
(y+x)ln<y+3)—m—y+02

But ¢ = ¢, since constant. Hence combining constants the above becomes

+x
(y+z)ln <i?> —z—y=C

3.3.18 Not exact ode but can be made exact with integrating
factor

ode internal name "exactWithIntegrationFactor"

This has the form M(z,y) + N(z,y)y' = 0 where 6M %—N where there exist integrat-
ing factor p such that uM(z,y) + uN(z,y)y' =0 becomes exact. Three methods are
implemented to find the integrating factor.

3.3.18.1 Integrating factor that depends on z only

Let
dy
pM(z,y) + uN(z,y) - = dé(z,y) 1)
_ O¢dz  O¢dy
" Ozrdr 8y dz
_ 09 Opdy
T oz oy dy dx @)
Comparing (1),(2) then
0p
ac =M
% _.n
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%9
dydx

0
8y (8x)

The compatibility condition is

ouM

Oy

pyM + pM,

= aa; a"; then this implies

09
oz ( Oy )
OuN
oz

paN = py M + pMy — pN,
paeN = pyM + p(M, — N,)

pyM | p
= ®om, — N,

Assuming p = p(z) then p, = 0 and the above simplifies to
L
Hz = N(My - N;)

d_,ul (8M 8N)

dz p 8_3/_3_30

Let % <%Ay/f 5 > A. If A = A(z) which depends only on z then we can solve the above.

du 1
drp A
’u:efAdx

Let M = uM, N = uN then the ode
M(z,y) + N(z,y)y' =0

is now exact.

3.3.18.2 Integrating factor that depends on y only

Let
dy
pM(z,y) + pN(z,y) - = dé(z,y) (1)
8¢ dz 8(]5 dy
" drdx 8y dz
_ 09  Opdy
" 0z 8y dz )
Comparing (1),(2) then
09
o MM
o¢
< _ N
Oy #
The compatibility condition is ;; g’x = % then this implies
0 (99 _0 (%
oy\odz) 0Oz \0dy
ouM  OuN
oy Oz
pyM + pMy = poN + pNg

pyM = pe N + pN — pM,
pyM = poN + p(Ny — M,)
,uwN 1

o TN — M)

By = —
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Assuming p = u(y) then u, = 0 and the above simplifies to

1
py = 3N — My)
du 1 1
——=—(N,— M

Let +; (N, — M) = B. If B = B(y) which depends only on y then we can solve the above.

du 1

F- _ B

i ()
,u:edey

Let M = uM, N = uN then the ode
M(.’I},y) +N(l‘, y) y/ =0

is now exact.

3.3.18.2.1 Example 1 Solve

dy _/(=*-1)(2—1)

dz (x2—1)
o VETT,,
VEDET,

@ - 1)

Comparing to
M(w,y)dx+N(x,y)dy =0

Shows that M = ——V(ﬁ_l)(y;_l), N = 1. We see that %—]‘; # %. Hence not exact. Lets try

(z2-1

p— L(9N _oM
- M\ Oz 0y

_ -4 (0_ -y )
VE@-D-D\ VE@-D)E-1)

_ (1-2% y

V@ -1) @ -1) /(@2 - 1) (- 1)
_ -2y

(22 —1) (4 - 1)
_ Yy

(> —1)

Since B does not depend on x then we can use this for an integrating factor.

,LL:('Zdey

—fmdy
1

y—1yy+1

=e

Hence the ode now becomes

uMdx + pNdy =0
Mdzx + Ndy =0
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Where
M =uM
_ 1 V(@2 —1)(y2 - 1)
Vy—1/y+1 (z% — 1)
_ V@ D@-D
=Tyt~ 1)
And
N =uN
. 1
NI WES|

Now ode (A1) is exact. Now we follow the main method for solving an exact ode on the
above. Let

o¢

or M (1)
0o -

Since M has both y and z, in it and N has only y in it, then in this case we start differently
than before. We start with (2) and not (1) as it makes things simpler when integrating.

Integrating (2) w.r.t. y gives

6= [ Nay+ f@

1
=/m¢mdy+f(””)

VD) In(y+ve7—1)  Vi?—1in(y+/y?—1)
dy = NSNS = NI WS , hence the above becomes

_ V2 =1l (y++y*>—1)
N

Taking derivative of (3) w.r.t. z gives

0¢ _d(Vy—Ilnfy+ V" —1) )\ o
N WIED v

1
Butf\/?ﬁ\/?m

¢

+ f(z) (3)

or dz
o
% rw @

But % = M. Hence the above becomes
M = f'(x)

- /'@

V(@2 —1)(y2 - 1)
Vy—T1/y+1(2?2-1)

To solve for f(x) we now integrate the above w.r.t. x which gives
+ JEDE-D
N Ve R

No need to add constant of integration, as that will be absorbed anyway. Substituting the
above back into (3) gives

_ VyZ—T1ln(y+y>—1) N T (=1 (@2 -1)
Vy—1vy+1 Vy—1/y+1(r?—1)

= f(z)

¢

T
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¢ = c, hence the solution is

V-l (y+ VP -1) 7 V(-1 -1)
Vy— 1y +1 Vy—1/y+1(r2-1)

dr+c=0 (4A)

Lets now see what happens if after Eq (2), we started with M and not N as we always
do. Integrating (1) w.r.t. x gives

o= [ Mo+ (0
V@D 1)

“ ) wtari@ - Y
A G Ty )

ARV RGN

Taking derivative w.r.t. y the above becomes

o _d [F JED@Z-D , .,
oy dy \/y—1\/y+1(72—1)d A

_[fof VE-DE-1) N, .
"/«%<VJTL@¢T@2_D>d +1®)

=0+ f'(y)
= ')
But g—‘; = N, hence the above becomes
1 !/
Integrating w.r.t. y gives
£0) = [ gyt e
VI— T+ 1

V-1 (y+1)n(y+v2-1)
N WIES|

Substituting this into (5) gives the solution as (after combining constants)

_ [ VE-)-1) o VE-DE D+ v -T)
-1 - 1) TSRS

fly) =

+c

&1

Which is same answer as (4A). So starting with M or N gives same result. But if N
depends on z,y and M depends on only one of these, it can be simpler to pick M. Same
for the other way around. If N depends on only one, and M depends on both z,y, then
it will be easier to start with N. But in both cases, same result should be obtained.

3.3.18.2.2 Example 2 This is same example as above but with initial conditions
y(xo) = yo to show how to handle IC when unable to do the integration.

VE-1) (2 -1)
(22 — 1)

dr+dy=0
y(zo) = o

The solution found in above example is

VP -ty +vy 1) 7 VP -D -1
NS s -y F 17— 1)

dr+c=0
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At y(zo) = yo the above becomes

V=T (w+ViE=T) DD
VYo — vy +1 z0 VY0 — 1v/yo +1(72 —1)

Substituting this value of ¢ in the solution gives

dr+c¢=0

Wln(y+m)+ * VE-DEE-D _\/yﬁ—lln(yo+\/y§—1)+/w (72 -

Vy—-1vy+1 VI LTI -1 VYo —1vyo +1 VYo — 1y
Or
VFT(y+vF=1) VE-1h(w+ViE-1)\ /@ 0D G

Vy-1/y+1 Vo — Tv/yo + 1 * 0 VI—IWYFL(2—1) vy — 1V

3.3.18.3 Third integrating factor
Using similar method If the above did not work, then we try
R L (0N _ouM
M —yN\ 0z Oy

If R is function of t = zy only then the integrating factor is u = e/ % and let M =
pM, N = uN then the ode M(x,y) + N(z,y)y' = 0 is now exact.

3.3.19 Not exact first order ode where integrating factor is
found by inspection

ode internal name "exactByInspection"

This has the form M(z,y) + N(z,y)y’ = 0 where %—A; # 9 (i.e. the ode is not exact)
and none of the above three known methods for finding integrating factor were successful.
This solver uses trial and error using a number of built-in common integrating factor to

see if any one of them makes the ode exact.

3.3.19.1 Example

ydz—l—z(x2y— 1) dy=20
M(z,y) + N(z,y)y' =0

Where
oM
il |
Oy
ON
— =32’y —1
ox Y

Hence not exact. Trying the above 3 methods shows it is not possible to find an integrating
factor. But by inspection let I = %;. Then the ode becomes
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Where
_y
T3
Y
N = (=)
Now we see that the ode is exact by checking:
oM _ 2y
oy 3
ON Y 2y
7~ (%s) =
Since ode is now exact, we need to find ¢ from
09
— =M 3
e 3)
09
— =N 4
5 @)
From (3)
o _y
or 3
Therefore
o= [ Mz + (0
2
Y
= / Szt f()
Ry ——
-2
x
= y2_—2 + /()
y?
=52 /W (5)

Where f(y) is arbitrary function to be found. Taking derivative of the above w.r.t. y gives

0p d y?
8y dy <_2_x2 + f(y)>
Yy
==zt f'()
Comparing the above to (4) shows that
Y
N = 2 + f'(y)

2—£=—%+f’(y)

72
f'ly) =y
Hence
fly) = [ y’dy
3
)
=Z+4c
3 +
Substituting this into (5) gives
y?
2 3
_v Y
= o + 3 +c
Since ¢ is also constant function then we can simplify the above to
2 3
v v
—2x2 3
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3.3.20 Reduced or special Riccati ode ' = az™ + by?

This is special case of the general Riccati ode ¥’ = co(z) + c1(z) y + ca(x) y* where now
co(z) = az™ and cy(x) = b where a,b,n are constants. The reduced Riccati ode do not
have y term in it. Only z and y? in the RHS of the ode.

3.3.20.1 Reduced Riccati with n = —2

For the special case of n = —2 the solution can be written directly as given by

bde(l10Q as
A x2b>\
y=_- bz

26
a1l ta

(1)

Where in the above ) is a root of bA2 + X+ a = 0.

There is another way to solve the above with n = —2. This can be solved using the
substitution 1
== 2
y=_ (2)
Hence y' = —;‘—; and the ode becomes
o i 1
2
u
—u' =a— +b
x
2
u
r_
U=—0g— b

Which is first order Homogeneous ode type (see earlier section). But using (1) is much
simpler method as solution can be written directly. The following example shows that
using (1) and (2) give same solution.

3.3.20.1.1 Example
y/ — _x—2 + 2y2

Comparing this to ¥’ = az™ + by? shows that a = —1,b = 2,n = —2. We will first solve
this using (1). The quadratic equation is

X2+ A+a=0
22242 —-1=0

The roots are 3, —1. Let us pick first A = —1. Hence the solution using (1) is

A SU%)‘
R
2A+1

-1 x4
oz a4
-1 x4
oz 2o 3+ ¢
_ 1+43¢2?
2z — 3zt

1+ 02-'1'3

2z — zicy


https://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf
https://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf
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Let us now try A = 1. The solution becomes

by :L.Zb)\
e e
2A+1
1 z?
T2 22f1 72+ ¢
1 z?

2z % +ca
3¢y —4a®
o 4$4 + 6611}

Both these solution verified OK. Now we will solve the same using the transformation
Y= %.This results in the ode ' = az™ + by? becoming

We see that this transformation made the ode a homogeneous type which can be easily
solved now. This only works for n = —2. Solving this ode gives

_ —z(2+ c12®)
14y’

Hence

y=—
U

1—c¢x
2z + ¢yt

3

Which is the same as first solution above.

3.3.20.2 Reduced Riccati with n # —2

For all other cases, there is direct solution to the reduced Riccati given by [Eqworld ode0106|
and |Dr Dobrushkin web pagel as

Vi c; BesselJ (i %\/_ ) + ¢ BesselY (i % aba:k> ab>0
W=+
c1 Bessell (ﬁ, %\/ ) + ¢ BesselK (ik, % —abxk) ab <0

_ 1o
b
k=1+ 5
If n satisfies constraint that n
2n+4

Is an integer, then the solution y(z) will come out using algebraic, exponential and
logarithmic functions (including circular functions, such as sin and cosine). If however, n
does not satisfy the above constraint, then (2) can still be used but the solution will come
out using Bessel function (also called cylindrical functions).

Hence (2) can be used for any n to solve the special or reduced Riccati ode.

4k

The constraint that 5" is an integer, can also be given by saying that n = =5 where

k=+1,+2,.


https://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf
https://www.cfm.brown.edu/people/dobrush/am33/Mathematica/ch2/riccati.html
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When n satisfies this, then as mentioned above Eq (2) gives the solution in algebraic,
exponential and logarithmic functions. For all other values, Liouville proved no solution
exist in terms of elementary functions.

These n values come out to be n = {--- ,—2,.-- =5 =4 —4 8 _22... _JL We
notice that the limit on both ends goes to n = —2 which is the first special case above. Below

are two examples to illustrate this. First example will use n that meets this constraint,
and the second example will use n that does not meet the constraint.

3.3.20.2.1 Example 1
y/ — .’17_4 + y2

Comparing this to ¢’ = az™ + by? shows that a = 1,b = 1,n = —4. We see that n satisfies
= 1 which is integer. Hence we expect that applying (2) will give solution in

o+
elementary functions. Since ab > 0 then applying

1
w = /zc; BesselJ <2k k\/_x ) + ¢, BesselY (% k\/_bx )
—4
k=1+—=1-2=-1
+ 2
Hence ) .
w = /zc; BesselJ (_7, —x_l) + ¢y BesselY (—5, —a:_l)
Hence ,
w
Yy=——
w
Simplifying the above gives
1 1
y=s(tan| ——+c ) -2z
x
3.3.20.2.2 Example 2
y/ — .’L'3 + y2

Comparing this toy = ax + by? shows that a = 1,b = 1,n = 3. We see that n do not
Sid 6_?; ;= 15 being an integer. Hence we expect that applying (2) will give
solution in cylindrical functlons and not elementary functions. Since ab > 0 then applying

\/_x ) + ¢ BesselY( 1 \/_bx )

w = y/zc; Bessel] (

2k’ k 2k’ k
3 5
k=1+4+°=2
+ 2 2
Hence
w = v/zc; Bessel] | = gx + co BesselY 1 gx%
SV 55 2 55
Hence
w/
Yy=——
w

Simplifying the above gives

T3 (—cl BesselJ (?4 2z %> BesselY (f,% %)>
y= 5
2

) + BesselY (5, ga:%>

01

c; BesselJ (% 2g

We see that the solution is in terms of cylindrical functions. Because n did not satisfy
that 5.7 is integer. But the main point is that (2) can still be used to solve the special
Riccati ode.
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3.3.21 General Riccati ode ' = fy + fiy + foy?

3.3.21.1 Direct solution of Riccati

There is no general method to solve the general Riccati ode. These are special cases to try

3.3.21.1.1 Case 1 If fy, f1, fo are constants then this is separable ode and can easily
be solved.

3.3.21.1.2 Case 2 (particular solution is known) Assume we can find a particular
solution y; to the general Riccati ode y' = fo(z) + fi(z) y + fo(z) y*. Then let y = y; + u.
The Riccati ode becomes a Bernoulli ode.

(1 +u) = fo+ filyr +u) + fo(yr +u)?
yi+u = fo+ iy + fiu+ fo(¥5 + v+ 2yu)
Y+ u = fo+ fiyi + fiu+ foyi + fou’ + 2foyiu

Yy +u = fo+ fiys + foyi Hhiu+ foul + 2fayiu
u' = fiu+ fou® + 2foy1u
= ’Lb(fl + 2f2y1) + f2’LL2

Which is Bernoulli ode. But this assumes we are able to find particular solution y; to the
general Riccati ode. There is no method to do that. So this case will not be tried.

3.3.21.1.3 References used

1. https://mathworld.wolfram.com/RiccatiDifferentialEquation.html|

2. https://math24.net/riccati-equation.html|

3. https://encyclopediaofmath.org/wiki/Riccati_equation)

4. https://www.youtube.com/watch?v=iuHDmZ8VutM

5. paper: Methods of Solution of the Riccati Differential Equation. By D. Robert
Haaheim and F. Max Stein. 1969

3.3.21.2 Conversion of Riccati to second order ode

ode internal name "riccati"

Solved using transformation y = _T% which generates second order ode in u. This is solved

for u (if possible) then y is found.

3.3.21.3 Examples
3.3.21.3.1 Example 1
1
/ 2
= — — ]_
y'=—z+_y (1)

Comparing to 3y = fo + fiy + foy? form shows that fy = —z, f1 =0, fo = % We will use
the method of converting to second order ode. Let y = ;T% = x% Using this substitution
results in

o = (f5+ fifo)w + fi fou=0

ERE

1 1 1
'+ —u —~u=0
T T T

xu" +u —zu=0


https://mathworld.wolfram.com/RiccatiDifferentialEquation.html
https://math24.net/riccati-equation.html
https://encyclopediaofmath.org/wiki/Riccati_equation
https://www.youtube.com/watch?v=iuHDmZ8VutM
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This is Bessel ode the solution is
u = ¢; Bessell (0, z) + ¢, BesselK (0, z)
But y = z%, hence

(c; Bessell (1, z) — ¢ BesselK (1, z))
c1 Bessell (0, z) + ¢, BesselK (0, z)

y=x

3.3.22 Abel first kind ode ' = fy + fiy + foy® + f3v°
ode internal name "abelFirstKind"

This ODE has the form

Y(z) = fo(z) + fi(@)y + f2(2)y* + fa(z)y’® 1)

Any of the following forms is called an Abel ode of first kind

Yy = fo+ fiy+ o’ + fay®
Y = fiy+ fo* + f3°
Yy = foy’ + fsy’
y = fo+ fo" + fs1°
y' = fo+ fsy’®
Y = fo+ fiy + fsy
y = oy’ + fay®
The case for both fo(x) = 0, fo(z) = 0 is not allowed, else it becomes Bernoulli ode. Either

fo=0or f, =0 is allowed but not both at same time. The term f3(z) must be there in
all cases. When f> = 0 then Abel invariant is defined as

A—_ (—fofs + fofs + 3fofsf)’
271513

In the case when f; # 0, then f; is first removed from the original ode using the change of
dependent variable y = u(x) — 3% Now the new ode will not have f5 in it, and the above

invariant can now be applied to it.

There are two possibilities when fo = 0. Either A can be constant (i.e. does not depend
on z) or not constant (i.e. function of z). The constant invariant is the easier case and
can be solved. The non constant case is not fully solved and only few cases can be solved
analytically. This is not supported now.

If invariant A is constant and fy # 0 (since we can not have both fo = 0, fo = 0) then the

substitution )
fo ) s
=7 ulz
1= (%) v
Results in a separable ode which can be solved. (See example below).

If f5 is not zero, then the first thing we do is transform the ode to remove f,. This is done
using y = u(z) — 3’% What this means is that the new ode in u(z) will no longer have
u?(z) term in it. It will only have linear and u(z) ,u3(x) in it only. Now we can apply the
Abel invariant on this new ode.

After transformation to remove f, we check the if Abel invariant is constant or not. If
not constant, then we check if it is Chini ode. I implemented solving Chini ode for special
case only. Chini ode is similar to Abel but does not have the y? term. This is why the
transformation helps. This is the form of general Chini ode

Y = fo(z) + fu(z)y + fa(z) y"
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When n = 2 then it is Riccati, and if n = 3 then it also Abel and for n > 3 it is general
Chini. There is no general method to solve Chini for arbitrary n. See my section on Chini
ode on how to solve this ode for specific conditions.

References: Maple help pages.

3.3.22.1 Solution method

(This all Need to be revised, as I am using different transformation here than described
above, I need to clarify all of this).

Find what is called the abel invariant and check if constant.

A=_ (—f5fs + fofs + 3fofsfi)’
- 271113

The substitution y = L is now applied. Therefore ¢ = —%u/. Substituting this in (1) gives

—%u’ = fo(z )-l-fl(x) + fa(x) 12 +f3($)%
—uu’ = udfo(z) + uzfl(x) +ufo(x) + fi(z)
w' = —u’ fo(z) — v’ fi(z) — ufe(z) — f3(z) (2)

Using the substitution u = % (y + 3’%) where E = exp ( [ fi— %dm) in the above gives

%(y N ﬁ) W = w3 fo(z) — u2fi(z) — ufa(z) — f2(2)

Hence

(y 1 fofs — f2f3>
3 f3

1 1fzf3—f2f3)

+

(42
1
E? dr (E 3f3> 3 2
! v _ 1 dF 1 L f2f
—'_Eu2 E? dz (u 3f3) + 3E :
: 1 1 dE (1 1 f2f3 f2f
(v me) ma g R
, B (1dE(1 T Fofs — fof!
T 1+ Bu? (E2 dx (u+3f3> 3E 12 )
r_ u? 1dE (1 fa 1 fofs — fafs
u —1+Eu2(E%(a+3f3>+§ T >

Substituting the above into (2) gives

2 1dE 1
ul +uEu2 (E dz ( + 3];33) + _f2f3f§f2f3) = —u’fo—u’fi —ufy — f3

Therefore
(/ file 3f 3 ( x)

§=/f3($)E2dx

‘T % (y " 3?3(2))

The above are used to convert the first kind Abel ode to canonical form. (To finish).
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3.3.22.2 About equivalence between two Abel ode’s

Given one Abel ode /(z) = fo(z) + f1(z)y + f2(2)y? + f3(x)y?, it is called equivalent to
another Abel ode u/(t) = go(t) + g1(t)u + ga(t)u® + gs(t)u? if there is transformation which
converts one to the other. This transformation is given by

z = F(t) (1)
y(z) = P(t) u(t) + Q(t)

Where F’ # 0, P # 0. If such transformation can be found, then if given the solution of one
of these ode’s, the solution to the other ode can directly be fond using this transformation.
In this case, we also call these two ode as belonging to same Abel equivalence class. In
other words, an Abel equivalence class is the set of all Abel ode’s that can be transformed
to each others using the same transformation given in (1).

There are many disjoint Abel equivalence classes, each class will have all the ode that
can be transformed to each others using some specific transformation (1). Here is one
example below taken from paper by A.D.Roch and E.S.Cheb-Terrab called "Abel ODEs:
Equivalence and integrable classes".

Given one Abel ode

1 T
/ 2 3
= 2
v =5 sY T s 18 @)
Which is known to have solution
Vyiz —4y—1 1+2

¢+ i + 2arctan ke =0 (3)

Y Vyir —4y — 1

And now we are given a second Abel ode

iy L ft—f (f't=f)(t=f)
T ML (= U

(4)

And asked to find its solution. If we can determine if (4) is equivalent to (2) then the
solution of (4) can be obtained directly. It can be found that

F(t) = %’5) -
Q) =0
P@t) =t

Where see that F'(t) # 0 and P(t) # 0. Hence (1) becomes

o= T8 )
yla) = tu(t)

Applying the transformation (5) on the solution (3) results in the solution of (4) as

A=\/<€—1>t2u2—4tu—1

A 1+2¢t
01+E+2arctan< i u):O (6)

A

Equation (6) above is the implicit solution to (4) obtained from the solution to (2) by
using equivalence transformation as the two ode’s are found to be equivalent. Finding the
transformation (5) requires more calculation and not trivial. See the above paper for more
information.
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3.3.22.3 Algorithm for solving Abel ode

The following is the algorithm for solving Abel ode.

FUNCTION abel_solver(ode)
INPUT: Abel ode y'=fO + f1 y + £2 y~2 + £3 y~3

IF £f2 = 0 then -- note, f0 can not be zero now. Else not abel ode.
—— as both fO0 and f2 can not be zero at same time.

Check if the Abel invariant DEL is constant or not.

IF DEL not constant (i.e. depends on x) then
RETURN can not solve.

ELSE
Apply transformation y= (£0/£3)~(1/3)*u(x).

The new ode in u(x) should be separable
Solve for u(x)
Transform back to y(x)
RETURN
END IF
ELSE
Apply transformation y=u-£f2/(3*£3) to remove £f2.
This generates new_ode in u(x).

IF new_ode happens to be anything other than Abel or Chini
(such as separable, or quadrature) then solve it.
Apply reverse transformation to go back from u(x) to y(x)
using y=u - £2/(3*£3)
RETURN
ELSE
IF new_ode is chini y'=f*y™n + gy + h THEN
IF Chini invariant is constant THEN
Solve. See Formula in Kamke
Aplying back transformation to y(x) using y=u - £2/(3*£3)
RETURN
ELSE
RETURN can not solve. Chini
END IF
ELSE
IF new_ode is Abel THEN
CALL abel_solver(new_ode) again recursive call.
This will check if invariant is constant or not and
solve it as separable if so.
RETURN solution if any.
ELSE
RETURN can not solve.
END IF
END IF
END IF
END IF
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3.3.22.4 Examples
3.3.22.4.1 Example 1

Y = —ze " —y+ ze®y?

Comparing to
y' = fo+ fiy+ o’ + foy®

Shows that
Jo=—ze™®
fi=-1
fa=0
fs = ze*

Since fo = 0 then we check is if the invariant depends on x or not.

(—fofs + fofs + 3fofsfr)’
271518
(—(—e™® + ze7?) (ze¥) + (—ze®) (€2 + 22€>) + 3(—ze ) (ze2®) (—1))°
27 (ze2?)* (—ze—2)®

A=—

=0

Since A does not depend on x, then this is the easy case. We can convert the ode to
separable using

Applying this change of variable to the original ode results in

e (' —u) = —ze® + zule™ — e Pu
W —u=—-z+zud—u
v =—z+zud
= x(u3 — 1)

Which is separable. Solving and simplifying gives

3v/3z>—31n ((1+24)2 ) —2v/31n (u — 1)+6v3c; +6 arctan (—\/3(22: + 1)> =0
3(3—+1

But u = —ye®. Hence the solution to the original Abel ode is

V3(—2ye® 4+ 1)

4
3v/322—/31n —2v/31In (—ye® — 1)+6v/3¢; +6 arctan ( 3

3 (=2 4 1)

)-o
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3.3.23 Chini first order ode ' = f(z) (v')" + g(z) y + h(z)

ode internal name "first _order ode_ chini"

This ode is normally generated when we get an Abel ode of first kind fo + fiy + foy® + f34°
and then remove the square term f, using the transformation y = u(z) — 3% Again as
mentioned above, this is done when the Abel invariant is constant. See above section.

Now we check if the Chini invariant is also constant or not. The Chini invariant is given
by
A = f—n—lh—2n+1(fh/ _ f/h _ ngfh)n n"

And if this comes out to be constant (i.e. do not depend on z), then we can now solve the
Chini ode using method given in Kamke page 303.

Otherwise there is no general method to solve it. This below is my translation of Kamke
1.55, page 303 on Chini ode. He says, given ode

Y = f(z) ()" + g(z)y + h(z) (1)

If for a suitable constants «, 3

(%) " = e 9dz (ﬁ +a / he‘fgd“’da:) (2)
()

2 —gz=ah (4)

if and when

A solution of the linear equation

you get the solutions of the original ode

v=(%) " (o) 5)

du B\ =
/—un_au+1+01=/(}) hdz (6)

Is determined. For A = 0 the ode is Bernoulli. Lets try to figure how the above works on
number of examples.

Through which

3.3.23.1 Example 1
y/ — 3y4 + .'I;3
This one, Maple nor Mathematica can solve. Lets see why. First we check the Chini
invariant. We see that f = 3,9 =0,h = 23, n = 4, hence
A — f—n—lh—2n+1(fh/ _ Jclh _ ngfh)" n"

= 3741 (g%) 29 (3(32%) —0—0)* 4

=3 (x3)_7 (9x2)4 44

— 3_54_41:_2194$8

— 3_54_49411}_13

Since Chini invariant then it can’t be solved using Kamke shown method on page 303. To
verify, let us try to solve it using Kamke method and see what happens.
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The first thing is to find «, 8 such that (2) is true. EQ (2) becomes

(%) t o el 9d° (,B + a / he_fgdzdz>
z’ i 0d 3_— [ 0d
(E) =el x(ﬁ—i—a/xe / ””dx)

=ﬂ+a/x3dm
4

T
_18+a§

(5)'=3)

We see it is not possible to find constant a to satisfy this. So we must always check the
Chini invariant before trying, this will save time.

If we set 8 = 0 then

3.3.23.2 Example 2
y’ = y4 + x(_%)
This one, both Maple and Mathematica can solve. Lets see how. First we check the Chini

invariant. It should come out as constant. We see that f = 1,9 = 0,h = x(‘%),n =4,
hence

A= f 2 (fY — f'h—ngfh)" n "
= 1<x(—§))_2(4)+1 (% (m(‘%)) —0- 0)44—4
NGk

The above A is also used in the solution below. So we need to find it each time. It is a
constant in this example, this is why Maple and Mathematica were able to solve it. Now
we follow Kamke method to actually solve the ode. The first thing is to find «, 8 such
that (2) is true. We see that f =1,g=0,h = z(=3) n = 4. Now we need to find . This
can be found more easily from EQ (4)

2 — gz =ah (4)

1 4 i
Where 2 = (’]—ﬁ) » (el 3)) = 275, Hence 2/ = —1z75. Therefore (4) becomes (given
that g = 0)

1
—gx_% — ax(_%)
S
3

Since A is not zero, then solution is directly given as (from Kamke)
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-1

a(%) ™ v w
/<f> i [o(%) hirre o
K—U-Fl f

_r dua=
/ 81u4—u+1u+3/x

~lody(a)
3 1 1 1
_© du+= =4 —0
/ 8lut —u+1 u+3/m Tt+a

wlins

)3 dx + =0

=

~123y(2) 1 1
" du+-1 =0
/ Sl — ey tzin@ta

3.3.23.3 Example 3
y = ay® + bz

This is Kamke 1.52. First we find the Chini invariant. It should come out as constant. We
see that f =a,9=0,h = bx_%,n = 5, hence

A — f—n—lh—2n+1(fhl _ flh _ ngfh)n n—n
1 1

1024 ab*

The above A is also used in the solution below. It is a constant in this example, hence
can be solved. Now we follow Kamke method to actually solve the ode. Now we need to
find «. This can be found more easily from EQ (4)

2 —gz=ah (4)
H _5\5 1 1
Where z = (%) " (’””az ) * = (£)% 275, Hence 2/ = — (%) 5 1z~3. Therefore (4) becomes
(given that g = 0)
BV Lt _ gt
o) @i =abe
_ 1
4asbs

Since A is not zero, then solution is directly given as (from Kamke)

-1

a(}) " v 3
/ 2 un;du—/a(ﬁ) hdz + ¢ =0
K_U+1 f

_5\ "~ )
_ 11 . <bxa4> y(z) 1 1 bx—% -1
4a5b5 d B b _Ed =0
/ —1024ab*u* —u +1 u-|—/ daibt a T 14T + 1

1

~re) 1 d L 0
/ Z1024abiut —u + 1 “+/_E Tra=

1

) 1 du— 11 0
/ 102dabtui —ug 1T g @ ta=

Note: In the above two examples A was not zero. What to do if we obtain A = 0 ? in this
case, the solution becomes

" 1 R\ "
/ un+1du—/<?> hdx +c¢; =0
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3.3.24 differential type ode ¢ = f(z,y)

ode internal name "differential Type"

These are special case ode where the ode can be written as complete differential d(f(y)) =
d(g(z)) which is then solved by just integrating.

3.3.24.1 Example 1

dy _z—y
%: r+y
(z+y)dy = (z—y)de
zdy +ydy = (z — y)dx
ydy = —zdy + zdz — ydx (1)

But RHS is complete differential because
L,
—xdy + xdxr — ydx = d g% — Ty

Hence (1) becomes
1
ydy = d(—m2 - a:y)

2
Integrating
1,
ydy = | d 2% — Ty
1 1
53/2 = §z2—xy+c

v =2% — 2zy + 2¢

Which is an implicit solution. This method works if it is possible by the solver to detect
that the ode can be written as complete differentials or not.

3.3.24.2 Example 2

0 = —xdy — ydz + 2dz (1)

But RHS is complete differential because

7
—zdy — ydr + 23dr = d(Z — xy)

4
O:d(%—zy)

Hence (1) becomes

Integrating gives

solving for y gives
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3.3.25 Series method

3.3.25.1 Algorithm flow chart

The algorithms are summarized in the following flow chart.

Figure 3.5: Flow chart for series solution for first order
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Figure 3.6: Algorithm for series solution for first orde
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3.3.25.2 Algorithm pseudocode

function SOLVE__FIRST__ORDER__ODE__SERIES(y = f(z,y))
if f(z,y) analytic at expansion point zo then
Apply Taylor series defintion directly to find the series expansion. Let

Yo = y(zo) and

0
xn—i—l

V=Wt 2

T=x0
Y=Yo

mmﬁ

where

Fo = f(= y)
1
1

Fr

~ f(,
d

Fo=2Fn
OF,,  (0F,_

= o +< By )F

return y as the solution
else
if f(z,y) not linear in y(z) then
return - Not supported.
else
Write the ode as y' + p(z)y = q(z)
if lim, ., (z — x¢)p(z) does not exist then
return Irregular singular point. Not supported.
else
Regular singular point. Expand p(z) in series if not already a polyno-
mial.
if unable to obtain series for p(z) then
return Not supported.
else
Use Frobenius series. Let

o0

y=> apz""
n=0
o0

Y =30+

n=0

Figure 3.7: Algorithm for series solution for first orde

3.3.25.3 Ordinary point using standard power series method

ode internal name "first_ order_ode_ power_ series_ method_ ordinary_ point"

Expansion point is an ordinary point. Standard power series. The ode must be linear in
v’ and y at this time. See below for examples.
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3.3.25.4 Ordinary point using Taylor series method

ode internal name "first_ order_ode_ taylor_series_ method_ ordinary_ point'

Alternative method to solving the above example is given here which is to use the Taylor
series method. This is derived as follows.
Let

y = f(z,y)
Where f(z,y) is analytic at expansion point zo. We can always shift to zy = 0 if ¢ is not
zero. So from now we assume o = 0. Assume also that y(zo) = yo. Using Taylor series

2

3
T— xT—z
V(o) = y(ao) + (@ = )y (@) + =57/ (o) + E Py ) oo
72 o3 &2 f
Swref G g |t
n-l—l dnf
_y0+z n+1)|% -
But
af _of (9f
1
dr ~ 0z + (1)
d2f i
de? ~ dzx
0
- 2
(e ) o) @
of_d (e
dr3 ~ dz \ da?
o (d*f o d*f
T or <?) (83/ dz2) ! ®)
And so on. Hence if we name Fy = f(z,y) then the above can be written as
Fy = f(z,y) (4)
d
n= o (Fa)
0 0F, 1
— o hit (25 ) R )
For example, for n = 1 we see that
d
by = - (Fo)
0 0F,
7+ (5)
of  of
~ oz oy oy
Which is (1). And when n = 2
d
By = dx praCa)
0 OF,
“a T < Ay ) Fo

of Of of Oof
81:(8a:+8y )+8_y(£ f)f

= 5:(a) * o)
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Which is (2) and so on. Therefore (4,5) can be used from now on along with
)=+ D gy Pl 0

See below for examples.

3.3.25.4.1 Example 1
v +2zy==2x

Solved using power series

Expansion is around z = 0. The (homogeneous) ode has the form ¢’ + p(z) y = 0. We see
that p(z) is defined as is at x = 0. Hence this is an ordinary point, also the RHS has series
expansion at = 0. It is very important to check that the RHS has series expansion at
x = 0. Otherwise this method will fail and we must use Frobenius even if x = 0 is ordinary
point for the LHS of the ode. For example for the ode y' + 2zy = % ory + 2zxy = \/x
standard power series will fail. See examples below.

Using standard power series, let
o0
y= E anz"
n=0
o0 (e o]
y = g na,z" ! = E na,x"
n=0 n=1

The ode now becomes

o0 o0

Z na,z" ! + 2z Z a, " =
n=1 n=0

o0 o0
Z na,z" ! + Z 2a,z" =
n=1 n=0

Reindex so that all powers on x are n gives

o0
Z n+1)a,12" +22an 1" =z
n=0 n=1

For n = 0, the RHS is zero, since there is no matching term with z°, therefore the above
gives
a; = 0

For n = 1, the RHS is x! which gives

(n+1)any1 +20,1 =1
2a9 + 2a9 =1
1 — 2ay
2

ag =
For n > 2 the RHS is zero and we have recurrence relation. Therefore we have
(n+1)apt1 + 20,1 =0
For n =2
3as + 2a; =0
2a,q

a3=—?=0
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For n =3

4a4 + 2a2 =0

Lo 1o 1(1-2a0\ _2a-1
1T ™M g 2 T4

And so on. The solution is

oo
y= E anx"
n=0

2
= a9+ a1x + asx +a3x3+---

1-2 2a9 — 1
:ao+( 2a0>w2+(a04 >x4+---

1 1 1
=a0(l—x2+§x4+-..)+(§x2_zx4+...>

Which can be written as

1 1

Solved using Taylor series

v +2ry==x
Y =1z —2xy
= f(z,y)

For this method to work, f(z,y) must be analytic at £ = x, the expansion point. Let
expansion point be z = 0. Let y(0) = yo. Then

"t

© n+1
Yy= y(O) + Z (n + 1)' Fn(x’y)|m:0,yo
n=0
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Where Fy = f(z,y) and F,, = aF” L+ (aF" 1) Fy. Hence

Fo = (z — 2zy)
d
Fi=—F
1 dz 0

_ (0F OF,
- (%) + () m
_ [ 0(z — 2zy) Oz — 21‘y)) B
= ( p ) + ( By (x — 2zy)
= (1-2y) — 2z(z — 2zy)
=42’y —2y— 222 +1
d2

FQ == ﬁFl

_ (OF oF,
- () (%)%
9 (42 2 9, 2
= %(4J;y—2y—2x +1) )+ a—y4:cy—2y—2x +1) (z—2zy)
= (8zy — 4z) + (42° — 2) (z — 2zy)

= 12zy — 82°y — 62 + 42

d3
F3 = @FQ

(R,  (0F,
- (G)+(5)m
9 3 3 9 3 3
= £(12xy—8xy—6x+4x) + 6—y(12xy—8xy—6x+4x) (z — 2zy)

= 12y — 242%y — 6 + 122% + (122 — 82°) (z — 2zy)
= 12y — 48z%y + 16zy + 242> — 8z* — 6

And so on. Evaluating the above at £ = 0,y = yo gives

Fr=0
Fi=-2yo+1
F,=0
F3 =12y, —6

Hence

n+1
Z ( n 1 )lm:O,yo

2 $3 4

T T
=Yyo +2Fo + 2F1+ 6F2+QF3+

$2 4
- 2yo + 1
Yo+ 0+ o (=2y0 + )+0+24

2?2 2 1 xt

=y — Qn— + —— 4 ezt —
Yo y02+2+2y0z 4+

, 1 ,\ =z o
—p(l-22+22* )+ 2 - 4.

(1290 = 6) + -+

2 2 4



CHAPTER 3. FIRST ORDER ODE F(z,y,y') =0 109

3.3.25.4.2 Example 2 Solved using Taylor series

Another example using Taylor series method.

Y +2zy =1+ + 22
Y =1+z+2>— 27y
= f(z,y)

Let expansion point be = 0. Let y(0) = yo. Then

& n+1

v=yO0+ 3 5 Pl Dl

Where Fy = f(z,y) and F, = 61;’;_1 + <6g"y‘1> F,. Hence

Fo=14+z+2>—2zy
0F, 0F,
F=— — | F
= (%) (5)7
=1+2z—2y+ (—22) (1+z+2° — 2zy)
=4a%y — 2y —22% — 223 + 1
OF, OF,
F=— — | Ft
= (5)+(5)7
= (8zy — 4z — 62%) + (42° — 2) (z — 2zy)
= 12zy — 823y — 62 — 622 + 423
OF, OF,
Fy=(—=2 =2\ R
= (ar)+ (5)
= 12y — 242’y — 6 — 12z + 122° + (122 — 82°%) (1 + = + 2* — 2zy)
= 12y — 48z%y + 16zy + 2422 + 423 — 82 — 82° — 6

And so on. Evaluating the above at x = 0,y = yo gives

Hence

xn—i—l

y =y(0)+

n=0

(TL + 1)' Fn(x’y)|a:=0,yo

2 3 1'4

X X
—y0+FoiE+F1—2 +F2—6 +F3—24+"'
x? xt
=yo+m+(—2y0+1)5+(12yo—6)ﬂ+--~

1 1 1
=y0(].—;1;2_|_§1;4_|_...>+<x_+_§x2_é_lm4+“.)
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3.3.25.4.3 Example 3 Solved using Taylor series

Y +2zy° =14z + 2?
v =1+z+2%—229°
= f(z,y)
Let expansion point be = 0. Let y(0) = yo. Then

W0+ o

n:0

Fn (‘,I’.7 y) |:1:=O,y0

Where Fy = f(z,y) and F,, = al;;’; L4 (612;";1) F,. Hence

Fy=1+z+ 2% — 2xy?
Fi = (1422 —29%) + (—4ay) (1 4+ z + 2° — 2z9°)
= —4z3y + 8% — 4o’y — Aoy + 2x — 22 + 1
() (3)-
= (—12$2y + 162y — 8xy — 4y + 2) -+ (—4x3 + 24x%y? — 42® — 4o — 4y) (1 +z+2?— 2a:y2)
= —4z° 4 322%y? — 8z* — 48x3y* + 3223y® — 122 + 322%y® — 1622y — 82° + 24xy® — 122y — 4z — Sy +

_ (0F, OF;
Fa= (%)*(ay)ﬂ)

And so on. Evaluating the above at x = 0,y = y, gives

Hence
n+1
Y= +Z( +1)F(.’II y)lz 0,30

72 3 7
= F F; F,— + F.
Yo + Fox + 12+ 26+ 324
3

=y0—|—:c-|—(—2y§+1)%+(—8y0+2)€+---
4 3 2(_ 2 12,15
= Yo 1—§x +o )+ (- )+ + x—l-éx —I-gx +-e

3.3.25.4.4 Example 4 Solved using power series

Yy +y=sinz
Expansion is around z = 0. The (homogenous) ode has the form 3’ + p(x) y = 0. We see

that p(x) is defined as is at = 0. Hence this is ordinary point, also the RHS has series
expansion at z = 0.

Let y = >0 anz™ y' =Y oo g nayz™ ' = > na,z"'. The ode becomes

o0 o0
5 na,z” ! + E a,x" = sinx
n=1 n=0

Indexing so all powers of x start at n gives

o0
E (n+1)ap1z™ + E a,x" =sinzx
n=0 n=0
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Expanding sin z in series gives

o0 3 P
Z (n+1)ap1z" —I—Zanaz —x—g—l—a—---
n=0 n=0

For n = 0, there is no term on RHS with z°, hence we obtain

a1+a0=0

a; = —Qo
For n = 1 there is one term z' on RHS, hence

2a2+a1:1
1—a1_1+a0
2 2

a9 =

For n = 2 there is no term on RHS with z2 hence

3a3+a2=0
U N SR SRR |
T3 3 60 6
For n = 3 there is term —%x?’ on RHS, hence
1
4a4+a3:—6
woThma_—h- (- 1,
* 4 4 24"

And so on. The solution is

o
Y= g apx"
n=0

2
:a0+a1w+a2x + -

_ + 1+ ap 2, 1 1 3, 1 4
= Qo aogxr B T 60,0 6 T 24(1,0 T
1 1 1 1 1
= 1— x? Tt ot PN ST
a0< x+2x 6:5 +24x )+(2x 6x +

3.3.25.5 Regular singular point using Frobenius series method.

ode internal name "first_ order_ode_ series_method_ regular_singular_ point'

expansion point is a regular singular point. Standard power series. The ode must be linear
in 3’ and y at this time.

3.3.25.5.1 Example 1
Yy +2zy =z
Expansion is around z = 0. The (homogenous) ode has the form 3’ + p(x) y = 0. We see

that p(z) is analytic at z = 0. However the RHS has no series expansion at z = 0 (not
analytic there). Therefore we must use Frobenius series in this case. Let
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The (homogenous) ode becomes

(n+r) a7+ 22 Z a,z"t" =0

n=0

M 114

(n + ,r.) anx’n—i—’r—l + Z 2anxn+7‘+1 — O

n=0

I
o

n

Reindex so all powers on x are the lowest gives

(n+7)az"" !+ Z 20, o™ =0 (1)

n=2

NE

I
o

n

For n =0, Eq(1) gives
rapz” ' =0

Hence r = 0 since ay # 0. Therefore the balance equation is

meox™ ! =z

Where r is replaced my m and a, is replaced by c,. The above will used below to find y,,.
For n =1, Eq(1) gives

(I4+r)az" =0

a; = 0
For n > 2 the recurrence relation is from (1)

(n+7)an,+2a,2=0

2an—2
= — 2
¢ (n+7r) @)
Or for r = 0 the above simplifies to
2
ay, = —T—Lan_2 (2A)

Eq (2A) is what is used to find all a,, for For n > 2. Hence for n = 2 and remembering
that ag = 1 gives

a2=—1
F —
orn =3 o 2a iy
3= T30 =
For n =4 - 1 _1
ay = 2(12—2

For n =5,7,--- and all odd n then a,, = 0. For n =6

ag = 1a -1
M
And so on. Hence (using ag = 1)
(e}
yh=c1 Y anz™"
n=0
o0
=q Z an,z"
n=0

=Cl(a0+a1x+a2x2+a3x3+...)

1 1
=C1(1—x2+§x4—6x6+--->



CHAPTER 3. FIRST ORDER ODE F(z,y,y') =0 113

Now we need to find y, using the balance equation. From above we found that

ragx” =z

[N

Renaming a to ¢ and r as m so not to confuse terms used for y, the above becomes
_ 1
meox™ ! = 2
Hence m — 1 = § or m = 2. Therefore mcy = 1 or ¢o = 2. Now we can find the series for

Yp using

[es)
_ n+m
Yp = E CnT
n=0
o0
g X"
n=0

To find ¢, we use the same recurrence relation found for y, but change r to m and a to c.
From above we found

Nl

=T

(n+r)a, +2a, 2=0

Hence it becomes
(n+m)c, +2¢,2=0

The above is valid for n > 2. For n = 0 we have found ¢, already. For ¢; using the above
ra; = 0 hence it becomes mc; = 0 which implies

C1:0

since m # 0. Now we are ready to find few ¢, terms. The above recurrence relation

becomes for m = 2

(n+ §) Cn+2¢c,_9=0

2
= _2cn—2
(n+3)
Hence for n = 2
o) s
TRry @y
Forn =3 ] 96, .
3 = =
(3+3)
Forn =4
oo 20 —2(—5) 32
YT +3) T (4+3) 231

And so on. Hence

o0
3
yp=x2§ [
n=0
3 2
=z2(co+az+cez’+--+)

Hence the final solution is

N

1 2 8 32
:cl<1—3§2+—$4——$6+"')+x <_+__$2+—274—--'>

3 21 231
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3.3.25.5.2 Example 2
1
Y +2zy ==
x

Expansion is around z = 0. The (homogenous) ode has the form 3’ + p(x) y = 0. We see
that p(x) is defined as is at x = 0. However the RHS has no series expansion at z = 0.
Therefore we must use Frobenius series. This is the same ode as example 1. So we go
straight to find y, as y, is the same. Now we need to find y, using the balance equation.
From above we found that

1
ragr’ ==
x

Renaming a to c and r as m so not to confuse terms used for y;, the above becomes

meoz™ =gzt

Hence m — 1 = —1 or m = 0. Therefore mcy = 1. But since m = 0 then no solution for
co. Hence it is not possible to find series solution. This is an example where the balance
equation fails and so we have to use asymptotic expansion to find solution, which is not
supported now.

3.3.25.5.3 Example 3

Expansion is around z = 0. The (homogenous) ode has the form 3’ + p(z) y = 0. We see
that p(xz) = 0 is analytic at £ = 0. However the RHS has no series expansion at z = 0
(not analytic there). Therefore we must use Frobenius series in this case. Let

00
y = E :a/nxn—i-r
n=0
0o
y = E (n+r)a,z™ !
n=0

The (homogenous) ode becomes

Forn=0
ragz” =0

Hence r = 0 since ag # 0. Therefore the ode satisfies

y =rapz

Eq (1) becomes

o0
g na,z" 1 =0
n=0

na,z" ' =0 (2)
Therefore for all n > 1 we have a,, = 0. Hence
Yn = Qo

Now we need to find y, using the balance equation. From above we found that
1

ragr’ ! ==
x
Changing r to m and ag to ¢y so not to confuse notation gives

meoz™ ! = 71

Hence m —1 = —1 or m = 0. Therefore there is no solution for cy. Unable to find y, there-
fore no series solution exists. Asymptotic methods are needed to solve this. Mathematica
AsymptoticDSolveValue gives the solution as y(z) = ¢+ Inz.
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3.3.25.5.4 Example 4
, 1
2
Expansion is around z = 0. The (homogenous) ode has the form 3’ + p(z) y = 0. We see
that p(z) = 0 is analytic at z = 0. However the RHS has no series expansion at z = 0

(not analytic there). Therefore we must use Frobenius series in this case. Let

(3]
y = E a/nxn—}-r
n=0
00
y = E (n+7)a,z"t !
n=0

The (homogenous) ode becomes

Y (ntr)a.z™t =0 (1)

Forn=0
ragz” =0

Hence r = 0 since ag # 0. Therefore the balance equation is

r—1 __ 1
rapr’T =
Or by changing r to m and ag to ¢y so not to confuse notation with y; gives
meoz™ ! = 272 (2)

Eq (1) becomes, where 7 = 0 now

oo
E na,z" 1 =0
n=0

na,z" ' =0 (2)

n = 0 is not used since that was used to find r. Therefore we start from n = 1. For all
n > 1 we see from (2) that a, = 0. Hence

Yn = c1(ao + O(z))
Letting ay = 1 the above becomes
yn = c1(1+ O(z))

Now we need to find y, using the balance equation. From (2) above we found that

meoz™ ! = z72
To balance, we need m — 1 = —2 or m = —1 and mcy = 1 or ¢y = —1. Therefore

Yp=2" Z coz"

n=0

Where ¢y = —1 and all ¢, for n > 1 are found using the recurrence relation from finding
yn. But from above we found that all a,, = 0 for n > 1. Hence ¢, = 0 also for n > 1.
Therefore

yp=2"Co

-1

Hence the solution is

Y=YnTYp

-1
= 01(1 + 0(1172)) + (7 + O(.’E2))
If we to ignore the big O, the above becomes

y=at — —
T

To verify, we see that y' = 5.
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3.3.25.5.5 Example 5
v+2=0
T
Expansion is around z = 0. The (homogenous) ode has the form 3’ + p(x) y = 0. We see
that p(z) = L is not analytic at z = 0 but lim, o zp(z) = 0 is analytic. Therefore we
must use Frobenius series in this case. Let

an,x™t" (A)

i
[M]8

3
Il
=)

n+r—1

@\
I
NE

(n+7r)ax

3
Il
<}

The ode becomes

1
n+r—1 n+r
n n -_— 0
(n + 7") an,T + E a,T

n=0

(’)’L + 7‘) anxn—i-r—l + Z anxn—i-r—l =0

n=0

Z (n+71)ay,+a,)z" =0

n=0
o)

Z (n+r+1)a,z"" =0 (1)

n=0

e 10

3
Il
<)

Forn=0
(r+1)a0=0

Hence r = —1 since ag # 0. Eq (1) becomes, where r = —1 now

Z na,x" =0
n=0
na,z" ' =0 (2)

n = 0 is not used since that was used to find r. Therefore we start from n = 1. For n =1
the above gives a; = 0 and same for all n > 1. Hence from Eq (A), since y = > -, a,z™t"
then (note: When there is only one Y term left in (1) as in this case, then this means
there is no recurrence relation and all a,, = 0 for n > 0).

y=c (Z anx"”)

n=0

=ci(apz™' +0+0+ -+ O(z))
Letting ay = 1 the above becomes

y=ca(z'+0(z))
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3.3.25.6 irregular singular point

ode internal name "first order ode series method. Irregular singular point'

expansion point is an irregular singular point. Not supported.

3.3.26 Laplace method

ode internal name 'first_order_ laplace'

These are ode’s solved using Laplace method. Currently only linear odes are supported.
Both constant coefficients and time varying coefficients. For time varying only, only coeffi-
cients that are polynomial in ¢ are allowed. For example the following ode can be solved
using Laplace

ty +y=0
Q+t)y +ty=0
y + 3ty =0

But not
sin(t)y' +y=0

Initial conditions can be at zero or not at zero or not given. For time varying, the ode is
transform to Laplace using the property

L(Ey(0) = (-1 = ¥ ()

What this means, is that having ¢ as coefficient will generate first order ode in Y'(s) which
needs to be solved first to find Y'(s) before applying inverse Laplace transform to find the
solution y(¢). A coefficient #? will generate second order ode in Y (s) and ¢* will generate a
third order ode in Y (s) and so on. This means if we are to use Laplace transform to solve
first order ode, we could end having to solving an ode in Y'(s) of much higher order and
the generated solution Y'(s) might become too complicated to even inverse Laplace it.

So it is not really useful to use Laplace method to solve time varying first order ode of
coefficient of polynomial of power t” where n > 1.

When the initial condition of the original ode is not at zero, the original condition must
be shifted so it is at zero. This is more critical to do for time varying than for constant
coefficients ode when we use Laplace transform method. This means we have to do change
of variables first. See examples below.

3.3.26.1 Algorithm for solving using Laplace transform for time varying ode

-- Input is first ode in y(t) with possible IC in form y(t0)=yO0
-- output is solution y(t) using Laplace transform.

-- The first step is convert the ODE in y(t) to ODE in Y(s) using

-- the relation L(t™n £(t) ) = -(1)"n d"n/ds™n( F(s) )

-- where F(s) is the Laplace of f(t). This is applied to each term in
-- the original ode in y(t).

-- Now we have an ODE in Y(s). This ode can be first order or higher
—-- order depending on the power on t. For example if the input

-- is t73*y(t)+y'(t)=0 then the ode in Y(s) will be 3rd order.

-- Next step is to solve the ode in Y(s). Let us say the solution
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-- is Y(s)=.... This solution will have as many new constants as the
-- order of the ode in Y(s)

IF no IC are given THEN
Apply Laplace to the ODE and convert to ode in Y(s)
solve this ode in Y(s)
Apply inverse Laplace transform on solution Y(s). THis gives

y(t)=.... which is the final solution.
ELSE -- IC is given as y(t0)=y0
IF t0=0 THEN

Apply Laplace to the ODE and convert to ode in Y(s)
solve this ode in Y(s)

LABEL L:

Apply inverse Laplace transform on Y(s)

now we have y(t)=.... with constants c_i in it €))

these constants c_i come from solving the ode in Y(s)

Apply IC to obtain equation yO=.... with constants c_i in it.

IF there is more than one unknown c_i in the RHS then solve
for one of them and plug that into (*). This is final solution
ELSE
solve for c_1 from yO=.... c_1 .... and plugin into (*).
END IF
ELSE -- initial conditions not at zero, i.e. y(t0)=y0 and t0<>0
-- This applies also even if y0=0 or not.

Transform the original ode in y(t) such that IC is now
shifted to zero.

For example, if IC was y(1)=yO, then use transformation
tau=t-1. This gives new ode in time, but with y(0)=yO0.

This is the one we will work with now. Not the orginal ome.

Apply Laplace to this new ODE and convert to ode in Y(s)
solve this ode in Y(s)

GOTO LABEL L to find solution y(tau)
convert solution back to t, using tau=t-tO

END IF
END IF

3.3.26.2 Examples with constant coefficients
3.3.26.2.1 Example 1 IC y(0) =3
y — 2y = 6e”
y(0) =3
Taking the Laplace transform gives
L(y) =Y (s)
L(y) = sY(s) —y(0)

£(665t) = E 3
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The ode becomes

sY(s) —y(0) —2Y(s) =

Y(s)(s—2) —y(0) =

Y(s) (s~ 2) = +3(0)

Y(s)(s—2) = %+3
Y(s) (s —2) = W
Y(s)(s-2)= 2
3s—9
YO = Th 6=
2
_s—5+s—2

Applying inverse Laplace transform and using £7!(5%;) = 2¢™, £71(-1;) = * then the
above gives
y(t) = 27 4 *

3.3.26.2.2 Example 2 IC y(—1) =4
y —6y=0
y(=1) =4

There are two ways to solve an ode using Laplace transform when IC are not at zero.
Either we do change of variables to shift the IC to zero, or solve as is. Both methods are
shown below.

method 1 (no change of variable)

Taking the Laplace transform of the ode gives

L(y)
L(y')

Y(s)
sY (s) —y(0)

The ode becomes
sY —y(0)—6Y =0

Solving for Y gives

Taking inverse Laplace transform gives

y(t) = y(0) e (1)
Now we need to find y(0), for this, we use the given IC y(—1) = 4. The above becomes

4 =y(0)e"
y(0) = 4

Hence (1) becomes

y(t) = 4l
— 466t+6
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method 2 (change of variable)

Let
T=1t+1

The ode ¢y — 6y = 0 becomes

Y (1) —6y(1) =0
y(0) =4

Taking Laplace transform gives

sY —y(0)—6Y =0
sY —4—-6Y =0
4

Y =
s—6

The inverse Laplace transform is
y(r) = 4e

Changing back to t the above becomes
y(t) — 466(t+1)

Which is the same answer as before. The change of variable method seems to be more
common.

3.3.26.2.3 Example 3 IC y(1) = y,
y' +y=sin(t)
y(1) =wo

There are two ways to solve an ode using Laplace transform when IC are not at zero.
Either we do change of variables to shift the IC to zero, or solve as is. Both methods are
shown below.

method 1 (no change of variable)

Taking the Laplace transform of the ode gives

L(y) =Y(s)
L(y') = sY(s) —y(0)
) 1
L(sint) = T
The ode becomes 1
SY_y(O)+Y= 1+32
Solving for Y gives
Y(s+1)—y(0) = —
s yr= 1+ 52
_ 2 +y0)
s+1
1 y(0)

(1+s%)(s+1) s+1

Taking inverse Laplace transform gives

—t

y(t) = %(21;(0) +1) — %cost + %sint (1)
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Now we need to find y(0), for this, we use the original given IC y(1) = yo. The above
becomes

-1

1 1
Yo = 67(23/(0) +1)— Ecosl + Qsinl
-1

1 1
Yo + §cosl — ésinl = %(23/(0) +1)

1 1
2e (yo + 3 cosl— 3 sin 1) = (2y(0) + 1)

1 1 1
y(0)=e(yo+§cosl—§sin1) -5
Hence (1) becomes
—t 1 1 1 1 1
y(t) = %(2<e<yo+§cos1— §sin1) — 5) +1) — écost+§sint
1 1 1 1
zel_t(yo+§cosl—§sin1) —Ecost+§sint

1 1 1
= éel_t(2y0 +cosl—sinl) — 3 cost + 3 sin¢

method 2 (change of variable)

Let
T=t—-1

The ode 3y’ + y = sin (t) becomes

y' (1) +y(r) =sin (7 + 1)

y(0) = yo
Taking Laplace transform gives

sin (1) s + cos (1)

Y — Y =
sY —y(0) + T2

sin (1) s + cos (1)

Y(1 =
( + S) 1+ g2 Yo
Y — sin (1) s + cos (1) Yo

(14+s%)(1+ ) 1+s
The inverse Laplace transform is

1 1 inl
y(t) = 56_7(2,1;0 +cosl—sinl) + %(sirw —cosT) + Sl%(sinT + cos )

Finally, changing back to ¢ the above becomes

1 1 inl
y(t) = §e1_t(2y0 + cos1 —sin 1)—|—CO2S (sin(t — 1) —cos (t — 1))+Sl%(sin (t—1)4cos(t—1))

Which simplifies to

1 1 1
y(t) = iel_t(2y0 +cosl —sinl) — 3 cost + 3 sint

Which is the same answer as before.
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3.3.26.3 Examples with time varying coefficients

3.3.26.3.1 Example 1 IC y(0) =0

y —ty=0
y(0)=0
For this we will use relation £(tf(t)) = —-F(s). Hence taking the Laplace transform

gives

L(ty) = —%E(y)

d
= —£Y(s)

L(y) = sY(s) —y(0)

The ode becomes

5Y(s) — 4(0) + disY(s) _0

sY(s) + d%Y(s) =0

Replacing initial conditions y(0) = 0 the above becomes

sY(s) + %Y(s) =0

2

This is linear ode in Y (s). The integrating factor is e/ ** = ¢z . Hence the above becomes

() -

Integrating gives

Yez =¢
Y = 016_752 (1)
Taking the inverse Laplace gives
y(t) = L7t (e 7252) (2)

And now apply IC which gives

Hence ¢; = 0. Therefore (2) becomes

y(t) =0
3.3.26.3.2 Example 2 IC y(0) =0
ty +y=0
y(0)=0

We will use the property
d
L(tf (1)) =~ F(s)
Hence taking Laplace transform of each term of the ode gives

L) = — (L)

— % sy —y(0))
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And
Ly) =Y
Hence the ode becomes in Laplace domain as
—sg -Y+Y=0
ds
ay
s =0
¥ ds
day
22 =0
ds
Solving this ode for Y'(s) gives
Y = C1 (1)
Taking the inverse Laplace transform gives
y(t) = c16(2) (2)
Applying initial conditions
0= 016 (0)
Hence ¢; = 0 and the solution (2) becomes
y(t) =0
3.3.26.3.3 Example 3 IC y(0) = yo
ty +y=0
y(0) = o
The following property is used
d

L(t5(8) =~ F ()

Taking Laplace transform of each term of the ode gives

£(t) = (L)

=~ 2 (sY ~(0))

dy
= —(Y+SE)

=—s5—-Y
Sds

And
Lly)=Y

TThe ode becomes in Laplace domain becomes

—SQ—Y—FY:O

ds
dYy
55 =0
dYy
s Y
Solving this ode for Y'(s) gives
Y=0c (1)

Taking inverse Laplace gives

y(t) =6é(t) (2)
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Applying initial conditions gives

Yo =06(0)cy
P Yo
IC)
The solution (2) becomes
6(t)

y(t) = yom

3.3.26.3.4 Example 4 IC y(zy) = 3o
ty +y=0
y(zo) = vo

Since IC given is not at zero, change of variables must be made so that the IC at zero.
Let 7 =t — x¢ then the ode becomes

(o + 7)Y (1) +y(1) =0
zoy' (1) + 7Y (1) +y(7) =0
y(0) = o

Converting the above new ode to Laplace domain using
L(tF(r)) = - F(s)
ds

Gives (using Y'(s) as the Laplace of y(7)) and simplifying using y(0) = yo

d
2o(sY —(0) + (=1) - (sY —9(0)) + Y =0
dY
zo(sY — yo) — (Y-FSE) +Y =0
xosY—xoyO—Y—s%+Y:0
TosY — sﬂ = ZoYo
ds
ﬂ —zY = __ToYo
ds s

The solution is
Y = ¢1€°° + (zoyo Ei (szp)) €7

Taking inverse Laplace gives

_ ZoYo -1/ _sxo
y(r) = L) (1)

Applying initial conditions gives y(0) = yo gives
Zo

Yo = Yo + c1 L7(e5™)
0= e (™)

Cl=0

Hence the solution (1) becomes
y(r) =
T+ o
Converting back to t using 7 =t — xy the above becomes

ZoYo
y(r) = ,
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3.3.26.3.5 Example 5 (no IC)
ty+y=0

We will use the property
d
L(tf () =~ F(9

Hence taking Laplace transform of each term of the ode gives

d
N __ _ /
Lty) = - (L))
d
= (sY —
(Y —y(0)
ay
=Y 4+s5s—
( + s ds)
ay
=S Y
And
Ly)=Y
Hence the ode becomes in Laplace domain as
—sd—Y -Y+Y =0
ds
dy
55 0
ay
s 0
Solving this ode for Y'(s) gives
Y = C1 (1)

Taking inverse Laplace gives
y(t) = 6(t) e
Since no initial conditions are given, then the above is the final solution. Notice that y(0)

do not have to be known, since it cancels out in the above. What is left is the ¢; which is
generated from solve the ode in Y'(s).

3.3.26.3.6 Example 6 IC y(1) =5
ty+y=0
y(1) =5
method 1

Since IC given is not at zero, change of variables must be made so that the IC at zero.
Let 7 =t — 1 then the ode becomes

(I+7)y(r) +y(r) =0
Y (1) + 71y (1) +y(r) =0
y(0) =5

Converting the above new ode to Laplace domain using

L(tf(r) =~ F(s)



CHAPTER 3. FIRST ORDER ODE F(z,y,y') =0 126

Gives (using Y (s) as the Laplace of y(7))

(Y —y(0) +Y =0

sY —y(0) — (Y+sd%Y) +Y =0

sY —y(0) + (-1)

sY—5—Y—siY—|—Y:O
ds
d

Y —-s—Y =

s sds 5
d 5
—Y-Y=—
ds s

The solution is
Y =ce’+ (5Ei(s)) e’

Taking inverse Laplace transform gives
y(1) = clL7(e%,8,7) + L7((5Ei(s)) €°) (1)
=c L7 (e s,T) +

1+71

Applying IC y(0) = 5 the above becomes

5=c L (ef5,0)+5
0=cL7'(es,0)

Hence

Therefore the solution (1) becomes

5
1471

y(r) = 2)

Converting back to t the above becomes

y(t) = g

Note that this ode can be solved much more easily but not using Laplace transform. Let

see how. The given ode is y

y + ;=0 t#0
This is linear ode, its solution can be easily found as
Y= e
Applying IC
1
5=—
1
C = 5
Hence the solution is 5
Y= "

method 2

This method shows what happens in the case of time varying ode whose IC is not at zero,
and if we do not do change of variables as was done above.
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Taking Laplace transform of original ode ty’ + y = 0 gives

(¥ —y(0)+Y =0

ds
— (Y + sd—Y> +Y =0
ds

dY
5 =0

dY
F

Hence
Y = C1

Taking inverse Laplace transform gives

y(t) = c16(?)

Applying IC y(1) = 5 to the above

5= 01(5(1)
5
IO

1)

Which is off course is not valid, since §(1) = 0. This shows that time varying ode, using
Laplace transform, we must apply change of variables (as done in method 1) first. Notice
that for constant coefficients, both methods work OK. See example above under constant

coefficient for problem where IC was not at zero.

So to be consistent, it seems better to stick to one method which works for both time
varying and constant coefficients, which is to do change of variables if the IC is given and

it is not at zero.

3.3.26.3.7 Example 7 IC y(1) =0

ty' +y =sin (¢)
y(1) =0

Change of variables is made to make the IC at zero. Let 7 =t — 1. The ode becomes

sin (14 7)
sin (14 7)
0

1+7)y' (1) +y(7)
y' (1) + 1Y (1) +y(1)
y(0)

Converting the above new ode to Laplace domain using

d

L(t(r)) = =1 F ()

Gives (using Y (s) as the Laplace of y(7))

(sY —y(0)) + (-1) dils(sy —y(0)+Y = sin (1)15++s(2:os (1)

sY —y(0) — (yﬂﬂ) 1Y = sin (1) s 4 cos (1)

ds 1+ s?
ay _ sin(1) s+ cos (1)

sY —0-Y sds+Y— 142
d., sin(l)s+cos(l)

SY—S%Y— T+
dy_Y__sm(l)s-l—cos(l)

ds - s(1+s?)
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The above is linear ode. Solving it gives

S

Y = %(ZEi(l,s) cos (1) — Ei (1,5 +14) — Ei(1,s — 4) + 2¢1)
= ¢* Ei(1,5) cos (1) — %Ei(l,s +i) — %Ei(l,s — i) +cref 1)

Taking inverse Laplace transform gives

_cosl cos(T+1) 1/ s
V=TT e el @ 4)

Applying IC y(0) =0

0 =cos(1) —cos (1) + c;L7(e)
0=c L7 (e®)

Hence ¢; = 0. Therefore (3) becomes

cosl cos(T+1)
y(r) = -
T+1 T+1

Going back to t using 7 =t — 1 the above becomes

_cosl cos(t)

t -
y(t) = — ;
3.3.26.3.8 Example 8 IC y(1) =0
ty +y=t
y(1)=0

Applying change of variables to make the IC at zero. Let 7 =t — 1 the ode becomes
T+ y'(r)+y(r) =7+1
y(m) +7y (1) +y(r) =7+1
y(0)=0
Converting the above new ode to Laplace domain using

L(tf(r) = — < F(s)

s+1
32

Gives (using Y (s) as the Laplace of y(7))
(5 = y(0) + (=) 5.(sY —y(0) +Y =

Y 1
sY —y(0) — <Y+sd—) +y =22

ds s2
sv—0—y—s yy_stl
ds s2
d s+1
Y —s—Y =
s ds s?
d s+1
—Y -Y=-
ds s3
The above is linear ode. Solving it gives
1 1 *Ei (1
Y:—+——Lw+cles

252  2s 2

Taking the inverse Laplace transform gives

y(T) = % + % - ﬁ + clﬁ_l(es) (1)
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Applying y(0) =0

1 1
0= 5 - 5 + clﬁ_l(es)
0=c L7'(e) (2)

Hence ¢; = 0. Therefore (1) becomes

T 1 1

V=5t 2

Going back to t using 7 =t — 1 the above becomes

(t)_t—1+1 1
YW= Ty
ot
2 2

We see in the above, we did not have to use initial value theorem to find ¢;. This is because
the IC was y(0) = 0. But if the IC was y(0) = yo, where yo # 0 then (2) would becomes

Yo = clﬁ_l(es)

And then we can not solve for ¢;. So the above method works for homogeneous IC. The
following example solve this same problem but with IC y(1) = 1 to show how to handle
these cases.

3.3.26.3.9 Example 9 IC y(1) =1 This is the same example as above, but with
y(1) = 1 instead of homogeneous IC y(1) = 0.

ty +y=t
y(1) =1
Applying change of variables to make the IC at zero. Let 7 =t — 1 the ode becomes
(t+1)y(r)+y(r)=7+1
YD)+ /(D) +y(r) =7 +1
y(0) =1
Converting the above new ode to Laplace domain using

L(tf(r) =~ F(s)

Gives (using Y (s) as the Laplace of y(7))

d s+1
(sY = 9(0)) + (=1) (Y —9(0) + ¥ = —
dy s+1
Y —y(0)— Y +5— Y =
S y(0) ( +sds> + =
¥ —1-y—sD py_st!
ds s2
d s+1
sY — ng =2 +1
d s+1 1
—Y -Y=- - -
ds s3 s
The above is linear ode. Solving it gives
1 1 e*Ei(l,s)
T BTl Sl s 1
Y=gt t 5 Tac (L)
Taking the inverse Laplace gives
T 1 1 1
-4 —1(gs 2
Vr) =5ty gy tal ) )
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Applying IC y(0) = 1 gives

1 1 —1/_s
1—§+§+61£ (€®)
0=c L7 ()

Cc1 = 0
Hence (2) becomes
T 1 1
y(r)=5+5+

2 2 2(14+7)
Going back to t using 7 =t — 1 the above becomes

(ﬂ_t—1+1+1
W= ToyTy
_t+1
2 2t

3.3.26.3.10 Example 10 (time varying with ¢?) IC y(0) =0
Y +t2y =0
y(0)=0
Using the property ,
L5 (8)) = (-1 5 F(s)
Taking Laplace transform of each term of the ode gives

L(y') = sY —y(0)
And

Hence the ode becomes in Laplace domain as

d2
Y — —Y =
s y(0) + 752 0
2
Replacing y(0) from initial conditions

d2
—Y +sY =0

ds?
This is Airy ode. The solution is
Y = c; AiryAi(—s) + ¢ AiryBi (—s) (1)

Taking inverse Laplace transform gives

y = c1 L7 AiryAi (—s) + coL7! AiryBi (—s) (2)
Since yo = 0 at t = 0, the above becomes

0 = ¢, L7 AiryAi (—s) + oL AiryBi (—s)
if we take ¢; = 0, ¢y = 0, this will make the LHS equal to RHS. Hence (2) becomes

y(t) =0

I need to double check I could do the above or not. If not, then this is not possible to
solve using Laplace, since there is no inverse Laplace transform for Airy functions.
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3.3.26.3.11 Example 11 IC y(1) =0
Q+at)y' +y=t
y(1) =0
Applying change of variables to make the IC at zero. Let 7 =t — 1 the ode becomes

I+a(t+1)y+y=7+1
Y +ar+1)y+y=7+1
v +ary +ay +y=17+1

1+a)y +ary +y=7+1

y(0) =0

Converting the above new ode to Laplace domain using

L(tf(r) = < F(s)

Gives (using Y (s) as the Laplace of y(7))

(14 a) (sY —y(0)) +a(~1) - (sY —y(0)) +¥ = 57
(1+a)s¥ —at(or) 4y ="F1

sY+asY—a<Y+scjl—§)+Y:S+1

dY 1
sY +asY —aY —as— +Y = il
ds s2
dY +1
—asE—I—Y(l—i-s—l-as—a) = 882
dY Y(l-l—s-l—as—a) . os+1
ds as ~ as?
This is linear in Y'(s). Solving gives
1 sailesM
Y(s) =
(S) 32 (a + 1) + C1 82

Taking inverse Laplace gives

T saﬂes(aﬂ)
e
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3.4 Lie symmetry method for solving first order

ODE

3.4.1 Terminology used and high level introduction

1.
2.

10.

11.

12.

x,y are the natural coordinates used in the input ode % = w(z,y).

z,y are called the Lie group (local) transformation coordinates. The ode remains
invariant (same shape) when written in Zz,y. The coordinates R, S (some books use
lower case r, s) are called the canonical coordinates in which the input ode becomes
a quadrature and therefore easily solved by just integration.

. &,n are called the Lie infinitesimals. £(z,y),n(z,y) can be calculated knowing Z, 3.

Also z,y can be calculated given &,7n. It is £,n which are the most important
quantities that need to be determined in order to find the canonical coordinates
R, S. These quantities are called the tangent vectors. These specify how the orbit
moves. The orbit is the path the point (x,y) point travels on as it move toward Z, 3.
The tangent vectors &, n are calculated at € = 0. The point z = x + &€ and the point

y=1y+ne.

. The ultimate goal is write Z—z = w(z,y) in R, S coordinates where it is solved by

integration only as it will have the form 92 = F(R). The right hand side should

always be a function of R only in canonical coordinates.

. x,y can be calculated knowing the canonical coordinates R, S.

. The ideal transformation has the form (z,y) — (z,y + €) because with this trans-

formation the ode becomes quadrature in the transformed coordinates. But because
not all ode’s have this transformation available, the ode is transformed to canonical
coordinates (R, S) where the transformation (R, S) — (R, S + €) can be used.

. The main goal of Lie symmetry method is to determine S, R. To be able to do this,

the quantities £, n must be determined first.

. The remarkable thing about this method, is that regardless of how complicated the

original ode Z—g = w(z,y) is, if the similarity condition PDE can be solved for &, 7,

then R, S are found and the ode becomes quadrature 2> = F(R). The ode is then

solved in canonical coordinates and the solution transformed back to x,y.

. The quantity € is called the Lie parameter. This is a real quantity which as it

goes to zero, gives the identity transformation. In other words, when ¢ = 0 then
(z,9) = (2,9).

But there is no free lunch, even in Mathematics. The problem comes down to finding
&, n. This requires solving a PDE. This is done using ansatz and trial and error. This
reason possibly explains why the Lie symmetry method have not become standard
in textbooks for solving ODE’s as the algebra and computation needed to find &, 7
from the PDE becomes very complex to do by hand.

Total derivative operator: Given f(z,y) then £ = % + g—ig—z where it is assumed
that y(x) depends on z. Total derivative operator will be used extensively in all
the derivatiations below, so good to practice this. It is written as D, = 0, + 0,y
for first order ode, and as D, = 0, + 0,y + Oyy” for second order ode and as

D, = 0, + 0,y + 0yy” + 0,»y" for third order ode and so on.

The notation f, means partial derivative. Hence % is written as f,. Total derivative

will always be written as %. It is important to distinguish between these two as the
algebra will get messy with Lie symmetry. Sometimes we write f’ to mean % but it

is better to avoid f’ and just write % when f is function of more than one variable.
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13. Given first ode & = w(z,y), where § = §(z,y) and Z = Z(z,y) then thenZ is given

by the following (using the total derivative operator)
dy _ Dyy
di D,z
Uty
Y
Yz + Yyw
Ty + Tyw

14. Given second order ode £Y¥ = w(z,y,y’) where § = y(z,y,vy') and z = Z(z,y,y)

dz?
then % is given by
d* D dy

T dz

dz2 ~ D,T
ATy T
T, + 1y

!

To simplify notation we have used ¢ for % in the above. The above simplifies to

Py Ty Ty
dz2 Tl + Ty

Keeping in mind that (o), or (o), mean partial derivative.

15. Given third order ode %% = w(z,y,y',y") where §y = y(z,y,v',y") and z =

da3

Z(z,y,y',y') then %gl is given by

5 _ Digh
dzd3  D,x
_ U+ WY + Uy + Yy
T, + Ty
_ U Y Y+ Gy
T, + Ty

To simplify notation we used 3" for % above. And so on for higher order ode’s.

3.4.2 Introduction

Given any first order ODE i

= w(z,y) (4)
The first goal is to find a one parameter invariant Lie group transformation that keeps the
ode invariant. The Lie parameter the transformation depends on is called €. This means
finding transformation of (x,y) to new coordinates (Z,y) that keeps the ode the same
form when written using z, ¥.

This view looks at the transformation on the ode itself. Another view is to look at the
family of the solution curves of the ode instead. Looking at solution curves transformation
is geometrical in nature and can lead to more insight.

What does the transformation mean when looking at solution curves instead of the ODE
itself? It is the mapping of a point (z,y) on one solution curve to another point (Z,y) on
another solution curve. If the mapping sends point (z,y) to another point (Z,y) on the
same solution curve, then it is called a trivial mapping or trivial transformation.

As an example, given the ode ¢y’ = 0, this has solutions y = ¢;. For any constant c; there
is a solution curve. There are infinite number of solution curves. All solution curves are
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horizontal lines. The mapping (z,y) — (z + €,y) is trivial transformation as it moves the
point (z,y) to another point (Z,y) on the same solution curve.

The transformation (z,y) — (z,y + €) however is non trivial as it moves the point (z,y)
to point (Z,y) on another solution curve. Here = x and §y = y + €. This can also be
written (z,y) — (z, e‘y) which is the preferred way.

The transformation (z,y) — (z + €,y + €) is non trivial for this ode. The simplest non
trivial transformation that map all points on one solution curve to another solution curve
is selected. In canonical coordinates the transformation used has the form (R,S) —

(R, S +€).

Another example is ¢/ = y. This has solution curves given by y = ce®. This is a plot
showing two such curves for different c values.

Figure 3.8: Point transformation example for ¢ =y

The above shows that a non trivial transformation is given by z = = + ¢,y = y. This can
be found analytically by solving the symmetry condition as will be illustrated below using
examples. For this case, the tangent vectors are & = % =1landn = % o =0.In

Oe |€=0
Maple this is found using

‘ ode:=diff (y(x),x)=y(x);
‘ DEtools:-symgen (ode)
[ xi =1, _eta = 0]

\

But the following transformation = z,y = y + € does not work

co

v

Figure 3.9: Possible Point transformation for ¢y =y

This is because it does not keep the original ode invariant because % = y becomes
Zi—% = ¢, where now g, = 0,9, = 1,Z, = 1,7, = 0,§ = y + ¢, and hence gii—ﬂ =y
simplifies to 3’ = y + € which is not the same ode. This shows that Z = z,y = y + € is not

valid Lie point symmetry.
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However T = z + ¢,y = y leaves the ODE invariant. In this case §, = 0,79, = 1,T, =

1,Z, =0,y = y and hence gﬁi—% = y becomes y' = y which is the same ode.

The transformation must keep the ode invariant as this is the main definition of symmetry
transformation.

Therefore, what we are looking for, is the simplest transformation that move point (z,y)
from one solution curve to another solution curve, such that the transformatio also leaves
the ode invariant (same form) in the new coordinates (Z,y). In the above example, this
Was T =T+ €Y =1y.

In the above, the path the point (z,y) travels on as it moves to (Z, ) as € changes is called

the orbit. Each point (z,y) travels on its orbit during transformation.

In all such transformations, there is a parameter e¢ that the transformation depends on.
This is why this is called the Lie one parameter symmetry transformation group. There
are infinite number of such transformations.

Lie symmetry is hence called point symmetry, because of the above. It transforms points
from an solution curve to points on another solution curve for the same ODE. The identity
transformation is when € = 0, since then the point is transformed to itself.

An example using an ODE. The Clairaut ode of the form y = zf(p) + g(p) where p =/

2(y)’ —yy' +m=0 1)
12 /
Y= S A
m m
Where f(p) = % and g(p) = i’—n/ Using the dilation transformation Lie group
T =7Z(z,y;€) = e*z (2)
J=y(z,y;€) = €Y 3)

Eq. (1) is now expressed in the new coordinates Z,y . If this results in same same ode
form but written in z,y then the transformation is invariant. But how to find % ? This
is done as follows

dj _ 3

dz &
ety
T+ Ty

2¢

In this example y, = 0,y, = €, T, = e, T, = 0. The above now becomes

dy eeg—g
dz ~ e2
—edy
T dx
Writing (1) in terms of Z, § now gives
_(dg\® _dg
5(%) a5 +m=0 @
_dy\’ dy
2¢ € d (o€ €e_Jd —
(e*z) (e dx) (ey) e 2p T M 0
dy 2 dy _

Which gives the same ode. The above method starts by replacing the given ode by z, ¥, 3—2
and finds if the result gives back the original ode in z, v, %' This is simpler than having
to transform the original ode to z, v, j—g. This transformation can be verified in Maple as
follows
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‘ ode:=x*diff (y(x),x) "2-y(x)*diff (y(x),x)+m=0;

‘ the_tr:={x=X*exp(-2*s) ,y(x)=Y(X)*exp(-s)};

‘ newode:=PDEtools:-dchange(the_tr,ode,{Y(X),X}, 'known'={y(x)}, 'uknown'={Y (X
(diff(Y(X), X)"2%X - Y(X)*diff(Y(X), X) +m = 0

Comparing (4) to (5) shows that the ode form did not change, only the letters changed
from x to x and y to y. The resulting ode must never have the parameter € show or remain
in it as ofcourse this will make it different form than the orginal ode which do not have €
in it.

The above shows how to verify that a transformation is invariant or not. In Lie group

transformation there is only one parameter ¢ and the transformation is obtained by
evaluating the group as € goes to zero.

But how does this help in solving the original ode? If the ode in x,y is hard to solve, then
the ode written with Z,y will also be hard to solve since it is the same. But Eq. (4) is not
what is used to solve the ode. The above is just to verify the transformation is invariant.
Similarity transformation is used to determine the tangent vectors £, n only. These are the
most important quantities. These are then used to obtain the ode in canonical coordinates
R,S). In the canonical coordinates (R,S) the ode becomes quadrature and solved by
integration. The transformation found above is only one step toward finding (R, S) and it
is these canonical coordinates that are the goal and not z, ¥.

3.4.3 Outline of the steps in solving a differential equation
using Lie symmetry method

These are the steps in solving an ODE using Lie symmetry method.
1. Given an ode ¥’ = w(z,y) to solve in natural coordinates.

2. Now the tangent vector £(z,y),n(x,y) are found. There are two options.

|
»

(a) If Lie group coordinates (Z, §) are given, then it is easy to determine &(z,y) , n(x, y)

using
oz
ﬁ(zv,y) = E o
_ 9y
n(z,y) = B¢ .

Lie group coordinates (Z, ) must also satisfy
-'f"xgy - j’y?jx 7é 0

(b) In practice Lie group coordinates (Z,y) are not given and are not known. In this
case £(z,y),n(z,y) must be found by solving the similarity condition which
results in a PDE (derivation is given below). The PDE for first order ode
y' = w(z,y) comes out to be

UE + W(T}y - gx) - w2€y - w:cé - Wy77 =0

3. &,n are now used to determine the canonical coordinates (R,S). In the canonical
coordinates, only S translation is needed to make the ode quadrature. The trans-
formation is (R, S) — (R, S + ¢). This transforms the original ode ¢y = w(z,y) to
% = F(R) which is then solved by only integration. This is the main advantage of
moving to canonical coordinates (R, S).

I
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4. The ODE is solved in (R, S) space where R = R(z,y),S = S(z,y). The transforma-
tion from (z,y) to (R, S) is found by solving two set of PDEs using the characteristic

d
method. After finding R(z,y),S(z,y) the ode will then be given by 42 = %
T Y do
which will be quadrature. If this ode does not come out as %> = F(R) then something

went wrong in the process. This ode is now solved for S(R). It is the symmetry of
the form (R, S) — (R, S + €) which is of the most interest in the Lie method. This
is called a translation transformation along the y axis (or the S axis in canonical
coordinates). This is because this transformation leads to an ode which is solved by
just integration.

5. Transform the solution from S(R) to y(z).

6. An alternative to steps (3) to (5) (Which seems to be only applicable to first order
odes) is to use &,n to determine an integrating factor u(z,y) which is given by
wlz,y) = n—% then the general solution to y' = w(z,y) can be written directly
as [ p(z,y) (dy —wdz) = ¢; or % = ¢; but this requires finding a function
F(z,y) whose differential is dF = dz:]:tgfw and now the solution becomes [ dF = ¢;
or ' = ¢;. If we can integrate this using [ pudy — [ pwdx = ¢; then this is the
solution to the ode. It is implicit in y(x). Currently my program does not implement
Lie symmetry to find an integrating factor due to difficulty of finding dF' that
satisfies dF' = di’]:—‘gj’” or in carrying out the integration in all general cases but I
hope to add this soon as a backup algorithm if the main one fails. This method is
similar to solving exact ode if we know the integrating factor.

7. An important property, at least for first order ode’s (I do not know now if this
applies to higher order) is that given £ = f(z,y),n = g(,y), then we can always
shift and use £ = 0,7 = g —wf where ¢y = w(z,y). This means we can always base
everything on £ = 0 after this shift is done to 7. This can simplify some parts of the
computation. Ofcourse if £ was found to be zero initially, i.e. just after solving the
linearized similarity PDE, then there is nothing more to do.

The most difficult step in all of the above is 2(b) which requires finding £(z,y) ,n(z,y). In
practice Lie group Z, y transformation is not given. Lie infinitesimal £(x,y),n(x,y) have
to be found directly from the linearized symmetry condition PDE using ansatz and by
trial and error. The following diagram illustrates the above steps.
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Canonical coordinates
4
> At this point € = 0 and the
tangent vectors are given by
ODEisy' =
sy =w(@,y) Canonical coordinates &(x,y) = dl
. . are given by de | —o
Linearized symmetry dy
condition PDE R=R n(z,y) = E
_ “ le=0
5=S5+¢ ‘
e +w (1 — &) =&y — wef —wyn =0
Solve to find &, 7
OR OR
0=—-8§+——
ox ¢ dy "
a8 oS
1=+ 2
ox ¢ y "
Method of characterstics
d d
@ _ Y _4s
IS
YES NO
v v
P
_ [dy ‘ YES NO
n R=y
d Solve % = 7 and set R
S = / — to the constant of inte-
§ gration.
I
[
Does ¢ depend
on x only?
YES NO
Solve for S from
Does n depend
5= /di on y only?
4
YES \ NO
Generate the ODE in canonical coordinates J'_ L
a5 _ Se+ Syw Solve for 5 from Since £ depends on y and 7
dR  R.+ Ryw " dy depends on z, then we can use
And here is the tricky part. The RHS above will be a function - T] any 011{‘?_ of thes?- Let us pick
of x,y. Rewrite the above as function of R only using the s = ?1 But first we have to
earlier findings, knowing what R was. The result must depend replace y in & by its value found
on R only giving from solving % = ¢ found above
as so that £ is function of x only.
— =F(R v
iR (R) And now find
‘Which is solved for S by quadrature. The final step is the S = /ldw
easy one. Convert solution S(R) back to z,y. 13
Nasser M. Abbasi main_L.ipe (8/23/2023)

Figure 3.10: General steps to solve ode using Lie symmetry method

The following diagram illustrates the above steps when we carry the shifting step in order
to force £ = 0. We see that It simplifies the algorithm as now we can just assume & = 0
and we do not have to check for different cases as before.
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At this point € = 0 and the
tangent vectors are given by

ODE is ¢/ = ;s
sy =w(@y) Canonical coordinates E(z,y) = —
are given by ) de | _g
Linearized symmetry dy
condition PDE R=R n(z,y) = I
_ '€ le=0
S=85+¢€

Nz +w (”]y - 57) - wzfy —wel — Wyt = 0

v

Solve to find &, n
OR OR
0= 676 + (?77]
Apply the shift z’)g 0;/
1=——8+ -~
n=mn—~¢&w Oz dy g
=0 . .
¢ Method of characterstics
de  di
aw _ Y _ s
&
R=z .
. Since ¢ = 0 always
dy
S=[|—=
Ul
Generate the ODE in canonical coordinates
E Sz + Syw
dR ~ R. + Ryw
And here is the tricky part. The RHS above will be a function
of x,y. Rewrite the above as function of R only using the
earlier findings, knowing what R was. The result must depend
on R only giving
ds
ar = F(R)
Which is solved for S by quadrature. The final step is the
Nasser M. Abbasi main-2.ipe (9/26/2023) easy one. Convert solution S(R) back to z,y.

Figure 3.11: General steps to solve ode using Lie symmetry method. Shifting
method

3.4.4 Finding xi and eta knowing the first order ode type.
Table lookup method.

There is a short cut to obtaining &(z,y) ,n(x,y) if the first order ode type is known or can
be determined. (of course, if we know the ode type, then a direct method for solving the
ode can be used which is much simpler, since the type is known and there is no need to
use Lie symmetry), but still Lie symmetry can be useful in this case, and also it allows us
to find the integrating factor quickly, which provides one more method to solve the ode.
An example of a first order ode which does not have known type is

(zcosy —e *¥)y +1=0

The above can be solved using Lie symmetry but with functional form of anstaz £ =
f(z) g(y),n = 0. which gives £ = e~5"% 5 = 0.

I am in the process of building table for ready to use infinitesimal based on the first ode
type. The following small list is the current ones determined. For some first order ode
such as linear y' = f(x) y(x) + g(z) or separable ¥y = f(x) g(y) the infinitesimals can be
written directly (but again, for these simple ode’s Lie method is not really needed but
it provides good illustration on how to use it. Lie method is meant to be used for ode’s
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which have no known type or difficult to solve otherwise). For an ode type not given in
this list, an anstaz have to be used to solve the similarity PDE.

ode type

linear ode

separable ode

quadrature ode

quadrature ode

homogeneous
ODEs of Class
A

homogeneous
ODEs of Class
C

homogeneous
class D

First order
special form
ID1

polynomial
type ode

form & n

y/ — 0 ef fdzx

f(@)y(z) +

g9(z)

y = H 0

f(z) 9(y)

y = f(z) 0 1

Y =g(y) 1 0

y=r(% =z y

y = 1 -2
b C

(a+bx +cy)m™

y =YL+ z? Ty

g(z) F(Y)

;o e— J bf(z)dz—h(z) f(z)e~ J bf(@)dz—h(=)
Y Y@ 9(@)
g(m) e (z)+ Y4
f(z)

y =
a1z+bi1y+c a1bsx—asbixz—bica+bocy aibay—asbiy—aica—azct
a2x+bay+c2 a1ba—azb; a1ba—azby

notes

Notice that g(z) does not
affect the result

This works for any g function
that depends on y only

of course for quadrature we do
not need Lie symmetry as ode
is already quadrature

T+y

For example 3’ =
y+2./yz
x

or

y =

Also
§=0,n=c(ba:+cy—|—a)%
are possible. For example, for
y=>01+2z+ 3y)% then use
the first option as simpler
which is £ = 1,7 = —2. Notice
that £ =1,n= —’E’ does not
depend on a and not on n,m.
Hence these odes
y=u+x¢wiy=
(10+z+1y)3 andz

y' = (104 z +y)3 all have
the same infinitesimals
f=1ln=-2=-1
example 3 = ¥ 4+ 56_%.
Where here

g(z) =3, F(¥) =e=.

For an example, for the ode
y = 5e%° T2% 4 sin z, here
g(z) =5,h(z) = 2% b=

20, f(z) = sinz, hence
e— J20sin dz—x2

£= 5

sin ge— J 20sinzde—a

) 11 =
or

20 cos(z)—z2

2

)on=
sin(z) (20 cos(r)~2* ) In this

&= %sinm(e

form, b must be constant.

z+y+3
2z+y

thena; =1,b1 =1,¢1 =
3,(12 = 2,b2 = 1,(32 = 0. Hence
§=x—-3,n=y+6.

For example for ¢y’ =
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Bernoulli ode ¢/ = f(z)y+ 0 yrel 1-n)f(@) dz
9(z)y"
Reduced y/ = 0 e~ [ frdz
Riccati filx)y+
fo(@) y?

Abel first kind ¢’ = fo(z) +
filz)y +
fa(x) v +
f3(z)y?

n is integer n # 1,n # 0. For
example, for

y' = —sin (x) y + 2%y? then
f(z) = —sinz, g(z) = 22,n =
2and £ =0,n= el sinzdzy 2 op
£ =0, = e °3%y2 Notice
that g(x) does not show up in
the infinitesimals Another
example is ¢/ = 2% 4 z—g where
here f(z) = 2. Hence
E=0,n=e" f(3—1)§dzy3 or
§=0,n=n= %Z

For example, for

y' = zy + sin (z) y? then

fi1 =z, fo = sinx and hence
E=0,n=e"Jod o
E=0,n= e2%”. Notice that
f2(x) does not show up in the
infinitesimals. I could not find
infinitesimals for the full
Riccati ode

y' = fo(z) + fi(z)y + fa(2) ¥*.
Notice that fi, fo can not be
both constants, else this
becomes separable

No infinitesimals found

Currently the above are the ones I am able to determine for known first order ode’s. If I

find more, will add them. The table lookup is much faster to use than having to solve the

similarity PDE each time using anstaz in order to find &, 7.

3.4.5 Finding xi and eta from linearized symmetry condition

Given any first order ODE
dy

Ir w(z,y)

(A)

&(z,y),n(x,y) are called the infinitesimals of the transformation. Maple has function
called symgen in the DEtools package to determine these using 16 different algorithms.

Starting with the Lie point transformation group

T = Z(z, y;¢€)
y=9y(z,y;€)

Expanding using Taylor series near € = 0 gives

_ _25 9
T=x+ e €=045—!—0(6)

=z + e(z,y) + O(€)
_ @ 5
F=y+ 5 6206+O(€)

=y +en(z,y) + O()
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Ignoring higher order terms gives

Z(r,y) = = + €(z,y) (1)
y(z,y) =y +en(z,y) (2)

In the above € is the one parameter in the Lie symmetry group. The symmetry condition
for (A) is that

dy _

% - CU(J,' ) y)
Whenever

Y o(z,9)

d.’L' - ’y

Symmetry of an ODE means the ODE in (z,y) remain the same form (but using new
variables (Z,y)) after applying the (non-trivial) transformation (1,2).

Nontrivial transformation means € # 0. The first goal is to find the functions &(z, y) , n(z, y)
which satisfy the symmetry condition above.

The symmetry condition is written as

dy = _
= =) 3)
Where % is the total derivative with respect to the x variable. Similarly for g—i. But
dy _  _dy
dr Yo + Yy dz
= gac + :l?yW(.’L', y) (4)
And
dr. _ _ dy
% =X, + .’Dyﬁ
= Ty + Tyw(z, y) (5)

Substituting (4,5) into (3) gives the symmetry condition as

Yo +w(T,9) Yy _

e = (1) )

But
T, =1+¢€, (7)

And similarly

Ty = €&y (8)

And
Uz = €s (9)

And
Yy =1+ eny (10)

Substituting (7,8,9,10) back into the symmetry condition (6) gives

€ens +w(1l+ eny)
=w(z+ e,y +
(1+ €&;) + wegy, ( €€,y + 1)

€Ny + W + wsny
=wlr+e,y+e
1+ €&, + wegy ( &yt en)

w ~+ 5(1z + wny)
1+ € (& +wéy)

=w(z+ €,y +en) (11)

The above is used to determine £(z,y),n(z,y). The above PDE is too complicated to use
as is. It is linearized, and the linearized version is used to solve for &, 7 near small e.
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Eq. (11) is linearized by expanding the LHS and the RHS using Taylor series around € = 0

. Starting with the LHS first, let % = Arpgs. Expanding this using Taylor series

around € = 0 gives

ALHS = Aezo + 6% (A)ezo + h.o.t. (11A)
But Ay = w and
d _ die [w + 6(77_,,5 + wny)] (1 + 6(§z + w&y)) - (w + 6(7796 + wny)) % [1 + 6(§z + w&y)]
¢ (Brus) = 3
€ (1+€(& +wéy))
_ (ne +wny) (1 + €(&e + wéy)) — (W + €(nz + wny)) (€ +wEy)
(14 € (& +w§y))”
At € = 0 the above reduces to
d
E (ALHS)CZ() = (% + wny) - w(gac + w€y)
=Ny + Wny — wéy — wzé.y
=1+ (,U(’l’]y - é.w) - w2§y (12)
Therefore the LHS of Eq. (11A) becomes
Arps =w +€(n, + w(ny — &) — w?&y) (11B)

Now the RHS of Eq. (11) is linearized. Let w(z + s€,y + sn) = Agns. Expansion around
e = 0 gives

ARHS = Aezo + €<i A) + h.o.t.
de I

But Ao = w(z,y) and
d
2 Arps = wy€ +wyn

Hence the linearized RHS of (11) becomes
Arns = w(z,y) + e(wz€ + wyn) (13)
Substituting (11B,13) back into (11), gives the linearized version of (11) as
Arns = Arns
w+e(ns +wny — &) —w'€y) = w + e(wsf + wyn)

€(ne +w(ny — &) — wy) = e(wa€ +wyn)
Nz + w(ny - €z) - wzfy = wy€ + Wy

Hence

Nz + W(ny - gx) - wzgy - wxf — Wyl = 0 (14)

The above equation (14) is what is used to determine &, 7. It is the linearized symmetry condition.
There is an additional constraint not mentioned above which is

Tally 7 Tyla
The restricted form of (14) is
Xe + Xyw — Xwy = 0
An important property is the following. Given any
E=An=B
Then we can always write the above as
§E=0,n=B—-wA
So that £ = 0 can always be used if needed to simplify some things.

After finding &, 7n from (14), the question now becomes is how to use them to solve the
original ODE?
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3.4.6 Moving to canonical coordinates R, S

The next step is to determine what is called the canonical coordinates (R, S). In these
canonical coordinates the ODE becomes a quadrature and solved by integration. Once
solved, the solution is transformed back to (z,y). The canonical coordinates (R, S) are

found as follows. Selecting the transformation to be

R
S+e

Ly
I

Eq. (15) becomes

OR| _ (ORdz\|  (O0Rdy
Oe | _, ~ \ Oz de c—0 Oy de )| _,
But % = g—’j and %L:o = ¢(z,y) and similarly %—5 0= %—3 and
The above becomes _
OR| _OR, OR
Oe | __, - Oz Oy
But %—Ij 0= 0 since R = R. The above reduces to
0= @ 4+ 3_R
Oz oy g
This PDE have solution using symmetry method given by
dR
Frie 0
dx
prials
dy _
at ="
The same procedure is applied to Eq. (16) which gives
95| _ (954 , (954
Oe |._ ~ \ Oz de 0 Oy de ) |._,
But g—f = % and %L:o = &(z,y) and similarly 2—5‘620 = % and
The above becomes B
05| _or, oR
Oe |._ Oz Oy
But %—f .= 1 since S = S + €. The above reduces to
1= 95,95
- Oz ay"
This PDE have solution using symmetry method given by
as
> -1
dt
dx
i §
dy
at n

dy

de e=0
dy
de le=0

= n(z,y).

(15A)
(15B)

(15C)

= 77('7"’ y) .

(16A)

(16B)

(16C)

Equations (15A,B,C) are used to solve for R(z,y) and equations (16A,B,C) are used to
solve for S(z,y). Starting with R. In the case when & = 0 the equations become

dR
E_O
dx
E_o
dy
- =1

dt
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First equation above gives R = c;. Second equation gives x = c,. Letting ¢; = ¢, then
R=zx

If £ # 0 then combining Egs. (15B,15C) gives

dy _m
de ¢
R=Cl

The ODE Z—g = g is solved first and the constant of integration is replaced by R. Hence R
is now found. S(z,y) is found similarly using Egs. (16A,B,C). If £ = 0 then

ds
> -1
dt
dz
i 0
dy
at n
The first and third equations give
as _1
dy n
5= [ L
n

If £ # 0 then using the second and third equation gives
as _1
de ¢
1
S = / —dx
£
Now that R, S are found and the problem is solved. The ode in (R, S) space is set up
using
s S, +S,%
45 _ Ot Svas L (16)
dR R, + R,

Where g—g = w(z,y) which is given. The solution S(R) is next converted back to y(x).

Examples below illustrate how this done on a number of ODE’s. Eq. (16) is solved by
quadrature. This is the whole point of Lie symmetry method, is that the original ode
is solved in canonical coordinates where it is much easier to solve and the solution is
transformed back to natural coordinates.

The only way to understand this method well, is to workout some problems. To learn
more about the theory of Lie transformation itself and why it works, there are many links
in my links page on the subject.

3.4.7 Definitions and various notes

1. infinitesimal generator operator. I' = £(z,y) 8% + n(z,y) %. Any first order ode
has such generator. For instance, for the ode ¥’ = w(z,y) then T'w = & g—‘;’ + ng—‘;’.
The ode y' = w(z,y) = £ + z has solution y = z* + xc;, therefore the solution

o
family is ¢(z,y) = y;—zz = c. Using £ = 0,7 = = then T'¢ = x% = 1. This

. . o) L, o)
is another example: using { = z,n = 2y, hence I'¢ = z——7— + 2ya—y =
e(—%-1)+2y(l) = -2 —-1+4+2¥ =¥ —1 % 1. I must be not applying the
symmetry generator correct as the result supposed to be 1. Need to visit this again.
See book Bluman and Anco, page 109. Maybe some of the assumptions for using
this generator are not satisfied for this ode.
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. w(z,y) is invariant iff Tw = &(z, y) % +n(z,y) % =0.

. The linearized PDE from the symmetry condition is w&, +w?&, +w,& = wyn+n,+wn,.

This is used to determine tangent vector (£(z,y),n(z,y)) which is one of the core
parts of the algorithm to solve the ode using symmetry methods. There are infinite
number of solutions and only one is needed.

Symmetries and first integrals are the two most important structures of differential
equations. First integral is quantity that depends on z,y and when integrated over
any solution curve is constant.

Lie symmetry allows one to reduce the order of an ode by one. So if we have third
order ode and we know the symmetry for it, we can change the ode to second order
ode. Then if apply the symmetry for this second order ode, its order is reduced to
one now.

If £, 1 are known then the canonical coordinates R, S can now be found as functions
of z,y. We just &,m to find R,S. Once R, S are known then 375% = f(R) can be
formulated. This ode is solved for S by quadrature. Final solution is found by
replacing R, S back by z,y. I have functions and a solver now written and complete
to do all of this but just for first order ode’s only. I need to start on second order
ode’s after that. The main and most difficult step is in finding &, 7. Currently I
only use multivariable polynomial ansatz up to second order for £ and multivariable
polynomial ansatz up to third order for n and then try all possible combinations.
This is not very efficient. But works for now. I need to add better and more efficient
methods to finding £, but need to do more research on this.

7. When using polynomial ansatz to find £,7 do not mix z,y in both ansatz. For

10.

11.

12.

example if we use £ = p(z) then can use n = ¢(z) or n = ¢(z, y) polynomial ansatz
to find 7. But do not try £ = p(z,y) ansatz with n = ¢(x,y) ansatz. In other words,
if one ansatz polynomial is multivariable, then the other should be single variable.
Otherwise results will be complicated and this defeats the whole ides of using Lie
symmetry as the ode generated will be as complicated or more than the original ode
we are trying to solve. I found this the hard way. I was generating all permutations
of £, n ansatz’s but with both as multivariable polynomials. This did not work well.

. Symmetries on the ode itself, is same as talking about symmetries on solution

curves. i.e. given an ode ¥’ = w(z,y) with solution y = f(z), then when we look
for symmetry on the ode which leaves the ode looking the same but using the new
variables Z, y. This is the same as when we look for symmetry which maps any point
(x,y) on solution curve y = f(x) to another solution curve. In other words, the
symmetry will map all solution curves of ¥ = w(z,y) to the same solution curves.
i.e. a specific solution curve y = f(z, c;) will be mapped to y = f(x, cz). All solution
curves of ¥ = w(z,y) will be mapped to the same of solution curves. But each curve
maps to another curve within the same set. If the same curve maps to itself, then
this is called invariant curve.

. An orbit is the name given to the path the transformation moves the point (z,y)

from one solution curve to another point on another solution curve due to the
symmetry transformation.

A solution curve of y' = w(z,y) that maps to itself under the symmetry transforma-
tion is called an invariant curve.

Not every first order ode has symmetry. At least according to Maple. For example
y' + y® 4+ zy? = 0 which is Abel ode type, it found no symmetries using way=all.
May be with special hint it can find symmetry?

After trying polynomials ansatz, I find it is limited. Since it will only find symmetries
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that has polynomials form. A more powerful ansatz is the functional form. But these
are much harder to work with but they are more general at same time and can find
symmetries that can’t be found with just polynomials. So I have to learn how to use
functional ansatz’s. Currently I only use Polynomials.

13. &, n are called Lie infinitesimal and Z,y are called the Lie group.
14. If we given the £, n then we can find Lie group (Z,y). See example below.

15. If we are given Lie group (Z, %) then we can find the infinitesimal using &(z,y) =
%f}ezo and n(x7y) = %g‘e=0'

16. First order ode have infinite number of symmetries. Talking about symmetry of
an ode is the same as talking about symmetry between solution curves of the ode
itself. i.e. symmetry then becomes finding mapping that maps each solution curve
to another one in the same family of solutions of the ode.

17. £,7n can also be used to find the integrating factor for the first order ode. This is
given by u(z,y) = ﬁ where the ode is ¥'(x) = w(z,y) . This gives an alternative
approach to solve the ode. I still need to add examples using u(z,y).

18. For first order ode, to find Lie infinitesmilas, we have to solve first order PDE in 2
variables. For second order ode, to find Lie infinitesmilas, we have to solve second
order PDE in 3 variables. For third order ode, to find Lie infinitesmilas, we have to
solve third order PDE in 4 variables and so on. Hence in general, for n* order ode, we
have to solve n* order PDE in n + 1 variables to find the required Lie infinitesmilas.
For first order, these variables are £,n and the PDE is n, + w(n, — &) — w?¢, —
wz€ —wyn = 0. Currently my program only handles first order odes. Once I am more
familar with Lie method for second order ode, will update these notes. See at the
end a section on just second order ode that I started working on.

3.4.8 Closer look at orbits and tangent vectors

This section takes a closer look at orbits and tangent vectors &, which are the core of
Lie symmetry method. By definition

dx
g(xa y) = E o (1)
_dg
77(9% y) - % —o

Hence £(z,y) shows how Z changes as function of (z,y). And n(z,y) shows how y changes
as function of (z,y). This is because

T=x+¢&e (2)
y=1y-+mne

Comparing (2) to equation of motion where Z represents final position and z is initial
position, then ¢ is the speed and € is the time. When time is zero, initial and final position
is the same. As time increases final position changes depending on the speed as time (here
represented as €) increases. So it helps to think of £, 7 as the rate at which Z,y change
location depending on the value €. £, 7 are calculated when € is very small in the limit as
it reaches zero.

As € increases the point (z,y) moves closer to the final destination point (Z, ). So these
quantities &, n specify the orbit shape. The orbit is the path taken by point transformation
from (z,y) to (Z,y) and depends on € such that the ode remain invariant in Z, § and points
on solution curves are mapped to points on other solution curves.
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Different &, 7 give different orbits between two solution curves. The following example

shows this. Given the ode
/ r—Yy

This is Abel type ode. Also Homogeneous class A.

Y

It has two solutions. One solution is given by Mathematica as y = —x — v/c1 + 222, A
small program was now written that plots the orbit for 4 solutions &,n found for the
similarity conditions. The similarity solution were found by Maple’s symgen command.

[> ode:=diff (y(x),x)=(x-y(x))/ (x+y(x)) ;
DEtools:—-odeadvisor (ode) ;
DEtools:-symgen (ode ,way=all)
; d x— vx)
ode = — Wx) = ————
i il x) x4+ y(x)
[ [ _homaogeneous, class 4], _rational, [ _Abel, 2nd npe, class 4]]

| =0 _;m= 1 ]

I
e e

x+¥

Figure 3.12: Command used to find &, 7

The program starts from the same (z,y) point from one solution curve and determines
(Z,7) location on anther solution curve using each pair of £, n found. The same solution
curves are used in order to compare the orbits. The following plot was generated showing
the result

1 1 1
=—n=—— :(]77]:
1.46 1.47 1.48 1.49 1.50 1.51 1.46 1.47 1.48 1.49 1.50 1.51
-3.751 -3.751
-3.80} -3.80
-3.85} -3.85
2 2
—(z* =22y —y
- x =y ),71:0 R ki a1t S
- 1.46 1.47 1.48 1.49 1.50 1.51
1.46 1.47 1.48 1.49 1.50 1.51
-3.751
-3.751
-3.80
-3.80+
-3.851
-3.85

Figure 3.13: Different orbits using different &, 7

The source code used to generate the above plot is

‘<<MaTeX‘
‘ode=y'[x]== x-y[x1)/ (x+y[x]);
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ysol=DSolve [ode,y[x],x]
ysol=-x-Sqrt[C[1]+2 x~2];

x1
yi

1.5;
ysol /. {C[1] -> 1, x -> x1};

ysol2=ysol/.C[1]->1.1

getSolutions[inf_List, titles_List, x_Symbol, ysoll_, ysol2_, x1_,
yl_, from_, to_] :=

Module [{xbar, ybar, eps, eq, soleps, p, data, n, xi, eta, texStyle},
data = Table[0, {n, Length@inf}];
texStyle = {FontFamily -> "Latin Modern Roman", FontSize -> 12};

Dol
xi = First[inf[[n]]l];
eta = Last[inf[[n]]];
xbar

x1 + eps*xi ;

ybar = yl1 + eps*eta;

eq = ybar == ysol2 /. x -> xbar;

soleps = SolveValues[eq, eps];
First@SortBy[soleps, Abs];

ybar = ybar /. eps -> soleps;

soleps

xbar = xbar /. eps -> soleps;
p = Plot[{ysoll, ysol2}, {x, from, to},

PlotLabel -> MaTeX[titles[[n]], Magnification -> 1.5],

BaseStyle -> texStyle,

Epilog -> {{Arrowheads[.02], Arrow[{{x1l, y1}, {xbar, ybar}}1},
Text [MaTeX["\\left( x,y \\right)"l, {x1, yi1}, {-1, -1}],
Text [

MaTeX["\\left ( \\bar{x},\\bar{y}\\right)"], {xbar, ybar}, {1,
1}1%,
ImageSize -> 400];
datal[n]] = p
{n, 1, Length@inf}
i

data
1;

inf = {{1/x1, -1/x1},
{0, 1/(x1 + y1)},
{-(x172 - 2*x1*yl - y1°2)/(x1 - y1), O},
{2*x1 + y1, x1}
I8
titles = {"\\xi=\\frac{1}{x},\\eta=-\\frac{1}{x}",
"\\xi=0,\\eta=\\frac{1}{x+y}",
"\\xi=\\frac{-(x"2-2 x y-y~2) Hx=y},\\eta=0", "\\xi=2 x+y,\\eta=x"};
data = getSolutions[inf, titles, x, ysol /. C[1] -> 1, ysol2, x1, yi,
1.45, 1.51];
p = Grid[Partition[data, 2], Frame -> All, Spacings -> {1, 1}]
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3.4.9 Selection of ansatz to try

The following are selection of ansatz to try for solving the linearized PDE above generated
from the symmetry condition in order to solve for £(z,y) ,n(z,y). These use the functional
form. As a general rule, the simpler that ansatz that works, the better it is.

Functional form of ansatz is better than explicit polynomials but much harder to use and
implement. Maple’s symgen has 16 different algorithms that can be specified using HINT
option to support functional forms. The following are possible cases to use.

L. §=0a77:f(x)

2. £=0,n=f(y)

3. {=f(z),n=

4. &=f(y),n=0

5. £ = f(z),n = zg(y). An example: applied to 3’ = x+cos(eij+(i+x)e_$) should give & =

e”,n = xze~ ¥ which leads to solution y = In <2 arctan (M) - (142 e_m).

e (Cl +57m)+1

6. {=f(z),n=29(y)

7. £ =0,n= ( ) 9(y). For example, applied to y' = mmﬂ@“” should give
f@)=v1i+z,9(y) =vIity.
8. &= f(z)g(y),n=0

3.4.10 Examples

3.4.10.1 Example 1 on how to find Lie group (z,y) given Lie infinitesimal xi
and eta

Given ¢ = 1,7 = 2z find Lie group Z,y. Since

oz
£(z,y) = Be .
Then
dz _
& - 5(1:’ y)

=1 1)

Similarly, since

oy
(‘T’ y) E o
Then
dy _
a 7)(93, )
=2y (2)

Where in both odes (1,2) we have the condition that at e = 0 then = z,§ = y. Starting
with (1), solving it gives

Z=c+al(z,y)
Where c¢;(z,y) is arbitrary function which acts like constant of integration since Z(z,y) is
function of two variables. At € = 0 then ¢;(z,y) = x. Hence the above is

rT=€+x (3)

And from (2), solving give
y = 2Ze + c2(, y)
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But at € =0,y = y,z = x then the above gives c; = y. Hence the above becomes
y=2xe+y

But Z = € + z from (3), hence the above becomes

Therefore Lie group is

3.4.10.2 Example how to find Lie group (z,y) given canonical coordinates

R,S
Given R =z, S = ¥ find Lie group Z,%. Solving for z,y from R, S gives

=R

y=SR
Hence

Z=R

7=5SR

But S = S + € by definition of canonical coordinates and R = R by definition of canonical
coordinates. Hence the above becomes

rT=z

- (29
z

=y+ex

3.4.10.3 Example y =%+

This is linear first order which can be easily solved using integrating factor. But this is
just to illustrate Lie symmetry method.

/ Yy
_ 1
Yy = T ()

Y =w(z,y)

The first step is to find £ and 7. Using lookup method, since this is linear ode of form
y' = f(z)y + g(z) then
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The end of this problem shows also how to find these from the symmetry conditions.
Therefore we write

T=1z+¢&e
=z
y=y-+mne
=y+nz (2)
The integrating factor is therefore
1
iz, y) =
(z,y) "
1
oz

Before solving this, let us first verify that transformation (2) is invariant which means it
leaves the ode in same form but using Z,y. We do the same as in the above introduction.

dj _ 3

dj_g—i
et G
T, + 7, %

But ¥, = 5,9, = 1,7, = 1,Z, = 0 and the above becomes

dj e+
dz 1
dy
_€—|—%
Substituting z, y, % in the original ode gives
dy y _
EZ -z "
d
p B _yre
dz x
d
e+—y=g+e+x
dr =z
dy _y
d z "

Which is the original ODE. Therefore (2) are indeed an invariant Lie group transformation
as it leaves the ODE unchanged. The next step is to determine what is called the canonical
coordinates R, S. Where R is the independent variable and S is the dependent variable.
So we are looking for S(R) function. This is done by using the standard characteristic
equation by writing

— =-2=dS
§ n
b _dy_ o n

The above comes from the requirements that < §5, + "ay) (z,y) = 1. Which is a first
order PDE. This is solved for S, which gives (1) using the method of characteristic to
solve first order PDE which is standard method. In the special case when £ =0 and n # 0
these give

R
S

+ 8|1 =S|+~
.
<

Il
Bl — — 8
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We are free to set ¢ = 0, hence S = . Therefore the transformation to canonical coordi-
nates is

— (Y
(-T,y) - (R’S) - (1’, .’IJ>
The derivative in (R, S) is found same as with 2 giving
ds S +5,%
dR R, +R,%
But S, = —%,S, = ,R, =1, R, = 0 and the above becomes

T

dS _ —#tia
dR 1

y ldy
x2+xdw

But % = Y + x hence the above becomes

dsS y 1y
dR  x2 +x(x +x)
=1
Solving this gives
S=R +c

But S = ¥, R = z. Therefore the above becomes

g=:L"-|-01
x

y=x2+clx

Which is the solution to the original ode. Of course this was just an example showing how
to use Lie symmetry method. The original ode is linear and can be easily solved using an
integrating factor

Multiplying the ode by I gives

d
a(yI) =1z
Ez/fm
z x
=+

Hence
Y= r? + zc;

Which is same solution. But Lie symmetry method works the same way for any given
ode. And this is where it powers are. It can solve much more complicated odes than this
using the same procedure. The main difficulty is in finding the infinitesimals for the group,
which are £, n that leaves the ode invariant.

Finding Lie symmetries for this example
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The condition of symmetry is a the linearized PDE given above in equation (14) as

Nz + w(ny - €z) - w2€y —wz§ — wyn =10 (14)
We first find the determining equation before solving for §,n. Since w = £ + z then
Wy = %,wz = —Z% + 1. Hence the above becomes
y 2 Y L
e (e < )i
1
nx+(y+x ( +x2+2y>.§y )5——77—0
x
Y 2 _1o_
m+<x+w>ny ( +z +2y>£y )5 =0

Multiplying by z? to normalize gives

2, + (yz +2°) my — & (yr +2°) — (¥ + 2 +2y2?) & — (—y+2*) E—an=0 (A)

Equation (A) is called the determining equation. Using different ansatz can result in more
solutions.

Trying ansatz
§€=0
N = box
Plugging these into (A) and comparing coefficients to solve for the unknown gives
z2(bg) —2n =0
box? — x(box) = 0
b01'2 — b0$2 =0
bo(0) =0

So any by will work. Let by = 1. Hence

Now Trying ansatz as

E=ap+ a1z
n=bo+ b1y

Then &, = a1,&, = 0,1, = 0,7, = b; and the determining equation (A) becomes

(bo + biy) z + (ag + a1z) (2° — y) + bi(—yz — 2°) + a1 (yz + 2°) =0
(o +b1y) z+ (a0 + a1z) (2% —y) + (b1 —a1) (—yz —2%) =0
xby — yao + x’ag + 2*(2a; — b)) =0

Setting each coefficient to zero gives

by =0
ag=0
ap=0
201 —b; =0

Hence the solution is ag = 0,bg = 0,a; = %1 Using b; = 2 gives a; = 1 and therefore

n=2y
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And Trying ansatz as

E=ap+ a1+ azy
77=b0+b1y+b2x

Hence &, = a1,&, = ag,m, = ba,m, = by and the determining equation (A) becomes

(bo + b1y + boz) T + (a0 + a1z + a2y) (° — y) + b1 (—yz — 2°) + ax (v° + =* + 2y2?) + b (—2%) + a1 (yz
z*(—az) + 2°(—2a1) + z°y(—3a2) + 2°(b1) + 2*(—ao) + y(ao) -

Setting each coefficient to zero gives

bp =0
ap=0
a1 =0
by =0
a; =0
by =0

This shows there is no solution for this ansatz. There are more solutions depending on what
ansatz we used. We just need one to obtain the final solution. In Maple, these solutions
can be found as follows

ode:=diff (y(x),x)= y(x)/x+x;
DEtools:-symgen(ode,y(x) ,way=all)
[xi = 0, _eta = x],

[ xi = 0, _eta = x],

[[xi =0, _eta=2x"2-y],
[Lxi = x, _eta = 2xy],

[xi =1, _eta = y/x],
[[xi = x72 +y, _eta = 4*y*x],
[Lxi = x72 - 3%y, _eta = -4*xy~2/x]

N J

Trying ansatz using functional form. Let £ = 0,7 = f(z) then & = 0,§, = 0,9, =
f'(z),n, = 0 and the determining equation (A) becomes

2’ + (yz+2°)ny — &(yz +2°) — (V¥ +2* +2y2°) & — (—y+2°) E—an=0
o’ f'(z) —zf(z) =0
zf'(z) — f(z) =0

This is easily solved to give f = cx. Hence £ = 0,7 = z by choosing ¢ = 1. We see that
this choice of ansatz was the easiest in this case, as the ode generated was linear. Let us
try another and see what happens.

Trying ansatz as § = 0,7 = f(y) then { = 0,§, = 0,7, = 0,n, = f'(y) and the
determining equation (A) becomes

(yz +2°) f'(y) —2f(y) =
(y+2°) f'(y) — f(y)
This is separable and its solution is f = c¢;(z% +y). Hence £ = 0,7 = (z*> +y) by us-

ing ¢; = 1. But this is not function of y only. So this choice did not work. Trying
[€ = f(z),n=0],[¢ = f(y),n = 0] shows these also do not work.

0
0

&, n can be checked for validity by substituting them in the PDE. Maple’s symtest command
does this. These functional ansatz’s lead to an ode which have to be solved.
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3.4.10.4 Example y =2y — % — &

z3
Solve
2y 1
/ 2
_ _ _ = 1
Y=oy -~ 3 (1)
Y =w(z,y)

Hence

@
de
dy
de

£(z,y) =

e=0

_ _2y

e=0

n(z,y) =

(At end shows how to obtain these). The integrating factor is therefore

1
u(z,y) =
(z,y) —
. 1
(- -
.'1;2
- ziy? —1
Now
T=z+le=x+ex (3)

This transformation Z = e‘z, §j = e >y is now verified that it keeps the ode invariant.

_ _ — d —2ed;
@—ym_kyyﬁ :e 23’3:6_36@

- = _ _i‘i €
dz T+ Tyg e dx

dy

Substituting z, ¥, ;2 in the original ode gives

dy __, 2y 1

dx T z3 _2
= ()R e
6—363_3 — e gy — 23;36?4 _ e;:e

Which is the original ode. Hence the transformation (2) is invariant. It is important to
use (2) and not (3) when doing the verification.

The next step is to determine what is called the canonical coordinates R, S. Where R
is the independent variable and S is the dependent variable. So we are looking for S(R)
function. This is done by using the standard characteristic equation by writing

v _ 4 _ s
§ n
de_ v _ 0

r -2y
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The above comes from the requirements that <§ % + n(%) S(z,y) = 1. Which is a first

order PDE. This is solved for S, which gives (1) using the method of characteristic to
solve first order PDE which is standard method. Starting with the first pair of ODE gives

y _ %y
dr =z

Integrating gives yz? = ¢ where c is constant of integration. In this method R is always c.
Hence

R = ya2?

S(z,y) is now found from the first equation in (1) and the last equation which gives

dzx
dS = —
§
S=/dﬁ
T
S=Inzx

Now that R(z,y),S(z,y) are found, the ODE 9 = Q(R) is setup. The ODE comes out
to be function of R only, so it is quadrature. This is the main idea of this method. By
solving for R we go back to z,y and solve for y(x). How to find %? There is an equation
to determine this given by

s & tw@y) g
dR 4B 4y (z,y) '(%
_ Setw(z,y) S,
R, +w(z,y) R,
Everything on the RHS is known. But
1
Sy = —
x
S, =0
R, =2yzx
R, = z?
Substituting gives
ds _ L4 (opP-2—1)(0
dR 2y + (zy? — 2 — L) 22
1
- 2zy + (zy? — %— L) 22
_ 1
ooty —1
But R = yz?, hence the above becomes
as 1
dR R2-1

This is just quadrature. Integrating gives
S = —arctanh (R) + ¢;
This solution is converted back to z,y. Since S = Inz, R = yx?, the above becomes

In |z| = — arctanh (yz*) + ¢
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Or

—In|z| + ¢; = arctanh (yz?)
yz® = tanh (— In |z| + ¢;)
tanh (—In |z| + ¢;)
y= 72

Which is the solution to the original ODE.

The above shows the basic steps in this method. Let us solve more ODE’s to practice this
method more.

Finding Lie symmetries for this example

The condition of symmetry is given above in equation (14) as

Ne +w(ny — &) — w2€y —wz§ —wyn =0 (14)

We now need to solve the above for £,n given a specific w(z,y) for the ODE at hand.
This PDE can not be solved as is for &, without an ansatz. One common ansatz is to
use £ = a(x) and n = B(z) y + v(z) and plugging these into the above and then compare
coefficients to solve for a(z), B(z),v(z).

Another ansatz is to use a polynomials for £,7. And this is what we will start with.

Using polynomial as ansatz

We start with order 1 polynomials. Hence

£E=ay+az (1)
n=bo+ by (2)

If this does not generate solution, we will try higher order polynomials. Eq (14) becomes

Nz + w(ny - gz) - wzfy —wg€ — Wy = 0
0 + W(bl — al) — w2(0) — wz(ao + alx) — wy(bo + bly) =0

But in this ODE w = zy? — 2 — % hence w, = y*>+ 2% + 2 and w, = 2yz — 2. The above
becomes

2 1 2 3
(ny__y__> (br —a1) — (yz-l-—y-l-E) (a0 + a1z

xr x3 x?
2 1 2 1 2 3 2 3
zy’by — ?ybl - gbl — zy’a; + ;yal + Eal —yag — x—gao - ;ao — zy’a; — a1?y - alg — 2ya

1 1
.'Ey2(b1 —a; —a; — 2b1) -+ %(—21)1 + 2a1 — 2(11 + 2()1) + E(—bl -+ a; — 3a1) -+ y2(—a0) + %(—2&0) + F(—

Each coefficient to each monomial must be zero. Hence

—2a;—b=0
—b; —2a; =0
—2a; —2b; =0
ag =0
bp=0
These are overdetermined equations. Solving gives a; = —%bl and ag = by = 0. Choosing

b, = —2 gives a; = 1. Hence

E=at+ax==x

n=>by+biy=-2y
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Which is what we wanted to show for this ODE. These are the values we used earlier to
solve the ODE using symmetry method.

Using functions as ansatz

Now &,n are found using £ = a(z) and n = B(z) y + y(z) as ansatz. Eq. (14) is

Nz + w(ny - gz) - w2§y - wx§ — Wyl = 0 (14)
But
e = B'(z)y +7'(x)

And

Ny = IB(x)
And

fy =0

§e = al(w)

Substituting the above into EQ. (14) gives

B @)y +7'(z) + w(B(z) — o (z)) — weal(z) — wy(B(z) y + 7(z)) = 0

But in this ODE w = zy? — 2 — X 'hence w, = 4>+ 2% + 2 and w, = 2yz — 2. The above

becomes

6’y+7’+(w 2—2;”——) (B—a) - (y2+%+%)a— (m—%) (By+7)=0

2 1 _ 3 1 p 2
vV +yB + oy — 5B - Sa—yla+ Sd —2uyy - —ya—ay’B+ —yd —zy’e =0
A xXr X xr i X

Collecting on y gives

2 1 3 1 2 2
0 / ‘N _ T p__ Y N / _“ “ 2( _ N —
y (7 tov- - et xga)ﬂ/(ﬂ 2eyy — Ho+ ma>+y (—a—zB—zd)=0

Each term above is zero. This gives the following equations

+(z) + %y(r) - %ﬂ(m) - %a(x) N %a,(x) 0
§(@) ~ 2my(x) — yo(a) + ~a/(z) = 0
—a(z) — zf8(z) — zd'(z) = 0

Solving these coupled ODE on the computer gives

1
a(z) = = (c3z* + c12® + ¢2)
z

B(z) = —4csz® — 2¢
C2
v(z) = —2¢5 — 2;

Where the ¢y, co, c3 above are constant of integration. Let ¢ = c3 = 0. Hence

a(z) = %(@,x‘l + c12%)

B(x) = —4esz® — 2¢

v(z) =0
Let c3 = 0. Hence
1
a(z) = —az
B(x) = —2¢
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Let ¢; = 1, hence

alz) ==
Blz) = -2
V(z) =0
Therefore, since £ = a(z) and n = B(x) y + v(x) then £ = z,7 = —2y which is the same
as the earlier method. After working using this ansatz, I find using the polynomial ansatz
better. First of all, I had to set constants above to values in order to obtain the same result

as earlier. Setting these constants other values will give different result. For example, the
following are another set of possible solutions obtained from Maple for this ODE

Which gives

1 2
T
{5——§ﬂ7 y}
3
_—z o 1
3.4.10.5 Example y'=y7+1+§2—§
Solve
+1 2
y=Y"" 4L
z z
Yy = w(z,y)
This can be written as
1 2
y=21-+%
T T T
22 4 o2
=g+ 3y
T T
1 .T2+ 2
T T
1 2
==y+_(1+<y>>
X X xT

Hence this has the form y' = £+g(z) F (%) where g(z) = £ and F = <1 + (%)2> Therefore
this is homogeneous class D. Lookup table gives

£=2?

n=xy

Another way to find £, n is by solving the symmetry condition PDE and this is shown at
the end of this problem. Hence
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T=z+¢&e
=z + 2%
y=y+mne
=y + zye (2)
The integrating factor is therefore
1
mez,y) =
(z,y) "y
. 1
- xy — x2 (ﬂ + %)
- __ %
Tox2 + 92

The ode is now verified that it remains invariant under (2) transformation.

dj _ 3

dz %
et
T, + 7,2

But from (2) y, = ye, 4y = 1+ x¢,Z, = 1+ 2xe, T, = 0 and the above becomes

gg_1+a+x@%
dz 1+ 2ze

Substituting z, y, j—g in the original ode gives

dy §+1 7
dy _g+1. 9

dz z z3
1+ (1+ze) ¥ (y+ay) +1 | (y+zye)’
= 5 + 3
1+ 2ze T + 1€ (z + z%€)

Which as lim._,q gives
dy y+1 3
dr  © @ 23
The same original ode showing the transformation is valid symmetry.

Y:=y/(1-s*x):
X:=x/(1-s*x):
eq:=(diff (Y,x)+diff (Y,y)*Z)/(diff (X,x)+diff (X,y)*Z)=simplify((Y+1)/X+Y"2/X
solve(simplify(eq),Z)
y/x + 1/x + y~2/x73

Hence the transformation in (2) is invariant.

The next step is to determine what is called the canonical coordinates R,S. Where R
is the independent variable and S is the dependent variable. So we are looking for S(R)
function. This is done by using the standard characteristic equation by writing

der dy
ﬁ_:p—y—ds (1)

The above comes from the requirements that <§ (% + 17(%) S(z,y) = 1. Which is a first
order PDE. We need to solve this for S, which gives (1) using method of characteristic

~3):




CHAPTER 3. FIRST ORDER ODE F(z,y,y') =0 162

to solve first order PDE which is standard method. Starting with the first pair of ODE
in (1) gives
dy _zy_y
dr x22 «x
Integrating gives £ = ¢ where c is constant of integration. In this method R is always c.

Hence y
Now we find S(z,y) from the first equation in (1) and the last equation
dz
dsS = —
£
dz
S - F
-1
S=—
x

Now that we found R and S, we determine the ODE 4 = Q(R). The ODE comes out
to be function of R only, so it is quadrature. This is the whole idea of this method. By
solving for R we go back to z,y and solve for y(z). How to find g%? There is an equation

to determine this given by
dS Sy +w(z,y)S,

dR~ R, +w(z,y)R,
We know everything on the RHS. Substituting gives

is &=t (y“ %) (0)

dR  _y <y_ ﬁ) 1
1
— 2
_y 4 <¢ L)1
22 23] z
a2
22 + 12
B 1
RSOk
But R = ¥, hence the above becomes
ds 1
dR 14+ R?
This is just quadrature. Integrating gives
S = arctan (R) + ¢;
Now we go back to x,y. Since S = —%, R = %, then the above becomes

1 ]
—— = arctan ( > +c
T
-1 y
— 4+ ¢y = arctan (—)
T T
-1
y_ tan <— + 02)
T T
-1
y(z) = ztan (7 + 02)

And the above is the solution to original ODE.

Finding Lie symmetries for this example

The symmetry condition was derived earlier as

Ne + w(ny - gm) - w2£y - wz€ — Wyl = 0 (14)
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Let ansatz be

E=car+cytcs
N =c4T + cs5Y + Cg

Eq 14 becomes

Ne + W(Th/ - ga:) - w2€y - wmg —Wyn = 0

cs+w(es —c1) — wley — wyp(eix + ey + ¢3) — wy(ca + csy +¢c6) =0

But in this ODE w = y7+1 + z—i, hence w, = —ywlzl — 3;”6—2 and w, = % + % The above
becomes
y+1 92 y+1 2\? y+1 _4? 1 2y
C“L(TJFE)(%_Q)_( —ta) e (s —3; (az + ey +¢c3) — o (
1 1 1 1 2 2 3 1 1 5 1 1 1

2 2 2 3 4

EC3—;C2+505—506+EQ ey C2+a?y c;;—l—;y C2— 3Y G~ Y 02—ﬁy02+ﬁy03—
zles — zley + 2Pcs — e + 2232, — 20%y%cy + 3x%y%cs + xyBey — x3yPes — y402 — x4ycz + 334y03 -2

z*(c3 — ) + 2°(cs5 — ¢5) + 23Y*(2¢1 — ¢s5) + 22Y* (=22 + 3c3) + 22y3(c2) + ¥t (—c2) + zty(—co + c3 — 2¢

Each coefficient to each monomial must be zero. Hence

03—02=0
cs—cg =10

261—05:0

—2co +3c3 =0
c=0
—cpg+c3—2c4=0
—2¢c6 =0

Which simplifies to (since c; = 0, ¢ = 0)

c3=0
cs =0
ci—c5=0
3c3 =0

03—204=0

Which simplifies to (since ¢z = 0,c5 = 0)

C5:O
61—05:0
C4=0

Hence c5 = 0,¢; = 0,c4 = 0. We see that all ¢; = 0, therefore there is no solution using
this ansatz.

Trying ansatz

& =ap+ a1T + asy + asxy + a4 x>

n =bg+ byx + boy + bsxy + b4y2

Eq 9 becomes
Nz + W(ﬂy - fac) - w2€y - wxf - Wy"? =0
Substituting the ansatz and simplifying gives

—x2y3a2+y4a2+x4(—a0+a2)+x2y2(—3a0+2a2)+xy4a3—|—2w3yb0+:c4y(—a0+a2—|—2b1)+x5 (a3—|—b0—b2)—|—x3y2
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Each coefficient to each monomial must be zero. Hence
a, =0
—ap+ay; =0
—3ag +2a, =0
a3 =0
bp=0
—ag+as+2b; =0
az3+bg—by; =0
—2a; +2a3+by, =0
as— b3 =0
2a3 —2b, =0
a3 —bs=0
Since a; = a3 = by = 0 the above simplifies to
—ag =0
—3ap=0
—ag+2b; =0
—b, =0
—2a;+b,=0
as— b3 =0
—2by, =0
—b,=0
Since ag = bs = a4 = by = 0, The above now simplifies to
as—bs=0
Therefore, if we let a; = 1 then b3 = 1 and the solution is
€ = ap+ a1z + agy + asry + asx?
— x2
1 = bo + b1z + by + bszy + b5y’
=1y

Which is what we used above to solve the ode.

3.4.10.6 Example y = t o’ 16z

y3+4zly+z
Solve
;Y- 4zy? — 1623
Vo Pty ta
y =w(z,y)
The first step is to find £ and 7. This is shown at the end of this problem below.
§=—y
n =4z
The integrating factor is therefore
1
T, y) =
(z,y) —
_ 1
- —Azy2—1623
to+y (M)
Pyt a+yP

4z + y?
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The next step is to determine what is called the canonical coordinates R,S. Where R
is the independent variable and S is the dependent variable. This is done by using the
standard characteristic equation by writing

w_d_ s
& 0
dz dy

=1, =0 1)

The first pair of ode’s in (1) gives
dy _ 4z
dr vy
Solving gives

y=v—-4z2+c

Where c is constant of integration (For y > 0 only). In this method R is always c. Hence

y? = —42° + ¢
R =y*+ 42° (2)

The first equation in (1) and the last equation gives

dz
dS = —
3

S=-[Z£
)

But y = v/—422 + c¢. The above becomes
_ / _dz
vV—4x? + ¢
= —1 arctan <2—x)
2 V—4z? + ¢

1 ( 217)
= ——arctan [ —
2 y

For y > 0. Now that we found R and S, we determine the ODE 23 = Q(R). The ODE
comes out to be function of R only, so it is quadrature. This is the whole idea of this
method. By solving for R we go back to z,y and solve for y(z). How to find %? There is
an equation to determine this given by

as S +w(z,y)Sy
dR  R,+w(z,y)R,

We know everything on the RHS. Substituting gives

42 1p.3
s %(—%arc‘can (%’”)) + (—y e ) d%(—%arctan (%’”))
4

o SV (y ) AR
-1 y —4zy?—1623
Y
- 4z (y —4xy?— 16w3>
\/y2-|—4w2 S+dzlyt+a | | /y2 +4x2
P, /41-2 + y
=—-R
Hence is
. __R
dR
This is just quadrature. Integrating gives
2
S=—-——+c

2
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Now we go back to z,y. Since S = — arctan (2’”) ,R = v/y* + 422, then the above

v

1 2 2 4 422
2 Y 2

2 1 2
Y arctan () 4222 —c=0 y>0
2 2 Y

becomes

And the above is the solution to original ODE.

Finding Lie symmetries for this example

The symmetry condition was derived earlier as
Nz + w(ny - gx) - wzé.y - wx§ — Wy = 0 (14)
Let ansatz be

E=cix+cy+cs
N = 4T + Ccs5Y + Cg

Eq 14 becomes

cs +w(cs — c1) — w?ey — we(a1T + cay + ¢3) — wy(caT + ey +¢6) =0

—4y5 322293 —8xy2+ (—649:4—1)3/—32:1:3

: : _ y—4zy®—1623 _ _
Bu;c in ’Zh;s OPE :u —3—y3 T hence w, = iy iy o)’ and w, =
64z"+322 (i’m;; 433;2;2 y=2y"+2 Ahove becomes

ot (y — dxy? — 169:3) (65— c1)— (y — dxy? — 16x3>2 o (—4y5 — 322%y® — 8xy® + (—64a* — 1)y — 325
Y+ 42y + o Y3 +4r’y + (42%y +y® + z)°

Which expands to

8cizy? Acszy? 256¢ox*y? 48¢cox’yt 16cyz3y 12cozy3
iy + PP +o Y+ P+ (daly+1P+1)° (dely+P+o) (dely+vP+a)’ (dely+yP + o)
48x2cyy 128x°yc; 128z%yc3 32z3y3¢, 32z213¢c3
Dy+y+r (aly+yi o) (lytyi o) (dly+yP+a) (e o+ o)
4x?y?c, 4zy’cs yeL T 8x2ycy 8zyce
A2y +13+ 1) (dely+13+12)° (day+1y3+2)° 42?y+y°+o 4doy+9°+ x
64z5csy 64y, 64x3y3cs 64x31>cq 12x2%y*cy 16¢523
Ao’y + 3 +2)° (y+1P+1)° (o2y+13+13)° (dely+d+a)’ (dely+9P+a)° d2y+13+
256¢9° 64c; 23 c1y 487%¢c5 dy3cy 4y2cs
 (4ay + 13 + g;)2+4w2y +3+z Ay +9°+ x+4x2y +yd+z d?y+yi+a dely+yd+o
16z*c; 16z3c3 ycs CuT 6425¢, 64x°cq
Uyt +a) (Wly+yi+a) (Gly+yi+a) LAYt (Wly+yi+a) (ly+yt+
3ycs 3yce Co 12zy°cs 12z cq 4x3ycy
(4a2y + 3+ z)°  (da2y + 13 + z)° ey +yita (4z2y + 13 + z)° - (da2y + 9% +2)°  (da2y +y° +
4x%y%cs 4x?ycg 3yicux
+c = 0

(4z2y + 93 +2)°  (da2y+y3+1x)°  (da2y+9° +2)°

Multiplying each term by (4z%y + 4® + z)> and expanding gives the multivariable poly-
nomial

128x5ycl —I—64x3y3cl +8c; :cy5 —256¢52° —6402x4y2+ 1602z2y4+402y6 —64x%¢,— 16x4y204+4z2y4c4+c4y6
— 128a;5c5y—64z3y3c5 —8xy505 +64w4y03+32x2y303+403y5 —64x°cq —32x3y206 —4xy406+48x401 +
822y 1 — 1y +64cox3y+16coxy3+1623ycs+4yP car— 165t +8x2y 2 c5+ 3y  cs+322° cs+-8xy % cs+8x ycs+2y> ¢

Each monomial coefficient must be zero. This gives the following equations to solve for c;
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equation

—256¢cy — 64c4 =0
128¢; — 128¢c5 =0
—6466 =0

—64cy — 16¢c4 =0
6403 =0

48c; — 16¢c5 =0
64c, — 64c5 =0
—3206 =0

64cy + 16c4 =0
32¢c3 =0

16cy +4c4, =0
32¢c3 =0

861 + 865 =0

806 =0

8ci — 8¢5 =0
—4cg =0

1662 + 404 =0
803 =0

—Cg = 0

402 +c4 = 0

463 =0

—C1 + 305 =0
2c6 =0

C3 = 0

Hence we see that cg = 0, c3 = 0. The above reduces to

Hence Ac = b gives

0
128
0
48
64

O O 00 O O

-1

—-256 —-64 O

0
—64
0
0
64
16
0
16
4
0

equation

—256cy — 64cy =0
128¢c; — 128¢c5 =0
—64cy — 16¢c4 =0
48¢c; — 16¢5 =0
64c; — 64c5 =0
64cy + 16¢c4 = 0
16cy +4¢c4, =0
861 + 865 =0

801 — 805 =0
16co +4c4, =0
4ey +c4 =0

—C1 + 305 =0

0 —128
-16 0
0 -16

0 —64 |

C2
C4
Cs

O O O OO O oo oo

o
w
(=}

The rank of A is 3 and the number of columns is 4. Hence non-trivial solution exist. Solving
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the above gives ¢4 = —4 and c; = 1 and all other coefficients are zero. this means that ,
since

E=car+cytcs
N = 4T + cs5Y + Cg

Then

Y

§
n 4z

Which is what we wanted to show for this ODE.

3.4.10.7 Example ¢/ = =%

er—y
Solve

2

V=a_,
Yy =w(z,y)
The symmetry condition results in the PDE
Nz + w(ny - €z) - w2€y —wz§ — wyn =0

End of the problem shows how this is solved for &, which results in

{(z,y) =1
n(z,y) =y
The integrating factor is therefore
1
T,Y)=
pwz,y) —
. 1
=—
()
1 —ye™®
Y

The next step is to determine what is called the canonical coordinates R, S. Where R
is the independent variable and S is the dependent variable. So we are looking for S(R)
function. This is done by using the standard characteristic equation by writing

@ _ 4 _ s

£

dr dy

T—?—dS (1)

The above comes from the requirements that <§ % + n%) S(z,y) = 1. Which is a first
order PDE. This is solved for S, which gives (1) using the method of characteristic to
solve first order PDE which is standard method. Starting with the first pair of ODE gives

dy _
dw_y

Integrating gives In |y| = £+ c or y = ce® where c is constant of integration. In this method
R is always c. Hence

T

R(z,y) = ye~
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S(z,y) is now found from the first equation in (1) and the last equation which gives

dz
dS = —
§
dx
dS = T
dS =dzx
S=z
Hence
R=ye™
S=xzx

Now that R(z,y),S(z,y) are found, the ODE 92 = Q(R) is setup. The ODE comes out
to be function of R only, so it is quadrature. This is the main idea of this method. By
solving for R we go back to z,y and solve for y(z). How to find g%? There is an equation
to determine this given by

s @ tw@y) g
dR %+w(w,y)‘%
_ Sm+w(xay) Sy
"~ R,+w(z,y)R,

Everything on the RHS is known. S, = 1, R, = —ye ™, S, = 0, R, = e””. Substituting
gives

ds 1
IR _ye—w+ y e—:c

ye ¥ —1

= —ye—ﬂl

But R = ye™™, hence the above becomes

dS R-1
dR~ R

This is just quadrature. Integrating gives

S = / —dR

lnR+01

This solution is converted back to z,y. Since S = x, R = ye™?, the above becomes

T

r=ye *—In (ye_””) 4+

Which is the solution to the original ODE.

Finding Lie symmetries for this example

The condition of symmetry is given above in equation (14) as

Nz + W("?y - gm) - w2£y —we€ — wyn =0 (14)

§=cr+cy+c3
N =cC4T + C5Y + Cp
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Hence &, = ¢1,&, = ¢2,Mx = ¢4,my = ¢5 and (14) becomes

Nz + w(ny - §x) - w2§y - wx§ - wy'r’ =0

cs +w(cs — c1) — w?ey — wa(a1T + ey + ¢3) — wy(ca + csy +c6) =0

_y2 2z 2
But w= 2" w, = Zm,w, = (— 2y _ __¥ ) and the above becomes
y (em—y)*? Y €=y (e"—y)

2 2\ 2 2,
— — e
cat— d (c5 — cl)—< - y ) 62_:1/—2
e —y e—y) ey
Need to do this again. I should get cs = 1,c5 = 1 and everything else zero.
£€=1
n=y

2y y?
(az+cy+ecs)—| —— - 5 | (ca + sy + c6) =
-y (e°—vy)

— oVIty+VIty+1+
3.4.10.8 Example y = “Y/iyItutliy

Solve

T/ 1+y+/1+y+1+y
y= 1+z
Y = w(z,y)

The symmetry condition results in the pde

Mo +w(ny — &) — w8y — we€ —wyn =0 (1)
Let Ansatz be
£€=0
n=f(z)g(y)
Hence (1) becomes
o) T+ (@) % — 0,1 (&) gly) =0
But w, = L (mmﬂﬁﬂ"’y) = —&%1))2 and w, = % Hence the above becomes

df (x\/1+y+\/1+y+1+y)f(x)dg x+1+2\/1+y(f(x)g(y)):0(2)

90) 4 * 1+ dy  Vity(2+2z)

The numerator of the normal form of the above is

23—fg 1+yz+2y\/1+ f +2f—x +2—g\/1+ —2fg/1+ +2f \/1+ fg:):—|—2f—:1;+2fy
(3)

We can now either collect on y or  and try. Let us start with collecting on all terms with
y. This gives

d, d, dg dg
gy/1 +y(2zd—f + 2d—f - 2f>+ (2f) \/1 +y(2f)+g(zf — f)+yd (2zf +2f)+ y(2wf +2
(3A)
The coefficients of all terms with g(y) or y in them are from the above are the following,
which each must be zero

2f=0
zf—f=0
2xf+2f=0

da . df _
22 +2. —2f=0
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Now we set each to zero and see if this produces f(z) which can be used. We have 4
choices to try above. Starting from the most simple one. The first one above gives 2f = 0
or f = 0. But this is not function of . We try the next one xf — f = 0. This gives f =0
or x = 1. Hence this does not give f as function of x. Next we try 2zf + 2 f This also
does not give f as function of x. The last one is 2333—]; + 2 —2f=0or df =
this gives f = ¢;(x + 1). This is successful since f is functlon of z. Hence

5 +2 Solving

f(z) =ci(z+1)

4

dx

Now we need to determine g(y). Substituting the above into (3) gives

d d d
2¢19(y) /1 + yz+21/1+ yer (w+1)d—zy+2cl(x+1)d—zxy—l-chg\ /1+ y—2c1(z+1)g\/1+ y+2cl(x+1)d—z\,

Which simplifies to

d d d dg dg d
2c1v/1+ ydzym+2cl iz Yy—C19T +201d—z vV1+yx+24/1+ y01 y-|—2cl d—yx 244c, d—ywy 2c1xg+2c, df/
(4)

Now factoring on all terms with z, and these are {z, 2%} gives

d dg d
—clx2(—2d—zy+g 2dy> clx( 2/1+y y 2 /14y — 2— tg- 2d—§>+T ~0
(4A)
Where T are terms that depends on y only. Each factor of x, 22> must be zero. Hence the
first above implies

dg dg
—2— —2==0
dyy *g dy
g
') —
Solving gives
g=c1+y (5)

Substituting (5) into (4) gives
ci(l+x)c(l+y)=0

Which is not zero. Hence this term does not work. Now we try the second term in (4A)
which means
dg dg _,dg dg
—2\/14+y—y—2y/1+y— -2~ —-2—==0
+ydyy +ydy dyy+g dy
dg

dy  —2JTtyy— 2\/_1+ —2y—2

Solving gives

_ Vi+y
g(y) - 621 + m
Again, substituting the above back in (4) gives
1+y)z
(1+vT+y)

Which is not zero. Therefore starting with f(z) = ¢;(x + 1) has failed to produce a valid
9(y) to satisfy the pde. This means we need to start all over again. Going back to (3) and

Cl(l + .’L') Co

now collecting on all terms with z instead. Here is (3) again

d dg _.d d d d d
2£g 1+ yz+2y\/1+ yfd—z+2fd—zxy+2£g\/1 Fy—2fg/1+ y+2fd—§\/1 ¥ y—fga:+2fd—Zx+2fya

3)
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Collecting on all terms that depend on x gives

d d d d d
xé<291/1+y>+f(2yw/1+yd—z—2g\/1+ +2—\/1+ + 2y —+2£— )+xf<2d_zy_g+2d_§y

(3B)
Each term must be zero, hence this gives these trials
29y/1+y=
dg dg
2 2 0
dyy g+29=

2y,/1 + ——2g\/1+ +2 \/1+ +2yd +2j—— =0

Starting with the first one above 2¢4/1 + y = 0 which gives g = 0 which does not match
the ansatz. Now we try the second one above, which gives

dg _ 9
dy 242y
Solving gives
g=c\1+y (6)

Which meets the requirements of the ansatz. Now we need to use the above to generate
f(z). We do not need to try the third one above unless this fails. Substituting (6) into (3)
gives

Co (23—fxy+23—fw+2j—fy fy +2;lf ) =0
df df df df
2d—my—|—2d—x—|—2d— y—fy —|—2 —f=0 (7)

Collecting on y gives

ca(l1+vy) (2d—fx+2;l—f— ) =0

Hence 2%1‘ + 2% — f must be zero. This gives as solution

fl@)=cvitz

df . 1
dr 22\/1—}-z
Substituting the above into (7) to verify gives
2( —1 )w —|—2<c—1 >m+2( —1 ) <c 1+x> +2( —1 ) coV1+zx
c c - v/ c — coV :
2ovitz) o0tz ovitz) !\ Y o0itz) °
1 1 1 1
c Ty + ¢ T+ c cVl+azy+c — V1t x-
2 Tta Yy 2 Ttz 2 ,—1+x?/ 2 Yy 2 Ttz 2
1 1 1 1
c xy + T+ —V1i+azy+ —V1i+z)-
2(\/14—93 Y Vi+zx \/1+my Y Vi+zx )
0 -
Verified, Hence we have found f(z), g(y). Therefore
§=0
f(z) 9(y)
Vi+z\/1+y
Where we set ¢; = ¢ = 1. The integrating factor is therefore
1
w(@,y) =
(z,9) —

1
Vit az/I+y
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The next step is to determine the canonical coordinates R, S. Where R is the independent
variable and S is the dependent variable. This is done by using the standard characteristic

equation by writing
dr dy

§ n

For the special case £ =0 we have R = z. S(z,y) is now found from the last two pair of

as

equations which gives

dy
Vi+zy/T+y
g 2\/1+y

ds =

vVi+zx

Hence (constant of integration is set to zero)

R==x (2)

522\/1+y
Vi+x

Now that R(z,y),S(x,y) are found, the ODE 2 = Q(R) is setup. The ODE comes out
to be function of R only, so it is quadrature. This is the main idea of this method. By
solving for R we go back to z,y and solve for y(x). How to find %? There is an equation
to determine this given by

s & twly) g
iR T tw(z,y) &
Sy +w(z,y) S,

Everything on the RHS is known. S, = —(l—vi:)y%, R, =18, = Wm, R, = 0. Substi-

dsS vi+y 1

— =7 tw(z,
dR (1+2)2 (@9) Vitzy/T+y
__\/1+y+(z\/1+y+\/1+y+1+y) 1
(1+2)? l+z Vi+tz/T+y

Hence
ds 1

dR~ VR+1

This is quadrature. Solving gives
S = 2\/ R + 1 +C

Convecting back to z,y gives

1
2 1::__y =2\/117+1+01
X
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3.4.10.9 Example 3/ = ﬁ
Solve
r_ -y
¥y= 2z — yeY
y' = w(z,y)

The symmetry condition results in the pde

Ny + w(ny - €z) - w2€y - wz§ —Wyn = 0 (1)
Let anstaz be
§=g(y)
n=20

Substituting this into (1) gives
209

W g =0
w a Wig
But w? = ﬁ,wz = % (Qw:zey) = (2z—2369)2' The above becomes
¥ dg 2y g=0
(2z — yey)2 dy (2z — yey)2
dg
—yQ@ —2yg =0
dg 2
P ifa=0
dy - y”
This is linear ode. The solution is c
1
g=—
y?
Hence
1
£= =
y?
n=20

But taking ¢; = 1. The integrating factor is therefore

1

n—&w
1

1 (_=v
y2 \ 2z—ye¥

= y(2z — ye')

w(@,y) =

The next step is to determine the canonical coordinates R, S. Where R is the independent
variable and S is the dependent variable. This is done by using the standard characteristic

equation by writing
de dy

§ n

Since 1 = 0, then in this special case R = ¢; = y. To find S we use dS = % or dS = y?dz.
Hence S = ¢z + ¢, = 2z by taking c; = 0. Therefore S = y?z since ¢; = y.

as

R=y (2)
S =9’z

Now that R(z,y),S(z,y) are found, the ODE 92 = Q(R) is setup. The ODE comes out
to be function of R only, so it is quadrature. This is the main idea of this method. By
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solving for R we go back to z,y and solve for y(z). How to find 957 There is an equation
to determine this given by

s @ twEy g
iR Bt w(z,y) &
_ Setw(z,y) S,
R, +w(z,y) R,
Everything on the RHS is known. S, = y* R, = 0,5, = 2yz, R, = 1. Substituting into

the above gives

dS v’ +w(z,y)2yz

dR w(z,y)

-y
2x—yeY

= y2ey

Now we need to express the RHS in terms of R, S. From (2) we see that y = R, hence the
above becomes

dR—Re

This is quadrature. Solving gives
S=(R*-2R+2) e+

Convecting back to =,y gives

vr=(y—2y+2)e! + ¢

3.4.10.10 Example y/ — —1-2yzx

242y

Solve

y = -1 —-2yzx

x2 + 2y

Y = w(z,y)

The symmetry condition results in the pde
Nz + w(ny - €z) - w2€y - wz§ —Wyn = 0 (1)

Let anstaz be

§=0

n=f(z)g(y)

Substituting this into (1) gives

df dg
L twfZ —w,fg=0
95, twf ay yf9
But w = —;ﬁjjf,wy = _(Z/ (;1212231’7) = (j2f;;)2. The above becomes

df —1—2yz\ ,dg ( 2 —2z3 )
'l e I e A e e =0
iz + ( z? + 2y ) fdy (22 + 2y)° i
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The numerator of the normal form is
d d
g%(mﬂ +2y)° + (22 + 29) (-1 — 2y2) fﬁ —(2-22°) fg=0
df442 A 93 2 _ pr? —9 dg 9 _ 943 —0 9
gajx+-xy+y)+(—xy—$—'M/—Zﬁﬁ@—('—x)fg— (2)

To solve this for f(x), g(y) we start by collecting on either z or y. Let us start by collecting
on y. This gives

] i o[~ a0 0= ()0’

The other option was to collect on x terms. This would give

2 2] (1) (271 (22) ~laar) (v2 )+ 252y - 29] 1)+l (+*L )+ (425 )+ o]
@

We start from (3), and if this yields no solutions for f(x),g(y) then we come back and
try (4). In either form, the terms inside the [-] must all be zero to satisfy the ode. From
(3) this gives

df

dw =0
df 22
dx =0

%m4—(—2x3+2)f:0
(—22° —42-2) f=0
z2f =0

If one of these results in f(x) which is function of z. Then we try it to solve for g(y). If
the solutions end up verifying the pde, then we are done. From the above, we start with
the first one. This gives f = c¢;. Which is not function of . The second give same result.
The this option which is f zt — (=223 + 2) f = 0 gives

__2_
e 3z3

f(x) =G 72

Which is function of . We now use this to find g(y). It turns out this does not work. The
whole anstaz will fail. So need to try different anstaz.

3.4.10.11 Example v = 3,/yz

Solve
vy = 3\/yx
Y = w(z,y)

The symmetry condition results in the pde
Ne +w(ny — &) — w2€ —wz§ —wyn =0 (1)
Trying polynomial anstaz

E=ap+ a1z
n = by + by

And substituting these into (1) and simplifying gives

(—9a1 + 3b) yr — 3zby — 3yag =0
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Setting all coefficients to zero gives

—9a1+3b1=0
bp =0
(10=0

Hence a; = %bl. Letting b; = 1 then a; = % and the infinitesimals are

1
§ 537
n=y

The integrating factor is therefore

1
n—&w
B 1

y — 57 (3\/yz)
__ytz/jry

o oy —y?

w(z,y) =

The next step is to determine the canonical coordinates R,S. This is done by using the
standard characteristic equation by writing

do _dy

— =dS
&
The first pair of equations gives
dy _n_ 3y
dr ¢ =«
Solving gives
y =z’
Hence y
R= C1 = :l? (2)
And S is found from p p
ds =2 = 3%
& x
Integrating gives
S=3lnz+c¢
=3lnz

By choosing ¢; = 0. Now that R(z,y),S(z,y) are found, the ODE %5 = F(R) is deter-
mined. This is determined from

s @ twEy) g
dR %+w(w,y)‘%
Sm-i-LU(x,y)Sy

- =3y + zw (z,y)
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But w(z,y) = 3,/yz. The above becomes

as 33
dR -3y +3z,/yz
73
YT — Y
-1

REE @

But R = % and the above becomes

s -1
dR  R—-+R

Which is a quadrature. Solving gives

foo- 2
S=—21n(\/§—1) + o

3lnx=—2ln( %—1) +c
\V

2
lnx3+ln( 1—1) =qC

Converting back to z,y gives

y1(z) = 2z(2* + z/z01) — 2% + €1
yo(z) = —2z(—2* + z/701) — 2° + &1

W=

3.4.10.12 Example y' = 4(yzx)
Solve
y = 4(yz)*
Yy =w(z,y)
The symmetry condition results in the pde
e+ w(ny — &) — W€y —w€ —wyn =0 (1)
Trying polynomial anstaz

E=ap+ a1z

1N =bo+ by
And substituting these into (1) and simplifying gives
(—16a; + 8b1) yxr — 4xby — dyag =0
Setting all coefficients to zero gives

—16&1 + 8b1 =0
bp =0

a0=0
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Hence a; = 1b;. Letting b; = 1 then a; = ; and the infinitesimals are

1
§= 535
n=y
The integrating factor is therefore
1
r,Y) =
wz,y) —
_ 1
= 1
Ve (1))
B 1
y — 2z (zy)?

The next step is to determine the canonical coordinates R,S. This is done by using the
standard characteristic equation by writing

o _ W _ g
& n
The first pair of equations gives
dy _m_2%
dc ¢ =«
Solving gives
y =12’
Hence y
R = C1 = .’17 (2)
And S is found from p p
ds =2 =%
13 x
Integrating gives
S=2Inz+¢
=2lnx

By choosing ¢; = 0. Now the ODE 42 = F(R) is found from

s mtw@y) g
dR ‘é—f—i—w(w,y)%
_ Setw(z,y) S,
" R,+w(z,y) R,

But S, = 2, R, = —2%,5, =0, R, = 2. Substituting these into the above and simplifying
gives

B 1
B Zy%:p_% — ;’—2
B 1
2(%)F - %
B 1
2(R)* — R
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Hence
dsS . 1

dR 2R} —R
Which is a quadrature. Solving gives

e

——§1n< 2+R3)+Cl

Converting back to z,y gives

2Inz = —gln (—2+ (%)g) +¢

The above can be simplified more if needed to solve for y(z) explicitly.

3.4.10.13 Example ¢/ = 2y + 3e**

Solve

Y =2y + 3
Y =w(z,y)

From the lookup table, since this is linear ode y' = f(z)y + g(z) then

£=0

n= effda:
:6f2dx
=e*.

If we were to use the integrating factor method, then

1
n—&w

w(w,y) =

= 622:

— 6—2:1:

Then the general solution is
/ p(z,y) (dy — wdz) = &1
/6_2“ (dy — (2y + 362””) da:) =
/e_hdy — (2ye > +3)dr =0c1

/e_%dy — 2ye dg = /3dw +c

/d(e‘zxy) = /3dm—|—cl

2y =3x+¢
y=e*(B3z+cp)

Hence

But if we were to use the basic Lie symmetry method, then the next step is to determine
the canonical coordinates R, S. This is done by using the standard characteristic equation
by writing
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Since & = 0 then this is the special case where R = x. And S is found from

d
as =2 — e 22dy
n
Integrating gives
S=e¥y4c
— e—2xy

By choosing ¢; = 0. Now the ODE 22 = F(R) is found from

s & tw@y) g
iR T tw(z,y) &
_ Setw(z,y) S,
R, +w(z,y) R,
But S, = —2¢ *y, R, = 1,5, = e **, R, = 0. Substituting these into the above and

simplifying gives
ds

iR = —2e ¥y + (2y +3e™) e

=2y 4+2ye * +3
=3

Which is a quadrature. Solving gives
/ s = / 3dR
S=3R+¢
Converting back to z,y gives
e ®y=3cx+c
y=(3z+c))e*

Of course, this ode is first order linear and can be solved much easier using integrating
factor method. But this is just to illustrate the Lie symmetry method.

2Z'+Z'3_$2

1
3.4.10.14 Example y' = ;=%

Solve

y_12y+y’—2?

3 x

y =w(z,y)

Using Maple the infinitesimals are

3
¢= 213

4

n=—-—=

€T3

(Will need to show how to obtain these). Lets solve this using the integration factor method
first. The integrating factor is given by

1
m\x,y) =
(z,9) —
_ 1
= v 3 <12y+y3—$2>
) 1 \3 z
z3 2x3
4
T3
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Then the general solution is

//L(:L', Y) (dy — wdzx) = ¢

4
x3 12y + 93 — 22
/sz—y?’ dy — (gT dr | = ¢

4 1
Hence we need to find F(z,y) s.t. dF = <2%dy — (%%) (2y + y* — z?) dx) which
will make the solution F' = ¢. Therefore
oF oF

dF = —dz + —d
Oox T oy y

4 1
z3 2 8 3 9
= 2—352 _y3dy — (5—:52 —y3> (2y+y -z )da:

Hence
OF  2z35(2y+y® —2?)
or 3 x2 — 3
oF 9 T3
Oy T2 Y3

(1)
(2)

Integrating (1) gives

7o (/_gx§(2y+y3—x2)dx) o)

3 x2 — 93

= %xé + %ln (ﬁ +x§y + yz) — gx/garctan %M - ;111 <$% - Z/> +9(y)
3)

Where g(y) acts as the integration constant but F' depends on z,y it becomes an arbitrary
function. Taking derivative of the above w.r.t. y gives

4
e = ) @
Equating (4,2) gives
4 4
2x2x_3 Y3 = 2x2$_3 Y3 +9' ()
=4 (v)
9(y) =

Hence (3) becomes

<2x§ + y) V3 9

ol

1 1 2 1
F= ix + gln (x% + x§y+y2> - g\/garctan 3

Therefore the solution is

1 1 2
590% + 3 In (:c% + :c%y + y2> — g\/garctan

(208 +y)v3\ o
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Where constants c;,c were combined into c;. Now this ode will be solved using direct
symmetry by converting to canonical coordinates. This is done by using the standard
characteristic equation by writing

d d
2 _%_4s
£ n
dr dy
5 = =dS
3 ]
2x3 T3
First pair of ode’s give
v
dy .5 2
de 3 37
2x3
Hence
Yy=ax 5
Therefore
R = yz‘g
And

Integrating gives

2 1
S= [ Zzsd
/3.'17 4h
1 s
== Cc
2 1
Lot
=z
2

By choosing ¢; = 0. Now the ODE 22 = F(R) is found from

s _ @ tw@y) g
dR 4B 4y (z,y) %
Sz +w(z,y) S,y

Sy =0, R, = 73, Substituting these into the above and

wlot

But S, = %x%,Rx = —%ym‘
simplifying gives

s 223
AR —2yz=5 +w(z,y)a s
2 1
2
=2
=y
But R = yx‘% ory = Rz5. The above becomes
ds 5 x?
dR 22 — R3z2
=2
- 1-R3

Which is a quadrature. Solving gives

/dS /1_33

3111 (RP+z+1) - gx/garctan (%(1—!—2}2) \/§) + gln(R— 1)+ca
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Converting back to z,y gives

ot = =gt ((se8) +2+1) - SvBaretan (G (1+2(ue)) vB) + 21 ((50F) - 1)
+

_%m (y%—% +z+ 1) gx/garctan (:1)) (1 2y~ §) \/3) + gln <y$_% - 1) +a

w\m

4
3

X

N~ N

3.4.10.15 Example y' =3 — 2%

This is homogeneous ODE of Class A of form ¢y’ = F (%), hence from the lookup table
E=x
n=y

The first step is to verify that T = ex,y = ey leaves the ode invariant.

/

i _9+oy _ & _

A7 To+ 3y € 7
Hence the ode becomes
dy (]
AN S 2_
dz
y =3— 2_y
€T
—3-2Y
T

Verified. Now the ode is solved. The tangent curves are computed directly from the Lie
group symmetry given above

0T
g_aszﬂ_x
o _
n= O€ | .o y

The canonical coordinates (R, S) are now found. Using

dx dy

=dS
&
dz _dy _ 4 (1)
z )
The first pair gives
dy _y
dr =z
Iny=Inzx+¢
y=-cx
Hence
R=c
_Y
x
Now we find S from the last pair of equations
d
% —as
)
S=Iny
What is left is to find 95 . This is given by
as G(R)
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Hence

 —R?+R%
But % =3 — 2% =3 — 2R, hence

s 3—2R
dR~ —R’+ R(3-2R)
_ 3-2R
3(R— R?)

Which is a quadrature. In Lie method, for first order ode, we always obtain g%
Integrating the above gives

3—2R
d ———d
/ 5= [ sia—re R
S=IR- %In(R—1)+cl
Final step is to replace R, S back with x,y which gives

lny:ln%—%ln<g—1>+cl

T

T
Y 1
5—1262—3

_3_|_£
3.4.10.16 Example 3/ = <

E

This is homogeneous ODE of Class A of form 3’ = F (%), hence from the lookup table

Canonical coordinates (R, S) are found similar to the above which gives

rR="Y
x
S=Iny

What is left is to find g%. This is given by

% _G(R)

Which is the same as above
ds dy

__d—w
dR  —R?+ R%

185

To find G(R), we use dS = S,dz + S,dy = ;dy and dR = R,dz + R,dy = — %dz + Ldy

= G(R).
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But in this problem, the only difference is that Z—g = :3—J_r§ = _3+R , hence
ds =
iR~ “RZ+ R (=2E)
_ Ll E-3
~ RR*+2R-3
Which is a quadrature. In Lie method, for first order ode, we always obtain 2 = G(R).

Integrating the above gives
1 R-3
d
/dS / (R2+2R 3) k
1
S=In(R)— §ln(R—|-3) - §ln(R— 1)+
Final step is to replace R, S back with x,y which gives
() (s i (Y-
lny—ln<x> 2ln<x+3) In (z 1)+cl
This can be solved for y if an explicit solution is needed.

3.4.10.17 Example 3/ = ﬂ

This is homogeneous ODE of Class A of form 3y’ = F (%), hence from the lookup table

E=x
n=y
The canonical ode is p
as _ Z
dR  —R?+R%

The above is the same ode in canonical coordinates for any ode of the form y' = F(%)

We just need to express 4’ as function of R. In this case the above becomes

s _ SR

AR~ R+ R ()
_3R*+1
- R3+R

Integrating gives
S=In(R(R*+1)) +c

Final step is to replace R, S back with x,y which gives

Iny = In (%((%)2 + 1)) +o

Hence

y=+Vc3xd — a2

= +xv/c3x — 1
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Finding &, 7n from symmetry condition for the above ode This shows how to find &,7 di-

rectly also. The condition of symmetry is given above in equation (14) as
Nz + w(ny - fx) - w2§y - wx‘f — Wyl = 0
Try Ansatz
E=co+az
n = Cz + C3y
And given
_ 12?43y
2 xy
o 1(2*+ 3y%)°
w' = --—"
4 122
122 — 3y?
Wy = - ————
2 yx?
13y? — 22
oy = L322
2 xy?
Hence (14) becomes

12?4 3y 122 —3y% . 13y%— 22

=5 Yz * 3 n=0

T2 xy Y2 ya? xy?
Therefore the above becomes
122 + 3y? 122 — 3y? 13y? — 22
e T 2 T _ -2 T =0
2 zy C3 2 42 (co+ 1) 2 (ca+ c3y) =

Using the computer the above simplifies to

x(c c)+1cx 1 1c 130+3 y_o

Hence

C3—Cl=0

1
50220
1
—Zen =0
200

3
—502 = 0

3
g =0

Solving gives cg = 0,co = 0 and c3 = ¢;. Hence the solution is
{=cax
n=2¢csy
Let ¢; = 1, therefore c3 = 1 and we obtain
E=x
n=y

(14)

Which is the result we used in solving the above problem. Notice that any scaler will also

work. Hence

& =5z

n=25Yy
And

¢ =10z

n = 10y

This will also give same solution.
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3.4.10.18 Example ¢ =¥+ 1F(¥)

This is homogeneous class D ' = ¥ + g(z) F(¥). Hence from lookup table
£=2’
n=xy

Now we just need to find canonical coordinates (R, S) since &, 7n are known. Using

w_ 4 _ s
£
dr dy
— =" _( 1
2oy (1)
The first pair gives
dy _y
dr =
Iny=Inz+c¢
y=-czx
Hence
R=

Now we find S from the last pair of equations (we could also use the first and last equations
in (1)).
d
Y —as
Ty
1
S=—Iny
x

What is left is to find g_ls%. This is given by

dsS
iR G(R)

S+ Sy

To find G(R), we use S, = ;—glny, Sy = Z—ly and R, = -5, R, = 9_16 Hence

s Fhy+ oy

AR~ kit
x,/
—Iny—Ty
y+zy
—Iny — ¢’
y+azy
But y' = £ + 1F(%) = R+ 1F(R). The above becomes

as _ —lny—%z(RjL%F(R))
dR~ y+z(R+1F(R))

_ —Iny — —%F(R)
y+zR+ F(R)
—Iny—1- 5 F(R)

y+z2+ F(R)
1
—lny—1-_F(R)
2y+ F (R)
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Something is wrong. should only be a function of R. Need to find out why. Let me try
the other pair of equatlons from (1) to solve for S and see what happens.

s

.’132
1
S=-—=
X

What is left is to find g%. This is given by

9 _am)

S+ Sy
= _Rm + Ryy/

To find G(R), we use S, = %,S5, =0and R, = —%, R, = 1. Hence

But y' = £ + LF(%) = R+ 1F(R). The above becomes

T

ds 1
dR~ —y+z(R+1F(R))
1
~ —y+zR+F(R)

1
T —y+3L+ F(R)
1
~ F(R)

This worked. But why the first choice did not work? OK, let me continue now. Integrating
the above gives

But S = —21, hence

KA
T

—1—/ Lcl7'+c
T F(r)

=1 1
0—/ md’f"i‘C‘i‘E

This example shows that when solving for S from

dr dy

There are two choice. One is dS = Z—Z and the other dS = Z—’g. Using the first choice did not
work here (unless I made a mistake, but do not see it)., Only the second choice worked
because we must end up with % = G(R) where RHS is function of R only. I need to look
more into this. In theory, any choice should have worked.
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Yy

3.4.10.19 Example y =¥ 4 lee

This is homogeneous class D ' = ¥ + g(z) F(¥). Hence from lookup table

From above we found the solution to be

1
S—/—F(R)dR+c
In this case F(R) = e %. Hence
S = /eRdR+c
S=elf+¢

Now we just need to find canonical coordinates (R, S) since &, are known. From above

rR=Y
T
1
S=-=
T
Hence the solution becomes
1 y
—— =ez+cC
T
y 1
€z = Cy — —
T

Y 1
Z=Inlcy——
x x
1
y=zln|cy——
x

The nice thing about this method is that once we solve for one pattern of an ode, then
the same solution in canonical coordinates is used, the only change need is to plug-in in
the RHS of the original ode in the solution and integrate.

3.4.10.20 Example y = 1542

I 1—y2+x2
1+y? —2?
= w(z,y)

Using anstaz’s it is found that

Hence

= = dS 1)

The first two give

Hence
y=—-r+c (2)
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Therefore

chl

To find S, since both &, depend on both z,y, then d—;’ =dS or % = dS can be used.
Lets try both to show same answer results.

W _4s
n

is— W

Yy—x

But from (2), £ = ¢; — y. The above becomes

4y
y— (a1 —v)
_ 4y
Y —oc

ds =

Hence 1
S = 51n(2y—c1)

But ¢; = y + x. So the above becomes

S=%1n(2y—(y+x))
= Sn(y—2) )

Let us now try the other ode

But from (2) y = —z + ¢;. The above becomes

dx
z—(—x+c1)
_ dr
- 2r —

s =

Therefore ]
S = 51n(2x—cl)

But ¢; = y + z. Therefore

S=%ln(2x—(y+x))

1

— (e -y) @

The constant of integration is set to zero when finding S. What is left is to find g%. This

is given by S S 4s
T yW

dR ™ R, + Ryw (5)

But, and using (4) for S we have
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Hence (2) becomes

dS %t iaw

dR~ 14w
w—1
= —_H
1+w
_ l-w
(1+w)(z—-vy)
- ()
(1+ (35%22)) e -w)
= —r — y
=—(z+y)
=—-R
Hence
ds
iR —R
R2
T2
Converting back to z,y gives
2
lnw—w%=—@zx)

3.4.10.21 Example y = —jze % + %\/(6_29)2 x? +4e~%

1 1
/ - —2 - —20\2 .2 _92
Yy = 4xe y+4\/(e v)  x2 + de=2

= w(z,y)

Using anstaz’s it is found that

E=x
=1
Hence
d
o _dy _ g
& n
do _ dy =dS (1)
The first two give
dy _1
dr =«
Hence
y=lhz+c¢
Therefore
R = C1
=y—Inzx

And S is found from either % =dS or dg—w =dS. Since n = 1, it is simpler to use % =dS
instead.

d

% —ds

n

dy =dS

S=y
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Where constant of integration is set to zero. What is left is to find %. This is given by

dS  S;+ Syw

= =y 2
dR R;,+Rw @)
But
p ]
x
R, =
S:=0
Sy =
Hence (2) becomes
a5 = w 1
dR —-l14+w -1 41
1

z (—iwe—2y+%\/ (e—2y)2$2+4e—2y)

But y = R+ Inz. The above becomes

as 1

dR 1-— L =
z (_ixe—2(R+1n @)1 \/(6—2(R+ln 2))242 4 4e—2F+1n z)

1

1
—2R
:I)(—% :vez2 +%% /e_4R+46_2R)

1
— 1 — : 1
(_1672R+%‘/ 74R+4872R>
Integrating gives
1+4e2E 2R 1
g_ \/ e arctanh(\/W)

V1 + 4e2R

Converting back to z,y gives

1+4e2(y—In=) 2(y—Inz) 1
\ iG—me € arctanh Wirvro=rr)
y =

V1+ 4e2(y—Inz)

r y—zf(a:2+ay2)
3.4.10.22 Example 3’ = TTayf (@2 tag?)

, y—zf(e® +ay?)
z +ayf (22 + ay?)

= w(z,y)
Using anstaz’s it is found that
§=—ay
=z

Hence

o _dy_ s

£

d_dy_ "
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The first two give
dy _ =
dr —ay

This is separable. Solving gives (taking one root)

a(ac; — x?)
Yy=—""
a
Solving for ¢; gives
z2 + ay?
0q=—">
a
Hence ) )
*+a
p= ¥ tay
a

S is found from either dn—y =dS or d?’” =dS. Using f—jy = dS then

d
9T _4s
But y = —Va(azl_xz) Hence
dx
g4
_a\/a(ac1—x2)
d
a = ds

—v/a(ac; — x?2)
1
——=arctan (L> =S5
Vva Veia? — z2a
1
———=arctan vaz =S
Va ay

Where constant of integration is set to zero. What is left is to find dd_IS%' This is given by

as Sy +Sw

i Bt “het 2
dR R,+Rw @

But

Hence (2) becomes

P — z
ds #yrra t < a(1+ziyi)> W
dR %” + 2yw

But R = % The above becomes

s~ (o)

dR ~ %“”—l—Zyw

To finish. Another hard part of this Lie method is to convert back g% = gzi—%;: so that

the RHS is only a function of R. Need to find a robust way to do this. This is now a weak
point in my program as I have few ode’s that it can’t do it
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3.4.11 Alternative form for the similarity condition PDE

This section shows how to obtain eq. (8) in paper "Computer Algebra Solving of First
Order ODEs Using Symmetry Methods" 1996 by Durate, Terrab, Mota. Which is an
alternative equation to solve instead of the main Lie condition for symmetry we were
looking at above.

Starting with the main linearized symmetry pde

Nz + w(ny - fz) - w2€y — wz§ — wyn =0 (14)
Assuming anstaz
n=_E&w+x (A)

Hence

Ne = §xw +§ww + Xz
Ny = &w + Ewy + Xy

Then (14) becomes

(baw + Ewz + Xz) + W((§w + Ewy + Xxy) — &) — w2§y —w§ —wy(§w+x) =0
Eow + Ewy + Xz + EWP + Ewyw + Xuw — W€ — w2y — wi€ — Ewwy, — wyx =0
Eow + Xz + EW? + Ewyw + Xuw — wés — W, — Ewwy — wyx =0
Xz + fyw2 + Ewyw + Xyw — w2§y — fwwy —wyx =0
Xz + Ewyw + Xyw — Ewwy — wyx =0
Or
Xo + Xyw —wyX =0 (1)

And hence (1) is now solved for x(z,y). If we are able to find x then we can use the anstaz
1n = &w + x. This leaves only one unknown £. The paper does not explain how to solve for
this, &, which I assume is by using (14) again. The paper only said

The knowledge of x, in turn, allows one to set £ and 7 as desired using (A)

Which is not too clear how in practice this is done. I need to work an example showing
this. The paper says that (1) is solved for x(z,y) by using bivariate polynomial anstaz.
The degree can be set by a user, or Maple internally determines this.
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3.5.1 Introduction and algorithm flow charts

This gives an overview on solving first order ode where 4’ enters the ode as nonlinear.
Examples are z(y’ )2 +yy' +x =0o0r 2y'z—y+Iny = 0 and so on. Four general cases exist
and these are summarized in the flow chart at the end of this section. Two of these cases
are called the Clairaut ode and the d’Alembert ode. Following the flow chart, a number
of examples are solved.

Given the ode F(z,y,y’) = 0, we start by writing ' = p which results in
F(z,y,p) =0

This is the top level algorithm

function SOLVE__FIRST__ORDER__ODE__NONLINEAR_ P(F(z,y,p))
Where p = 3 and the ode is non-linear in p. An example is z(y')* — yy’ = —1 and

y= z(y ta/1t (y’)2>

if degree of p an integer in F'(z,y,p) then
As an example p?z + yp +y = 0 and it is possible to find the roots (i.e.
solve for p) then let the roots be p; and each generated ode is solved as
a first order ode which is now linear in each in y;. So we need to solve
y: = f(z,y) for each root.

else if we can solve for z from F'(z,y,p) then
This is currently not implemented.

Let z = ¢(y, p) then differentiating w.r.t. y gives
i _ 06 09dp
dy Oy Opdy

1 @ + 0¢ d_p

— 70 1
p Oy Opdy W)

Solving (1) for p from the above and substituting the result in

z = ¢(y, p) gives the solution.
else

CALL clairaut_dAlembert_ solver(F'(z,y, p))
end if
end function

Algorithm below is Clairaut dAlembert solver algorithm

function CLAIRAUT__DALEMBERT__SOLVER(F(z,y,p))
Solve for y and write the ode as (where p = ¥/)

y = zf(p) + 9(p) (1)
where f(p) #0
if f(p) =p then > Example y = zp + g(p)
if g(p) = 0 then > Example y = zp
return as this is neither Clairaut nor d’Alembert.
else if g(p) is linear in p then > Example y = zp + p
return as this is neither Clairaut nor d’Alembert.
else > Example y = zp + p? or y = zp + sin(p)

This is a Clairaut ode. Taking the derivative of (1) w.r.t. = gives

—i(m-l-)
p_dac pPTg

. dp ,dp
P= (””dw) * (g dx)

dp
_ /
p—p+(x+g)—dx
dp
_ /
0—(a:+g)—dx



where ¢’ is the derivative of g(p) w.r.t. p. The general solution is

dp
de
where ¢; is constant. Substituting p = ¢; the in (1) gives the general solution y,
The singular solution y, is now found from solving the ode (z + ¢’(p)) = 0 for p and

substituting the solution p; back in (1).
return y,, y;

end if
else
CALL dalembert_solver(F(z,y, p))
end if
end function

0 b=

Algorithm below is just the dAlembert solver algorithm

function DALEMBERT__SOLVER(F(z,y,p))
Write the ode as (where p = ¢/)

y=zf(p) + 9(p) (1)
where f(p) # 0. Note that We get here when f(p) # p else it is Clairaut.
if g(p) = 0 then > Example y = zf(p)
f(p) must be nonlinear in p but can not be the special case p% where n
integer because then it is separable.

if f(p) = p~ and n € Z then > Ex. y =z(y)?
return as this is not dAlmbert ode.
end if
else

In this case any form of f(p) is OK even f(p) = p» with n integer
except ofcourse f(p) = p since this would have made it Clairaut and not

dAlembert. Example is y = zf(p) + p is dAlembert.
if g(p) is constant and does not depend on p then >Ex. y=zf(p)+1

return as this is not dAlmbert ode.
else
if g(p) = f(p) then
if g(p), f(p) have the form p» with n integer then > Ex. y = zp? + p2
return as this is not dAlmbert ode.
else > Ex. y = zp5 + ps or y = zp® + p?
This is dAlmbert ode.
end if
end if
end if
end if
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When we get here then (1) is dAlmbert ode. Note that all the above
cases f(p),g(p) can not be function of z in any case. Now we solve (1)
using dAlmbert algorithm. Taking derivative of (1) w.r.t. z gives

p= 1 (@l +9)

{1t (62)

where f’ means le and ¢’ means %;l). The above becomes

dp
_ / /
dp
!/ /
— f= 2
p—f=@f+9g) (2)
The singular solution is given when 3—5 = 0 above. Hence
p—f=0

Solving the above for p and substituting the result back in (1) gives the
singular solution y,. The general solution y, is found by solving the ode
in (2) for p and substituting the result in (1). there are two cases to
consider.
if ode (2) is separable or linear in p as is then
Solve (2) for p directly and substitute the solution in (1). This gives the
general solution y,.

else
Inverting (2) first gives
d_.’E oz f/ + g/
dp. p—f
Which makes it linear ode in z. This is solved for z(p) as function of p.
Let
z=h(p) +a 3)

be the solution. Now two possible cases exist
if able to isolate p from (3) then

Substitute p in (1). This gives the general solution y,.
else
Solve for p from (1) and substitute the result in (3). This gives an implicit

solution for y, instead of explicit one.
end if

end if
end function

3.5.2 Algorithm diagram
The following is the flow chart.
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Figure 3.14: Algorithm for solving first order ode with nonlinear 3’
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3.5.3 Solved examples
#  original ode y=zf(p) +9(p) f(p) 9(p)
1 a@) -y =1 y=ap+, p >
2 y=azy - () y =zp —p? P —p?
3 y=ay - i) y=ap— 3p° P —P’
4 y=az(y)’ y = zp? p’ 0
5 y=z+ ) y=zx+p’ 1 p?
6 @¥)’-1-z-y=0 y=-z+(p*-1) -1 (r*-1)
T ow-() =2 y=1z+p ! P
8  y=3)+ ) y = zp? 4 p? p° o
9 y=3v+ay y=3p+a; . o
10 y=w<y’+a\/1+(y’)2) y:x(p—i—a\/l%—pz) p+ay/1+p2 0
1 y=z+@)" (1-2%y) y=z+p*(1-3p) 1 P*(1-3p)
"2
12 y=2x—%ln<§,’_)1> y=2a:—%ln(p’%2l) 2 —lln(pp_zl>
2_ .2 2 2
13 )’ —a@)’ +y(l+y)—ay =0 y=PEE —gp_ 2o p ~ I
14 a2y’ +@-y)y+1-y=0 y=zp+ 15 p e
15 zyy = y? +z\/432 + o2 y = RootOf (h(p)) = RootOf (h(p)) 0
16  In(cosy’) +y'tany’ =y y =1n(cosp) + ptanp 0 In (cosp) + ptanp
17 2(y)? —2yy + 42 =0 yza:(%p-l-%) %p+% 0
18 z—yy =a(y)’ y=9¢—ap ; —ap
19 y=aF(p)+G(p) y=zF(p) + G(p) F(p) G(p)
20 y=-2-1+1i/2214x+4y y=ap+ (1+2p+p?) p 1+ 2p + p?
9 ¥y - _ (L\/lﬂ?> _(Lwlﬂ») 0
14+1/14+(¥)? ’ Y ’ % 2p
N3 _ .. 2 1 2 _1
22 z(y) =y +1 y=zp’—, p .
23 (y)’ -2y =2 y=—c3 +3p - 3P
24 xy —y= /22— 92 y:x(%:l:%\/2—p2) gj:% 2—p%2 0

3.5.3.1 Example 1

z(y')> —yy' = —1, is put in normal form (by replacing 5 with p) and solving for y gives

1
y=ap+-
p

= zf(p) + 9(p)

(1)

Where f(p) = p and g(p) = 11). Since f(p) = p then this is Clairaut ode. Taking derivative
of the above w.r.t. x gives

The general solution is given by

= %(wp +9(p))

1Ny AP
p—p+(w+g(p))£
dp
— / e
dp
ﬂ_o

b=

type

Clairaut

Clairaut
Clairaut
d’Alembert
d’Alembert
d’Alembert
d’Alembert

d’Alembert
d’Alembert

d’Alembert

d’Alembert

d’Alembert

Clairaut
Clairaut

d’Alembert
d’Alembert

d’Alembert
d’Alembert
d’Alembert

Clairaut

d’Alembert

d’Alembert
d’Alembert

d’Alembert
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Substituting this in (1) gives the general solution

1
y=cazr+ —
1

The term (z + ¢’(p)) = 0 is used to find singular solutions.

z+4'(p) —oy 2l
dpp
P2
Hence z — ; =0orp=4_- . Substituting these back in (1) gives

1
yi(x) =xp+ —
1(2) »

1

=2Vz 3)
1
y(z) = —7 > Ve
=-2Vz (4)
Eq. (2) is the general solution and (3,4) are the singular solutions.

Another method to find the singular solutions if it exists is called the p-discriminant. This
is used only for first order ode with nonlinear in 3’. We set up the following two equations

F(z,y,94)=0
OF(z,9.y) _,
oy’

We eliminate 3’ and obtain G(z,y) = 0 equation. This is the singular solution. But we still
have to check if it satisfies the ode and also if it is true singular solution curve. More on this
later. Let us now just find the singular solution found above but using the p-discriminant
method. The above two equations are

1
y—zy ——==0
Y

=0

1
)

Second equation gives (v’ )2 = % Hence 3/ = :I:\/g . Hence the first equation now gives
(starting with positive root)

yonfTs -

_ay/h/ie
\/%
—2/T

And for the second root y' = —\/g we obtain y = —24/x. We see these are the same
singular solutions obtained earlier.
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3.5.3.2 Example 2
y =zy — (¢)? is put in normal form (by replacing 3’ with p) and solving for y gives
y=ap—p’ (1)
=zf(p) + 9(p)

Where f(p) = p and g(p) = —p®. Since f(p) = p then this is Clairaut ode. Taking
derivative of the above w.r.t. x gives

p= %(xp + 9(p))

dp
—_— , E—
p=p+(@+g®)
dp
0= '(p))
(@+4'()
The general solution is given by
dp
o 0
p=aG

Substituting this in (1) gives the general solution
y=czx—c

The term (z + ¢’(p)) = 0 is used to find singular solutions.

d
z+4 @) =+ 3 (~7')

=z+2p
Hence z + 2p = 0 or p = . Substituting this back in (1) gives
72
4
3)

Eq. (2) is the general solution and (3) is the singular solution.

Another method to find the singular solutions if it exists is called the p-discriminant. This
is used only for first order ode with nonlinear in 3. We set up the following two equations

F(z,y,y) =0
OF(z,y,y) _
oy’

We eliminate 3’ and obtain G(z,y) = 0 equation. This is the singular solution. But we still
have to check if it satisfies the ode and also if it is true singular solution curve. More on this
later. Let us now just find the singular solution found above but using the p-discriminant
method. The above two equations are

y—azy + (/)" =0
—z+2y' =0

Second equation gives 3’ = 7. Hence the first equation now gives the singular solution as

y-e(3) (5 -0

2

8

_z
vy= 4

v |

1172

| =

Which is the same obtained earlier.
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3.5.3.3 Example 3

y=zy — 3¢ )? is put in normal form (by replacing y’ with p) and solving for y gives

1

1.2
y=ap—p 1)
=zf(p) +9(p)
Where f(p) = p and g(p) = —3p®. Since f(p) = p then this is Clairaut ode. Taking

derivative of the above w.r.t. x gives

p= %(xp +9(p))

r0\y 9P
p=p+(e+g @)
dp
— ! ap
The general solution is given by
dp
o 0
p=a

Substituting this in (1) gives the general solution
y=c1z— Zc?

The term (z + ¢’(p)) = 0 is used to find singular solutions.

d/ 1
/ _ el __2
x+g(p)—w+dp< 4p>
B 1

Hence z — 1p = 0 or p = 2z. Substituting this back in (1) gives

y(z) = 222 — 2°

=z (3)
Eq. (2) is the general solution and (3) is the singular solution.

Another method to find the singular solutions if it exists is called the p-discriminant. This
is used only for first order ode with nonlinear in 3’. We set up the following two equations

F(z,y,94) =0
OF(z,9.y) _,
oy’

We eliminate 3’ and obtain G(z,y) = 0 equation. This is the singular solution. But we still
have to check if it satisfies the ode and also if it is true singular solution curve. More on this
later. Let us now just find the singular solution found above but using the p-discriminant
method. The above two equations are

1
y—wy’+1(y’)2=0
L,
—r4+ 4 =0
x+2y

Second equation gives 3y’ = 2x. Hence the first equation now gives the singular solution as
1
y—22% + Z(4$2) =0
y—z2=0
y =1

Which is the same obtained earlier.
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3.5.3.4 Example 4

y = z(y')* is put in normal form (by replacing ¢/ with p) and solving for y gives

y = zp’ (1)
=zf(p)
This is the case when f(p) = p? and g(p) = 0. Since f(p) # p then this is d’Almbert ode.

Writing f = f(p) and g = g(p) to make notation simpler but remembering that f is
function of p(z) which in turn is function of z. Same for g(p).

y=xf
Taking derivative of the above w.r.t. z gives

d

b= %(xf )
d
p=f+afh
dz
dp
— 2P
p-f=zf__
Since f = p? then the above becomes
dp
2
—p? = 2rp-2 2
p—p =2ap (2)
The singular solution is given when 3—2 = 0 or p—p? = 0. This gives p = 0 or p = 1.
Substituting these values of p in (1) gives singular solutions
Ys1 = 0 (3)
Ys2 =T (4)
General solution is found when Z—Z # 0. Eq(2) is a first order ode in p. Now we could

either solve ode (2) directly as it is for p(x), or do an inversion and solve for z(p). If the
ode is linear as is in p then no need to do inversion. Since (2) is separable as is, no need
to do an inversion. The solution to (2) is

p1=0

c
pr=1+—

NG

For each p, there is a general solution. Substituting each of the above in (1) gives
yi(z) =0

v () =m(1+%)2

Hence the final solutions are

y==x (singular)
y=0

yzm(l—i—%)Z

But y = x can be obtained from the general solution when ¢; = 0. Hence it is removed.
Therefore the final solutions are

y=0 (6)



CHAPTER 3. FIRST ORDER ODE F(z,y,y') =0 205

What will happen if we had done an inversion to z(p)? Let us find out. ode(5) now becomes

p—p?dx
— =2z
p dp
dx P
> d
2r p—p? P

This is also separable in z. Solving this for z gives

g=_—2
(p—1)°
Solving for p from the above gives

T+ \/xC1
n=————

x
x — \/xcy
br=—"—

T

Substituting each of the above in (1) gives

2
T+ 4/xC
wee(e )
x
(z+ zcr) 2
B x
2
T — 4/xC
= s(27/)
x
2
(z — /zcr)
x
Now we see that singular solution y = = can be obtained from the above general solutions
from ¢; = 0. But y = 0 can not. Hence the final solutions are

y=0 (singular) (8)
y= v o)
y= =y (10

All solutions (6,7,8,9,10) are correct and verified. Maple gives the solutions given in (8,9,10)
and not those in (6,7).

Another method to find the singular solutions if it exists is called the p-discriminant. This
is used only for first order ode with nonlinear in 3’. We set up the following two equations

F(z,y,9)=0
OF (z,y,y")
2\ hI)

oy’

We eliminate 3’ and obtain G(z,y) = 0 equation. This is the singular solution. But we still
have to check if it satisfies the ode and also if it is true singular solution curve. More on this
later. Let us now just find the singular solution found above but using the p-discriminant
method. The above two equations are

y—z(y)’ =0
—2zy' =0

Second equation gives 3y’ = 0. Hence the first equation now gives the singular solution as
y=0

Which is the same obtained earlier.
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3.5.3.5 Example 5

y =z + (y')? is put in normal form (by replacing 3’ with p) which gives

y=z+p’ (1)
=zf+yg

Hence f(p) = 1,g(p) = p®. Since f(p) # p then this is d’Almbert ode. Taking derivative

w.r.t.  gives
dp dp
_ ' '

dp
_ / /
dp
/ /
—f = 2
p—f=@f+d) 2)
Using f = 1, g = p? the above simplifies to
dp
—1=2p— 2A
p P (24)

The singular solution is found by setting Z—x = 0 in (2) which results in p — f = 0 or
p—1=0. Hence p = 1. Substituting these values of p in (1) gives singular solution as

y=z+1 (3)

General solution is found when % # 0. Eq (2A) is a first order ode in p. Now we could
either solve ode (2) directly as it is for p(z), or do an inversion and solve for z(p). Since
(2) is separable as is, no need to do an inversion. Solving (2) for p gives

p = LambertW (cie2™') + 1

Substituting this in (1) gives the general solution

y(z) = z + (LambertW (c;e2 ™) + 1)2 4)
Note however that when ¢; = 0 then the general solution becomes y(z) = = + 1. Hence
(3) is a particular solution and not a singular solution. (4) is the only solution.
3.5.3.6 Example 6
(y')> =1 — 2 —y =0 is put in normal form (by replacing 3’ with p) which gives

y=—c+ (" -1) (1)
=zf+yg

Hence f = —1,g(p) = (p* —1). Since f(p) # p then this is d’Almbert ode. Taking

derivative w.r.t. x gives
dp dp
_ 1 OF 1 CF
p—-(f+wfdx)%-(gdx>

p=f+ (s +9) T

p—f=(af +9) L @

Using f = —1,g = (p? — 1) the above simplifies to

dp
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The singular solution is found by setting Z_Z = 0 which results in p = —1. Substituting

this in (1) gives singular solution as

y(z) = —= 3)

The general solution is found by finding p from (2A). No need here to do the inversion as
(2) is separable already. Solving (2) gives

p = — LambertW (—6_%_14_622) -1
= — LambertW (—cle_%_l) -1

Substituting the above in (1) gives the general solution

y(z) = -z + (p" - 1)
y(z) = —z + (— LambertW (—cie"2 1) — 1)2 -1 (4)

Note however that when ¢; = 0 then the general solution becomes y(z) = —x. Hence
(3) is a particular solution and not a singular solution. Solution (4) is therefore the only
solution.

3.5.3.7 Example 7

yy' — (y')* = z is put in normal form (by replacing 3’ with p) which gives

x + p?
y:
b

(1)

1
=—x+p
p

=zf+g

Hence f = %, g(p) = p. Taking derivative w.r.t. z gives

d d
= (r0er2) - (42)
dp

P=f+(93f'+g')%

p—f=(af +9) L

Using f = 11), g = p. Since f(p) # p then this is d’Almbert ode. the above simplifies to

1 x dp
== (5 +1) -

The singular solution is found by setting g—’; = 0 in (2) which results in @Q(p) = 0 or
p—1=0 or p=1. Substituting these values in (1) gives the solutions

yi(z)=z+1 (3)

The general solution is found by finding p from (2A). Since (2A) is not linear and not
separable in p, then inversion is needed. Writing (2) as

dr 1—1%
dp  p—
1 2
= :L'—p
L)
Hence
dx T p?
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This is now linear ODE in z(p). The solution is

L, PVe-)(O+pn(p+ VP -1) p
= 1
(1+p)(p—1) V(A +p)(p—1)
_ VP In(ptvpP=1) b (4)
-1 WE-1
Now we need to eliminate p from (1,4). From (1) since y = %w + p then solving for p gives
_y e
P1=5 + s VY 4z
y 1 ~
N
P2 979 Y Z

Substituting each p; in (4) gives the general solution (implicit) in y(z). First solution is

¢+ WF =) (1 + W= D) — 1l (g+g\/m+ ¢(g+g¢m)2_1>

Y
xr = 3 +c; 2
(5 +2vy> —4z) -1 (2+

And second solution is
(-3 =2) (4 - 3= -t (4= e [ B m) 1)
xr = 3 +c; 2
(5 —3v¥" —dz)" -1 (5 -

3.5.3.8 Example 8

y = z(y)> + (¢')? is put in normal form (by replacing 3’ with p) which gives

y=ap® +p° (1)
=zf+g

where f = p%, g = p?. Since f(p) # p then this is d’Almbert ode. Taking derivative and

simplifying gives
dp dp
_ ! g !

dp
_ / /
dp
J— — 4 ! —_
p—f=@=f+d)

Using values for f, g the above simplifies to
2 dp
p—p" = (2zp+2p) - (24)

The singular solution is found by setting % = 0 which results in p = 0 or p = 1.
Substituting these values in (1) gives the singular solutions

yi(z) =0 (3)
yo(z) =1+ 1 4)

The general solution is found by finding p from (2A). Since (2A) is not linear in p, then

inversion is needed. Writing (A2) as

pl—p) _dp
2p(z+1) dz
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Inverting gives

dz _ 2(z+1)
dp  (1-p)
dx 2 2

dp “(i-p) (1-p)

This is now linear z(p). The solution is

02
T = 5 — 1
(p—1)
Solving for p gives
02
p-17 "
02
2_
(p—1) S z+1
C
-1)==
) z+1
C
=14
P vz +1

Substituting the above in (1) gives the general solutions
y=(z+1)p’

Therefore

y(z) = (z+1) <1+\/%>2

o) =@+ 1) (1- \/%)

The solution y;(x) = 0 found earlier can not be obtained from the above general solution
hence it is singular solution. But y2(z) = z + 1 can be obtained from the general solution
when C' = 0. Hence there are only three solutions, they are

yi(z) =0
yg(x)=(w+1)<1+ f+1)2
wio) =+ 1) (1- \/%)

3.5.3.9 Example 9

y="2y + aiy, is put in normal form (by replacing y" with p) which gives

b _
y=-"p+_p (1)

Where f = 2,9 = gp_l. Since f(p) # p then this is d’Almbert ode. Taking derivative

w.r.t. T gives
dp dp
_ 1 S 1 CF
p= (f+xf dx) + (g dx)

d
p=f+(f +9)

d
p—f=(af +9)
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Using values for f, g the above simplifies to

p_P_ (E _ ép—2) dp (2A)

a a a dx

The singular solution is found by setting g—z = 0 which results in p = 0. Substituting this in

(1) does not generate any solutions due to division by zero. Hence no singular solution exist.

The general solution is found by finding p from (2A). Since (2A) is not linear in p, then
inversion is needed. Writing (2A) as

p(l—3) _dp

z _ b2
2—2p dx

Since this is nonlinear, then inversion is needed

dz 1 b1
dp “pla—1) ap?(1-1)

This is now linear ode in z(p). The solution is

b 1
-~ 4 (Ope 3

z 2a—1)p +C1p 3)
There are now two choices to take. The first is by solving for p from the above in terms
of z and then substituting the result in (1) to obtain explicit solution for y(z), and the
second choice is by solving for p algebraically from (1) and substituting the result in (3).
The second choice is easier in this case but gives an implicit solution. Solving for p from
(1) gives

_ay++a*y? —4xb

h or
» ay — v a?y? — 4xb
1 =
2x

Substituting each one of these solutions back in (3) gives two implicit solutions

b LC (ay + \/M) =
2.2 2 1
(2& _ 1) <a,y+\/aéxy —4zb> 2x

b (ay —Va?y? — 4xb) =
2z

xTr =

xr = 2 + C]_
(2@ _ 1) <ay— a,2y2—4zb>

2z

3.5.3.10 Example 10
y =y’ +az\/1+ (y)? is put in normal form (by replacing 3’ with p) which gives
y=x@+av1+ﬁ) (1)
—af

where f = p+ av/1+p%, g = 0. Since f(p) # p then this is d’Almbert ode. Taking
derivative and simplifying gives

= (f—i—xf’jp)
_ P
p—f=x dr
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Using values for f, g the above simplifies to

/T4 = _w \dp
av1+p x(l—i—m) Iz (2A)

The singular solution is found by setting % = 0 which results in —a+/1 4+ p? = 0. This
gives no real solution for p. Hence no singular solution exists.

The general solution is when g—g # 0 in (2A). Since (2A) is nonlinear, inversion is needed.

—av/1+p?  dp
2ap %

1
T+ 5T T2
1_2
dw_x<1+§ 1?1)2)

dp —ay/1+ p?

1 2a
dz_1+§\/ﬁ
T —ay1+p? P
dx_\/1+p2+%2ap

x —a(l1+p?)

dp

de ( 1 P ) i
r av1+p2 (14 p?) P
Integrating gives

1 1
Inz(p) = ~3 In (p*+1) — . arcsinh (p)

Therefore
—e~ % (arcsinh(p))

VEEl ®)
There are now two choices to take. The first is by solving for p from the above in terms
of z and substituting the result in (1) to obtain explicit solution for y(z), and the second
choice is by solving for p algebraically from (1) and substituting the result in (3). The
second choice is easier in this case but gives an implicit solution. Solving for p from (1)
gives

r=:C

lay+v-a’r? + 22 +yfa—y

="z a?—1
1—ay++V—-a2x2+ 22 +y2a—vy
p2 = — 3
z a*—1

Substituting each one of these solutions back in (3) gives two implicit solutions

1 . 1 ay+\/—a2m2+m2+y2a—y
—= | arcsinh| —= 5
a x a4—1

—e
r =C
_layty/mai ey g
T a2—1
1 . 1 —ay+y/ —a2z24+z24y2a—y
e—; (a,rcsmh (z 27
r=C

\/ (2 —aywma-y)? 1

T a2-1
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3.5.3.11 Example 11

y=z+ )" (1 - gy’)

2
=m+p2(1—§p>

Where f =1, g = p? (1 — %p) Since f(p) # p then this is d’Almbert ode. Taking derivative

w.r.t. T gives
dp dp
_ ' '

dp
_ !/ /
dp
I —_— 4 ! [
p—f=@f+9g)
Using values for f, g the above simplifies to

d
p—1=(2p—2p? ﬁ (2A)

The singular solution is when g—g = 0 which results in p = 1. Substituting this in (1) gives

e -3

=z+ =
N 3
The general solution is when j—z # 0. Then (2A) is now separable. Solving for p gives
p=—va—z
p=va—z

Substituting each one of the above solutions of p in (1) gives

2
y1=17+ (p2 - §p3)

+((va= - 3 (-va=a))

Il
8

And

Therefore the solutions are
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3.5.3.12 Example 12

W) ="y —1)
In(y)? = (4z — 2y) +In (¢ — 1)
4z — 2y =In (y')2 —In(y — 1)
)"

4x—2y=lny,_1
2y=4x —1In y(/yl_)Ql
y=2x—%ln (y(ly'_)21>
=2x—%ln (pp—21)
=zf+g

Where f = 2,g = —3In (;%21)' Since f(p) # p then this is d’Almbert ode. Taking

derivative w.r.t. x gives
dp dp
_ A4 A 4

p=f+@f+q) P

dx
p—f=(@f+q) P

dz
Using values for f, g the above simplifies to
_( 2—p \dp
p-2= (2102 - 2p) dz (24)

The singular solution is when % = 0 which gives p = 2. From (1) this gives
1
Yy =2z — 3 In4

The general solution is when j—z # 0. Then (2) becomes

dp 2p° —2p
£ _(p_9) £
il ) ( 51
=2p(1-p)
is now separable. Solving for p gives
B 1
P Tt ce

Substituting the above solutions of p in (1) gives

1, (ga=)”

1+ce—2=

1 —et®
— 9% —~"In(——
v 2n(c(c+e2w)>
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3.5.3.13 Example 13

_zy + )’ - )
y+1
zp + zp” — p?

p+1
2

=1zp— 1
Py 0

=zf+g

Where f =pand g = — p%. Since f(p) = p then this is Clairaut ode. Taking derivative

of the above w.r.t. x gives

p= %(xp +9(p))

dp
= ! I—
p=p+(e+d @)
dp
J— / _
The general solution is given by
dp
i
dx
p=a

Substituting this in (1) gives the general solution

a

01+1

Yy=xC —

The term (z + ¢'(p)) = 0 is used to find singular solutions.

, d1
$+g(p)=$+%5
1
= r— —
p2

Hence x — ]% =0orp= :l:\/ii. Substituting these back in (1) gives

1
Yxr) =xp+ —
1(z) »

1
=2z ©
pe)=—o\/> ~ vz
= -2V @

Eq. (2) is the general solution and (3,4) are the singular solutions.

3.5.3.14 Example 14

z(y) +(z—y)y +1-y=0
2(y)’ +zy —yy +1-y=0
y(—y' —1) +z@) +2y +1=0
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Solving for y

—z(y)’ —ay — 1
—y —1

_ —xp? —ap—1

= T

_zpP4ap+1

- p+1

:x(p2+p)+ 1
p+1 1+p

1
—a:p-i-m
=zf+g (1)

Since f(p) = p then this is Clairaut ode. Taking derivative of

y:

Where f =pand g = 1~
the above w.r.t. z gives

-HU

p= %(wp +9(p))

dp
p=p+(z+gP)
10y 9P
0=(z+g() 4
The general solution is given by
dp
i 0
p=a

Substituting this in (1) gives the general solution

y261x+01+1

The term (z + ¢'(p)) = 0 is used to find singular solutions. But

x+g’(p)=x+i(L>

dp\1+p
_ 1
(p+1)°
Hence
1 —_—
(p+1)
(p+1)°-1=0
(p+1)*=—
+1== L
p - \/E
1
-+ 1
p=%_1
Substituting these values into (1) gives
L1
=z
(1 D1 1+,
( 1 1) N 1
=Tl — — e
T I
Nz 1+ ( L 1)
x
=——z++x
f
_z
\/_ o4

:2\/5—1' (5)
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And substituting p, into (1) gives

=T —|—
n P1 1+ p,

——;§—x—V5
_ w—m—\/E
=-2/z—z (6)

There are 3 solutions given in (4,5,6). One is general and two are singular.

3.5.3.15 Example 15

zyy = y° + /42 + 32

Solving for y gives
y=RootOf (_2* —4+ (p* —1)_2*—2 2°p)z
y=zf+g

Where f = RootOf (_2* — 4+ (p? —1)_22—2_23p) and g = 0. Since f(p) # p then this
is d’Almbert ode. Taking derivative of the above w.r.t. x gives

(reor2)+(62)

d
p=f+af
dx

dp

— — /_

p—f==z I

Using values for f the above simplifies to

p—RootOf (_24 —4+ (p2 — 1) 22— 2_z3p) = (xdip RootOf (_z4 —4+ (p2 — 1) - 2_z3p)) Z—Z

(24)
The singular solution is found by setting 2 = 0 which results in p = RootOf (_z* — 4+ (p* — 1) _2% —2_2%,
Substituting this in (1) does not generate any real solutions (only 2 complex ones) hence
will not be used.

The general solution is found by finding p from (2A). Since (2A) is not linear in p, then
inversion is needed. Writing (2A) as

dr __aof
dp p—f
1 f
—dr = ——d
x p—fp

Due to complexity of result, one now needs to obtain explicit result for RootOf which
makes the computation very complicated. So this is not practical to solve by hand. Will
stop here. It is much easier to solve this ode as a homogeneous ode instead which gives

the solution as , ;
V4
e O
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3.5.3.16 Example 16
In(cosy’) + ¢ tany' =y

Solving for y gives

y =In (cosp) + ptanp (1)
y=zxf+g
=g (1A)

Where f =0 and g(p) = In (cosp) + ptanp. Important note: This ode has f = 0 which is
strictly speaking is not of the form y = zf(p) + g(p). But Maple says this is dAlembert.
This is why it is included. I should make special case dAlmbert classification to handle
this special case.

Taking derivative of (1A) w.r.t. z gives

_dgdp
P= dp dz
p= <_smp + tanp + p(1 +tan2p)) dp

cosp dx
d;

p= (—tanp+ tanp+ p(1 + tan’p)) ﬁ

_ 2, 4P
p—p(l-i-tan p) o

_ 2, 4P
1= (1+ tan’p) - (3.1)

The singular solution is found by setting j—ﬁ = 0 which does not result in solution.

The general solution is found by finding p from (2). Since (2) is not linear in p, then
inversion is needed. Writing (1) as

d_a:
dp
dz = (1+ tan’p) dp

=1+tan’p

Integrating gives

r=tanp+c

p = arctan (z — c)
Substituting the above in (1) gives the solution

y =In(cosp) + ptanp
= In (cos (arctan (z — ¢))) + (arctan (z — c)) tan (arctan (z — ¢))

= In (cos (arctan (z — ¢))) + (x — ¢) arctan (x — ¢)

This ode also have solution y = 0.

3.5.3.17 Example 17
2(y)’ — 2uy’ + 42 =0

Solving for y gives
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where f = ip + 2%, g = 0. Since f(p) # p then this is d’Almbert ode. Taking derivative

and simplifying gives
d;
p= (f + zf’—p)
dz

dp
J— —_ ,_
p—f==x iz

Using values for f, g the above simplifies to

1,1 1 2\ dp
—_———p—-—2—=z| = — — —_—
p=oP D 2 p?)dx

2

1 1 2\ dp
R CR) -

The singular solution is found by setting Z—Z = 0 which results in %p — % =0or %pz —-2=0

or p?> = 4 or p = 2. Hence y = +2x are the singular solutions.

The general solution is when 2 # 0 in (2A). Since (2A) is nonlinear, inversion is needed.
General solution can be shown to be

v=-3(-%-1)a ®)

Will now show a more general method to find singular solution that works for any first
order ode. This requires finding the general solution above first. Let the general solution
be

The ode is
F(z,y,y4') =0
=a(y)" -2y + 4z
First we find the p-discriminant curve. This is found by eliminating 4’ from

F=0
oF _
oy

z(y)* —2yy' +42 =0
2y — 2y =10

Second equation gives y' = £. Substituting into first equation gives z (%)2 — 2y(y) +4x =0

x

or 1—2 — 2% +4x = 0 or y = +2z. These are the candidate singular solutions
Ys = 22

Next, we verify these satisfy the ode itself. We see both do. Next we have to check that
for an arbitrary point x, the following two equations are satisfied
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Where y,(x) is the general solution obtained above in (3). Starting with y, = 2z the above
two equations now become

Or
2
E —|— 201 = 2$0
201
% _,
(4]

Second equation gives c; = %. Using this in first equation gives

2
Lo 2(—):2
2% + 2 Zo

To+ Xg = 2()’)0

2%0 = 2170

Which shows it is satisfied. Hence this shows that y; = 2x is indeed a singular solution.
Now we have to do the same for second y, = —2x. Hence the steps of this method are the
following

1. Find y; using p-discriminant method by eliminating 3’ from F' = 0 and 3—5, =0.
2. Verify that each y, found satisfies the ode.
3. Find general solution to the ode y,(z).

4. Verify that the two equations y4(xo) = ys(70) and y, (o) = y,(x0) are satisfied at
an arbitrary point zo. If so, then y; is singular solution. (envelope of the family of
curves of the general solution).

3.5.3.18 Example 18

z—yy =a(y)’

Solving for y gives

—yp = —x + ap”
X
—y=-——+ap
p
i
y=_—ap (1)

y=xf(p) +9(p)
Where f = %, g = —ap. Since f(p) # p then this is d’Almbert ode. Taking derivative and

simplifying gives

p= 1 (@f(p) +9(0)
P

= 1)+ 2/ () L 4 g () P

But f(p) = %,, f'(p) = ;—zl,g’(p) = —a and the above becomes
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The singular solution is found by setting 3£ 9 — () which results in p = +1. Hence ¢/ = +1
or y = £z but these do not satisfy the ode hence no singular solutions exist.

The general solution is when j—z # 0 in (2). This gives the ode

dp _ P—,l,

dr —Z% a
p—p°
ap? + x

But this is non-linear. Hence inversion is needed. This becomes

dz _ —x(p) — ap®

dp pP—p

Which is now linear in z(p). The solution is

—pa\/ (p—1) p—l—l)ln(p-i-\/p — )+ pcy

-1 @+1) VP —1yp+1
From (1) y = ¢ — ap, hence
1-— \/4a:c+y2
p1:§
B 1y+\/4ax+y
g = —
2 a

Plugging p; into (3) gives one solution and Plugging ps into (3) gives the second solution.

3.5.3.19 Example 19
y=zf(p)+9(p)

This problem is meant to show what to do when we are unable to solve explicitly for z(p)
when doing inversion. Taking derivative the above becomes

p= 2 (@f(r) +9(r)
= 1)+ 27/ 0) L +9/(p) L

p— ) = (= () + 9 ) j—f;
dgp _ p—fp)
&~ @ @)+ @)

Inversion is needed. Hence gives

dz(p) _ (z(p) f'(p) +9'(p))
dp p—f(p)

This is now linear in z.

i'(0)
Integrating factor is yu = e/ 7% Hence the above becomes

dp + c1p (1)
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Now we solve for p from y = z f(p)+g(p) and plug-in the result into the above. To show how
this work, lets apply the earlier problem to the above which was to solve = — yy’ = a(y')*.
From that problem we found that

1 y+\/4ax+y2
p1=§
Dy = 1y+\/4a:c+y
g = —
2 a

And we had f = %, g = —ap. Using these value we now find

Hence

\/pi—/\/i adp—i—q%
a\/F/

_M@F( F+ln(p+F)) +a

=a—$ln<p+\/ﬁ>+cl

VD? —1
_pr
VA1

Substituting each one of the above value for p in (2) gives the two solutions. For example,

1 —y++4azt+y? 4aa:-|—y

using p; = gives

a%(

e g In 1—y++4az +y* n 1—y++4az +y* 2_1 te 5
- 1 —y+/daz+y? 2 a 2 a !
2 a

N =

a

—y+v/4daz+y? ) 2 -1

And same for the other ps.

In the above example it was possible to evaluate the integrals in p, then replace p by its
solution from the original ode. What if this was not possible? Let say we have integral

/ ap2 dp

And for some reason we are not able to the integration. In this case we first replace the

D
/ at’dr

And only now replace p with its solution as the upper limit.

above with

3.5.3.20 Example 20

1
y'=—§—1+§\/x2+4x+4y

Solving for y gives

y=zp+ (1+2p+p° (1)
y=xf+g
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Hence f = p,g = (1 + 2p + p?). Since f = p then this is Clairaut. Taking derivative of
the above w.r.t. z gives

Yy =f+ z%% + g—ij—i
But % =1, Z—z = 2+ 2p. The above becomes
p—f=Pat21)
But f = p. The above simplifies to
0=z 124 3) @)

The general solution is when 3—5 = 0. Hence p = ¢;. Substituting this into (1) gives

y=zc+ (1+2c +)
The singular solution is when 2 # 0 in (2) which gives

x+2+2p=0
—z—2
2

p:

Substituting this in (1) gives

() () (7))

1

= —Zx(m +4)
1

= —sz -z

Checking this solution against the ode shows it is verifies the ode. Hence there are two
solutions, one general and one singular

{ ey +1+2¢ +c
y:

1.2
A

3.5.3.21 Example 21

vy
=—z
1+ 1/1+ (y)?
Let ' = p and rearranging gives
1
pyz—x(1+§ 1+p2)
1 1
yz—x(——l-— 1+p2>
p 2p
2 + ! V14 p?
= —X| — _—
2p  2p P
(2+ 1+p2>
=—z
2p
=zf+g (1)



CHAPTER 3. FIRST ORDER ODE F(z,y,y') =0 223

Hence

2+1+p?

f=-

g=>0

Since f(p) # p then this is d’Almbert ode. Taking derivative of (1) w.r.t. x gives

p = (af(p) +9(r)

d d
=) +ef0) 5 +9w) 5

But f(p) = —#,f'(p) = 27,9 =0,¢' = 0 and the above becomes

24VIFP | (- 2 VTP dp
2p 2¢/1+ p? 2p? dz
+2—|—\/1—|—p2 ( 1 —2—\/1+p2) dp @)
—_— = — — —_—
2p 24/1 + p? 2p? dz
The singular solution is found by setting 2° 4 — () which results in p 4+ 2 =5 1+p = (. Hence

p=Zdiory =+i ory= tix. But these do not satisfy the ode, hence no singular
solutions exist.

The general solution is when g—z # 0 in (2). This gives the ode
<p 4 2+\/ﬁ )

ap _ 1
dr (_ 1 —2—\/1+p2>
2/14p2 2p?
_ 1.3
= —(p"+p)

But this is non-linear in p. Hence inversion is needed. This becomes

(ot~ 27)

dz 2/1+p? 2p?

— =2
dp (p+ 2+_¢211)+p>

dr =z
dp  pPP+p
dx 1 _
dp  p+p*

Which is now linear in z(p). The solution is

=2 ¢ (3)
VTP

We now need to eliminate p. We have two equations to do that, (1) and (3). Here they
are side by side

r=—L ¢ (3)
VitP

We can either solve for p from (1) and plugin in the value found into (3). Or we can solve
for p from (3) and plugin the value found in (1). Using CAS we can just use the solve

command. For an example, using Maple it gives

\eq1:=y=-x*( (2+sqrt (1+p~2) )/ (2*p)) ; ‘
‘ eq2:=x=p/sqrt (1+p~2)*_C1 ‘
‘ sol:=solve([eql,eq2], [p,y],'allsolutions'); ‘
\ [[p = x*¥Root0f((c__172 - x"2)* 272 - 1), y = —-(Root0f((c__1"2 - x72)*_Z"2 f DD*c__ 1 +
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Now we can use allvalues

~N

-(sqrt(1/(c__172 - x72))*c__1 + 2)/(2*$qrt(1/(c__1"2
(-sqrt(1/(c__172 - x72))*c__1 + 2)/(2*#qrt(1/(c__1"2

‘ map (X->allvalues(X),sol)
‘ [[p = X*sqrt(l/(c__1A2 - XAZ)), y
‘ [p = —x*sqrt(1/(c__172 - x72)), y

Hence the solutions are

\ #mc1 + 2

1= —
Y 9 /1
c?—x2

—/=tsc + 2

-2 1

2 = —
Y 92 /1
c?—x2

These are verified valid solutions to the ode (had to use assuming positive)

3.5.3.22 Example 22
oY)’ =yy' +1
Let ' = p and rearranging gives

zp® = yp+ 1
_axp’ -1

=zf+g (1)

Hence

Since f(p) # p then this is d’Almbert ode. Taking derivative of (1) w.r.t. z gives

p= 1 (f(p) +9(r)

d d
= [0) +ef'0) 5. +9w) 5

= )+ (af +9) P

But f(p) = P’ f'(p) =2p,g= —%, g = z% and the above becomes

1\ dp
J— 2 f—d JE— _—
p—p <2wp + pz) T (2)

The singular solution is found by setting Z—Z = 0 which results in p — p?> = 0. Hence
p =0 or p = 1. Substituting p = 0 in (1) gives 1/0 error. Hence this is not valid solution.
Substituting p = 1 in (1) gives y = x — 1 which verifies the ode. Hence this is valid singular

solution.

The general solution is when g—i # 0 in (2). This gives the ode

dp _p*(1-p)

der 2zp3+1
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But this is non-linear in p. Hence inversion is needed. This becomes

dez  2xp®+1
dp  p*(1-p)

Which is now linear in z(p). The solution is

_ 2ep*+2p-1
2p* (p— 1)°

We now need to eliminate p. We have two equations to do that, (1) and (3). Here they
are side by side

3)

1
2
y=2xp” — - 1
» 1)
2c1p% +2p — 1
T = 5 2 (3)
2p? (p—1)
We can either solve for p from (1) and plugin in the value found into (3). Or we can solve

for p from (3) and plugin the value found in (1). Using CAS we can just use the solve
command. For an example, using Maple it gives

eql:=y=x*p~2-1/p;
\ eq2:=x= (2x_Cl*p~2+2xp-1)/(2%p~2*(p-1)~2);
Lsolve ({eql,eq2},{y,p})

~

Whch gives

e B

{p = RootOf (1 + 2%x*_Z"4 - 4xxx_Z"3 + (-2%c__1 + 2xx)* 772 - 2x_Z),
Ly = (x*RootOf (1 + 2%xx Z~4 - 4*xx Z°3 + (-2%c_ 1 + 2%x)* _Z°2 - 2% Z)"3 - 1})/Root0f(1 +

Hence the general solution is

_ zRootOf (1 + 222* — 4373 + (—2¢, + 2z) 2% — 2Z)° — 1
"~ RootOf (14 2x7* — 4273 + (—2c, + 22) Z2 — 22)

And the singular solution is

y=z—1

3.5.3.23 Example 23

(¥)" —2yy =22

Let 3’ = p and rearranging gives

P’ —2yp =2z
_ p? — 22
1 4 1
= —T— —_
2p
=zf+g (1)
Hence
1
f=—
b
1
g=35b
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Since f(p) # p then this is d’Almbert ode. Taking derivative of (1) w.r.t. = gives

p= 1 (af(e) +9(r)
= 1)+ 27 0) L+ o) L
= o)+ (&f +9) P

But f(p) = —,, f'(p) = 5,9 = 30, ¢’ = 5 and the above becomes

__ L (= 1\dp
b= D p?2 2) dx

1 x 1\ dp
phy=(5ta) @

The singular solution is found by setting Z—Z = 0 which results in p?> + 1 = 0. Hence p = +i
But these do not verify the ode. Hence no singular solutions exist.

The general solution is when 2 # 0 in (2). This gives the ode

dp (P +1)2p
dx 2z + p?

But this is non-linear in p. Hence inversion is needed. This becomes

dx 2z + p?

dp  (P®+1)2p
Which is now linear in z(p). The solution is

1 arcsinh (p) + ¢
-1
We now need to eliminate p. We have two equations to do that, (1) and (3). Here they
are side by side

1 1
y= _xZ; TP (1)
e (% arcsinh (p) + cl) P 3)

V-1

We can either solve for p from (1) and plugin in the value found into (3). Or we can solve
for p from (3) and plugin the value found in (1). In this case it is easier to solve for p from
(1) which gives

pL=y+ V2 +y

P2 =y — \/2r + y?

Substituting each of these into (3) gives these two general solutions

(% arcsinh (y +V2x + yQ) + cl) (y + 2z + y2)

) Jo+vETe) -1
- (3 arcsinh (y — v2z +42) + 1) (y — V22 +3?)

\/(y— \/2x+y2)2 -1
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3.5.3.24 Example 24

zy —y =22 — ¢
Let ¢y = p and rearranging gives
p—y = -y

Solving for y gives two solutions
p 1
=z L+ =2 — p2 1
y x(2 +3 p ) (1)

1
a3 1)
We will here solve the first one above. The second one will have similar solution. Comparing

the above to y = zf(p) + g(p) shows that
_r. 1 o0
f=5+5V2-p (2)
g=0
Since f(p) # p then this is d’Almbert ode. Taking derivative of (2) w.r.t. z gives
d
p= %(Mc ()
dp

= flp) +af'(p) 7
(b)) &
(1) el stp) £
Singular solution is when g—z = 0 which results in
p— (g-i-% 2—p2> =0

p_l o
222 =0

Hence p = 1. Substituting this in (2) gives singular solution
1 1
y=z| -+=-v2-1
2 2
=2z

To find general solution, we need to solve (3) for p. EQ (3) becomes

dp 1-II-F
—=2 2"
dz 2 T
1
= —— 2 —_ p2
x
This is separable ode.
—d
P _ —dz
2—p?

Substituting this into (1) gives
p 1
(P a2
Y x(2 + 5 D )

—Zsin(lnz+e¢) 1 9 2
— | 2 5 +3 2—(—Esin(lnx+c1)>

—sin(lnz+¢) 1 _2
- 21 /2 — 2sin? (1
“( Jp o+ g\/2 - 2sit (et e
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3.5.3.25 Extra example

This ode is an example where y does not appear explicitly in the ode so not possible to
directly solve for y. It is given here to show possible problems with this method.

y=V1lt+z+y (1A)
This ode is squared to first solve for y which gives
W)Y =1+z+y (2A)

However, here care is needed. To get back to original ode (1A) then (2A) means two

possible equations
Yy =x1+z+y

Hence the solutions obtained using (2A) can be the solution to one of these

v =+/1+z+y (B1)
y=—1+z+y (B2)

Therefore the solution obtained by squaring both sides of (1A), which is done in order to
solve for y, must be checked to see if it satisfies the original ode, else it will be extraneous
solution resulting from squaring both sides of the ode.

Starting from (2A), in normal form (by replacing 3’ with p) it becomes

y=-z—1+p’ (1)
=zf+yg

Where f = —1,g9 = —1 + p?. Taking derivative w.r.t.  gives

p=f+ s +e) L

dp
1=2p— 2
pt+1=2p_ (2)
Since % = —1 # p then this is d’Alembert ode. The singular solution is found by setting
% = 0 which results in p = —1. Substituting this in (1) gives the singular solution
y(z) = -z (3)

But this solution does not satisfy the ode, hence it is extraneous. The general solution is
found by finding p from (2). Since (2) is nonlinear, then it is inverted which gives

ptl_dp
2p  dz
do _ 2
dp p+1
Which is linear in z. Solving gives
z=2p—2ln(p+1)+¢ 4)

Instead of inverting this to find p in terms of z, p is found from (1) which gives

y+z+1=p’
p=xyy+z+1

Substituting these solutions in (4) gives implicit solutions as

T=2\/y+z+ —2ln<1+\/y+x+1)+cl
T=-2\/y+z+ —21n<1—\/y+x+1>—|—01
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But only the first one above satisfies the ode. The second is extraneous. Therefore the

r=2\/y+z+ —2ln<1+\/y+x+1)+cl

And no singular solutions exist. If instead of doing the above, p was found from (4) using

final solution is

inversion, then it will be
p = — LambertW (—cle_Tz_1> -1
Substituting this in (1) gives
—z 2
y=—-x—1+ (— LambertW (—cleT_1> — 1>

But this general solution does not satisfy the original ode. In general, it is best to avoid
squaring both side of the ode in order to solve for y as this can generate extraneous
solutions. Only use this method if the original ode is already given in the form where y
shows explicitly.

3.5.4 references
1. An elementary treatise on differential equations. By Abraham Cohen. 1906.
2. Applied differential equations, N Curle. 1972
3. Ordinary differential equations, LB Jones. 1976.

4. Elementary differential equations, William Martin, Eric Reissner. second edition.
1961.

5. Differentialgleichungen, by E. Kamke, page 30.

6. Differential and integral calculus by N. Piskunov, Vol II
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3.5.5 Special case. (y)" = f(z) g(y)

ode internal name "first_ order_nonlinear_p_ but_ separable"

For the special case of (y )% = F(z,y) where RHS is separable, i.e. F(z,y) = f(z) g(y)
then short cut method is described below. This only works if F'(z,y) is separable and if
there is only one 3/’ in the equation. For example, it will not work on (y’ )% +1 = yzx and will
not work on (y’ )% — y+x (see second special case below for the form (y')™ = az + by + c)

If the form is (y')™ = f(x) g(y) then we first write it as ()" = (f(z) g(y))™ assuming
f(z) g(y) > 0. Then find roots on unity for n. For example of n = 2 this gives

y— 1 F@ew)*
—(f(z) 9(w))*

And if n = 3 then

And if n = 4 then
(f(z) 9(v))

, —i(f(z) 9(y))
i(f(z) 9(v))
~(f(z)g(y)*

And so on. For works for positive or negative n, m integers. Now the ode are solved each

as as separable. Examples given below.

3.5.5.1 Example 1
W)+ @) y—a)’ -0’y —c)’=0
W) =—f() (y—a)® (y - b)’ (y — ¢

W) - —f(@)

(y—a)’(y—b)°(y o)

( 3 ! 3 2 ) =—f=)
(y—a)’ (y—0b)°(y—c))

/

N

T = (/@)
(y—a)’(y=0)°(y—o))*
’ = (—f@)
(CEDIEDICENE
dy

= (—f(@)i da
(-aw-vE-9?)

y(x) 1 T 1
sdz= [ (=f(7))"dT+c
/ (-a)(z-b)(z-0)})" /

Wl
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3.5.5.2 Example 2

Hence we have 3 solutions

()’ = ysinz
N3
(y ) =sinz
Yy
ENE:
(%) =sinz
y§
sin3

—(—1)% sins z
(—1)§ sins &

sins zdz
—(—1)% sins zdz
(—1)% sins zdz

[ sins zdzx
—(—1)% [ sin3 zda
(—1)% [ sins zdz

Ik sin3 zdz + ¢;
—(—1)% [ sinz zdz + ¢;
(—1)% [ sinz zdz + ¢;

N\ 7

2 [sins adz + ¢
—%(—1)% [ sinz zdz + ¢;
%(—1)§ [ sinz zdz + ¢;

! 3
(% [ sin3 zdz + cl>

(—%(—1)% [ sinz zdz + cl>

N

3.5.5.3 Example 3

2
3

(—1)% [ sinz zdz + cl>

)’ =yz

W) _

/y 3
() =

w

2
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Hence we have 3 solutions

~

W=

N |c@
[l
|
i
—
Wy —
[
8
W=

S &

N W
<
wiN
|
I
T
—
ol
RS
NN
8
@l
N———
+
o
R

<
win
Il
[
T
—_
ol
N[ =
&
Wik
N———
_I_
o
"

3.5.5.4 Example 4
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For this form, we write ¢/ = (yz)® but this is always with the assumption that yz > 0.

y' = (yz)*
y/ — y3x3
d
—g = 23dzx
Y
1 1,
—2—y2 = le + C1
-1
2y% =
y It t o
1
¥ =1
—5T* + Co
(
1
_ —1zttcy
y= . 1
—szt+tco
\
2
_I4+03
N 2
—zt+c3
\
( __ 2
. —z+c3
I
L —z+c3
3.5.5.5 Example 5
1— 2
7\ 2 Yy
W) =10
(¥)" 1

N\ 7

Ve

—1l<z<l1

1<zl

arcsin (y)

{ arcsin (z) + ¢

—arcsin (z) + ¢

—-1<z<l1

Y — sin (arcsin (z) + ¢)

{ sin (arcsin (z) + c¢)
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3.5.5.6 Algorithm description to obtain the above solutions

Starting with

33

(W)™ = f(z) 9(y)

Find the solution z of equation
zm = fg

This will obtain number of solutions. For example for n =3,m =1

z = (fg)%
2= —5(f0)} + 3iVA(fg)’
5= —2 (f0)} — Siv(fo)}

Now if we assume that f > 0,9 > 0 then we can separate the f, g giving

1,11 1, 11
z2_—§f393+§1,\/§f393
1 1
z3:——f%g%——z\/§f%g%
2 2
or
z]_:f%g%
1 1. 1. 1
29 = g3 ——f3-|-—7,\/§f3
2 2
1 1
z3:g% __f%__iﬁf%
2 2
This means
11
y = f3g3
, 1 1., 1. 1
Yy = g3 ——f3+—2\/§f3
2 2
y = gb (_%f; - %Z-\/gf;)

Which gives

/gfj)é :/f(gg)édg”c1
/ dy1 :/(_%fé_i_%m/gfé) dxr + ¢

9(y)?

/ dy :/(_%fg_%i\/gfé)dw+01

9(y)

W=

There is no need to evaluate the integrals unless needed. Without the assumption f,g > 0
we could not separate them. Since (f g)% = fmgm is true under this condition when s
rational number. If > is an integer, then this condition is not needed and we can always
factor out f, g and separate them.

The assumption f,g > 0 might be too strict to use but without this assumption this
method can not be used.
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3.5.6 Special case. ()" =az + by +c

ode internal name "first_ order_ nonlinear p_but_ linear in_x_y'

For the special case of (y’ )% = F(z,y) where RHS is linear in both z and y, i.e. F(z,y) =
az+by+c then a short cut method is described below using transformation v = ax+by—+c.
This makes it separable in w. This will not work if there is nonlinear x term, such as
(v )% = by + x? or nonlinear term in y such as (v’ )% =9y’ + .

u' —a

Taking derivatives gives u' = a + by’ or ¢ = “* and the ode becomes

u —a %_
2 =u

And forn=3

And so on. From now on, this is solved as separable. For negative integer values n, we just
replaced n by —n in the above. For example, for n = 3

(u) s
=~ @
(1) ()

For symbolic values of n we can just leave the integral as is. For example for (/)" = az+by

we obtain

3.5.6.1 Example 1

()’ =2y +32+9
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Let u =2y + 3x + 9 then v’ = 2y’ + 3 then ¢y = # and the ode becomes

(u’—3>3_u
5 -

;

, (u)}
u —3 . 1 1
=1~ @)
| (1) (uv)®
2(u)’*
W —3=1q —2(=1)3 (u)?
| 2(-1)F ()
2(u)% +3
W= =2(-1)° () +3
| 2(-1)F () +3
Each is now solved as separable.
u = 2(u)% +3
d? =dzr
2(u)®+3
[ [
2(u)3 +3
/ du
T =x+cC
2(u)3 +3
Hence
2y(z)+3z+9 dz
/ 1 =T+
223 +3

Wl

For the second one v’ = —2(—1)% (u)3 + 3 results in

du
~2(~1)7 (u)? +

/_2(1 w)s + /dm

2y(x)+3z+9 dZ
/ T I =T+
—2(-1)3 (2)3

And for the third ode v’ = 2(—1)

win

(u)3 +3

/2(—1)§d?u)5+3:/dx

2y(x)+3z+9 dz
/ 2 1 =r+a
2(-1)3 (2)3 +3

Hence the three solutions are

]

(

2y(z)+3z+9 ¢
J@ =40
22343
2y(x)+3z+9
J@ —& —=z+q
—-2(-1)3(2)3+3
2y(x)+3x+9
@ —FE—=r+c
\ 2(-1)3(2)3+3
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3.5.6.2 Example 2

(y')% =2y+3z+9
Let u =2y + 3x + 9 then v’ = 2y’ + 3 then ¢y = % and the ode becomes

(*

3
_3 2
2 ) -
1\ 3
uw—3)\2
L1
Let (“52)? =Y then
Y3=u
( 1
us3
1
y = ui(-3+5)
1
1 i 3
L (-5-%)
Hence

N
Q\
N |
w0
N———
N
I
IS
Q=
|
N[
_+_
o
N——
W=

.
&
N—
W=

N
Q\
N |
w
N——

I
IS

wln

|
N[
_+_
o
N——
w(n

2
2 1 iv/3)\3
\us_i_GJ
( 2u§—l—3
2
2
\ 2u3 —%—%5)3-}—3

Each is solved as separable.

(ot = fde

Hence the three solutions are

(

2y(z)+3z+9 ¢
JR@HSRI_ds gy
22343
2y(x)+3z+9 d
i g =Z+a

2y(z)+3z+9
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3.5.6.3 Algorithm description to obtain the above solutions

Starting with
(y)™ =ax+ by +c

Find the solution z of equation

33

zZm =1U

Where u now is a symbol. Lets say we found s1, S, - - - solutions (depending on what n,m
are). Then for each solution s; change it to be

s; =bs; +a

Then write
du
— =+
S;
Then replace each with letter u in each s; by new letter say z (the integration variable).

Now the solution becomes
az+by+c dz
/ — =+

S;
This is basically what was done in the above examples. There is no need to find an explicit
solution for the integral. But this can be done if needed afterwords.

3.6 System of first order ode’s

3.6.1 Linear system of first orderode’s . . . . .. . ... .. oL 238]
3.6.2 nonlinear system of first orderode’s . . . . ... ... oL 243]

3.6.1 Linear system of first order ode’s

Currently the solver only supports first order system of odes, that are linear and not time
varying.

ode internal name "system of linear ODESs"

System of linear first order ode’s.
*' = Az + F(x)

Solved using both eigenvalues and eigenvectors method and also the matrix exponential
method. Only linear ode’s are supported. The following flow chart show the algorithm for
two system of ode’s.



CHAPTER 3. FIRST ORDER ODE F(z,y,y') =0 239

Figure 3.15: Flow chart for system of ode solver

These diagrams show the handling of repeated eigenvalues when a defective system is
encountered.

The two possible cases for repeated eigenvalue of multiplicity 2

case 1 normal normal
eigenvector eigenvector
. At
elgenvectors T =¢e v
AN————» |/ v | complete eigenvalue. A
Multiplicity 2 defect is zero — Ty = €7 V2
The solution is
U1 V2
T =121 + C222
case 2 normal generalized W
eigenvector eigenvector Tr1 = e v
. Y
eigenvectors xo = e (v1t + v2)
D — ) IV ? | defective eigenvalue.
Multiplicity 2 defect is 1. Solve for the generalized eigenvector v
from
U1 V2

(A*)\I)’UQ =1

m /\ Then the solution is
L

é
V2 v1 zero vector T =c1x1 + caxs

rank 2 rank 1

vector vector

Figure 3.16: repeated eigenvalue of order 2
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The three possible cases for repeated eigenvalue of multiplicity 3
case 1 normal normal normal
eigenvector eigenvector eigenvector T = 8)\t’01
eigenvectors @2 = Mo
A v v v complete eigenvalue. > At
Multiplicity 3 P . & I3 =¢€ U3
defect is zero
The solution is
U1 V2 V3
T =11 + 22 + C3%3
case 2 normal normal generalized
eigenvector eigenvector eigenvector
eigenvectors At
v v 2 | Incomplete eigenvalue. T =e v
Multiplicity 3 “ | defect is 1 T = Moo
At
T2 =€ (ut + vs
U1 Vg v3 ( )
Where u = awv; + fv2 for nonzero «, 8 and
A— NI
Solve for vz from
u = awvi + foz m zero vector (A — )\I) vz =U
. * V1
U3 \/ Hence the solution is
rank 2 vector 4 — \J
A—- NI T = 1Ty + c2®2 + 33
U2
In this case, we need to solve for v3 from linear combination of
V1, V2.
(A= Nvz = av; + Py
Where «, 8 # 0 are any scalars.
case 3 normal generalized generalized
eigenvector eigenvector eigenvector N
T =€ v
eigenvectors Y
AN—> |/ ? 2 | Incomplete eigenvalue. @y = e (vit +v2)
Multiplicity 3 * | defect is 2 s
T3 =e (U15+U21+’U1>
U1 V2 v3 .
‘Where we first solve for v, from
(A=A vy =
And next we solve for v3 from
A—-) A\ A— NI
/\/\/\‘ (A=A = v
L]
v3 Vo vy " Hence the solution is
zero vector
rank 3 vector rank 2 vector  rank 1 vector
T = C1T1 + C2T2 + C3T3

Figure 3.17: repeated eigenvalue of order 3



/
CHAPTER 3. FIRST ORDER ODE F(z,y,y') =0 241
The Four possible cases for repeated eigenvalue of multiplicity 4
case 1 normal normal normal normal 7= e)‘tﬁl
eigenvector eigenvector eigenvector eigenvector . o
To = € U2
eigenvectors . o
2 . i3 = e 0
Mul A e v v v V' | complete eigenvalue. > Ta=e s
Tultiplicity 4 defect is zero Ty = e”ﬁ;
ol Uy Ty bA The solution is
T= 171 + cof2 + €373 + caTa
case 2 normal normal normal Generalized . o
eigenvector eigenvector eigenvector eigenvector 1 =€ U1
Ty = M,
eigenvectors .
g v v v ? Incomplete eigenvalue. Ty = Moy
Tultiplici defect is 1 . - .
Multiplicity 4 = N (@t+ )
U1 v2 U3 Uy Where @ = a1t + a202 + a3vs and a; are
constants to find that are not all zero.
(A= XI)?
= N L L (A=) =1
U = a1U1 + azv2 + azv3
K @ Z€ro vector
L ] - . .
. \/ Ul A _ AL Hence the solution is
Uy
rank 2 vector 4 — \J Uy T = c1%1 + o2 + 373 + caTy
K A=)l
U3
In this case, we need to solve for ¥4 from linear combination of ¥, ¥, U3.
(A= N1 = a1?1 + a202 + a3l
Where a; are any scalars not all zero.
case 3 normal normal Generalized Generalized
eigenvector eigenvector eigenvector eigenvector T = 5“171
Ty = i
eigenvectors . -
g v v ? ? Incomplete eigenvalue. By = M (Bt + )
> . 3= 1 3
Multiplicity 4 defect is 2 "
Ty =e"" (ot + Us)
ol Uy U3 Uy o
A—XI Hence the solution is
A— NI
First solve for 3, ¥4 from %/\‘ﬂ/\‘. zoro vector T'= 11 + ca®a + c3T3 + cals
i
(A= XT3 =1 rank 2 Tiy'
wmm e " 02
Ty
rank 2 A -\
case 4 normal Generalized Generalized Generalized
eigenvector eigenvector eigenvector eigenvector = At=
T = e U1
eigenvectors 2 2 B = N (Tt + T2)
v ? { Incomplete eigenvalue. 2
Multiplicity 4 defect is 3 B =M (615 + T2t + Us>
U1 U bz Uy
3 A=Al o P
/\‘ Fa= e <UIE+E25+W+@)
o ® Z€ro vector
U1 oo . -
» Where ¥ is found by solving (A — A\I)v2 =
) 2 \_/pz\_/rank 1 rvhere vz 1s lound by soving ( )f
7, U3 U1. And 73 is found by solving (A—\I)v3 =
4 . rank 2 A — \] — I . ~
rank 3 4 _ AT rank 3 4 _ AT va. And 4 is found by solving (A—\I)vy =
Us.
Hence the solution is
T = 171 + ca2 + c3T3 + 4T

Figure 3.18: repeated eigenvalue of order 4

3.6.1.1 Examples
3.6.1.1.1 Example 1

Hence

1)
(2)

THy+t
2z + 3y + €

r+y+t
(3)

Taking derivative w.r.t. t gives
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2 1 1

’ t

:l!_——+——— 4
2 2 26 ()

Substituting (3,4) in (1) to eliminate y,y’ gives

'+ —3,—1@‘41 =x+ —E—let+1t +t
2 2 2 2 2 2
r=3t+z—1 (5)
This is linear ode. Its solution is
T =ce' —3t—2 (6)
Substituting this in (3) gives
Y= ——(cle —3t—2) + Et_ Eet

3.6.1.1.2 Example 2

ZH)+y ) =z+y+t (1)
22'(t) +y'(t) =20+ 3y + ¢ (2)
Let ' = A,y = B then
A+B=xz+y+t (1)
2A+B=2x+3y+¢€ (2)

From (1), B =z +y +t — A. Substituting in (2) gives
2A+ (z+y+t—A) =2z +3y+ ¢
A=z—t+2y+e (3)
Now we plugin the above in (1) which gives
(z—t+2y+e)+B=z+y+t
B=2t—y—¢ 4)
Hence we have the following two linear ode’s of standard form now. These are (3,4)
T=z—t+2y+e
v =2t—y—¢

And now these can be solved using standard methods.
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3.6.1.1.3 Example 3
o' (t) +y'(t) =z + 2y + 2 (1)
7' (t) + y'(t) = 3z + 4y + €* (2)
Hence
T+ 2y +2e' =3z + 4y + ¥
1
y=-—-r— 56% + € (3)
Taking derivative w.r.t. t gives
y'=—x'—ezt+et (4)
Substituting (3,4) in (1) to eliminate y,y’ gives
1
g+ (-2’ —e*+e€)=z+ 2(—3: - §e2t + et) + 2€*
o — 1 —e* e =1z — 2z — e* 4 2¢’ 4 2¢
0=—z+ 3¢’
T = 3¢’ (5)
Substituting this in (3) gives
t 1 2t t
y=—3e" — € +e
1
=_9 t ~ 2t
e~ 5e
Hence the solution is
T = 3¢
1
= _9 t ~ 2t
Y e~ e

3.6.2 nonlinear system of first order ode’s

Not currently supported.
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4.1 Flow charts

Figure 4.1: Flow chart for some of the supported ode types
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4.2 Existence and uniqueness for second order ode

There are two theorems. One for linear second order ode and one for non-linear second
order ode.

4.2.1 Existence and uniqueness for linear second order ode

Given linear second order ode

Y +p)y +a(2)y = f(z)

With initial conditions at xg

y(xo) =%
Y (wo) = 216

If p(x),q(z), f(z) are all continuous at z, then theorem guarantees that a solution exist
and is unique on some interval than includes zy. If this was not the case, (i.e. if any of
D, q, f are not continuous at ;) then the theorem does not apply. This means a solution
could still exists and even be unique, but theory does not say anything about this.

4.2.1.1 Example

zy" + v + 3y = sin (z)

y(0) =0
y'(0)=1
In standard form 1 3 1

y'+ =y + -y = —sinz
x x x
We see that p(z) = % is not continuous at o = 0. Hence theorem does not apply. It turns
out that there is no solution to this ode with these initial conditions. Changing z, to 1

instead of zero, solution exists and is unique.

4.2.1.2 Example

y"+ﬁy'+3y:x
y(1)=0
y(1)=1
In standard form
y' +py +ay=f
p(x) = -1 is not continuous at zo = 1. Hence theorem does not apply. It turns out that

there is no solution to this ode with these initial conditions. Changing z, to 0 instead
then a solution exists and is unique.
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4.2.2 Existence and uniqueness for non-linear second order ode

Now the ode is written in the form

y' = f(z,y,v)
y(xo) = %Yo
y'(xo) = %

Then if f is continuous at (zo, Yo, y) and f, is also continuous at (zo, Yo, y;) and also f,
is also continuous at (o, Yo, y,) then there is unique solution on interval that contains .

4.2.2.1 Example

yll — 2yyl
y(0) =1
y'(0) =2

Hence f(z,y,y') = 2yy’. At £ = 0 then f = 4 which is continuous. And f, = 2y’ which
at zo becomes 4. This is also continuous. And f,» = 2y which at x, becomes 4 which is
also continuous. Hence solution exists and is unique on interval that contains x = 0. The
solution can be found as follows

Let y' = p(y) then y” p dpdy _ Z—zp. The ode becomes

T dydx
dp
rn=9
dyp yp
dp
F_9
dy 4

But at z = 0 we have y(0) = 1 and 3'(0) = p(y(0)) = p(1) = 2. This is the initial condition
used for solving the above quadrature ode. Integrating the above gives

p=y"+a
Applying IC p(1) = 2 gives
2 = 1 —+— C1
Ci = 1

Hence p = y> + 1. But ¢ = p or ¢/ = y*> + 1. This is separable with initial conditions
y(0) = 1. Integrating gives
d
d / dx
v +1

arctan (y) =z + co

Applying IC
arctan (1) = ¢

So ¢, = 7. Hence the solution becomes

arctan (y) = = + Z

x)_tan< )
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4.2.2.2 Example

Il
L

y Ty

//+
y(0)
y'(0)
Here f(z) =

~ is not continuous at x = 0. Therefore theory does not apply. It turns out
that no solution exists for this ode.
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4.3 Linear second order ode

4.3.1 Linear ode with constant coefficients Ay” + By’ + Cy = f(z) . ... .. .. 251]
4.3.2 Linear ode with non-constant coefficients A(z)y” + B(z)y + C(z)y = f(zx) 259
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4.3.1 Linear ode with constant coefficients Ay"” + By + Cy = f(z)

4.3.1.1 Quadrature ode y’ = f(x)

ode internal name "second order ode quadrature'

Solved by integration twice. y' = [ fdz +c; and y = [ ([ fdz) dz + c1z + ¢

4.3.1.2 Solved by finding roots of characteristic equation

ode internal name "second order linear constant coeff”

These are solved by finding roots of characteristic equation. This is the standard method.
Homogeneous and inhomogeneous. The method of Variation of parameters and the method
of undetermined coefficients are both used to find the particular solution. If hint "laplace"
is given, then the ODE is solved using Laplace transform method. If hint "series" is given
then series method is used.
4.3.1.2.1 Example 1 (Variation of parameters)
4" —y=e2+6

Solution is y = yn + yp. The roots of the characteristic equation are :I:%,. hence y;, is

yn = c1e7” + cpe” 2
The basis for y, are y; = e%““', Yo = e~3%. Let

Yp = Y1U1 + Y2Us2

Where
x
up = —/—yzaj;i/,)dm
z
Uy = / ylaj;i/)dz
Where a = 4, f(x) = e2 + 6 and
1
Y1 Y2 ez e 2" 1 1
W frnd = = —_—_—— - — = —1
Vi Yh|  |les® —lema® 2
Hence
1 x
“2%(e2 +6 1
u1——/62(j1 )dx=1$—3e_§”’
?(ez +6 1
Up = / - (624 )dx = ——e%x(e%x + 12)
Hence
Yp = Y1U1 1 YolUs2
1
= e2? (Zx —3e 2”) +e2? (—Ze2$ (e%”” + 12))
1 1
= erzz — Ze%z —6
Therefore
Y=Yn+Yp

1 1 ]_ 1 1 1
= c1e2? + cpe” 27 + —xe2® — —e2 — 6
127 + ¢ + 1 1
Or by combining terms into new constant, the above becomes

1, 1y 1oy
Yy = cze2” + ce” 2 —|—er2 —6
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4.3.1.3 Solved using Laplace transform

ode internal name "second order laplace"

These are solved using Laplace transform. These are only solved using this method if
"hint’="laplace" is given.

4.3.1.3.1 Example 1
y'+2) +y=0
y(1) =2
y(0) =2
Taking Laplace transform gives
(s°Y — sy(0) — y/(0)) + 2(sY —y(0)) +Y =0
(s°Y — sy(0) —2) + (2sY —2y(0)) +Y =0

Since not all initial conditions are at zero, and we need to have them at zero to use Laplace,
then one way is to let y(0) = yo as unknown (we could also have used y(0) = ¢;). Find
the solution, then solve for yo using the initial condition y(1) = 2. This shows how it is
done. The above becomes

(Y —syo—2) + (2sY —2y) + Y =0
Y(s+2s+1) —syp—2—2yp =0
syo + 2+ 2yp
T s2+2s+1

Applying inverse Laplace transform gives
y(t) = (yo + 2t +yot) ™" (1)
But y(1) = 2 hence
2= (yo+2+yo)e "

2e = 2yo + 2
Yo=e—1

Therefore (1) becomes

yt)=(e—1+2t+(e—1)t)e"
=e(-1+e+t+et)

4.3.1.3.2 Example 2
y' =2y —3y=0
y(4) = -3
y'(4) = —17
Taking Laplace transform gives
(s*Y — sy(0) —y'(0)) —2(sY —y(0)) = 3Y =0

Since given initial conditions are not at ¢ = 0, then let y(0) = ¢;,%'(0) = c2 and the above
becomes

(8°Y —sc1 — ) —2(sY —e1) —3Y =0

Y(S2—2S—3)—861—02+201=0
Y:801+C2—201
s2—25—3
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Taking inverse Laplace gives

1
y(t) = Ze_t (c2(e® = 1)+ c1(3+€")) (1)
Hence 1 1
y'(t) = L—le_t(4cle_4t + 4cpe™) — Ze_t(cg(—l +e*) +c1(3 + ) (2)
At t = 4 then (1,2) become
1
-3= 16_4 (c2(€® —=1) 4+ ¢1(34€"))

1 1
—-17= 16_4(4016_16 + 4cye™®) — 16_4(02(—1 +e'%) + ¢, (3 + ')

Solving the above for c;, co gives

=5+ 2e!
a= el2
—15 — 2¢16
AT

Hence the solution (1) becomes

1 ,/—15—2¢!6 —5 + 2!
y(t) = 4_16 t< el2 ° (e4t - 1) + el2 ° (3 + e4t)>
— Bt (56—12 _ 2646—4t)

— _563t—12 + 284_t

4.3.1.3.3 Example 3

y" + 2y + 5y = 50t — 100

y(2) =—4
y'(2) = 14

Taking Laplace transform gives

50 100
(s°Y — sy(0) — /(0)) + 2(sY — y(0)) +5Y = b
Since given initial conditions are not at ¢ = 0, then let y(0) = ¢1,y'(0) = ¢ and the above
becomes

50 100
(82Y—801—02) +2(sY —¢;) +5Y = - -
s s
50 100
Y(32+2s—|—5) —sa—C—200=—F ——
s s
Yy — 801+62+261+§—g—1—go
B s24+2s+5
Taking inverse Laplace gives
y(t) = —24+ 10t + (24 +¢;) e " cos (2t) + (14 + ¢; + co) e Fcostsint (1)
Hence
y'(t) = e *(10e’ + (c2 — 10) cos (2t) — (110 + 5c1 + ¢2) costsint) (2)

At t = 2 then (1,2) become

—4=—24+20+ (24 +c1)e 2cos (4) + (14 + ¢; + c3) e 2 cos 2sin 2
14 = e7%(10€® + (cz — 10) cos (4) — (110 + 5¢; + ¢2) cos 2sin 2)
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Solving the above for c;, ¢y gives

¢ = —2(12+ €’sin4)
c2 =2(5+ €*(2cos4 + sin4))

Hence the solution (1) becomes
y(t) = —24+10t+ (24 — 2(12 + e*sin4d) ) e* cos (2¢)+(14 — 2(12 + €’ sin4) + 2(5 + €*(2cos4 + sin4))) e~
Which simplifies to

y(t) = —24 + 10t — 2€* ' sin (4 — 2¢)

4.3.1.3.4 Example 4
y" +2y + 10y = 6(t)
y(0)=0
y(0)=0
Taking Laplace transform gives
(s’Y — sy(0) — 4/(0)) +2(sY — y(0)) + 10Y =1
Since given initial conditions then the above becomes

s?Y +2sY +10Y =1
B 1
~ s2425+10
B 1
(s+2)(s+5)

Taking inverse Laplace transform gives

y= lze(-l-m)t _ éie(—1+3i)t

6

| R P S
= Zje te 3zt__,le te3zt
6 6

iy —t ( —3it 3it
= —~1e (6 —€ )

6
1

= gie_t(cos 3t — isin 3t — (cos 3t + i sin 3t))
1

= gz’e_t(—i sin 3t — 4 sin 3t)

1

= gie_t(—% sin 3t)
1

= ge_t sin 3t

Which is the same as .
Y= (ge_t sin (3t)) U(t)

Where U(t) is Heaviside function which is one for ¢ > 0. Note that it seems one should
not give IC at same point of application of §(¢) as in this problem. So this problem might
be ill posed. Need to look more into this.
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4.3.1.3.5 Example 5
y'+2 +y=0
y'(0) =2

This problem shows what to do when one IC is missing. Basically, if an IC is missing, it
is just kept unknown. Taking Laplace transform gives

(sY = sy(0) = 4/(0)) +2(sY — y(0)) +Y =0
(s°Y — sy(0) —2) + (2sY —2y(0)) +Y =0

Since not all initial conditions are given, then we let the missing IC be some unknown. In
this case y(0) = ¢;. And continue as before. The above becomes

(Y —sc1 —2) + (2sY —261) +Y =0
Y(52+23+1)—scl—2—20120
_8c1+2+2¢
24 2s5+1

Applying inverse Laplace transform gives
y(t) = (c+2t+et)e” (1)

We can if we want, now replace ¢; = y(0) to make it more clear what the c; represents.

y(t) = (y(0) + 2t + y(0) t) ™" (2)
4.3.1.3.6 Example 6
y' +2y +y=0
y(0)=0
Taking Laplace transform gives

(Y — sy(0) = 4/(0)) +2(sY —y(0)) +Y =0
(Y —¢/(0)) +2sY +Y =0

Since one IC is missing, then let y'(0) = co. The above becomes

(S2Y—Cz)+2SY+Y=0

Y(s+25+1) —c;=0
Cs242541

Applying inverse Laplace transform gives
y(t) = Cgte_t (1)
We can if we want, now replace c; = y'(0) to make it more clear what the ¢, represents.

y(t) =y'(0)te™ 2)
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4.3.1.3.7 Example 7 This example is for higher order ode, showing how to easily
handle IC if at zero or not or if some missing or not, all using same process. Given

y/ll+y//+y/+y:0 (1)
And lets say the IC’s given are
y(1)=a
y'(0) =0

The idea is to always use ¢y, c1, c2 for y(0),4'(0),y”(0) and then at the very end solve for
these from the given initial conditions. We will get two equations (since we only have 2
IC) and 3 unknowns. So some of the ¢y, c1, c2 will remain in the solution as unknowns
which is OK. Applying Laplace transform on (1) gives

s*Y —y"(0) — sy'(0) — s*y(0) + s*°Y — 4/(0) — sy(0) +sY —y(0) +Y =0
We now replace y”(0) = c2,%'(0) = ¢1,y(0) = ¢ and simplify the above which becomes

Y(s+8*+s+1)—c—sa—scg—c1—sc—cy=0
Y(s+8*+s+1)—s’cog—s(ci+c) —ca—c1—cog=0
c2 +c1+ ¢+ s(er + ) + s%c

Y —
$3+s2+s+1
Taking inverse Laplace gives the solution as
1 1, 1
y(t) = 5(00 — ¢9) cos (t) + ¢ (co+c2) + 5 sin (t) (co + 2¢1 + ¢2) (2)

Now we only need to solve for the constants using the given initial conditions. This results
in these two equations (since we have 2 IC only). Using y(1) = a gives

1 1 1
a= 5(00 —cg)cos (1) + 56_1(60 +c2) + 5 sin (1) (co + 2¢1 + ¢2) (3)

Taking derivatives twice of (2) and using y”(0) = b gives the second equation

1 1 1
y'(t) = §e_t(00 +¢) + 5(—00 — 2¢; — ¢o) sin () — 5(00 — ¢3) cos (t)

Using y”(0) = b the above gives
1 1
b= E(CO + 02) — 5(00 — Cg)
= Cy (4)

Now we need to solve (3,4) for cg, c1,co. From (4) we see that co = b. Substituting this
into (3) gives

1 1 1
a= 5(co —b)cos (1) + 56_1(60 +b) + 3 sin (1) (co + 2¢; + b) (5)
We can now choose the free parameter as ¢y, hence
1 1
c1 = —m(cos (1) +e ' +sin(1)) e+ m(bcos (1) —be™" — bsin (1) + 2a)

We are done. The solution (2) is now found by replacing ¢y, ¢; into it. ¢y remains are the
only unknown. This method works for any combination of IC given even if some at zero
or not.
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4.3.1.3.8 Example 8 (non-constant coefficient)
te"(t)+ 2 +tz =0 (1)

Assuming z(0) = 1,2/(0) = 0. In solving ode using Laplace where the coefficient in time
varying, we will be using the relation

L(t"f(t)) = (=1)" F™(s) 2)

Where F'(s) is the laplace transform of f(t). For example, if the input is ¢z(¢) the Laplace
tranaform is —X'(s) = —%ﬁs) and if the input is t?z(t) then the Laplace transform is
d2f2(s) and so on. This will generate an ODE in X (s) which we have to solve for X(s).

Applying this to (1) gives

L(z") = s*X(s) — sx(0) — 2/(0)
L(z") = sX(s) — z(0)
L(z) = X(s)

Hence using (2) on the above, then Laplace transform of (1) becomes

— 4 (#X(5) — 52(0) ~ #'(0)) + (X (5) — 2(0)) ~ = X(5) = 0

Substituting initial conditions gives

d, d
35 (FX(5) = ) + (sX(s) = 1) ~ - X(5)

—(2sX+8°X' —1)+sX —-1-X'(s)=0
X'(-s—1)+X(-2s+s5)=0
("+1) X' +sX =0

0

This differential equation is now solved for X (s) which gives

The inverse Laplace transform is
z(t) = c; BesselJy (2)

Since z(0) = 1 then
1 = ¢; BesselJy (0)

But BesselJ, (0) = 1, hence ¢; = 1 and the solution is

z(t) = BesselJ (¢)

4.3.1.4 Solved using series method

4.3.1.4.1 Ordinary point using Taylor series method ode internal name "sec-

ond_ order_ taylor_series_ method_ ordinary_point'

This is the same as section below under non-constant coefficient.
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4.3.1.4.2 Ordinary point using power series method ode internal name "sec-
ond_ order_ power_ series_ method_ ordinary_ point"

This is the same as section below under non-constant coefficient.
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4.3.2.1 Collection of special transformations
These are special transformation that do not fit in any other type.

1. For ode of form (1 — z2)y” — 2y’ + y = 0 use = = sin 2. This tranforms the ode to
y"(2) +y(z) = 0.

2. For ode of form y” + ; +GCQy + (1+x2)2y 0 use transformation = tanz this

transforms the ode to y”(z) + y(z) = 0 as well.

3. For ode of form (1 + y?)y” (2y 1) (')* + 3z(1 + 3?) v = 0 use transformation
y(z) = tan (z(z)) which gives 2”(z) + (#'(z))* + 3z2/(z) = 0.

4. For ode of form 3" (z) —

y'+ 125 = 0 use z = cos (z) which gives y"(2)+y(z) =0

fE2
Reference: Short course on differential equations. By Donald Francis Campbell. Maxmillan
company. London. 1907.

4.3.2.2 Euler ode 7%y’ +zy +y = f(x)

ode internal name "second order euler ode"

Solved by substitution y = 2" and solving for r. Solution will be y = c;2™ + coz™ where
r1, 7o are the roots of the characteristic equation. For repeated root, the second solution is
multiplied by extra In () and not extra z as is the case with standard constant coefficient
ode. The particular solution is found in the same way using variation of parameters. Can
not use undetermined coefficient method since this is not constant coefficients ode. The
basis functions here are ™, z" if not repeated roots, else the basis are z™,In (z) z".

Initial conditions for Euler ode can not be at x = 0. For ode of the form
(@ —0a)*y" + (2 —a)y +y = f(z)
This is still Euler ode. We start by substitution X = z — a which gives
X'+ Xy +y=f(X+a)

This is now solved using y = X" as before. When we obtain the solution y(X) then every
X is replaced back by z — a to obtain the final solution. Below are two examples.

4.3.2.2.1 Example 1 2%y + 2y +y =2 We always start by solving y;, from

x2y//+xy/+y=0

Let y = z” then ¢/ = rz"~! ¢ = r(r — 1) 2”2 and the above becomes

?r(r—1)a"?+arz’ ' 42" =0

r(r—1)z"+rz"+2"=0
rir—=1)4+r+1=0

The roots are i, —i. Hence the two basis solutions are y; = x*,yo = ™. The solution is

Yp = 1x' + cox™"

1
— Clelnm _|_c2elnz
— clezln:c +cze—zln:c

= ¢ cos (Inz) + cosin (In z)

Hence the solution is
Y=Y+ Y

yp is found from variation of parameters.

Yp = U1Y1 + U2y
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Where

u; = —/—yiﬁ;p) dz

) (z)
uz—/ i dx

Where f = z in this case, since this is the forcing function in the rhs of the original ode
and W is the wronskian

Y1 Y2 cos (In(z)) sin(Inzx) 1 L1 .

W= y, yy| | —sin(n@)  cos(in(x)) = 008 (Inz) +581n(h’1;1;)
1
oz

Uy = — / a:smnzl—éllnx)dx =— /sin (Inz)dz = —%x(— cos (Inz) +sin (Inx)) = %x cos(Inz) — %x sin (In
Up = / %z)(x))dx = /cos (In(x))dz = %x(cos (Inz) +sin(Inz)) = %x cos (Inz) + %x sin (In z)

Hence
Yp = U1Y1 + U2Y2
1 1 1 1 . .
= (Ex cos (Inz) — o@sin (In x)) cos (In (x)) + (éx cos (Inzx) + 5 sin (In x)) sin (In z)

= %x (cos (Inz)® — sin (In ) cos (In z) + cos (In z) sin (In z) + sin (Inz)?)

_1
2

Therefore the solution is

Y=Yn+Yp

1
= 5% +eicos (Inz) + ¢y sin (Inx)

4.3.2.2.2 Example 2 (z —2)°y" + (—2)y +y = 2 This examples shows how to
solve the Euler ode when coefficients have constant shift as in this example. This method
only work when the shift is the same on both coefficients of y” and y’. We start by assuming
X =z —2or =X+ 2. The ode becomes

X'+ Xy +y=X+2
In the above, y is now a function of X and not z. We always start by solving y;, from
X'+ Xy +y=0
As we did in the above example, the solution is
yn(X) = ¢1 cos (In X) + ¢ sin (In X)

Now we find the particular solution where now f(X) = X + 2 and not z. Hence the
solution is

Y=Yn+ Y

yp is found from variation of parameters as before.

Yp = W11 + U2Y2
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Where
_ y2f (X)
Uy = / oW dX
y1f(X)
= X
U9 / oW d

Where f = X + 2 in this case, since this is the forcing function in the rhs of the original
ode and W is the wronskian which is + as was found in the first example. Hence u;, us

X
become
_ (X+2)sin(lnX) /(X+2)sin(lnX) B 1 1. |
up = / X2 (1) dX = e dX—2cos(lnX)+2Xcos(lnX) 2Xs1n(ln4
_ [ (X +2)cos(In(z)) . _ / (X +2)cos(In(z)) .., . 1 1.
w—/ X2 (L) X = e dX—2sm(lnX)+2Xcos(lnX)—|—2Xs1n(lnX)
Hence

Yp = U1Y1 + U2Y2
1 1 1 1
= (2(:05 (In X) + §Xcos (InX) — EXsin (lnX)) cos (In (X)) + (2sin (InX) + §Xcos (InX) + §Xsir

= 2cos® (In X) + %Xcos2 (InX) — %Xsin(lnX) cos (In (X)) + 2sin® (In X) + %Xcos(lnX) sin (In X) +

1
—24:X
3

Therefore the solution is
Y(X) = yn + Y

1
=2+ §X+cl cos (In X) + ¢osin (In X)

The solution to the original ode is now found by replacing X = z — 2 which gives

ylz) =2+ %(w —2) 4 cycos(ln(z —2)) + cosin (In (z — 2))

1
=1+ g% +ercos (In (z — 2)) + ¢z sin (In (z — 2))

4.3.2.3 Kovacic type

ode internal name "kovacic'

These are ode that are solvable using Kovacic algorithm. See my paper on arxiv on this
with algorithm description.

4.3.2.4 Method of conversion to first order Riccati

ode internal name This is currently not implemented.

Given linear second order ode A(z) y”+ B(z) y'+C(z) y = 0 then using the transformation
v(z) = —% converts the second order ode to a first order Riccati

g W)
R
—y(=By — Sy) + (v)’
y2
Byy' + Sy? + (v)
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Which is Riccati of the form v/ = fy(z) + fi(z) v + fov?. where fo = %, fi= %, fo=1
Lets say we can now find the solution to this Riccati v(x) (see section earlier on Riccati for
algorithm). Then the solution to the second order ode is found from ¢y’ = —yv by solving
this first order ode. The solution is

y= e—f’v(x)dx + e

Notice there is also a second constant of integration inside v(z). This method of course
works only if we can solve the generated Riccati ode which does not have a general method
for solving and only for specific cases it can be solved. So this will be tried as last resort.

We want to look for reduced Riccati generated from the above, which is v/ = fy + fov?.
Which means f; =0 or B = 0 in the hope of solving the Riccati. This means ode of the
form A(z)y” 4+ C(z)y = 0 will have hope of solving using this Riccati conversion method.
See Riccati section why that is.

4.3.2.5 Airyodey"+kry=0or ¢y’ +by +kzxy=0

ode internal name "second order airy"

Sometimes this is written as y” £ k?zy = 0. But it is the same ode. The power on k is
not important. So in this below will show for generic k".

This table gives the patterns to use for solving Airy ode. This result uses this general form
of Airy ode
Ay"+ By + k"(axz +b)y =0

Hence in this table, if ¥ is missing, we just replace B = 0. This all assumes k, A, B, a, c
do not depends on z. The solution to the above is given by

Be Aaz +b) k" — B £h'a) s e Alaz +b) km — B2) (£
y = cel ) Airyai < - ) 5 +ore 35 AiryBi —< ! ) =

aAk™ aAk"
The only thing we need to watch for, is the sign on B and on k™. If the sign is negative in
the ode, then we use e(%) and if the sign is positive on B then we use e<_%>. For k7,
the leading sign do not change in the solution. Below are some examples
ODE Values solution
Yy — khzy =0 A=1,B=0,a=1b=0 y=c AiryAi (—(—kn)% x) + ¢ AiryBi (—
'+ k*zy =0 A=1,B=0,a=1,b=0 y=c AiryAi (—(kn)% x) + ¢ AiryBi <—(k
Yy —k*(z+3)y=0 A=1,B=0,a=1,b=3 y=c; AiryAi (—(—k2)% (z+ 1)) + ¢y Airy]

1
—z (5(3z+4)k*—1) (@) 3
5y’ +2y —k'(Bz+4)y=0 A=5B=2a=3b=4 cel5) AiryAi| - 15k +
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4.3.2.6 Solved using series method

function SOLVE__ SECOND__ORDER__ODE_ SERIES(y” = f(z,y,v’))

if f(z,y,y’) analytic at expansion point zo then
This means xg is an ordinary point. Apply Taylor series defintion directly to find

the series expansion. Let yo = y(z0),y’(z0) = yy and

n+2
y= yo+yo+z o @ Y)s
yo
‘Where

f(zy,9)

d

8 OF,_1\ , OF,-1\ ,
=i 1+( dy >y+( oy’ )y

return y as the solution
else
if f(z,y,y’) not linear in y(z) or not linear in y'(z) then
return Not supported.
else
if expansion point z is not regular singular point then
return Not supported.

else
This is a regular singular point. Determine the roots of the indicial equation. Let

roots be r1,7s.

if Roots 71,79 are complex (they will conjugate) then
Example is Euler ode z2y” +zy +y =0

Use Frobenius series as is for each basis solution y;,y2 where

o0

:E anx"H-”‘l
n=0
o0

= E bzt
n=0

Where a,, b, above are found from the recurrence relation using each r; root.
else if Roots 71,79 differ by non-integer then > Ex. 222y" + 3y —xy =0

Use Frobenius series as is for each basis solution 1,y as above case.

else if Roots r1, 79 are repeated. This means one root r, a double root then

An example ode is 2%y" + zy’ + zy =0

y1 is found use Frobenius series as above. For y; a modification is needed. Let
y2 = y1In(z) + >0 bya™ " where b, = “La,(r) after finding a,(r) evaluated at

the root. . .
else if Roots 71,79 differ by an integer then

if Both roots 71,79 are good then > Ex. (z —22)y" +3y' +3y=0
Called the lucky case. This means the recurrence equation and all a,, are defined

for all n for both 71, 72. In this case both solutions y;, y2 are found using standard
Frobenius series and no modification is needed.

Figure 4.2: Series method for second order ode algorithm

Ordinary point and regular singular point are supported. irregular singular point support
will be added in the future. Expansion around point other than zero is also supported,
including initial conditions. All three cases of regular point are supported, these are when
the roots on indicial equation are repeated, or differ by an integer, or differ by non integer.
case of Complex roots of indicial equation is also supported. Only second order and first
order series solution is supported. Higher order ode support will be added in the future.



CHAPTER 4. SECOND ORDER ODE F(z,y,y,y") =0 265

4.3.2.6.1 Ordinary point using Taylor series method ode internal name "sec-
ond_ order_ taylor_series_ method_ ordinary_ point'

Let

y' = f(z,y,9)
Assuming expansion is at o = 0 (we can always shift the actual expansion point to 0
by change of variables) and assuming f(z,y,y’) is analytic at £y which must be the case
for an ordinary point. Let initial conditions be y(z¢) = yo and y'(xy) = y;,. Using Taylor
series gives

/ r—z 2// r—T 3///
() = y(an) + (2~ 20)y/(an) + Ty e + EP () 4
,  z? 3,
= Yo +.'Ey0 + _f|$0,yo,y6 + g‘f |$0:y0,y6 + .-
n+2 dnf
= Yo +$yo + Z (n+2)! dzm S
But
df 8fda; 8fdy 8f dy 1)
dr ~ drdx 8y dz 8y dz
_of of , 9of ,
=53 t oY (4.1)
0 of ,
- +a£ +a—f, (4.2)
¢f _ d(df
dz?2 ~ dx d
_O(d\ 9 df
e (i) oy () v o ()7 e
&f _d(&f
dz®  dz \ dz?
0 d’f o d’f\ , 0 (df
N %(?) (8ydw2) Vo oy’ (dx2> f 3)
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

Fo = f(z,y,9) (4)
_df
F = e
_dk
C dx
of of, of ,
oz oy’ T oy
_of of , 9of
Oz + 8yy + oy’ (5)
_0Fy 0F, , O0F
or + 8yy + 8y’F0
d [/ d
= %<£f>
d
= %(Fl)

d
Fn %(Fn—l)

0 OF,_1 OF,_1

- " F,_ / "
Oz 1+( Ay )y+< Ay’ )y
8 3Fn_1 aFn—l

=—F,_ —= )y E
st (P )+ (%5 ) B ©)

Therefore (6) can be used from now on along with
. o0 2
y(z) = yo + Yo + Z anlmo,yo,yé (7
n=0 ’

To find y(z) series solution around z = 0.

4.3.2.6.2 Ordinary point using power series method ode internal name "sec-
ond_ order_ power_ series_ method_ ordinary_ point"

Expansion point is an ordinary point. Using standard power series. For an ordinary point,
and for inhomogeneous. ode, always generate the full solution directly from the summation.
Do not split the problem into yp,y, . To be able to do this, we have to express the RHS
as Taylor series (expand it around the same expansion point). If the RHS is already a
polynomial in x then there is nothing to do as it is already in Taylor series form. Examples
below show how to do this. When the RHS is not zero, do not attempt to find recurrence
relation as the RHS will get in the way, If the RHS is zero, then find recurrence relation.

y' = f(z,y,v")

In this method, we let Let y = ) ° / a,z™ and replace this in the above ode and solve for
a, using recurrence relation. Examples below show how these methods work.
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Example 1 Solved using Taylor series method.

v +xy +y=2x+2°+2*
Y ' =—xzy —y+2r+2°+ 2!

y' = f(z,y,9)
Hence
( ) . i xn+2 P |
ylx) =yo + xy, + o Ll o
—~ (n+1)! Yo,y
Where
FO = f(.'L',y,yl)
d
" F,_
=~ (Far)
8 aFn_]_ 8Fn—1
Fn / "
" oz 1+( Oy )y+< oy )y
0 OF,_1\ , OF,_1
F
~ oz +(3y )y+<3y>0
Hence

o—zy —y+2x+22+2*) O(—zy —y+2x+2>+2x') , O(—zy—-y+2z+22+2%) ,
+ Y+ Yy
Oz Oy oy’
=4’ +22—y +2) —y —zy’
=2z — 2y —xy + 42> + 2

F1:

But v = f(z,y,v’), the above becomes
Fy =22 — 2y + 2%/ + zy — 20% + 32° — 2° 4+ 2
And
d
F>, = n—
= o (Fa)
0

8F1 ’ 6F1 "
ot (a—y>y * (ayf)y

— 2y + 2%y + 2y — 227 + 32 —2° +2) +

=5, (27
( (22 — 2y + 2%y + zy — 20° + 32° — z5—|—2)>y'

( (22 — 2y + 2%y + zy — 20° + 32° — 2° +2)) y"
(y— 4z + 2zy’ + 92> — 5z* +2) + zy + (-2 + 2%) ¢’
—y—4x—2y”—|—3zy + z%y" + 922 — 5zt 42
But ¥ = f(z,y,y’), the above becomes
F=y—4z—2(—zy —y+2z+2°+2) + 32y + 2% (—zy —y + 2z + 2* + z*) + 92° — 5z* + 2
=3y — 8z + 5y — 2%y — 23y’ + T2® 4+ 22° — 62 + 25 4+ 2
And

F; = d

dx (F2)
B 0 oFy\ |, oFy\ ,
_aFﬁ(@y)y - <8y’)y

0 (3y — 8z + 5y’ — 2’y — 2’y + 7z® + 22° — 62 + 2 + 2)

" Oz

( (3y — 8z + 5ay’ — 2y — x3y'+7x2+2x3—6x4+x6+2))y'
( (3y — 8z + 5y’ — 2y — 2%y + Tz® + 22° — 6x4+x6+2))y”
=14

z + 5y — 32y — 2zy + 63° — 242° 4+ 62° — 8+ (3 — %)y + (5z — °) ¥’
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But ¥’ = f(z,y,y’), the above becomes

F3 = 14z 4 5y’ — 32%y' — 2zy + 62° — 242° + 62° — 8+ (3 —2°) y' + (5x—x3) (—zy —y+2z + 2 + z*)
= 14z + 8y + 23y — 922y + 2ty — Twy + 162% — 192° — 22* + 102° — 27 — 8

And so on. Evaluating each of the above at z = 0,y = yo, ¥’ = ¥}, gives

Fo=(—zy —y+2z+2°+2%) _ =—y

113—07210,?/0
F = (25— 2y + 2°y + oy — 22° + 32° — 2° + 2) = (—2yp + 2)
Fy=3y—8z+5xy — 22y — 23y + 70> + 223 — 62 + 25 + 2 =3y, + 2

Fy = 14z + 8y + 23y — 92%y + x*y — Toy + 1622 — 192° — 22* + 102° — 2" — 8 =8y, — 8

z=0,30,Y(,

Hence

. 0 2
y(r) = yo + Ty + Z (n+2)! F"|xo,yo,y6
n=0 )

2 3 4 5
=y0+333/6+%F0+%F1+;C4F2+§,F3+
,  z? z3 z? z°
= Yo +2yp + 5 (=40) + (=240 +2) + 24(3yo+2) (8% — 8+
z? 1 A 1 1 1 1
=y0(1—§ gx—l- >+y(x——+ﬁx )+(3$ +E$_Em>
(1—z—2+1x4+ )-l—cz(x—x—-i—l --)+(1x 3y Lo —ix)
2 8 3 15 3 12 15

Solved using power series method.

y”+xy’+y=2x+w2+x4

Comparing the homogenous ode to y” + p(x) ¥’ + ¢(x) y = 0 shows that p(z) = z, q(z) = 1.
These are defined everywhere. Let the expansion point be zo = 0. This is ordinary
point since p(z), g(z) are defined at xo. Let y = > ja,z™. Hence y' = oo jna,z" ' =
Yoo naz®tandy” =37 (n) (n—1)apz" 2 => 2, (n) (n — 1) a,z" 2. The homoge-
nous ode becomes

o0

o0 o0
(n)(n—1)az" 2+ Z na,z" ' + Z anz" = 2z + 2° + 7t

n=2 n=1 n=0
o0
E )(n—1) ana:"2+§ na,r" +E anz" = 2z + 22 + z*
n=2 n=1 n=0

Adjust all sums to lowest power on x gives

Z (n) (n—1)az" %+ Z (n —2) ap_ox™ 2 + Z Upox™ % =2z + 2% + z*
n=2 n=3 n=2

n = 2 gives z° on the LHS with no match on the RHS. Hence

2a2+a0=0

1
a9 = —50,0

n = 3 gives z! on the LHS with one match on the RHS. Hence

6a3+2a1:2
2—2(11
Aq =
’ 6
1 1

=5 g™
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n = 4 gives z? on the LHS with one match on the RHS. Hence

12&4 + 30,2 =1
1 — 3ay
="
1—3(—3a0)
=5
1 1
RERSD

n =5 gives 22 on the LHS with no match on the RHS. Hence

20as + 4a3 =0
. —4&3
%= 790
_ 4G 5m)
N 20
1 1
BETRST

n = 6 gives z* on the LHS with one match on the RHS. Hence

30a6+5a4=1
_1—5(14
%= "3
_1—5(%0,04-%)
N 30
T 1
360 48™

And for n > 7 we have recurrence relation

m)(n—1a,+(n—2)ap2+a,2=0

_ n—1
Ap = _TL(’I’L _ 1)a'n—2
Hence for n =7
6
a7——5a5
6 (/1 1
=_E<B‘“_E)
1 1
~ 105 105™
For n =8
7

~ =@ (a0~ 5%)
1 7

0— ——

~ 3847 7 2880

And so on. Hence

(o ]
Y= E anx"
n=0

2 3
=ag+a1x+ax” +azx”+ -

= ap+ Lo+ (2 La)) 4 (Lo L) ot (Lo - 2 )P4 (o —
=a9+ a1x 2aox 3 3a1 x 800 12 z 15a1 15 T 360 48a

1 1 1 1 1 1 1
:a0<1——x2+—x4——x6+--->+a1<x——x3+—x5——x7—--->+<—x3+—x4——w5-|

2 8 48 3 15 105
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Which is the same answer given using the Taylor series method. We see that the Taylor
series method is much simpler, but requires using the computer to calculate the derivatives
as they become very complicated as more terms are needed.

Even though the expansion point is ordinary, we can also solve this using Frobenius series
as follows. Comparing the ode ¥’ + zy’ +y = 0 to

Y +p(z)y +q(z)y=0

Hence p(z) = z,q(z) = 1. Therefore py = lim,_,ozp(z) = lim, ,0z?> = 0 and ¢y =
lim, o 2%q(z) = lim,_,0 2> = 0. Hence the indicial equation is

r(r—1) +por + g =0
r(r—1)=0
r=10

Hence ry = 1,79 = 0. All ordinary points will have the same roots. Let

=S o
n=0
y/ — Z (n + 7") an.’En+T—1
—0
y' = Z (n+7r)(n+r—1)a,z"" 2

n=0

The ode becomes

S ()b - D3 (ka0 =0

n=0 n=0 n=0
o0 o0 o0
Z (n+r)(n+r—1)az"" 2+ Z (n+7)a,z™" + Z a, " =0
n=0 n=0 n=0

Reindex to lowest powers gives

(n+7r)(n+r—1)a,z"" %+ Z (n+7r—2)a, 2z"" 2+ Z an_ox™ 2 =0 (1)
=0

n n=2 n=2

For n =20
r(r—1)apr" 2 =0

The homogenous ode therefore satisfies
y' +ay +y=r(r—1)ap" (2)
For n =1, Eq (1) gives
(1+7‘)(r)a1 =0

For r =1 we see that a; = 0. But for » = 0 then the above gives 0b; = 0. This means b,
can be any value and we choose b; = 0 in this case.

For n > 2 we obtain the recurrence relation

m+r)(n+r—1a,+(n+r—2)ap2+a,2=0
—(n+r—2)an2—an2 —(n+r—1)a,»
(n+r)(n+r—-1  (n+r)(n+r—1)
3)

n —

Now we find y; which is associated with r = 1. From (3) and for 7 = 1 it becomes

n 1
—an_ — —
(n+1)n "2 n+1

ayp = —

QAp—2 (4)
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For n = 2 and using ayp =1

For n =3

And so on. Hence

=z(ao + a1z + apx” + -+ +)

1 1
=z(1—-222+ —z*—---
x( 2:10 +1Ox >

_ 1, 1 5
=z 3x+15m

Now we find y» associated with r = 0. From (3) this becomes (using b instead of a) and
r=0

b — —(’n+7‘-1)bn_2
" (mt+r)(n+r—1)
 (n=1)bus
- (m)(n-1)
= et )

From above, we found that b; = 0. Now we use (5) to find all b,, for n > 2. For n = 2

bo 1
b = —_—— = ——
2 2 2
Forn=3 b
by=—~ =0
Forn=4
oo 2 _1
T4 T8

And so on. Hence

_ 1, 1,
—(1 2x+8x+ )

Hence the solution y, is

Yy = c1y1 + coy2

=cl<w—%x3+l—15x5—---) +02<1—%x2+%x4+--~)

We see this is the same y, obtained using standard power series. This shows that we can
also use Frobenius series to solve for ordinary point. The roots will always be r; = 1,7, = 0.
But this requires more work than using standard power series. The main advantage of
using Frobenius series for ordinary point comes in when the RHS has no series expansion
at x = 0. For example, if the RHS in this ode was say /z then we must use Frobenius to
be able to solve it as standard power series will fail, sincey/z has no series representation
at = 0. Examples below shows how to do this.
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Example 2
1
=Y +y +y=0
x

Solved using Taylor series method.

yll — _x5(yl +y)

= —2%y — 2%y
y' = f(z,9,9)
Hence
o0 2
y(x) =yo + xy(l) + Z wo,yo,yo
n= 0
Where
FO = f(m,y,y')
d
6 0F,_1 OF,_1
Fn_ / '
T Oz 1+( Oy )y+< oy )y
0 0F,_1 OF,_1
—F,_ ' F
T Oz 1+( By )y+< oy’ > °
Hence

g2 0wy —2y) | 0=ty ) | =2’y —a%y)
Ox Oy oy’
— (—5374'1/ _ 51’43//) _ :c5y' _ x5y"
But ¥’ = f(z,y,y’), the above becomes
Fl — (_51'4'!/ _ 5$U4yl) _ $5y, _ .’E5<—x5y _ .’ESyl)

= 2% — 5xly — baty’ — 2By + 2%

And

d
F2 = E(Fn—l)

_8 oFy\ |, oF\ ,
3xF1 (3y)y+(8y’>y

— (2% — bz'y — 5z'y' — 2y + 2'%) )
10:1; y — 2023y — 2023y — 5xty’ + 10x9y’ x4( 5) Y + ( 524 — 25 + 3310) Y
But ¥’ = f(z,y,y’), the above becomes

Fy = (102% — 202%y — 205%y — 52y’ + 102%') + z* (2 — 5) v/ + (=52* — 2° + 2'°) (—2°(y' + )

—2°(20y + 20y’ + 102y’ — 152% — z"y + 2%y — 155%' — 227y + z'%y/)
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And

d
F3 = @(Fz)

_ 9 oF\ , [0F\ ,
3$F2+(3y>y+(3y’)y

8( (20y+20y + 102y’ — 152%y — 2y + 2%y — 152°% 2xy+:L'12y'))

l

" oz
( 3(20y + 20y’ + 10zy’ — 152% — 27y + &'y — 1525y’ — 227y’ + x”y’))) y

( 3(20y + 20y’ + 102y’ — 152% — 3"y + 2%y — 152% — 227y + x12y’))) y”
5x2 (12y + 12y + 8zy’ — 272% — 22"y + 3z'%y — 272%' — 42"y + 32"%y') + 2°(—2" + 27 + 15z
But ¥’ = f(x,y,y’), the above becomes

F3 = —52°(12y + 12y + 8zy' — 272% — 237y + 3z'%y — 272%/' — 4:1:7y +3z"%y') + 2 (-2 + 27 + 152
= —2%(60y + 60y’ + 60zy’ — 155z°y — 202"y + 30z'%y + 22"y — "%y — 1552y — 452"y’ — 1%y + 3

And so on. Since the derivatives become very complicated, the result was done on the
computer which results in (Evaluating each of the above at z = 0,y = yo,y = y})

Fo=0
F,=0
F=0
F;=0
F;=0
Fs = —120y}, — 120y,
Fe = —720y,
Fr=0
Fy=0
Fo=0

Fio=0

Fyy = 6652800y, + 6652800y,
Fyo = 79833600y, + 11404800y,
Fy3 = 111196800y}

Fiy=0

And so on. Hence

o0 n+2
/
y(T) = yo + Y + Z (n+2)! Fn'%o,yo,y{)
n=0 )

7 13
= yo + vy + J"—(—1201/() 120y,) — (720y0) o
14 15
+ <5 (798336009} -+ 11404800y0) + E(111196800,7;0)
:yo( 120 6652800 5 114048003514_.“) . ,( 120 ;720 5, 6652800 ;]

—(6652800y;, + 6652800yo)

m 13! 14! Y% Ty T T

VN TP . TR e I S DI [PV (PO U S VR S P S T S
— Y 227 7 936 7644 Yo\~ 12" T 56" o036 1092 11760

Solved using power series method
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Expansion around x = 0. This is ordinary point. Since RHS is zero, we will find recurrence
relation.

Lety = > > ja,z™. Hencey =3 oo inaz" ' => "2 na,z" tandy” =3 oo (n) (n—1)a,z" 2 =
S>>, (n) (n — 1) a,z" 2. The ode becomes

n=2
Y +y +y=0
Hence

(n) (n —1)az™ 2+ Z na,z" ' + Z az" =0

n=1 n=0

NE

3
||
)

(n) (n —1)a,z™ " + Z na, "' + Z a,z" =0

n=1 n=0

NE

[|
)

T

Reindex so all powers start at lowest powers n — 7

o0

() (n—=1)anz" "+ > (n—6)an_ez” + Y an_7z" =0 (1)
=2 n="7 n="7

n

For n = 2,3,4,5,6 it generates a; = 0,a3 = 0,a4 = 0,a5 = 0,as = 0 since there is only
one term in each one of these and the RHS is zero.

For n > 7 we have the recurrence relation

m)(n—1)a,+(n—06)an6+a,—7=0 (2)
4 __(n—ﬁ)an_6+an_7
" n+2)(n+1)
Hence forn =17
a =_a1+a0
! 42
For n =8
G — — 2a3 + a4 _~a
*T T (6+2)(6+1) 56
Forn=9
" _ ("—4Yastar _
T T+2)(T+1)
For n =10
. _ (8—4astas _
T B8+2)(8+1)
For n =11
. __(9—4)a5+a4_0
H (9+2)(9+1)
For n =12
. _ (n—4astas _
2T n+2)(n+1)
For n =13
v W-Yartas _  (W-bey T T wmta)_ 1 1.
BT 1+2)11+1) (A1+2)(11+1) 156 ' 156 42 936 ' 936

And so on. Hence

0o
y=2 ana"
n=0

7 13
=apt+axtarxr +ai3r" +---

Notice that all terms a,, = 0 for n = 2---6. The above becomes

=ap+az+ I 2+ (—a -I—La ' +
Yy=aoTm 2% % 936™ T 936 ™

1 1 1 1
I R S e S R SR Ut S
“0( 2" Tt T )J”“(m 2" Tt T )
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Example 3
1
—y'+y +y=sinz
x
Expansion around z = 0. This is ordinary point. Since RHS is not zero, do not find

recurrence relation. Let y =) > ja,2™. Hencey' => > na,z" ' = 3% na,z" ' and
y' =32 (n)(n=1)az"2=>7,(n)(n—1)a,z" 2. The ode becomes

y" + 2%y + 2%y = 2?sinx

Hence
o0
Z ) (n —1) az"? + 2? Znanxnl—l-x Zanx = z?sinz
n=2 n=1 n=0
o0
Z (n—1)az" 2+ Z na,z"t + Z a,z"? = £?sinx
n= n=1 n=0

Reindex so all powers to start from n. This results in

Z n+2)(n+1)apz" +Z n—1)a,_12" +Zan 0x™ = z?sinz
n=0

n=2 n=2

To be able to continue, we have to expand sinx as Taylor series around z. The above
becomes

;(n+2)(n+1)an+2$n+;(n—1)an—1$"+;an_2$"=x2(z—éz3+ﬁlo 5_W140 LAV
;("+2)(n+1)“n+2xn+;(n—1)an_1w"+;an 22" =17 —%x5+1;—0 2l — ot
Forn =20
2a0 =0
a; =10
Forn=1
(3)(2)as =0
as =0
For n =2

2+2)2+1)as+(2—-1)a;+ap=0
12a4+ a1 +ap =0
—a1 — Q4o
12

For n = 3 (now we pick one term from the RHS which match on z?)

ag =

20&5 + 2a2 +a; = 1

a _1—a1
T 20
Forn=4
30&6 + 3&3 + a9 = 0
(16:0
Forn=25
1
42a7 + 4ay + a3z = ~6
—1_ 40, -—L-—4(=uxn 1 1 1
ar = __86 ( 12 ) o+ ——ay — ——

42 42 T 126 126 252
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And so on. Hence

V=3 aa
n=0

= ao+ a17 + apx® + asx® + - -

. —a1; — Qo 4 1-— ai 5 1 1 . L 7

_a“+mx+< 12 )x'*( 20 )x'+(126°+1261 252

—ap(1— mat g ) 4 RV Fa . 1 T+

- 2% T 126" a2 5% =507 T ige” 0® 252
4.3.2.6.3 Regular singular point using Frobenius series method. expansion
point is regular singular point. Four sub methods depending on type of roots of the indicial

equations.

Roots of indicial equation are complex ode internal name "second_ order_series method_ reg-

ular_ singular_ point_ complex_ roots'
In this case the solution is

Y =11 + Coyo
Where

o0
y1=> apz""
n=0
o0
e 3 bt
n=0

Where 71,75 are roots of the indicial equation. ag, by are set to 1 as arbitrary.

Example 1
2’y +ay +y=1

Comparing the ode to

y' +p(z)y +q(@)y=0
Hence p(z) = 1,q(z) = . There is one singular point at o = 0. Therefore py =
lim, 0 zp(z) = lim, 01 = 1 and gy = lim,_,0 z%q(z) = lim,_,o 1 = 1. Hence the indicial
equation is

r(r—1)+pr+¢q =0

rr—1)+r+1=0

r?+1=0
r=d=1i
Hence r; = 7,79 = —t. Expansion around x = 0. This is regular singular point. Let

o0
)=S0
n=0
Y= (n+r)aa

Y’ = Z m+r)(n+r—1)a,z"t 2
n=0

Solving first for the homogenous ode.

o

© oo
2y (n4r)(ntr—1az"™ 2+ (n+r)a.z T+ aa™t =0
n=0 n—0 p—

Z (n+r)(n+r—1)a,z"*" + Z (n+7)anz™" + Z a, ™" =0

n=0 n=0 n=0
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Forn=10
(rr=1)4+r+1)apz" =0 (1)

Since ag # 0, then (r(r —1) +7+1) = 0 or > + 1 = 0. Therefore r = +i as was found
above. The homogenous ode therefore satisfies

:Uzy”+xy'+y — (,’,,2 + 1) aoxr
Since when r = +4, the RHS is zero. For n > 1 the recurrence relation is

m+r)(n+r—1a,+(n+r)a,+a,=0
(n+r)(n+r—-1)+Mn+r)+1)a,=0
(n®+2nr+71*+1)a, =0 (2)

Let ag=1. Forr=14. Forn=1
(142i—14+1)a; =0

Hence a; = 0. Similarly all a,, = 0 for n > 1. Hence

o]
yl — § anxn+z
n=0

=z'(ap+ a1z + )
=a0xi

= xi
For r = —i. For n =1 and using b instead of a, we obtain (also using by = 1)
(1-2i+1+1)b,=0

Hence b; = 0. Similarly all b, = 0 for n > 1. Hence

00
Yo = Z bnxn—i
n=0

=27 (bg +byz+--+)

= b()iE_Z

fry x —1
Therefore

Yn = C1Y1 T+ C2Y2

=cz' +coz™"

To find y, since the ode satisfies
x2y”+xy’+y _ (7,2 + 1) aox”

Relabel r = m, ag = ¢y to avoid confusion with terms used above, then we balance RHS,
hence
(m*+1) qz™ =1

This implies m = 0 and ¢y = 1. Therefore

yp — § Cn.’L'ner

n=0

= g "

n=0
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Using the recurrence relation (2) found above, but now using the values found m = 0 and
co = 1, then (2) becomes

(n2+2nm+m2+1)cn=0
(n®+1)c, =0

Hence all ¢, = 0 except for ¢y. Therefore

0o

n

Yp = E Cn®
n=0

=co
=1

Hence the solution is

Y=Yn+Yp
=zt + e+ 1

Roots of indicial equation differ by non integer ode internal name "second_ or-

der_ series_ method_ regular_singular_ point_ difference_not_ integer"

If one of the roots is an integer, and the ode is inhomogeneous. ode, then we do not need
to split the solution into yx,y, and can use the integer root to find y, directly. If both
roots are non-integer, we have to split the problem into y4, y,. This is because it will not
be possible to match powers on z from the left side to the right side. Because the RHS will
be polynomial in z, but the LHS will not be polynomial in  because of the non integer
powers on x.In this case the solution is

Y =11 + Coyo

Where

o0
y1=> apz"t"
n=0

oo
= by
n=0

And rq,ry are roots of the indicial equation. ag, by are set to 1 as arbitrary.

Example 1
222" + 3zy’ —zy =22 + 2z

Comparing the ode to
¥ +p(@)y +4q(z)y =0

Hence p(z) = 2,q(z) = 5=. There is one singular point at £ = 0. Therefore p, =
lim, 0 zp(z) = lim, g % = g and g = lim,_,o 72¢(x) = lim,_,o —5 = 0. Hence the indicial

equation is

r(r—1)4+por+qo =0
3
r(r—1)+§r—|—0=0
r(2r+1)=0
1

=0,—=
r y 9

Therefore r1 = 0,75 = —%.
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Expansion around x = zy = 0. This is regular singular point. Hence Frobenius is needed.
First we find y,. Let y = > 2 a,z™", hence

o)
y = E anzn—l—'r
n=0

o0
y = (n+1)aa™?
n=0

y' = Z (n+7r)(n+r—1)a,z"" 2
n=0

The ode becomes

22> Z (n+r)(n+r—1)az"" 243z Z (n+7)anz™ 1 — gz Z 4,z =0
n=0 "0 —

Z (n+r)(n+7‘—1)anx"+r+z3 (n+7)az™t Zanx’”r’"”—o
n=0

n=0

Re indexing to lowest powers on x gives

o0

22(n+r)(n+r—1)anx"+r+z3n-l—r anz™" Zan 1zt
n=0 n=0
When n =0

2(r) (r — 1) apz” + 3(r) apz” =0
(r(2r+1))ax" =0

Since ag # 0 then r(2r +1) = 0 and r = 0,r = —1 as was found above. Therefore the
homogenous ode satisfies

22%y" + 3zy’ — 2y = (r(2r + 1)) apz”
Where the RHS will be zero when r =0 or r = —%. For n > 1 the recurrence relation is

2n+r)(n+r—1)an+3(n+r)an—an1=0

Ap—1
a, =
2(n+r)(n+r—1)+3(n+r)
. an—1 (1)
M2 4-dnr+n+2r2 41
For r = 0 the above becomes 4
_ n—1
n = 2n2 +n
For n =1 and letting ap =1 .
a; = §
For n =2
@ _a_ 1
27 8+2 10 30
For n =3 a a 1 1

BT 18+3 21 21(30) 630

And so on. Hence

E a,x"t E a,T"

=a0+a1x+a,2x + -

I P NI
= T —.’L' —x
3 30 630
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And for 7 = —3 the recurrence relation (2) becomes, and using b instead of a

bn—l bn—l

2n2+4n(—3)+n+3—3 T n—2n2

n:

For n =1 and using by = 1

For n =2

Forn =3

And so on. Hence

b g
n

( + bz + byz® + - )

1+z+ :c+1 +
90"

NS
I
1[™]8

S\ S\ S\

Hence

Y =11 + C2Y2
a1+ iot 2oy L ady vo 1tz iy Tty
T+ —x Co—= T+ -zt 4+ —x
377307 ' 630 VT 6~ ' 90
Now we find y,. Since ode satisfies
222y + 3zy’ — 2y = (r(2r + 1)) apz”

To find y,, and relabeling » as m and a as c so not to confuse terms used for y,. Then
the above becomes
222y + 3zy' — 2y = (M(2m + 1)) cpz™

The RHS is 22 + 2x. We balance each term at a time, this finds a particular solution for
each term on the RHS, then these particular solutions are added at the end. For the input
2x the balance equation is

(m(2m + 1)) coz™ = 2z

This implies that

m=1

Therefore (m(2m + 1)) co = 2, or ¢o(1(2+ 1)) =2 or 3¢ = 2 or
L2
°73

The recurrence relation now becomes (using m for  and ¢, for ap)

Cpn—1
2n2 +4nm +n+2m? +m

Cp =

For m = 1 the above becomes c
n—1

o o2 ¥ Bn+3

For n =1 and using ¢y = %

wiN
—_

T 215+3 15
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For n =2 )
e = C1 _ 15 _ 1
8+10+3 8+4+104+3 315
Forn=3 )
Co . 315 1
C3

T18+15+3 18+15+3 11340
And so on. Hence

oo o0
Yps = E ™t =1 E Crx"
_ 2
—15(00+01£L'+02x +)

=z g+i:z:—|-isr:2-i-;ac?’—i-
- "\3 15 315 11340

= 2ac+ioc2-|—Lav?’—i-;ac‘l—i-
~\3 15 315 11340

The second term 22 is now balanced z2. The balance equation is
(m(2m + 1)) cpz™ = 2°
Therefore m = 2 and (m(2m + 1)) ¢o = 1. Hence

2(4+1)) ¢y =1
1

C():E

The recurrence relation becomes for m = 2

Cn—1
2 4dnm+n+2m2+m

Cn

For m = 2 the above becomes

C. = Cn—1
" 2490410
For n =1 and using ¢y = %
e B 1
2+9+10 210
For n =2 )
Co = 01 = 2_10 prnd 1
>78+18+10 8+18+10 7560
Forn =3 )
c Co 7560 1
3

TI18+27+10 18+27+10 415800
And so on. Hence

o0 o0
= ™™ =122 ¢, z"
p2
n=0 n=0

=2%(co + a1z + oz + - -)

- 10 210 7560 415800

1 1 1 1
=(—x2+—x3+ 44 x5+--->

10 T 210" T 7560 T 415800

The particular solution is the sum of all the particular solutions found above, which is

Yp = Yp1 T Yp,

Sy (P I SR Y L . SR S
\3 15 315 11 340 10 210 7560 415800

2 1 1\ , 1 1Y\ 5 1 1 4
:§x+(ﬁ+1_o)x+(ﬁ+m)x+(—11340+%)x+”'

2

3

1
T+ -2’ + a2+ SRR

67 T126° T 4536"
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Hence the complete solution is

Y=Yt

=c 1+1$+i1}2+ix3—+— —{—CL 1+m+1x2+ix3+ +gx+1x2+ix3+i
- 3 30 630 2\/5 6 90 3 6 126 4536

Example 2
2z2y" + (z+ 1)y +3y=5

Comparing the ode to
Y +p@)y +q(@)y=0
Hence p(z) = %,q(w) = 2. There is one singular point at £ = 0. Therefore py =
(1) 2

lim, 0 zp(z) = limg_0 -5 % and gy = lim, 0 z%q(z) = lim,_ %z = 0. Hence the

indicial equation is

r(r—1)+pr+qg =0
1

r(r—1)+§r+0=0

r(2r—1)=0

Therefore 7, = 0,75 = 1.

Expansion around x = zy = 0. This is regular singular point. Hence Frobenius is needed.
Let

00
y = § : anx'n—i-r
n=0

Y= (n+r)aa

n=0

Y’ = Z (n+7r)(n+r—1)a,z"" 2

n=0

The homogenous ode becomes

2z Z (n+7)(n+r—1)az""? 4+ (z+1) Z (n+7)az" ™ +3 Z a,z"" =0
n=0 "0 e
Z 2(n+71)(n+r—1)a,z"" ! + Z (n+71)a,x™ + Z (n+7)apz™ ! + Z 34, 2" = 0
n=0 =0 s e

Re indexing to lowest powers on x gives

Z 2(7?, + T‘) (n +r— 1) anxn+r—1+z (n +r— 1) an_lxn+r—1+z (n + ,,,) anxn+r—1+z 3an_1xn+r—1 =0
n=0 n=1 n=0 n=1
Forn =0

2(r)(r—1)ag+rag)z" ' =0
2r(r—1)+71)ag=0

Since ap # 0 then the first term above will vanish only when 2r(r —1) + 7 = 0 or
r(2r — 1) = 0. Hence 7 = 0,7 = ; as was found above. For n > 1

2n+r)(n+r—1a,+(n+r—1an1+m+7)a,+3a,1=0
n+r+2
(n+7)(2r+2n— 1)an_1
(1)

anp = —
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Therefore the differential equation satisfies
2zy" + (z + 1)y + 3y = r(2r — 1) apz" " (2)

The RHS above will be zero when 7 = 0 or r = 3. When 7 = 0 the recurrence relation (1)

becomes
n+2

(n) (2n —1)

Which gives (for ap = 1) (working out few terms using the above)

ap = — Ap—1

y1=1—3x+2x2—§x3+---

And when r = % the recurrence relation is (using b in place of a and letting by = 1 also)

5
n+§

K I § GG P K

Which gives (working out few terms)

T x?

Hence the solution is

Y = C1Y1 + C2Y2

2 Tx x?
=cl<1—3x+2x2—§x3+--->+02(\/5(1—E+215+---))

Now we find y,. From (2), and relabeling 7 as m and a as ¢ so not to confuse terms used
2zy" + (x + 1)y + 3y = m(2m — 1) cpz™*

Therefore we need to balance m(2m — 1) cez™ ' = 5 since the RHS is 5. This implies
m —1 =0 or m = 1. Therefore m(2m — 1) ¢y = 5 or (2 — 1) ¢ = 5 which gives ¢, = 5.
Hence

yp — § cnl,n+m

n=0

=z g "

n=0

To find ¢, the same recurrence relation (1) is used by with r replaced by m and a replaced

by c. This gives
n—+m+ 2

(n+m)(2m+ 2n — l)cn_1

Cn = —

For m = 1 the above becomes

Cp = — n+3 C
"7 (n+1)(1+2n) "
Forn=1 o 143 __ZC__2(5)__1_0
LT T+ 3T T3 T
For n =2
2+3 1 1/ 10\ 10
(2+1)(1+4) 3 3\ 3 9
Forn=3
(o 3%3 o 3(0\_ 2. 5
T @A +6) 0 14\9) " 3V T a1

And so on. Hence



CHAPTER 4. SECOND ORDER ODE F(z,y,y,y") =0 284

o0
Yp = chnx”
n=0
=z(co+ 1z + cx® + c32° + )

10 10 )
= (5——x+—x2——333+---)

o 37Ty 21
_ 10 , 10 4 5 4
—<5x 3x+9x 21x+ )

Hence the final solution

Y=Y+ Yp
2 Tx z? 10 10 5
= 1—3 202 — 23 .. 1— = 4921 +... Bp — —x? 4+ gt — Tt
cl( T + 2z 3x+ )+\/502< 6+ 40+ )—i—(x 3a:+9:v 21x+
Example 3
2zy" +(z+ 1)y +3y ==z
This is the same problem as above but different RHS. As shown above, we obtained that
the differential equation satisfies

22y" + (z+ 1)y + 3y =r(2r — 1) apz"*

To find y,, and using m in place of r and c in place of a so not to confuse terms with the
yn, terms, then the above becomes

2zy" + (z+ 1)y + 3y = m(2m — 1) coz™ !
The RHS above will be zero when m = 0 or m = % We now need to balance the RHS
against given RHS which is «. Hence

m2m —1)cz™ ' =z
To balance this we need m — 1 =1 or m = 2. Hence 2(4 — 1) ¢g =1 or ¢y = §. Using the
recurrence relation we found above, which is for n > 1 (again, calling r as m so not to
confuse y, terms with y, terms), we obtain

o - n+m-+2 c

"7 (n+r)Cm+2n—1) "}
But now using m = 2

o - n+4

n+2)d+2n—1)""
Hence forn =1
1+4

forn =2

2T 2124 +4-10

_ 3 __3(_1\_1
T T T\ T18) T
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Forn =3
o 3+4 .
T (B+2)(4+6-1)"
7 7T/(1 1
=——62=—— _ —_——_-—_—
45 45\ 84 540
For n =4
CyL= — 4+4 c
T @+2)(4+8-1)"°
_ 44 1Y)_ 1
~ 33°%" 33\ 540/ 4455
And so on. Hence
ypzzcn$n+r
n=0
=xzzcnx"
n=0

=z’ (co+caz+cr’+---)

=2? 1—lac—l—i:ﬂ—Lac:\’—l-iac‘l-l-
o 6 18 &4 540 4455

Hence the solution is (y, was found in the earlier problem)

Y=Y+t

2 7 2 1 1 1
=cl(1—3x+2w2——m3—|—~--) —|—02<\/a_3(1——x—|—21x—+---)) +x2(——— + —g?

3 6 40 6 187 " 84

Example 4

)+ (z+ 1)y +y=>5
Expansion around x = zy = 0. This is regular singular point. Hence Frobenius is needed.
Comparing the ode to

y' +p(z)y +a(@)y=0
Hence p(z) = 8, q(x) = 2. Therefore py = lim, 0 zp(z) = lim, 0
defined. Hence not possible to solve this using series solution.

z+1
T

which is not

Example 5
22y — zyf + (1 _ xz) y = 12

Comparing the ode to

— 1—22 . . _ —
Hence p(z) = 7% = —5-,4(z) = (%2 ). Therefore po = lim,_o zp(z) = lim,0 5 = 3
)
and gy = lim,_,o z%¢(z) = lim,_,o (12—96) = % Hence the indicial equation is

r(r—1)+por+q =0
1 1

N A g
r(r ) 27‘+2 0
3 1
2—— —_ =
r 2r+2 0
1
=1.=
r 5

540

3
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Therefore r; = 0,75 = —%. Expansion around z = xq = 0. This is regular singular point.
Hence Frobenius is needed. First we find y,. Let y =) - ; a,2™*", hence

e .o]
Y=Y anz""
n=0

o0
Y= (n+r)aa™
n=0

o0
y' = Z (n+r)(n+r—1)a,z"" 2
n=0

The homogenous ode becomes

20°y" —zy' + (1—2*)y =0

27? Z n4r)(n+r—1)a,z""? xz (n+7)az" " + (1 —3°) Z apz" =
n=0 n=0 =

3 2n1) (147 = D asa™ = 3 (14 1) 0™+ D 0,0 = Y =0
n=0 n=0 "0

n=0

Re indexing to lowest powers on x gives

i2(n+r) (n+7r—1)a,z"" Z(n-i—r anxn+’“+2anx Zan Y
n=0
When n =0

2n+r)(n+r—1)ay— (n+r)ag+ag)z" =0
2r(r—1)—r+1)ax" =0
(21"2 —3r—|—1) agr” =0

Since ag # 0 then 2r2 —3r +1 =0, hencer = 1,r = % as was found above. Therefore the

homogenous ode satisfies
2%y —zy + (1 —2*)y = (2r’ —3r + 1) apz”
Where the RHS will be zero when r =1,r = % When n =1

20+r)(14+r—1)a—(14+r)ar+a; =0
20+nr(1+r—-1)—(1+7r)+1)a; =0
r(2r+1)a; =0

Hence a; = 0. For n > 2 the recurrence relation is

2(n+r)(n+r—1)a,—(n+r)a,+a, —ar2=0
n = 2(n+r)(n+ri_1)—(n—|—r)+1
2(n—|—r)(n—|—ri_1)—(n+r)—|—1
(1)

For » = 1 the above becomes

_ Qnp-2
o= (2n+1)
For n = 2 and letting ap = 1
_ ag 1
2T 9@+1) " 10
Forn =3 a
as = 0

n(2n+1) -
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For n =4 )
a9 . 10 . 1

48+1) 4(8+1) 360

a4 =

And so on. Hence

o0 o0
Y1 = E a "t =2 g "
n=0 n=0

=z(ap+ a1z +asz® +--)
2
1+ 42
<410+%0+ )

And for r =  the recurrence relation (1) becomes, and using b instead of a

b, —— bn—2
" 2ntr)(n+r—1)—(n+r)+1
. bn—2
2+ (n+i-1)-(n+i)+1
_ bn—2
n(2n—1)

Notice also that b = 0 just like a; = 0 from above. Now, for n = 2 and using by = 1

b= 0 1
7 24-1) 6
For n =3
y__ b1 1
27 28 2-8
Forn =3 b
b — — L+
T n@n-1) 0
For n =4
b, s 1

b”=4@_1y‘4@-1y‘ﬂ%

And so on. Hence

oo
Yo=Y bpz""
n=0

=\/Eanx”

=0
= V& (b + byz + bag® + )
_ Lo, 1 4
—\/5(14-61: + 1% T )

Hence

Yn = C1Y1 + C2Y2

=c 1+£f+_i+ FeE(14 e gt
- 10 ' 360 2 6 ' 168
2 2P 1
= — 1 4
q@+0+%w-)+qJ(+hx+ —az' 4+ )

Now we find y,,. Since ode satisfies
2%y —zy + (1 —2*)y = (2r* —3r + 1) apz”

To find y,, and relabeling r as m and a as c so not to confuse terms used for y,. Then
the above becomes

20y —zy' + (1—2%) y = (2m* — 3m + 1) coz™
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The RHS is z2. Hence the balance equation is
(2m* —3m +1) cgz™ = 2

This implies that

m =2
Therefore (2m? —3m+1)cg=1,0r (8—6+1)cy=1or

c 1

°7 3

The recurrence relation (1) from above now becomes (using m for r and ¢, for ay)

2(n+m)(n+mn—_21)—(n+m)+1

Cp =

For m = 2 the above becomes

Cn—2
2(n+2)(n+1)—(n+2)+1
_ Cpn—2
2245043

Cp =

For n = 1 we use ¢; = 0 the same as was found for aq,b;. For n > 2 the above is used.
Hence for n = 2

R N S |
2T 8¥10+3 8+10+3 63
For n =3
= 1g+1513 0
Forn=14 )
ca Co 63 1

T 3212043 32+20+3 3465
And so on. Hence

o0 o0
Yp = E c,x™t™ = 12 E Ccnx™
n=0 n=0

=z (co+az+cr’+--)

= 72 1+iac2+iac4+---
- 3 63 3465
_1 2 1 4
=37 T 3% T 365"

Hence the complete solution is

64 ...

Y=Y+ Y

3 4P 1 1 1 1 1
=cl(w+z—+z—+--->+02\/5<1+—x2—|——x4+~-)+(—x2+—w4+—w6+~

10~ 360 6 168 3 63 3465

Alternative way to find y, is the the following. Let y, = ¢o + c12 + c2® 4+ c32® + - - - then
Y, = C1 + 2T + 3csz? + -+ and Y, = 2cy + 6czz + - - - . Hence the ode becomes

2x2(2cg+603:1:+---)—m(cl—|—2021v—|—3c3:r2+---) + (1—x2) (co+clx+c2x2+cgm3—|—-~-)
co+ z(—cy +c1) + 2 (4cy — 2c5 + o — o) + 23(-++)

Hence cg = 0,4co —2co+co—cg=1o0or3ca—cy=1o0rc, = % We need to keep adding
more equations and solving them simultaneously. This method is not as easy to use as
the method used above, which uses the balance equation to find to y,. Also this method
could fail, since in practice we should not use undetermined coefficients method (which is
what this does) on an ode with variable coefficients. So I will not use this any more.

Example 6
2zy" +y' +y=0

T
T

2

2
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Comparing the ode to
y' +p(@)y +4q(z)y =0

Hence p(z) = o,q(z) = 5. Therefore py = lim, o zp(z) = lim,0 5 =
lim, o z%q(z) = lim,_,o § = 0. Hence the indicial equation is

% and qo =

r(r—1)+por+¢ =0
1
r(r—1)+ o7 = 0
r(2r—1)=0
1
=0 =
r 5
Therefore ry = 0,7y = % Expansion around z = xo = 0. This is regular singular point.

Hence Frobenius is needed. First we find y,. Let y =) - ; a,2™*", hence

an$n+r

b
NE

3
I
o

n+r—1

@\
I
[M]8

(n+7)ayx

3
I
o

(n+r)(n+r—1)az""?

Ss
I
NE

3
I
o

The ode becomes

zy"+y' +y=0

2xz (n+7)( n+r—1)anx”+r2+2(n+r X"t 1+Zanx =0
n=0 n=0
(e,
22 (n+r)(n+r—1)az""" l—l—Z(n—l-r ) @zt 1+Zanx =0
n=0 n=0 n=0

Re indexing to lowest powers on x gives

Y 2n+r)(n4r—1ae™ T+ Y (n4r)az™T 4 ey 7™ =0
n=0 n=0 —
When n =0

2(r) (r — 1) apz"™ ' +ragz™ ' =0
(2r(r —1)+7)apz" ' =
(r(2r —1))apz™ ' =0

Since ag # 0 then 7(2r — 1) = 0, hence r = 0,7 = ; as was found above. Therefore the
homogenous ode satisfies

2zy" +y' +y = (r(2r — 1)) apz"~

Where the RHS will be zero when r = 1,r = % For n > 1 the recurrence relation is

2m+r)(n+r—1)a,+n+7)a, =—an

—0np—1
an =
2(n+r)(n+r—1)+ (n+r)
—0ap—1

= 1
nZ2+dnr —n+2r2 —r (1)

For » = 0 the above becomes a

—Un-1

n = n(2n—1)



CHAPTER 4. SECOND ORDER ODE F(z,y,y,y") =0 290

For n =1 and using ay =1

n(2n—1) =1

a; =

For n =2

o — 1

27 233) 6
For n =3

—as —% ].

a3: = —— = ——

3(5) 15 90

And so on. Hence

oo
Y1 = E :anxn+n
n=0

2
=ao+a1x+ ax” +---

1 1
=1 T2 T3,
w+6x gox-l—

To find ys, using (1) but replacing a by b and using r = % and letting by = 1 and following
the above process gives

. _bn—l _ bn—l
it () —n+2(}) -} 2An
Forn=1 ; )
by = —9 — _ =
! 3 3
For n =2
b b !

n=0
(bo + biz + boz® + - - - )

3 30

I
DR

Therefore the solution is

Yy =cy + 2
1 1 1 1
=01<1—x+ax2—%x3+--'> +cz(ﬁ(1—§x+%w2+n-))

Example 7
dzy” + 3y + 3y =
Comparing the ode to
y" +p(@)y +q(z)y =0
Hence p(z) = 2,q(z) = 2&. Therefore py = lim, o zp(z) = lim,,03 = 3 and ¢ =
lim,_,o qu(x) = limx_,o%‘” = 0. Hence x = 0 is regular singular point. The indicial
equation is

r(r—1)+por+qg =0

3
r(r—1)+1r+0=0

r(r—1)+§lr=0
1
T_Z’O
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Frobenius is now used. Roots differ by non integer. First we find y,. Let y = >~ @,z

00
y = E :anwn+w
n=0

o0
Y= (n+r)aa

n=0

y' = Z (n+7r)(n+r—1)a,z"" 2

n=0

The homogenous ode becomes

dz Z (n+r)(n+r—1az""2+3 Z (n+7)a,z" " +3 Z a4,z =0

n=0 n=0 —
Z 4n+r)(n+r—1)a2"" ! + Z 3(n+71)a,z™ "+ Z 30,2 =0
n=0 n=0 =0

Re indexing to lowest powers on x gives

S A4 (47— 1) ae™ "+ Y 34 r) ad™ T+ Y 30, 02" =0

n=0 n=0 n=1
When n =0
4n+r)(n+r—1)a 2" +3n+1r)a " =0
4r(r — 1) ag + 3rap =0
(4r(r—1)+3r)ag=0
Since ag # 0 then 4r(r — 1) 4+ 3r = 0, hence 7 = 0,r = 1 as was found above. Therefore
the homogenous ode satisfies
4zy” + 3y + 3y = (4r(r — 1) + 3r) apz"*
Hence the balance equation is that we will use to find the particular solution is
(4m(m — 1) + 3m) cez™ ' = Vx

We will get back to the above after finding y,. Going over the same steps as before, we
find the recurrence relation

3an_1
An2+8nr+4r2 —n—r

Ap = —

For r = i, n > 0 and similarly
3an—1
an?+8nr+4r2 —n—r

For r = 0,n > 0. Finding few terms using the above gives the solution as

n

yn = a1y () + coya(z)
1 3 1 1 3 3
—cizi|l1=2 Sl S T 1— il Sy S
clx4< 5z+10x 13030 + )—I—cz( w+14x 15435 +

Now we need to find y,. From the balance equation
(4m(m — 1) + 3m) coz™ ! = V/x

Hencem—1 = orm = 3. And (4m(m — 1) + 3m) co = 1, hence (4(2) (3 - 1) +3(3)) o =

1, which gives ¢y = 1% Therefore

=x%(co+clx—|—czx2+---)

T
=T 15 1T Co
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We now just need to determined c, for n > 0. For this we use the same recurrence relation
as found above. We can use a,, or b, as they are the same, but change a,, to ¢, and r to c
(so not to confuse notations). This gives

_ 3cn—1
T T4y Snm+4m? —n—m
For n > 0 and m = % Hence for n = 1 the above gives
3co
CclT = — 3
18+ (D713
__ 3(3%)
18 (5 +4() -1
__4
225
For n =2
_ 301
1@’ +8@) () +(5) -2~ (3)
__ (=55)
12 +8(2) (3) +4(3)" -2~ (3)
8
6825

And so on. Hence

Nl

X

2 2
Yp — +CT+ Cox" + -

15

Nl

T E—ix-l-ia?— 16 z* +
15 225 6825 348075

Hence the complete solution is

Y=YnTYp

3 1 1 3 3 2 4 8 .
clx}i(l——w—l——xz——m?’—l—---) +02<1—x+—z2——x3—|—---)+z2(———x—|——x‘

|

5 10 130 14 154 15 225 6825

Roots of indicial equation differ by integer. Good case ode internal name "sec-

ond_ order_ series_ method_ regular_singular_point_ difference_is_integer good_ case'.

In this case the solution is
Y =11 + CaYo

There are two sub cases that show up when roots differ by integer. First sub case is
when the second solution y; is obtained similar to how y; is obtained. i.e. using standard
Frobenius series but with the second root. The second sub case is the harder one, this is
when ¥, fails to be obtained using the standard method due to by being undefined where
N is the difference between the roots. In this sub case we need to use a modified Frobenius
series method where, which is explained more using examples below. Therefore for sub
case one (called the good case) we have

o0
Y1 =) a,z™"
n=0

oo
Yo = E bzt
n=0
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For the second subcase (called the bad case) first we will find the bad root r of the indicial
equation which causes the recurrence relation to become undefined at some n. Call it 7444,
then we first find ¥ defined as

|

o0
=z Z (r — Thaq) Anx"
n=0

Where a,, is found using the recurrence relation (but r is kept symbolic). y; is then found
from by evaluating it 7 = rpeq

V1 = Yr=ryy

And also setting ag = 1. Note that some terms will vanish above but not all, since there
will be cancellation of (r — ry,4) during the process. y, is next found using

— d 1
T=Tbad

=yiln(z)+ 2™ ) <%((r — Thad) anx"))

n=0 T=Tbad

Example 1

(z—2%)y" + 3y + 2y = 32?
Comparing the above to y” + p(z) ¥’ + g(z) y = 0 shows that p(z) = (1 704 q(z) = e 1).
Hence there are two singular points, one at £ = 0 and one at £ = 1. Let the expansion be

around x = 0. This means the solution will define up to z = 1, which is the next nearest
singular point.

Po = hm xp(z') = l%wﬁ =3

And
= lim x2—2 =0
O=0" 2 (1—1x)

Hence xy = 0 is a regular singular point. The indicial equation is

r(r—1)+por+qg=0
rir—1)+3r=0

r—r+3r=0
r’+2r=0
r(r+2)=0

Therefore r = 0,7 = —2. They differ by an integer N = 2. Therefore two linearly
independent solutions can be constructed using

00
y1=) apz"™"
n=0
o0
Y2 = Z bna;n—i_r2
n=0

Where C above can be zero depending on a condition given below. Now we will work out
the solution for a general r. Let

o)
y = E :anmn—l—'r

n=0

(o)

Y=Y (n+r)aa™
n=0

y' = Z (n+7r)(n+r—1)a,z"" 2
n=0
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The homogeneous ode becomes
(z—2")y"+3y +2y=

(n+r)y(n+r—1az""?+3 Z (n+7)a,z" 42 Z a,z"" =

NE

(@~ a?)

n=0 n=0 n=0
Z (n+r)(n+r—1)az"" ! - Z m+r)(n+r—1)a,z""" + Z 3(n+71)az"t ! + Z 2a,z™" =
n=0 n=0 n=0 n=0
Re indexing to lowest powers on x gives
Z (n+r)(n+r—1) anx"”_l—z n+r—1)(n+r—2) an_lxn+r_1+z 3(n+r) anx"+r_1+z 2a,,_1:
n=0 n=1 n=0 n=1
(1A)
Forn =20
(n+r)(n+r—1)a,z"" 1 +3(n+r)az"" =0
(r(r—1)+3r)apz" ' =

(r*+2r)az™ ' =0 (1B)

Since ag # 0, then » = 0,7 = —2 as was found above. Hence N = 2 which is the difference

between the two roots. The homogenous ode therefore satisfies
(z—2%)y" +3y +2y = (r’+2r) apz" "

Since when r = 0,7 = —2 the RHS is zero. The term on the right of the above is important
as it will be used to determine the particular solution. The recurrence relation is when
n > 1 from (1A) and is given by

(m+r)n+r—1a,—(n+r—1)(n+r—2)ap1+3(n+7)an+2a,1 =0

Keeping larger a,, on the left and all lower a,, on the right gives

-2+ (n+r—-1)(n+r—2)

ay = —
(m+r)(n+r—1)+3@m+r) "
n+r—3
_nrree, 1
Iy r 2t (1)
Now we find y,, = 131 + coy2. For 7 = 0 then (1) becomes
n—3
n — . adn— 2
¢ n—|—2a ! (2)
For n =1 and letting ap = 1 then (2) gives
1-3 -2
a; = = —
"T1+427°7 3
For n =2 Eq. (2) gives
2—-3 2—-3/-2 1
ag = = " (Z)==Z
7242 242\ 3 6
For n =3 Eq. (2) gives
a —3_3a 0
ST 3427

And all other higher a,, = 0. Hence

o0
Y= g anx"
n=0

=a0+a1x+a2x2
2 1

=1-—Zz+ =22
3x+6x
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Now we need to find y,. We first check if y, can be found using standard method as was
done above for y;. For this we calculate by = b, using same recurrence relation (1) to see
if it is defined or not. If it is defined, then we continue, else we have to use the modified
Frobenius method. From (1) and using b instead of a and using r = ro = —2 gives

n+r—3

n4+r+2 "t
_n—2—3b
T p—242 !t
-5
_n—bn—l
n

b, =

Hence for n = 1 and using by = 1 as we did for ag gives

by = —4by = —4
Forn=N=2 _3

b,=—b =6

5 1
Since by is defined, we can continue and y, is found using same recurrence relation. Hence
this is subcase one. For n = 3
-2

b3 == ?bz - —4
Forn =4 1

by = Tb;g =1
And so on. Hence

1 -,
Y2 = ﬁ Z bnx
n=0

1

= (bo + b1z + byz® + b3z® + byz?)
1

= —2(1 — 4z + 622 —43:3+x4)
T

Therefore

Yn = C1Y1 + C2Y2

2 1 1
:c1<1— gx—l—gzz) +02(p(1—4x+6x2—4x3+x4))

Now we find y,. From earlier we found in (1B) the balance equation which gives
(z—2%)y" +3y +2y = (r*+2r) apz" "
Relabeling r as m and a as ¢ so not to confuse terms used in finding y;, the above becomes
(z—2*)y" +3y +2y = (m* +2m) cez™ "

Therefore we need to balance (m? + 2m) coz™ ! = 3z?%. This implies m —1 =2 or m = 3.
Therefore (m? + 2m) co = 3 or (9 + 6) ¢y = 3 which gives co = = = . Hence

o)
_ n+m
Yp = § CnT
n=0

o0
=3 E Cnx"
n=0

To find ¢,, the same recurrence relation given in (1) is used again but now r is replaced
by m and a replaced by c. This gives the recurrence relation to find coefficients of the

particular solution as
_n+m-—3

A
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For m = 3 the above becomes

. _n+3—3C
n_n+3+2n—1
n—i—5n1
Forn=1
1 /1)y 1
“A=6°"6\5) " 30
For n =2

And so on. Hence

=z’ (co+ 1z +cox® + -+ -)

:E3 1+lx+ix2+...
5 30 105

Hence the final solution

Y=Yn+Yp

2 1 1 1 1 1
=cl(1 — §x+6:c2> +cz(ﬁ(1—4x+6z2—4x3—l—w4)> + (gm?’—l—%x‘l—kﬁﬁ—l—---)
If we try to find y, by assuming y, = > -, c,z" and substituting into the ode and try to
match coefficients, we can not always be successful. The above method using the balance
equation always works and that is what I am using in my solver.

Example 2
4z%y" + dzy + (42 — 1)y =0

Comparing the ode to
¥ +p(@)y +q(z)y=0

Hence p(z) = %,q(m) = 4”5;;1. Therefore py = lim, o zp(z) = lim, ,01 = 1 and ¢y =
lim, o 2%q(z) = lim,_,o 4’”24_1 = —1. Hence the indicial equation is

r(r—1)+per+qg =0
rr—1)+r—-=

N =

Therefore 7y = 1,70 = —3.

Expansion around x = 0. This is regular singular point. Hence Frobenius is needed. Let

o0

y=> az"""
n=0
o0

Y= (n+r)aa™

n=0

Y’ = Z n+r)(n+r—1)a,z"t 2

n=0
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The ode becomes

472 Z (n + ’I") (TL +r— 1) anmn-l-r—? + 4z Z (n + 7-) anxn-l-r—l + 472 Z anl,n+r _ Z anx"""" -0
n=0 =0 —~ —
Z An+71)(n+r—1) a ™"+ Z A(n +71) 4,z 4+ Z4anxn+r+2 . Z 4,z =0
n=0 n—0 = o
Z Amn+r)(n+r—1)+4(n+r)—1)a,z"" + Z da, ™2 =
n=0 p—
Z (477,2 + 8nr 4 4r% — 1) a2 + Z da, "2 = 0
n=0 =0
n=0 n=0

(1)

Re indexing to lowest powers on x gives

Z (4(n + r)2 — 1) a, ™t + Z 4a, _x"" =0 (2)
n=0 n=2
n = 0 gives
(47 = 1) apz" =0
Since ag # 0, then r; = %, ro = —% as was found above. The ode therefore satisfies
4z%y" + 4y’ + (42 — 1) y = (4r° — 1) apz”
Since when r; = 3,7, = —% the RHS is zero. When n =1 then (2) gives

(41+7)°-1)a =0 (3)
The recurrence relation is when n > 2 from (2) is given by

(4(n + 1‘)2 — 1) a, +4a,_5=0
4
dnt+r)P—1""

(4)

an

Since roots differ by an integer N = 1 then there two linearly independent solutions can
be constructed using

yp=2z" Z anz"
=0
y2 = Cy; In (x) 4+ z™ Z b,x"
n=0

C above can come out to be zero. We start by finding y; (the one with the larger r).

Now, using 7 = . For n =1 and from (3)

(023 )

8&1 =0
a; = 0
From n = 2 from (4) and using r = 3 it becomes
a -4 a
n — n—2
4(n+ %)2 -1
1
= Ap—2 (5)

n2+n
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For n = 2 then (5) gives (and using ap = 1)

1
az = — 0o
1
G
For n = 3 Eq (5) gives
1
as = _Eal
=0

For n = 4 Eq (5) gives

And so on. Hence

()

1

U = E anxndl—2
n=0

=x%(a0+a1m+a2x2+a3x3+a4x4+--~)

1 1
- 1— 224 — 44 ...
VT ( 6% t1e% t+ )
Now we need to find y,. We first check if y, can be found using standard method as was
done above for y;. For this we calculate by = b; using same recurrence relation (1) to see

if it is defined or not. If it is defined, then we continue, else we have to use the modified

Frobenius method. From (1) and using b instead of a and using r = ry = —% gives
1\ 2
441—=-) =16 =
0by =0
Hence b, is arbitrary. Let b; = 0. Since by = b, is defined, we can continue and y, is found
using same recurrence relation. Hence this is subcase one. From (4) and using r = —1 it
becomes
—4
bn = 2 bn—2
4 (n — %) —1
1
=—— b, 6
nn—1) "2 (6)
For n = 2 Eq (6) gives (and using by = 1)
1
by = ————=b
T 2(2-1)"
1
-2
For n = 3 Eq (6) gives
1
by = — b
5T 3(3-1) "
=0
For n = 4 Eq (6) gives
1
by = — b
YT aa—-1)?
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And so on. Hence

Yo = Z bnajn_%
n=0
=
\/E

bo+b1$+b2£€2+"‘)

Therefore the final solution is
Yy = c1y1 + Col2

1 1 1 1 1
— 1— g2+ — 244 ... (1 ==+ =2t
cn/i( 6% T1p% T )+c2\/5< 5T T g%+

Example 3

y'+y +y=vz
This ode is here because the RHS has no series expansion at £ = 0. Comparing the ode
to

Y +p(@)y +q(z)y=0
Hence p(z) = 1,q(z) = 1. Therefore py = lim, ,gzp(z) = lim, oz = 0 and ¢y =
lim,_,0 z2q(z) = lim,_,o > = 0. Hence the indicial equation is

Therefore r1 = 1,79 = 0.

Expansion around z = 0. This is regular singular point (due to the RHS not having series
expansion). Hence Frobenius is needed. Let

o0
y= E an,x™t"
n=0
o0
y = E (n+7)az" !
n=0

y' = Z (n+7r)(n+r—1)a,z"" 2

n=0
The ode becomes
Y (ntr)(n+r—1) a2+ (n+r)aa" T+ aa™ =0 (1)
n=0 n=0 n=0

Re indexing to lowest powers on x gives

Z (n+r)(n+r—1)az"" 2+ Z (n+r—1)a,_1z"" 2+ Z a2z 2 =0 (2)
n=0 n=1 n=2
n = 0 gives

r(r—1)apr" 2 =0
Since ag # 0, then r; = 1,75 = 0 as was found above. The ode therefore satisfies

y// + y/ + y= ’l”(?" . 1) aol,r—Z

When n = 1 then (2) gives

(1+7)(r)as+rag=0
—ay
147

3)

a)p =
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The recurrence relation is when n > 2 from (2) is given by

m+r)(n+r—1a,+(n+r—1)ap_1+a,—2=0

_—(n+r—1a,1—a,
W=t mer—1 Y

Since roots differ by an integer N = 1 then there two linearly independent solutions can
be constructed using

o0
yp =" E a,T"
=0

y2 = Cyy In (x) 4+ z™ Z b,x"

n=0
C above can come out to be zero. We start by finding y; (the one with the larger r).

Now, using 7 = 1. For n = 1 and from (3) and using ay = 1 gives

_ao

@=5
-1

a; = —2

From n = 2 from (4) and using 7 = 1 it becomes

a4 = —2&1—&0 _ —2@1—&0 _ —2(_71) -1 —0
(2+1)(2) 6

(=)

For n = 3 then (5) gives

_ —Baz—a  —a —(3) 1
ag = = = = —

B+1)(3) 12 12 24

And so on. Hence

0o
N = E an$n+1
n=0

= z(ao + 12 + a2z® + a3z® + asz* + - )

11 1
=z|l1-2Z iy SV T
m( 2"t 2o” T10” )

Now we need to find y,. We first check if y, can be found using standard method as was

done above for y;. For this we look at a; = 1_—4‘_‘2 and see this is defined for r = 0. Next

_("(J;:}))(‘:L’_‘;Tl__l';"” and see this is also defined for

r = 1. Hence C = 0 and we can find y» using same series expansion and using by = 1.

by -1

we look at the recurrence relation a, =

For n > 2 we have
—(’I’L +7r—- ].) bn—l — bn_2

b, =
(mn+r)(n+r—1)
Which for r = 0 becomes ( b ;
= —=1)by1 — by
b = n(n—1) (5)
For n =2
b =—(2—1)b1—b0=—(2—1)(—1)—1=0
2 2 2
For n =3

b —B-Db—b _1
5~ 33-1 6
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For n =4

—(3) b3 — by _ —(3) (%) _ _i
4(3) 4(3)

by =

And so on. Hence

oo
Yo = 2 bn.'L'n+0
n=0

= (b0+b1a:+b2x2+)

1 1
=l-z+_2°— 2+

6 24
Therefore yy,

1-toqte2o Lasy +
=cr|l—zx+ 72— —2°+--- c
! Y 120 2 24

Now we find y,. From above y” + 3 +y = 7(r — 1) apz" 2, and relabeling r as m and a as
¢ so not to confuse terms used

Yn = C1Y1 + C2Y2
1 1
1—x+6z3——x4+~~)

¥ +y +y=m(m—1)cz™?

Therefore we need to balance m(m — 1) cgz™ 2 = z2 since the RHS is /z. This implies
m—2= % orm = g Therefore m(m — 1) cp = 1 or g(g—l)c()z 1, ¢ = % Hence

yp — Cn xn-l—m
0

n=
o0
5
=x2 5 "
n=0

To find ¢, the same recurrence relation (4) is used by with r replaced by m and a replaced
by c. This gives

. _—(n+m—-1)ch1 —Cpo
" (n+m)(n+m-—1)
_—(n+g—1)cn_1—cn_2
- (3 (n+3-1)
_ %cn—1+cn—2+ncn—l

(2n+3) (2n +5) (6)

The above is only for n > 2. For n = 1, using a; =
gives

v and replacing a by ¢ and r by m

'R 8
Cl frd = = —
1+m 1+ (g) 105
For n = 2 from (6)
L datatia (38 A28
(44+3)(4+5) (44+3)(4+5)
F =3
o 3¢y +c1 + 3c -5 32
c3 = —4-2 =—4 105 =
(6+3)(6+5) (64+3)(6+5) 10395
And so on. Hence
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=x%(co+cla:+czx2+-~)

- 15 105 10395

Hence the final solution

Y=YntYp
1 1 1 1 1 s (4 8
= 1—— —2__3 “ e ]__ _3__4 e 2| — — —
clx( 2" T 10" >+CQ( P Tt T )T\ T 1050
Roots of indicial equation differ by integer. Bad case ode internal name "sec-
ond_ order_ series_ method_ regular_singular point_ difference_is_ integer bad_ case".
The description is given above. Only examples are given below.
Example 1
Y +zy + (22 —4)y=0
Comparing the ode to
y' +p(@)y +4q(z)y=0
Hence p(z) = %,q(x) = xi;‘*. Therefore py = lim,_,0zp(z) = lim, 01 = 1 and gy =
lim,_,0 z2q(z) = lim,_,o > — 4 = —4. Hence the indicial equation is
r(r—1) +por +qo =0
rr—1)+r—4=0
r’—4=0
r=2-2
Therefore ry = 2,7 = —2. Expansion around z = 0. This is regular singular point. Hence

Frobenius is needed. Let

o0
Y= E anx™t"
n=0

y = (n+r) ™

n=0
oo

y' = Z (n+r)(n+r—1)az" 2

n=0

The ode becomes

7’ Z (n+r)(n+r—1az"" 2 +z Z (n+7) az™ ! + (2 — 4) Z 4,z =0
n=0

n=0 n=0
) 0o ~ ~
Z (’I’l + 7') (n +7r— 1) anx"“LT + Z (n + ’I‘) anx”-H‘ 4 5112 Z anxn—f-?" _ 42 anxn-l—w' =0
n=0 n=0 0 e
) oo o -
Z (m+r)(n+r—1)a,z""" + Z (1 + 1) anz"™" + Z a,z" T Z4anxn+r -0
n=0 n=0 =0 —

Z (n+r)(n+r—1)+(n+7)—4) az™" + Zanxn+r+2 -0
n=0

n=0

32
10395
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Re indexing to lowest powers on x gives

(n+r)(n+r—1)+ (n+7)—4) a,z"" + Z an—2z™t" =0 (2)
n=0 n=2
n = 0 gives
(rr=1)+7r—4)apz" =0
(r* —4) apz" =0
Since ag # 0, then 7> = 4 or r; = 2,7, = —2 as was found above. The ode therefore
satisfies

2y 4oy + (22— 4) y = (r? — 4) apa”
Since when r; = 2 or ro = —2 then the RHS is zero. When n = 1 then (2) gives

(A+7r)r+(1+4+r)—4)a; =0
(r’+2r—3)a; =0
Hence
a; = 0
The recurrence relation is when n > 2 from (2) is given by
(n+r)(n+r—1)+Mn+r)—4)a,+a,2=0

(DI e

n = (4)
We check first if this is subcase one or two. To do this, we check if the recurrence relation
is defined for both roots for all n > 2. The above for r = 2 gives

—Qp_2 la,»

T+ (n+2—1)+(n+2) —4) nn+d

We see that it is defined for all n > 2. Now we check the other root ro = —2. (4) now
becomes
_ —Qp—2 _lapo
T n—-2)(n—3)+(n—2—4) nn-—4
We see that this is the difficult root as at n = 4 it is not defined as it gives 1/0 error.

Hence

Thad = —2

Therefore this is subcase two. For this case we do the following. We first find the solution
using symbolic r using (4), and at the end replace ag by (r — rpaq) bo = (r + 2) bg. From
(4) and for n = 2

—ay _ 1 a
(Q+r)Q+r)+2+1)—4)  rr+4

a9 =

Since a; = 0 then all odd a,, = 0. For n =4

—1.ao
—Qa2 as rr+4 1 ap

ay = - :_(r+6)(r+2) r(r+4)(r+6)(r+2)

(A+7r)B+r)+(A+r)—4)  (r+6)(r+2)

For n =6

—Qy Qa4
ag = [

(6+r)(5+71)+ (64+7)—4) (r+8)(r+4)
1 a
_ _ I (r+4)(7‘—£6)(r+2)

(r+8)(r+4)
1 ap

r(r+8)(r+4)(r+4)(r+6)(r+2)
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And so on. Hence

y=2a"(ao+ axz® +asz* +---)

=2z"a (1—1 ! :162+1 1 x4—1 1 x6+...)
T rr+4T T e+ +6)(r+2)  r(r+8)(r+4)(r+4) (r+6)(r+2)

Replacing ag by bo(r — 7eq) Or bo(r + 2) the above becomes

_1rt2) 5 1 (r+2) i1 (r+2)
rr+d T rr+4)(r+6)(r+2)" r(r+8)(r+4)(r+4)((g)—|—6)(r—|—2)

y:w’"bo((r+2) z® + -

Now

1(r+2) , 1 (r+2) s 1 (r+2) 6
rrtd 6 (r+2)  rr+8) A+ (r+6)(r+2)

2 (1 1 1;4_1 1 :EG-I--'-)
7 N\r(r+4)(r+6) r(r+8)(r+4)(r+4)(r+6) r=—2

We can removing the leading —%6 since it will be absorbed by the c¢; constant. Hence

1
ylzcl(z2—ﬁz4—...>

_ (%
2= dr ) _
T=Tbad

Notice the derivative is evaluated also at the bad root r = rp,q = —2 same as for y;. Hence,
and using by = 1 and using (5) the above gives

Now we find y, using

_ r 1(7""‘2)21 (r+2) m4—1 (r+2) 8
y2‘%<“’(("+2)_h+4”’ r(r+4)(r+6)(r+2). rr+8) (r+a)(r+4)(r+6)(r+2)
. .4 10+, 1 42 1 (r+2)

_yr=—2l“"”+xdr<(r+2) rrtd T Tt )16 (42"t 48 +4)(r+ ) (r+6

But
= yr=—2

Therefore, evaluating all the derivatives gives

2 1 n l + _— _— 4 6 .
r=—2

2 z ¥ 2 2T 3, 5 5T
r2(r+4) T4 (r2 4+ 107 + 24) r2(r+4)° (r?2 + 14r + 48)

1 1 11
— 1 —2 1 T2 4 T 6
y1lnz+2x < —|-4m +64x 2304x +

Hence

=y lnz+ 1+i-i-i362——11 zt +
Y2 =4 47 2T 64" T 2304
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Therefore the final solution is

Yy =11 + Coyo

1
:cl(xQ—Ex4—...)
1 1 1 11

L 4 !
+cz(ln(z) (x 5% )+(4+ +64 53047 + ))

Example 2
zy’' =3y +zy=0

Comparing the ode to

¥ +p(@)y +q(z)y=0
Hence p(z) = =3,q(z) = 1. Therefore py = lim,,0zp(z) = lim, o (—3) = —3 and
go = lim,_,0 72q(z) = lim,_,o > = 0. Hence the indicial equation is

r(r—1)+pr+qg =0

r(r—1)—3r=20

r2 —4r =0
r(r—4)=0
r=0,4

Therefore r; = 4,7, = 0. Expansion around xz = 0. This is regular singular point. Hence
Frobenius is needed. Let

o0
y=> az"""
n=0

e o]

Y= (n+r) e
n=0

Y’ = Z (n+7r)(n+r—1)a,z""?
n=0

The ode becomes
zy’ — 3y +zy=0

(n+r)(n+r—1)az"? 32 (n+ 1) anz™ 2> 4™ =0

M

n=0 e
S (041 (7 = D aa™ = 3 8 +7) a0+ 3 4, =0
n=0 n—0 =0

Re indexing to lowest powers on x gives

Z n+r)(n+r—1)az"t 23 (n+7)a,z™t" 1+Zan 2" =0 (2
n=0

n=0 n=2
n = 0 gives
r—1 r—1 __
r(r—1)apz"™ —3rapz" " =0

(r(r—4))agz™ ' =0

Since ag # 0, then r(r —4) = 0 or r; = 0,75 = 4 as was found above. The ode therefore
satisfies

zy’ — 3y +ay = (r(r —4))apz""
Since when r; = 4 or ro = 0 then the RHS is zero. When n = 1 then (2) gives
(1+7)(r)a; —3(1+7)a; =0
(r*—2r—3)a; =0
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Hence
a; = 0

The recurrence relation is when n > 2 from (2) is given by
m+r)(n+r—1a,—3n+r)a,+a,2=0

(n+7‘)(n+rj_1)—3(n+r)

an =

(4)
We check first if this is subcase one or two. To do this, we check if the recurrence relation
is defined for both roots for all n > 2. The above for r = 4 gives

—Qp—2 __lan—Q
(n+4)(n+3)—-3(n+4) nn+4

an =

Which is defined for all n > 2. Checking the second root r = 0 gives

—0p—2 1 Ap—2
a, = [

n+0)(n+0—-1)—3(n+0) nn—4

Which is not defined for n = 4. Hence this is subcase two, where y, does not exist using
standard method. Hence
Tbad = 0

For this case we do the following. We find the solution using symbolic r and replace aq by
(r — Tpaq) bo. From (4) and for n = 2
—Qo ap

a2: =

2+r)(1+r)—302+r) r2—4

Since a; = 0 then all odd a,, = 0. For n =4

ag

_ —ay = ao
U@ @rr—D—3E+r) rr+4) rFr+4 (-4
For n =6
—_— @
ag = —Q4 _ (49—
6+7r)5+7)—3(6+7) r2+8r+12
—ag

(24 8r+12)r(r+4)(r2 —4)

And so on. Hence

y=2"(ao+ axz® +asz* +---)

T 1 2
=xa0(l—r2_4x +

4 ]‘ 6
82— (P 8r+12)r(r+4) (2 —4)" +>

Replacing ag by bo(r — r2) or bor since ro = 0, the above becomes

= r r 2 1 4 1 6
y:“(’(’"‘ﬂ—ﬁ T T —0" T PErsr 1214 (-9 +)
(5)
Now
Y1 = Yr=ryoy
:gr=0

1 4— 1 1'6 PR
:”°(<4> 9" T @” T )

_ 1 4 1 6
—”0<‘E1‘ Tt )
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But by = 1. Hence

We can removing the leading —7; since it will be absorbed by the c; constant. Hence

1
y1=01<$—ﬁ.’ﬂ+ )
1
=z (1-—
xcl( 12x + -

_ (%
Y2 = dr /). _
T=Tbad

Notice the derivative is evaluated also at root r = 14,4 = 0 the same as for y;. Hence, and
using by = 1 and using (5) the above gives

Now we find ¥y, using

_4 o R —— = Tt — ! % +
2= ar r2 —4 (r+4)(r2—-4) (r2 + 8r +12) (r +4) (r2 — 4) —0

=7 lnx—i—zi r— r z? + L zt — L z% +
— Yr=0 dar\' =4 T+ (=4 (218 +12)(r+4) (r2—4) o
(r*+4) , 3r2 +8r —4 4 1 5r%+38r2 +44r — 88 5

=7,_oInz + 2° <1—|— x° — x"+
Yr=0 (r2 — 4) (r3 + 472 — 4r — 16)° (r+2)° (r3+8r2 + 4r — 48)?

=Y,—olnz + 1+1:c —i—iw—ix—i-
— Yr=0 17 T 64 T 2304

But
Yr=0 = Y1
Therefore
1 1 11 5
y2=y11nz—|—(1+4x —I—a —m -|-)

The complete solution is

Y =y + Yo
1
4 2
— 1— —
xcl( 12x + )

1 1 1 11
1 41— 24 ... 1 ot T
+cz(nx<x< 1236 + ))—i—( +4z +64 2304 + - ))

Example 3
2y + (2 —2z)y' +2y =0
Comparing the ode to
y' +p()y +q(@)y=0

Show that p(z) = (2?~22) (x 2) ,q(z) = x% Therefore py = lim,_,o xp(z) = lim,_,o (z — 2) =

2 =
—2 and qg = lim,_,o z%q(z) = hmw_m 2 = 2. Hence the indicial equation is

r(r—1)+por+qg =0

r(r—=1)—2r+2=0

r*—3r+2=0
r=2,1
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Therefore r; = 2,7, = 1. Expansion around xz = 0. This is regular singular point. Hence
Frobenius is needed. Let

00
y = § : anwn—i-r
n=0

o0

Y= (n+r)az™t !
n=0
y' = Z (n+r)(n+r—1)a,z"" 2
n=0
The ode becomes
2’y + (2 —2z)y' +2y =0
2 Z (n + r) (n +r— 1) anmn—‘rr—Q + (l,z _ 2x> Z (n + 7‘) anxn+r—1 +2 Z anm"H -0
n=0 =0 p—
Z (n+7)(n+r—1)a,2"" +2° Z (n +7) apz™ ! — sz (n +7) apz™ L + Z 924, 7"" =0
=0 n=0 n=0 n=0
Z (n+r)(n+r—1)a,z""" + Z (n+71) gzt — Z 2n + 1) ang™" + Z 24, 2"" =0

Re indexing to lowest powers on x gives

NE

(mn+r)(n+r—1) anw”+T+Z (n+r—1) an_lw"‘”—z 2(n+7) anx”""’—i-z 20,z =0
n=1 n=0 n=0
(2)

3
Il
=}

n = 0 gives
r(r — 1) apx” — 2rapz” + 2a9x” =0
(r(r—1)—2r+2)apz" =0
(r* —3r+2)apz" =0
Since ag # 0, then 72 —3r +2 = 0,0r r; = 2,75 = 1 as was found above. The ode therefore

satisfies
2y’ + (2* — 2z) y' + 2y = (r* — 3r +2) apz”

Recurrence relation is when n > 1. From (2)

m+r)in+r—1a,+(n+r—1)a,—1 —2(n+r)a, +2a,=0

Therefore
o = (n+r—-1)
" (n4r)n+r—1)—2m+r)+2
1
= ——n +T — 2an_]_ (3)

We check first if this is subcase one or two. To do this, we check if the above recurrence
relation is defined for both roots for all n > 1. The above for r = r; = 2 gives

1
Gp = ——QAp—1
n

Which is defined for all n > 1. Checking the second root r = 1 gives

1
n—1

ap = — ap—1

Which is not defined for n = 1. Hence this is subcase two, where y, does not exist using
standard method. Hence
Tbad = 1
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For this case we do the following. We find the solution using symbolic 7 and replace ay by
(r — Tpag) bo. From (3) and for n =1

_ 1
a; = r_lao
F =2
or n 1 1
Ay = ——Q1 = —Q,
T (-1
For n =3
1 ao
Q3 = ————Qy = —
T r+1 T (N =1)(r+1)
For n =4
1 Qo
a4:— 3=
2471 (r)(r=1)(r+1)(r+2)

And so on. Hence

y=2"(ao+ a1z + ax® + )

=z"a (1— L x+ L ! z3 + L x4—---)
’ 1T WD We-De+)”  Oe-Dr+)r+2)

)
Replacing ag by bo(r — rpeq) 01 bo(r — 1) since rp,q = 1, the above becomes
(

T r— (T_l)m r—1) 72 (r—1) 73 (r—1) 2
y= bo(( 1) - r—1 +(r)(r—1) ()(r—l)(r+l) +(r)(r—1)(r+1)(r+2)
r 1, 1 3 1 4
=z bo((r—l)—x—l-;a: —mx +r(r+1)(r+2)z _) (5)
Now
Y1 = Yr=ry,,
=Yr=1
e_las, 1 4
=oto(o 4~ g )
2 ]‘ 3 ]‘ 4
=xb0<—x+x —2x —|—6x )

But by = 1. Hence

1 1
y1:$<—$+l’2—§$3+61‘4—"')
1
= -2’ +2° - Ja' 4 2o

Now we find gy, using

_ (%
Y2 = ar )
T=Tbad

Notice the derivative is evaluated also at root r = rp,q = 1, the same as for y;. Hence, and
using by = 1 and using (5) the above gives

d 1 1 1
_a( r 1) — Lo 13 4
Y2 dr(xbo((r ) ac—i—rx 1"(7“+1)x +r(7‘+1)(r+2)$ >)r=1

d 1 1 =
. ,’,:1_ _ _ L 2_ 4_...
=Y, Inz+z dr((r 1) T+ r(r +1)x + r(r+1) (r—|—2)x )r—l
_ d L, 1 3 L 4
_yllnx—i-xdr((?” 1) :L'-I-TCL' r(r—l—l)x +r(7--{-1)(7‘—|—2)x )Tzl

1 1 2 1 1 3r2+6 2
_yllnx—i—l‘(l__2$2+_2L2m3__2Lr—|_2x4_...)
r e (r+1) r*(r24+3r+2) 1

11
Zyllnx+x(1—x2+zx3—%x‘l_...)
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Therefore

3 11
y2=yllnx+(x—x3+zx4—%x5—---)

The complete solution is

Yy =c1y1 + C2yY2

1 1
ot Lt )

1 1 3 11
+62<lnx(—x2+x3—§z4+éx5—---> + (w—x3+1x4 %:ﬁ—))

Example 4

Y

(@—-1)y" +ay' +~ =0

Comparing the ode to
y' +p(@)y +q(z)y=0
Hence p(z) = -%5,q(z) = ﬁ There is a singular point at z = 0 and at x = 1. For
z =0, pp = lim, o zp(z) = 0 and gy = lim,_,c z2q(x) = 0. Hence the indicial equation is
r(r—1)+pr+qg =0
r(r—1)=0
r=20,1

For expansion around z = 0. This is regular singular point. Hence Frobenius is needed.
Let

n=0
o0
Y= (n+r)aa™
y' = Z (n+7r)(n+r—1)a,z"" 2

n=0

The ode becomes

(e =1y +ay + 2 =
o0
(z—1 Zn+r n+r—1)anxn+r2+xz n+r)anx"+’"1+x_12anx =
n=0 n=0 n=0
[0 ,] o0 o0 (o ]
Z n+r)(n+r—1)az"" "t - Z (n+r)(n+r—1)az"" 2+ Z (n+7)az™" + Z apz"t Tl =
n=0 n=0 n=0 n=0

Re indexing to lowest powers on x gives

Y (ntr—1)(n+r—2)a,1z™ =Y (n+7) (ntr—1)az™ Y (ntr —2) apaz™ )
n=1 n=0 n=2 n=1
(2)
n = 0 gives
(r(r—1))ao =0

Since ag # 0, then r; = 0,7, = 1 as was found above. For n =1

(r)(r—=1ao—(1+7r)(r)ar+ag=0
0 = ao+ (r) (r—1)aop _ 1+(r)(r—1)a
' (L+7)(r) EIO

For r = 0 the above is not defined. Therefore this falls into case two (difficult case). Hence
Tvad = 0. For r = 1 we see a; is defined.
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For this case we do the following. We find the solution using symbolic 7 and replace ay by

(r — Tbaq) bo = Tbo. For n =1
w1061
(147)(r)

Qo

For n > 2, the recurrence relation is

n+r—1)(n+r—2)ap,1—(n+r)(n+r—1)a,+n+7r—2)ap2+an,_1=0

Or
m+r—1)(n+r—2)+1 (n+r—2)
n n+r)(n+r—1) Gn-1F (n+r)(n+r— 1)a"_2 (3)
For n =2
" :(1+r)(r)+1a N r .
2T+ +n) T2+ +1)
_ rl+r)+1 (1+7"(r—1)a>+ T .
C+r)@+n\ @A+n)() ) " +r)@+n) "
:<'r(1+r)+1 1—|—'r(r—1)+ T )a
Q+r)1A+7r) r(l+7r)  @+r)1+7))"°
_ <(r(1+r)+1) (14+r(r—1)) T )ao
24+r)Q1+r)(1+7)(r) 24+7r)(1+7)
For n =3
_24r)(Q4r)+1 (1+4+7)
BB+ 2T B2+
:(2+r)(1—|—r)—|—1(((’r’(1+r)—|—1)(1—|—r(r—1)) r )a) (1+7) (1+(
B+r)(2+7) C+r)QA+r)1+7r)(r)  2+r)1+7r)/) ") T @B+r)E+r)\ 1
:{(2+r)(1+r)+1((r(1+r)+1)(1—|-r(r—1)) r ) (14+7r) 14 (r)(r-
B+r)(2+T) 2+r)(1+r)(1+4+7)(r) 24+7r)(1+7) B+r)(2+r) (1+4+7)(r

And so on. Hence

y=2"(ao + a1z + axz® + azz® + -+ +)
r

2 1+(1")(7“—1)x (rl+7r)+ 1)1 +7r(r—1)) T 2
= 0(” IO +<(2+r)(1+r)(1+r)(r) (2+r)(1+r)) + )

Replacing ag by bo(r — 7peq) OF bor since rp,q = 0, the above becomes

7— b [ T1—|-(r)(r—1) - rQ@+nr)+1)(1+r(r—-1)) r 2
y= b°(+ A+ @) +((2+r)(1+r)(1+r)('r') (2—|—r)(1—|—1')> + >
L, 1+ (r)(r—1) (rl+7r)+1) (1 +7r(r—1)) r? 2,
‘“"(’"* 1+ “( @+ (A+r)d+7) (2+r)(1+r))“())
5

Now

yl:yr:rbad

zyrzo

-+ (gum) e (0nn) o)

1 5
=b > B BTN
0(x+2x +12x+ )

But by = 1. Hence

A L
NETTHT T

_ (%
Y2 = ar )
T=Tbad

o is found using
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Notice the derivative is evaluated also at root r = ry,q = 0, the same as for y;. Hence, and
using by = 1 and using (5) the above gives

yzzi(.’ﬂr(r-l- 1+(r)(r—1)ngr ((r(1+r)+1)(1+7"(1"—1)) N T21—|—r))x2+“.>)r=0

dr (1+7r) 24+r)1+r)1+7) (247)(
. r—o @ 1+ (r)(r—1) (r(l+7r)+1)(1+r(r—1)) r’ 2
=z te a(’"* 1+r) ° ( @+r)(A+r)(1+7) <2+r><1+r>)“'”,
But y,_y = y1. The above becomes
i lng d - 1+(r)(r—1)x (rl+7r)+ 1)1 +7r(r—1)) r? 2
y2 =il +dr(+ 1+7) +( Q+r)A+n)(0+7) (2+r)(1+r)) + )r:o

Carrying out the derivatives gives

(r2+2r—2)x+(

5 4 3 2 _
y2=yllnz+<1+ (r° +7r* 4+ 107° + 8r* + 5r 5)>x2+--->
r=0

(r+1)° (r+1)°(r+2)?

Evaluating at r =0

y2=y11nw+(1—2x—2x2+...)

Therefore the complete solution is

Y =c1y1 + C2yo

P AT S
- 2 12

1 ) )
+Cg(1nx(.’£+§x2+ﬁx3+--.> + (1_2$_Zx2+...>)

$2yll+xyl+ <x2_1)y=0

Example 5

Comparing the ode to
y' +p@)y +q(z)y=0

Hence p(z) = 1,¢(z) = ””i;‘l. Therefore py = lim, o zp(z) = lim, .01 = 1 and ¢y =
lim,_,0 z2q(z) = lim,_,¢ (z? — 1) = —1. Hence the indicial equation is
r(r—1)+por+g =0
rr—1)+r—-1=0
r’—1=0
r=1-1
Therefore ry = 1,70 = —1. Expansion around z = 0. This is regular singular point. Hence

Frobenius is needed. Let
o0
n=0

o
y/ _ Z (n + 7") anxn-i-r—l

n=0
o0

y' = Z (n+7r)(n+r—1)a,z"" 2
n=0

The ode becomes

o0 o0 oo
2 (n+r)(n+r—1)aa" 4z (n+r)a™ 4 (27— 1)) aa™t =0
n=0 n=0 n=0
o0 o0 o0 o0
Z (n+r)(n+r—1)a,z™" + Z (n+7)az™" + 2° Z anz™t" — Z a,z"" =0
n=0 n=0 n=0 n=0
Z (n+r)(n+r—1)a,z"" + Z (n+71)a ™" + Z anx™ T2 — Z a,z"t" =0
n=0 n=0 n=0 n=0
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Re indexing to lowest powers on x gives

i n+r)(n+r— l)anx”"'r-l-z n—l—r)anx""'rﬁ-Zan QT — ianwn“'r =0 (2)
n=0 n=0

n=0 n=2
n = 0 gives
r(r—1)apz” + ragx” —ap =0
(rr=1)+7r—1)apz" =0
(7"2 — 1) apr” =0
Since ag # 0, then 72 = 1 or r; =, = —1 as was found above. The ode therefore satisfies

Y +zy + (22 —1)y= (r’ — 1) apz” (2A)

When n = 1 then (2) gives
1+7r)(r)ar+(1+r)ar—a; =0
(1+7r)(r)+(1+7)—1)a; =0
(r(r+2)a; =0
Hence
ay = 0

The recurrence relation is when n > 2 from (2) is given by
(n+r)(n+r—1a,+(n+r)a,+a,2—a,=0

n = (n+7)(n+ 1"_—n1_)2+ (n+r1)—1 )

We check first if this is subcase one or two. To do this, we check if the recurrence relation
is defined for both roots for all n > 2. The above for r = 1 gives

a, =

We see that it is defined for all n > 2. Now we check the other root ro = —1. (4) now

becomes
—Qp—2

mn—1)(n—2)+ (n—2)
We see that this is the difficult root as at n = 2 it is not defined as it gives 1/0 error.
Hence

ap =

Thad = —1

Therefore this is subcase two. For this case we do the following. We first find the solution
using symbolic r using (4), and at the end replace ag by (r — 7peq) bo = (r + 1) by. From
(4) and for n =2

((2+7")(1+;)?|-(2+r)—1) - (7"—|—1_)((7)"+3)

Since a; = 0 then all odd a,, = 0. For n =4

Ao =

____—@dg
—ag az __ (r+)(r+3) . Qo

(4+r)B3+r)+(4+7r)—1) =_(r+5)(r+3) (45 (r+3) (r+5)(r+3)(r+1)(r+
Forn=26

ay =

04 _ a4 _ _ (1"+5)(T+3()1?T+1)(T+3)
(6+r)(5+r)+(64+7)—1) (r+7)(r+5) (r+7)(r+5)
Qo

(r+7)(r+5T+5)(r+3)(r+1)(r+3)

g =
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And so on. Hence

§=x’"(ao+a2x2+a4x4+...)
=7'a (1— L % + 1 A 1
= z"ag (r+1)(r+3) (r+5)(r+3)(r+1)(r+3) (r+7)(r+5) (r+5)(r+3)(r+1)(

Replacing ag by bo(r — 7peq) Or bo(r + 1) the above becomes

o r+1) (r+1) . (r+1)
y‘xbO((’"+1)‘(r+1)(r+3)x r+5) (r+3)r+1)(r+3)"  (+7)(r+5)(r+5) (r+3)(r-
- 2 1 4 1 6
:xb(’((r“)_(ws)”” T3 N 133 +>
(5)

Now
Y1 = Yr=ry,,

=Yr=—1

—:L'_lb()(— 1 2 + 1 xt— 1 z6+...>

(r+3) (r+5)(r+3)(r+3) (r+7)(r+5)(r+5)(r+3)(r+3) —1
-1 2 1 4 1

—F b°<_(—1+3)x T T (C143) (143" (C1+7)(=1+5)(—145) (—1+3) (143

1

1 1
S A e B SR ST
T by 2w +16x 384x—|—

bo = 1. Hence

_1 —1x2+ix4—ix6+
N=00727 7160 T 34

_(—lesltaeo Loy
S\ 27 16 384

We can remove the leading —% since it will be absorbed by the c¢; constant. Hence

—(z-1a51 L3ﬂ5+
b= 87 T 192

_ (%
2= dr ) _
T=Tbad

Notice the derivative is evaluated also at the bad root r = rp,q = —2 same as for y;. Hence,

Now we find y, using

and using by = 1 and using (5) the above gives

=i<az’°b <(r+1)—;x2+ = Tt — ! z® +
=\t (r +3) (r+5)(r+3)(r+3) (r+7) (r+5)(r+5)(r+3)(r+3)

1 2 1 4 1
43" T+ +3(+3)" G +7)(r+5) (r+5) (r+3)(r-

_ . d
=Y Inz+z = <(r +1)

But
N = :’77':—2

Therefore, evaluating all the derivatives gives

d 1 1 1
— oyl 12 1) — 24 -
Y=yt dr((”) r+3)" T 45 (r+3)(r+3)  (r+T)(r+5) (r+5)(r+3)(r+:
—ing 4+ 2! (1 n 1 22 3r+ 13 A 1 5r2+52r+ 1275[:6 . )
. (r+3)7 3 (r+57 | (77 (248 +15)

1 ) )
— ] (g2 24, 2 6 .
ylnz+x ( +4x 64x +1152x + )
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Hence
=y lnx+ 1—|—1x 5m3—|— > z° +
$2=40 z 4% 7 64" T 112

Therefore the final solution is

Yy = c1y1 + Cl2

=cl|lz 1x3+ 1x5-|-
- 8 192

+c|In(z) (= 1x3+ 1x5+ + 1+1x 5x3—|— > z° +
2 8" 192 x4 64 ' 1152
Example 6
$2yll+xyl+ (xQ _ 1)y — 1
This is same example as above but with non zero in the RHS. So we can use the solution
for y;, obtained above, but need to find y, here and add these to obtain the general solution.
From above we found that

P (P B
Yh=al\TT T Tgo

+ ¢ In(x) x—lx3+ix5+ + 1-I—la:—iac&‘—i-ia?—i-
2 8 192 r ' 4 64 1152

And from (2A) in the above example we also found the balance equation, which is always
the starting point to finding y,,, which is

Y +zy + (22— 1)y = (r’ — 1) apz”

Therefore, and as we did all the time, relabel r as m and a as ¢ so not to confuse notations.
Therefore we have
(m2 — 1) cor™ =1

Hence
m=20

This implies (m? —1)cy =1 or
Cy = -1

Now we find y, using the same recursive relation found when finding y;, terms but using
r =m = 0 now and using ay = ¢o = —1 (instead of ag = 1 as is always done when finding
yp). Also let ¢; = 0 as that is the same as a;. Now we get to the recurrence relation (4) in
last example which is

—0n—2

m+r)(n+r—1)+(n+r)—1

Ap =

Using c in place of a and using m in place r it becomes for n > 2

_ —Cn—2
n = m+m)(n+m—1)+n+m)—1
But m=0
c — —Cp—2
" nn—-1)+(Mn-1)
For n =2
Co = —C = —@
2T 2+1 3
But ¢ = —1. The above becomes
o o L
7241 3
For n = 4 (since all odd ¢, = 0)
—C2 —% 1

“T4B)+(3) 403+ () 4
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For n =6
1

—C4 15 1

6(5)+(5) 6(5)+(5) 1575

Ceg =

And so on. Hence

oo

— M n

Yp =2 g Cn
n=0

=co+ ez’ +cazt + -
1 1 1
=_1 2 -4 - .6
T3 Tt Tt

Hence the general solution is

Y=YntYp
_ L 3 5
_cl(x 893+192”ch )+
1 ; 1 1 5., 5 .
c2<ln(x)(az—§m —|—192:c+ >+(_+Zm_6_4 +T52x+ ))

1, 1 1
B Tl S Iy v HU
+( MR TR )

Example 7

z2y" + zy’ +(x2—1)y=é

This is same example as above but with % instead of 1 in the RHS to show that there will
not be a series solution in this. From (2A) in the above example we found the balance
equation, which is always the starting point to finding y,, which is

2y +zy + (22— 1)y = (r* — 1) ap2”

Therefore, and as we did all the time, relabel r as m and a as ¢ so not to confuse notations.
Therefore we have
(m2 — 1) cor™ =2~

Hence
m=—1

This implies (m? — 1) ¢y =1 or

((-1)?=1) ¢ =1
Ocp=1

Therefore no solution exists. This is why there is no series solution for this ode. If we try
to solve this using Maple, will will get no answer and the above explains why.

Roots of indicial equation are repeated ode internal name "second_ order_ series_method_ reg-
ular_singular_point_ repeated_ root".

In this case the solution is
Yy = c1y1 + Col2

Where

o0
Y= apz""
n=0
y2=y1ln(z)+ > bzt

r1,7o are roots of the indicial equation. ag, by are set to 1 as arbitrary. The coefficients

b, are not found from the recurrence relation but found using using b, = . (r) after

dr
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finding a,, first, and the result evaluated at root r5. (notice that r = r; = ry in this case).
Notice there is no C term in from of the In in this case as when root differ by an integer
and the sum on b, starts at 1 since by is always zero due to Lag(r) = 0 always as ap = 1
by default.

Example 1

2yll+myl+l_y=0

Comparing the ode to
y' +p(@)y +4q(z)y=0
Hence p(z) = 1,q(z) = 1. Therefore py = lim,ozp(z) = lim,,01 = 1 and ¢ =
lim,_,0 z2q(z) = lim,_,o z = 0. Hence the indicial equation is
r(r—1) +por + g =0
rir—1)+r=0
r?=0
r=20,0
Therefore r1 = 0,75 = 0.

Expansion around z = 0. This is regular singular point. Hence Frobenius is needed. Let

e .o]
Y=Y anz""
n=0

oo
Y= (n+r)aa™
n=0
y' = Z (n+7r)(n+r—1)a,z"" 2
n=0

The ode becomes

z? Z (n+r)(n+r—1az"" 2+ Z (n+r)a, 2" 4z Z an ™" =0

n=0 n=0 n=0
o0 o o0
Z(n—i—r)(n—l—r—l)anx”+T+Z(n+7‘)anx"+T+Zanxn+T+1=()
n=0 n=0

Re indexing to lowest powers on x gives

Zn—i—r) n—i—r—l)ana:"”—i-z n+r an:v"J”"—l-Zan 12" =0 (1)
n=0

n=0 n=1

The indicial equation is obtained from n = 0. The above reduces to

[e o]
Zn+r) n+7‘—1)anx"+’"+z n+r)a,z"" =0
n=0 n=0

m+r)(n+r—1a,+(n+r)a,=0
(r)(r—1)ag+rapg=0
ao((r2—r) +7") =0

aor: =0

Since ag # 0 then
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Hence r; = 0,75 = 0. Since the roots are repeated then two linearly independent solutions
can be constructed using

o0 o0
=21z E a,r" = E a,r"
n=0 n=0

y2 = y1 In () + ™ Z bz =y In (x) + Z bx"
n=1

n=1

For n > 1 the recurrence relation is

m+r)(n+r—1)a,+(n+r)a, +a,—1 =0

ap—1
anp, = —
m+r)in+r—1)4+Mn+r)
Ap—1
= — 1
(n+ r)2 (1)
Starting with y;. From (1) with r = 0 gives
Ap—-1
ap = — 3
For n =1 and using ag =1
a1:=-—1
F =2
or n o 1
Ay = —— = —
2 4 4
And so on. Hence
=) ana"
n=0

2 3
=ag+ a1x + ax” +azx” + ---

1 1
=1— > BV ST
T+ - 36w+

In the case of duplicate roots, b, is found using b, = %an(r). And this is evaluated at
r =19 = 0 in this case since ry = 0 here. So we need to find a,(r). This is done from (1).
Forn=1

d
by = g(al(r))

et ) ) o o

Evaluated at r = 0 gives

b1:= 2

For n =2 then (2) becomes

d
by = %(az(r))

y _d o \ df “wr\ d 1 _ . 2r+3
2_5 _(2_'_—2 _d_ - 2 _d_ 2 2 ) T T a1 o3
T) T (2+47) r\(r+1)"(r+2) (r243r+2)

At r = 0 the above becomes

3 3

by =—2—r ==
ST K

And so on. Just remember when replacing the a,, in the above, is to use the original a,(r)
as function of r and not the actual a,, values from above. It has to be function of r first
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before taking derivatives, Hence

Yo = 91 In (z) + Z b,z

n=1

= y11In (z) + by + byx® + byx® + - -

=y 1n(z) + 22 — Zm2+---
=y In(z) + (2x— 2x2+--->
Therefore the general solution is

Y =1y + C2Yo

B 1, 1 4 3 o
—01(1 T+ T 36x+ >+c2(ylln(x)+(2x 5t ))

Example 2

2y +zy +zy=1

The homogenous ode was solved up, so we just need to find y,. To find y,, and using m
in place of r and ¢ in place of a so not to confuse terms with the y; terms, then from the
above problem, we found the indicial equation. Hence the balance equation is

com?z™ =1
To balance this we need m = 0. Hence Ocy = 1 which is not possible. Hence no particular
solution exists. No solution in series exists.

Example 3

1
$2y” —l-a:y' —i—wy — 5

This is the same ode as above but with different RHS. So we will go directly to finding y,.
From above we found that the balance equation is

1172y” +.’13yl +zy = m2cowm

Hence

2

m2coz™ = ¢t

Which implies m = —1 and therefore m?cy = 1 or ¢y = 1. Using the recurrence equation
(1) in the above problem using using ¢, in place of a,, and m in place or r gives

Cn—1
Ch=—"7""5
(n+m)
For m = —1
Cn—1
Ch=—"""-
(n—1)"
Hence
Yp = Z ™
n=0
1 o0
= — crx"
n=0
Now to find few ¢, terms. For n =1
Co
Cl = —
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Which is not defined. Hence no y, exist. There is no solution in terms of series solution.

Example 4

2y 4z +ry==2x

This is the same ode as above, where we found ¥, but with different RHS. So we will go

directly to finding y,. From above we found that the balance equation is

1172y” +$yl +zy = mZCOZ'm

Hence

m2cyz™ = x

Which implies m = 1 and therefore m?cy = 1 or ¢y = 1. Using the recurrence equation (1)
in the above problem and using ¢, in place of a,, and m in place or r gives

o = __ 1
T (n+m)?
Form=1
P e
T (1)
Hence
Yp = Z cpz™
n=0
=z Z "
n=0
Now to find few ¢, terms. For n =1
o = Co o 1
e
For n =2
C1 }1 1
02 = — 3 = == —
2+1)° 9 36
Forn=3 )
Co 36 1
C3 = — 5 = —_—— = ——
(3+1) 16 576

And so on. Hence

Yp =2 i crx"
= x(nczoo—l— azx + cr? + - )
:x(l—iw+%x2—%x3+---)
= (z—iz2+%w3—5—;6x4+---)
Using y;, found in the above problem since that does not change, then the general solution
is

Y=Yt Y
1 1 1
= 1— xS ot
c1< x+4x 3617 +576x+ )
1 1 1 3 14
1 1— Tt 3 Tty o2 — = ey BTN
+cz(n(x)( T+ 3% +576x+ )+<x Vi +108x—|— ))

1 1
+<x——x2+—x3——x4+~-)
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Example 5
oy’ +y —xy=0
Comparing the ode to
y' +p(z)y +q(@)y=0
Hence p(z) = 1,q(z) = —1. Therefore py = lim,,ozp(z) = lim, 01 = 1 and g =
lim,_,0 z2q(z) = lim,_,o > = 0. Hence the indicial equation is
r(r—1)+pr+qg =0
r(r—1)+r=20
r?=0
r=20,0

Therefore r; = 0,75 = 0. Expansion around z = 0. This is regular singular point. Hence
Frobenius is needed. Let

o0
y=> az"""
n=0

Y= (n+r)ae
n=0

y' = Z (n+7r)(n+r—1)a,z""?
n=0

The ode becomes

T Z (n+7)(n+r—1)az"" %+ Z (n+r)a,z" ! -z Z a, 2" =0

n=0 n=0 n=0

o0 o0

E (n+r)(n+r—1)az"" '+ E (n+r1)a,z" ! — E A,z =0
n=0 n=0 n=0

Re indexing to lowest powers on x gives

o0

(n+r)(n+r—1 a1+ Z (n+7)a,z"t ! — Z Upox™ ™1 =0

n=0 n=0 n=2
Z n+r)(n+r—1)+(n+r))az" ! — Z Ap_ox™ 1 =0
n=0 n=2

Z (n+7)% apz™t ! — Z Unoz™ =0 (1)
n=0 n=2

The indicial equation is obtained from n = 0. The above reduces to
rlapz™t" " =0

Since ag # 0 then
r’=0

Hence r, = 0,75 = 0 as found earlier. Since the roots are repeated then two linearly
independent solutions can be constructed using

o0 o0
=21z E a,r" = E a,r"
n=0 n=0

yo = y1 In (z) + ™ Z bz =y In (x) + Z b,z"
n =1 gives

(1+7) () +(1+7)ay =0
(r+1)2%a; =0
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Hence a; = 0. The recurrence relation is obtained for n > 2. From (1)

n+r(n+r—1)a,+(n+r)a, —a,_2 =0
an—2

a, = 5
(n+r)

(1)

Since we need to differentiate y; to obtain y, and the differentiation is w.r.t r, we will carry
the calculations with r in place and at the end replace r by its value (which happened to

be zero in this example). We do this only in the case of repeated roots.

For n =2
4o = Qo . 1
g = =
(2+r)2 (2+r)2
Forn =3
as = ! =0
T (B3+r)
For n =14 )
az @ 1

T AT T Gt 24 Aty

For n = 5, we will find a5 = 0 (for all odd n this is the case). For n = 6

ay . 1

6+ C+r) A+ (641)

And so on. We see that n'* term is a, = H;?:lm. Now we can substitute the r = 0

value into the above to obtain

1
CLQ:Z
1

ag =

(@2}

4
1
% = 5304

Hence
E : n
N = anT
2
:a0+a1.’13+(12.’£ + -

14 te2 g Loty Logey
— —T x P
47 T 64 2304

To find y, we use b, = an and evaluate this at r = ro which in this case is zero. Hence

b2:d%“2=d%<(2ir)> ( (r+ 22 ) _gz‘z‘l;

b“zd%a“:di((ﬂr) (4+r) ( 7"2:;5;?;8)) :<_4é):_%

be =

d
ae
r

dr
d

_d 1
B 7((2 +7)2(4+7)°(6 -|—'r)2>
3r2 + 24r + 44
(r3 4+ 1272 + 44r + 48)3> 0
44
(48)°
11

13824

= (-2
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And so on. Hence

y1 =y In(x) + Z bzt

n=1

=y In(z) + Z b,z"

n=1

=Y In (.’II) + (b2$2 + b4.’134 + b6:1;6 + .. )

1, 3 11
=l > R R 64 ...
v n(x”( 2% Tt et )

Therefore the complete solution is

Y =11 + C2Yo

1 1 1
_ 1 2 4 ~ 5.
Cl( 1% T 64" T 2304" )

+co| In () 1+1a: —|—lx +L6+ + _lwz_i 4 — 11 8 +
2 4 64 2304 4 128 13824

Example 6
sin (z)y" +4 +y =0
Comparing the ode to
y”+p( )y +q(x)y=0

Hence p(z) = @)q(gp) = &= Therefore py = lim,_,ozp(z) = lim,_o —x_7+?_m =
1 2

—2L1 — =1and g = lim,02%q(z) = limyy0 —%5— = z = 0. Hence the
1_%_1_%_ w_7+? ...... +?_‘..
indicial equation is

r(r—1)+por + g =0
rir—1)+r=0
r’=0

r=20,0

Therefore r; = 0,75 = 0. Expansion around z = 0. This is regular singular point. Hence
Frobenius is needed. Let

00
y = § : anxn—i-r
n=0

o0
Y= (n+r)aa™
n=0
o0
y' = Z (n+r)(n+r—1)a,z"" 2
n=0

The ode becomes

o0

sin () Z (n+r)(n+r—1)az"" 2+ Z (n+7) a4+ Z anz™t"

n=0 n=0 n=0

3 5 0 0o 0o
(x—%+%—---)Z(n+r)(n+r—l)anx"+r_2+Z(n+r)anx"+’"_1—i—Zanx"“

n=0 n=0 n=0

Using O(z") terms as the Order of the series (if more terms are needed we will use more
terms from the sin z series). This means we have to now only expand up to n = 7 as that
is the order used for the series of sin z. The above becomes

xz (n+r)(n+r—1)az""? - 3 Z n+r)(n+r—1)a,x"" 2
n=0 n=0

5 o0
+%Z n+r) n+r—1)anz”+r2+2(n+r anx"+T1+Zanx =0
n=0 n=0 n=0

=0

=0
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Which becomes

i (n+r)(n+r—1)az"" ! - i é(n +7r)(n+r—1)a,z"" !
n=0 n=0
+ 2 1;—0(17, +7)(n+7r—1)a,z"tt + 2 (n+7)az" !+ i::o a, " =0
Re indexing to lowest powers on x gives
i (n+r)(n+r—1)az"" ! - i é(n +7r—=2)(n+71—3)a, "t
n=0 n=2
+ : 1;—0(71 +r—4)(n+r—5) an_4x"+r_1+§0 (n+r) anz"“_l—f—il an_1"T =0

Simplifying gives

il = (n+r—2)(n+r—3 vl = (m+r—4)(n+7-5 R
(n+1)% apz™* 1—2( )6( )an_2m+ 1—}—2( 1)2(0 )an_4m+ 1+Z

n=0 n=2 n=4 n=1

1)

o0

The indicial equation is obtained from n = 0. The above reduces to
rlagz" 1 =0

Since ag # 0 then
=0

Hence r; = 0,75 = 0 as found earlier. Since the roots are repeated then two linearly
independent solutions can be constructed using

o0 o0
yp =1z E a,r" = E a,z"
n=0 n=0

Yo = y1 In (z) + 2™ Z bz =y In (x) + Z b,z"
n=1 n=1

n =1 gives from (1) and by taking ap = 1

(1+7)%a;+ay=0

e
_ 1
(A7)
For n = 2 gives from (1)
(2+1‘)2a2—w%+a1=0
(2+7)ay = —ay + WGO
IS U T
T4 @2+r)? 62+
Forn=3
(3+7‘)2a3—( +é‘)(r a+ay =0
4 = as (14+7) (r)a

CB+1)? 6(B+r)
1 + (r)(r-1)
2

_ e’ T eem?  (A+r)(r) 1
(3+71)? 6(3+7)° (147)°
(r*+rP=r’—r+6)  (1+71)(n)

6(r+3°2(r2+3r+2?° 6B+r)°1+7)’
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For n > 4 the recurrence relation is

(n+1)an — (n+r—2)(n+r—3)an_2+ (n+r—4)(n+r—5)an_4+an_l:O
6 120
Or
o = Gn1 m+r—2)(n+r—3) _(n+7‘—4)(n+7‘—5)a @)
" (n+r)° 6(n+r)’ " 120 (n +1)? n

Since we need to differentiate y; to obtain y, and the differentiation is w.r.t r, we will carry
the calculations with 7 in place and at the end replace r by its value (which happened to
be zero in this example). We do this only in the case of repeated roots.

For n = 4 then (2) gives

a3 (2+r)(1+r)a_(r)(—1+r)a
A+’ 6@d+n? ° 1204+71)?
T ereyer | @4n) 4 ()14
(4+1) 6(4+r)? ~ 1204+71)? "
1 @+7)(1+7) 1 (M) (=147
r+1)2r+2°@F+3)°@4+r)’ 6(4+7)° (r+1)>(r+2° 1204+7)

a4

And so on. Now we replace r = 0 to find y;. Just remember not to use anything over
n = 5 since we cut off the series for sin (z) at z°.

Using r = 0, then the above values for a; found become

ay = — ! 5 =—1
(1+47r)
4y = 1 +(r)(r—1)=1
1+ @2+7r)? 62+r)?° 4
_ (r*4m—r2—r+6) B (1+7)(r) _ 1 1
6(r+3°(2+3r+27° 60B+r)21+r)?  (2?@B)?* 36
B 1 24+7r)(1+7) 1 (N (=1+r)
O A2 +22(r+32(4+r)7° | 6(4+1)° (1) (r+2° 120(4+r)
_ 1 N 2) 1
(21)2(3)2(4? 6(4)" (2)*
T 144

Let find one more term. For n = 5 then (2) gives

o +(3+r)(2+r)a_ (147)(r)
G+r)?  66G+r)? © 1205+7)
w3 1
N 52+6(5)2( 36)
1

720

as =

a1

For n = 6 the above recurrence relation gives

g — 35 (4+r)(3+r)a_(2+r)(1+r)

T 6+ 6(6+1)7° 1 120(6+7)
_ cm,@We 1 (2 1
62 6(6)° 144 120 (6)* 4
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Forn=7
ag 54+7r)(4+r) B+r)(2+7)
ay = — 5 55 — 5
(7T+7) 6(7+r) 120(7+ 1)
:=_£E+(®MJ(_1)__CQQ)(_1)
(M  6(7)*>\ 720/ 120(7)*\ 36
B 23
317520
Forn =8
ar 6+7)(5+T) 4+7r)(3+T1)
Gg = — 2 7 G6 — 2
8+7) 6(8+r) 120 (8 + )
_ _ (_313220) + (6) (5) < 1 > _ (4) (3) (L)
(8)? 6(8)* \3240/ 120(8)* \ 144
13
903168
Which is now the wrong value. It should be 62—%0. So using 3 terms from sin z we obtain

up to a; correct terms. Hence

Y = Z a,z"

=ao+ a1z + agx® + - -
1 1., 1 1 1 1 93
ittt o4 s 6
9T 4% 367 T1a4a® ~720% T 3220° 317520

What would have happened if we expanded sin (z) only for two terms? Lets find out. The
ode becomes

x7+...

(n+r)(n+r—1)az"" 2+ Z (n+r)a,z" ! + Z a, "t =0

sin (z) i
n=0 n=0 n=0
(:c— z_:: _|_) io(n-kr) (n+r— 1)anx”+r_2+io(n+r)anm"+r_l —|—i0anm"+r =0
The above becomes
T N (n+r)(n+r—1)a,z"" 2 — x_:')’ i (n+r)(n+r—1a,x"" 2+ i (n+7) a4+ i anT™
n=0 " =0 n=0 n=0
io (n+r)(n+r—1)az"" - f% é(n +7)(n+r—1)a,z" + f% (n+r1)a,z™ ! + 2 AT
Reindex
3 (n+r)(n+r—1)az" " — i %(n +r—2)(n+7—3)an, o™ + i (n+71)az" !+ i an
n=0 n=2 n=0 n=1
N (n+7)° apz™t — i é(n +7r—2)(n+7—3) a0z + i an,
n=0 n=2 n=1

For n = 0 we obtain the indicial equation as we did above. For n =1

(1+7‘2)a1+a0:0
ap 1

O B (e

For r = 0 this gives
a; = -1

n > 2 gives

1
(n+r)2an—6(n+r—2)(n+r—3)an_2+an_1=0

0 — An_1 1(n+r—2)(n+r—3)a

(n+r)* 6 (n+r)
(2A)

n—2
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Hence for n =2

For r = 0 the above gives

n = 3 gives

Forr=20

Forn =4

as +1(2+r)(1+r)a
4+7r)° 6 (d+7)?
__m 100),

(4° 6 (4)

e RCIOTEy

a4 = — 2

O @? 6 (4 \4

For n =25

ay 1(34+7r)(2+7)
- 2+_ 2
G+r) 6  (5+7)

_ 1@ @ 1y _ 1
T 6 (5 ( 36‘)_ 720

as 1(6+7r—2)(6+r—23)
6+7)° 6 (641)°
(-m0) , 1(4(B) 1
6> 6 62 144
1
25920
Which is the wrong value. We see that using two terms only from the sin (x) gave up

correct a,, values up to as. What if we used only one term? Lets find out.

as = as

For n =6

g =

a4

sin (z) Z (n+r)(n+r—1)az"" 2+ Z (n+7)a,z" ! + Z a,z"" =0

n=0 n=0 n=0
@+-)) (n+r)(n+r—1)a.a"" 2+ (n+r)az" T+ ) a,a™ =0
n=0 n=0 n=0
o0 o0 oo
Z (n+r)(n+r—1)az"" 1+ Z (n+7)a,z" ! + Z a,x" =0
n=0 n=0 n=0

o0
(n+71)a,z" ! + g Q12" =0

n=1
o0

2 _ _
(n+7)°az™t + E U127 =0

n=1

[M]8

d (n+r)(nt+r—1)az" " +

n=0

3
o

NE

(=]

n=
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n = ( gives the indicial equation. For n > 1 the recurrence relation is

(n-i—r)2 Op+a,_1=0

an—1
anp, = — 5
(n+r)
Forn=1
a; = — %o
! (1—1—7’)2
_ 1
(1—|—7‘)2
Forr =20
al——l
For n =2 o a - 1
U@+ (@+r)
For r=0 1
(1,2—4
For n =3 )
G 4
T B4r)? (3+1)
Forr =0
1
R S
T @37 36
For n =14 )
as . T
Ay 7 = 2
(447) (44r)
Forr =20
_1 1
_ T3 _ -~
M=) T 56

We see that this is the wrong value. So when using one term only we obtain correct a,
up to az. What do we learn from all the above? It is that if we expand f(z) up to O(z")
order, then we can only determine correct terms up to a,, and no more. In the above when
we used sin (z) =z — ””—63 + % + O(z") then we obtained correct terms up to a;. And when
we used sin (z) =z — %3 + O(z®) then we obtained correct terms up to a5 and when we
used sin () = x + O(x3) then we obtained correct terms up to az. So we should keep this
in mind from now on,.

To find y, we use b, an and evaluate this at r = ro which in this case is zero. Hence
d d 1 2
b= g 5(_(1+r)2)r:0_ (7~+1)3_2
b2:i i( 1 +(r)(r—1)) (5r + 1373 + 9r2 —25r—38> _
dr dr\(1+7r)?@2+7r)? 62+7r) 6(r2+3r +2)° 0
by = L ag
dr
_d (r*4r—r2—r+6) (147)(r)
d_< 6(r+3)°(r2+3r+2)?° 6(3+r)2(1+r)2)
(4r% + 18r° + 20r* — 157% — 18r% + 93r + 114)
( 6 (r3 4 6r2 + 11r +6)° >T=0
114
6(6)°
19

~ 216
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And so on. Hence

=y 1n(z)+ Z bzt

n=1
:ylln(w)—i—anx”

n=1
B 19 , 19 ,
—ylln(:c)-l—(Zx 517 toge% T )

Therefore the complete solution is

Yy = C1Y1 + Coyo

1 1, 1 1
= 1—= et 3 — gt
cl( 2"t T3 Tt )

1 1, 1 1 19 , 19
l—cp g2 — g3~ a4 )] oy — a2 =T a3,
+c2(< 2"t T Tt ) n () + ( T ot T

4.3.2.6.4 irregular singular point ode internal name "second_ order_ series_ method_ ir-
regular_singular_ point'

expansion point is irregular singular point. Not supported.

4.3.2.7 Reduction of order

ode internal name "reduction_ of order'

This is second order ode where on solution is known. The second solution is found using
reduction of order.

4.3.2.7.1 Example 1 Solve

Y +p@)y +q(x)y=0

Given that one solution is known to be y;. We start by assuming the second solution is
y2 = y1u(z) where u(z) is to be determined. Hence

Ya = Yiu + v
Yo = yru+yu +yu + yu’
=y + 2y1u +
Substituting in the given ODE gives (since y, is a solution, then it also satisfies the ode)
(v + 2w + y1u”) + p(yru + 91v) + gyru =0

And now we collect on u and all its derivatives. The above becomes
u(yy +pyi + qy1) + o' (25 +py) + 1w’ =0
But y; + py; + qy1 = 0. The above becomes
w'(2y; +py1) +yiu’ =0

Ok, you migth ask, what did we accomplish in all of this? Since we eneded up with just
another second order ode. But here is the main point of this method. This new ode is
missing the u term. Therefore by letting ' = v we can make the above ode become first
order ode

v(2y; + py1) + 910" =0

Slnce y, is given, the above first order ode is now solved for v, and once v is known, then
u is found by integrating v’ = v and once u is found then y, is found from ys = y u(x).
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The above ode can be written as
!
v+ (2&+p>v=0
Y1

Hence it is linear first order ode. The integrating factor is

/
S22 +pda
'LL = e Y1

_ ef %%dw—i—fpdz

_ o it/ pdz
— e2lny1+fpdz
— eZlnylefpdx
=yiel
Therefore
d(vp) =

VU =

2 1)

Since v’ = v then we have

Integrating

uz/vdw—i-cz

Here we are free to let ¢ = 0. Therefore

u=/¢m )

Y2 = hu

=1 / vdz
e fpd:l:
=1 / (cl 5 ) dx
U
e~ J pdz
e [ (S ) o 3)
Y1

Y =cC1Y2 + C21

Therefore

And the solution is

The following example shows how the above can be applied to a concrete problem.

4.3.2.7.2 Example 2 Solve

22y +2y — 9 =0

y1=z3

Putting the ode in normal form, it becomes
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Hence p = 1,¢q = —%. Using EQ (1)

x)

EQ (2) becomes

(last step above just rewrites the constant). Hence the second solution is

Y2 = hu

= 1°(c127°)
= clm_3
Therefore the solution is

Y = C3Y2 + Cah
= 01—3 + 62133
T

Where in last step above, constants were merged and renamed.

4.3.2.8 Transformation to a constant coefficient ODE methods

4.3.2.8.1 Introduction Starting with a second order linear ode in the following nor-
mal form

y' +p@)y +q(x)y =r(z) (A)

The goal is to find a transformation that converts this ode to one with constant coefficients
which is then easily solved. There are two transformations to try. One uses transforma-
tion on the independent variable z and the second is on the dependent variable y. The
transformation on the independent variable uses 7 = g(z) and the one on the dependent
variable uses y = v(z) z(z) and y = v(z) z™ as special case.

4.3.2.8.2 Flow diagram The following is diagram of the algorithms.
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Figure 4.3: Algorithm diagram

4.3.2.8.3 Transformation on the independent variable x method 1 ode internal name
"second_ order__change_of variable_on_x_method_1"

Given ode

y' +p(@)y +q(@)y =r(z) (A)
Let 7 = g(x) where 7 is the new independent variable. Applying this to (A) results in
(details not shown)

Y'(1) +pi(1) Y (7) + qu(7) y(7) = 71(7) (1)
Where
= 7" (z) + p(x) 7' ()
pl( ) (T' (m))z (2)
a(r) = 42 ()

T (7 (@)’
r(z)

T Er @
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The idea of the transformation is to determine if ode (1) can be solved instead of (A).

Let q; = ¢ where c is a constant then from (2)

= Va@ 0

y_ 1 ¢(z) (5A)

Substituting (5,5A) in (2) finds p; (7). If p1(7) is a constant (does not depend on z) then
(1) can be solved for y(7) and (A) is therefore solved for y(x).

4.3.2.8.4 Transformation on the independent variable x method 2 ode internal name

"'second_ order__change_of variable_on_x_method_ 2"

Given ode
y' +p@)y +q(x)y =r(z) (A)

Let 7 = g(x) where 7 is the new independent variable. Applying this to (A) results in
(details not shown)

y' (1) + pu(7) Y (7) + @ (1) y(7) = r1(7) (1)
Where
o T'(@) +p() T'(2)
pi(7) (@) (2)
o 4@
() " (@) (3)
n(n = @

The idea of the transformation is to determine if ode (1) can be solved instead of (A).

Let p; = 0 then 7 is solved for from 7”(z) + p(z) 7'(z) = 0.
T= / e~ /Pl gy
If this solution 7(z) results in ¢; above being a constant, then (1) can now be easily solved.

4.3.2.8.5 Transformation on the dependent variable (method 1) y = v(x) 2(z)
ode internal name "second_ order_change of variable_on_y_ method_ 1"

This is also called Liouville transformation. Book by Einar Hille, ordinary differential
equations in the complex domain. Page 179. This method assumes that

y = v(z) 2(x)

Substituting this into (A) results in the following ode where the dependent variable is v
and not y

v"(z) + <p + %z’(w)) v'(z) + %(z”(x) + p2'(z) + qz(x)) v(z) = 2 (6)

Assuming that coefficient of v’ in (6) zero implies

2 !
z =0
p+zZ(w)
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Solving gives (where constant of integration is taken as one)
z=e 3% (6A)
With this choice (6) becomes
" 1 " / r
V' = (2" +pd +qz)v= -
z z

Substituting z from (6A) into the above reduces it to (after some algebra) to

Vit qu=mr (6B)
Where
1 1
@ =q—3p -0’
r
r = —
z
— ez /P

q1 is called the Liouville ode invariant. If q; is constant, or constant divided by z?, then the
substitution y = v(z) z(x) used in the original original ode results in a constant coefficient
ode. In y = v(z) z(x) the z(z) term is known from 6A and v(z) is the new unknown
dependent variable.

The new ode will be in v(x) but with constant coefficients. Solving it for v(z) gives y.
Examples given below to illustrate this method.

Example 1
2
v+ Yty = (1)

x
In the form y” + p(z) ¥’ + q(z) y = r(z) then p=2,g =1,r = 1. Hence (6A) is

2
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Since z = I. Substituting the above into the original ODE (1) gives

v\ 2 /v\/ v 1

G) GG )=

T z\zx T z

v '+2 v +v_1

x x? z\z 22 r oz

v v’ 21} +2 v +v_1
Tz z2 2 3 z\z 22 r =z
m v’+2v 2 2v v 1
2z 2 x2 2 o oz

TS T T 2v’+v_1

r x2 2 12 z =z

v v 1

— 4+ ==

T T =z

vV +uv=1

This is constant coefficient ODE which is easily solved. If the ode in v(x) did not come to
be constant coefficient then we made a mistake. The solution is

V=c1C0ST+ cysinx + 1

Hence
)
y=-
T
CcosS T sinz 1
=G 2 -
T T T
Example 2
I 2 !
y'+ Y —y=0 (1)
y(—00) =0
y(-1)=—e

In the form y” + p(z) ¥’ + q(x) y = r(x) then p= 2,qg = —1,r = 0. Hence (6A) is

x

_ 1/ 12

g1 =4q 217 4p

IS VEANR YRR

o 2\ z 4\ x

i (_1y_14
2 4 2

_q_(_iy_ 14
T2 4 ¢

1 1
=t
=0
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Since z = I. Substituting the above into the original ODE (1) gives

v\" 270\ v
B () -2
T Tz \zx T
oo ov\  2/v  w v
)+ 52 ) =Z2=0
Tz 2 z\zx 2 T
A Y v’ 5 v 4 2/v  w v 0
Tz  z2 2 z3 z\z 22 z
A VA V4 5 v 200 2v w _0
2 x2? 3 2 3 oz
"W v 20w _0
r x2 22 22 z
,U//
Vv
T
vV —v=0

This is constant coefficient ODE which is easily solved. If the ode in v(z) did not come to

be constant coefficient then we made a mistake. The solution is
v=ce *+ce”

Hence

v
Y=
x

—T T

e e
=C— + Co—
xT xT

Now we need to find ¢, ¢ from initial conditions. From (2),

, e”* e’ e’ e’

y=—a—-—a—s+ta_-—a;
Z T T 4

Whenever we have oo in the IC, we will replace it by u. Hence the IC’s are now

y(=u) =0
(1) =—e

Substituting IC into (2,3) gives two equations to solve for ¢y, co

e e
0=—c— —co—

Uu Uu
—e t=ciel —crel — et — e = —2¢0e7t

Solving the above two equations for ¢, co gives

—Uu

o _E
T Qe
c 1
272
But
e—u
1 —— 1] =0
Hence
C1 = 0
1
Co = —
72
And the solution (2) becomes
le”
Y=5-

(2)

(3)

4)
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Example 3
2y —z(z+2)y + (z +2)y = 22°
"—x+2y'+w;;2y=2x (1)
In the form y” + p(z) ¥’ + q(z) y = r(z) then p = -2 ¢ = (z;f),r = 2x. Hence (6A) is
2z =¢ /5
— e =2 iy

z
= ITrez2

Now we check if Liouville ode invariant ¢; is constant or a constant divided by z2.

1, 1,
h=4q=5P = 4P
(z+2) 1, . 1/ z+2\°

T2 —5(11762) _Z(_ x )

1

T4
Since ¢, is constant, then we can use the change of the variable y = v(z) z(z) which is

y = v(z) 2(z)
= v(ze?)

Substituting the above into the original ODE (1) gives
x4+ 2 T+ 2
yll _ y/ +
x x

x 2
(v(we)) + 22

Yy =2
x+2
T

(v(ae?))" -

Carrying out the simplification gives

v(we%) =2z

4" —v =82
Which is constant coefficient ode. This is easily solved giving the solution

v = ¢; sinh <g> + ¢5 cosh (g) —2ze?

Hence
y = v(z) 2(z)
= (cl sinh (g) + ¢, cosh (;) — 2xe_72> Te?
Example 4
y' —dzy' + (42 - 2)y =0 (1)
In the form y” + p(z) v + q(z) y = r(z) then p = —4z,q = (42% — 2) ,r = 0. Hence (6A) is
z=e /3%
_ oJ2ade
= em2

Now we check if Liouville ode invariant ¢; is constant or a constant divided by z2.

_ 1 / 1 2
Q=q—5p =P
= (42® —2) — 1(—43c)’ - 1(—4gc)2
2 4

= (42® - 2) +2—711(16x2)
=42° — 24 2 — 422
=0
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Since ¢y is constant, then we can use the change of the variable y = v(z) z(z) which is

y = v(z) 2(z)
1172
= (<)
Substituting the above into the original ODE (1) gives
y' —4zy + (42 —2)y =0
x? " x? ! 2 z?
(ve ) —4x<'ve ) +(4x —2)ve =0
Carrying out the simplification gives
v =0
Which is constant coefficient ode. This is easily solved giving the solution
v=2cC +cx

Hence

y = v(z) 2(z)

= (C]_ + 02:17) ezz

Example 5
22y + 32y +y=0

1)

This is of course Euler ode, and we do not need to try this method as solving it as Euler
ode is much simpler. But this is just for illustration for the case when the Liouville ode

invariant comes out not a constant. In the form y” + p(z) ¥’ + q(z) y = r(z) then

Where now p = 3,¢q = 4,7 =0. Hence (6A) is
z=¢ J 3%

—e2 /3l

8

Now we check if Liouville ode invariant ¢; is constant.

_ 1/ 12
q=4q 2p 4P

1
z2
5)
1
2 2x2 42
1

T 4a?

(14)

Since ¢; is not constant then the ode can not not converted to an ode in v(x) with constant

coefficient.
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Example 6
zy’' +2y —zy=0 (1)
In the form y” + p(z) ¥y + q(x) y = r(x) then

2
y” + ;y' -y = 0 (1A)
Where now p = 2,¢q = —1,7 = 0. Hence (6A) is

z=¢ /3

=e—f%dx

1/ 12

Since ¢, is constant, then we can use the change of the variable y = v(z) z(z) which is

y = v(z) 2(x)

1
= V-
T

Substituting the above into the original ODE (1A) gives
2
y// + = y/ _ y — 0
x
() +3(2) -
v—| +—=(v=) —v==0
x x\ T x
Carrying out the simplification gives
v —v=0
Which is constant coefficient ode. This is easily solved giving the solution

v=-c1e® +coe "

Hence
y = v(z) 2(z)
1
= (cle + cpe ””) —
T
Example 7
1 1 1 2
Y L, 4 -0 1
y \/Ey+<4x+4x3 x2)y (1)
In the form y” + p(z) ¥ + ¢(x) y = r(x) then p = —\/ii, q= (ﬁ + 4% — x%) ,7 = 0. Hence
(6A) is
z=¢ 3%
= ef ﬁd:l)
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Now we check if Liouville ode invariant ¢; is constant.

1/ 12
q1=q—§p—1p
(11 2N 1/ 1Y 1/ 1\?
(e2) -4 -
2
T2

Not constant. Stop here. This can be solved using Kovacic algorithm.

4.3.2.8.6 Transformation on the dependent variable (method 2) y = v(x)z"
ode internal name "second_ order_change of variable_on_y_method_ 2"

This transformation, if it works, changes the second order ode to an one with missing v,
which then can be solved as first order ode by reduction of order. This transformation
does not necessarily changes the second order ode to one with constant coefficient like the
above general transformation. But to an ode with missing y.

This method assumes
n

y=v(z)z
If this transformation changes the ode to one with missing y, then it can be used. Substi-
tuting this in (A) results in the following ode where the dependent variable is now v and
not y
™" + (22" 'n+2"p) v + (n(n — 1) 2" + npz™ ' + gz ) v =71
v+ <2g +p) v+ (n(n—1)z 2 +npr ' +q)v= s (7)

x'ﬂ

If it happens that
nin—1)z > +npz ' +¢=0 (7A)

For some integer or rational number n, then (7) becomes
n r
v (2— > v =— 7B
+(2 +p o (7B)
Which now can be solved using substitution u = v'.
x "

Which is linear first order ode. Once u is found, then v is by found integration. Hence y
is now found. To use this method, all what we need is to check if (7A) is true for some
number n. Typically one tries n = +1 first and if this does not work, then try to find
other values. Example below shows how to apply this method.

4.3.2.8.7 Worked Examples on all above 4 methods

Example 1. zy” + 2y — xy = 0 Trying change of variable on independent variable first.
Let 7 = g(x) where z will be the new independent variable. Writing the ode in normal
form gives

Y +py+qy=r

2
p=-

xr
g=-1
r=0

Applying 7 = g(z) transformation on the above ode gives

Y' () + (1) ¥ (7) + @ (7) y(7) = ma(7) 1)
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Where
@) +p(e) (@)
p(r) = IR, ®
R (C) 5
0t = 20 ®)
r(7) = r(z) 4
@y ()
Approach 1. Let ¢; = ¢ where ¢? is some constant. This implies
q — 2

Y=V )

If p; is constant using this 7 then (1) is a second order constant coefficient ode which can
be solved easily. This ode has ¢ = —1, therefore from (3)

1
T ==v-1
c
Hence p; becomes using (2)

@) 1)
(7' (z))”
_ 0+ (2z71) 1y/=1

-1

p(7)

c2

= —2x_1\/—lc

Which is not a constant. So this transformation failed.

Approach 2 Let p; = 0. If with this choice now ¢; becomes constant or a constant divided
by 72 then (2) can be integrated. p; = 0 implies from (2) that

™ +pr'=0

T = /e_fpd””dx
z/e_fledzdx
=/x_2dz

-1

Using this then ¢; becomes

Which is not constant and nor a constant divided by 72. So this transformation did not
work.

Trying change of variables on the dependent variable transformation (first method). This
method assumes

y = v(z) 2(2)
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Substituting this in the given ode results in new ode where the dependent variable is v
and not y which can be found to be

V(@) + (04 27@)) Vo) + (@) +5(0) + ) v(a) =

Let p + 22/(z) = 0. Solving gives z = e~/ 29 With this choice the above ode becomes
Z 1 7 /! r
v +;(z +p2' +qz)v = p,

Applying z = e~/ 2% to the above reduces it to

V' +qu=mr (6)
Where
_ 1 / 1 2
q1=4q 2p 417

1
r =rez/rd

If ¢; turns out to be constant or a constant divided by x> with this choice of z, then v is
solved for from (6) and the solution to the original ode is obtained. Applying this method
on the given ode gives

z=¢ /2%
=e—fa:_1dm
:e—lnx
=x_1
Hence
_ 1 / 1 2
q1=4q 2p 4P
2 1 2
:_1 2 2 -1
+ 5% 4( z7")
=—1+z%-z?
=-1

Since ¢, is constant, then this transformation works. Eq (6) now becomes
v —v=0

The solution is
v=-ce "+ ce”

Therefore, since z = z~! then

y = v(z) 2(z)

1
= (cle_“’ + CQ@w)

This example shows that change of variable on the independent variable did not work, but
change of variable on the dependent variable (general case) worked.

Trying change of variable on the dependent variable (second method). This method assumes
that

y=v(z)z"
For some n, This transformation changes the ode to an ode with a missing y, which can
be easily solved as two first order ode’s. Substituting this in (A) results in the following

ode where the dependent variable is v and not y

™" + (22" 'n+2"p) v + (n(n — 1) 2" + npr™ "t + gz v =71 (7)
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If it happens that
(n(n—1)z" % +npz" ' +¢z") =0 (TA)

For some n, then (7) becomes
™" + (28" 'n+2"p) v =71 (7B)
Which can be solved using substitution u = v’ to give

2n1
O o )P
"

Applying (7A) on this example ode gives

<n(n —1)2z" %+ n(%) " 4 (=1) x”) =0

n(n—1)z" 2 +2nz"? — 2" =

(n+n2) "2z =0

It is clear that there exists no integer or rational number n which makes the LHS above
zero. Hence this special transformation did not work.

This is an example where only the change of variable on the dependent variable (general
case) worked.

Example 2. Euler ODE z?y"(z) + zy/(z) + y(z) =0 One way to solve Euler ODE
2’y (z) + 2y () + y(z) = 0 (A)

Putting it in normal form gives

1 1
Y'(@) + 4 (@) + —y(z) =0
Hence

1

p=-

T

1

q=ﬁ
r=20

Trying change of variable on the independent variable. Let 7 = g(x) where 7 will be the

new independent variable. Applying this transformation results in

V' +piy +qy=m (1)

Where

no= T @

() 5
T @
ri(7) = r(z) 4

0= ey 8

Approach 1. Let g; = ¢ where ¢? is some constant. This implies
q _ 2
&

— [ vais 5)
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If with this 7, then p; turns out to be constant, then (1) is now a second order constant
coefficient ode which is easily solved. Applying (5) on the given ode gives

T=%/\/Fdﬂf
=-Ilnx

Using the above on (2) gives

Which is a constant. Hence this transformation worked. Therefore(1) becomes (using
q1 = ¢ which is a constant c?)

y'(1) + 21/ (1) + quy(7) = 11
y'(r) +ey(r) = 0

The solution is
y(1) = Acos (cr) + Bsin (cr)

But 7 = %ln z. Hence the above becomes
y(z) = Acos(Inz) + Bsin (Inz)

In practice, this longer method is not needed to solve Euler ode 2%y (z) +zy'(z) +y(z) = 0
as that the substitution y = 2" works more easily. But the above method is more general.
For example, using y = z, then 2%y (z) + zy'(z) + y(z) = 0 becomes r(r — 1) +7+1 = 0.
The roots r are i, —i. Then the solution is linear combination of the basis solutions given
by

y = Az’ + Bx™"
_ Aelne | Belno™
— Aeilne | ge—ilne
= Acos(Inz) + Bsin (Inz)

Where the last step used Euler relation to do the conversion. Another known transformation
for Euler (which is not as simple as the above) is to use z = e’. Using this gives

dr

i 2
But Inx = ¢, hence

dt 1

== 3

dry =« (3)

To do this change of variable and obtain a new ode where now y(z) becomes y(t), then
y'(x) is changed to ¥/(t) and y”(x) is changed y”(¢). Using

dy dydt

g _ I 4

dr dtdx (4)
Substituting (3) into (4) gives

dy _dyl

dx dtzx
But 1 = e™*. The above becomes

dy  _.dy

de C dt (5)

Now y”(z) needs to change to y”(t). Since

dy _ d(dy
dz?  dz \ dz
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Substituting (5) into the above gives

@ — i e_t@
dz?2  dzx dt

Dividing the numerator and denominator of % by dt gives

d2_y — é 6_t d_y
dx? ‘fl—’t” dt

_dvd( dy
"~ dxdt dt

But from (3) % =1 = ¢~*. Hence the above becomes

dx? dt dt
Using the the product rule gives

dzy —t —t dy —t d2y
aﬁ—e(*'a+eaﬂ

:gm@@_@) (6)

Now y/(z) and y”(z) have been converted to y'(t),y"(t). Substituting (5,6) in the gives
ode gives

z*y'(z) + 2y (z) + y(z) =0

d’y dy dy
2 -2t~ J I —tJ —
z’e <dt2 dt> + ze dt+y(t) 0

But 2 = ¢! and z2 = €. The above becomes

dy dy dy

@ " T TV =0
d*y
W + y(t) =0

This is now constant coefficient ODE. The solution is
y(t) = Acos(t) + Bsin (t)
Since In x = ¢, then the above becomes
y(x) = Acos(Inzx) 4+ Bsin (Inz)

This completes the solution.

Example 3. y”sin? (2z) + y/sin (4z) — 4y =0 Writing the ode in normal form gives

y' +p@)y +ae(z)y=r
= —ssllnr;(é?) sin (2z) # 0
4

1= " sin? (2x)

Trying change of variable on the independent variable as above. Let 7 = g(x) where 7

will be the new independent variable. Applying this transformation results in

v +py +qy=mn (1)
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Where
o 7"(z) + p(x) 7'(x)
pl( ) (7_, (x))Q (2)
)
QI( ) (7_, (x))Q (3)
n(r) = ) @

(7 (2))°

Approach 1. Let q; = c® where c is some constant. This implies

q 2
5 =2C

— [ vais 5)

If with this 7, then p; turns out to be constant, then it means (1) is second order constant
coefficient ode. Applying this on the given ode (5) becomes

/ \/ sin? 2ac
_c / sin (ZJ:)

= éln (csc (2z) — cot (2z))

Eq (2) now becomes

7"(z) + p7'(x)
(7' (z))?

p(r) =

=0
Which is constant. Hence this transformation worked. Therefore (1) becomes (since q; = ¢?

is constant c?)

Y'() + 1y (1) + qy(7) = 1

y// + c2y =0

This gives

y(1) = Acos (cr) + Bsin (cT)
Using 7 = *In (csc (2z) — cot (2z)) the above becomes

y(x) = Acos (iln (csc (2z) — cot (2x))) + Bsin (i In (csc (2x) — cot (2z)))

Simplifying using trig identities gives

—iBcos (2z) + A
y(@) = sin (2z)
_ Bycos (22) A
~ sin(22) sin (2z)
= By cot (2z) + Acsc(2x)

Approach 2 Let p; = 0. If with this choice now ¢; becomes constant or a constant divided
by 72 then (2) can be integrated. p; = 0 implies from (2) that

" +pr’' =0

T= /e_fpd:”dm

_ sin(4z)
T = /e fsin2(21)dmdx

1
T / sin (2z) de
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Using this gives

Which is a constant. Hence this transformation also works. Eq (1) now becomes

Y40y +ay=n
y'(1) —4y(r) =0
y(1) = Ae™* + Be*"

But 7= [ dx = L1n (csc (2x) — cot (27)), hence

1
sin(2z) 2
y(x) — Ae—2%ln(csc(2w)—cot(2z)) + Be2%ln(csc(2z)—cot(2w))
— Ae—ln(csc(2x)—cot(2w)) + Beln(csc(2x)—cot(2x))

B A
~ csc(2z) — cot (2z)

+ Bcsc (2z) — cot (2x)

Which can be simplified to same solution shown in approach 1. This was an example where
both sub methods of change of variable on the independent variable worked.

Example 4. (1 —2?)y” — 2y +y =0 Writing the ode in normal form gives

YV +p)y +q(x)y=r

p=(1_wx2) x#1l,x#—1
_ 1
1= -»

Trying change of variable on the independent variable as above. Let 7 = g(x) where 7

will be the new independent variable. Applying this transformation results in

V' +py +qay=n (1)
Where
)= 7"(x) + p(x) 7' (z)
pl( ) (7_, (.Z'))2 (2)
o 4@)
q(7) (' (2))? 3)
r(r) = L&) @

Approach 1. Let ¢; = ¢ where ¢? is some constant. This implies

q 2
5 =2C

— [ vais 5)

If with this 7, then p; turns out to be constant, then it means (1) is second order constant
coefficient ode which is easily solved. Using the given ode (5) becomes

/D

=—ln a:-l—x/xz
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Hence (2) now becomes

Which is constant. Hence this transformation worked. Therefore the ode (1) becomes

(since q; = ¢? is constant c?)

y'(r) +p1y/ (1) + qy(r) =11
y// + C2y — 0
The solution is
y(1) = Acos (cT) + Bsin (cr)
Using 7 = 1n (m + V2 — 1) the above becomes

y(x) = Acos (z’ln <x+m)> + Bsin (iln <x+m>>

Approach 2 Let p; = 0. If with this choice now ¢; becomes constant or a constant divided
by 72 then (2) can be integrated. p; = 0 implies from (2) that

™ +pr'=0
T:/e_fpd’”dx
S 75y de
T=/€ (1==*) "y

1
= d
4 /\/x—l\/x—l—l o

Therefore

(1—=?)

2
1
<\/$—1\/(E+1)
1
(1-22)

— 1
(m—l)(w—f-l)
1
=)

Which is a constant. This transformation also worked. Eq (1) becomes

V' +py +ay=mn
y'(r)—y(r)=0
y(1) = Ae™™ + Be”

Using 7 = [ ﬁmdz =In (z + V22— 1), (z > 1) the above

y(x) = Ae™" + Be”
— Ae” ln(x+\/:1:2—1) + Beln(x—i—\/xQ—l)

A
_ A Besva)
AV 1
This solution looks different from the solution found above using approach 1, but can be
shown to be the same. This was an example where both methods of change of variable on
the independent variable work.
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Example 5. z%y" — zy’ + (—2® — ;) y =0 Writing the ode in normal form gives
v +p(@@)y +a(z)y=r

Trying change of variable on the independent variable as above. Let 7 = g(x) where 7
will be the new independent variable. Applying this transformation results in

Y +py +tay=mn
Where

(1)

(2)
q(z)
T) = 3
" @y ¥
r(z)
ri(T (4)
(7 (z))?
Approach 1. Let q; = c® where ¢? is some constant. This implies
q — 2
(7' (2))”

T=%/\/(§dx

(5)
If with this 7, then p; turns out to be constant, then it means (1) is second order constant
coefficient ode which is easily solved. Applying this on the given ode then (5)

L[ | «2+;
7'=—/ — 24d$
c iy

1
= 2—\/—4:102 — 1+ arctan (
c

=)

Hence (2) now becomes

() = @ 97

(7' (2))”
(82 +4)c

(—422 — 1)?
Which is not constant. Therefore this transformation did not work.

Approach 2 Let p; = 0. If with this choice now ¢; becomes constant or a constant divided
by 72 then (2) can be integrated. p; = 0 implies from (2) that

™ +pr'=0

T= /e‘f”d””dx
= /ef 29y
=/elmdx

=/mdx

1.2

2
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Using this then ¢; becomes

Which is not constant. Trying change of variable on the dependent variable (first method).
This method assumes

y = v(x) 2(7)
The Liouville ode invariant is

1, 1,

g1 =4q 229 4p
_ @i 1d -1\ 1/-1)
o 2 2dz \ x 4\ z

1

=@ +1)

Which is not constant. Hence this method does not work. One way to solve this is as a
Bessel ODE. I have many examples how to do this on my main page.

Example 6. (z2 — 1)y” — 2zy’ + 2y =0 Writing the ode in normal form gives

Y +p@)y +ex)y=r

—2x
P= 57 x # +1
2
1= 21
r=20

Trying change of variable on the independent variable as above. Let 7 = g(x) where 7

will be the new independent variable. Applying this transformation results in

v +py +qy=mn (1)
Where
= 7" (z) + p(x) 7' ()
pl( ) (T' (r))z (2)
- q(z)
a1 (7) ( (x))2 (3)
n(r) = ) @

2

Approach 1. Let ¢; = ¢ where ¢? is some constant. This implies

q 2
5 =2C

— [ vais 5)

If with this 7, then p; turns out to be constant, then it means (1) is second order constant
coefficient ode. Applying this on the given ode (5) becomes

/_1

=E\/§ln(z+\/ﬁ—1>




CHAPTER 4. SECOND ORDER ODE F(z,y,y,y") =0 351

Hence (2) reduces to
" (x) + pr'(x)
(7' (z))*
3v2cz
L (222 —2)

r2—1

pi(7) =

Which is not constant. This transformation did not work.

Approach 2 Let p; = 0. If with this choice now ¢; becomes constant or a constant divided
by 72 then (2) can be easily integrated. p; = 0 implies from (2) that

" +pr’' =0

T = /e‘fpdzdz
2z d.

Hence ¢; becomes

(22 —1)°
Which is not constant. This transformation did not work.

Trying change of variable on the dependent variable (first method). This method assumes
that

y =v(z) 2(z)
The Liouville ode invariant is

i 1, 1,

q1=q 219 4P
(2 \ 1d/ -2\ 1/ —2z\*
C\z2—1 2dr\z2 -1 4\ 2 -1
_ 3

(22 — 1)

Which is not constant and not constant divided by z2. Hence this transformation also did
not work.

Trying the Lagrange adjoint ode method. From above the adjoint ode is

d(zp)
"
z dx

For some unknown function z(z). Hence it becomes

d -2z 2
n__ % _
z dx(z<w2—1)>+z(x2—1) 0

o[ 27 N dzz® 22 s 2 —0
x2—1 (532_1)2 x2—1 22—-1)
2¢  , 4z +4(2* - 1)

7 —
z+x2_1z— @ —1) z2=0

+29=0
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Clearly this is just as hard to solve as the original ode So this method does it work.

Trying integrating factor method. For this to work the condition is that %(p’ + %p2) =gq.
Applying this on the current ode gives

Lo, 1,

B (P + o ) =q

1(d( -2\ 1 -2z \*\ 2
2\dx\ 22 -1 2\z2 -1 |
(222 +1) 2
(x2—1)2_w2—1

2c2 + 1
=2

2 —1

Which is not true. Hence there is no integrating factor.

Trying transformation on the dependent variable (second method). This method assumes

y=v(z)z
This works only if (7A) given in the introduction is satisfied.
(n(n—1)z" %+ npz" ' +¢z") =0 (7TA)

Applying this on the current ode example gives

—2z 2
n—2 n—1 n _
(n(n—l)x +n<z2_1>w +(x2_1)x>—0
Trying n = 1 the above becomes
—2z 2
(F20)+ (551)7) -0

Hence this transformation works for n = 1. Therefore y = v(x) z. eq (7) in the introduction
now reduces to

" + (22" 'n+2"p) v + (n(n — 1) 3" > + npz" ' + gz v =71 (7)
V" + (ep+2) 2)1)' =0
x

Which now can be solved using substitution u = v'.

G )
x
Which is linear first order ode. Once u is found, then v is found by integration. Hence y
is now found. Hence

, 2

U — u=20

33—z
Which has the solution © = ¢; x;”il. Hence v’ = clx;”—il. Integrating gives v = ¢; (:c + %) ~+cs.

Therefore y = zv = ¢; (2 + 1) + cox

This was an example where only the transformation on the dependent second method
y = v(z) " worked.
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Example 7. zy” + (z2 — 1)y’ + 23y =0 Writing the ode in normal form gives

Y +p@)y +e@)y=r

2
—1

p:x x#0
x

q=1

r=20

Trying change of variable on the independent variable as above. Let 7 = g(z) where 7
will be the new independent variable. Applying this transformation results in

vV +my +qy=mn (1)
Where
oy - T'(@) +p) 7'(2)
pi(T) ( (),( ) (2)
_ 9z
T @
r(z)

ri(7) =

(' (@)

Approach 1. Let g; = ¢ where ¢? is some constant. This implies

"=V 6)

If p; turns out to be constant with this 7 then it implies (1) is second order constant
coefficient ode. Eq (5) becomes

Hence from (2)

Which is a constant. Then (1) becomes second order of constant coefficient
y'(1) + ey (1) + y(1) =0

Which has the solution

e [eVBT [ eV3r
y(r)=e 2<Asm< ) )—i—Bsm( ) >>

. 2
But from earlier 7 = % Hence the above becomes

2 2 2 2
P 32_ % 393—
y(z) = Ae” = sin (C\/_TQC) + Be * sin <CT2C)

_2 . [/32? [ V/3a?
=e 4<Asm< 1 )+Bsm< 1 ))
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Approach 2

Let p; = 0. If with this choice now q; becomes constant or a constant divided by 72 then
(2) can be easily integrated. p; = 0 implies from (2) that

" +pr’ =0

T = /e‘fpdxdx
= /e_fzm_ld“’dx

Therefore

2
=2
= ;1;2

Which is not constant. Now it is checked to see if it is constant divided by 72. Since

2\ 2
= <—e p > = e~ then G = T—12 Therefore this approach also worked.

Eq (2) becomes

Y +p1y +qy=0 (1)
1
y'+5y=0
T
7_2y// + y — 0

Which is standard Euler ode which can be solved easily. Giving
3 3
y(T) = A\/T cos <§ In (7')) + B+/Tsin (% In (T))

But 7 = —e_%. Hence the above becomes
& 3 12 x 3 :1:2
y(r) = A _e~% cos (% In (—6_2)> 4+ B\ —e% sin (% In <—e_2>>

This looks different from the solution obtained in approach 1, but it verifies also as correct
solution. This is an example where change of independent variable using ¢; = c?
and also change of independent variable using p; = 0 works as well.

works

Example 8. 4z%sin (z) y” + (—4x% cosz — 4z sinz) y' + (2x cosz + 3sinz)y =0 Writing
the ode in normal form gives

y' +p@)y +qx)y=0
—4x?cosx — 4xsinz

= 0) 72 y "
P 422 sin (x) z#0,m 2
0= 2xcosz + 3sinx

422 sin (z)
r=0
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Applying transformation on the dependent variable second method y = v(x) 2" results in

™" + (2nz" ' + pz™) V' + (n(n — 1) z"* + pz"'n + gz") v =0
n (2nz™! + pz™) o+ n(n—1)z" 2 + pz"In + gz I
" "
V' + (2nz ™ +p) v+ (n(n— 1)z 2 +pz'n+q)v=0
"+ (2nzt +p) v + (pnz + g+ (P —n)z?)v=0 (1)

Assuming the coefficient of v(x) above is zero. This gives
pnz 4+ g+ (n2 - n) r2=0

Substituting the values for p, gin the above gives

(—4zzcosa:—4a:sinx) . 2xcosx+3sinx+(n2_n)x_2:0

422 sin (x) 472 sin (x)

Solving for n shows that n = ;. Hence (1) now reduces to

'+ (z7 4+ p)v =0
1  —4z?cosx — 4z si
o4 (L x a: zsina) ,_
422 sin (z)
. [A4rsinz —4x?cosx —4xsinz
v+ - v =0
4r2sinz
—4z?cosx
U” + ! — 0
4r2sinx
CoS T
"o . v =0
sin
Let v' = u, the above becomes
, COSZ
——u=0
sin

Which is linear first order ode. It has the solution u = ¢; sin (z). Hence
v' = ¢; sin (z)
Integrating gives
v = —cjcos(x)+ co
Therefore

y =0z
= (—cy cos () + c2) VT

This can also be written as
y = (czcos (z) + c2) VT

Example 9 z%y” — (2a — 1) zy’ + a?y =0 The above is standard Euler ode. But below
shows how to apply these transformations if one did not know this.

Trying change of variable on independent variable first. Let 7 = g(z) where z will be the
new independent variable. Writing the ode in normal form gives

Y +py+qu=r

p=(1—2a)
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Applying 7 = g(z) transformation on the above ode gives

y' (1) +pu(1) Y (7) + @a(7) y(7) = 71(7) (1)
Where
(@) +p@) )
P =TS, ®)
4@
QI( ) (7_, (x))Q (3)
n(n = @

Y= Ve 6)

If p; is constant using this 7 then (1) is a second order constant coefficient ode which can
be solved easily. This ode has ¢ = Z—z, therefore from (5) assuming positive

, 1 [a?
T =\
cVx

a

CT

Hence p; becomes using (2)

_ @) +p7'(@)
(7' (z))”
(1-2a)c

p(7)

Which is not a constant. So this transformation failed.

Approach 2 Let p; = 0. If with this choice ¢; becomes a constant or a constant divided
by 72 then (2) can be integrated. p; = 0 implies from (2) that

" +pr’' =0

T = /e_fpdzdz
N / e~/ T ey
= /xza_ldz

Using this then ¢; becomes
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Which is not constant. But 72 = <%> = %. Hence ¢; = }1% Hence this transformation

works. Eq (2) becomes

Y +py +ay=0 (1)
, 11
YRy
47_2y// + y = 0

Which is standard Euler ode which can be solved easily. Giving
y(1) = AT+ B/TIn (1)

But 7 = % Hence the above becomes
2a 2a 2a
)= Ay By (=)
2a
z2a T
= — + By —1
\/ * \/ " < 2a )
= A;z° 4+ B1z%In < )
2a

Example 10. Bessel ODE Given the ode

V'@ + (1 5 ) oa) =0 (4)

422

Trying change of variables on the dependent variable (first method). In this method we
assume

y = v(z) 2(2)

The ode is y” + py’ + qy = 0. Hence p = 0,¢ = (1 — ;2;). Therefore the Liouville ode
invariant is

1, 1,
n=g-50 =P

-(-2)

Since ¢; is not constant, then this method does not work.

Trying change of variable on independent variable.

Let z = g(z) where z will be the new independent variable. In general, given an ode of
the form

y'(z) +p(2) ¥/ (2) + ¢(2) y(z) = r()

Then applying this transformation results in

v(2) + p(2) ¥ (2) + @ (2) y(2) = m(2) (1)
Where
L _ 2@+ (@)
T, ?
az)= g 3)
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Approach 1. Let g; = ¢ where ¢? is some constant. This implies

— ¢ [ vads 5)

If with this 2, then p; turns out to be constant, then it means (1) is second order constant
coefficient ode. Applying this on current ode then (5) becomes

> V3
= % (\/4:c — 3+ v/3arctan (Vﬁ))

Hence (2) becomes

2"(x) + p2'(x)

(2 (2))”
6c

(422 —3)*

pi(2) =

Which is not a constant. So this transformation did not work. So change of variable on
both the dependent and independent variable does not work for this ode to convert it to
one with constant coefficient. Trying converting it to standard Bessel ODE. Using this
change of variable on the dependent variable

D=

Yy =uz
To transform (A) to standard Bessel ODE
v +zu + (27— 1) u=0

Since y = uz? then

dy du 1 x2
= = 2A
dr dx u 2 (24)
And
Py _d(du s +uﬁ
dz? dx \ dx 2
dz \ dzx dz 2
— d2uml + ld_um é + ld_ul'_; — lux_%
 dx? 2dx 2dx 4
d2 ; du _1 1 _3
= 2% +£x — LU (3A)

Substituting (2A,3A) into (A) gives

dzu; du 1 1 3 1
r2 + —x~ 2—L—lux 2+ 1—— Juzxz=0

dz? dx 472
d2U 1 du 1 1 3 3
dx2$2 —l-%x 2 —Zux 3 +ux2 —Zux 2 =0
Pu 1 du

1 3 1
2 — 2 — 2 2 =
dx2x +dxx ur 2 +ux 0
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Multiplying both side by T3 gives
d®uv  du

zzﬁ-l—x%—u-i-ua?:o

d? d
de—az—i—xﬁ—(l—ﬁ)u:O

d? d
x2d—;;+xdz+(x2—l)u20

Which is Bessel ode where order is n = 1. This has known standard solution. Once u(z)
is known, then y(z) which is the solution to the original ODE (A) is now known also.
There is a more general method and better method to find if second order ode can be
transformed to Bessel ODE. See my main page for examples and description.

4.3.2.9 Exact linear second order ode py(z)y” + p1(z) ¥y + po(z) y = f(x)

ode internal name "exact_ linear second_order ode'

The ode
p2(z)y" + pr(2) Y + po(z) y = f(2) (1)

is called exact if the following condition is met

Py —p)+po=0 (1A)
In this case, then
d
Ejmy+@rm®w=m¢+my+my (2)
Which implies we can write (1) as
d / /
Ejmy+@rmﬂw=f@) (24)
Or
Py +(p1—ph)y = /f(x) dr + ¢ (3)

Sometimes (2A) is called the adjoint ode of (1). Eq (3) is called the first integral equation
of (1). It has order one less than (1). Let us see how to find the condition that first
integral exist or not.

P2y’ +p1y + Doy = (29 + (1 — b)) y)’

Expanding gives

oy + 1y + poy = 0oy + poy’ + (01 —ph)y + (01 — Ph) Y
=poy’ + (P + 01 —Ph) Y + (P — )y
=py" +py + (P —p3)y

Comparing coefficients

Do = Py — Py
Py —p1+pPo=0

This is the condition for exactness stated in (1A). i.e. if ODE (1) satisfies this condition
then the ODE is exact and has first integral which we now can be easily solve since it is
ode of order one less. See section on higher order ode’s of how this can be extended to
higher order ode’s.
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4.3.2.9.1 Example 1

:E2y” + zy’ —y= 1,4

Then py = 22, p; = x,py = —1, f(z) = z*. Condition (3) becomes
Po—pi+p=2-1-1
=0

Hence it is second order exact. Therefore the adjoint ode (2) is

(D29’ + (01— p2) )’ = f(2)

(z% + (z — 22)y) = z*

22y + (z—2r)y = /w4dw+c
75

2,/
Yy —xy=—+c
Y Y 5

Integrating gives
o2y + (z —2z)y = /x4da:+c
This is called the first integral of the original ode. Hence
o’y + (z - 22)y = /x4d:c +c

x5

2,/
Y —ry=—+c
Y Y 5 1
This is linear ode. Solving this ode gives
o N
=———+4cx
Yo 15 o T

Note that this is also a Euler ode.

4.3.2.9.2 Example 2
y' +azy' +y=0
Here p, = 1,p; = x,po = 1. The condition for exactness is
Py —py+p=0-1+1
=0

The ode is already exact. i.e. no integrating factor is needed. The solution becomes

(p2v' + (1 — P3)y) =0
(W +ay) =0
The first integral is
y+ry=oq
Solving this gives
d
—(Iy)=1
d.’L'( y) (4]

i<yefmdm) = el 7z,

dx
yel o = / el *®eidz + ¢

y:ef—xdx</efxdxcldx> +C2ef—xdx

=2 [ .2 =2
=ce 2 (/e2dx) +cpe 2
a2 22
=e2 (c; | ezdr+co
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4.3.2.10 Linear second order not exact but solved by finding an integrating
factor.

ode internal name "linear second_order_ode_solved_by_ mu_ integrating factor"

(not implemented yet).

As mentioned above, an exact ode is one which has a first integral. In the case when
the ode was exact, we did not use an integrating factor (this is the same as saying the
integrating factor was 1), i.e. p(x) = 1.

But if the ode is not exact, then we look for integrating factor u(z) that when multiplied
by the original ode makes it exact and hence will have a first integral. Given

»y' +q(x)y +r(@)y = f(z) (1)

Which is assumed not to be exact. Multiplying both sides by u(x) gives u(py” + q(z) v’ + r(z)y) =

wf(x). Let
w(py" + q(z)y' +r(z)y) = (upy’' + By)' (2)

Expanding gives
py" +q(x)y +r(z)y) = w'py' + pp'y + ppy” + B'y + By'
poy” + pqy’ + pry = ppy” +y'(W'p + pp' + B) +yB’
Comparing coefficients gives the following 2 equations

pg = p'p+pup + B (2A)
ur = B’ (2B)

Taking derivative of (2A) gives

Wa+pgd =p'p+p'p +pp + "+ B
Substituting for B’ from (2B) into the above gives

pa+pgd =p'p+u'p +uw'p + up" + pr (3)
Arranging

pwp+ (20 —q) +pp’ —qd +71)=0 (4)

The integrating factor u is the solution to the above ODE (called the adjoint ode also).
Note that in (4), the term p” —¢'+r will not be zero, as this is the condition for exactness,
and this ode is not exact (else we will not need an integrating factor to start with).

We can obtain (4) directly from py” + qy’ + ry = 0. Since the relation between an ode and
its adjoint ode is the following: given

py' +qy +ry=0

Its adjoint ode is

!/

((ow) — qu) +rp=0

(pw)" — (qu) + 7 =0

P'p+pr) = (dp+aqw)+rp=0
Plu+pp +p'u +pp’ —dp—q +rp=0
p" + (20 —q)+p@ —¢ +7r)=0

We see this is the same as (4).
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In summary, an ode py” + gy’ + ry = 0 has adjoint ode (pu)” — (qu)’ + ru = 0 where
the solution to the adjoint ode makes the first ode exact. Once the integrating factor p is
found then the first integral is given by

py" +qy +ry = (upy + By)'

Where
B =pq—pp—pp
=ulg—p)—up
Hence
py' +qy +ry= (uwpy + (u(g—p) — 'p)y) (5)

There is a known relation between an ode and its adjoint ode given by

, d
p(py" +qy' +ry) —ypy" +qy +1y) = E(P(y, u))

Where the bar above the ode means its complex conjugate. The function P(y,u) is called
the bilinear concomitant (see Murphy book, page 93). And is given by

P(y,u) =p(y'p—yp') + (¢ — 1) yp

Unfortunately, all this does not help us in solving the adjoint ode (4) in order to find the
integrating factor u. Since it will also be a second order ode which can be as hard to solve
as the original ode. So this method is not practical as far as I can see unless the adjoint
ODE comes out very simple to solve, but in all the examples I looked at, this was not the
case.

4.3.2.10.1 Example 1
y' —4zy + (42* —2)y =0

p =1, = —4z,7 = (422 — 2) . Let us first check if the ode is exact or not as is. The
condition for exactness is

pl/ _ q/ + r = 0
Therefore the above becomes

044+ (4% —2) =0

The LHS is not zero. This means the ode is not exact. Therefore we need to try to find
an integration factor u(z) to make the ode exact. (4) becomes

wp+p (2 —q)+p@" —¢d +r)=0
p' 4 W (4z) + p(4+ (42* —2)) =0
p' 4 dzp + p(2442*) =0
We see in practice that finding the integrating factor leads to yet another second order

ode which is as hard to solve as the original ode. The solution to this ode can be found to
be e‘“ixe‘”Q. We only need one integrating factor. Hence let

z2

u(z) =e”
Multiplying this by the given ode now makes it exact
ey — dze "y + (4z% — 2) e y=0

—z2

2
—x —
’T -

To see this let us check the condition again now. Here p = e™,q = —4xe

(42> — 2) e=*". Hence
p// . q/ +r=0
(46_””23102 — 26_””2) — (86_””23102 — 46_””2) + (49102 — 2) e =0
0 =
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We see that it is now exact. Hence it has adjoint ODE of the form (5)
(upy + (u(g —p') — 'p)y) =0
Hence the first integral is
ppy + (u(g —p') —pp)y =c

Using p = e " p=1,q = —4z the above becomes

e_wa' + (—4&06_’”2 — (—23:6_“”2)) y=c
e %y —2me Ty =c
y — 2zy = ce”

This is linear first ode whose solution is

Y= em2 (C(L‘ + 02)

4.3.2.10.2 Example 2
1 1
y'+-y+-y=0
T Xz

Here p=1,q= 1,7 =1, f(z) = 0. The condition of exactness is

Is not satisfied. Hence the ode is not exact. The adjoint ode (4) to find the integrating
factor becomes

po+p (@ —q)+plp" —qd+7r)=0
1 1 1
X i X
1 1—=x
p'——p = pl — >=0
X a

' —ap —(1—z)p=0

Which has solutions u as bessel functions. We see that trying to find an integrating factor
using this method is not practical, as it leads to an ode just as hard to solve as the original
one. We could just have solved y” + 2y’ + 1y = 0 directly, since this is Bessel ode. Unless
there is a short cut to solving the ODE to find the integrating factor, this method is not
practical. See section below for simpler method

The main difficulty when second order is not exact, is in finding the integrating factor
p(z) which itself requires solving another second order ode. The whole point of an ODE
being exact is that it is a complete differential which means the order is reduced by one
to make it easier to solve. This means solving a second order ode becomes solving a first
order ode when the ode is exact.
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4.3.2.11 Linear second order not exact but solved by finding an M
integrating factor.

ode internal name "linear_second_order ode_solved_by_ an_M_ integrating factor"

This is another method to find integrating factor method for the second order ode. This
method of finding an integrating factor is not a general one like the above using p(z) but
it is easier to check. This is tried first and if this does not work, then the above will be
tried.

Given the ode, normalized so that the coefficient of y” is one

Y + Q)Y + R(zx)y = f(z) (1)

Let there exists an integrating factor M (z) such that

(M(z)y)" = M(z) f(=2) (2)
Then it can be integrated twice and solved. To find M, the above becomes
(M'y+My') = Mf
M//y+Mly/+M/y/+My/l — Mf
My" +y' (2M') + M"y = M f

M/ M//
! / - T =
y+y(2M)+My f (24)
Comparing (2A) to (1) gives
MI
225 =Q
M/I B
=
Or
, 1
M"—MR=0 (4)

Starting with (3) gives M = ez / Q= 1f this also satisfies (4), then M is found by integration.
If not, then this method did not work.

4.3.2.11.1 Example 1
y' —4zy + (42 —2)y =0

Hence @ = —4x and R = (4z® — 2), f(z) = 0. Eq(3) becomes

1
M — §MQ =0
Therefore
M = ez Qde
— e%f—4mdm
a2
=e

Now we much check that equation (4) is verified with such M.

2

M = —2xe™®
M = —2¢7% _ 2x(—26_m2>

= _2¢ + dge=
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Substituting these in (4) gives
<—2e“’”2 + 4:re_””2> —e® (4932 -2)=0

—2¢77 + dge=™ + 2% _ 432" =0
0=0

M is satisfied. Therefore the integrating factor is

2

M=¢e"
Eq (2) now becomes
(My)" =0
My =
My =cixz+co
_azr+c
M

= (Clx + CQ) 612

Which is the same answer found using the more general method of u(z) in the above
section but this is simpler when it works since it does not involve solving another ode (the
adjoint ode) to find an integrating factor.

4.3.2.11.2 Example 2 Here is an example where the method of integrating factor
does not work.
7z 1 / ]'
y+-y+-y=0
x x

1

Here p=1,g= 1,7 =1, f(z) = 0. The condition of exactness is

Is not satisfied. Hence the ode is not exact. Therefore let us try to find M. Using
M = ez /=

— 6% Inz

— vz

Therefore M’ = 127 and M” = —1z7%. Substituting these in (4) to verify gives (using
r=z1)

_ZxT — x% (x_l) =0

Which does not verify as the LHS is not zero. Therefore the integrating method did not
work on this ode.

An easier method to find if an M integrating factor exists is the following. Since M =
ez /997 then substituting this into (2A) gives

MI MII
v +y (2ﬁ) + oY= f(z)

Since M’ = 2gM and since

M = (M +qM)

1 i 12
—(gdM+-2M
2(q t 34 )
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Then (2A) now becomes

1 1/, 1.2
sqM @M+ Sq¢° M
y//+y/(22M >+2< M2 )y—f

1 1
y”+qy’+§(q’+§q2)y=f

By comparing the above to the given ode in normal form shows that for M to exist
the condition is
r= = "+ Lp
—2\7 7!
if the above is true, then M exists and is given by
M = g2/
Using this method on the first example above y” — 4zy’ + (422 — 2)y = 0, where ¢ =
—4z and r = (4a? — 2). Checking if (42? — 2) = (¢’ + 3¢%), then ;(—4 + 1(162?)) =

412 — 2 = r. Hence M exists. This is a much faster method to determine if M exists or
not.

The second example y” + 2y + 1y = 0 where ¢ = 1,7 = 1 then (¢ +3¢%) =
%(—w‘2 + %x_z) = —ﬁ # r. Therefore no M exists and the integration factor does
not exist for this ode. Note this does not mean there is no integrating factor. It just means

this short cut method which I call the M integrating factor does not work.

4.3.2.12 Solved using Lagrange adjoint equation method.

ode internal name "second order ode lagrange adjoint equation method"

This method is used when hint is “adjoint”. This transformation does not use change of
variables. It was discovered by Lagrange in his Miscellanea Taurensis paper. It reduces
the order of the ode by one, assuming the so called adjoint ode can be solved. This is also
described in section 1.5.1 on page 14 of the “book Change and Variations A History of
Differential Equations to 1900” by Jeremy Gray. This method will only work if adjoint
equation turns out to be simple and can be solved. It is now only used by the program if
the hint “adjoint” is detected or if all the other methods were first tried and they all fail to
solve the ode. So this method works if the adjoint ode can be solved. But the adjoint ode
itself is second order non constant ode. So we need to solve a second order non-constant
ode in order to reduce the order by one of the original ode. Luckily the adjoint ode turns
out to be possible to solve by change of variables when the original one is not, and that is
why this method is tried.

Given the ode
y' +p(@)y +q(@)y =r(z) (1)
This method starts by multiplying the ode by some unknown function z = z(x) which
gives
2y + zpy’ + 2qy = 2r (2)

/ zy"dx + / zpy'dx + / zqydr = / zrdx (3)

Using integration by parts on [ zpy'dz using [udv = wv — [ vdu where u = zp and

dv =/, hence v = y and du = -£(2zp). Therefore

/ zpy'dx = zpy — / yd(dzf) dx

Using integration by parts on [ zy”dz using [ udv = uv — [ vdu where u = z and dv =y,
hence v = 3’ and du = 2’. Therefore

/zy”dz =zy — /y’z'dx

Integrating gives
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Eq (3) becomes

(zy' - / y’z’dw) + (zpy— / ydiizf) dx) + / zqydzr = / 2rdx (4)

Integrating by part again the term [ y'2'dz using [ udv = uwv — [ vdu where u = 2’ and
dv = v/, hence v = y and du = 2”. Therefore

/y'z'dx :yz’—/yz”dx
Substituting this in (4) gives

(zy' - <yz' - / yz"dx)> + <zpy - / ydig’) dw) + / 2qudz = / erdz

2y —yd + /yz”da:+ 2py — /yd(dzf) dx + /zqydx = /zrdx

2y —y2 + zpy + / <yZ” - yM + zqy) dz = / zrdz

dx
2y —yz + zpy + / Y (z”

—d(ZP) + zq) dr = / zrdz
dx
zy'+(zp—z')y+/y(z" %+zq) dxz/zrdx (5)

The adjoint ode is the term inside the integral above given by

s d(zp)
z dx

+29=0 (6)

If this can be solved, where the solution z(x) # 0, then (5) reduces to

Zooly + (zsolp - (zsol)/) Y= /zrdw

SO ' 1
y'+y(p—M) =—/zrdx
Zsol z

Which is first order ode in y(x) which can be easily solved for y(z). Equation (6) is called
the Lagrange adjoint equation. This method of course works only if the adjoint ode can
be solved for z(z) and the solution is not zero.

4.3.2.13 Solved By transformation on B(z) for ODE
Ay"(z) + By (z) + C(2) y(z) = 0

ode internal name "second_ order ode non_ constant_coeff transformation_on_B'

This method is tried to reduce the order ode the ODE by one, by doing direct transfor-
mation on B(x) for the ode

A(z) y"(z) + B(z)y'(z) + C(z) y(z) =0
Let
y= Bv

Then v = B'v+v'B and ¢y’ = B"v+ B'v' +v"B +v' B’ = v"B + 2v'B’ + B"v then the
original ode becomes

A(W'B+2v'B'+ B"v) + B(Bv+v'B)+ CBv =0
ABv" + (2AB'+ B*)v' + (AB"+ BB'+ CB)v =0
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Now we check if AB” + BB’ + CB = 0 or not. If it is zero, then this method works and
we can now solve

ABv" + (2AB'+ B*)v' =0

Using u = v’ which reduces the order to one.

ABY' + (2AB'+ B*) u =0

This is first order ode now. Solved for u gives v’ which is solved for v as first order ode.
Then y = Bv and we are done. This method only works of course if AB”+ BB'+CB =0
comes out to be zero. Here is an example

4.3.2.13.1 Example 1
zy’' +(-1-1)y' +y =0

Here A=x,B=(—1—1z) and C =1, hence B’ = —1, B” = 0 and therefore

AB"+BB'+CB=0+(-1-2z)(-1)+(-1—x)
=l4+z-1-z
=0

It works. Hence the reduces ode becomes

ABv" + (2AB'+ B*)v' =0

Let u = v’ then

ABY' + (2AB' 4+ B*)u =
z((-1—2z))u' + (—2z + (-1 - x)2) =
u — zu’ + uz? —x2u’—0
v(—z—2*)+u(l+2?) =0
(1+ z?)
I_
u (x + z2?)

This is linear first order ode solved using integrating factor which gives

" ze
"1+ 2)?

Hence since v' = u then

I xe®

(1+ x)2

This is quadrature. Solving gives

vV=1Ccy+cC

2 + €1 1+2

Therefore
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y= Bv
e(lf
=(-1-1x) (cz+cll+x)

=c(14 ) + c1€”

Note that this method is sensitive to the ODE is written. If we divide the ode by A is
becomes

—1—z 1
yll_*_g_'__yzo
xr xr

Andnow A=1,B= "% and 0 =1 hence B' = -1 + 12 and B" = 2 — 4(1+1)
then

s (3- 2« (222 (1415 1 (222)

1
= —E(x2+2x+3)
#0

So this method now fails to reduce the ode order by one. So in practice, I try first on the
ode as given, and then try again by normalizing it so that B is not rational function and
try again. In other words, given an ode y” + (—le + %y = 0 then try with B = (—17—95)
and if this fails, try again after multiplying the ode by  sonow B=(—1—z)and A==z
and C =1 and see if this works or not. This method of course only works when B is not
Z€ro.

4.3.2.14 Bessel type ode z%y" + zy + (2 — n?)y = f(x)

ode internal name "second order bessel ode"

Solves Besself ode or an ode which can be converted to bessel ode.

4.3.2.14.1 Introduction This gives examples of converting (when possible) a second
order linear ode to Bessel form. Bessel ODE is

w2y”+a:y’—l—(w2—n2)y=0 (A)

Where n is the order which can be integer or non-integer. This comes out when doing
separation of variables for the Laplace and Helmholtz PDE in spherical and cylindrical
coordinates. n is integer for cylindrical coordinates and half integer values (n = % +7), for
spherical coordinates. n can also be any other real value. The case n = % + 7 is special in
that the solution of the ode is reducible to standard trigonometric functions and complex
exponential function. In all other cases, the solution remains in terms of Bessel functions.

The solution to (A) is known to be
y(x) = c1dn(x) + c2Ya(2)

Where J,(x) is Bessel function of first kind (order n). And Y,,(z) Bessel function of second
kind (order n).

There is also the modified Bessel ODE which differ by a sign

z2y” _|_$y/ _ (CL‘2 +n2) y= 0 (B)
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There is however a generalized form of (A,B). Which will be used below. (Bowman 1958).
This form is

2%y + (1 — 20) 2y +(ﬂ2 20,27 _ (n2’y2—a2))y=0 (C)

Which is obtained by applying the transformation n = % ,£ = Sz7 to (A). The above has
the solution

z(c1Jn(BxY) + c2Yn(B27)) integer n (C1)

y(x) = 2%(c1Jn(Bx) + caJ_pn(Bx7)) noninteger n (C2)

4.3.2.14.2 Collection of transformations This section shows number of transfor-
mations applied to second order linear ode in order to make it of the form (A) or (B) if
it is not already in that form. Once the ode is in form A or B, then its solution is now
known using Bowman transformation.

Example z%y" + zy’ + (az®> —n?)y =0

2’y +zy + (ar® —n®)y =0 (1)

Comparing (1) to (C) shows that

(1-2a)=1
2y =2
a0 = B2
=1
a=0

Solving shows that v = 1,8 = 4/a. Hence the solution from (C1) can now be written
directly as

y(z) = c1Jn(Vaz) + &Y, (Vaz)

Another way to obtain this solution is to use the transformation

Which converts (1) to
2y + 2y + (z?—0*)y=0 (2)
This is now in standard form (A) which has solution

y(2) = a1dy(2) + oY, (2)

Replacing back z = y/ax in the above gives

y(z) = a1 dy(Vaz) + c2Y, (Vaz)

So the rule is that, the term is (az? — n?) y then we can just replace J,,(z) and Y, (x) in the
standard solution with J,(y/az) and Y, (y/az). For example z%y" + zy’ + (42°> — 9)y =0
will have the solution y(z) = ¢1J3(2z) + c2Y3(2z).
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Example z%y" + zy’ + zy =0

o2y +xy +2y=0 (1)
Comparing (1) to (C) shows that

(1-2a)=1 (2)
(ﬂ2 2,27 _ (n2fy2 _az)) —

Hence

,82,}/2$2'y =1

(n*y* —a?) =0 (3)

Which implies
2y =1 4)
B2yt =1 (5)

(2) gives a = 0. (4) gives v = 3. Substituting these into (3) gives
n=20
And (5) gives %2 = 4 or 8 = £2. Therefore from (C1) the solution is
y(z) = 2%(c1Jn(B2) + c2Yn(B27))
= 1o (2v) + Y, (2Vx)
Example z%y" + bxy' + (22 —v?)y =0
2y +bzy + (2 —v*)y=0 (1)

Comparing (1) to the generalized form (C) z?y"+(1 — 2a) zy'+(8%*v*2* — (n*y? — a?))y =
0 shows that

(1-2a)=05b
2y =2
ﬁ272:1

(n2'72 _ a2) — 2

Hence v = 1,8 = 1. From first equation o = %(1 —b). Using this in the last equation
gives

Therefore the solution (C1) is

y(x) = 2%(c1Jn(B2") + 2 Yo (Bz7))
= 22070 (1 J,(z) + 2V, (2))

For example, if b = 4, then the ode is z2y” + 4zy’ + (2> — v?) y = 0 and the solution is
y(@) = 22 (c1Ju(@) + Ya())

Where n = L

4v2+49
2 2
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Example zy" +y + Ay =0
zy' +y + Ay =0 (1)

Where A is constant. Multiplying by x gives
22y +xy + Azy =0

Comparing the above to (C) z2y” + (1 — 2a) zy’ + (B*y%2* — (n?y? — a?)) y = 0 shows
that

(1-2a)=1
Ar = 182,)/2:L,2'y
(n2,y2 _ a2) =0

Which implies @ = 0,2y = 1 or v = 1. Therefore 27? = A gives % = 44 or f = 2V/A.
And n = 0. Hence the solution (C1) is

y(x) = 61J0 (2&\/5) + 02% (2&\/5)
Alternative and longer method is the following (this is kept just for illustration, as the

above method is more direct).

Using the transformation

Hence
v=Vz 2)

dv __ 1
and & =3/ Therefore

dy _ dydv
dr  dvdz
dy 1

T 2z
dy 1
= 0% (3)

d*y d (dy
d? (@)
_d (dy 1
=i (d_Q_)
But & = 24 The above becomes

dx dvdzx’
?y ddv(dy 1)

And

dr?  dvdz \ dv2v
_dvd (g1
"~ drdv \ dv2v
But % = ﬁi = % Hence the above becomes

Py _1d(m1 “
dz?2  2vdv \ dv2v

d(dy1\ _1/(dyl dyl
dv\dv2v/) 2\dv2v dvv?

dy 1 (d2y1 dy 1)

@zﬂ dv?v  dvv?

But

Hence (4) becomes

()
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Substituting (3,5) into (1) gives

1 /(d>y1 dy1 dy 1
— (2 29~ Y4 Ay =
T4 (dvzv dvv2> * v+ y=0

But 2 = v2. The above becomes

vl ,1 dyl 1
e - _ - L Au=0
4( v dvv2)+y2v+ Y
1, 1,1 , 1
ol — 2o/ 4 Ay =
1V Ty Ty TS0
1, 1,1
- —y'=+Ay=0
LT

1
y" —I—y’; +4Ay =0

Multiplying through by v?
v2y" + vy + 4Av*y =0

The above of the form
vy’ + vy + (a®v® —n?)y =0
Where n = 0 and a? = 4A which has the standard solution
y(v) = e1dp(av) + c2Yy (av)

Where J,(v) is the Bessel function of first kind and Y, (v) is Bessel function of second
kind. Since v = v/z and a = 2v/A then the solution for (1) becomes (using n = 0)

y(x) = 01J0 (2&\/5) + 02% (2&\/5)
For example, if A = ;. Then the ode zy” + ' + 7y = 0 and the solution above becomes

y(@) = ado(Vz) + Yo (V)

Example 3" — %y =0
"— Zy=0 1
Y Y (1)

Multiplying both sides by z? gives
2y —zy =0

Comparing to (C) z%y” + (1 — 2a) zy’ + (8*y?xz*" — (n®*y? — a?)) y = 0 shows that

(1-2a)=0
5272.,1727 =1
(nz,yQ _ a2) -0
First equation gives a = % Second equation gives v = % and 3242 = —1. Therefore
B* = —4 or B = +2i. Last equation gives n?y*> = 1 or n = 1 since 4* = ;. Hence the

solution (C1) is

y(z) = 2%(c1Jn(B27) + 2Yn(B27))

By properties of Bessel functions, where J,, (aiy/z) = i"I,(a+/z), then the above becomes

y(z) = \/E(iclll (2\/5) + Y (22\/5))

Alternative longer method is the following:
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Trying standard transformation y = /zY. The ode becomes
1
Y +xY’ — ($+Z) Y =0
Using the transformation z = ¢2 the above becomes
Y+t — (42 +1)Y =0

Finally applying the standard transformation ¢ = %z to fix the term (4¢% + 1) to standard
form the above becomes
Z2Y"+2Y - (£ +1)Y =0

This is modified Bessel ODE whose solution is known to be
Y (2) = c111(2) + 2K (2)

Where I; is modified Bessel function of first kind and K; is modified Bessel function of
second kind. But z = 2¢. Hence the above becomes

Y(t) = e [1(2t) + co Ky (2t)
But ¢ = /7. The above becomes
Y(z) = ali(2vz) + oK1 (2V/x)
But y(z) = v/zY () hence
y(z) = a1vzl (2v7) + c2v/z K1 (2V/2)

Example 4z%y" + 4zy’ + (r —4)y =0 Dividing by 4
2, 1 / 1
Yy +xy + (Zx—l)yzo

Comparing the above to (C) z%y” + (1 — 2a) zy’ + (82y*2* — (n®y% — a?)) y = 0 shows
that

(1-20)=1
ﬂ272x2'7 — ix

(n272 _ a2) -1
Which implies a = 0,2y = 1, 8%y? = i. Hence v = % and 8 = 1. Last equation now says
n?y? =1 or n = 2. Hence the solution (C1) is

y(z) = z%(c1Jn(B2") + c2Yn(B27))
= 01J2(\/5) + Yo (\/5)

3
2

Example 3" — L%y =0 Multiplying by =

22y —y=0
Multiplying by T2

2%y —ziy =0

Comparing the above to (C) z%y” + (1 — 2a) zy/’ + (82y*2* — (n?>y% — a?)) y = 0 shows
that

(1—2a)=0

ﬁ272 227 — x%

(n2'y2 - oz2) =0
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Which implies a =

2y = 3,%y* = —1. Hence v = } and 2 = —16 or B = +4i. Last
equation now says ( 0

— 1) =0 or n = 2. Hence the solution (C1) is

y(z) = z%(c1n(B2") + c2Yn(Bz"))
= ﬁ(cng <4ix%> + Yo <4z'x%)>

By properties of Bessel functions, where J, (aiy/z) = i"I,(a/z), then the above becomes

y(z) = \/5(—01]2 (4xi> + Y5 <4im%>)

Example 2%y’ —zy + (22 + 1)y =0
2y —zy+ (2 +1)y=0

Comparing the above to (C) z%y” + (1 — 2a) zy’ + (82y*2* — (n®>y% — a?)) y = 0 shows
that
(1—-2a)=-1
ﬂ272$27 — IL'Z
—(n?y? —a?) =1
Which implies « = 1 and v = 1 and 8?4% = 1 or 8 = 1. Last equation now becomes
—(n?—1)=1or n? =0 or n = 0. Hence the solution (C1) becomes

yY(@) = 2%(c1Jn(B3") + c2Ya(Bz"))
= z(c1Jo(z) + c2Yo(z))

Example 3" — x_iy =0 Multiplying by T
ziy —y=0

Multiplying by T

.’L‘2 y// _ .’L‘%y -0
Comparing the above to (C) z%y” + (1 — 2a) zy’ + (82y*2* — (n®*y? — a?)) y = 0 shows
that

(1-2a)=0
B2y = —ri
(n?y2 —0?) =0
Which implies @ =1 and 2y = T or y = I and f*y? = -l or 2 = —(%1)2 = —%. Hence
B = i%. Last equation now becomes (nz(g—i) —3)=0,orn= ‘—;. Hence the solution (C2)

for non integer n becomes
y(@) = 2%(c1Jn(B2") + c2J_n(B2"))
8 8
= \/E(clJé (z?x ) + CQJ_% (z?x

0|~
0|~

))
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Example f”+2f —pf =0 Multiplying by z
L f" + Az f + (—pa?) f=0 (1)
Using the generalized form of Bessel ode
?f" +af + (2> —n®) f=0 (A)
Which is given by (Bowman 1958)
?f"+(1-2a)zf + (B°y*2” — (n®y*—a?)) f=0 (C)

Comparing (1) and (C) shows that

(1-2a)=X\ (2)

Bt = —pa? ®)

(n S ) =0 (4)

(2) gives a = 3 — 2. (3) gives 2y = 2 or v = 1. And (3) also shows that 82y* = —p or

B =/—p. Now (4) gives (n — (3 -3 > =0orn = (3 — 3A). (taking positive root).
But the solution to (C) is gives by

y(z) = 2%(c1Jn(Bz) + c2Yn(B27))
Therefore the solution to (1) is
y(m) = x(%_%)‘)< % % (\/ .’E) + CzY(l 1)\ (\/ .T))

Where J is the Bessel function of first kind and Y is the Bessel function of the second
kind.

Example z%y" + zy’ + (22 — 5)y =0
2y’ +ay' + (2 = 5)y =0 (1)

Using the generalized form of Bessel ode

oy +zy + (22 —n*)y=0 (A)

Which is given by (Bowman 1958)
2 //_+_(1 2a)$y +(,32 2 27 (n2,72_a2))y=0 (C)

Comparing (1) and (C) shows that

(1-20)=1 @)
e = 27 @)
(n*y* —a?) =5 (4)

(2) gives @ = 0. (3) gives v = 1 and 829> = 1 or 8 = 1. Now (4) gives n?>y?> = 5 or
n = v/5.But the solution to (C) is given by

y(z) = 2%(c1Jn(B2) + 2Ya(B27))
Therefore the solution to (1) is
y(z) = aJ s5(x) + Y s5(x)

Where J is the Bessel function of first kind and Y is the Bessel function of the second
kind.
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4.3.2.14.3 References

1. QUAN YUAN PhD dissertation. FINDING ALL BESSEL TYPE SOLUTIONS
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COEFFICIENTS
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ution-to-bessel—-function

6. https://math.stackexchange.com/questions/585240/bessel-function-wit|
h=complex-argument

4.3.2.15 Bessel form A type ode ay” + by’ + (ce™ —m)y = f(x)

ode internal name "second_order bessel ode form A"

These are ode of the above form which can be converted to Bessel using transformation
z =In(t).

4.3.2.15.1 Example ay” + by’ + (ce™ — m)y =0 An ode of the form
ay” + by’ + (ce™ + m)y =0 (1)
can be transformed to Bessel ode using the transformation

z = In (¢)

e =t

Where a, b, c, m are not functions of z and where b and m are allowed to be be zero. Using
this transformation gives

dy _dydt
de  dtdz

=Y 2)

And

- t(d—y + t@> (3)
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Substituting (2,3) into (1) gives

dy d% dy | e _
(aty’ + at’y") + bty + (ct” + m)y =0
at’y’ + (b+a)ty + (ct" + m)y =0

b+a c, m
ty+(#-+z)y=0 (4)

t2y// _|_
a

Which is Bessel ODE. Comparing the above to the general known Bowman form of Bessel

ode which is
t2y" + (1 — 2a) ty’ + (BZ'yQtZV — (n272 — oz2)) y=0 (C)

And now comparing (4) and (C) shows that

b
(1-20) =212 (5)
2.2 €
= _ 6
A= (6)
2y=r (7)
m
(2 o) = = ®
a
(5) gives o = 1 — %2 (7) gives v = £. (8) now becomes <n2(§)2 - (- %‘1)2> = -
2 _%—’_(%_?Ta ’ _ 2 m 1 b+a)2 : 143
or n* = — Hence n = 24/ -7 + (5 — W) by taking the positive root. And
2

finally (6) gives 8% = sz orf= \/g %r = \/E 2 (also taking the positive root). Hence

a_l b+a
2 2a
2 m 1 b+a 2
”_F\/_E+(§_ 2a)
c2
B=4/—=
ar
_'I"
773

But the solution to (C) which is general form of Bessel ode is known and given by
y(t) = t*(crJn(Bt7) + c2Ya(BE"))

Substituting the above values found into this solution gives

1-bta c2 .
t) =127 22 J €2y v
" (q’f —T+@—?ff(\/;r )'+C2§ —7+G—%£Y<

Since e* = t then the above becomes

y(z) = ) <C1J
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Equation (9) above is the solution to ay” + by’ + (ce™ + m)y = 0. Therefore we just need
now to compare this form to the ode given and use (9) to obtain the final solution.

Let us now apply this to an example for illustration. Given the ode
yll+ (eQx _ 4)y — 0

Comparing the above to ay” + by’ + (ce™ + m)y = 0 shows that a = 1,0 =0,c =1,r =
2,m = —4. Hence the solution (9) becomes

x(;b) c2 - c2 .r
y(@) = e\ e ymgmarm () 5 2€7 ) @Y1 ymgmare | | €
= clJ%m(e”’) + CQY%\/E(@E)

= c1J2(€%) + c2Ya(e”)
= c; BesselJ (2, €”) + co BesselY (2, e”)

Another example for illustration. Given the ode
Y +y +(e"=4)y=0

Comparing the above to ay” + by’ + (ce™ + m)y = 0 shows that a = 1,b=1,c=1,r =
1,m = —4. Hence the solution (9) becomes

y(z) = e*(5) (clJm (2693%) + Y er1 (26”%»
=e2 (a1 77(2e2) + oY, 77(2e2))
Another example for illustration. Given the ode
'+ (& =)y =0

Comparing the above to ay” + by’ + (ce™ + m)y = 0 shows that a = 1,0 =0,c =1,r =
2, m = —n?. Hence the solution (9) becomes

x<;b) 021: 0293
y(@) = e\ ad s yamers art + Y1 et P

= a1y gz (€7) + @Y gy (€°)
= c1Jn(€%) + c2Y,(€7)
= ¢y BesselJ (n, €®) 4 ¢, BesselY (n, €®)

N3
N3
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4.4.1 Exact nonlinear second order ode F(z,y,y,y") =0
(Approach 1)

ode internal name "exact_nonlinear second_order ode"

(not implemented yet)

4.4.1.1 Introduction and terminology used

An ode F(z,y,vy',y") = 0 is called exact if there exists a function R(z,y,y’) with order
one less that of the ode, such that

d
F oo — & /
(z,9,9,y") (mR@wm)

Which also implies that R = ¢ some constant, because F' = 0. In the above R(z,y,v’) is
called the first integral of the ode F' (also called the reduced ode), because

R:/de+c (1A)

An important property of first integral is the following. If we write the ode F'(z,y,y',y") =
0as y’ = ®(z,y,y’) which we can always do, then

R.+yR,+®R, =0 (1B)

Lets see how this works. Given the ode y” + zy’ + y = 0 which is exact as is from the
exactness test py” +qy’+r = 0 which is p” —¢’+r = 0, hence p = 1,q = z,r = 1, therefore
—1+41 = 0 which is true. Therefore we can write because we can write ¥ +xy' +y =0 =
(v + B(z)y)' and find that B = z, Hence

y' +zy +y=(y +ay)
Where 3’ + zy = 0 is the reduced ode.
R=y +xy

For the original ode y” + zy’ + y = 0, it can be written as ¥’ = —(zy’ + y), therefore
® = —(2y + y). Eq (1B) now becomes

R, +yR,+®R, =0
y+yz—(zy +y)(1)=0
y+yrz—zy —y=0
0=0

Verified. Here is another example. Given the ode (z — 1)® 3" +4y/z+2y—2x = 0, this is exact
because we can write (v — 1)?y" +4y'z +2y — 2z = L((22+2)y + (2 — 2z + 1)/ — 2?),
hence the first integral (or the reduced ode) is R = (2z + 2) y + (z*> — 2z + 1)y’ — z2. The
original ode can be written as ¢y’ = —%22—@, therefore ® = _%—2#)' Eq (1B)
becomes

R, +yR,+ PR, =0

dy'x + 2y — 2
0=0

2y + 2zy — 2y’ — 2z) +y'(2z +2) — <

Verified. Equations (1A) and (1B) are important as they will be used to determined an
integrating factor when the ode is not exact.
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4.4.1.2 Test for exactness

The following shows how to determine if F'(z,y,y’,y"”) = 0 is exact or not (without having
to find the first integral R). This is based on page 164 in Murphy book. The second order
ode must be of degree one. If it is, it can not be exact. The ode is exact iff

OF _d (OF\ & (OF\ _, "
dy dz\0y dz2\oy" )

This turns out to be the same thing as using p” — ¢’ + r = 0 on the ode py” — ¢ +r = 0.
Let us apply the above test on second order ode which is known to be exact to see how it

works. The ode is

F(z,y,y,y") =0
zy'+(y—-1)y =0
Hence the above test gives
V- tw-n+ D@ =0
y -y =0
0=0

Confirmed. Since the ode is linear, we could also apply p” — ¢’ +r = 0 to check, which is
simpler. Here p = z,q = (y — 1) ,7 = 0. Therefore

p”—q'+r=0
0-0+0=0

The form (1) is given in Murphy book which is more general since it works on nonlinear
and linear odes while p” — ¢’ + r = 0 is meant to be used for linear second order odes.

In implementation of the solver this is the same type of ode as "second order integrable
as is" ode which is described below. I should merge these together. if a second order ode
is exact, then it is also integrable ode as is. This is by definition of exactness above.

4.4.1.3 Examples showing how to check for exactness

4.4.1.3.1 Example 1

y+—=y—-=0
Yy )
1
F(.’E, y’y/)y”) = y” + %yl -
) )
Applying the test
OF _d (OF\ & (OF\ _ "
Oy dz\O0oy dz2\ oy’ )
Therefore
OF 2 ., 1
dy TR
oF _ z
By y?
OF
ay" =1

Hence (1) becomes
2, 1 d [z d?
() ) + a0 =0

2 , 1 1 2zy
(_E””‘“E)_(?— y3)=°

0=0
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!
Therefore this exact. We see that (y’ — 5) =9y’ — (i -+ wy2>. Which implies the ode is

y/
J o5

T

integrable as is. Which means

/
y-—=-=c 2
” (2)
Which can now be solved. In the above R(z,y,y’) = (y' — %) In other words F = LR,
Hence p
—R=0
dz
Integrating gives
d
/ £Rdx =c
/ dR=c
R=c
y— T =c
)

Which is the same as (2) above but shows how it came about more clearly.

4.4.1.3.2 Example 2

38y" +yy =0
F(z,y,9,y") = 38y" + yy/
Applying the test
OF 4 (OF\ & (0F\ _| "
Oy dz\0oy dz2\dy" )
Therefore
oF _
oy Y
OF
o7 ="
OF
=3
i =
Hence (1) becomes
, d d?
¥) = W)+ 53B68)=0
y/ _ y/ — 0

0=0

!
Therefore this exact. Therefore we see that (y—; + 38y ) = 38y" +yy = 0. Which implies

the ode can be written as
2 /
/ (% +36y') dz =0

2
%+3m/=c

Solving this first order ode gives the solution

y = tanh (6%\/5(@ + ) \/§> v2ve
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4.4.1.4 How to solve the ode once it is determined it is exact

In the examples above we did not show how to obtain or find the first integral R(z,y,y’).
Given an ode F(z,y,y,y”) = 0 which is determined to be exact as above, then how to
solve it? This is done by first finding the first integral R. We need to find R(z,y,y’) such
that

d
F(z,y.9,9") = 7 R(z,y,4) =0

Once R is found, then we need to solve the first order ode R(z,y,y’) = ¢ where R is now
one order less that F' so it should be simpler to solve. This ode might require another
integration factor to solve depending on what it type turns out to be.

This reduces the order of the ode from second to first order (since R is first order). To
find R(z,y,y’) the first step is to write the given ode in this form

F(z,y,9,9") = f(z,9,9)y" + 9(z,9,9) (1)
We know what f, g are in the above by reading them from the given ode. But

d )
F= %R(a;ay;y)

_ORds | ORdy | ORdY
- Ordr Oydr Oy dx
=R, + Ry + Ryy" (1A)

And since y” = ®(z,y,y’) then the above can also be written as
F =R, + Ry + PRy
The above is same as Eq (1B) in the introduction above. Comparing (1,1A) shows that

f =Ry (2)
g=R.+ Ry (3)

At this point it is easier to replace ¢y’ by p. The above becomes

f= R, (2)
g = Rx + Ryp (3)

Using (2,3) we are able to determine R. Note that R must exist since we checked the ode
is exact and hence must have a first integral. This method similar to how we find R for
an exact first order ode.

Starting with (2) and integrating it w.r.t. p gives

R= [ fdp+(a9) (4)

Where 9(z,y) acts like an integration constant but since R depends on more than one
variable, it is now an arbitrary function of the other variables z,y. If we can find ¥(z, y),
then R is found, since f is known. To find 1/ , we differentiate one time w.r.t. z and another
time w.r.t. y and substitute the result in (3). This gives

g= (8% (/ fdp) +¢z(w,y)) + (8% (/ fdp) +¢y(x,y)) p (5)

In the above the terms 2 ([ fdp), a% (/ fdp) are known, since everything is known. The
only unknowns are ¢,(z,y) ,¥,(z,y). Comparing terms in (5) we can generate two equa-
tions for 15,1, and by integrating them we find 1. Examples below show how to do this
as this is easier explained using examples.
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4.4.1.4.1 Examples finding first integral R(z,y,y’) for an exact second order
ode

Example 1
v+ (¥)" + 2azyy +ay® =0
Comparing this to F(z,y,v,v") = f(z,v,v¥)y" + 9(x,y,y’) shows that
f=y
9=)"+ 2azyy + ay’
= p? + 2azyp + ay?
Therefore (4) becomes
R= [ fdp ()
=yp+¢(z,y) (1A)

1= (2 ) ) (3 19) )

0 0
P’ + 2azyp + ay® = (%(yp) + wx) + (8—y(yp) + %) p

Hence (5) becomes

But %(yp) = 0 since y, p are held constant. It is important to watch for this here. Given
f(z,y) = 3z + y(z) where y is function of z, then when we do % the result is 3 and not
3 + ¢ because with partial derivatives the y is held constant. Similarly a%(yp) = p%. The
above becomes

P’ +2azyp+ay’ = ¢, + (p+1,)p
= wa: + p2 + 17[}yp
2azyp + ay® = Y + Yyp

Comparing terms shows that

2azy = ¢, (2A)
ay2 = Yy (3A)

Integrating (2A) w.r.t y gives
Y = azy® + h(x) (4A)

Differentiating the above w.r.t. x gives 1, = ay® + h/(z). comparing this to (3A) above
gives ay® = ay® + h/(x), hence h'(z) = 0 or h(z) = c. Therefore (4A) becomes

v =azy’+c
Substituting the above in (1A) gives
R=yp+ary’+c
Therefore, since R = ¢; a constant, then the above becomes (by merging the constants)
yp + azy® = ¢
yy' +azy® = o

This is the reduced ode which needs to be solved for y. The above says that R = yy’ +

azxy? + cy. To verify, let us apply F = diR. This gives

L

d
v + () + 2azyy + ay? = I (yy + azy® + )
=y'y +yy" + ay® + 2azyy’
=" + ()’ + 2azyy + ay?

Verified.
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Example 2

yll + zyl + y — 0
F(z,y,9,y") =0

This ode is not nonlinear, but let us apply this method to it anyway. First we need to
determine if it is exact or not. Applying the test

OF _d (OF, @ (OF\_,
Oy dz\O0oy dz2\ oy’ )

d d?
1-1=0

0=0

So it exact. Comparing this ode to F(z,y,v,y") = f(z,v,¥) y" + 9(z,y,y’) shows that

f=1
g=zy +y
=ap+y

Therefore (4) becomes

R= [ fdp (a9
=p+P(z,y) (1A)

9= (%(/fdp) +¢x) + (%(/fdp) +z/zy)p
p+y= (%-H/)z) + (g—§+¢y)p

But % = 0 since y is held constant. And g—z = 0. The above becomes

Hence (5) becomes

Tp+Y =Py +Pyp

Comparing terms shows that

T =1y
y:d}w

Integrating the first equation gives ) = zy + c. Hence (1A) becomes
R=p+zy+c
Therefore, since R = ¢; a constant, then the above becomes (by merging the constants)

pt+axy=co
Y +ay=c

This is the reduced ode which needs to be solved for y. Solving gives

) 2 —a? —z2
y = erf (z\/2_x> €2 ¢ +ce 2
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Example 3

y/l _ 2yyl — 0
F(z,y,9,y") =0

First we need to determine if it is exact or not. Applying the test

OF _ 4 (OF\ & (0F\ _
Oy dx \ oy dz2 \ dy" )

- L+ L -0

dx dx?
d
2/ + 27 (y) =0
y+2-(y)
-2y +2y' =0
=0

So it exact. Comparing this ode to F(z,y,v,y") = f(z,v,v¥)y" + g9(z,y,y’) shows that

f=1
g=—2yy
= —2yp

Therefore (4) becomes

R= /fdp+¢(x,y)
=p+Y(z,y) (1A)

= () o)+ (3 0) 05

—2yp = (% +¢w) + (g—z +¢y)p

—2yp = Yy +Yyp

Hence (5) becomes

Comparing terms shows that

—2y= "/Jy
0=1%s
Integrating the first equation gives 1 = —y? + h(x). Differentiating this w.r.t. = gives

¥, = h'(z). comparing this to the second equation above gives 0 = h'(z), hence h(z) = c.
Hence 1) = —y? + c. Therefore (1A) becomes

R=p—9y’+c
Therefore, since R = ¢; a constant, then the above becomes (by merging the constants)

P—y2=02

y/_y2:c2

This is the reduced ode.
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Example 4

(x—1)°y" +4xy +2y — 22 =0
F(z,y,9,y") =0

First we need to determine if it is exact or not. Applying the test

OF _d (OF\ & (OF\ _
Oy dx \ 0oy dz2\oy" )

2——(430)—}- & ((x—l)) 0

d
2—4+ —(2(z—1)) =
+ 2 —1) =0
2—-4+2=0
0=0

So it exact. Comparing this ode to F(z,y,v,y") = f(z,v,v¥)y" + g9(z,y,y’) shows that

f=(-1)
g=4xy +2y—2z
=4xp+ 2y — 2x

Therefore (4) becomes

- / Fdp+(z,y)
= (¢ — 12 p+9(z,5) (14)

Hence (5) becomes

1= (gl 1) +0e) (53] 5) +i)
4xp+2y—2w=<88m(($—1)p+%) (aﬁ ((z—1)° +¢y)

dzp+ 2y — 22 = 2p(z — 1) + ¢, + Yyp
dap+2y — 2z =p2(z — 1) +¢¥,) + Vs

Comparing terms shows that

4 =2(x— 1)+,

2y —2z =1,
Or
2r+2 =1,
2y — 2z =1,

Integrating the first equation gives ¥ = 2xy + 2y + h(z). Differentiating this w.r.t. z gives
¥, = 2y + W' (x). comparing this to the second equation above gives 2y — 2z = 2y + h'(x),
hence h/(z) = —2x. Hence h = —x2+c. Therefore ¢ = 2zy+2y—z%+c. Eq (1A) becomes

R=(z—-1)7°p+2zy+2y—2*+c
=@z-1>%y+2y+2y—a*+c

Therefore, since R = ¢; a constant, then the above becomes (by merging the constants)
(x—1)%y +2zy+2y — 2° = ¢

Which is the reduced ode to solve.
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Example 5

y// _ y/ey =0
F(z,y,9,y") =0

First we need to determine if it is exact or not. Applying the test

OF _ 4 (OF\ & (0F\ _
Oy dx \ oy dz2 \ dy" )

d d?
oY — (—eY - (1) =
Yol — —(—e) + (1) =0
_y/ey+y,ey:O

0=0
So it exact. Comparing this ode to F(z,v,v,v") = f(z,y,v") y" + g(z,y,y’) shows that

f=1
g=-y'e
= —pe?

Therefore (4) becomes

R=/}@+w@w)
=p+¢(z,y) (1A)

1= (2 9) )+ (B 0) o)

0 0
—_mpeY — _ _
pe <axp+¢x)+(8yp+wy)p
—pe¥ =, +Pyp

Hence (5) becomes

Comparing terms shows that

—e¥ =1,

0 =1,

Integrating the first equation gives ¢ = —e¥ + h(x). Partial differentiating this w.r.t. =
gives 1, = h/(x). comparing this to the second equation above gives h'(z) = 0, hence
h(z) = c. Hence h = —x? + c. Therefore 1) = —e¥ + ¢. Eq (1A) becomes

R=p—-¢€e'+c
=y —e'+c

Therefore, since ¢ = ¢; a constant, then the above becomes (by merging the constants)
Yy —e'=cy

Which is the reduced ode to solve.
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4.4.2 Exact nonlinear second order ode F(z,y,y,y") =0
(Approach 2)

This method is based on paper "Exactness of Second Order Ordinary Differential Equations
and Integrating Factors"', by AlAhmad, M. Al-Jararha and H. Almefleh which now I have
full implementation for. We start with the ode in the form

ax(z,y,y) Yy +ai(z,y,¥) ¥ + ao(z,y,y') =0 (1)

Then, we first verify the ode is exact using the conditions

Oay _ O
oy Oy
6&2 8a0
= 77 2
or 0y )
Oa1 _ 9
oxr Oy
If the above are satisfied, then next we generate a first order ode using
xr Y y/
/ aO(aaya y/) da + / al(mO)/B)y,) d/B+/ a2(w09y07’7) d’)/ =0 (3)
xo Yo y6

If we are not given initial conditions for the original ode, then the above is replaced by

!

y

T Yy
/ ao(a,y,y") da+/ a1(0,8,v") d5+/ a2(0,0,7)dy = 1 (4)
0 0 0

Next, we solve the the above first order ode. Examples below make this method more
clear. Notice that when matching our equation against the template (1), it is possible to
obtain different possible matches and hence different possible ag, a1, as depending on how
the match is done. We should only pick one that satisfy the exactness conditions and use
that match. See example 4 below for such an example to illustrate what this means.

4.4.2.1 Example 1

Solve
(—ysiny + cosy) y" — (') (2siny + ycosy) = sinz
Comparing the above to (1) shows that

ay = —ysiny + cosy
a; = —(2siny +ycosy)y
ag = —sinzx
Checking the exactness conditions in (2) shows they are all satisfied. Since no initial

conditions are given, then we will use (4). This gives

/

/Ow —sin (@) da + /Oy —(2sin B+ BeosB)y'dB + /Oy (—(0) sin (0) 4 cos (0)) dy = 1

!

—/0 sin(a)da—/o (2sinﬁ+ﬁcosﬂ)y'd6+/o dy=ac

T Yy Y
—/ sin(a)da—y'/ (2sinﬁ+ﬁcosﬁ)d6+/ dy=c
0 0 0
(—1+4cosz) —y'(1+ysiny —cosy) +y =¢;
y'(1— (1 +ysiny —cosy)) =1—cosz +¢;
y'(cosy —ysiny) =1—cosz + ¢
Solving gives
ycosy =1+ —sinx + ¢

And this is the solution to original ode.
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4.4.2.2 Example 2

This is same example as above but now with initial conditions to show how to handle
them.

(—ysiny + cosy) ¥’ — (') (2siny + ycosy) = sinz
y(1) =2
y'(1)=0

Where

a2 = —ysiny + cosy
a; = —(2siny + ycosy) y’

ag = —sinzx

Since IC are given then we will use EQ (3). In the above zo = 1,y = 2, y{, = 0. Hence

!

Y

x Yy
/ aO(a’ya yl) da+/ 01(150,,373//) d/B+/ a2($0,y0;’)’) dfy =0 (3)

zo Yo Y5

/

/1 _Sin(a)da+/2 a’l(laﬂayl)dﬂ+/0 0’2(17277)(17:0

!

Y

© y
/ —sin (a) da — y’/ (2sin B+ BcosB) dB + / —(2)sin (2) +cos (2)dy =0
1 2 0
Carrying the integration gives

(—cos (1) + cos (z)) — y'(—2sin (2) + cos (2) + ysin (y) — cos (y)) + y'(—2sin (2) + cos (2)) =0
y'(—2sin (2) + cos (2) + 2sin (2) — cos (2) — ysiny + cosy) = cos (1) — ¢
Y (—ysiny + cosy) = cos (1) — ¢

Solving the above and making sure to use y(1) = 2 now as initial conditions for the above
ode, gives

—xzcos (1) +ycos(y) — 2cos (2) + cos (1) —sin (1) +sin (z) =0

4.4.2.3 Example 3

Solve
yy' + (y)* =0

This ode can also be solved using the method of missing x. Comparing the above to (1)

a2(x>y7yl) yll+a1(way7y,) yl+a0(x’y’y,) =0 (1)
shows that
az =Y
a=y
ag = 0

Then, we first verify the ode is exact using the conditions

Oay _ da
oy oy
6(12 . 6a0
ox oy 2
3(11 8a0

or Oy
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This gives

0=0 (2)
Hence it is exact.. Since no initial conditions are given, then we will use (4). This gives
’ / Y / yl
/ ao(a,y,y)daJr/ al(O,B,y)dﬂJr/ a3(0,0,7) dy = &
0 0 0

!

Yy Yy
O+y’/ dﬁ+y/ dy = ¢
0 0

yy+yy =a
2y =a
Solving gives
/ 2ydy = / adz
y2 =T + Co
Or
1 =vVar+c
Y2 = —VCiT + C2
And this is the solution to the original ode.
4.4.2.4 Example 4
Solve
'+ () —y =0 (14)
y' +y(y'—1)=0 (1B)

This ode can also be solved using the method of missing . Comparing the above to (1B)

a2(z,y,9) y" +ai(z,y,¥) Yy + ao(z,y,y) =0 (1)
shows that
as =y (2A)
a; = (y' —1)
ag = 0

Note that there is ambiguity in this method in terms of what to use for ao, a;. It is possible
to read the above ode as having the following pattern. Looking at (1A) now, then

az =Y (2B)
ap =1

o = —Y



CHAPTER 4. SECOND ORDER ODE F(z,y,y,y") =0 393

It is also possible to use this third matching

as =Y (20)
a; = 0
ao = (y’)2 —y

These three are all valid matches. How to know which one to use assuming they are verify
the exactness conditions? Pick the one that satisfy the exactness conditions. If there is
more than one that satisfy the exactness conditions, any one will do. Let us try the last
match (2C) above for now and see. We first verify the ode is exact using the conditions

8a2 . 8a1
dy oy
6&2 . 6a0
oz oy
8(11 . 8a0
oz by
This gives
1=0

So match (2C) did not work. Lets now use the first match above (2A). We first verify the
ode is exact using the conditions. This now gives

So match (2A) verified the exactness. Using this and since no initial conditions are given,
then we will use (4). This gives

y/

x y
/ a‘O(aay>y,) do + / al(o’ ﬁ, yl) dﬁ + / a’2(070’ 7) de =G
0 0 0

0+(y'—1)/0ydﬁ+/0y 0)dy=c

W -1Dy=c
Yy—-y=a
, ¢ty
y:
)

Integrating

dy
aty
Yy

Yy
dy= [ d
/Cl+yy/x

y—cln(y+c)=z+c

=dz

Which is the correct solution to the original ode.

Lets us now try match (2B). First we need to verify it satisfies the exactness conditions.
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day  Oay

oy oy

day  Oag

or oy’

Oa; . Oag

o By

If we now try match (2B) above, which is as = y,a; = ¢/, a9 = —y' then the above gives

1=1
0=-1
0=0

Hence this match does not satisfy the exactness conditions. So out of the three possible
matches (2A,2B,2C) only (2A) can be used and this gives the correct solution.

4.4.2.5 Example 5

Let solve the same ode above but with only one IC is given and not both. In other words,
if we are given either y(zo) = yo or ¥'(zo) = y;, only. To see how to handle this method in
such case. We know if there are no IC are given, then we use EQ (4) above, which is

!

Y

x Y
/ ao(a,y,y') do + / a1(0, 8,y") dB + / a2(0,0,7) dy = ¢1 (4)
0 0 0
And if both initial conditions are given, then we use EQ (3), which is

y/

/ "o,y y') da + / "1 (w0, B,y/) dB + / a2(T0, 90, 7) dy = 0 (3)

Zo Yo yf)

Let see what to do when only one IC is given for the second order ode

y'+y(y—1)=0
y(0)=0

From problem 4, we found that this match works

as =1y (2A)
a; = (y' —1)
ap = 0

And now we are given zg, yo only but we are not given y;,. Because of this, we will use (3)
and not (4) and use the values for the given zy,yo where needed and replace yj by y'(0).
Hence (3) becomes

!

Y

x Y
/ ao(a,y,y’)daJr/ al(xo,ﬁ,y’)dﬁ+/( )az(xo,yoﬁ)d7=0
zo Yo y'(0

!

y y
O—i—/ (y’—l)dﬁ+/ yody =0
0 y'(0)

!

Y

O—I-(y’—l)y—l—/ (0)dy =0
y'(0)

(¥ —1)y=0
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Hence y = 0 or ¥ = 1. But ¥’ = 1. Solving this gives y = = + ¢;. using initial conditions
y(0) = 0 gives ¢ = 0. Hence y = z is also a solution. Hence solutions are

y=20

y=x

This shows that if we are given even partial initial conditions, then we should use EQ (3)
and not EQ (4). The following example gives one more illustration of this.

4.4.2.6 Example 6

Let solve the same ode above but with now this IC ¢'(0) = 1.

v +y (Y -1)=0
y(0)=1

From the above, we found that that this match works

as =y (2A)
a;=(y —1)
ag = 0

And now we are given zg, y) only but we are not given yo. Because of this, we will use (3)
and not (4) and use the values for the given ¢, y, where needed and replace yo by y(0).
Hence (3) becomes

!

Y

T Y
/ ao(a, y, y') dos + / ar(@0,B,) B+ | aa(zo,y0,7)dy =0

zo Y(0) Yo
!

Yy Yy
0+/ (y'—l)dﬂ+/ Yyody =0
0 Y

/
0

!

Y

Yy
0+(y'—1)/(o)dﬁ+yo/1 (0)dy =0
Yy

(v —1)(y—y(0)) =0

Hence y = —y(0) or (¥’ — 1) = 0 which gives solution and y = z + ¢. But y = —y(0) does
not satisfies the IC ¢/(0) = 1. But y = x + ¢ does. Hence the solution is

y=x+c

4.4.2.7 Example 7

y'(0) =
Comparing to
ax(z,9,9)y" +ai1(z,9,9) ¥ +ao(z,9,9) =0 (1)
Then possible matches are
az =Y
a=y) +1

CLO=O
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Or
az =Y
alzy/
(10:1
Or
as =Y
(11=O
a = ()" +1

We just need one match that satisfies the exactness conditions

8(12 . 8a1
dy oy
8&2 . 8@0
or oy’
8a1 . 8a0
oz dy

Looking at the first match, then the conditions become
1=2¢

Hence it fails. Looking at the second match

This works, Therefore we will use a; = y,a; = y',ap = 1. Since we are given initial
conditions (even if partial), we will use Eq (3) which is

y/

T Y
/ aO(a7yay/) d05+/ al(x07/87yl)d:8+/ a2(x07y07’7)d7:0

Zo Yo yf)

We are given g, y, but not yo. Hence in the above we will replace yo by y(0) and use the
actual values for zg, y) given. The above becomes, now using zo = 0,y = 1,30 = y(0)

x ] '
/ (1)da—|—/ y’dﬂ—}-/ yody =0
Zo y(0) 90

!

/Ox(l)da—l—/y:)y’dﬁ+/ly y(0)dy=0

z+y'(y —y(0)) +y(0) (v — 1)
z+yy —y(0)y +y(0)y" —y(0)
z+yy —y(0)

0
0
0

Solving gives
2 —272y(0) +4y* —c; =0



CHAPTER 4. SECOND ORDER ODE F(z,y,y,y") =0 397

4.4.3 nonlinear and not exact second order ode

4.4.3.1 Introduction

There seems in the literature two main approaches for handling this. One is to find an
integrating factor p which makes the ode exact, then it can be solved as shown above.
The second approach is to find the first integral directly from the form of the ode itself.
There are many methods to do this. I will go over the integrating method first, then the
second method after that.

4.4.3.2 Solved by finding an integrating factor mu

ode internal name "exact_ nonlinear_second_ order_ode_ with_ integrating factor"

4.4.3.2.1 Introduction Not implemented yet. The above section showed how to
solve the ode F(x,y,y’,y") = 0 once it is determined it is exact as is, which is by finding
the first integral R. But the real problem is what to do if the ode is not exact as is?. Given
the second order nonlinear ode

F(z,y,9,y") =0
Which is not exact as is (using the earlier test shown), then we need to either find an
integrating factor u to make it exact (this integrating factor might or might not exist) or

try to find the first integral directly without finding an integrating factor first. There are
few papers that show how to do this for some types of nonlinear second order odes.

Using an integrating factor approach, If we are able to find u, then the ode can now be
solved as type "second order integrable as is" or as type "exact nonlinear second order ode"
as shown in the above section. (need to merge these types).

As mentioned earlier, an ode F(z,y,y’,y”) = 0 is called exact if there exists a function
R(z,y,y’) (called first integral) with order one less than the order of the ode, such that

d
! " _ /
I (x,yay,y ) dwR(x’y’y)

If the ode is not exact, then we need to find an integrating factor of any of these
forms p(z),p(y), u(y'), w(z,y), pu(@,y') , u(y,y’) such that pF(z,y,y',y") is now exact
and hence

d
F 'y"N = —R !
2 (-'17,3/73/7?/) dr (x’yay)

The main difficulty is how to find u. Few papers were written on this (but I found them
all not very clear as they give no examples).

Finding p with first order ODE is easy. But not so easy with second order ode’s. Note
that in the above, an integrating factor of the form p = u(z,y,y’) will not be considered
as finding such an integrating factor requires solving a PDE which is harder than solving
the original ode. There two relations are important in order to find p

R=G(z,y) + / udy/ 1)
=G(w,y)+/udp

Where p = v’ and G is some function to be determined. As was derived in the introduction
of the earlier section, we also have the relation

R, +yR, +®R, =0 (2)
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4.4.3.2.2 Integrating factors by inspection. These are not yet implemented. Before
going through the formal way to find u for non exact second order nonlinear ode, there
is a table given by Murphy which we can utilize before searching for u as a lookup table.
Writing the ode as y” + g(z,y,y’) = 0 the table is

9(z,y,y’) form integrating factor

/

g(y) (i.e. function of y only) y
g(y") (i.e. function of ¢ only)
p(z,9)y +Q(z,9) (¥)*
p(z,y) + Q(z,y) y such that g—g = %

Ll Q= @

The above integrating factors are from Murphy book page 165.

4.4.3.2.3 Integrating factor u(x) that depends on x only Not implemented.

4.4.3.2.4 Integrating factor u(y) that depends on y only Not implemented.

4.4.3.2.5 Integrating factor u(y’) that depends on 3’ only Not implemented.
4.4.3.2.6 Integrating factor u(z,y) Not implemented.

4.4.3.2.7 Integrating factor u(z,y’) Not implemented.

4.4.3.2.8 Integrating factor u(y,y’) Not implemented.

4.4.3.2.9 Checking if an integrating factor exists (but not find it) An example
is

y2z+y)y" + (¥ +zy) ¥ + By +3°) =0
to do.

4.4.3.2.10 References
1. book: Ordinary differential equations and their solutions by George M. Murphy.

2. paper: "Integrating Factors for Second-order ODEs" by E.S. Cheb-Terraba, and A.D.
Roche.

3. Handbook of Mathematics for engineers and scientists. By Polyanin and Manzhirov.
Page 492.
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4.4.3.3 Solved by finding the first integral directly

ode internal name "exact_ nonlinear second_ order_ode_using first_integral"

4.4.3.3.1 Introduction Not implemented yet. This uses point Lie symmetry.

The above section showed how to solve the nonlinear ode F(z,y,y’,y”) = 0 once it is
determined it is exact as is, which is by finding the first integral R directly without finding
an integrating factor first. This below gives few ode forms with the corresponding first
integral R to use and how to find R. These are collected from few papers I am studying

now.

4.4.3.3.2 ode of the form vy’ + ay(z,y) (¥)* + a1(,y) ¥ + ao(z,y) =0 From paper
(On first integrals of second-order ordinary differential equations by Romero et all), this
is called class B. The first integral is

d 1
@’ = YO By

dz
where C, = 0. Another class of ode’s is called class A with first integral

d 1

~R
dz A(z,y)y' + B(z,y)

This is subset of class B.

4.4.4 ode is Integrable as given

ode internal name "second_ order__integrable as_ is"

This is the same as "exact_nonlinear second order ode". Can be linear or nonlinear.
But must be of degree one. ODE is integrable as is w.r.t. the independent variable z. Need
to merge type names into one.

4.4.4.1 Example 1
zyy” +2(y)’ —yy' =0

Integrating both sides gives

/ zyy’ +2(y)? — yy'de = ¢,

oy —y' =
’=&+g
Ty x
_C1‘|‘Z/2
y

_(a+y? 1
= " p

Which is separable and easily solved.
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4.4.4.2 Example 2
1
"n_
T )
2(y)*y" = -1
With IC
y(0) =1
y(0)=-1
Integrating both sides gives
/Z(y')2 y'dr = /—dw
2
W) =zt
3
W) =3z +a
Hence
3 3
h=(-5e+a) 0
1/ 3 3
h=-(-1} (~3o+a) 2
, 2 3 5
vh= (D} (—2z+a Q
Trying solution (1). Integrating gives
3 3
Y1 = / (—Ex + cl> dx + co
1/ 3 C
= —5 —5.’1,' + C1 + Co
Applying y(0) = 1 gives
1 2
1= —5013 +c 4)
And y/(z) gives
/ 3 s
Y= —Eac +c
Hence y/(0) = —1 gives
1
—-1=¢f
No solution. Trying solution (2). Integrating gives
1
3
Y2 = —(—1)% / (—ga: + cl) dz + ¢y
1/ 3 s
1
=—(-1)3 (—5(—§x+cl> > +c (4A)
Applying y(0) = 1 gives
1 (1 4
1= (-0} (5 ) +a )

And y4(z) gives
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Hence y/(0) = —1 gives

1= (=1)% ()

No solution. Finally we will try ys. Integrating gives

y3=(—1)§/(—gm+cl> +c
= (—1)% (—%(—gaz—l-cl)g) +co

1= (1)} <—%c1> + e (6)

=

Applying y(0) = 1 gives

And y4(z) gives

Hence y/(0) = —1 gives
2 1
1= () ()}

Solving gives ¢; = —1. Substituting into (6) gives

Hence solution is

This problem shows that out of the 3 solutions, only one was valid.

4.4.5 ode can be made Integrable F(z,y,y") =0

ode internal name "second_ order_ode_ can_ be_made_ integrable"

Can be linear or nonlinear. These are ode’s which become integrable if both sides are
multiplied by 7. For this method to have chance of working, the original ode must not
have y' already in it.
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4.4.5.1 Example

2y" —e? =0
Multiplying both sides by vy’ gives
20y —y'e? =0
Integrating
/ (2y'y" —y'e¥)dx = ¢
(?/)2 —e=q¢
Hence
Y =+Ver+a

Each of the above is separable, which are solved by integration.

4.4.6 Solved using Mainardi Liouville method

ode internal name "second_ order_ nonlinear_ solved_ by _mainardi_ lioville_method"

4.4.6.1 Introduction

This shows how to solve the nonlinear second order ode of the form

y'(2) +p(2) ' (z) + aly) (¥ ()" = 0 (1)

For this method to work, in the above p(x) must be either a function of z or a constant.
It can not depend on y. And in the term ¢(y) [/ (z)]?, ¢(y) must be only a function of y
or a constant. It can not depend on .

For an example this method will work on y”+y'+yy? = 0 and on y"+sin (z) ¥/ (x)+y(y')’ =
0 and on y”-l-sin( )y + (14 y) (y)* = 0 but not on ¢’ + ' + zyy? = 0 and not on
y" +sin(y)y +yy* = 0.

This is implemented in my ode solver as type 18. The first step is to divide (1) by ¥/(z)
which gives

L+ p(e) +a(0)y' =0 @
fjj— - W)y —p(a) 3)

The LHS is £ (Iny’) and the term ¢(y) y'(z) is ( [ a(y) ) % = 4 [4(y)dy. This is
the reason why g can not depend on z, In order to be able to evaluate the integral. Using

this (3) now becomes
y// d
=4 [away) -5te)

%(lny') = —(% / q(y) dy) - p(z)
%(ln y) + % / q(y) dy = —p(z)

%(lny'+/Q(y) dy) = —p(z)

Iny' + / q(y) dy = — / p(z) dz (4)

And this is the reason why p can not depend on y. In order to able to integrate the RHS
above. Once [ ¢(y)dy and [ p(z)dz are evaluated, then y’ is found and this gives first
order ode in y which is easily solved.

Integrating gives



CHAPTER 4. SECOND ORDER ODE F(z,y,y,y") =0 403

4.4.6.2 Example

v +QB+z)y + y[y']2 =0

Comparing to
y'(z) +p() y'(z) + q(v) [y (x)]" = 0

Show that p = (3 4+ z) and ¢(y) = y. Hence the conditions are satisfied to use this method.
Therefore equation (4) becomes

1ny’+/<1(y) dy = —/p(w) dz

lny'+/ydy=—/(3+m)dx

2 2
Y 3+ )
Iny + < =—
ny + 9 9
3+2)° 92
e = v
ny 9 2—i—c
Hence
B+z)2 _ 42

This is separable.

Integrating gives

2 9:2
/ey2dy=/cle e dx + co

-yt () =5t (G p) o

And the above is the implicit solution for y.

4.4.7 nonlinear second order ode with missing = or missing y(x)

When a nonlinear second order ode is missing z then make everything as <% usmg the

2
substitution u = ¢/, " dy,y 23;{ + u( dy> and so on. Example is yy” — ()’ = 1.

’LL

When a nonlinear second order ode is missing y then make everything 2" using the

substitution v = y/,y" = dw,y = d—lj and so on. Example y"(z) = 1/1+ (y’)2 or or

y" = (y)? cosz. Notice that we start with the same substitution which is ' = u. See

examples below.
The following gives examples of each method.

Both methods reduce the order of the ode by one resulting in first order ode where the
dependent variable becomes u which is then easily solved for. These methods are meant
to be used only when the second order ode is nonlinear.

If the ode is missing both x and y then either method will work.
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4.4.7.1 Missing x examples

ode internal name "second_ order_ode_ missing x"

Given

y' = fy,y) (1)
Let ' = u then y” = j—;‘ = %% = ui—‘; and the ode becomes

u'u = f(y,u) (2)

Which is now a first order ode. If we can solve this for u then the solution to the original
ode (1) is

dr u(y)

dy
——=z+c
/ u(y)
4.4.7.1.1 Example 1 yy" — (y)° =1
' — (¥) =1
Let p = ¢/ then y” = pp’. Hence the ode becomes
ypp' —p* =1
o= 1+p%1
by

This is separable.

1
)
Ly
y
/1+p /
1 1
iln(p—l) 2ln(p—i-l) Iny +c
Or, assuming p—1>0,p+1>0
In(p—1)+In(p+1)=2Iny+2c
In((p—1)(p+1) =y’ +a
(p=1)(p+1) = cay®
p’—1=cy’
PP =cy’+1

p =21+ coy?

Therefore the solution to the original ode is

y'(z) = £V1+cy?

Hence

This is first order ode which is separable. The first one gives

y'(z) = /14 cay?

dy
/—dy =/da:
V14 cy?
1
? (@y-l-\/l—l-czy)—z—l-c?,
n(@y+\/l+62y2>=\/6z+\/603
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Where cg, c5 are constants. Similar solution result for the negative ode.

4.4.7.1.2 Example 2 3’ +ay(y’) +by> =0

y' +ay(y) +by’ =0 (1)
Let p = ¢/ then y” = pp’. Hence the ode becomes

pp’ +ayp +by’ =0 (2)

Which is now a first order ode. s
p = —ay + by; (3)

Solving for p gives

244
(ln (—by* + ay’p + 2p°) Via® + 8b + 2a arctanh ( az” + °p )) =

1
4/a® + 8b y2v/a2 + 8b

Then y is found by solving ¥’ = p, another first order ode.

1 2 az’ + 4y
— ([ In(=by* + av® +2(v/ \/a2+8b+2aarctanh(—)>=c
W +8b< (b + an’y +20/)°) v>\/a® + 8b !

But this second one could not solve. Actually ode (3) is homogeneous, class G and should
use formula given in Kamke’s book, p. 19. but I have yet to implement this.

4.4.7.1.3 Example 3 2yy" —® —2(3/)> =0

2yy" —y* —2(y)° =0 (1)
With IC
y(0) = -1
y'(0)=0

Let p = ¢ then ¢’ = pg—z. Hence the ode becomes

dp 3 2
Qyp— — > — 2p% = 2
YP g, p> =0 (2)
@ B y3 + 2p2
dy 2py

Which is first order ode in p(y) of type Bernoulli. There are two solutions

p=yvyt+a (3)
P2=—-Yvy+ta 4)

But p = ¢ hence the above becomes

Y (@) =yvy+a (3A)
y'(z) =—yvy+a (4A)

Before solving this ode, we can either use initial conditions to solve for c¢; or solve it as
it is and at the very end use initial conditions to solve for both c¢; and the new constant
which will come up which will be ¢;. It is easier to get rid of ¢; now than keep it. Will
show both methods.

Getting rid of ¢; now method. At z = 0 we have ¢'(0) = 0,y(0) = —1 hence the above
becomes

0:—1\/—1+Cl
0:\/—1+Cl

01:1
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Eq(3A) becomes
v(z)=y\y+1
This is quadrature. Integrating
dy
yWy+1
—2arctanh (W) =T+ co

At z = 0 we have y(0) = —1 and the above becomes
—2arctanh (V-1+1) = ¢

¢y = —2arctanh (0)

02:0

=dz

Hence the solution is

—2arctanh (\/y—k 1)
arctanh (x/y + 1) = —g
y+

— _tan h<x>

2
y + 1 = tanh? (;)
)

- 2 (T
= tanh ( 5 (5)
Now we solve the second ode (4A). At z = 0 we have y'(0) = 0,y(0) = —1 hence Eq.(4A)
becomes
0= 1\/ -1+ C1
0= vV -1 —+ C1
]. + c = 0
C = -1
Hence (4A) becomes
y(z)=-yvy—1
Which gives the solution
y(z) = x + 2arctan (y — 1) + ¢ (6)

At z = 0 we have y(0) = —1 and the above becomes
—1 =0+ 2arctan (—2) + ¢
c2 = —1 — 2arctan (—2)
Hence the solution (6) becomes
y(xz) =z + 2arctan (y — 1) — 1 + 2arctan (2)

But this solution does not satisfy y'(0) = 0. Hence it is not valid solution. So the only
solution is (5).

Now we will do the same thing, but we will not get rid of ¢; early one as above, and keep
it until the end. We will see we will get same solution as (5).

Not getting rid of ¢; method. Starting from (3A) and (4A) above.

Y (@) =yvy+a (3A)
y'(z) =-yvy+a (4A)
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Starting with (3A), solving it gives
/ L dy—o+
——dy=z+c
ViFtay” ?
Vy+a
_Qarctanh <—\/a ) e
—2arctanh ( ?i/_ci01> =z/c1 +c3
1
arctanh yt+o = —x@ +c4
Vo 2
ytra = tanh c4—x@
Va 2
VY + ¢ = +/c1 tanh <c4 — x@)
y+c=qc tanh? (04 — w@)
y = ¢; tanh? (04 - m%) - (7)

Now we can solve for the initial conditions. using y(0) = —1 gives
—1 = c;tanh® (¢4) — ¢

Taking derivative of the above gives

2
3
y/ = —c{ tanh <C4 — x@) sech <c4 — x@)

Applying y/'(0) = 0 gives

= _01% tanh (c4) sech (04)2

o

Solving (8,9) for ¢y, ¢4 gives
C = 1

C4:0

1
y = tanh? (—ix) -1

Which same as (5). Now we go back and solve (4A).
Y (z) = -yvy+a

Hence the solution (7) is

1
. dy=-—z+ec
/\/y—l—cly Y 2

- 2 arctanh (—%)

= —I+C

arctanh

—2arctanh < yt cl) = —z4/c1 + c3

y+e=a tanh? (04 + x@)
v
2

(®)

9)

(4.3)
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Now we can solve for the initial conditions. using y(0) = —1 gives
—1 = ¢ tanh® (¢s) — ¢ (8)

Taking derivative of (7) gives

s 2
y' = c? tanh <C4 + m@) <1 — tanh (04 + x%) )

Applying 3/(0) = 0 gives
0= clg tanh (cs) (1 — tanh (cq)?) (9)

But now if we try to solve (8,9) for ¢, cs we see no solution exists. Hence (4A) leads to
no solution. Only solution is (8). This is the same as earlier method.

This shows that if we get rid of ¢; early one or not, same solution results. But it is much
easier to get rid of c¢; after finding the solution to the first ode.

4.4.7.1.4 Example 4 2y’ —e? =0
2y —e? =0 (1)

With IC

2p;l—§ —ey=0
23—];1) =eY (2)
This is separable.
2 / pdp = / e’dy
pP=e¢+q (3)

Before solving this, we should apply IC now as it simplifies the solution greatly. This
assumes both y,y’ are are given at same point z,. Which is the case here. If only one IC
is given (such as y(0) or ¢’(0) but not both, then we can not apply IC now and have to
do it at the end).

We are given that y'(0) = p = 1,y(0) = 0, hence the above reduces to

1= 60 +c
C1 = 0
Hence (3) now becomes
p'=¢
but p = 3 hence
) =e

y = +Vev
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This is quadrature. For the positive solution

dy
2
ﬁ = —X + Cy (44)
For y(0) = 0 we obtain
2= Co
Hence (4) becomes
2
Vo= 2

For the negative solution

Integrating
2
— =z+c 3
N 2 ()
At y(0) =0
2= Co
Hence (5) becomes
2
—==x+2
ey
2
v =
Ver T+ 2

However, this solution do not satisfy y'(0) = 1 so it is discarded. Hence the solution is

only
2
%=2m(§t;)

4.4.7.1.5 Example 5 2y” —e¥ =0 This is same example as above, but here we delay
applying IC to the very end to see the difference. This method is more general, but makes
solving for IC harder.

2y —e? =0 (1)

With IC

y(0) =0
y'(0) =1

Let p = v then ¢’ = pg—’;. Hence the ode becomes

dp
2—p=¢Y
dyp €
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This is separable.
2 / pdp = / e’dy
pP=¢€"+c
but p = 4’ hence the above becomes

W) =e+a

Y =xvev+

This is quadrature. For the positive solution

=dz
e¥Y+c

vev+cy

T‘&
<
A%

2 arctanh

/o
VaTa
Vvea

Y

¢T

5

('b
°+
)
S— —— ~——

=T+cC

[

= —z\/c1 — cav/C1
Ve en/a

2 2

2 arctanh

+
¢

veeTa

arctanh

/N 7 N
('b

o)

+

X

VA _ amn (— \/25 cNa)

Jer
Vey+c = \/_tanh( T_

ﬂ

ey+01=<\/_tanh( £—C

2
e’ = (ﬁtanh (—x@ -

“))

Now we have to use (2) and take derivative and solve for ¢;,co. Much harder than if we

have applied IC to each solution earlier.

4.4.7.1.6 Example 6 2y" —sin (2y) =0
2y" —sin(2y) =0
With IC
0y
y(0) =~
y'(0) =1

Let p = v then ¢’ = pdp Hence the ode becomes

dp _ .
2pd_y = sin (2y)

2pdp = sin (2y) dy

/Zpdp = /sin (2y) dy

1
p’ = —5 Cos 2y)+a

(2)
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At £ =0 we have p =1,y = —7. Hence the above becomes

1
1= —5 ¢os (—7) + ¢

1
= — cos (M) +a

Therefore (2) becomes
' 2 _1 1
(y'(2))" = —5 cos (2y) + 5

Need to solve and apply IC y(0) = —% to finish.

4.4.7.1.7 Example 7 yy’ — (y')2 + (y’)3 =0

y' — )+ )’ =0 (1)
With IC
y(0) = -1
y'(0)=0

dp __ dpdy __ dp

Let p =y then y" = £ = o = aP- Hence the ode becomes

dp 2 3
S =0 2
Yg,P P +p (2)
/_p2_p3
p_
yp
/_p_p2
p_
Yy

This is separable. Solving

dp 1
/pz—p:_/z_/dy p=p #0

p—1

This gives
p Y

Applying IC p = 0 at y = —1 show there is no solution as we obtain —1 = 0. Hence no
general solution exists. Let look for singular solution. This happens when p — p*> = 0 or
p=0and p = 1. Looking at p = 0 means ' = 0 or y = ¢. At IC this gives ¢ = —1. Hence
y = —1. This also satisfies '(0) = 0. So y = —1 is valid singular solution. Let look at
p = 1 which means y' = 1 or y = x + ¢;. At first IC this gives ¢; = —1. Hence solution
now becomes y = z — 1. But this does not satisfy 3'(0) = 0. Therefore only

y=-1

Is solution (singular).
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4.4.7.1.8 Example 8 (1+ (y')2)2 = 2y
2
(1+ @) =vy" (1)
With IC
y(0) =3
y'(0) = v2

Let p = ¢/, hence y” = pp’ and the ode becomes

(1+9%)° = y’pp
pp' 1
=— (2)

(1+p2)® y

Solving the above ode gives

V2(ay-1) 2ay+y-2)

= 3
b 2(ay —1) (3)
-2 —1)(2cy+y—2
Dy = \/ (cly )( ayTy ) (4)
2(ay—1)
Now we replace back p = y/(z) above gives
—2 —1)(2 -2
y/=_\/ (Cly )( ay+y ) (3A)
2(ay — 1)
I \/_2(cly_1) (201y+y—2) (4A)
2(aqy —1)

Lets start with (3A). Before solving, we will get rid of ¢; using IC. Given that y(0) =
3,7'(0) = v/2 then (3A) becomes

/2B —1)(6c1+3-2)
V2= 2(3¢; — 1)

1
CiT = =

Hence (4A) becomes

V-2 (by—1) By+y—2)
2(gv—1)

!/

y=-

Solving this ode gives the solution

. v—4y? + 30y — 36 _ 9arcsin (2 -3)

4 8 + Cy = O (5)
Finally, using y(0) = 3 the above becomes
. (4(3)
V/—4(9)+30(3) —36 9arcsin (T _ g)
B B +c=0
4 8
Solving for c; gives
V18  9arcsin (3)

Cy = —

4 8
Hence (5) becomes
. v—4y* +30y — 36 _ 9arcsin (2-9) N V18 _ 9arcsin (3)
4 8 4 8
Now we have to do the same for ode (4A). Given that y(0) = 3,3/(0) = v/2 then (4A)
becomes

=0 (©

V3 V—2(8c; — 1) (6cy +3—2)
2 (301 - 1)
But there is no solution for ¢;. This means (4A) leads to no solution. Hence only solution
is (6).
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4.4.7.1.9 Example 9 y(y")® + 3/ =0
y(y")’ +v°y =0 (1)
First we note that this factors to
y((y”)3 + y2y’> =0
Hence y = 0 is solution. Now we just need to solve

W) +y*y =0

Since the above is missing z then then make everything as Z—Z using the substitution

2
2
u=19y,y" = u‘;—z, y" = UQZT‘; + u<‘é—z> and so on. The above becomes

Hence one solution is u = 0 or ' = 0 or y = ¢;. So now we just need to solve

du\®
2 2
w—) +42=0
(dy>

du (=)
dy  \ u?

(—y20) i3
Y 2

Taking all three roots gives

1
T 2u 2 (—y u)3
1
__(—yzu)§ W3, 5 \1
- 2u + 2u( yu)

Let look at first root.

This is homogeneous, class A. Let u = vy. Then Z—Z = yj—z + v. The above becomes
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Which is separable. Integrating gives

§ln(l—l—vg) =—lny+¢

5
5 5
In (1 +v3> = —glny+02
= lny_% +c
Hence
1+ v3 = 03y_g
5 _5
v3 =c3y 3 —1
5 :
v= <03y_§ - 1)
Hence

But u = ¢/, therefore

(S

Y = y(rzsy‘g — 1)

This is first order quadrature. Solving it gives

y(z) 1
yzw—/ —————da+c

2 5
a3

The above is solution of the first root. We can solve the other two roots.

4.4.7.2 missing y(z) examples

ode internal name "second_ order_ ode_ missing y"

Let p = 9/ then 3" = p’. Hence the ode becomes
4.4.7.2.1 Example 1y + (y)*+y =0
v + () +y =0 (1)
Let p = ¢/ then y” = p’. Hence the ode becomes
pP+p+p=0 (2)

Which is now a first order separable ode. Its solution can be easily found to be

. 1
B c1e* — 1
Hence
@)=
4 ce® —1

Which is now solved for y(x) as first order, which gives by integration

y=In(ge® —c+1)—=z
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4.4.7.2.2 Example 2 ¢’ + ()’ =1

y' + () =1 (1)
y(0)=0
y'(0)=1

Let p(z) = ¢ then y” = p’ and the ode becomes

pP+p’=1
p/=1_p2
dp 9
%— —p

arctanh (p) =z + ¢
p = tanh (z + ¢;)

At £ =0,p =1 hence
1 = tanh (¢1)

There is no solution. Hence no general solution exist. Now we look for singular solution.
This happens when 1 —p> = 0 or p> = 1 or p = £1. For p = 1 this means 4/ = 1 or
y = x + ¢ which at IC gives ¢ = 0. Hence singular solution is

y=z

This satisfies both IC’s. If we try p = —1 it gives y = —z but this does not satisfy IC. So
only solution is y = .

4.4.7.2.3 Example 3A ¢ = /1 + (y)*

Notice that only one IC is given. Let p = ¢’ then y” = p’. Hence the ode becomes

p=+1+p? (2)

We can’t use IC on this ode, since the IC is only on y and not g’. Solving this as first
order gives

p(z) = sinh (z + ¢;)

But p = ¢ hence the above becomes

y'(z) = sinh (z + ¢1)
Now we solve this using the IC y(0) = 1. Solving the above gives

y = cosh (z + ¢1) + ¢z (3)
Applying IC, and now we need to be careful. We need to solve for ¢, and not c;.

1=cosh(0+c1)+c

ca =1 —cosh(c;)

Hence (3) becomes
y(z) = cosh (z + ¢1) + 1 — cosh (c1)
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4.4.7.2.4 Example 3B y" = \/1+ (/)

V' =1+ )

This is slightly alternative way to solving the ode. Let p = ¢/ then y” = p’. Hence the ode
becomes
p'=1+p? (2)
Solving this as first order gives
p(z) = sinh (z + ¢;)
But p = ¢’ hence the above becomes
y'(z) = sinh (z + ¢1)

Integrating gives

y= /sinh(ac+cl)dx+cz
=cosh (z +¢1) + ¢ (3)

Now we need to apply IC’s to find ¢, co. We only have one IC y(0) = 1. Applying this to
the above solution gives

1 =cosh(c;) + ¢

ca =1 —cosh (¢c;)

Hence (3) becomes
y(z) = cosh (z + ¢1) + 1 — cosh (c1)

4.4.7.2.5 Example 4 ¢ = /1 + (y)?

' =\/1+ ()’ (1)
y(0)=1
Notice that only one IC is given. Let p = 3 then y” = p’. Hence the ode becomes
P =V1+p (2)
Now we can use the IC on this ode, since the IC is on g’. Solving this as first order gives

p(z) = sinh (z + ¢;)

Applying IC, where p(0) = ¢/(0) = 1 gives

1 = sinh (¢;)

¢, = arcsinh (1)

Hence
p(x) = sinh (z + arcsinh (1))

But p = ¢ hence the above becomes
Y (z) = sinh (z + arcsinh (1))
Solving as first order ode gives

y(x) = cosh (x +In (1 + \/5)) +c
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4.4.7.2.6 Example 5 y” = ()’ cosz

7

Y = (y)" cosz (1)
Let p = ¢ then y” = p’. Hence the ode becomes

p =p?cosz

/g =/cosmdm
1

—— =sinz+ ¢
p
Hence p = Sin;fm. But p = y/(x). Therefore
-1
o) —
y(e) = sinx + ¢;

dx
/dy__/sinx—l—cl

2cy tan(Z)42
- arctan #
2 c%—l
+c

y= 5

2

4.4.7.2.7 Example 6 2(y/)°y" = —1

T g
y(0) =1
y'(0) = -1

Notice that this is also missing x type second order ode. Now let p(z) = ¢/ then y" = p’

and the ode becomes 1

p= _2_p2
Which is quadrature. The solution is

b 2—1

At z = 0,p(0) = —1. Hence the above gives
—1= C1

And the solution becomes
3 3T
Py =1

But p = ¢/, hence the above becomes

(v) + 3737 = -1

With IC y(0) = 1. This is quadrature. Solving gives
1
Yy = —1—6i(3x +2) (—i + \/§> (—12z — 8)% +c

1
Yo = Ez(3x +2) (z + \/§> (—12z — 8)% +c

1 1
v = ¢ (3w +2) (~120 - 8)% +¢;

Applying IC to the above shows that only second solution satisfies the original initial
conditions with ¢ = % Hence solution is

L 3e42) (V3 -1) (~120 - 8% +g

y2=1_6(
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Another option when solving these types of odes is not to plugin the IC until the very

end. Like this. Starting with 3
x

3 _— =
D+ g — G
We do not resolve the ¢;. But keep it. Since p = ¢/, hence the above becomes
3z
)+ 5 T a

This is quadrature. Solving gives

1
y1 = —1(3z — 2¢) (z — \/§> 8¢y — 12:(:)% +c

16
1

2 = 15i(3z — 201) (4 v3) (81 — 122)% + o,
1

Ys = §(31' — 201) (861 — 12%)% + (6)

And only now we solve for c;,cy from both initial conditions. Assuming we made no
mistake, then same result will come out.

4.4.7.2.8 Example 7 (y")* — 2" + (v)> — 2z + 22 =0
W) =2y + ()" — 22y +2° =0
Since y is missing, then let ¥’ = u,y” = v’ and the ode becomes
(u)? — 2u' + u? — 2zu+ 2% = 0

4.4.8 Higher degree second order ode

ode internal name "second_ order_ode_ high_ degree'

These are ode’s with the second derivative raised to power not one. Solved by solving for
y” which generates all roots and now each ode is solved.
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5.1 Linear higher order ode

5.1.1 Linear ode with constant coefficients
azy” + a2y” + a1y’ + agy = f()
5.1.1.1 Solved by finding roots of characteristic equation

ode internal name "Higher order linear constant coefficients ODE"

These are solved finding roots of characteristic equation. This is the standard method.
For non-homogeneous ode, The method of Variation of parameters and the method of
undetermined coefficients are both used to find the particular solution.

5.1.1.2 Solved by series method

ode internal name "Higher_ order_ series_ method_ ordinary_ point"

Only ordinary point is supported and for third order ode at this time. See section below.

5.1.1.3 Solved using Laplace transform

ode internal name "higher_order_ laplace"

Laplace transform method is used. Currently only linear with constant coefficient ode is
supported.
5.1.2 Linear ode with non-constant coeflicients

5.1.2.1 Euler type z3y" + 2%y + z¢/ + y = f(z)

ode internal name "higher_ order_ ODE_ non_ constant_ coefficients_ of type_ Euler"

This uses same algorithm as for second order Euler type ode but for higher order.

5.1.2.2 Solved using reduction of order

ode internal name "higher order_ reduction_of order"

Given third order ode, which is linear (this method actually works for constant or non-
constant coefficients), such as

"

Yy +ay' +by +cy=0

And given one known solution, y; () then let second solution be yo = y;u (there will be
three independent basis solutions, since this is third order ode). Then substituting this
into the ode gives

Yo = yru+ y1v’
Yo = yiu+y + i’ +
= yu+ 2yu + yu’
yg/ — yillu + y:ll/u/ + 2yilul + 2yiu// + yiu/l + y]_ul”
= y{'u + 3yju’ + 3yju” + y1u”
Substituting the above into the given original ode (since y, is a solution, then it satisfies
the ode), gives

(y1'u + 3yu' + 3yru” + yiu”) + a(yiu + 2y1u’ + y1u”) + b(yiu + yiv') + cpru =0
u(yy + ayy + byy + cy1) + ' (3yy + 2ay; + byr) + v’ 3y + ay1) + v (y1) =0
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But y!" + ay} + by; + cy; = 0. The above becomes
w'(3y) + 2ay; + by:) +u"(3y; +ay1) +u"'y1 =0 (1)
Since there is no u term, then let v = »’ and the above reduces to second order ode
v(3yy + 2ay; + by1) +v'(3yy + ay) + 0"y =0 (2)

Solving for v from the above, then we find u since v’ = v, by integration, we introduces
one more constant of integration which we can set to zero. Once we find u then we can
find the second solution ys since y» = y;u. Then the final solution is

Y =11 + Coyo

Note that yo which was found above, comes with 2 basis solutions in it. So the above gives
the three basis solutions needed.

5.1.2.2.1 Example 1

yl// + 3y/l _ 54y — 0

= 63:1:

Let y, = ue3®. Where here a = 3,b = 0,c = —54. Then EQ (1) becomes

o' (3y] + 2ay; +byr) +u"(3yy +ayr) + vy =0
w'(3yy +6y) +u’(Byy +3y1) + vy =0

But y; = €%, y] = 3€3%, 3} = 9¢3*. Hence the above becomes

u/ (276335 + 186395) 4 u// (96395 + 36395) + u//163x =0
450 + 120" + 4" =0

Let v/ = v then the above becomes
4504+ 120" + 0" =0
This is now second order ode. The solution for v is

v = c1e” % sin (3x) + e % cos (3)

u:/vdac+c3

u= / (c1e7% sin (3z) + coe™ % cos (3z)) dz

But v’ = v, then

We can choose ¢ = 0. Hence

—6z

= 615 ((cl + 2¢3) cos (3x) + 2(01 - %) sin (335))

= e %%(c3 cos (37) + ¢4 sin (37))

Where in the last step above, we merged constants to make new constants. Renaming
constants back gives
u = e %(c; cos (3x) + ¢y sin (37))

Hence since second solution is y2 = y;u then we have

Y2 = Y1u
= €% (e7%(c; cos (3z) + ¢ sin (3z)))
= €73%(c; cos (3x) + ¢y sin (37))

= c1e”% cos (3z) + cye”*" sin (32)
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Hence the solution is

Y = C3Y1 + Ca¥2
= ¢3¢ + ca(c1e7" cos (3z) + coe " sin (3z))

= c3¢* + c1e7% cos (3z) + cye ™7 sin (32)

Where in the last step above we just merged and renamed constants.

5.1.2.2.2 Example 2

2 8
m_ L 4 — Sy =0
Y 3y + 4y 3y
Y1 = e
Let y» = y1u = ue:®. Where here a = —2,b=4,c=—3. Then EQ (1) becomes

u'(3y) + 2ay; +byr) +u"(3y; +ay1) + vy =0
) )
v (3211' +(2) <—§> Y+ 4y1) +u” (31/1 - gyl) +u"y =0
'U/I3//_Z_l/ 4 " 3/_2 mn _O
Y1 33/1 +4y1 | +u Y1 3311 +uyr =

2z x 2z
But y; =e3,y] = %e?,yl = ge?. Hence the above becomes

w(3(5e%) -5 (5% ) +a(e%) )+ (35 ) - 5 (%)) e =0

4 8 2
/ - _ = 4 1/ 2__ II/:
u<3 9+)+u( 3)+u 0

%u’ + %lu” +u" =0
40u' + 12u" + 9" =0
Let ' = v then the above becomes
400 + 120" + 9" =0
This is now second order ode. The solution for v can be found to be

v=cie s sin (2z) + c2e” 7 cos (2z)

u=/vdx—|—03

u= /cle_szx sin (2z) + c2e” 3 oS (2z) dz

But v’ = v, then

We can choose ¢ = 0. Hence

_ 9% (er+ ) cos (20) + L (1 = 3¢y sin (20)
(SHETEE )

20

= ™7 (c3 cos (2z) + ¢4 sin (27))

Where in the last step above, constants were combined to make new constants. Renaming
constants, the above becomes

u=e3 (c1 cos (2z) + co8in (22))
Since second solution is y, = y;u then we have

Y2 = nu
—e% <e_2?z (1 cos (2z) + ¢z sin (2x))>

= ¢1 cos (2z) + ¢y sin (2x)
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Hence the solution is

Y = C3Y1 + Ca¥2
= csed + ca(cy cos (2z) + cosin (2z))

= ¢33 + ¢; cos (2z) + cosin (22)

Where in the last step above we just merged and renamed constants.

5.1.2.3 Solved by finding first intergal (applies to exact ode only)

ode internal name "higher_ order_ exact"

This applies only to linear higher order which are exact. Solved by finding its first integral,
which will be an ode of order one less. Let look at third order ode first

p3y” + 02y’ + 01y + 0oy = ()

Notice that most books like to write the above as

poy" + 1y’ + P2y’ + p3y = f(x)

i.e. the index of p starts at zero for the highest derivative and go down to zero until it hits
y. I do not like this and prefer the index n of p, to match the corresponding derivative
on y™ as it is more clear.

In the above ode, all the p; coefficients can be functions of = also. The condition of

exactness is given by
/1!

Py —py+py—po=0 (1)
If this condition is satisfied then first integral is
d " / / /
2 Py’ + (P2 = p3) Y + (01 =y +p3) y) = f(2)
psy" + (p2 —p5) Y + (p1 — Py +p5) y = /f ) dz + c1 (2)
This is now second order ode which is solved for y. For a 4th order ode

Py + psy" + poy” + vy’ +poy = f(z)

The condition is
/11 /1

Py —ps +py —p)—po=0 (3)
If the above is satisfied, then the first integral is

" /l/

dd (Pay" + (03 —P) ¥ + (P2 — D5+ P Y + (P — Py + 5 — 1) y) = f()
pay” + (3 —P) Y + (P2 —p3 +p) Y + (01 — o +p3 — P )y = /f )dz +ci (4)
And so on. Hence given general higher order ode
Py ™ + a1y + -+ pay” + o1y + oy = f()
The condition for exactness is
P =P PV A () 4 =0

And the first integral is

Py " (Pt = ) YT (pr gy e+ (SR e p ) y:/f(x) dote
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5.1.2.3.1 Example 1 zy"” + (z? — 3)y” + 4zy’ + 2y =0 Comparing to standard form
psy"” + p2y” + p1y’ + poy = f(x) shows that

ps=z
po=22—3
p1 = 4x
Po =2
f(z)=0

Checking if it is exact
Py —py+pi—po=0-2+4-2
=0

The first integral is therefore

d
%(psy” + (P2 — D5y + (11 —ph + 15 y) = f(2)

%(wy”+(m2—3—1)y'+(4x—2x+0)y) =0

%(:I;y//_i_ ($2—4) y/+2xy) =0

Hence the first integral is
zy’ + (2> —4)y +2zy =1

Let us now check if this is also exact. This has form

Py + 1y +po = f(x)

Where now
D2=
p1 = (952 - 4)
Ppo = 2x
f (x) =

Checking if it is exact

py— Py +po=0—2z+2z
-0

Show it is exact. Therefore its first integral is

(p2y + (p1 — Ph) y) = f(x)
(2 + ((z*—4) - 1)) =
(zy/ + (22 = 5)y) =

Hence first integral is
zy + (z2—5)y=/cld:c+02
=cC1x+ Co

This is first oder linear ode which is now easily solved.
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5.1.2.4 Solved by series method

ode internal name "higher order_ taylor_series_ method_ ordinary_ point'

Only ordinary point is supported and for third order ode at this time using Taylor series
(not power series) method. Let

y"' = f(z,u,v,y")

Assuming expansion is at o = 0 (we can always shift the actual expansion point to 0 by
change of variables) and assuming f(z,y,v’,y") is analytic at o which must be the case
for an ordinary point. Let initial conditions be y(zo) = yo and y/'(zo) = y; and y"(zo) = 5 -
Using Taylor series gives

2 3 4
/ Lr—T " r—T " r—& "
(@) = y(z0) + (2~ 20/ (o) + TPy ) + E I g 4 B i
/ xz " x3 x4 / . .
=Y +2Yo + Eyo + gﬂxo,yo,y{),y{{ + If |wo,yo,y6,y6’ +-
/ xz " - xn+3 dnf
=y +TYo+ W+ D T o
2 ; (n+3)' d.'L‘ ZO,yo,yé,y{{
But
G _ofds ofdy  Ofdy | of 0
dr Oxdr Oydx Oy dx Oy" dx
_ﬂ ﬁ / ﬁ " ﬂ "
Oz + ayy + ay’y + ay'y
o5, 0f, 01, 0f
Oz + 6yy + 6y’y + ay’f
&f_ a(df
de?  dr\dz
_ O (4N, 9 (d @y ay
~ 0Oz (dw) Oy (d:c) v+ oy’ (dz> v oy" <dx @)
_ O (4N 9 (a0 (df . a
- Oz (dz) + Oy (dx) vt oy’ (dz) vt oy" (dw f
Ef_d(df
de3  dx \ dz?
0 [(df o (d*f\ , 0o (d*f\ , O [(d*f
“ae(we) oy )V o (22 v o) s 0
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And so on. Hence if we name Fy = f(z,y,y’,y”) then the above can be written as

Fy = f(.'l?,y,yl)

df
F, ==
V7 dx

_ iRy
T dx
6F0+6F0 ,+8F0 " 8FO "

T Oz oy Y oy’ v 8y”y

_OR  OR , OF , OF
= "oy Y Ty ¥ Tyt

d(d
Fo=—|[—
2 dx(dxf>

d

= " (F

dx( 1)
. 3F1 8F1 ’ 8F1 " aFl "
= + ayy + ay,y +ay,,
_aFl 8F1 / 8F1 1 8}’_’].
=0z Ty Y Ty ¥ Taptt

F, = (F )

a

dx

0 3Fn_1 ’ aFn—l " aFn—l "
=5 aFn_ 1+( By )y +(—8y’ )y + By Yy
0

a-F"n—l ' 8Fn—1 " 8Fn—1
3wF"_1+( Ay )y +< dy’ >y +< dy" >FO

Therefore (6) can be used from now on along with

y(x) = yo + -Tyo _yo + Z xo,yo,yo,yo

To find y(z) series solution around z = 0.

(4)

(6)

(7)
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5.2 nonlinear higher order ode

5.2.1 Missing z

ode internal name "higher_order_ ODE_ missing x'

2
If the ode which is missing x then the substitution v’ = u,y” = u‘é—’;, y" = u2‘f712‘ + u(%)

and so on is used to reduced the order by one. This works for linear and nonlinear ode.
Note if the higher order ode is missing both x and y at same time, then this substitution
and the next one below also work.

5.2.1.1 Example 1 3’y + (¢/)* = 2(3")?
Let u = 9/ then

And

_ o2 2+u2d2—u
- \dy dy?
y/y///+ (y/)Q _ 2(3/”)2
du\?®  du ) du\?
((d—y) *“@2)*“ :2(“@)

du\ 2 d*u du)\ 2
2 oU 3d’U 2 _ g2 %
! (dy) T dy? T ! (dy)

Hence the original ode becomes

This is second order ode in u(y) with missing y. Let ‘;—Z = s then ‘fT’; =4 (d—“) =ds —

ds du sg—z. The above becomes

dudy ~
ds 9
21
usdu s
ds s 1
dus?—1 wu
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Which is separable. The solution is

s =+4/1+ Au? (1)
du
- \/ 1+ u?

1
u = — sinh (c1y + ¢1¢2)
1

Taking the first solution then

The solution is

But u = 4/ hence

1
Yy = o sinh (¢1y + ¢1¢2)
1

Solving gives
1
y = —(arccosh (— tanh (z + ¢1¢3)) — c1¢2)
C1

We need to do the same for the other solution in (1)

5.2.2 Missing y

ode internal name "higher_ order_ ODE_ missing_ y"

This works for linear and non-linear ode. Since y is missing, we then assume 3’ = u,y” =
v,y = u” and so on. The ode reduces to one order less. Now the lower order ode is solved.
Note if the higher order ode is missing both x and y at same time, then this substitution
and the above one also work.

5.2.2.1 Example 1

m2yl// _+_ .Ty” + y/ — 0

This is not Euler type as it stands. Let ¢y’ = u then the ode order is reduced by one and
becomes
22" 4+ o +u=0

This is now Euler type. Solving it gives
u = cycos (Inz) + c3sin (Inx)

Hence
Y = cycos (Inz) + czsin (Inz)

Solving this as first order ode of quadrature type gives

1 1
y = %x cos (Inz) + %z sin (Inz) — 5 Car CO8 (Inz) + 5C3% sin (Inz) + ¢
c 1 . c 1
=z cos (Inx) (52 - 503) + zsin (Inx) <52 + +503) +c

= Cyzcos (Inz) + Cszsin (Inz) + ¢
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5.2.2.2 Example 2
xy//// + y/// + yll — 0
Let ' = u then the ode becomes

xulll + ul/ + ul — 0

Since u is missing then let «' = v and the above becomes
"+ +v=0
This is now second order ode. This is Bessel ode whose solution is
v = c3 BesselJo (2v/Z) + ¢4 BesselY (2v/7)

Hence
u' = c3 BesselJp (21/) + c4 BesselY, (2v/7)

This is solved by quadrature giving

u = c3/x Bessel]; (2\/5) + c4/x BesselY; (2\/5) + co
Hence

y' = c3\/x BesselJ; (2\/5) + c4v/7 BesselY; (2\/5) + ¢y
This is solved by quadrature giving

y = c3z Bessells (2v/z) + caz BesselYs (2v/7) + ez + ¢

5.2.2.3 Example 3
wy’” _ y// =0

Let ' = u then the ode becomes
zu" —u' =0

Since u is missing then let ' = v and the above becomes
/
' —v=0

This is linear first order ode whose solution is v = ¢;z. Hence v’ = ¢;z. Integrating gives
u = c12% + ¢. Hence
/ 2
Y =" +

Integrating gives
Y= clx3 + cox + c3
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