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Classification und Integration von gewohlllichen Differential
gleichungen zwischen xy, die eine Gruppe von Transformationen 

gestatten. 

Von 

SOPHUS LIE in Leipzig. 

(Die nachsteheude Arbeit erschien zum ersteu Male im Friihling 1883 im 
norwegischen Archiv.) 

In einer kurzen Note zur Gesellschaft der Wissenschaften in 
Gottingen (3. December 1874) gab ich u. A. eine Aufzahlung aller 
continuirlichen Gruppen von Transformationen zwischen zwei Variabeln 
x und y. lch lenkte ausdriicklich und stark die Aufmerksamkeit darauf, 
dass sich hierauf eine Classification und eine rationelle Integrations
theorie alIer Differentialgleichungen 

f(xyg' ••• y(mJ) = 0, 

die eine continuirliche Transformationsgruppe gestatten, begriinden 
li.i.sst. Spater babe ich nun das hiermit scizzirte grosse Programm 
mehr im Detail ausgefiihrt. So gab ich in den Abhandlungen der 
Gesellschaft der Wissenschaften zu Christiania (1874*)) eine rationelle 
Methode zur Integration von linearen partiellen Differentialgleichungen 
mit einer Reihe bekannter infinitesimaler Transformationen; hiermit 
batte ich dann gleichzeitig eine vollstandige lntegrationstheorie von 
gewohnlichen Differentialgleicbungen 

f(xyy' ••. y(m) = 0 

mit bekannten infinitesimalen Transformationen erhalten. lch gab 
ferner in mehreren Abhandlungen **) in diesem Archiv (1876, 78) 
eine Darstellung von denjenigen Methoden, vermoge deren ich in den 

*) Die betreffende Arbeit ist im Wesentlichen reproducirt in den Math. Ann. 
Bd. XI. 

**) Diese Abhandlungen sind theilweise (aber nicht volIstandig) in den Math. 
Ann. Bd. XVI in neuer Bearbeitung reproducirt worden. 
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Jahren 1873-1874 alIe continuirlichen Gruppen von Transformationen 
einer zweifach ausgedehnten Mannigfaltigkeit bestimmt hatte. 

Hiermit war indess keineswegs mein 1874 scizzirtes Programm, 
selbst auf gewohnliche Differentialgleichungen zwischen x und y be
schraukt, zur Ausfiihrung gebracht. Nicht allein hatte ich die an
gekiindigte Classification noch nicht durchgefiihrt, sondern es stand 
auch noch zuriick nachzuweisen, einerseits, wie man entscheidet, ob 
eine vorgelegte Differentialgleichung eine continuirliche Gruppe ge
stattet, anderseits wie man diejenigen Differentialgleichungen in ratio
neller Weise integrirt *), die zur Bestimmung der betreffenden Gruppe 
dienen. Der Hauptzweck dieser Abhandlung ist, diese beiden wich
tigen Capitel meiner Theorie eingehend zu entwickeln. Gleichzeitig 
halte ich es fiir zweckmassig, einige Theile meiner Tbeorie, die icb 
allerdings fruber schon im Wesentlichen gegeben habe, auf's Neue und 
mehr ausfiihrlich zu behandeln. 

1m ersten Abschnitte fiihre ich die von mir 1874 angekiindigte 
Classification von gewohnlichen Differentialgleichungen, die eine con
tinuirliche Gruppe von Tran:sformationen zwischen x und y gestatten, 
vollstandig durch. Ich hetrachte successiv aIle derartigen Gruppen, 
reducirt auf canonische Formen, und bestimme die zugehorigen in
varianten Differentialgleichungen **). Darnach zeige ich, dass eine 
beliebige vorgelegte Gruppe im Allgemeinen ohne Integration von 
Differentialgleichungen und jedenfalls durch Integration einer Diffe
rentialgleichung 1. O. auf ihre canonische Form gebracht werden kann. 
Hierdurch gelingt es, aHe bei einer beliebig vorgelegten Gruppe in
variante Differentialgleichungen anzugeben ***). 

*) Siehe die Abhandlungen der Gese11schaft der Wissenschaften zu Chri
stiania 1881. Siebe aucb meine Begriindung einer Invariantentheorie der Be
riihrungstransformationen. Math. Ann. Bd. VIII, 1874. 

**) Die Gesichtspunkte der citirten Note fiihren indess noch weiter. Man 
kann ll. A. jede Gruppe von BerUhrungstransformationen zwischen xyy' anf ge
wisse von mir bestimmte canonische Formen bringen, und darnach die zu jeder 
canonischen Form entsprechenden invarianten Gleichungen angeben u. s. w. 

"'**) Als ich 1874 in meiner mehrmals besprochenen Note hervorhob, dass 
auf meine Bestimmung a11er Grupp,en von Transformationen der Ebene eine 
Classification alIer Gleichungen f(xyy' ... y(m)) = 0 mit einer Gruppe gegriindet 
werden kaDn, hatte ich diese Classification noch nicht im Detail ausgefiihrt. lch 
hatte die Moglichkeit eiDer Classification, d. h. die Moglichkeit der Aufstellung 
der Typen aHer Differentialgleichungen f = 0, die eine Gruppe gestatten> er
kannt. Die hierzu erforderlichen Rechnnngen hatte ich aber nicht im Detail aus" 
gefiihrt, und noch weniger publicirt. lndem ich dies ausdriicklich hervorhebe, 
bemerke ich, dass der beriihmte franzosische Geometer Halphen in seinen ans
gezeichneten Untersuchungen uber Differentialinvarianten (Liouvilles Journal Bd. 2 
(Serie 3) 1876, Sur les invariants diff., These, Paris 1878 u. s. w.) im Gronde 
emen wichiigen, wenn auch sehr specieUen Theil memes Programms ausgefUhrt 
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1m zweiten Abschnitte dieser Arbeit wende ich meine allgemeine 
Hingst publicirte Integrationstheorie von linearen partiellen Differential
gleichuugen mit bekannten infinitesimalen Transformationen auf ga
wohnliche Differentialg1eichungen f(xyy' ... y(m]) = 0 mit einer be
kannten Gruppe an. Derartige Gleichungen konnen in zwei etwas 
verschiedenen Weisen behandelt werden. Entwedar kann roan meine 
allgemeine Theorie direct anwenden und muss dann successiv eine Reihe 
vollstandiger Systeme aufstellen. Oder auch man faugt damit an, die 
vorgelegte Gruppe auf ihre canonische Form zu bringen; dadurch ar
halt f = 0 ebenfalls eine canonische Form; hierbei hat man nur ge
wohnliche Differentialgleichungen zwischen zwei Variabeln zu be
handeln. Die Entwickelungen dieses Abschnittes sind grosstentheils 
nur als Beispiele und Illustrationen zu meiner alten allgemeinen Theorie 
zu betrachten. 

1m dritten Abschnitte denke ich mir eine ganz beliebige Gleichung 
f(xyy' . - .) = 0 vorgelegt und stelle die Frage, ob dieselbe infini
tesimale Transformationen gestattet. 1st dies der Fall, so werden diese 
Transformationen bestimmt durch gewisse lineare partielle Differential
gleichungen erster und hoherer Ordnung, deren Integration in den 
meisten Fallen durch successive Quadraturen oder durch Integration 
einer Riccatischen Gleichung 1. O. geleistet werden kann. Es giebt 
nur zwei Fane, in denen die Bestimmung der infinitesimalen Trans
fo~mationen von f = 0 nicht in dieser einfachen Weise geleistet werden 
kann. Wenn f = 0 eine Gruppe gestattet, als deren canonische Form 
die allgemeine projective Gruppe der Ebene gewahlt werden bnn, so 
verlangt die Bestimmung dieser Gruppe im Aligemeinen die Integration 
einer linearen Gleichung dritter Ordnung. Gestattet andererseits f = 0 
eine Gruppe, als deren canonische Form die Gruppe einer Iinearen 
Gleichung*) gewahlt werden kann, so verlangt die Bestimmuug unserer 
Gruppe die Integration einer gewohnlichen linearen Differentialgleichung. 

hat (siehe § 1, Nummer 3 dieser Arbeit) allerdings mit schOnen Anwendungen, 
die mir theilweise ferner lagen. Halphen macht aufmerksam auf die Beziehungen 
zwischen semen Untersuchungen und Klein'8 und meinen gemeinsamen friilieren 
Untersuchungen iiber solche Curven, die eine infinitesimale lineare Transforma
tion gestatten. Dagegen kannte er nicht meine anderen viel weiter reichenden 
Arbeiten, insbesondere nicht meine Note in den Gottinger Nachr., wie auah nicht 
meine 1874 publicirte Theorie der Integration von linearen partiellen Differential
gleichungen, die eine bekannte Gruppe von Transformationen gestatten. 

*) Besonders merkwurdig ist der Fall, dass die lineare Gleicbung des Textes 
in eine mit constanten Coefficienten sich umwandeln lasst. In diesem Falle ge
schieht wiederum die Bestimmung der gesuchten info Transformationen durch 
Quadratur; kann jedoch die besprochene lineare Gleichuog mit constantan Coeffi
cienten die Form y(r] = 0 erhalten, so ist die Integration einer Riccatischen 
Gleichung 1. O. erforderlich. 
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In weiteren Abschnitten gedenke ich einige verwandte TheQrien, 
die ich schon seit einiger Zeit im Detail ausgefiihrt habe, zu ent
wickeln. Insbesondere werde ich meine Theorien auf solche Gleichungen 
{(xy ... '!f(rn» = 0 anwenden, in denen die 9rosse y(rn-I) nicht vor
kommt. Anderse~ts werde ich aUe Gruppen von Beriihrnngstra,nsfor
mationen der Ebene in canonischer Form betrachten, und ihre in
varian ten Differentialgleichungen aufstellen; hieran schliesst sich eine 
rationelle Integrationstheorie soIcher Gleichungen (= 0, die eine he
liebige Gruppe von BerUhrungstransformationen gestatten. 

Abschnitt 1. 

Classineation aller gewohnliehen Diiferentialgleiehungen 
zwischen xy, die eine Gruppe von Transformationen zwischen 

diesen Variabeln gestatten. 
Bestimmen die Gleichungen 

Xl = f(xya1 a2 ••• ar ) 

Yi = rp (xya1 a2 ••• ar ) 

zwischen den aIten Variabeln xy, den neuen VariabeIn xly) und den 
Parametern a1 a2 ••• ar eine (continuirliche) Gruppe von Transforma
tionen, so liefert eine Relation der Form 

Q({rpb, •.. be) = 0 
mit r + (} Parametern a1 ••• ar b1 ••• be eine Schaar und zwar die 
allgemeinste Schaar von Curven, deren Inbegciff die vorgelegte Gruppe 
gestattet. Di~s folgt unmittelbar aus dem Begriffe Transformations
gruppe. Zu bemerken ist allerdings dabei, dass die r + f} Parameter 
ai, hie nicht sammtlich wesentlich zu sein brauchen *). 

Wahlt man die Function Q in bestimmter Weise, so kann man 
durch wiederholte Differentiation hinsichtlich x so viele Gleichungen 
zwischen xy, den Differentialquotien~n 

y(i) = iJ}~ 
iJ,:J:' 

*) Die ,. + (f Parameter sind wesentlich, wenn eine beliebige CUl'Ve der 
Schaar 

Q(:J:ybj ••• be) . 0 

mit f! wesentIichen Parametem dureh keinQ infinitesimale Transformation der 
Gruppe- in sich t1:a.nsformirt wird und auch nieht in eine benaehbarle Curve 
dieser Schaar iibergefiihrt wird; giebt as dagegen ti unabhiingige infinitesim.ale 
Transformationen der Gruppe, welehe eine beliebige Cnrve der Schaar wiederum 
in eine Curve der Schaar iiberfiihrt, so sind unter den t' + e Parametem 
ai - • - ae bi ·•• be nur t' + (f - ti wesentlich. 
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und den Parametern a.b" bilden, dass es moglich wird, diese Para
meter wegzuschaffen. Hierdurch findet man in jedem einzelnen FaUe 
eme Differentialgleichung, die unsere Gruppe gestattet. Und offenbar 
kann jede derartige Differentialgleichung in dieser Weise gebildet 
werden. Diese Methode ist indess nicht zweckmassig, indem sie uns 
keine Uebersicht fiber die Gestalt und die Eigenschaften der betreffenden 
Differentialgleichungen liefert. Zweckmassiger ist es, wie ich seit 
1874 bei allen meinen Untersuj:!hungen fiber Transformationsgruppen 
zu thun pflege, die infinitesimalen Transformationen der Gruppe ein
zufiihren, und vermoge 4erselben die Bestimmung der betreffenden 
Differentialgleichungen durchzufiihren. 

Un sere Gruppe mit den r Paramet!'lrn a" enthli.lt nach mir 'f' un
abhlingige infinitesimale Transformationen *), etwa 

t df ) at Bif = s.(xy) ax + 'YJ'(xy ay' 

(i=1,2 ... r) 

Bei emer solchen info Transforination erhalt x <las Increment li x = ~i Ii t, 
y das Increment liy = 'YJilit; gIeichzeitig erhaIt y' ein Increment liy', 
y" em Increment liy" und Uberhaupt y(') ein Increment lit/f). Wir 
werden diese Incremente berechnen. Es ist 

8 h 
8y' B ay _ ax Tt ay - ay· Tt a:e 

at = Tt ax ,....... ilxi 

oder 
By Bx 

8y' ax· a Tt - ay· a Tt a1} - y' as 
~= dllfl = ax 

= 01} + y,(01J _.B...) _ y'2 ..?i = 'YJ(1). 
ox oy ox oy 

Dementsprechend ist 

und Uberhanpt 

*) Die infinitesimale Transformation, bei der x und y die Incremente 

8x = ;(xy) 8t, By = 7j{xy) 8t 

erhaJ.ten, be~eiehne ieh immer mit'(iem Symbol 

Of of 
; OX +1J oy . 
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Setze ich nun 

B.(m){=!:. 'Of + 1'). or + '>1.(ll_?L + ... + 'n.(m)-.1L 
, 5. OX "I' oy '1' oy' ." oy(m) , 

(i = 1,2 ... r) 

so sind B/m){, B}m){, ... B .. (m}{ die r infinitesimalen Transformationen 
unserer Gruppe 1 aufgefasst als transform~rend nicht allein X'!l, sondern 
zugleich die Difierentialquotienten if ... yfm). Und also (Gotting. 
Nachr. 1874, p. 537; Math. Ann. 'XVI, p. 462-463) bestehen 

r (r - 1) Relationen von der Form 
1·2 

B/m)(B,,<Dl)(f») - Bk(m) (B/m) (f)) = ~ ci/".B.(m){, 

in denen die c.,.. Constanten sind, die iiberdies von der Zahl m unab
hangig sind. 

SoIl nun eine Differentialgleichung 
{(xyy' .•. y(m») = 0 

unsere Gruppe gestatten, so jst hierzu erforderlich und auch hin
reichend, dass sie die r info Trmsformationen Bi(m) f gestattetj denn 
dann gestattet f = 0 jede infinitesimale Transformation ECl< B,,(m) ( del' 
Gruppe und also zugleich jede endliche Transformation derselben, die 
ja durch Wiederholung einer info Transformation erzeugt werden kann. 
Und dies kommt darauf hinaus, dass die r Gleichungen 

of of of 'Of (1) 1:·_+'>1'_+11·(1)_+ ... + 1').(m) ---0 
\:>, oX "I' oy • ay' "I' oy(m)-

vermOge f = 0 identisch bestehen sollen. 
Die weitere Discussion stellt sich verschieden jenachdem r gleich, 

kleiner oder grosser als m + 2 ist. 
N ehmen wir zunachst an, dass m + 2 = r ist. Dann ist zum 

Bestehen del' r Gleiehungen (1) erforderlich, dass die Determinanie 

D.. = 1 ;;1}i1'}Pl •.• 1]lr-2) 1 

verschwindet. Dabei konnen wir voriaufig von dem FaIle, dass D.. 
identisch verschwindet, absehen, indem dies, wie wir spater zeigen, 
nur ganz ausnahmsweise eintritt. Daher muss die Gleichung D.. = 0 
v-ermoge f = 0 bestehen. Es ist atiderseits nicht schwierig zu be-.. 
weisen, dass die Differentialgleichung D.. = 0 immer unsere Transfor-
mationsgruppe gestattet. Fur eine synthetische Auffassung ist dies 
unmittelbar evident. Ein Werthsystem xyy ... y(r-2) gentigt na.mlich 
der Gleichung D.. = 0 dann und nUl dann, wenn dasselbe nicht ver
moge der Grnppe in jedes benachbarte Werthsystem ubergefiihrt 
werden kaun. Wiinscht man einen analytischen Beweis, so bemerke 
ich, dass ich ftil' den Fall In = 1 schon ainen solchen Beweis geliefert 
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habe (siehe Math. Ann. Bd. XVI p. 415), dass ferner derBeweis :fUr 
einen allgemeinen Werih von m in ganz entsprechender Weise ge. 
fiihrt wird. Hierauf nillier einzugehen balte ich hier nicht ffir noth
wendig. Ich bemerke nur, <lass man im Folgenden bei jeder An
wen dung des betrefi'enden Satzes seine Riehtigkeit leicht direct verificirt. 

Wir wollen sodann annehmen, dass m + 2 < r ist. Dano ist zum 
Bestehen der Gleichungen (1) erforderlich, dass aUe in der Matrix 

I ~i 1Ji 1Jpl • . • 1Ji"'} I 
enthaltenen (m+2)-reihigen Determinanten gleichzeitig verschwinden; 
und da dieselben nicht identisch gleich Null sein konnen, indem A 
nach unserer V oraussetzung nicht identisch verschwinden solI, so 
mUssen die soeben besprochenen Determinanten, die off'enbar ganze 
Functionen der Grossen yfk) sind, einen gemeinsamen Factor (A) ent
halten; dabei ist klar, dass diese Grosse (A) eben falls (jin Factor von 
A sein muss. Dies giebt uns nun' zunachst den Satz: 

Sa tz. Sucht man alle hei der vorgelegten Gruppe Bd··: B"f 
invariarden Differentialgleiehungen 

f(xyy' ... y(m}) = 0, 

deren Ordnungszahl m nield' grosser als r - 2 ist, so muss man die 
Determinante 

6. = ! ~i fJi 'Y}P) • • . 1Jlr- 2 ) I 
hilden. Verschwindet dieselbe nicht iclentisch, so liefern ihre Factoren 
gleich Null geset$t die gesuchten DiffererdiAilfil&chungen. 

Als Corollar fliesst hieraus der Satz: 

Gestattet eine Differentialgleichung mter Ordnung f = 0 m + 2 
oder noch mehr infinitesimale PunkttransformatWnen, so kann man 
ohne Beschriinkung' annehmen, dass f eine gan$e Function iJer Grossen 
y(i) ist. 

Dieser Satz ist im V orangehenden nur unter der Voraussetzung 
erwiesen, dass die Determinante A nicht ide,ntisch versehwindet. Der
selbe ist indess allgemein giiltig, wie wir spater nachweisen werden. 

Es ~riibrigt noch alle bei der Gruppe invarianten Differential
gleichungen f(xyy' ... y(m») = 0, deren Ordnungszahl m grosser als 
r - 2 ist, zu £inden. Dabei sc;hliessen wir wie :€riiher vorlli.ufig den 
Ausnahmefall A = 0 aus. Unter dieser Voraussetzung bilden die 
r Gleiehungen (1) naeh meinem friiher citirten Satze ein vo1lstli.ndiges 
System mit m + 2 - r gemeinsamen Losungen. Sei zanichst 
m + 2 = r + 1, dann giebt es eine LOsung «PI' die; dUtch Integration 
gefunden wird *). Dabei h8,ngt «PI nur von xyy'··· '!f!'-l) abo Sei 

*) Diesa Integration kann immer\ geleistet werden, weXID die ~ 
TransfonnationeJJ. dar Gmppe bekannt sind. 
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darnacb m + 2 = r + 2, dann giebt es zwei Losungen, unter denen 
fP1 die eine ist; die zweite Losung fP'l hangt von xyy' ... y(rl abo 1st 
m + 2 = r + 3, so giebt es drei Losungen fP1> fP2 und fPr;, welch' 
letztere von xyy' ••. y(r+l) abhangt. ' Fur einen beliebigen Werth 
von m giebt es 'In - r + 2 Losungen fPI fJJ2 ••• fPm-r+2. Es 1st nun 
leicht zu sehen, dass jedenfolls nur die beiden ersten Pk, namlich fPI 

und lfJ2' durch Integration bestimmt zu werden brauchen. Kennt man 
lfJl und fP2' so findet man die ubrigen lfJ" folgendermassen durch 
Differentiation. 

Es ist die Gleichung 

fP2 - ag;1 + b = 0 

mit den beiden arbitraren Constanten a und b eine invariante Diffe
rentialgleichung rte!' Ordnung. Differentiirt man nun hinsichtlich :.e, 
so ist die hervorgehende Gleichung 

d CP2 _ a d CP1 = 0 
aa; iJ,a; 

oder die aquivalente 

eine invariante Gleichung (r + l)1e1' Ordnung mit einer arbitraren 
Constante. 

Also kann die Grosse 
acp! • dcps 
CZX'd:C 

als Grosse lfJ3 gewahlt werden. Dementsprechend kann 

dcpa • dep1 
CZX'a;x 

als Grosse P4 gewahlt werden u. s. w. Dieses Bildungsgesetz zeigt, 
dass P3 hinsichtlich y(r+ll, dass lfJ4 hinsichtlich y(r+2) linear ist u. s. w. 

Satz. Jede bei der Gruppe Ed· .. Err invariante J)ifferential
gleiekung, deren Ordnung grosser als r - 2 ist, besitzt die Form 

Q(Pl fJJ2fJJ3 ••• ) = o. 

Zuletzt nur noch einige weitere Bemerkungen' uber invariante 
Diiferentialgleichungen 

rexy ... yle») = 0, 

deren Ordnung Q nicht r - 1 ubersteigt. Nehmen wir wieder an, 
dass A nicht identisch verschwindet, und sei Ai' ein Factor von A, 
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der von den Grossen XY 'II' : •• y'l'-2-i abhangt. Dann enthiilt das 
Integral von I::.i = 0 , '1' - i - 2 arhitrare Constant~m: 

cp(xyat ••• fX1'-i-2) = 0, 
d. h. die Gleichung I::.i = 0 hat 00 .. -i-2 Integralcurven. Rei den Tran~
formationen der Gruppe werden diese Integralcurven unter sich ver
tanscht, und zwar wird jede einzelne Integralcurve durch i + 2 unab
hangige infinitesimale Transformationen der Gruppe in sich selbst 
transformirt. 

1st insbesondere 1::.0 ein Factor von 1::., der die Grosse y(1'-2) ent
halt*), so ist ~ = 0 eine invariante Differentialgleichung, von deren 
Integralcurven jede ~wei unabhangige infinitesimale Transformationen 
der Gruppe gestattet. Besitzt I::. keinen Factor Llo, der y(r-2) wirklich 
enthalt, so heisst dies I dass es keine Curve giebt, die zwei und nur 
zwei infinitesimale Transformationen unserer Gruppe gestattet. 

Betrachten wir endlich die invariante Differentialgleichung ('1' -1 )ter 

Ordnung 
CP1 = ao, 

deren arbitrare Con stante ao einen bestimmten Werth erhalten hat. 
Diese Differentialgleichung hat 001'-1 Integralcurven, die durch die r 
unabhangigen innnitesimalen Transformationen der Gruppe unter sich 
vertauscht werden. Also schliessen wir, dass jede Integralc'Urve durch 
eine und nur eine infinitesimale Transformation der Gruppe in sich 
transformirt wii'd. 

In den drei ersten Paragraphen dieses Abschnittes betrachten wir 
successiv aHe Gruppen von Punkttransformationen der Ebene, indero 
wir sie auf die von mir bestimmten canonischen Formen gehracht 
vora.ussetzen. Fur jede solche canonische Gruppe bestimmen wir die 
zugehOrigen invarianten Differentialgleichungen. In .dem letzten Para
graphen zeigen wir 1 wie eine beliebige vorgelegte Gruppe auf ihre 
canonische Form gebracht wird. 

§ 1. 

Gruppen, die keine Di1ferentia.lgleichllllg 1. O. invariant lassen. 

In meiner Aufzahlung aller Gruppen von Punkttransformationen 
einer Ebene (Gottinger Nachr.1874, Math. Ann. Ed. XVI) theilte ich 
alIe derartigen Gruppen in gewisse Hauptclassen, jenachdem die be
treffende Gruppe keine, eine, oder mehrere Differentia.lgleichungen 
erster Ordnung invariant lasst. 

In diesem. Paragraphen betrachte ieh jede Gruppe, die keine 
Differentialgleichung erster Ordnung invariant lasst, und bestimme 

*) Die Form der Determinante A zeigt, dass Aa hinsichtlich y{r-2) linear ist. 
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aIle zugehOrigen. invarianten Differentialgleichungen hOherer Ordnung, 
unter denen sich immer eine von zweiter Ordnung finaet (welche durch 
passende Coordinatenwahl die lineare Form y" = 0 erhalten kann). 

Die betreffende Gruppe enthalt entweder acht od,er sechs oder 
fiinf Parameter. Sie ist ahnlich mit der allgemeinen projectiven Gruppe 
der Ebene oder mit einer Untergruppe derselben, die sechs oder fiinf 
Parameter enthalt. Wir denken uns im Folgenden unsere Gruppen 
auf die soeben genannten canonischen Formen gebracht. 

1. Jede fiinfgliedrige Gruppe, die keine Differentialgleichung erster 
Ordnung invariant lasst, kann auf die canonische Form *) 

p, q, xq, xp -- yq, yp 

gebracht werden. Die Determinante 6 erh1i.lt fiir diese callonische 
Form den nieht identiseh versehwindenden Werth: 

II 0 0 0 0 
0 1 0 0 0 

6= 0 x 1 0 0 = 9y"3, 

-2y 
, 

3 " -4y '" Y -y - Y 
Iy 0 _y'2 -3y'y " - 4y'y ", 3 O? - Y -

Daher6 ist y" = 0 die einzige invariante Differentialgleiehung, deren 
Ordnung kleiner als vier ist. 

Zur Bestimmung de. Grossen fPl und fPz bilden wir die folgenden 
linearen partiellen Gleiehungen, in denen wir, wie immer im Folgen
den, Yk statt y(lr.) sehreiben: 

.E.L - 0 ox -

B2f= :: =0 

B f=x1L+ of =0 
3 oy OYI 

Bd = x 1L - Y of - 2Yl of -3yz Of •.. - 6Y5 'Or = 0 
ox oy 'OY1 OY2 OY5 

Bd= '11 ~~ - Yt Z :~ - 3Y1YZ :~ - (4YtY3+ 3 Yz2
) :~ 

- (5YIJI4 + lOY.Ya) pr - (6YlY5 + 15YzY4 + 10'1132
) !f = 0 - (Jy~ u'!J, 

*) Statt ~~ und :: p:£lege ich zu schreiben p und fJ.. So z. B. schreibe ioh 

xp - yq statt x ~~ - Y ~~ , um die infinitesimale Transformati{)n 

zu bezeichnen. 
~x = xot, oy = - yot 
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und suchen ihre heiden gemeinsamen LOsungen. Die drei ersteu Glei
chungen zeigen, dass PI und P2 nicht von x, yoder YI abhangen. Die 
beiden letzten Gleichungen $halten durch Reduction die einfachere Jl'orm 

B f 0) of + 4 of 5 Of of 
4 =iJYz-.,- Y3<l""+ Yn:\-+6'!1&~=O 

u'!h uys UY4 u115 

BJ = 3Yz2 !f + lOY2Y3 !f + (15YzY4 + lOY32) !f = O. 
u~ u~ u~ 

Wir integriren Bsf = 0 in der gewohnlichen Weise, fiihren sodann 
ihre LOsuugen 

5 85 
'!I2' (J3 = 3Y2Y4 -- '!Is 2 

, Qs = 31h2 ,!!; - 5 (J2YS - T '!I33*) 

als neue unabhangige Variabeln in 

Bd = B 4 '!1z' !f + B4Q2 !f + B4Q3 !f = 0 
U'!J2 u(l2 u (13 

ein und erhalten hierdurch die Gleichung 

3 of + 8 Of + 2 of < yo ~ (J.) ~ 1 Qa ~ = 0, - U'!J2 - (1(1: (I (Is 
deren Losungen 

(12 (Is 

PJ = y/t' Pz = '!J~4 

eben die gesuchten Grossen !PI **) und P2 sind. Es bleibt nur ubrig, 
die friiher gefundenen Werthe der Grossen Q2 und (13 eiuzusetzen. Man 
bemerkt, dass Pj linear hinsichtlich Y4 und anderseits P2 linear hin
sichtlich Y& ist. 

Da Pt hinsichtlich Y2 irrational ist, so kann es zuweilen zweck
massiger sein die Grosse PtS als Pt zu wahlen. Eine ahnliche Be~ 
merkung Hisst sieh mehrmals sparer machen. 

2. Jede sechsgliedrige Gruppe, die keine Differentialgleichung 
erster Ordnung invariant lasst, kann die canonische Form 

p, q, xq, yq, xp, '!IP 

erhalten. Die Determinante A wird fur diese canonische Form gleich 

*) Die Grosse (Is erhlUt durch die Substitution fh = 3!MI4 - 5Ys2 den Werth 

+ 40 s 
(Is = 3y:2ys -- 151hYs'Y4 T Us • 

Es ergiebt sich spater, dass die Gleichung (Is = 0 eine bemerkenswerthe geo. 
metrische Bedeutung besitzt. 

**) Man verificirt leicht, class jede Integralcurve einer Gleichung 'P/ = COnst. 
wirklich eine infinitesimaJe lineare Transformation uoserer Gruppe gestattet. Ich 
eJ:innere daran, d.ass Klein und ich in einar gemeinsamen Arbeit die Theorie 
dieser Curven eingehend entwickelt ha.ben. 
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1 0 0 
01 0 

o 
o 

o 
o 

SOPllUS LIE. 

A= 0 X 1 0 0 

o 
o 
o 

=2Y22 (5y32 

-3Y2'Y4)' o Y Yt Y2 Ya Y4 
-4Y4 X 0 -'111 -2Y2 -3Ya 

Y 0 -yt'l -3YIY2 -4Y1Y3 -3Y22 -5Yl Y4 -lOY2Y3 

Es giebt daher zwei invariante Differentialgleichungen, deren Ordnungs
zahl kleiner als fun£. ist, namlich 

'112 = 0, und 5Y32 
- 3YZY4 = 0*). 

Zur Bestimmung der Grossen <PI und <P2 mussen wir nach unseren 
gewohnIichen Regeln sechs lineare partielle Differentialgleichungen 
zwischen XYYl Yz .•• Y6 bilden. Drei unter diesen Gleichungen 

B of ) 'Of B 'Of 'Of tf=,,-= 0, Bd=O\=O, sf=xO\+-~- =0 va; vy V'Y O'Y1 

sagen nur aus, dass <PI und <P2 von x, Y und YI unabhangig sind; die 
drei ubrigen Gleichungen erhalten durch eine einfache Reduction die 
.Form 

B of Of Of d =!h d'!f2 + '!:Is o'Ys + ... + '!:I6 OY6 = 0 

BrJ='!h !f + 2Y4 !f + ... + 4Y6 !f = 0 
U'Ya v'!h V'!J6 

Bd = 3Y22-!f + lOYzY3 !f + (15'JhY4+ lOYs2) !f 
U~ v~ v~ 

+ (21Y2Y5 + 35ysY4) !f = O. 
V'Y6 

Die LOsungen von B6f = 0, namlich 

3!hYJ - 5Ys2 , 6 2 

3 2 5 35 3 3 2 1~ + 40 3 '!h Y5 - 6 2ys - T Ys = 63 = Y2 Yf> - Oil!2Ys'!:l4 3" '!:Is 

70 
3Y23 yS - 7 6 aYs - T 6 2Y32 - 35!h4 = 6,f = 3ylY6 - 21Y/YsY5 

+ 35YzYa2Y4 - a; YS4 

fiihren wir' als neue Variabeln in die Gleichung Bd = 0 ein und 
bringen sie hierdurch auf die Form 

*) In der gew1l.hlten canonischen Form besteht unsere Gruppe aus allen 
projectiven Transformationen, bei denen die 'llllendlieh entfernte Gerade ihre Lage 
behliJ.t. Die Integralcu.rven der Gleichung 5'1132 = "3'!h'1l4 sind alle Parabeln, d. h. 
Kegelschnitte, welche jene Gerade be:riihren, Jede solche Curve gestattet wirk
lich zwei unabhangige info Transformationen unserer Gruppe, 
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Die entsprechenden Losungen, namlich 

befriedigen als Grossen nullter Ordnung hinsichtlich 'liz '!h .•. Yo eben~ 
falls Ed = 0 und konnen daher als die gesucbten Invarianten tpl qnd tpz 

gewahlt werden. Auch jetzt sind fJ>1 und tpz ganze Functionen von 
Y5 Y6 und dabei 1st CP1 linear hinsichtlich Y5' CP2 linear hinsichtlich Y6' 

3. W cnn eine achtgliedrige Gruppe keine Differentialgleichung 
1. O. invariant lasst, so kann sie auf die canonische Form 

p, q, xg, yg, xp, yp, X2p + xyq, XYP + y2q 

gebracht werden. Die Determinante D. erhalt durch Ausfiihrung un"d 
einfache Reduction die Form 

Y2 '113 Y4 Yo Y6 
0 Ys 2'!h 3Y5 4Y6 

6.= 0 3Y22 lOyzys 15Y2Y4 + 10Y32 21Y2Y5+35Y3Y4 • 
0 3Y2 8Y3 15Y4 24ys 

10 0 6Y22 30Y2Y3 60Y2114+ 40Y32 I 
Zur Berechnung derselben subtrahirt man von den Gliedern der dritten 
Reihe zuerst diejenigen der vierten Reihe, multiplicirt mit '!h, und 

darnRch diejenigen der funften Reihe, IDultiplicirt mit 3
113 ; dann ver-
112 

schwinden aUe Glieder der dritten Reihe ausgenommen das letzte, und 
es wird 

oder 
6. = - 2yz(9yz2y" -45Y2Y3Y4 +40y:\3)2, 

sodass D. nicht identisch gleich Null ist. Es giebt f!wei invarmnte 

~ .A.uch jetzt gestattet jede Integralenr!c einer Gleiehung fIIj = ~onst. eine 
infinitesimale Transformation und gehOrt sotpit der von Klein und mir unter
suchteu Ca~egorie an. 

Ihthematischa Annalen, XXXIL 15 
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Differentialgleichungen, deren Ordnung kleiner als 7 ist *), nallllich 
Y2 = 0 und 

(2) 9'!h"Y" - 45YzYs'!f4 + 4OYs2 = O. 
Urn jetzt die Grossen <1>1 und <1>2 zu berechnen, miissen wir nach 

unseren gewohnIichen RegeIn acht lineare partielle Differentialglei
chungen in den Variabeln x y Yl ••. Y& (den acht infinitesimalen Trans
formation en p, q, xq, yq, xp, X2p + xyp, yp, xyp + y2q ent
sprec~end) bilden. Die drei ersten unter diesen Gleichungen 

Of of B f of of Btf=<l=O, B 2f=<l=O, 3 =X<l + -,,-=0 
uX uY uY UYf 

sagen nur aus, dass <1>1 und <1>2 von x Y und YI unabhangig sind. Diejenige 
Gleichung, die der in£. Transformation xy p + y2 q entspricht, branchen 
wir nicht zu bilden; sie ist namlich wegen der Relation 

(yp, x2p+xyq) = xyp + y2q 
eine Consequenz der iibrigen. Die Grossen <1>1 <1>2 sind daher bestimmt 
als E'unctionen von '!h Ya ••• Ys durch die Gleichungen 

B4f = Y2 ~f + Ya !f + .... + Ys -ff = ° 
UY2 uYa uYs 

Of of of Bd = Y3 oYs + 2Y4 OY4 + ... + 6ys OYs = 0 

Bd = 3yz !f +8Y3 !f + 15Y4 !f +24ys !f +35Y6 ~f 
UYa uY! uY, uYs VY7 

+48~h ::. = 0 

Bd= 3yz2 !f + lOYz1h !f + (15Y2Y4+ lOYaZ
) ,~f 

vYa VY4 UY5 

+ f211hYs +35YsY4) !f + (28 Yz Y6+ 56 Y3 Ys +35Y42) !f 
OYs . v'!1r 

( of 
+ 36Y2Y7+84YsY6+126Y4Y5)-~- = O. 

°Ys 

Zur Bestimmung der gemeinsamen Losungen <1>1 und <1>2 derselben 
bilden wir zuerst die Losungen von B6 = f, namlich 

112 = '!h 
(12 = 3Y2YJ - 4Ys2 

('3 = 3Y22ys - 5Ys(lz - ~o Ya3 = ~ (9Y2ZyS -45YzYSY4 +40Y33) 

*) Das Resultat des Textes 'war a priori evident. Denn es giebt ja nur 
zwei CurveD, die gerade Linie und der Kegelschnitt, die mehr als eine infinitesi
male und lineare Transformatiou in Sleh gestatten. Halphen hat· zuerst die 
obenstehende Diiferentialgleiehung (2) der Kegelschnitte wirklich aufgestellt. 
Ebenso hat Halphen zuerst die spater aufgestellen Grossen $f und $2 berechnet. 
[Ieb erfahre nachtraglich, dass schon Monge d~e Diiferentialgleichung der Kegel
schnitte berechnet hat.- Januar 1888]. 



Ueber Difl'erentiaJgleichungen, die eine Gruppe gestatten. 227 

(>4 = 3Y'}Y6-8Ya(Ja-20Ys2(h- ~ Ya4=3Yz3Ys-24!h2Ya'Y5+60!hY/Y4-4Ogs4 

9 4 35 140 2 700 3 280. (Js = Yt Y7 - Ys (J4 - Y3 (Ja - 3 Ys (J2 - 3 yo 

= 9Yz4Y1-105Y'}YsY6+420'!h2ylys -700Y2Ys3Y4 + 1~20 Ysl> 

(J6 = 27 Yz5Ys-48Y3 (Ja-24.35Ysz(J4-16.140Y33(Ja-2800Ys4(Jz- 8'!8Oya6 

und fiihren sie darnach zusammen mit 'Jh als neue Variabeln in B 4 f=0, 
Bd = 0, B6f = 0 und Bd = 0 ein. Nun ist, wie man leicht sieht 

B 4Y2 = Y2' B4ys = 'lis' B4Qk = k(Jl; 
BsYz = 0, BaY3 = y3' Bs Qi = iQi 

also erhaIt B4f = 0 in den neuen Variabeln die Form 

of Of 2 of Of of 
Yz oy~ + Ys oYs + Q2 O~2 + 3Q3 O~3 + ... + 6Q6 O~6 = 0 

und Bsf =0 die Form 

'lis !f + 2Qz gf + ... + 6Q6 !f = 0, 
vYa V~2 vI;!. 

sodass B 4 f = 0 sich auf 

of =0 
OY2 

reducirt. Ferner ist klar, dass Bd = 0 die Form 

Of =0 
OYa 

annimmt. Zur Einfiihrung der Qk als Variabeln in Bd = 0 bilden 
wir die Ausdriicke 

B7 Q'J. = 6yz 2ys 

B7Qa = 0 
B 7 (J4 = - 3'!h2 (J3 + 20Y/Ys'h 
B7Qs = Y2 2 (- 21 Q4 + 35 (J22) + 'JI22Ya . 105Q3 
B7Q6 = Yz2(-36(J5+3.126Q2(>s) + 'JIz2Ys(504Q4+21OQ22); 

also erhlilt Bd = 0 durch Division mit 'JIz2 die Form 

of of of (504 + 210 2) of} Ysi6 O~2 + 20(Jz O~4 + l05(Ja OQ5 + Q4 'h Of!G 

+ ,_ 3(Ja !f +(_ 21(J4 + 35(22) !f + (.,-36Qa +3. 126 (JzQ3) !ft=O, 
! uf!4 vf!o v~af 

welch letztere Gleichnng sich wegen !f = 0 in zwei spaltet. Die ge
v'!h 

suchten Grossen <1>, und $2 sind daher bestimmt als Functi"Onen von 
Q2 (>3 ••• (J6 durch die drei Gleiehnngen 

15* 
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[unter denen die erste aussagt, dass <PI und <P2 
11k 

Verhitltnissen der Grossen (h'Z (J21f
• •• (J6' sind]. 

Losungen von Of = 0 , namlich 

5 • 
Qa, u 4 = (J4 -"3 (J2~ 

35 
Us = Q5 - 3 '.12 (Js 

F'unctionen von den 

Wir bestimmen die 

175 a 84 
U6 = (J6 - 3 (J2 - (J2 U4 

und fuhren sie als Variable in D f = 0 ein. Nun ist 

D(Ja = 0, DU4 = - 3(J3', DU5 = - 21u4 , DU6 = - 36u5 

und also erhitlt D f = 0 durch Division mit - 3 die Form 

of of of 
(Ja -,,- + 7u4 -0- + 12u5 -~- = O. 

V U4 01k,; aU6 

Die entsprechenden Losungen sind 

(Ja1 0 = 2QaU5 - 7u/ = 2QaQ5 - 35 Q2Q32 - 7 (Q4 - : Q2zy 

66 14 3 
01=Qau6- ~U2 -Q;u4' 

=QsCQ6-84Q3Q4+~~(23)-12(Q5 - ~6 Q2Q:l)(Q4 -~(22)+ ::(Q4-~Q22y. 

Und da die gesuchten Grossen <Pt und <P2 Functionen von den Ver

hiiltnissen der Grossen Q2 t Q3! ••• Q6 k sind, so konnen wir setzen: 

Hiermit ist diese Untersuchung zum Abschluss gebracht*). 

*) 1m Laufe dieser Abhandlung benutze ich haufig den folgenden bekannten 
Satz: "Hilden Ad= 0 •.. Arf= 0 ein vollstandiges System in XI ••• x"' so kann 
die Integration desselben folgendermassen geschehen. Man sucht die Losungen 
IPI ••• lPn-l von .Ad = 0; bildet sodann 

.Ad = 0 = A.t1P1 K+ . .. +AzlP"_l~' 
OIP! OIP"_l 

Sind die Verhalsnisse der A.t1PJ: nicht Functionen von lPi ..• IP,,-l allein, so zerlegt 
die Gleichung Ad = 0 sich in mehrere. Wir integriren eine beZiebige unter ihnen 
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§ 2. 

Gruppen. di~ zwei und nur zwei Differentialgleichungen erster Ordnung 
invariant lassen. 

1m vorangehenden Paragraphen behandelten wir aIle Gruppen, die 
keine Differentialgleichung erster Ordnung invariant lassen, und be
stimmten ihre zugehOrigen invarianten Differentialgleichungen hoherer 
Ordnung. Jetzt erledigen wir dasselbe Problem fur alIe Gruppen mit 
zwei und nm zwei invarianten DiiIerentialgleichungen 1. O. Dabei 
konnen wir nach meinen friiheren Untersuchungen (Gott. Nachr. 1874, 
Math. Ann. Bd. XVI) annehmen, dass diese beiden GIeichungen 1. O. 
eben sind 

-dy dx 1 
Yl=(}':i=O, und dy =-:;;;=0, 

und dass demelltsprechelld die betreffende Gruppe eine der folgenden 
canonischen Formen besitzt: 

I~ 

~ 
p ~I Iql I-I 

I~ q I IY~ I i ! I <J. I 
:yq i 

l~i xP+Cyq! 
I , 

PI i p , 'y2qi 

I~I 
1 I 
IXP I P ~I 

~ 
, __ I 

yq ,q p+q i 
xp 

wpl yZq xp + yq i --
Y<J. 

~ 
y2q X2p + y2q I 

I I 

Wir werden der Reihe nach diese 9 Gruppen betrachten und ihre 
zugehorigen invarianten Differentialgleichungen zweiter und hoherer 
Ordnung bestimmen. 

4. Zuerst betracbten wir die zweigliedrige Gruppe g, yg. Die 
zugehorige Determillante 

~=I 0 11 
lOy 

verschwindet identisch; dies heruM darauf, dassjedeCurve (d. h. Gerade) 
der Schaar x = COllst. bei der Gruppe invariant bleibt. Zur Bestim
mung der invarianten Differentialgleichungen mter Ordnung 

t(XYYl ... Ym) = 0 

und fiihren die entspl.'eehenden LOsungen '1/11 ••• '1/1,,-2 etwa. in A,3f = 0 ein. Die 

hel.'vorgehende Gleichung A,a'l/11 ,!f + ... = 0 behandeln wir druJU in a.V.aJogeJ: 
(J'I/11 

Weise u. s. w. 
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bilden wir die beiden Gleichungen 

}L=O, y ?f +Yt !f + ... +Ym of =0. o '!I O'!l O'!h oYm . 

1st m > 1, so ergiebt sich, dass f eine arbitrare Function der Grossen 

'lh '!Ia '!1m x, --"'-
'111 '!II YI 

ist. Wenn dagegen 'In = 1 ist, so konnen die beiden Gleichungen 

1L=0 y1L+y or =0 oy , o '!I 1 OYI 

nur clann gleichzeitig bestehen, wenn YI = 0 1st; es ist namlieh an 
sieh unmoglich, dass f nur x enthlilt. Zu den hiermit gefulldenen 
invarianten Differentialgleichungen muss die Gleichung 

_1 =0 
'lit 

gefiigt werden. Dieselbe entgeht uns bei unserer CoordinatenwahI. 
Dieselbe Bemerkung ist bei allen Gruppen dieses Paragraph en zu 
maehen. 

5. Die zu der Gruppe p, 11, YI1 gehorige Determinante 

1 0 0 

A= 0 1 0 

° y Yt 
verschwindet nicht identisch. Sie liefert die invariante Differential-
gleichung erster Ordnung Yl = 0, wozu wie so eben die Gleichung 

_1_ = 0 zu fIigen ist. 
111 

Die invarianten Differentialgleichungen f = 0, deren Ordnung 
grosser als 1 ist, werden bestimmt durch die Relationen 

~f = 0, ~f = 0, Y ~f + Yl !f + ... + Y",,-,Of_ 
vX vY v,!/ UYI uYm 

und somit ist f eine arbitrare Function von 

~~ ••• '!Im. 
'!It YI '!Ii 

6. Die zu der Gruppe p, q, yq, xp gehorige Determinante 

1 0 ° 0 

° 1 0 ° A= 
° 

= - Y'Y2 
Y YI Y2 

X o -YI -2Y2 
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verschwindet nicht identisch. Es giebt drei invariante Differential
gleichungen, deren Ordnung kleiner als 3 ist, namlich 

1 
Yl=O, -=0, Yz=O. 

Yt 

Zur Bildung der invarianten Gleichungen hOherer Ordnung 

f(xy .•. Ym) =0 

bilden wir vier lineare partielle Differentialgleichungen, unter den en 
zwei nur aussagen, dass f von x und y unabhangig ist. Die heiden 
iibrigen Gleichungen 

of af af 
Yl aYl + Y2 OY2 + ... + Ym aYE" = 0 

Y2 !f + 2y~ !f + ... + (m-l)Ym :f = 0 
u~ u~ • u~ 

zeigen, dass f eine arbitrare Function von 

jst. 

Yt",-2 Ym 
'lh",-l 

7. Die zu der Gruppe p, q, xp + cyq gehOrige Determinante 

1 ° ° 
6. = 0 1 o = (c-1)111 

x cy (C-l)Yl 

verschwindet identisch daun und nur dann, wenn c = 1 ist. Diesen 
Ausnahmefall berucksichtigen wir nicht in diesem Paragraphen, indem 
die Gruppe p, q, xp + yq einfach unendlich viele Differentialglei
chungen erster Ordnung, namlich jede Gleichung der Form 

ill variant las&t. 
Yt = Con st. 

Wenn c verschieden von 1 ist, so Hisst unsere Gruppe nur zwei 
Gleichungen erster Ordnung, namlich 

Yt =0, und _1_=0 
YI 

invariant. Die invarianten Gleichungen hOherer Ordnung f = ° werden 
bestimmt durch 

Of of af of + ( ) of 0 oa;=O, OY=O, (C-l)Yl 3Y; + (C-2)Y2 0Y2 ... + c - m Ym OYm = , 

so dass f eine arbitrare Function der Grossen 

Y2 Ym. ---c=T ... -;=;; 
0-1 C-l 

Yt Yt 
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sein muss. Diese Bestimmung bleibt auch dann giiltig, wenn c gleich 
einer unter den Zahlen 2, 3, ... mist. 

8. Die zu der Gruppe q, yq, y2q gehorige Determinante 

010 

6. = 0 Y Yl 
o y2 2YYl 

verschwindet identisch, indem jede Curve (d. h. Gerade) der Schaar 
x = Con st. bei unserer Gruppe invariant bleiht. 

Zur Bestimmung der invariauten Differentialgleichungen zweiter 
und hOherer Ordnung bilden wir die Gleichungen 

}L = 0, Yl of + ... + Ym .lL= 0 
oy oYt oYm 

Y1 2 !f + 3YIY2 !f + (4YIY3+3Y22) !f + ... = 0, 
UY2 uYs vJh 

deren Losungen sind 

WI =X, WZ=--Y-l-;C-2--

Man verificirt leicht, dass W3 (Siehe die Einleitung) eille Function von 

d dCP2 • t . d 
X, W2 un dx IS, 111 em 

dlp2 
'/ia = dx 

ist. Jede bei der Gruppe q yq y2q invariante Differentialgleichung 
dritter oder hOherer Ordnung hat somit die Form 

r( dCP2 d2
cp2 ) 0 

XP2 dx dx'" = , 

WO '/i2 den obenstehenden Werth besitzt. *) 

9. Die zu der Gruppe p q yq y2 q gehorige Determinante 

1 0 0 0 

o 1 0 0 
6. = = 2Y13 

o Y Yl Y2 
o y2 2YYl 2YYz+2Y12 

verschwindet nicht identisch; es giebt, wie man sieht, keine invariante 
DifferentialgJeichung zweiter Ordnung. Durch Rechnungen, die mit 
denen der vorangehenden N ummer fast identisch sind, findet man zur 

*) [Die Diiferentialinvariante CP2, die schon bei Lagrange auf tritt, spielt 
in Schwarz's schonen Untersuchungen eine wichtige Rolle; Januar 1888.] 
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Bestimmung der invarianten DiiIerentialgleichungen dritter und hoherer 
Ordnung die Werthe 

und iiberhaupt 
dk 

'Pt CPk=--' 
dx" 

Di~ betreffenden invarianten Differentialgleichungen hahen die Form 

f (CPI cpz· •• CPk) = o. 
10. Die zu der Gruppe p + q, xp + yq, X2p + y2 q gehorige 

Determinante 
1 1 0 

6. = x 'Y 0 = 2(Y-X)2 Y1 
x2 y2 2(y-x)YI 

verschwindet nicht identisch. Die Gleichung 
y-x=O 

bestimmt eine invariante Curve. Die invarianten DifferentiaIgleichungen 
zweiter und dritter Ordnung werden bestimmt durch die Gleichungen 

1[+11.=0 ox o'fj , 

x g~ + Y ;~ - Y2 :~ - 2113 :~ = 0, 

x2 ~f + y2 ~f +2(Y-X)Yl !f +[(2y-4x)th+2Yt2- 2YI] !f 
uy uy u'fjl 'u'!!z 

+[(2y-6x)Ya+ 6YtY2- 6Y2) !f =0, 
u'!!s 

von denen die erste uns lehrt, dass f die Grossen x und y nur in der 
Combination u = x - y enthalt. Die beiden letzten Gleichungen 
erhalten durch Einfiihrung von u als Variabeln statt x und y die Form 

u1L- y of _ 24/aE- = 0, 
AU 20th ;:J O'!/a 

2uYt :~ + [3UY2-2Y12+2~IJJ :~ + [4UY2 - 6YtY2 + 6th] ::a = O. 

Wir fiihren die Losungen der ersten Gleichung, niimlich 

Yl' UY2 = V 2 , 'u2Ya = va 
als Variabeln in die letzte Gleichung eiu; dies giebt 

2Yt ~f +(3v~-2YI2+2YI) !f + [4va-6YtV2+6v2] !f =0. 
O'!/l - uV~ u1J• 

Die entsprechenden Losungen 
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3 (1 1) 
V2YI-2+2 y,'i"+Yl-"2 =Pu 

VsYt-2 + 6PI (Yl~ + Yl- f ) - 6(rh +Yl-1
) = Pz 

sind die gesuchten Grossen PI und pz. Es bleibt nur ubrig die Werthe 
von Vz und Va einzufiihren. 

11. Die zu derGruppe p, q, yq, xp, y2q gehorige Determinante 

1 0 0 0 0 
o 1 0 0 0 

6.= 0 Y YI Yz Ya 
x 0 -Yt -2yz -3Y3 

I 0 y2 2yy, 2YYz+2!h 2 2yys +6YI!12 I 
verschwindet nicht identisch. Es giebt ausser Yt = 0 und ~1_ = 0 nur 

'Yt 
eine invariante Differentialgleichung, deren Ordnung nicht 3 liber-
steigt, namlich 

Zur Bestimmung der Grossen Pt, pz bemerken wir, dass sie als 
Functionen der drei Grossen 

(3) ! 
'lis' 3 ('Y2)2 

W1=--- -
\ 'Yt 2 Yt 

W = dWI = J!!... _ 4 'Y2 'Ys + 3 'Y2
3 

2 dx 'Yt 'Yl 'Y13 

w. = d2Wt = 'Y5 _ {) 'Y2'Y4 _ 4 'Yl + 17 Y22'YS _ 9 'Y24 

3 dX2 'Yl 'Yl 'YI~ 'Yt3 'Yt4 

durch die (der infinitesimalen Transformation xp entsprechende) Gleichung 

of of of of 
Bd=Y2~+2Y3~+ 3Y4-"- + 4Y5-"'- =0 U'Y2 uYs U'Y4 U'Y5 

bestimmt sind. Nun ist aber 

B.j,Wl = 2wl1 B 4 w2 = 3wz, B4wa = 4ws 
und also wird 

Bd = 0 = 2Wl ':l0f + 3w2 ':l0f + 4W3 "of . 
UW t UW2 uWa 

Die Losungen dieser Gleichungen 

sind die gesuchten Grossen 'PI und 'Pz' 

*) Die invariante Differentialgleichnng des Textes bestimmt alIe Kegelschnitte 
durch zwei gemeinsame Punkte. Diese Kegelschnitte werden dureh passende 
Coordinatenwahl aIlo Kreise der Ebene (oder alIe Kreise einer Kugel), 
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12. Die zu der Gruppe 

p q Uq xp '!PfJ. X2p 
gehorige Dererminante 

1 0 0 0 0 
0 1 0 0 0 
0 Y '!II '!h Ys A= x 0 -Yl - 2Y2 - 3Y3 
0 y2 2YYl 2YY2+ 2Y1 2 2yys + 6 til Y2 
x2 o -2xYt -4XY2-2Yt -6XY3-6Y2 

hat den nicht identisch verschwindenden Werth 

t:::.. = - 4~1t (2Ydl3 - 3Y2)2, 

0 
0 

'!/4 
- 4Y4 

2Y'!h +8ytl/3+6Y22 

-8x~h-12Y3 

Es giebt daher ausser Yt = 0 und ~ 0= ° nur eine invariante Diffe
'lit 

rentialgleichung, deren Ordnung kieiner als funf ist, die folgende 
namlich: 

2YtY3 - 3'112 = O. 
Die zu der Gruppe gehOrigen Grossen <PI und fJJ2 sind Functionen 

von den fruher (3) gefundenen Grossen 

3 2 *) WI ='1]3- 2"'1]2 

W2 = 1}4 - 41'12'1]3 + 31}23 

W3 = '1]5 - 5'1]27J4 - 4'1]32 + 17 'f12 '1 7J3 - 91]24 

W4 = 7J6 - 61}27JS - 131}s1h + 271}22'1]4 + 421}2'132 
- 871}b13 + 36 1225 

und zwar geniigen sie,(den Transformationen xp und a;2p entsprechend) 
den beiden Gleichungen 

Af='Y12 ~f + 2'1]3 !f +, .. + 57J6 !f = 0, 
u~ o~ u* 

B/,= !f +3'1]q !f +6'1]3 !f + 10'1]4 !f + 151]5 !f = O. 
u1)2 - u1)3 u7J4 07J. (l7J6 

Nun ist 
AWl = 2wo AW2 = 3w2 , AWa = 4w3 , AW4 = 5W47 

BWI = 0, Bw'J, = 2wt, BW3 = 5W21 BW4 = 9w3, 

Daher sind fJJl und fJJ2 bestimmt als Functionen der W2 durch die 
Gleichungen 

2Wl !f + 3wz !f + 4W3 !wf + 5w4 !wf = 0, ow! (lW2 u a u 4 

deren Losungen sind 
2Wl !f + 5wz !f + 9Wg !wf = 0, 

(lW2 (lwa (I 4 

*) 1m 1'exte setzen wir iiberall 7Ji IItait .!I.!..-, 
'111 



236 SOPHUS LIE. 

4WjW3 - 5W2~ 
<Pl = W13 , 

4W,~W4 - 18wtw.w3 + 15wz3 

<pz = ! 
WI 

Fiihrt man hier die Werthe der Grossen Wk ein, so erhalt man die 
Ausdriicke von <P1 und <P2 als Functionen von den Yt. 

§ 3. 

Gruppen, die eine und nur eine Differentialgleichung erster Ordnung 
invariant lassen. 

Gruppen, die eine und nul' eine Differentialgleichung 1. O. invariant 
lassen, konnen (Gottinger Nachr. 1874; Math. Annalen, Bd. XVI) auf 
eine del' folgenden canonischen Formen gebracht werden, wobei Xi 
eine Function von x, c und c Constante bezeichnen. 

I I 

Xtq I Xjq 

I 
Xtq Xtq q 

I 
Xzq I xq 

I 
I I I 

. . 
I I I . Xrq I Xrq Xrq xrg I 

I 

I I yq p 
Xrq I yq 

i
p +

Eyq
! 

p xp+ cyq 

I 
q 

xq 
! 

I 

. 

xrq 

I p ,xp+[(r+1)y+xr+1] q 

! P 
i xP+~Fl 
la;2p+2XYQ 

! x~ I X~q q 
xq 

I : 
. 
. I 

\ :erq I xrq I xrq 
yq p I p 
p 2xP+ryq! yq 

i
XP x2p+rxyql XP 

yq 

P 
xp 

\x2p +xyq 

!x2 p+rxyq 
I 
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Wir werden suecessiv diese canonischen Gruppen hetrachten and ihre 
invarianten Differentialgleichungen zweiter und hOherer Ordnung be-. 
stimmen. 

13. Die zu der Gruppe p, xp + yq, X2p + 2xyq gehOrige 
Determinante 

1 

6.= x 
o 
y 

X2 2xy 2y 

verschwindet nicht identisch. Die invariante Gleichung 1. 0.: 

_1 =0 
'Yt 

entgeht uns bei unserer speciellen Coordinatenwahl. 
Die Grossen PI und P2 haben als Losnngen der Gleiehnngen 

'N of of 2 of 
aa; = 0, Y a'Y - Y2 O'Y2 - 'lh o'Ya = ° 

Y of + YI of =0 
o'Y! O'Y2 

die Werthe 
Pt = 2YY2 - Y1 2

, pz = '9~'93' 

14. Die zu der Grnppe yq, p, xp, X2p + xyq gehorige Deter-
miuaute 

A= 

1 

o 
x 

o 
Y 
o 

X2 xy 

0 ° Yl '92 = 2yZyz 
- YI - 2'92 

Y-XYl - 3XY2 

verschwindet nicht identisch. Die Gruppe lasst daher eine Gleichung 
zweiter Drduung und zwar Y2 = 0 invariant, was damuf hinauskommt, 
dass die Gruppe eine projective ist. 

Die Grossen P1 und pz befriedigen die vier Gleichungen 

!f = 0, Y ~r + ... + Y4 aaf = 0, 
ua; O'Y ~ 

+ '!It lf + 2'9z !f + ... + 4Y4 !f = 0, 
VYI v'Yz U'Y4 

of of ar - Y-,,- +3Y2-"- + 8Y3~=0, vYt U'YS f) 'Y4 

und haben somit die Werthe 

'Y'Ya + 3'Y1 'Yt 
PI = i t 

Y'];'Y,2 

3yyz 'Y4 - 4'Y'Yst 
pz = 'dIs • 
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15. Die zu der Gruppe XI q ... Xrq gehorige Determinante 

OX! X/ . .. X,(r-2) 

1:1= 
o XrX: ... X r(r-2} 

verschwindet identisch, da jade Curve (d. h. Gerade) der Schaar 
x = Const. bei der Gruppe invariant bleibt. Zur Bestimmung der in
varianten Differentialgleichungen 

f(XYYl ••. Ym) = 0 

bilden wir die r Gleichungen 

(4) of ' of of v. _ + x. - + ... + X·(mJ - = 0, 
..a.,; oy • OYI • oYm 

die nur wenn 'W& > r - 1 ist, andere gemeinsame Losungen als x 
besitzen konnen *). Fur m = r ist, wie man leicht verificirt, ausser x 
zugleich die Determinante 

D= 

Y y, Yr 

eine Losung. Wir konnen daher 

CPt = x, CP2 = D**) 

setzen. Setzt man iiberhaupt 

XtX/ X1(r-1JX,(r+.): 

D;= XX' r r 

Y YI Yr-l Yr+i 

so ist Di immer eille Losung der Gleichungen (4), dabei vorausgesetzt 
dass m?:,: r + i. Man kann daher 

setzen. 
CPi+2 = D; 

16. Die zu der Gruppe XI q ... Xrq yq gehorige Determinantel:1 
versehwindet identiseh. Die invarianten Differentia1g1eichungen f = 0 
sind bestimmt dureh die (r + 1) Gleichungen 

*) Der Schluss im Terle beruht dm-auf, dass die X k in dem Sinne uu
abhangige Functionen von :e sind, dass keine Relation der Form .Ee.Xi = 0 mit 
constanten Coefficienten besteht. 

**) Ist r= 1, so giebt es unbeschrankt viele invariante Differentialgleichungen 
erster Ordnung, indem die invariante Gleichung D = (x) von erster Ordnung ist. 
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Dieselben haben (ausser x) keine gemeinsame Losung, wenn m < r. 
1st m = r, so giebt es eine specielle gemeinsame Losung, namlieh 
die lineare und homogene Diff~rentialgleichung 

D=O, 
wobei wir D in derselben Bedeutung wie soeben brauchen. 1st 
m = r + i, so sind die Grosseu 

DI D2 D. x nn- ... J) 

Losungen unserer linearen partiellen Differentialgleichungen, und wir 
konnen daher 

CPt = x, 
setzen. 

17. Die zu der Gruppe 

XI q •.. X,.q, P + Eyq (E = Const.) 

gehOrige Determinante 

l:!.= 

1 By E'!/t··· C'1l,.-1 
o XI XI'··· X 1(r-1) 

o X,. X: .. · L(r-l) 

verschwindet nicht identisch. Ausser ~ = 0 giebt es keine invariante 
111 

Differentialgleichung, deren Ordnung kleiner als r ist*). Die Grossen 
CP1 CP2 ••• sind Functionen von x, D, D

" 
D2 ••• und geniigen dabei 

der Gleichung 

Bf = of + Ey K + ... + EYm ~ = 0 ou; o '!I oYm 

oder der aquivalenten 

'Of 'Of BD of 0 Bx· ()u; + BD . aD + I' 0])1 + ... = , 

*) Den Fall '1' = 1 schliessen wir Un Terle a.us, indem es dann unendlieh 
viele iuvariante Differentia.lgleiehungeu 1. O. giebt (siehe § 4). 
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wo Bx = 1 zu setzen ist. Zur Berechnung der Ausdrucke BDi 
erinnern wir (Math. Ann. Ed. XVI p. 499) dar-an, dass die X" Rela
tionen der Form 

XI' = 211 X! 
X2' = Jl21 Xi + Jl22 ~ 

(5) 
Xs' = l31 X t + l3z X 2+ 133 X 3 (li" = Canst.) 

erfiillen. Daher ist, wie man durch Ausfiihrung findet, 

BD = (A11 + 122 + ... + lrr + Ii) D = kD 
BD1 = (. • .) D1= kDl 

wo k eine Constante bezeichnet. Die gesuchten Grossen lfJl' lfJ2 sind 
daher bestimmt durch die Gleichung 

or D of 'D of .ax + k oD +7. 1 oDI + ... = 0, 
sodass 

wird. 
Unter Nummer 15 gaben wir die allgemeinen Ausdriicke der 

Grossen fli • Diese Ausdrucke konnen indess vermoge der Formeln 
(5) wesentlich vereinfacht werden. Denn. es ist 

woraus 

oD. ' -a-1- = (A\1 + ... + Ar1') D; = .JJlkk • Di 

fl .- g;~lHQ ,- e 1 

wo Qi eine lineare homogene Function mit C()nstanten Ooefficienten 
von '!I'!!~'" '!Ir-l '!Ir+i bezeichnet. Daher wird 

:t~2l::k 
fl; = e (k.o'!l + kil '!It + ... + ki,r-l '!Ir-I + ki,1'+i '!Ir+i) 

und 
tpi+l = tr·:t(kiO '!I + ... + ki,r-l '!Ir-I + lei,r+i '!!1'+i)' 

Wir gehen hier nicht auf die einfache Berechnung der Constanten 
kif ain *). Dagegen heben wir ausdriicklich hervor, dass die Oon-

*) D = 0 ist, wie wir gesehen haben, im vorliegenden Falle eine lineare ho
mogena Diffe.rentialgleichnng mit constanten Coefficienten. Es ist dabei 1!;lar, 
dass diese Constante beliebige Werthe baben konnen. 
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stante S ohne wesentliche Beschrankung gleieh Null gesetzt werden 
kann. 

Wir bemerken nul' noeh, dass sieh unter den invariant en Diffe
rentialgleichungen beliebig viele lineare und homogene mit oonstanten 
0:lefficienten finden. Denn wenn C1 , c2 • •• beliebige Constanten be
zeiehnen 7 so stellt 

C1 (]i1 + C2(]i2 + ... = 0 
immer eine solche Gleichung dar. 

18. Die der Gruppe 
X1q .. , X"q yq P 

entsprechende Determinante 

1 0 0 0 

0 XI X' I 
XI(r) 

A= 
0 X" X: Xrv>'j 
0 y 'Yl 'Y" I 

I 

=D 

versehwindet nieht ide:atisch. Es giebt ausser ~ = 0 eine und nul' 
'Yt 

eine invariante Differentialgleichung, deren Ordnullg r nicht fiber-
steigt, namlich 

]) = 0*). 

Die Grossen PI P2 .. , silld Functionen von x, D, Dl . ", bestimmt 
durch die Gleichungen 

df _ 0 _ ..K + ..?L oD +..1L oDI + ... 
dx - - ox oD ox oDI o.x 

of of af o = y -a-'!T + Yl ay; + ... + 'Urn oy", . 

Nun ist, da die X k durch Relationen der Form 
X,: = AU Xi + Ak2 X2 ••• + AU X k 

verkniipft sind: 

woraus 
]); = £!,z(c;oy + CilYl + ... + Ci,r-l Yr-l + Ci,r+i'Yr+i)' 

Hieraus ergiebt sieh, dass wir 

D t D2 tc 
(]it = D' P2 = De. 

") 1st 'I' = 1, so giebt es zwei invariaute Gleiehungen 1: 0.; ...!.. .... 0 und 
til 

D = O. Diesen Fall sehliessen wir im Texte aus. 

Math6matiscl1e Annalen. XXXII. 16 
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setzen kOnnen. Die f{!k sind Briiche, deren Zahler und Nenner ganze 
und lineare Functionen (mit constanten Coefficienten) von YYl Y2'" sind. 

19. Die Determinante A der Gruppe 

hat den Werth 
q xq ... xr-1q 'P xp + cyq 

11 
° 

0 0 

1° 0 0 

1° 
x 1 

xr- 1 (r - 1) xr- 2 (r - 1) ... 3 . 2 . 1 0 10 

Ix cy (c-l)YI (c-r-l)Yr_l (c - r) JJr 

d. h. es ist, wenn Wlr einen nicht verschwindenden Factor wegwerfen, 

A = (c - r) Yr. 

A verschwindet daher ilUr, wenn c = r ist. 

1st c =f= r, so ist Yr . ° (ausser :1 = 0) die einzige in variante 

Differentialgleichung, deren Ordnung r nicht iibersteigt*). Die Grossen 
Pt P2 ... sind (Nummer 15) Function en von xDDJ ... und erfiillen 
uberdies die Relationen . 

of + of + ( , of + 0 x ...,- cy -..,- c - 1) VI -i) ••• = . 
vX VY 'Y, 

Nun aber ist, wie man durch Ausfiihrnng findet, indem man un
wesentliche constante Factoren wegwirft, 

D = Yn Dl = Vr+t, Dl = Vr+2 
Also wird 

Yr+l 'Yr+2 
PI = ---c:..-r-l' P2 = -<-r=2-' 

Y
r 

C-1' 'Yr c-r 

Zuriick steht noeh der Ausnahmefall c = r. In dies em FaIle ver
schwindet A identiseh. Man findet, dass 

t 
- = 0, Yr = Const.**), Yr+l = 0 
'Yl 

die einzigen invarianten Differentialgleiehungen sind, deren Ordnung 
r + 1 nicht iibersteigt. Die Grossen Pt f{!2 sind Functionen von 

*) Auch jetzt soll der Fall r- = 1 ausgeschlossen sein. 
**) 1st insbesondere r = c = 1, so giebt es oc1 invariante Differential· 

gleicbungen 1. O. (siehe § 4). 
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bestimmt durch die Gleichung 

of 'Of of 
Yr+l ~Y + 2Yr+2 ~Y + 3Yr+3 -,,-- + ... = O. 

7+1 . r+2 uY,..j-$ 

Daher wird 

CPt = Yn Yr+3 t CPs =-3- e c. 
yr+l 

20. Die Deierminante 6. der Gruppe 

q xq·· • Xr-lq p xp + Cry + xr) q 
hat den Werth 

l:1 = rer - 1) .. ·3 ·2· 1 

und verschwindet somit weder identisch noch fiir specielle Werthe der 

Variabeln. Ausser 2- = 0 giebt es daher keine invariante Differential
'!Il 

gleichung, deren Ordnung r nicht iibersteigt. Die Grossen CPt CP2 sind 
bestimmt durch die Relation 

rer - 1) .. ·3·2·1 'Of - y,.+l ~ - 2Yr+2 --.£L - ... = 0 
'Oy,. OYr+l OYr+2 

und haben daher, wenn man zur Abkiirzung 

setzt, die Werthe 

1 r(r - 1) ... 3·2· 1 = -
(i) 

roy,. 2roy,. 3ro!!,. 
CPt = Yr+l e cpz = y,,+2e ,CPs = '!Jr+3e etc. 

21. Die Determinante der Gruppe 

q xq .•• ;cr-lq '!Jq p xp 
hat den Werih: 

6. = '!Jr'!Jr+l. 

Es giebt daher drei invariante Differentialgleichungen, deren Ordnung 
kleiner als r.+ 2 ist, namlich 

_1_ = 0, y,. = 0, Yr+I = 0*). 
'YI 

Die Grossen CPI CP2 • • • hangen nur von Yn y,.+l '!fr+2 • .. ab und er
fullen dahei die heiden Gleichungen 

of Of of 
y,. "y + Y"+1~y + Yr+2a:u- + ... =0 

v r u r+1 "'7+2 

Yr+l,).L +2Yl'+2 "y'Of + ... = O. 
U'Yr+l U r+2 

*) Der Fall '1' = 1 ist im Texte ausgesehlossen. 
16'" 
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Sie besitzen somit die Form 

. 'Yr'Yr+2 'Y/ Yr+s 
fIJI = -2---' flJ2 = 3 

Yr+l 'Yr+l 

22. Die Determinante A der Gruppe 
q, xq, ... xr-1q, p, 2xp + (r - 1) yq, X2p + (r - 1) xyq 

besitzt (wenn wir von einem nicht verschwindenden constanten Factor 

absehen) den Werth: Y/" Es giebt daher ausser _1_ = 0 nur eine 
'111 

invariante Gleichung, namlich y .. = O*), deren Ordnung r + 1 nicht 
iibersteigt. Die Grossen fIJI flJ2 . •. sind Functionen von Yr Yr+l ... 
und erfiillen dabei die beiden Gleichungen: 

Bf=(r+l)Yr ~f +(r+3)Yr+l,)L+(r+5)Yr+2~+"'=O 
Uy" U'Yr+l OY,'+2 

(r+ 1)Yr,)L+2(r+2)Yr+l ~+3(r+3)Yr+2-Jl-= O. 
UYr+l U'Yr+2 u'Yr+s 

Die Losungen der letzten Gleichung sind 

Yr, (r + 1) YrYr+2 - (r + 2) Y;+l = U 

(r+ 1)2Yr2Yr+3-3(r+ 1)(r+3)YrYr+lYr+2+2(r+2) (r+3)Y;+1 = Up 

Fiihrt man dieselben als Variabeln in Bf = 0 ein, so kommt die 
GJeichung 

(r + 1) Yr !f + 2(r + 3) U Of. + 3(r + 3) u1 !f = 0 
u~ _ u~ 

mit oen Losungen 

23. Die Determinante A, der Gruppe 
q xq ... xr-1q yq P xp X2p + (r - 1) xyq 

hat den Werth 

A = Yr[(r + 2) y!.rl - (r + 1) YrY,,+2]; 

dabei ist vorausgesetzt, dass wir von einem constanten, nicht verschwin

denden Factor absehen. Es giebt daber ausser ~ = 0 nur zwei 
'Yt 

invariante :r;>ifierentialgleichungen, deren Ordnung r + 2 nicht iiber-

"') Der Fall r = 1 soIl im Texte ausgeschlossen sein. 
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steigt. Die eine ist 'Y,. = 0 lI<), die zweite kann auf die bemerkens
werthe Form 

gebracht werden. 
Die Grossen CPI CP2 • " unserer Gruppe sind Functionen von den 

(fk der vorangehenden Gruppe. Ueberdies erfiil1en sie, der Trans
formation yq entspreehend, die Relation 

'Of 'Of or 
Yr oy + 'Y>+1 ~'!J + Yr+2 -r-y + ... = OJ 

r I >,+1 >'+2 

daher konnen wir, indem wir die Symbole u, Ut' U2 in ders~lben Be. 
deutung wie in der vorangehenden Nummer gebrauehen, den Grossen 
(fA: unserer Gruppe die foIgenden Werthe beilegen: 

§ 4. 

Gruppen, die unendlich viele Di.1ferentialgleichungen 1. O. invariant 
lassen. 

Wenn eine Gruppe unendlich viele Differentialgleichungen 1. O. 
invariant lasst, so kann sie auf eine von den drei folgenden cano· 
nischen .Formen gebracht werden 

p 

q 

xp + 'Yq 

Wir werden successiv diese drei canonischen Gruppen betrachten und 
ihre invarianten Differentialgleichungen bestimmen. 

24. Die Determinante A der Gruppe p q xp + yq: 

100 

A= 0 1 0 
X Y 0 

verschwindet identisch. Die invarianten Differentialgleichungen sind 
bestimmt durch die Relationen 

or = 0 'Of Of + 2 'Of + 3 "()f + 0 ox ' 7iii = 0, Yz O~h 113 aYa 114 oy, ... = . 

'") Der Fall .,. = 1 soIl iIII Te:r:te ausgeschloBsen seiD. 
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Daher sind 
Yi = Const., Yz = 0 

die einzigen invarianten Differentialgleichungen, der~n Ordnung Z 
nicht iibersteigt. Die Grossen (jJl (jJz ••• haben die Werthe 

(jJl = y" fP3 = ~~ .... 

25. Die Determinante 6. der Gruppe q xp + yq: 

verschwindet nicht identisch. Die Geta-de x = 0 bleibt bei der Gruppe 
invariant. Die Grossen fPi sind bestimmt durch die Relationen 

of = 0 of of 2 of 3 of 0 
iJy ,x ox - Yz o'!h - Y3 o'lh - '114 O'!14 •.• = 

und haben daher die Werthe: 

<J11=Y2 X, <J1z=Ya x2 , <J1a=Y4 x3 ·•• 
25. Wenn endlich eine Differentialgleichung die einzige infini

tesimale Transformation p gestattet, so besitzt sie die Form 

f(Y'!h'!h .•. y,t.) = O. 

Hiermit kennen wir c~onische Formen aIler Differentialgleichungen 
zwischen x und y, die eine Gruppe von Transformationen zwischen x 
und y gestatten. 

§ 5. 

Reduction einer beUebigen Gruppe auf ihre canonische Form. 

Wenn eine beliebige Gruppe von Transformationen zwischen x 
und y vorgelegt 1st, so lasst sieh immer, wie wir zeigen werden, 
durch ausfiihrbare Operationen entscheiden, auf welche canonische 
Form sie gebracht werden kann. 1st diese Bestimmung geleistet, so 
verlangt die wirkliche Reduction der vorgelegten Gruppe auf ihre cano
nische Form in den meisten Fallen nur ausfiihrbare Operationen; aus
nahmsweise wird jedoch die Integration einer Gleichung 1. O. noth
wendig. 

Bieraus folgt, dass die Bestimmung der zu einer beUebigen Gruppe 
gehorigen invarianten DifferentiaIgleichungen im ungiinstigsten FaIle 
die Integration einer Gleiehung 1. O. verlangt. 

26. Wir zeigen in dieser Nummer, wie man durch ausfiihrbare 
Operationen entseheidet, auf welche canonisehe Form eine vorgelegte 
Gruppe gebl'acht werden kann. 
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Man bestimmt zuerst durch Determinantenbildung, ob as keine. 
eine, zwei oder unendlich viele invariante Diiferentialgleichungen 1. O. 
giebt. 

"II 
Existirt keine salche Gleichung 1. 0., so hat die Gruppe 5, 6 

oder acht unabhiingige infinitesima.le Transformationen. In jedem von 
diesen drei Fallen giebt es nur eine entsprechende canonische J:!'orm, 
so dass eiue weitere Discussion iiberfliissig wird. 

Giebt es zwei und nur zwei invariante Gleichungen 1. 0., so fragt 
es sich zUllachst, ob D. identisch verscbwindet oder nicht. Verscbwindet 
D. nicht identisch, so hat die Gruppe 3, 4, 5 oeler 6 unabhiingige 
infinitesimale Transformationen, und dabei ist die canonische Form 
vollstandig bestimmt, wenn die Zahl del' info Transformationen gleich 5 
oder 6 ist. Enthii.lt unsere Gruppe drei infinitesimale Transformationen 
Bd, Bd, Bd, so kann sie entweder die canonische Form p, q, xp+cyq 
oder die canonische Form p + q, xp + yq, X2p + y2q erhalten. Diese 
beiden FaIle lassen sich dadurch charakterisiren, dass die info Trans
formationen (B .. B k) im ersten Faile eine zweigliedrige Untergruppe 
bestimmen, wiihrend sie im letzten Falle eine dreigliedrige Gruppe, 
namlich die urspriingliche Gruppe liefern. Enthalt unsere Gruppe vier 
infbritesimale Transformationen, so kann sie entweder die canonische 
Form q yq p xp oder die Form q yq y2q P erhalten; diese FaIle 
lassen sich dadurch charakterisiren, dass die (B.Bk) im ersten Faile 
eine zweigliedrige Dntergruppe, im zweiten eine dreigliedrige Dnter
gruppe liefern. Verschwindet D. identisch, so kann die Gruppe ent
weder auf die canonische Form q, yq, oder auf die canonische Form 
q, yq, y2 q gebracht werden. Die Zahl der unabh1i.ngigen infini
tesimalen Transformationen entscheidet, welcher Fall vorliegt. 

Jetzt seizen wir voraus, dass eine vorgelegte Gruppe Btf· .. B.{ 
eine und nur eine Gleichung erster Ordnung 

X of + y.K=A.{=O ox oy 
invariant liisst. Unter den infiniiesimalen Transformationen kl Bl + ... 
+k.B. giebt es einige, etwa B1}O){, die eine Relation del' Form 

BJ,:(O){ = lPl;(XY) A{ 

erfiillen; denn es giebt ja jedenfalls r - 3 inf. Transformationen, die 
jede Integralcurve von A{ = 0 invariant lassen. Wir haben also 
4 wescntlich verschiedene Moglichkeiten zu beriicksichtigen: a) Be
friedigt eine jede info Transformation Bd" eine Relation der Form 

BJ.;{ = f!>k(XY) Af~ 
so kann die Gruppe entweder !IDf die canonische Form Xl q .•. Xrr/. 
oder auf die ~Form Xl q ... Xrq Yr/. gebracht werden. ]}as erste tritt 
ein, wenn aHe CB. BJ;) = 0 sind. Die zweite Hypothese findet statt 
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wenn die (BiB,,) nicht sammtlich verschwinden. b) Giebt es. unter 
den s Ausdrucken BJ 8·- I, etwa BIO{ ... B2-d, die eine Relation 

B,,(O) f = lpk(XY) Af 
erfiillen, so bilden die 8-1 Transformationen B,,}O)f eine Untergruppe, 
die der Oategorie (a) angehOrt. Verschwinden aIle (Bi(O)B,,(O», so hat 
die Gruppe Bkf die canonisehe Form Xl q ... X,. q P + 1: '!J q, WO Ii 

ohne Beschrankung gleich Nun gesetzt werden kann. Yerschwinden 
die (BiO) B,,(O») nicht sammtlich, so ist ~ q ... Xrq yq p die ge~ 
suchte canonische Form. c) Giebt es s - 2 Ausdriicke Bk(o>{, die 
eine Relation 

B,,(O){= lp' Af 
erfiilIen, so bilden die Transformationen (BiB}) eine Untergruppe, 
die der Oategorie (b) gebOrt. Eine zweite Untergruppe bilden aIle 
Bk(O)f. Yerschwinden die (Bi(O) B1,;(O)) nicht sammtlich, so hat die 
Gruppe die canonische Form q xq .. · xr-1q yq p xp. Verschwinden 
dagegen aHe (BiO BkO), so kann die Gruppe entweder die Form 
q xq"'Xr-l p xp+Kyq oder die Form qxq .. ·xr-1q p xp+(ry+xr)q 
erhalten. Um zwischen mesen beiden Moglichkeiten zu entscheiden, 
bildet man die Determinante A. 1st A ein nicht identisch ver
schwindender Differentia]ausdruck (s - 2)ter Ordnung, so hat unsere 
Gruppe die canonische Form 

q xq· .. xr-1q p xp + Kyq 

K+r. 
Versch windet A identisch, so hat die Gruppe ebenfalls die eben 
hingeschriebene Form, nur mit dem Unterschiede, £lass K = 1" ist. 
Wenn endlich A eine nicht identisch verschwindende Function von x, 
y und y' iat, so kalln unsere Gruppe die canonische }1'orm 

q xf]" . a;r-lq P xp + (ry + xr) q 

erhalten. d) Giebt es s - 3 infillitesimale Transformationen B",(O) , so 
sind vier verschiedene Falle moglich. 1st 8 = 3, so kann die Gruppe 
die canonische Form 

p xp + Yf] X2p + 2xyq 

erhalten. 1st s = 4, so ist 

yq p xp X2p + XY'l 

die gesuchte canonische Form. 1st s > 4 und ist dabei jades 
(Bi(O) B",(O») = 0, so ist 

q xq ... Xr-lq p, 2xp + (r - 1) yq, X2p + (1" - 1) xyq 

die gesuchte canonische Form. Sind dagegen die (Bi(O) Bk«(J») nicht 
sammtlich Null, so kann un sere GrUj?pe die canonische Form 
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q xq· .. xr-1q, yq, p, xp, X2p + (r - 1) xyq 
erhalten. 

Wenn endlich cine vorgelegte Gruppe unendlich viele Gleichungen 
erster Ordnung invariant lasst, so kann sie auf eine von den drei 
Formen 

q; q, p+cyqj p q x p+yq 

gebracht werden. Die Anzahl der unabhangigen info Trausformationen 
entscheidet, welcher Fall vorliegt. 

Also ist es uns wirklich gelungen, durch sehr einfache, immer 
ausfiihrbare Rechnungen zu entscheiden I welche canonische Form eine 
vorgelegte Gruppe besitzt. 

27. Hat man nach den soeben entwickelten Regeln die zu einer 
beliebig vorgelegten Gruppe gehorige canonische Form bestimmt, so 
stellt sieh die Frage, wie die Ueherfiihrung auf diese Form wirklich 
geleistet wird. lch gebc cine kurzgefasste Erledigung dieser Frage. 

Betrachten wir zunachst ein einfaehes Beispiel. Sei Btf· .. B4f 
die vorgelegte Gruppe und Pi' ql' Xl PI' Yt 11 ihre canonische ,Form. 
Bilde ich dann die (B;Bl<). so erhalte ich eine zweigliedrige Unter
gruppe, die iiberdies in der viergliedrigen invariant ist. Sei Bl B2 
diese Untergruppe. lch bilde die Gleichungen 

(clBI +~B2' Bs)=k1 (ci B I +~B2) 
(cIBI + c2 B 2 , B 4) = k2(cl B t + c2 B 2), 

III denen c1 c2 kt k2 Constante bezeichnen sollen. Das VerhaItniss 

~ wird bestimmt durch eine quadratische Gleichung, deren W unein 
c2 

ich ohne Beschrankung gleich 0 und 00 setzen kann. Alsdann sind 
Bl und B2 die heiden einzigen invarianten Transformationen un serer 
Gruppej sie entsprechen daber Pi und qt. Darnach wahle ich Bs und 
B 4, so, dass die folgenden Relationen bestehen: 
(B1 Bs)=B1 • (B j B 4) = 0, (B2B4) = B2" (B2 Bs)=O, (BsB4) =0. 
Setze ich sodann 

B t = ;lP + ,,/t q = PI1 B2 = ;2P + 1]2q = qu 

Bs = ~3P + 1J3q = XtPl1 B4 = ;4P + 1]4q = Ylq1' 
so finde ich 

XI = ~ =!l!.., Yt = ~ =!k... 
~1 1]1 52 1J~ 

Durch Einfiibrung der hiermit bestimmten Variabeln Xj Yl erMIt die 
vorgelef:,rte Gruppe Bd ihre canonische Form. 

Als zweites Beispiel betrachte ich eine dreigliedrige Gruppe 
Bd Bd Bst, die auf die canonische J!'orm ql Xi ql Ytq, gebracht 
werden kann. Icb hilde die drei Ausdriicke (BiB,,), die eine zwei~ 
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gIiedrige Untergruppe, etwa Bto Bzo, bilden. Dabei kann ich ohne 
Beschrankung annehmen, dass B1°, Bz ° und B3 unabhangige infini
tesimale Transformationen unserer Gruppe sind; durch Multiplication 
von B3 mit einer zweckmassigell Constante erreicht man, dass Rela
tionan der Form 

(B10B2°) =0, (B10Ba)=B/J, (BzOBs)=B2{) 

bestehen. Sodann setze 1ch 

Blo = ~IP + '1'hq = qJ 

B 2° = ~2P + '172Q = Xl qt 

B!',O = ~3P + l'l3Q = YI gl' 

woraus durch Elimination von ql 

und 

(;2 - Xl ;1) P + ('YJ2 - X1111) q = 0 

(~3 - '!II ;j)p + (113 - '!IITIJ) q = 0 

Xi =..k =-.!k 
~1 1]1 

Y 
_ J!. _ '1]3 

1 - ~1 -1]; 

folgt. Hiermit kennen wir eine Punkttransf'ormation, vermoge deren 
unsere Gruppe auf ihre canonische Form gebracht wird. 

In den beiden vorangehenden Beispielen hat die Reduction der 
vorgelegten Gruppe auf ihre canonische Form weder Quadraturen noch 
Integrationen von DifI'erentialg1eichungen, sondern nur Differentiationen 
und andere ausfiihrbare Operationen verlangt. 

Als drittes Beispiel betrachten wir eine dreigliedrige Gruppe 
B. B z Bs mit der canonischen Form q xq p. Wir bestimmen wie 
in der vorangehenden Nummer die invariante Gleichung 1.. 0.: 

At = X :: + y tt und suchen darnach aIle infinitesimalen Trans

formationen BO, die eine Relation der Form 

Bloor = fPk(XY) AI 
erfiillen. Wir wollen annehmen, dass Bd und B2t solche sind. Dann 
kann ich ohne Beschrankung voraussetzen, ,dass die folgenden Rela
tionen bestehen: 

(Bl Bs) = 0, (B2 Bs) = B1 , CBl B 2) = 0. 
Alsdann setze ich 

woraus zunachst 

Bl = ~IP + 111 q = q1 

B2 = ~2P + 'YJ2q = XIQI 

B3 = ~3P + 113 q = PI 
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Xl=..k=~ St 1)1 

hervorgeht. Die Grosse til ist eine Losung der Gleichung 

(A) of - of of -~- = 0 =;3 -;;;- + 113" 
~Xl ~X ~y 

und diese Gleichung gestattet die bekannre infinitesimale Transformation 
ql = ;jp + 111 q; daher findet man ohne weireres einen Integrabilitats. 
factor und fUr '!It den Werth 

f
~dY-'TJ3dX 

Yl = SI1]S - SS1]t • 

Als viertes Beispiel betrachren wir eine zweigliedrige Gruppe 
B j B2 mit del' canonischen Form qu xtP\ + Y\ qt. Wir konnen ohne 
Beschrankung annehmell, dass (BI B2 ) = BI ist. Wir setzen 

B 1 =X1P+Y\q=qt 
B2 = X 2p + Y2 q = X tPl + Yt Ql' 

Dann ist Xl eine Losung der Gleichung 

K - 0 - X ..£[ + y of 
(}YI - - t ox 1 oy 

mit der bekannwn infinitesimalen Transformation Bd. Also ist der 
Ausdruck 

eine Function von Xl und zwar, wie wir jetzt zeigen, 
Es ist nach meinen bekannten Formeln 

das heisst 

worans 

und 

(ql Xl) = 0 7 (XtPt +Yl ql' XI) = XI 

X .EXt + y OXI = 0 
I OX 1 oy , 

(X Y X Y) 0 log Xt _ y 
I 2- 2 I OX - - t 

(X Y. - X Y) ~g XI = X 
t 2 2 1 0" I 

I j ' Xldy - Y.dx 
og XI = xtY2-~ Y1 

glei-ch log Xl' 

folgt, wie behauptet \Wurde. - Zur Bestimmung von YI bilden wir 
die Gleichungen 

(qtYt) = 1, (XI Pl +YI!It' Yt) = Yl 
oder dre aquivalenten 

X OYl + y OYI = 1 
I ox 1 011 ' 
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und hieraus die Relationen 

(XI Y2 - X 2 Yj ) ~~1 + Y1Yl = X2 

(Xi Y2 - X2 Yt ) ~~ - X I '!l1 = - X 21 

vermoge deren Yl durch zwei successive Quadraturen bestimmt wird. 
Als fiinftes Beispiel betrachten wir eine zweigliedrige Gruppe 

B, Bz mit der canonischen Form qll '!II qt. Dabei konnen wir an
nehmen, dass (BI B 2) = B. ist. Wir setzen 

Bl = Xip + Yt q = ql 

B'l = X2p + Y2g = '!Ilg., 
woraus 

~ Y a 
'!It = Xi =-y;-' 

Die Grosse Xl ist eine ganz beliebige Losung der Gleichung 
Of Of 

Xl ax + Yt"Fii = 0, 

deren Integration somit erforderlich ist. 
Sei jetzt iiberhaupt BI ... Br , 

X Of of Bkf= k ox + Ykaij , 

elUe beliebige vorgelegte Gruppe und Ot .•. Or, 
t of of 

Oif = !>i ox! + 1]. i)'IIt ' 

ihre canonische Form, die nach den Regein der vorangehenden Num
mer bestimmt wird. Wir konnen in jedem einzelnen FaIle die Btf 
derart wahlen, dass die r Gleichungen 

Bd = Od, B2f = O'tf, .•. Brr = Or! 
bestehen konnen. Konnen diese Relationen zwischen x '!I P q und 
Xi '!II Pi ql hinsichtlich xt '!It aufgelOst werden, so ist hiermit die gesuchte 
Punkttransformation gefunden. 1st eine solche Auflosung unmog}ich 
so bildet man zunachst die Ausdriicke 

OiXt Oi'!!t, 
die bekannte Functionen von Xl und '!It sind und setzt sodann 

B v OX1 + Y. ox! C 
.Xt =.Q..i ox i oy = ,XI' 

B. '!It = Xi ~Yl + Yi ~y. = OiYt . 
0:£ uy 

Dies giebt 2r Differentialgleichullgen 1. O. zwischen XI '!II 'II und X, 
die im Allgemeinen zur Bestimmung von Xl '!It durch Quadratur ge
nugen. Nur wenn die canonische Form die eine von den· drei 
folgenden ist 
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qt; q1 til ql i 11 Yt 11 Y12ql' 
ist die Integration einer Differentialgleichung 1. O. nothwendig. 

Wenn eine beliebige Gruppe von Transformationen zwischen x und y 
vorgelegt ist-, so entscheidet man :ouerst durch Differentiation, auf welche 
canonische Form sie gebracht werden kann. 1st dies geschehen, so ver
langt die Reduction auf diese canonische Form im Allgemeinen nur 
ausfuhrbare Operationen. Nur wenn die betreffeniie Forml eine von 
den folgenden ist, -

qi q,yq; q,yq,y2q , 

wird die Integration einer Gleickung 1. O. nothwendig. 

28. Sucht man aIle bei einer belie big vorgelegten Gruppe zwischen 
x und y in varianten Differentialgleichungen, so bringt man die Gruppe 
zuerst auf ihre canonische Form und stel1t sodann ohne weiteres die 
betreff'enden Differentialgleichungen auf: 

Dies giebt den folgenden Satz, der die wichtigsten Ergebnisse 
dieser Abhandlung resumirt. 

1st eine gam beliebige continuirliche Gruppe von Transformationen 
zwischen x und y vorgelegt, so fondet man aUe invarianten Differential
gleichungen ohne Integration von Differentialgleichungen, wenn die Gruppe 
mehr als drei infonitesimale Transformationen enthalt. Giebt es drei 
inf. Transformationen mit der canonischen Form q y q y2 q oder zwei 
info Transformationen mit £lei" canonischen Form q yq oder endlich nur 
eine info Transformation, so wird die Integration einer Gleichung 1. O. 
nothwendig. In allen anderen Fallen genugen Differentiationen und 
Quadraturen. 

In diesem Satze wird vorausgesetzt, dass nur die infinitesimalen 
Transformationen der vorgelegten Gruppe bekannt sind. Kennt man 
zugleich die endliehen Transformationen dieser Gruppe, so kann man 
immer, auch in den drei AusnahmefaI1en, die zugehorigen in varianten 
Differentialgleichungen ohne Quadratur oder Integration angeben. 

Januar 1883. 

Abschnitt II. 
Th dem vorhergehenden Abschnitt bestimmte ich die Form aUer 

Gleichungen 
f(xyt'!h •.. '!1m) = 0, 

die eine continuirIiche Gruppe von Transformationen gestatten. In 
diasem zweiten Abschnitt entwickele ich die allgemeine Integrations
theorie aller derartigen Gleichungen, indem ich meine aUgemeine 
Integrationstheorie von linearen partieUen Differentialgleiehungen l1lit 
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bekannten innnitesimalen Transformationen fur die betrefi'enden Bei
spiele im Detail durchfiihre. 

Dieser Abschnitt zerfa1lt in mehrere Paragraph en , deren jeder 
sich an einen bestimmten Paragraphen der ersten Arbeit ais Fortsetzung 
anschliesst. 

§ 1. 

Integrationstheorie von DiJferentialgleichnngen mit bekannten 
infinitesimalen Transformationen der Form 

X(x)p + Y(y)q. 

In diesem Paragraph en integrire ich successive aIle Differential
gleichungen 2ter und haherer Ordnung mit einer bekannten Gruppe, 
deren infinitesimale Transformationen sammtlich die Form 

X(x)p + Y(y)q 

besitzen. Es wird dabei vorausgesetzt, dass die betreffende Gruppe 

keine anderen Differentialgleichungen 1. O. als y' = 0 und -..!.. = 0 in
y 

variant lasst. 

1. Gestattet eine Differentialgleichung mler Ordnung die Gruppe 

q, Yll so ist sie, wenn wir ~= u setzen, reducibel auf die Form 
'lit . 

Q xu-·· .-- =0. ( 
du d

lJl
-

2
u) 

dx. d:i"l-2 

Man integrirt diese Gleichung (m - 2)!er Ordnung und erhalt hierdurch 
eine Relation mit m - 2 Constanten 

Y2 = ytf(xa1 ••• am -2), 

aus der durch wiederholte Integration 

hervorgeht. 

ji<z)tlZ 
Yt = e 

fd ji<x)tlx 
Y =J (xe 

2. Gestattet eine Differentialgleichullg mter Ordnung die Gruppe 
p, q, '!If], so ist sie, wenn WIr 

'!I!" .J!L = '/) y;=u, tit 

setzen, reducibel auf die Form 

( 
d'IJ if"-S'IJ) 0 Q uv-···-- = . du dum-S 
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Durch Integration dieser Gleichung (m _3)ter Ordnung erhalt man 
eine Relation mit m - 3 Constanten 

(1) f(Y2 ~ at' .• lZm-S) = 0 
'111 '!It ' 

die wir auch folgendermassen schreiben konnen 

0/ (J!!. ~ (l!1..) at . • . ) = O. 
1h ax '!It 

Man erhalt daher jedenfalJs durch eine Quadratur eine Gleiehung, 
Y2 = Yt F(x), die nach den Regeln der vorangehenden Nummer durch 
zwei Quadraturen integrirt wird. 

Nach der so eben angegebenen Methode verlangt die Integration 
einer Gleichung der Form 

(2) 

drei und zwar drei successive Quadraturen. Ich entwickele jetzt in 
Uebereinstimmung mit meinen alten Integrationstheorien eine etwas 
andere Methode, die allerdings ebenfalls drei Quadraturen, nicht aber 
drei successive Quadraturen verlangt. Die Gleichung (2) ist aquivaJent 
mit der linearen partie lIen Differentialgleichung 

of of of F of 0 
Af = ~ + Yt oy + '!Iz ay; + '!II 8Y2 = , 

welche die drei infinitesimal en Transformationen 

of 
Bd=i3X' 

gestattet. Jetzt kann man in zwei Weisen ein dreigliedriges voll
standiges System mit einer bekannten infinitesimalen Transformation 
hilden. Einerseits gestattet namlich das vollstandige System 

Af= 0, Btf= 0, Bd= 0 
die infinitesimale Transformation Bst und daher (Math. Ann. Bd. XI) 
hat die aquivalente totale Differentialgleichung 

'!It F d'll! - '!Iz d,!fz = 0 

einen bekannten Integrabilitatsfactor, nli.mlich 1, wo 

1 'JII Yz 'JIt F 

1 0 0 0 
A= 0 1 0 0 =YZ

Z
-Y12F. 

o Y YI 'JIz 

Dies liefert ein Integral von Af = 0 namlieh 

(3) 
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Anderseits aber gestattet das vollstandige System 

Af=O, B 2f=O, Bd=O 
die bekannte infinitesimale Transformation B t fund daher liefert meine 
alte Theorie auch das Integral 

j (Yt2F-Yl)dX+Y2dYt-YldY2 _ C t 
2"L' 2 - ons. 

Yl.1..' - Y2 

von A f = O. A us den beiden hiermit gefundenen Integralgleichungen 
erhiilt man durch Auflosung Yt als Function von x, und darnach durch 
eine neue Quadratur Y als Fuuction von x. 

3. Gestattet eine Differentialgleichung mter Ordnung die Gruppe 
p, q, xp + cyq, wobei die Constante c von Null und 1 verschieden 
sein soU, so kann sie, indem wir 

_ Y2 _ Ys 
PI - ~ P2 ------c::3 

c=i 0-1 
Yl '!It 

setzen, auf die Form 

redueirt werden. Durch Integration dieser Gleichung (m - 3)ter Ord
nung erhii.lt man eine Relation mit m - 3 Constanten 

{(P1 P'la1 ••. am-s) = O. 

Kommt in derselben P2 nicht VOl', so findet man durch Auflosung 
c-2 

K 0-1 
Y2 = . Yt 

und darnach Y als Function von x durch zwei(unabhangige) Quadraturen. 
Hat man dagegen zur Integration eine Gleichung der Form 

so setzt man 

woraus 
c-3 

(4) dY2 _ Y -ly 0-1 F(~) <l> dYI - 2 t c-2 = . 
y/-1 

Diese Gleichung 1. O. zwischen den Variabeln Yt und '!12 gestattet die 
infinitesimale ,Transformation 

of of 
{c-l)Yt o'!lt + (C-2)Y2 o'!h' 
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und daber ist 
1 1 

I (C-l)~I(:_2)Yt I 
ein Integrahilitatsfactor und somit 

f __ ~,!b- <!>dyc_ - Const 
(C-l)Yf - (c-l)Yt <!> - • 

ein Integral von (4). Nachdem hiennit eine Relation zwischen '111 
und '112 erhalten ist, bestimmt man y als Function von x durch zwei 
(unahhangige) Quadratnren. 

4. Gestattet eine Differentialgleichung mter Ordnung die Gruppe 
p q yq xp, so ist sie, wenn wir von der unmittelbar integrablen Glei
chung '11" = 0 absehen, reducibel auf die Form 

Q (PI fPz ••. :,,!!) = 0, 
"/Pt • 

WO PI und P2 die Werthe 

If) _ 111113 If) _ '1112114 
'1'1 - Y22' ,,-2 - ----:ur-

hahen. Durch Integration dieser Gleichung (112-4)1er Ordnung erhiilt 
man eine Relation zwischen PI CJ>z und 112 - 4 Constanten: 

P2 = f(pt) , 

wobei wir von dem einfachen FaIle einer Relation Pl =0 Canst. ab
sehen. Es handelt sieb also darum cine Gleichung der Form 

Y = '!Jl f('!ItYs) 
4 '!Jl '!ltt 

zu integriren. Wir setzen 

daun wird 

.J!1..='Ii, ~=u; 
'!Jl '!II 

au _ '!ItY4 - '!It'!ls = 'Ii /P2 - /PI 
a'D - '!ll'h - '!I2t /PI - 1 

PI = ;, P2 = r( ~ ), 
sodass wir eine Differentialgleichung 1. O. der Form 

~: ='liF( ;) 
integriren mussen. Dieselbe ist homogen in 1.4 und v2

, und alsO ist 

j ·u,u-'()Fa'() = Cons,t. 
2u-~F 

Mathem"ti."be Annalen. XXXII. 11 
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eine Integrli:lgleiehung. Hiermit ist Alles reducirt auf die Integration 
einer Differentialg1eiehung dritter Ordnung der Form u = 1fJ(v) oder 

~ = 1fJ (112). 
Yt Yl 

Dieselbe kaun naeh den Regeln der Nummer 2 erledigt werden. Es 
ist aber moglich einen anderen und einfaeheren Weg zu gehen, wie 
ich jetzt in Uebereinstimmung mit meiner alten Integrationstheorie 
zeigen werde. 

Die vorgelegte Gleichung 

Y = Yt
a 

f(YtYa) = W 
4 '1112 Y2t 

ist aquivalent mit der linearen partiellen Differentialgleichung 

or or Of of of 
Af=~ +Yl ~+Yz ~ +Ys -,,- + W~=O, vX VY VYI ~'!h vYa 

welche vier bekannte infinitesimale Transformationen, namlich 

of B of 
Bd= ox' zf=ay 

Bst = ~ g~ + Yt ::a + Y2 :~ + Ys :~ 
B f= x K _ Y of _ ~Y of _ 3y of 

4 OX t OYI 2 OY2 3 oY, 

gestattet. Dabei bilden einerseits die Gleichungen 

Af=O, Bd=O, Bzf=O, Baf=O 

ein vollstandiges System mit der bekannten infinitesimalen Transforma
tion B4f und dem entsprechenden Integrale 

j eY32 -Y2 W) dy, + (Yl W -YiY3) dY2 + (yl-Y1YS)dys • 
Y22Ya - 2YtYa2 + YtY2 W ' 

\ 

und allderseits bilden die Gleichungen 

Af=O, Bd=O, Bzf=O, B4f=0 

ein vollstandiges System mit der bekannten infinitesimalen Transforma
tion B3f und dem entsprechenden Integrale 

j e3 y,2- 2 Yt W) dYf + (Yt W -3Y2Ya) dY2 + (2Y22 - YIYS) dYa • 
Y22Ya - 21ltYa2 + Yl'/h W 

Eliminirt man 'lis zwischen den beiden gefundenen Integralgleiebungen, 
so erhalt man eine Differentialgleichung zweiter Ordnung 

P(YZYI) = 0, 
die durch zwei (unabhangige) Quadraturen erledigt wird. 
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5. Gestattet eine Differentialgleichung mter Ordnung die Gruppe 
p + q, xp + yq, aflp + y2q, so ist sie, wenn wir 

lPl = (X-Y)Y2Yl-~ +2 ~t-i- +Yl- i ) 

lP2 = (X_y)2YSYl-2 + 6lP! ~1{ +Yt-{) - 6(11t+Yt-1) 
setzen, reducibel auf die Form 

Q (lPtlP2'" ::;~:)=o. 
Wir integriren diese Differentialgleichung (m-3)ler Ordnung und erhalren 
hierdurch eine Relation mit m - 3 Constanten 

{(lPl lP2~ ••. ) = O. 

Enthalt dieselbe nicht die Grosse lP2' so integrirt man die betreffende 
Gleichung lPl = Const., indem man nur die infinitesimal en Trans
formationen p + q und xp + yq berticksichtigt. Dagegen ist es un
moglich, eine Gleichung der Form 

lP2 = F(lPt) 

allgemein zu integriren, wahrend man sie allerdings auf eine Biccatische 
Gleichung erster Ordnung reduciren kann. Dies soU jetzt gezeigt 
werden. 

Als Variabeln wahlen wir die Grossen Yt und lPt. Es ist, wie 
eine einfache Rechnnng zeigt: 

d!1t 'tit (IPt - 2Yt~ - 2Yt-!) 
dIPI = 3 1 

IP2-"2 IPt - 2 

oder, wenn wir rYt = z setzen, 

2 ~= SIPt - 21$2_2 

dIPt F{IPt) - : IPt - 12 

1st e!> (Yt lPt) = Const. eine Integralgleichung der Boeben gefundenen 
Riccatischen Gleichullg, so findet man die heiden fehlenden Integral
gleichungen von fJJ2 = F(lPj), durch Differentiation. Setzen wir nimlich 

Bf = x2 ~~ + 1P :: + 2(y~x)yj :~ +[(2y-4x)y2 +2Yt2
- 2Yt] :~, 

so sind 
B(e!» = Const. und B(B(<I>)) = Const. 

ehenfalls Integralgleichungen von lPz = Fl...lPt), und es geniigt daber 
nachzuweisell, dass die drei Grossen <1>, B<f> und B(B(<f>)) unabhangige 
Functionen von x Y 111 und 112 sind. Es ist, da B lPt verschwindet: 

17* 
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B(<I» = 2 (y-x) . til ~: 

B(B{<I» = 4(y-x)2YI '0.0 (Yt ~<I» + 2{y2 _X2)Y1 ~<I> 
v'Yt v'Yt v '91 

und also sind die Grossen <1>, B<I> und B(B(<I>)) unabhangig hinsicht
lich x Y Yt und CPu womit der Nachweis gefiihrt ist*). 

6. Gestattet eine Differentialgleichung mler Ordnung die Gruppe 
q, yq, y2q, so ist sie reducibel auf die Form 

Q xw-···_- =0 ( 
dw a}'''-Sw) 
dx dxm-3 ' 

wo 
.J!!.. _.!. yl = w 
'Yt 2 yl 

gesetzt ist. Wir integriren die Gleichung (m_3yer Ordnung Q = 0 
und erhalten hierdurch eine Differentialgleichung 3. O. der Form 

01 3 Y 2 _,,3 ___ 2_ = F(x) 
Yt 2 Yt2 

die wir jetzt auf eine Riccatische Gleichung 1. O. reduciren werden. 
Setzen wir 

so wird 

oder 
(5) 

J!:L = z, 
'Yt 

!; = ~ Z2+ F(x). 

1st W(zx) = Const. eine Integralgleichung dieser Riccatischen 
Gleichung, so findet man die beiden fehlenden Integralgleichungen von 
w = FCx) folgendermassen durch Differentiation. Setzen wir 

y2 ~~ + 2YYl :: + (2y !h+2~1t2) ;~ = Bf, 
-----

.. ) Die Elltwickelungen des Textes liefern das einfachste Beispiel zu einem 
allgemeinen Theoreme in meiner Theorie der Transformationsgruppen. Gesetzt 
in der That, dass ein vollstandiges System.Ad = 0 " . .Arf= 0 in den Variabeln 
XI ••• x,. n - r. info Transformationen Bd •.. B'II._r f gestattet, und dass es nicht 
gelingt, ein Integral durch Differentiation zu bilden. Dann kann man ohne Be· 
schraukung annehmeu, dass die BJ eine Gruppe bilden. Sei diese Gruppe ein
fach, und sei Bd . .• B(!f eine Unrergruppe mit der grosstmoglichen Zahl Para· 
meter. Dann bildet man das vollstli.ndige System 

.Ad=O···.Arf=O, Btf=O .•• Bef=O. 

Gelingt es dasselbe :<IU integriren, so findet man immer die fehlenden Losungen 
des Systems .A.r = 0 durch Differentiation. In dieser Arbeit setze 'ich diesen 
Satz, den ich im Uebrigen fruher in viel allgemeinerer Form aufgesteUt babe, 
nicht ala bekannt vorans. 
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so sind B W = Const. und B(B(W)) = Const. bekanntlich Integral
gleichungen von w = F(x); es geniigt daher nachzuweisen, dass 
W, B W und B (B (W) unabhangige Functionen von x Y Yl und '!h 
sind. Es ist B(x) = 0 und 

oW oW 
B(W) = ijTBz = 2 7Z Yt, 

02W oW 
B(B(W)) = 4 ~ Yi2 + 4 ~ YYH 

sodass W, B W und B(B(W)) wirklich hinsichtlich Y X Y1 und z 
unabhangig sind. Hiermit ist die Integration von w = F(x) auf die
jenige del' Riccatischen Gleichung (5) zuriickgefiihrl. 

7. Gestattet eine Differentialgleichung mter Ordnung die Gruppe 
q Y q y2 q p, so ist sie reducibel auf die Form 

wo wiederum 
Jb.... _.!. ,!1t2 = w 
'!Ii 2 yl 

gesetzt ist. Man integrirt die Gleichung em - 3)ter Ordnung, die 
offenbar immer auf eine Gleichung (m- 4?er Ordnung reducirbar ist. 
Die hierdurch gefundene Differentialgleichung 3. O. von del' Form 

W= F(x) 

wil'd darnach nach den Regein del' letzten Nummer auf eine Riccatisehe 
Gleichung 1. O. zuriickgefiihrt. 

8. Gestattet eine Differentialgleichung m ter Ordnung die Gr~ppe 
qyqy2qpxp, 

so ist sie *) reducibel auf die Form 

n ( il!Pz tf"-5 !P2 ) 0 
~, 'PI 'P2 --. . • - =, 

a!P1 d, !Pt" 5 

wo 
'10 '10", dw " iPw 

'Pi = 'lOt} 'P2 =7' w = d,u;' W = d:Jii 

geseizt ist. Man integrirt die Gleichung (m_5)tcr Ordnung Q = 0 
und findet hierdurch eine DifferentiaIgleichung 

'P2 = f( 'Pt) , 

die wir folgendermassen schreiben 

'") Wenn wir VOn der unmittelbar integrablen Gleiehung: 21/1 Ya - 3Yt2 = 0 
absehen. 
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Diese Differentialgleichung gestattet zwei bekannte infinitesimale Trans
formationen 

of or Of 'Of Of ax und x ax - Yl 0111 - 2Y2 'O'!!2 - 3 Ya 'OYa -"', 

die in den V ariabeln x und w die Form 

Of und x ~f _ 2w Y.L ox ox ow, 
besitzen. Also ist 

-j'W' dw' - w2f.dw 
3W'2 _ 2wf = Const. 

eine erste Integralgleichung. Hiernach findet man durch Auflosung 
und Quadratur eine Differentialgleichung der Form 

W= F(x), 
die nach den Regeln der Nummer 6 auf eine Riccatische Gleichung 
1. O. reducirt wird. 

Man kann im Uebrigen die Integration der Gleichung cpz = {(cpt) 
in etwas anderer Weise durchfiihren, wie hier kurz angedeutet werden 
soll. In der That, setzt man 

u = -,/Yt'!ls _~ r '!h~ 2 ' 
80 wird 

du UlPt-2u2-1 
dlPt = 21P2 - 31P1 

1st diese Riccatische GIeichung integrirt, so findet man durch Differen
tiation zwei weitere Integralgleichungen der Gleichung CP2 = {(cpt), 
die man darnach auf eine Differentialgleichung zweiter Ordnung mit 
den beiden infinitesimalen Transformationen p und x p reducirt. Dur.ch 
zwei Quadraturen findet man daher endlich Y als Function von x, 

9. Gestattet eine DifferentiaIgleichung m ter Ordnung die Gruppe 
q yq y2q P xp x2p, 

so ist sie, wenn wir von der integrablen GIeichung 2YIY3 - 3y/ = 0 
absehen, reducibeI auf die Form . 

wo 

'( dm-f.) 
Q CPt tp2 ••• dIP1;!.: = 0, 

4ww" -5w'2 tpi = --w-'a'--

4~w"'-18ww'w"+15w'3 
tpl/= 9 

wY 
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und wie frUber 

W = ~ _ ~ '!J.2 , <1w 
'!It 2 '!J12 ' W = i/,ro •• • 

gesetzt ist. Durch Integration del' Gleichung (m-6)t·· Ordnung 
Q = 0 erhalt man eine Relation der Form 

fIl2 = {(fill)' 
die eine Differentialgleichung 3. O. in den Variabeln x und w darstellt. 
Dieselbe gestattet drei bekannte infinitesimale Transformationen p, ·xp, 
a;2p, die in den Variabeln x w die Form 

11- x1L _ 2w or x2 11- _ 4xw of' 
oro 'ox ow 'ox ow 

besitzen. Zur Integration un serer Differentialgleichung 3. O. fiihren 
wir die Grossen 

3 

U = w -"2 w', fill = 4w-2 w" - 5w-3 w'2 

als neue Variabeln ein. Dann.... wird 

(6) 

1st 

au CPI - u' 
i/,CPf = IJ12 • 

w (u fill) = Const. 
eine Integralgleichung dieser Riccatischen Gleichung 1. 0., so findet 
man folgendermassen durch Differentiation die beiden fehlenden Integral
gleichungen von fIl2 = {(cpt),' aufgefasst als Differentialgleichung 3. O. 
in w und x. Setzen wir 

B{=x2 ~~ -4xw ~~ -(6xw'+4w) :: -(8xw"+lOw') 00:, 
so ist BfIll = 0 

1 
Of oW -"2 BW=-Bu=-4-w OU ou 

1 
()2W -1 -"2oW 

BB W = 16 ou' w - Bxw (}u' 

und da die Grossen W, B W und B B W hinsichtlich u fIlt x und w 
unabhangig sind, so findet man durch Elimination von u und fIlt 

zwischen den drei Gleichungen 
(7) W = Const., B W = Const., BB W = Const. 

die Grosse w bestimmt als Function von x: 
w=F(x). 

Diese Gleichung ist nun selbst eine Dift'erentialgleichung 3. O. in y 
und x, die nach den Regein der N ummer 6 vermoge einer Riccatischen 
1. O. integrirt wird. 
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Hiermit ist die Gleichung sechster Ordnung P2 = {(PI) vermoge 
zweier Riccatischer Gleichungen 1. O. integrirt. Dabei ist indess zu 
bemerken, dass wir erst nach der Integration der ersten Hiilfsgleichung 
(6) die zweite Riilfsgleichung 1. O. aufstellen konnten. Es 1St aber 
nicht schwierig einzusehen, dass man die Integration von P2 = {(PI) 
auf die Integration zweier von einander unabhiingiger Riccatischer 
Gleichungen 1. O. zuriickfiihren kann. Man bemerke in del' That nur, 
dass die beiden Gruppen q, yq, y2q und p xp X2p vollstandig gleich
berechtigt sind. Verlauscht man daher im V orangehenden die Grossen 
x und y, so erhalt man eine mit (6) analoge Riccatische Gleichung, 
deren Integration ebenfalls drei Integralgleichungen 

W1 = Const., OWt = Const., CCWt = Const. 
von fJJ2 = f(fJJ,) lieferl. Dahai ist es einleuchtend, dass diese drei 
neuen Integralgleichungen von den drei frnheren (7) unabhangig sind. 
Und also ist wirklich die Gleichung sechster Ordnung fJJ2 = {(fJJ1) auf 
zwei unabhiingige Riccatische Gleichungen 1. O. zuruckgefiihrl. 

§ 2. 

Integration von Di1l'erentialgleichungen mit bekannten in1i.nitesimalen 
Transformationen der Form 

X(oo)p + Y(ooy)q. 

In diesem Paragraphen entwickeln wit die lntegra.tionstheorie aller 
Di:fferentialgleichungen vOn zweiter und hoherer Ordnung mit einer 
bekannten Gruppe, deren sammtliche infinitesimale Transformationen 
die Form X(x)p + '¥J(xy)q besitzen. Dabei wird ausdrncklich voraus
gesetzt, dass die betre:ffende Gruppe keine andere Di:fferentialgleichung 

erster Ordnung als -.;. = 0 invariant lasst. 
y 

Gestattet eine Di:fferentiaIgleichung mter Ordnung die Gruppe 
p, xp + '!J'1, X2p + 2xyq, so ist sie, wenn wir 

2YY2 - Yt2 = CPt, y2ys = P2 
setzen, reducibel auf die Form ' 

Q(CPl fJJz' .• dm~) = o. 
apt 

Man integrirt diese Gleichung (m-3). O. und erhalt hierdurch eine 
Differentialgleichung 3. 0.: 

fJJ2 = f( fJJt) , 
die wir jetzt auf eine Riccatisehe Gleichung 1. O. reduciren werden. 
Wir fuhren neue Variable ein, niimlich Yt und Pt; daun wird 

ity! 'Yl + fJll 
afJll = 4fJl~ 
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Sei W ('fit P1) = ConsL eine Integralgleichung der soeben erhaltenen 
Riccatischen Gleichung und sei 

B{= Xl ~~ + 2xy ~~ + 2y :~ + (2Yl-2xY2) :~, 
so wird 

BW=2 ~w Y 
u'llt 

BBW - 4 2 OtW oW - y T2 + 4xy-",-, 
u'!1t u'llt 

und, da die Grossen W, B W und BB W offenbar unabhangig sind, 
so geben die 1ntegralgleichungen 

W = Const., B W = Const., BB W = Const. 

durch Elimination von YI und Pt die Bestimmung von '!I als Function 
von x. 

11. Gestattet eine Differentialg1eichung mler Ordnung die Gruppe 
yq, p, xp, X2p + xyq 

so ist sie, wenn wir von der unmittelbar integra bIen Gleichung 112 = 0 
absehen, reduciOOI auf die Form 

Q ( PI P2 •.• ::;~:) = 0 

wo 'P1 und 'P2 die Werthe 
1 S 1 1 

'Pt = y'2 Y2-'2 113 + 3y -'2 '!It Y2-'2 

P2 = 3YY2-2 Y4 - 4YY2-3 yl' 
haOOn. Wir integriren die Gleichung (m-4)1er Ordnung Q = 0, und 
erhalten hierdurch eine Relation 

P2 = {(Pt) 
das heisst eine Differentialgleichung vierter Ordnung, die unsere Gruppe 
gestattet. Dieselbe soll jetzt auf eine Riccatische Gleichung 1. O. 
reducirt werden. Wir fiihren PI und 

u = (YYl-2 Y2)! 
als neue VariaOOln ein. Dann wird 

du Ugli - 2 - 2u~ 

dglt = ~gl2-..!:.. gil + 6 
3 3 

1st W(U'P,) eine Integralgleichung der gefundenen Riecatischen Glei
chung, so setzen wir 

Bf=Xl :: +xY :: + (y-xYt) :~ -3XY2 :~ -(5xYs+3!h) :~ 
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und biIden die Ausdriicke 

oW 
BW = - iJU UYYt- 1 

BBW = U :'111 (u ~:) y2 Yl-2 + U ~:r (yz'!h- 2 -2XYY1- 1
), 

die offenbar von einander und von' W unahhangig sind. Daher erhaIt 
man durch Elimination von U und fJ>1 zwischen den Gleichungen 

W = Const., B W = Const., BB W = Canst. 

eine Relation der Form 

YYt- 1 = F(x) , 
woraus als definitive Integmlg1eichung 

hervorgeht. 

JdZ 

y=e F 

Man kann im Uebrigen die Integration del' Gleichung fP2={(fPt) 
in etwas anderer Weise durchfiihren, wie jch hier kurz angeben werde. 
Bringt man in del' That die vorgelegte Gruppe auf die Form 

Bd=p, B 2{=2xp+yg, Bd=X2p+xyq 
B 4{=yq, 

so bilden Btf Bd Bd eine dreigliedrige Untergruppe nnd dabei be
stehen die Relationen 

(B1B4) =0, (B2B4) =0, (Ba B4)=0 
(die, wie ich beilaufig hemerke, aussagen, dass B t B2 Bs eine invariante 
Untergruppe bilden). Bringe ioh daher die Gleichung fPz = ((cpt) auf 
die Form 

Y4 = F(xYYtYzYs) 
und ersetze sie darnach durch die lineare partielle Differentialgleichung 

" of Of of of af a.f= ~ + '111 ~ + Yz ~ + Ys ~ + F~ = 0, uti; ul1 u1/1 u11t uys 

so bilden die Gleichungen 

Bf=O, Btf=O, Bzf=O, Bd=O 
ein vollstandiges System mit der bekannten infinitesimalen Trans
formation B4f. Das entsprechende Integral, das man obne wei teres 
aufstellen kann, lieferl eine Differentialgleichullg 3. O. mit der be
kannten Gruppep, 2xp + yq .. X2p + xyq. Sie wird nach den Regeln 
der vorangehenden Nummer auf eine Riccatische Gleichung 1. O. 
reducirt. 

13. Gestattet eine Differentialgleichung ml
• r Ordnung die Gruppe 

X 1q, 1!-2q ••• X .. q, 
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so ist sie reducibel auf die Form 

wo 

( 
ilD iF-rD) Q :t D --;'-' . . = 0, _ .. x dflf1'-r 

XTX:", x,.r 
Y YI •.• '!/r 

=D 

gesetzt ist. Durch Integration der Gleichung (m-r)1er Ordnung Q=O 
erha.lt man eine Relation 

D=F(x) 

das heisst eine lineare Differentialgleichung r ter Ordnung, die bekannt
lich nach Lagranges oder Oautkys RegeIn integrirt werden kalin, indem 
das allgemeine Integral von D = 0 bekannt und gleich ~Ci~ ist. 

1st die vorgelegte Gleichung mt • r Ordnung linear, so ist auch 
Q = 0 linear. Der bekannte Satz, class eine lineare Gleichung mter 

Ordnung mit r bekannten Particularintegralen sich auf eine lineare 
Gleichung (m - ryer Ordnung reduciren liisst, ist somit ein sehr 
specieller Fall unserer soeben entwickelten Theorie. 

Auch die oben besprochene Reduction der Gleichung D = F(x) 
auf die einfachere Gleichung D = 0 fiiesst als sehr specielles Corollar 
ans meinen alten Integrationstheorien. Ich werde diesen Zusammen
hang in zwei etwas von einander versehiedenen Weisen bl:lgriinden. 
Sei die Gleichung D = F(x) auf die Form 

Yr= V 
oder die aquivalente Form 

Af =}L + Yl .H + ... + V ~ = 0 ox 01/ oYr_l 

gebracht. Diese lineare partieUe Differentialgleichung gestattet r be
kanute infinitesimale Transformationen: 

B.f= X.l1..+ X: of + ... + X·(T-l)~ 
• • oy • 01/1 • 0111'_1' 

(i=1,2 ..... ) 

die paarweise in der Beziehung 
(BiBj;) =0 

stehen. Also bilden die Gleichungen 

Af = 0 Blf = 0 BJ:-t! = 0 BTt+d = 0 ... Bd = 0 

eiu vollstandiges System mit der bekannten infini~jmalen Trans.. 
formation Bd; und daher findet man die enbiprechende U}$uug W~ 
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dUl"ch Quadratur. In dieser Weise findet man r unabhangige Losungen 
von A( = 0, deren Integration hiermit geleistet ist. 

Die hiermit ausgefiihrte, principiell einfache Integration von 
D = F(x) ist insofern unvollkommen, als sie nicht die explicite 
Form der Grosse y als Function von X liefert. Daher fuga ich die 
folgenden Bemerkungen hinzu. Setze ich 

Xl Xt' . . . X
t 
(r-1) 

X T - 1 •••• X):""ll) =D .. , 

y . ..... y .. -1 

so kann die Gleichung D + F(x) = 0 nach dem Vorangehenden auf 
die Form 

dDT ax + rp(x) Dr + ((X) = 0 

gebracht werden. Ordnen wir die letzte Gleichung nach den Grossen 
!Ii, so kommt 

(XI X 2' •.• X~:""l~» {YT + rp . !lr-I} + ... + ((X) = 0 
und anderseits erhalt D + F(x) durch Entwickelung, wenn wir zur 
Abkiirzung 

setzen 7 die Form: 
dt> 

6. . YT + dx y .. -1 + ... + F(x). 

Durch Vergleichung findet man daher die folgenden Werthe von rp (x) 
und rex): 

dlog t> t> 
P(x)=-dX-' [ex)=-i:F(x), 

wo 
(Xl X 2' ••• X::12

) = !::.r 

gesetzt iet. Also kann D + F(x) = 0 die Form 

dD,. + dlogt> lJ + ~F( ) = 0 
dx dx r t> x 

erhalten und durch Integration kommt 

lJr = - ~f6.rF(X)dx. 
Au aloge Ueberlegungen geben lIDS die r Formeln 

Di = - ~f6.iF(x) dx, (i=l· .. r), 

und da die r Grossen Di linear und homogen in den Grossen YY1' .' YT-l 
sind) so find€t man durch Auflosung die bekannte Form der Grosse y. 
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Man sieht leicht, dass diese beiden Integrationstheorien der Glei
chung D + F(x) = 0 im Wesentlichen identisch sind. 

] 3. Gestattet eine DifferentiaIgleichung ml - r Ordnung die Gruppe 

X,q .•. Xrq yq, 

so ist sie reducibel auf die Form 

Q (x d log D • " am-r 
log D ) = 0 

d:x: d:x:m r ' 

wo D dieselbe Determinante wie in der vorangehenden Nummer be
zeichnet. Durch Integration dieser Gleichung (m - r - 1 )t_r Ordnung 
erhalt man eine Relation 

d~;D = F(x) 

und durch Quadratur die lineare Gleichung 

D=e!F.az, 

die nach den Regeln der vorangehenden Nummer iutegrirt wird. 

14. Gestattet eine Differentialgleichung mt-r Ordnung eine Gruppe 
von der Form 

Xjq.· . Xrq, p, 

so ist !;ie reducibel auf die Form 

wo peine lineare und homogene J.i'unction mit constanten Uoefficienten 
von '!I '!Ii ••• y,. darstellt: 

P = cy + c1 YI + ... + CrY,.· 

Man integrirt Q = 0, die als eine Gleichung (m-r-1)!er Ordnung 
zu betrachten ist. Hierdurch findet man eine Differentialgleichung 
rter Ordnung der Form 

cy + ... + crYr = F(x), 

die in der bekannten Weise integrirt wird. 

15. Gestattet eine Differentialgleichung mter Ordnung die Grnppe 
X,q . .. Xrq yq p, 

so 1st sie reducibel auf die Form 

Q (!pt !P2 ••• dm-r-2(2) = o· 
dWlm- r- 2 , 

PI und P2 haben die Werthe 
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wo 'P wie soeben eine ganze und homogene Function mit constanten 
Coefficienten von 'tFYI ••• Y'I' bezeichnet. 

Durch Integration dar Gleichung (m-t' - 2)ter Ordnung Q = 0 
kommt eine Relation 

oder 
'P2 = {(Pt) 

~ d
2 

cP = {( d lo!t!e...) 
cP dx2 dx 

oder endlich 
d2 log cP = f ( d log CP) _ ( d log cP )2 _ 

axl am dx 

Diese Differentialgleichung zweiter Ordnung erledigt man dUl'ch zwei 
Quadraturen, und erMlt so eine Gleichung 

'P = F(x) 
die in der bekannten Weise integrirt wird. 

16. Gestattet eine Gleichung mler Ordnung die Gruppe 
q xq ... a;r-lq, p, xp + cyq, c =f= r, 

so ist sie reducibel auf die Form 

( 
a;n-r-2 CP2 ) __ 0 

Q 'Pl P2 .•. acpjm-r-2 ' 

wo 

'P1 = 
lI1'-j--l 
o-r-l , 

11'1' C-T 11'1' c-r 

Durch Integration der Gleichung (m-r-2)ter Ordnung Q = 0 erhalt 
man eine Relation 

c--r-2 

dYr+l ~f() Yr+l dy;- = Yr 'Pj , 

die eine Differentialgleichung 1. O. in den Variabeln Yr und 'Yr+l dar
stellt. Diese Gleichung gestattet die_ infinitesimale Transformation 

x ;~ + c'Y :: + ... + (c-r)Yr :~ + (c-r-l)Yr+l O;~l ' 

und also giebt eine Quadratur eine Bestimmung von 'Yr+l ~ls Function 
von Yr' Darnach giebt eine zweite Quadratur 'Yr als Function von x 
und endlich findet man vermoge r neuer Quadraturen 'Y als Function 
von x. 

17. Gestattet eine Gleichung mlar Ordnung die Gruppe 
q xq . . . ·xr-1q p xp + ryq, 
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80 ist sie, wenn wir von den integrabeln Gleiehungen 1/>+1 = 0, 
'Yr = Const. absehen, reducibel auf die Form 

wo 
Y1'-l-2 

PI = Yr, tp2 = -2 - • 
1Ir+l 

Durch Integration der Gleichung (m-r-2)ter Ordnung Q = 0 erhalt 
man eine Relation 

oder 

woraus 

und 

fa -/1(111") d1lr 
X= Yre . 

Bierdurch ist Yr bestimrut als 1<'unction von x und daher findet man 
Y durch r weitere Quadraturen. 

18. Gestattet eine Differentialgleichung mler Ordnung die Gruppe 

q xq ... xr-1q p.xp + (ry+xr)q, 

so hat sie die Form 

( 
(f"-r-2 ) Q .,. 'Pt =0 PI P2 d m-r-2 , 

11'1 
wo 

'lD1Ir 2w1lr 
PI = Yr+l e , P2 = Yr+2 e 

J...=1.2 •.. (r-l)r. 
'UJ 

Durch Integration der Gleichung (m_r-2)ler Ordnung Q = 0 erhalt 
man eine Relation P'l = f(tpt) oder 

dYr+l -i!WYr f( Wrlr) !h+l -~- = e Yr+l e , 
tlYr 

das heisst eine Differentialgleichung 1. O. zwischen Yr nnd Yl'+l mit 
del' bekannten infinitesimalen Transformation 

of of 1 Of of 
X OZ + (r.y+xr) "Fii + ... + to oY

r 
- Yr+l OYr+l • 

Daher bestimmt man zuerst Yr..j..l als Function von Yr durch cine 
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Quadratur, darnaeh '!It" als Function von x dnrch eine zweite Qua.dra.tnr 
und schliesslich '!I als Function von x vermoge r Quadraturen. 

19. Gestattet eine Diiierentiaigieichung mter Ordnung die Gruppe 

q xq .•• a;'"-lq '!Iq p xp, 

so hat sie, wenn wir von den beiden integrabeln Gleichungen 'Yr = 0, 
'Yr+l = 0 absehen, die Form 

wo 

Durch Integration der Gleichung (m-r_3)ter Ordnung Q = 0 erhalt 
man eine Relation P2 = {(PI)' das heisst eine Differentialgleichung 
2. O. in '!Ir und 'Yr+l: 

Yr+3 = dYr+2 = Yr;'l {( '!IrY .. +2 ) = ~ (Y +1 dYr+1) 
11 .. +1 ely,. y .. 2 Yr+1 dYr T dYr ~ 

mit zwei bekannten infinitesimalen Transformationen 

Rier I1i.hren wit 

of 
'/I .. o'Yr und 

'YJ = log '!Ir+l, ; = log y .. 

als neue Variabeln ein, dann wird 

Y .. '!IT+2 d1] d 2 7J + 2 d'/}2 dn 
PI = --2-= iff' P2 = d~2 a-r- - dI' 

'!Ir+1 

sodass die Gleichung P2 = ((PI) die It'orm annimmt: 

d
2

7] = F(~). 
d61 d~ 

Daher geben zwei Quadraturen 1J als Function von ;, das heisst '!Ir+l 
als It'unction von y... Eine neue Quadratur giebt '/IT als Function von 
x, wonach '!I durch r Quadraturen als Function von x bestimmt wird. 

20. Gestattet eine Difl:erentialgleichung mter Ordnung die Gruppe 

q xq··· a;r-lq P 2xp + (r-1) '!Iq X2p + (r-1)x'!lq 

so ist sic, wenn wir von der unmittelbar integrabeln Gleichung '!IT = 0 
absehen 1 reducibel auf die Form 
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wo fPj und fP2 die Werthe 

-2(,.+3) -2(,,+3) 

fPI = Y,. ,"+1 (('I' + 1) 1/"Y'42 - ('I' + 2) Y;+I) = Y,. ,"+1 U 

-8("+3) ----..-+1-
fP2 = 1/,. U t = 

-3('43) 

1/,. '41 ((r+1)2 y,.2 Yr+3- 3('1'+1)('1'+3) y,. 1/,.+1 Yr+2 + 2 (r+2)(r+3}Y41) 

haben. Durch Integration der Gleichung (m - 'I' - 3)ter Ordnung 
Q = 0 erh1i.lt man eine Relation fP2 . f( PI)' die nicht allgemein 
integrabel ist, wahrend sie, wie jetzt gezeigt werden solI, immer auf 
eine Riccatische Gleichung 1. O. reducirt werden kann. Wir wahlen 
fP1 und 

'43 
-,.+1 

'IJ = 1/,. y,.+l 

als neue Variabeln. Dann wird 

d'l) '1)2 + CPt 'OS + CPt 
dcpt = -----;p;- = f(cpt) • 

1st W (v fPI) = Canst. eine Integralgleichung d.ieser Riccatischen 
Gleichung, so findet man zwei weitere IntegralgJeichungen von 
fP2 = f(fPl) durch Differentiation. In der That setzt man 

Bf= (1' + 1) xy,. ~f + [('I' + 3) Xy,.+l + ('I' + 1) y .. ] ~ 
oy,. CI!lr+l 

+ [('I' + 5) XYr+2 + 2('1' + 2) 1/"+1]~' 
CI!lr+2 

so ist BfPl = 0, wiihrend die Ausdriicke 

B W = ~~ ('I' + 1) 1/ .. 

BBW = ~; (1' + 1)21/,.2+ ('1'+ 1)2XYr* 

von W unabhangig sind. Daher sind die Relationen W = Const., 
B W = Const., BB W = Donst. unabhlingige Integralgleichungen 
von fP2 = f(fPj). Und daher erhalt man durch Elimination von 1/.,+11/ .. +2 
und 1/,.-3 cine Differentialgleiehung der Form 

_y,.=F(x) 

(mit der bekannten-Gruppe q xq· .. xr-1q) und schliesslich geben 
'I' Quadratnren die Bestimmung von 1/ als Function von x. 

Mathematische Annalen. XXXIL 18 
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21. Gestattet eine Differentialgleichung mter Ordnung die Gruppe 
q xq· .. a;r-lq p, xp yq X2p + (r - 1) xyq 

so ist sie, wenn wir von den unmlttelbar integrabeln Gleichungen 

Yr=O, 

absehel1, reducibel auf die Form 

( 
am-r-4tp, ) _ 0 

Q "'1 m? •• -
'1' '1'_ d

tp1
m-r-4 ' 

wo 
s 

-'2 -2 
fPt = U Ut , fP2 = U U2 

wii.hrend U, U t und u2 dieselben Werthe wie in der vorangehtmden 
Nummer (siehe auch Abschn. I, Nummer 23) haben. Durch Inte
gration der Glei'ehung (m - r - 4)ter Ordnung Q = 0 erhiilt -man 
eine Diiferentialgleichung (r - 4)ler Ordnung fP2 = ((fP1)' die aller
dings nieht allgemein integrabel ist, wahrend sie immer, wie jetzt 
gezeigt werden solI, auf eine Riccatische Differentialgleichung 1. O. 
reducid werden kann. Dm dies nachzuweisen betrachten wir fP2=f(fPl) 
als eine DifferentiaIgleichung vierter Ordnung zwischen Yr und x. In 
diesen Variabeln erhalten die bekannten info Transformationen p, xp, 
yq, X2p + (r - 1) xyq die Formen 

'Of Of 'Of ? Of Of 
'Ox' x 'Ox' Yr 'OY

r
' X· 'Ox - (r + 1) xYr 'O'Y

r 
• 

Setzen wir 
1 

-'-+1 
r; = Yr , 

so erhalten wir eine Differentialgleichung vierter Ordnung zwischen 1J 
und x mit den vier bekanlJten illfinitesimalen Transformationen 

'Of 
ox' 

x 'Of 
ox' 

Daher nuclet man nach den Regeln cler N ummer 11 vermoge einer 
Riccatischen Gleichung 1. O. die Gros~e i'J bestimmt als Punction 
von x 

1 

r; = Yr- r+1 = F(x), 
woraus 

Yr = F(x)-(r+l); 

hiernach genugen r Quadraturen zur Bestimmung von Y als Function 
von x. 
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§ 3. 

Integration von Di1ferentialgleichnngen mit bekannten infinitiesimalen 
Transformationen der Form X(xy)p + Y(xy) q. 

In diesem Paragraphen integrire ich aIle Differentialgleichungen 
mit einer bekannten fiinfgliedrigen, sechsgliedrigen oder acbtgliedrigen 
Gruppe; dabei wird ausdriieklieh vorausgesetzt, dass die betreffende 
Gruppe keine Curvensehaar cp(xy) = a invariant liisst und dass sie 
daher in Uebereinstimmung mit meinen alten Untersuchungen auf die 
Form einer projeetiven Gruppe gebracht worden jst. Ieh sehe ab von 
den unmittelhar integrabeln Gleiehungen 

Y2 = 0, 5Ya2 
- 3Y2Y4 = 0, 

9y2Y5 - 45Y2YaY4 + 40Y33 = 0, 

unter denen die erste aIle gerade Linien, die zweite alIe Parabeln, die 
dritte alle Kegelsehnitte der Ebene xy bestimmt. 

22. Gestattet eine Difi'erentialgleiehung, deren Ordnungszahl m 
grosser als 2 ist, die Gruppe 

p q req xp - yq yp, 

so besitzt sie die Form 

t"\ ( d tp2 ;r-r. CP. ) ° 
~'CP!CP2dcpt-'" dtplm-5 = 

wo 
8 

CP1 = Y2- S Q2' CP2 = Y2-4 fh 
und 

3 5 ? 3 2 1- + 40 3 
Q2 = Y2Y4 - '!Is-, Q3 = Y2 Yf:, - °YzYaY4 3 '!Is' 

Man integrirt die Gleichung em - 5)!er Ordnung Q = ° und erhalt 
hierdurch eine Relation 

CP2 = F(cpt) 

das heisst eine Differentialgleichung*) fOnfter Ordnung, die wir jetzt 
auf eine Riccatische Gleichung 1. O. reduciren werden. 

Wir fUhren neue Variabeln ein, namlich CPt uud 
4 

-S 
U =Y2 Ys; 

daun wird, wie man leieht findet 

"') Wir sehen Un Texte a.b von del: unmittelba.r integra.blen Gleichung 
CPl = COl)st. 

IS" 
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oder 

1st 
W (u lPt) = Const. 

eine Integralgleichung dieser Riccatischen Gleichung, so findet man 
folgendermassen zwei neue Integralgleichungen V6)n lP2 = FClPt) 
durch Differentiation. Man setzt 

of Of of 3 ~' Of Bf = Y ox - Yt 2 
OYI - 3Yl Y2 OY2 - (4YtY3 + Y2-) Oy; 

dann ist 

und 

sodass 

of 
- (5Yl Y4 + 10Y2Ya) 0114' 

2 
S BlPt = 0, Bu = - 3Y2 

2 
oW -

BW=-3--:;UY2
3 

4 2 
S 02W 3' oW 

BBW=9Y2 ou2 +6YtY2 au' 
W = Const., B W = Const., B B W = Const. 

drei unabhii.ngige Integralgleichungen von lPz = F(lPt) darstellen. 
Eliminirl man zwischen Ihnen die Grossen Ys' Y4 und Y3' so erhalt 
man eine Differentialgleichung zwischen Yt und Yz, die durch zwei 
Quadraturen eriedigt wird. 

/ 

23. Gestattet eine Differentialgleichung m1er Ordnung (m > 4) 
die Gruppe 

p q xq yq xp yp, 
so besitzt sie die Form 

Q ( 
d 'P2 d

rlt
-

6 
'P2 ) lPIlP2 -;];;;-1 •• , == 0 

"'... d'Pr-6 

wo 
3 

und 
lPl = (h 2 Qa, lPz = (h-2 fl4 

flz = 3Y2Y4 - 5Y3'1
, 

3 2 1" + 40 3 Qa = '!Iz Yo - DY2Ya'!hT Y3 , 
35 

Q4 = 3Y23Y6 - 21Y2'1 YaY" + 35Y2Y32 Y4 - 3 Y'l,4. 

Wir integriren zuerst die Gleichung (m - 6)ler Ordnung Q = 0, und 
erhalten hierdurch eine Relation mit 'In - 6 Constanten *) 

*) Wir betrachten im Texte nicht die nnmittelbar integra.ble Gleichnng 
'PI = Const. 
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912 = F (CP1) odeI' YI) = W(llt ..• Yf», 
die selbst eine Differentialgleichung sechster Ordnung· darstellt. Wir 
reduciren dieselbe durch Quadratur auf eine Gleichung funfter Ord
nung, die nach den Regeln der letzten Nummer vermoge einer 
Riccatischen Gleichung 1. O. erledigt werden kann. 

Die bekannte sechsgliedrige.Gruppe enthalt namlich die invariante 
fiinfgliedrige Untergruppe 

p q xq xp - yq yp. 
Daher bildet die mit der vorgelegten Gleichung Y6 = W iiquivalente 
lineare partielle Diiferentialgleichung 

At = !f + YI !f + ... + YI> of + W of 
fill: flY 0'114 oY~ 

zusammen mit den fiinf Gleichungen 

of 0 B f' of Bd = OX =, 2 = ail = 0, 
Of Of Bsf=x", + y-=o flY f)!I, 

Of Of, Of of 
B4t = x ox - Y oy - 2Y1 oY, - ... - 5y, oys = 0 

oj ') of Bd= Y 011: - 'fit" O'll! - ••• =0 

ei11 vollstandiges System mit der bekannten infinitesimalen Trans
formation 

of of of 4 Of Bd = x 011: + Y oy - Y2 oth - • -•• - Yo iJyr, • 

Daher liefern meine alten Theorien durch eine Quadratnr ain Integral 
U (xy ... Ys) = Const. 

des vollstiindigen Systems. Nun abel' ist U = Const. eine Differential
gleichung fiinfter Oranung, welche die Gruppe p q xq xp - yq yp 
gestattet, upd welche somit nach den RegeIn del' vorangehenden 
Nummer vermoge einer Riccatischen Gleichung 1. O. integrirt wird. 

Um die hiermit sclzzirten Rechnungen in einfachster Weise durch
zufiihren, ist es zweckmassig, folgendermassen zu verfahren. Wir 
flibren in CP2 = F(CP1) neue Variabeln ein, namlich 

8 f) 8 
-3 3 -3 5 -3 2 

IXI = Y2 q2 = '112 '114 - Y2 Ys 
40 

1X2 = Y2-4 qa = 3Y2-2 y" - 15Y2-3YaY4 + T Y2-4Y3 3
• 

Dann wird 
-5 5, i 

Y2 (U - 3" 1t1 '!It 

t 
'll: "-

und 
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woraus 

IX2 GIX2 + 6 F( - f ) 
fJJ2 = «12 dlXl 3 = a j IXZ ' 

Die hiermit gefundene DifferentiaIglei9hung 1. O. zwischen a l und a2 

gestattet die infinitesimale Transformation 

Of of 4 of of 
X oa; + Y oy = - 3" a l a-;; - 2a2 OIXa 

und wird daher durch eine Quadratur integrirt. Die hervorgehende 
Relation zwischen a1 und a2 ist eine DifferentialgIeichung fnnfter 
Ordmmg, die nach den Regeln der vorangehenden Nummer vermoge 
einer Riccatischen Gleichung 1. O. ededigt wird. 

24. Gestattet eine Differentialgleichung m,ter Ordnung (m, > 5) 
die allgemeine projective Gruppe 

p, q, xq, yq, xp, 'YP, X2p + xyq, xYP + yZq 

so ist sie, wenn wir die Sym bole ~k, (}, <1>1 und <1>2 in derselben Be
deutung wie in Nummer 3 des ersten Abschnittes brauchen, reducibel 
auf die .Form 

Q (<1>1 <1>2 d<l>2 .,. a,m-8 <1>2 ) • 
. d<l>1 d<l>/,,-8 

Durch Integration dieser Gleichung (m - 8)ter Ordnung erhalten wir 
eine Differentialgleichung achter Ordnung 

<1>2 = F(<1>I) , 
die wir jetzt in Uebereiustimmung mit meinen alten allgemeinen Inte
grationstheorien auf eine Gleichung zweiter Ordnung"*) reduciren werden. 
Da namlich die allgemeine achtgliedrige projective Gruppe sechsgliedrige 
Untergruppen (dagegen keine siebengliedrige Untergruppe) enthlilt, so 
ist es nach mir moglich, zwei*) Integralgleichungen von <1>2 = F(<P1) 

durch Integration einer Gleichung zweiter Ordnung herzuleiten. Aus 
diesen heiden Integralen findet man dann nach meinen allgemeinen 
RegeIn neue durch Differentiation, und zwar findet man in dieser 
Weise aHe, da die acbtgliedrige Gruppe keine invariante Untergruppe 
ellthli.lt. 

D m die Rechnungen in einfachster Weise durchzufiihren, ist es 
zweckmassig, neue Variabeln einzufnhren und zwar <1>1 und die Grossen 

3 

A = ~2-Z ~3' B = fh-2 (Jv 

*) Nach einer neueren Bemerkung von mil', die ich del' Gesellschaft del' 
Wissenschaften in Christiania im Septhr. 1882 mittheilte, gellugt es sogar, ein 
Integral diesel' Gleichung 2. O. aufzufinden. 
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(wir gebrauchen wie schon gesagt die Bezeichnungen der N ummer 3 
des ersten Abschnittes). Wir berechnen die Differentialquotienten 
von 11, B und <1>1 hinsichtlich x und finden darnach dumh Division 
die Differentialquotienten von A und 13 hinsichtlich <1>1' Zur Aus
fiihrung dieser Rechnung bestimmen wir Ziuerst die nachstehenden 
Werthe der DifIerentialquotienten der Grossen fJk hinsiehtlich x; 

, + 10 
Y2fl2 = ()S 3"" Yafl2' 

, 5 2 + 5 
Y2()S = ()4 - "3 '12 !1s(1SJ 

,1 8 +20 
Y2f!4 = 3 (15 - 3 fl2(J3 3"" YS(J41 

I 1 35 25 
'!h()s ="3 (J6 - 3"" (J2f!4 + 3"" Ys(J:;· 

Folglich wird 
B-~_~A2 

3 2 

und 

dA 
~= 

dB 
dX-= 

dA 

dB 
d!\), = 

-t 
'lit!!! 

<l>IA1-+ 19A-12AB+7(B - iY A-1 

6'!h!!: 
-t 

, 8 , 
Qaa -"3 a!!s 

2 
3<1>2- 35 

= -t 
'tlt!!s 

(B_~)A-t _~A-t 3 2 
2 
3<1>2- 3& 

4 t 2 ( 5)2-1-<I>,A~+19A -12A~B+7 B- 3 A 

6(f !\)2- 35) 

Da <1> eine geO'ebene Function von <1>1 darstellt, so kennen wir hier
mit ein gewoh;liches simJiltanes System zwischen A, B und <1>17 das 
offenbar einer DifIerentialgleichung zweiter Ordnung aquivalent ist. 

Unser simultanes System erhiilt durch die Substitution 
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die bemerkenswerthe Form 

(L) 

<1>1- 2«2+ ~ 
4<1>2 - 210 

2<1>1" - 2«P - 6 '1'). 
4<1>2 - 210 

Setzt man endlich 
XI R __ ~ «=-, t" ---
~ xa 

d:cs 2:CJ 
d<l>l = 4<1>2 - 210 ' 

so erMIt unser simultanes System die lineare Form 

a:CI a~ axs d<l>l 
<l>J :l:3 + X:! = 2 <1>1 XI - 6:&a - = 2x. = 4<1>2 - 210 

und kann daher, wenn man es vorzieht, durch eine aquivalente lineare 
Differentialgleichung 3. O. ersetzt werden. 

Kennt maR die Losungen Wu W2 des Systems (L), so ist nach 
meinem fruher citirten Satze die Integration von <1>2 = P(ct>j) als ge
lei stet zu betrachten. Dies sieht man auch 50 ein: Die Gleichungen 
Wj = a, W2 = b mit zwei bestimmten Constanten geben 006 Integral
curven, deren Inbe~ri:tr aIle projective Transformationen gestattet, bei 
denen die unendlich entfernte Gerade ihre Lage behalt. Man fuhre 
jetzt durch eine projective Transformation diese Gerade in eine neue 
Lage 9i fiber. Gleichzeitig erhalten Wt und W 2 die Werlhe WI(i) lV2(i). 

Wahlt mall nun vier Geraden 91 92 93 94' so bestimmen die acht 
Gleichungen 

Wt(i) = ai, WZ(i) = hi (i = 1 2 3 4) 

mit acht bestimmten Constanten eine Schaar von Integralcurven, deren 
Inbegriff aile projective Transformationen gestattet, bei denen 91929394 
invariant bleiben. Haben daher unsere vier Geraden eine allgemeine 
Lage, so geben die acht Gleichungen eine einzige Integralcurve, sod ass 
die Integration geleistet ist. 

Aus memen 1874 gegebenen allgemeinen lntegrationstheorien 
foIgt, wie schon gesagt, als Corollar, dass eine Gleichung mter Ord
nung, welche die allgemeine projective Gruppe gestattet, vermoge zweier 
Hulfsgleichungen von (m - 8)ter und zweiter Ordnung integrirt wird. 
Dass die Hfilfsgleichung zweiter Ordnung mit einer linearen Gleichung 
3. O. aquivalent ist, bemerkte Ha71}hen in der Sitzung vom 3. Novbr. 
1882 der societe matMmatique. 

*) Interpretirt man «nnd {l ala Carlesische Coordinaten in einer Ebene, 
<1>1 als die Zeit, so detiniren die Gleichnngen (L) eine mit der Zeit variirende 
projective l.U1d infinitesimale Transformation der besprochen6n Ebene. 
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1st jebt eine beliebige Gleichung f(x Y Yl ••• ) = 0 mit einer 
bekannten Gruppe El f . . . Ed vorgelegt, so bestimmt man zuerst 
nach den Regeln des ersten Absehnittes die eanonische fi~orm der 
Gruppe, und bringt sie darnach auf diese Form. Hiernach vertahrt 
man nach den Regeln dieses Absehnittes. Ieh discutire spater n3her 
die Falle der eanonischen Formen q; q yq; q yq '!lq. 

1m nachsten Absehnitte zeige ieh, wie man die Gruppe einer 
Gleichung in einfacbster Weise bestimmt. 

Marz 1883. 

Die vorstehende Abhandlung erschien im Jahre 1883 im norwegischen Archiv. 
Sie ist also tilter als Sylvesters Untersuchwngen uber Reciprocanten. Ebenso ist 
meine in diesen Annalen Ed. XXIV, ,1884 gedruckte Arbeit tiber DiiferentiaJ
invarianten iUter ala die genannten Sylvester'scheu Publicationen and die sich 
daran anschliessenden Untersuchungen. 

Juli 1888. 
Sophus Lie. 
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Abstract

An extension of the ideas of the Prelle-Singer procedure to second order differ-
ential equations is proposed. As in the original PS procedure, this version of our
method deals with differential equations of the form y′′ = M(x, y, y′)/N(x, y, y′),
whereM and N are polynomials with coefficients in the field of complex numbers C .
The key to our approach is to focus not on the final solution but on the first-order
invariants of the equation. Our method is an attempt to address algorithmically the
solution of SOODEs whose first integrals are elementary functions of x, y and y′.

∗Universidade do Estado do Rio de Janeiro, Instituto de F́ısica, Departamento de F́ısica Teórica,
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1 Introduction

The fundamental position of differential equations (DEs) in scientific progress has,
over the last three centuries, led to a vigorous search for methods to solve them.
The overwhelming majority of these methods are based on classification of the DE
into types for which a method of solution is known, which has resulted in a gamut
of methods that deal with specific classes of DEs. This scene changed somewhat
at the end of the 19th century when Sophus Lie developed a general method to
solve (or at least reduce the order of) ordinary differential equations (ODEs) given
their symmetry transformations [1, 2, 3]. Lie’s method is very powerful and highly
general, but first requires that we find the symmetries of the differential equation,
which may not be easy to do. Search methods have been developed [4, 5] to extract
the symmetries of a given ODE, however these methods are heuristic and cannot
guarantee that, if symmetries exist, they will be found.

On the other hand in 1983 Prelle and Singer (PS) presented a deductive method
for solving first order ODEs (FOODE) that presents a solution in terms of elemen-
tary functions if such a solution exists [6]. The attractiveness of the PS method
lies not only in its basis on a totally different theoretical point of view but, also in
the fact that, if the given FOODE has a solution in terms of elementary functions,
the method guarantees that this solution will be found (though, in principle it can
admittedly take an infinite amount of time to do so). The original PS method
was built around a system of two autonomous FOODEs of the form ẋ = P (x, y),
ẏ = Q(x, y) with P and Q in C [x, y] or, equivalently, the form y′ = R(x, y), with
R(x, y) a rational function of its arguments. Here we propose a generalization that
allows us to apply the techniques developed by Prelle and Singer to second order
differential equations (SOODEs). The key idea is to focus not on the final solution
of the equation, but rather its invariants.

This paper is organized as follows: in section 2, the reader is introduced to the PS
procedure; section 3 addresses our approach extending the ideas of the PS procedure
to the case of SOODEs and discusses how generally applicable the method is to such
equations. Section 4 is dedicated to some examples solved via our procedure and,
finally, conclusions are presented in section 5.

2 The Prelle-Singer Procedure

Despite its usefulness in solving FOODEs, the Prelle-Singer procedure is not very
well known outside mathematical circles, and so we present a brief overview of the
main ideas of the procedure.

Consider the class of FOODEs which can be written as

y′ =
dy

dx
=

M(x, y)

N(x, y)
(1)

where M(x, y) and N(x, y) are polynomials with coefficients in the complex field C .
In [6], Prelle and Singer proved that, if an elementary first integral of (1) exists,

it is possible to find an integrating factor R with Rn ∈ C for some (possible
non-integer) n, such that

∂(RN)

∂x
+

∂(RM)

∂y
= 0. (2)
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The ODE can then be solved by quadrature. From (2) we see that

N
∂R

∂x
+R

∂N

∂x
+M

∂R

∂y
+R

∂M

∂y
= 0. (3)

Thus
D[R]

R
= −

(

∂N

∂x
+

∂M

∂y

)

, (4)

where

D ≡ N
∂

∂x
+M

∂

∂y
. (5)

Now let R =
∏

i f
ni

i where fi are irreducible polynomials and ni are non-zero
integers. From (5), we have

D[R]

R
=

D[
∏

i f
ni

i ]
∏

i f
nk

k

=

∑

i f
ni−1
i niD[fi]

∏

j 6=i f
nj

j
∏

k f
nk

k

=
∑

i

fni−1
i niD[fi]

fni

i

=
∑

i

niD[fi]

fi
. (6)

From (4), plus the fact that M and N are polynomials, we conclude that D[R]/R
is a polynomial. Therefore, from (6), we see that fi|D[fi].

We now have a criterion for choosing the possible fi (build all the possible
divisors of D[fi]) and, by using (4) and (6), we have

∑

i

niD[fi]

fi
= −

(

∂N

∂x
+

∂M

∂y

)

. (7)

If we manage to solve (7) and thereby find ni, we know the integrating factor for
the FOODE and the problem is reduced to a quadrature. Risch’s algorithm [7] can
then be applied to this quadrature to determine whether a solution exists in terms
of elementary functions.

3 Extending the Prelle-Singer Procedure

In the previous section, the main ideas and concepts used in the Prelle-Singer pro-
cedure were introduced. Here we present an extension of these ideas applicable to
SOODEs. The main idea is to focus on the first order invariants of the ODE rather
than on the solutions.

3.1 Introduction

Consider the SOODE

y′′ =
d2y

dx2
=

M(x, y, y′)

N(x, y, y′)
, (8)

where M(x, y, y′) and N(x, y, y′) are polynomials with coefficients in C . We assume
that (8) has a solution in terms of elementary functions, in which case there are two
independent elementary functions of x y and y′ which are constant on all solutions
of (8), namely the first order invariants

Ii(x, y, y
′) = Ci i = 1, 2. (9)
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Without loss of generalization we consider one of these and, dropping the index on
Ii we have

dI =
∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂y′
dy′ = 0. (10)

Now, introducing the notation ∂I
∂u

≡ Iu, we have

Ix + Iyy
′ + Iy′y

′′ = 0, (11)

and so

y′′ = −Ix + Iyy
′

Iy′
, (12)

which is (8) in terms of the differential invariant I. Rewriting (8) as

M

N
dx− dy′ = 0 (13)

and observing that
y′ dx = dy, (14)

we can add the identically null term S(x, y, y′)y′ dx−S(x, y, y′) dy to (13) and obtain
the 1-form

(

M

N
+ Sy′

)

dx− S dy − dy′ = 0. (15)

Notice that the 1-form (16) must be proportional to the 1-form (10). So, since
the 1-form (10) is exact, we can multiply (16) by the integrating factor R(x, y, y′)
to obtain

dI = R(φ+ Sy′) dx−RS dy −R dy′ = 0, (16)

where φ ≡ M/N .
Comparing equations (10) and (16),

Ix = R(φ+ Sy′),

Iy = −RS,

Iy′ = −R. (17)

Now equations (17) must satisfy the compatibility conditions Ixy = Iyx, Ixy′ = Iy′x
and Iyy′ = Iy′y. This implies that

D[S] = −φy + Sφy′ + S2, (18)

D[R] = −R(S + φy′), (19)

Ry = Ry′S + Sy′R, (20)

where the differential operator D is defined as

D ≡ ∂

∂x
+ y′

∂

∂y
+ φ

∂

∂y′
. (21)

Combining (18) and (19) we obtain

D[RS] = −Rφy. (22)

So if the product of S and the integrating factor R is a rational function of x, y
and y′, then D[RS] is too. Since φ is rational (and so, therefore, is φy), equation (22)
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tells us that R is rational. Using (19) and similar arguments we conclude that S
must be a rational function of x, y and y′.

In summary, from (17) it follows that the supposition that RS is rational can
be equated to the existence of a first order invariant whose derivatives in relation
to x, y and y′ are rational functions. With this in mind we restate the original
supposition in the form of a conjecture.

3.2 The Conjecture

We first state a result proved in [6]: Theorem:Let K be a differential field of

functions in n + 1 variables and L an elementary extension of K. Let f be in K
and assume there exists a nonconstant g in L such that g is constant on all solutions

of y(n) = f(x, y, y′, y′′, . . . , y(n−1)). Then there exist w1, . . . , wm algebraic over K
and constants ci, . . . , cm such that

w0(x, y, y
′, y′′, .., y(n−1)) +

∑

i

ci log(wi(x, y, y
′, y′′, . . . , y(n−1))) (23)

is a constant on all solutions of y(n) = f(x, y, y′, y′′, . . . , y(n−1)).

This result shows that for the particular case of SOODEs whose solutions are
elementary, there are two independent first order invariants of the form

w0(x, y, y
′) +

∑

i

ci logwi(x, y, y
′). (24)

Our conjecture is that if these two first order invariants exist it is always possible
to find a function of them (which will, therefore, itself be a first order invariant) of
the form

z0(x, y, y
′) +

∑

i

ci log[zi(x, y, y
′)], (25)

where zi are rational functions of x, y and y′.

Conjecture:Let K be a differential field of functions in three variables and L an ele-

mentary extension of K. Let f be in K and assume there exist two independent non-

constant {g1, g2} in L such that gi are constant on all solutions of y′′ = f(x, y, y′).
Then there exists at least one constant of the form

z0(x, y, y
′) +

∑

i

ci log(zi(x, y, y
′)) (26)

where the zi are in K.

By the previous reasoning it can be seen that (26) implies that the product RS
is a rational function of x, y and y′.

If this conjecture holds, then our extension of the PS method applies to all
SOODEs of the form (8). Though we have not been able to prove our conjecture,
extensive trials while developing this procedure has not revealed any counter exam-
ple. Even if the conjecture is false, our experience with real test cases has shown
that the method is, at least, applicable to the vast majority of SOODEs of the
form (8).
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3.3 Finding R and S

Our conjecture implies that, if the SOODE to be solved has an elementary general
solution, then S is a rational function which we may write as

S =
Sn

Sd

=

∑

i,j,k aijkx
iyjy′k

∑

i,j,k bijkx
iyjy′k

. (27)

We can also see that (18) does not involve R. So, given a degree bound on the
polynomials Sn and Sd, we may find a set of solutions to this equation which are
then candidates to solve the system of equations (18)–(20).

From (19) we have

D[R]

R
= −(S + φy′) = −Sn

Sd

−
(

M

N

)

y′
= −SnN

2 + Sd(NMy′ −MNy′)

SdN2
(28)

which can be rewritten as

D[R]

R
= −SnN

2 + Sd(NMy′ −MNy′), (29)

where the differential operator D is defined as

D ≡ (SdN
2)D. (30)

We keep in mind that

• Sn, Sd, N and M are polynomials in x, y and y′;

• D is a linear differential operator whose coefficients of ∂
∂x

, ∂
∂y

and ∂
∂y′

are

polynomials in x, y and , y′;

• R is a rational function of x, y and y′, which we may write as

R =
Rn

Rd

=

∑

i,j,k cijkx
iyjy′k

∑

i,j,k dijkx
iyjy′k

. (31)

If we have a theoretical limit on the degrees of Rm and Rd (a degree bound), we
may use a procedure analogous to that described in section 2 to obtain candidates
for the integrating factor R. We simply construct all polynomials in x, y and y′ up
to the degree bound.

3.4 Reduction of the SOODE

Once R and S have been determined using equations (17) we have all the partial
first derivatives of the first order differential invariant, I(x, y, y′), which is constant
on the solutions. This invariant can then be obtained as

I(x, y, y′) =

∫

R
(

φ+ Sy ′
)

dx −
∫

[RS +
∂

∂y

∫

R
(

φ+ Sy ′
)

dx]dy −
∫
[

R+
∂

∂y ′

(
∫

R
(

φ+ Sy ′
)

dx−
∫

[RS +
∂

∂y

∫

R
(

φ+ Sy ′
)

dx]dy
)]

dy ′. (32)
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The equation I(x, y, y′) = C1 can then be solved to obtain a FOODE for y′: the
reduced ODE

y′ = ϕ(x, y, C1). (33)

To obtain the general solution of the original ODE, we can apply the Prelle-Singer
method in its original form to this reduced ODE. Thus, if our conjecture is correct,
the method proposed here (for SOODEs of the form (8)) is as algorithmic as the
original PS method for FOODEs. We note that the original PS method fails to
be what is strictly an algorithm because no theoretical degree bound is yet known
for the candidate polynomials which enter in the prospective solution, and so the
procedure has no effective terminating condition for the case when an elementary
solution does not exists. In practice, a terminating condition is put in by hand
(it is found that polynomials of degree higher than 4 lead to computations which
are overly complex for the average desktop computer). However, should such a
degree bound be established, and our conjecture shown to be true, then the method
proposed here would be an algorithm for deciding whether elementary solutions of
SOODEs of the form (8) exist.

4 Examples

In this section we present examples of physically motivated SOODEs that are solved
by our procedure1. As a simple illustrative example, we begin with the classical
harmonic oscillator and then consider some nonlinear SOODEs which arise from
astrophysics and general relativity.

Example 1: The Simple Harmonic Oscillator

In its simplest form, the equation for the simple harmonic oscillator is

y′′ = −y. (34)

For this ODE equations (18), (19) and (20) are

Sx + y′Sy − ySy′ = 1 + S2, (35)

Rx + y′Ry − yRy′ = −RS, (36)

Ry −Ry′S − Sy′R = 0. (37)

One possible solution to these equations is

S =
y

y′
, R = y′. (38)

From this, and using (32), we get the reduced ODE

C1 = y2 + y′2, (39)

which, of course, represents the energy conservation for the oscillator.
This example is very simple and leads to a form of φ which is independent

of x and y′. And, as with all linear ODEs, alternative and more straightforward
solution methods exist. The other examples illustrate the solution method at work
for non-linear SOODEs which can be placed in the form (8).

1We present only the reduction of the SOODEs since the integration of the resulting FOODE can be
achieved by various methods, including the PS method itself.
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Example 2: An Exact Solution in General Relativity

A rich source of non-linear DEs in physics are the highly non-linear equations of
General Relativity. In general, Einstein’s equations are, of course, partial DEs, but
there exist classes of equations where the symmetry imposed reduces these equations
to ODEs in one independent variable. One such class is that of static, spherically
symmetric solutions for stellar models, which depend only on the radial variable, r.
The metric for a general statically spherically spacetime has two free functions, λ(r)
and µ(r) say. On imposing the condition that the fluid is a perfect fluid, Einstein’s
equations reduce to two coupled ODEs for λ(r) and µ(r). Specifying one of these
functions reduces the problem to solving an ODE (of first or second order) for the
other.

Following this procedure, Buchdahl [8] obtained an exact solution for a relativis-
tic fluid sphere by considering the so-called isotropic metric

ṡ2 = (1− f)2(1 + f)−2ṫ2 − (1 + f)4[ṙ2 + r2(θ̇2 + sin2 θ φ̇2]

with f = f(r). The field equations for f(r) reduce to

ff ′′ − 3f ′2 − r−1ff ′ = 0.

Changing notation with y(x) = f(r), equations (18), (19) and (20) assume the form

Sx + y′Sy +
y ′ (3 y ′ x+ y)

xy
Sy′ = − y ′

xy
+

y ′ (3 y ′ x+ y)

xy2
+

(

3 y ′ x+ y

xy
+ 3

y ′

y

)

S + S2, (40)

Rx + y′Ry +
y ′ (3 y ′ x+ y)

xy
Ry′ = −R

(

S +
3 y ′ x+ y

xy
+ 3

y ′

y

)

, (41)

Ry −Ry′S − Sy′R = 0. (42)

One solution of those equations is

S = −3
y′

y
, R =

1

xy3
(43)

By using (32) we obtain the reduced FOODE:

C1 = y′/(y3x) (44)

which is separable and easily integrated to obtain the general solution

y(x)2 =
(

−C1 x
2 + C2

)−1
. (45)

Example 3: A Static Gaseous General-Relativistic Fluid Sphere

In a later paper [9], Buchdahl approaches the problem of the general relativistic
fluid sphere using a different coordinate system from the previous example. For ease
in comparison of the originals,

Substituting the ξ(r) of the original Writing y(x) instead of the ξ(r) in the
original, arrives at the equation

y′′ =
x2y′2 + y2 − 1

x2y
, (46)
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For this SOODE, eqs (18, 19 and 20) become:

Sx + y′Sy +
x2y′2 + y2 − 1

x2y
Sy′ = −2x−2 +

x2y′2 + y2 − 1

y2x2

+2
y′ S

y
+ S2 (47)

Rx + y′Ry +
x2y′2 + y2 − 1

x2y
Ry′ = −R

(

S + 2
y′

y

)

(48)

Ry −Ry′S − Sy′R = 0 (49)

One solution to those equations is:

S =
−x2y′2 − xyy′ + 1

xy2 + x2yy′
, R =

y + xy′

xy2
. (50)

From this, using eq. (32), we get the reduced FOODE:

C1 =
2xyy′ + y2 + x2y′2 − 1

2x2y2
. (51)

which can be solved to:

y(x)2 =
tan(

√
2
√
C1 (C2 + x))2

(

2C1 + 2 tan(
√
2
√
C1 (C2 + x))2C1

)

x2
(52)

This example has an extra feature: It is not solved by other solvers we have
tried (mainly the Maple solver, in the version 5, that we believe to be the best). So,
apart from the (already) very interesting fact that our approach is an algorithmic
attempt to solve SOODEs, we have also this present fact, i.e., some SOODEs are
solved via our method and “escape” from other very powerful solvers.

5 Conclusion

In this paper, we presented an approach that is an extension of the ideas devel-
oped by Prelle-Singer [6] to tackle FOODEs. We believe it to be the first technique
to address algorithmically the solution of SOODEs with elementary first integrals.

Here, we dealt with a restrict class of SOODEs (namely, the ones of the form
(8)). However, we can use our method in solving SOODEs where φ(x, y, y′) depends
on elementary functions of x, y, y′, following the developments for the Prelle-Singer
approach for FOODEs [10, 11]. We are presently working on those ideas.

The generality of our approach is based on a conjecture (see section (3.2)) that
we have already proved for many special cases. Even if the conjecture is proven false,
our approach is a powerful tool in dealing with SOODEs since we have extensively
tested it with many equations, both from mathematics and physical origin. In fact,
since all the examples we have encounter have been solved by our approach, we are
preparing a computational package implementing the Prelle-Singer procedure (and
our present extension) to be submitted to Computer Physics Communications.
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Lie's group classification of ODEs shows that the second-order equations can possess one, two, three or eight infinites~ 
imal symmetries. The equations with eight symmetries and only these equations can be linearized by a change of variables. 
Lie showed that the latter equations are at most cubic in the first derivative and gave a convenient invariant description of 
all linearizable equations. Our aim is to provide a similar description of the equations with three symmetries. There are 
four different types of such equations. We present here the candidates for all four types. We give an invariant test for exis
tence of three symmetries for one of these candidates. 
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1. Introduction 

Accordiug to Lie's classification [lJ in the complex domain, any ordinary differential equation ofthe second 
order 

y" = f(x,y,y') (1) 

admitting a three-dimensional Lie algebra belongs to one of four distinctly different types. Each of these four 
types is obtained by a change of variables from the following canonical representatives (see, e.g., [2, Section 
8.4D: 
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y" + Cy-3 = 0, 

y" + cel = 0, 

y" + Cy'(k-2)/(k- iJ = 0, 

y' + Cy'J/2 + /2 
y" +2 0, 

x-y 

where k 7' 0, 1/2, I, 2 in (4), and C = canst. 
Eqs. (2)-(5) admit non'similar three,dimensional Lie algebras L J spanned by the operators 

and 

a il 
X I =-+

ox oy' 

respectively (see, e.g., [2, Section 8.4]). 

2 a , i3 
Xl =X ax +y oy' 

2. Candidates for equations with three symmetries 

Let us subject each of Eqs. (2)-(5) to the arbitrary change of variables 

t = <p(x,y), u = I/!(x,y), 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

where t is a new independent variable and u is a new dependent variable. Then we obtain from (2)-(5) the 
equations of the form 

and 

U" + b1 U
l3 + 3b21P + 3b3u' + b4 = 0, 

u" + b l u'3 + 3b2u'2 + 3bJu' + b, + (b,u'J + 3b6u" + 3b7u' + b8) exp (:9
U

', + ~1O) = 0, 
llU + 12 

" b ,3 b ,2 3b'! (" 3b '2 3b' ) 9
U + 10 0 (b ' b ) (k-2)/lk-l) 

U + IU + 3 2U + ," + b4 + b,u + 6U + 7U + bg b ' b = , 
11 U + 12 

(
b U' +b )'/2 

u" + b l d 3 + 3b2u'2 + 3bJu' + b4 + (b,u" + 3b6u" + 3b7u' + bg) b 9, blO = 0, 
llU + 12 

(II) 

(12) 

( 13) 

(14) 

respectively, where bi = b,(t,u), i = 1, ... ,12. Eqs. (11)-(14) are the candidates Jor the equations with three 
symmetries. 

All candidates can be encapsulated in the formula 

" b '3 3 ,2 3b ' b (b" 3b " 3b ' b) (b,U' + blO ) ° u + I U + b,u + 3U + 4 + ,u + 6 U + 7 U + 8 J b ' b =. 
\1 U + 12 

Namely, Eqs. (11)-(14) are obtained by letting 

J(z) = 0, J(z) = e, J(z) = zlk- 2)/lk- l i, fez) =z'/2 

Using the usual formula for the transformation of derivatives under the change of variables (10), we obtain 
the following statement. 
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Theorem 1. Any equation of the form 

(
bu'+b) u" + blu'3 + 3b,u" + 3b3u' + b4 + (bSU'3 + 3b6u" + 3b7u' + bs)f b:IU' + ;1°, = 0 

is transformed by the change of variables (10) into an equation of the same form: 

y" + aly'3 + 3ad' + 3a3Y' + a4 + (asy'3 + 3ad2 + 3a,y' + as)f (a9Y' + a1O) = o. 
ally' + al2 

Here a; and b; are functions of x, Y and t, u, respective/y, and are connected by 

where 

al = .1-
1 ['i'yWy." - 'i'yyWy + b4'i'; + 3b3'i';Wy + 3b,'i'yW~ + bIW;], 

a, = .1-1 [b4 {P, <7'; + b3<7'y(2<7'xWy + 'i'yWx) + b,Wy('i',Wy +2'i'yW') 

+ blWxW; + ('i'xWyy - 'i'yyWx - 2'i'xyWy + 2'i'y Wxy)/3], 

a3 = .1-
1 [b4 <7'; 'i'y + b3'1\ ('i'xWy + 2<7'yWx) + b'W,(2'i'xWy + 'i'yW.J 

+ blW;Wy + ('i'yWxx - <7'nWy - 2'i'xyWx + 2'i'xWxy)/3], 

a4 = L1-I[b4'i'~ + 3b3'i';Wx + 3b,'i',W; + blW: - 'i'uWx + 'i',W,,]' 

as = .1-
1 [b8<7'; + 3b7'i';Wy + 3b6'i'yW; + bsW~], 

a6 = L1- 1 [b8'i'x<7'; + b7'i'y(2'i'xWy + <7'yWx) + b6Wi'i'xWy + 2'i'y W,) + bsWxW;], 

a7 = .1-
1 [b8'i';'i'y + b7'i',('i'xWy + 2'i'y W') + b6W,(2'i'xWy + 'i'yW,) +b;W;Wy ], 

as = L1-1[b8'i'~ + 3b7 'i';Wx + 3b6'i'xW; + bsW~J, 

alO = blO'i'x + b9W" 

all = b12 'i'y + bllWy' 

an = bt2 ((Jx + bU!/JXl 

is the Jacobian of the change of variables (10). 

3. Equations equivalent to Eq. (2) 

In this paper, we will dwell on the first candidate, i.e., on equations of the form (11). Other candidates will 
be considered elsewhere. 

We know that all equations obtained from Eq. (2), 

y" + Ky-3 = 0 (K = canst. oJ 0), ( 15) 

by the change of variables (10) are contained in the family of the equations of the form (11): 

U'l + bid) + 3b2zP + 3bJu' + b4 = o. 
We also know from Theorem 1 that any Eq. (11) is transformed by the change of variables (10) into an equa
tion of the same form: 

(16) 



and that the coefficients of Eqs. (11) and (16) are related by the following equations: 

01 = ,rl 
['PyI/t" - 'PyYI/ty + b4'P~ + 3b3'P;I/ty + 3b,'PyI/t; + blI/t~]' 

a, = 11-1 [b4'Px'P; + b3 'Py (2'PxI/ty + 'PyI/tJ + b2 I/ty ( 'PxI/ty + 2'PyI/tx) 

+ blI/txI/t; + ('PxI/tJY - 'PyyI/tx - 2'PxyI/ty + 2'PyI/txy}/3], 

a, = 11-1 [b4'P;'Py + b,'P'('PxI/ty + 2'PyI/tx) + b,I/t,(2'PxI/ty + 'PyI/tx ) 

+ blI/t;I/ty + ('PyI/txx - 'PxxI/ty - 2'PxyI/tx + 2'PxI/txy)/3], 

04 = 11-
1 

[b4'P; + 3b,'P;I/tx + 3b''PxI/t; + blI/t; - 'PxxI/tx + 'PxI/txx ]· 

( 17) 

We will use the following information about invariants of Eqs. (11). Lie [1] showed that any second-order 
equation obtaiued from the linear equation y" = 0 by the change of variables (10) belongs to the family of Eqs. 
(II) and obtained the necessary and sufficient conditions for Eqs. (11) to be equivalent to the linear equation. 
Lie's linearization test can be expressed by means of the equations Ll = 0, L2 = 0 (see, e.g., [3]). These equa
tions are invariant with respect to the change of variables (10). Therefore the quantities LI and L2 are called 
relative invariants for Eq. (II). They involve the coefficients of Eq. (11) and their derivatives of up to second 
order and can be readily calculated by means of the infinitesimal method [4]. We will write them, using nota
tion from [5], in the following form: 

where 

01111 011 12 
LI = - au + at - b41I" - b,lIll + 2b31I12 , 

alII, alI" 
L, = - au + at - bllIll - b31I" + 2b,lI12, 

n ""/12 ,., . b' 
1.1 11 = £~OJ - D2 D4) + b3t - 4Ul 

1122 = 2(b~ - 3blb,) + bl< - b,", 

III, = b,b, - b l b4 + b" - b,". 

(18) 

(19) 

The change of variables (10) converts the quantities (18) into the following relative invariants for Eq. (II): 

(20) 

For Eq. (15), the relative invariants (20) are written 

L, = O. (21 ) 

Hence, the following statement is valid. 

Lemma 1. For all Eq. (II) obtained from Eq. (15) by a change of variables, at least one of the relative invariants 
L 1, L, does not vanish, and the corresponding change of the variables (10) obeys the equation 

LI 'Py + L2I/ty = O. (22) 

We will use the following relative invariants of higher order given in [5-7]: 

and 

v, = L,(LIL2, - L,LI<) + Ll (L,LI" - LIL,,,) - blLt + 3b,LlL, - 3b3LILl + b4Li 

WI =Li4[-L;(1I12Ll-1I11L,)+RI(Ll),-L;RI<+LIRI(b,LI-b4L,)], 

I, = 3RILii + L" - LI" 

where 

RI = LIL" - L,LI< + b,L; - 2b,LIL, + b4Ll· 

(23) 

(24) 

(25) 
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If the relative invariant h "" 0, there is the set of absolute invariants 

J'm =/2mr;rn em;;, I), 

where 

ohm ohm ( ) J,m+2 = L, -0- - L2 -- + 2mI,m L" - L" . 
vu at 

The similar relative invariants for Eq. (16) are denoted by 'ii5, W" 12 and 74 . For Eq. (15), invoking Eqs. (21), 
we obtain: 

155 = 0, WI =0, - 6 I, = 60Ky- , 14 =4/5. (26) 

Hence, we have the following necessary conditions for Eqs. (11) obtained from Eq. (15) by a change of 
variables: 

Vs = 0, WI =0, I, i 0, J4 = 4/5. (27) 

We will obtain now the necessary and sufficient conditions. 
One has to find the conditions for the coefficients bj(t, u), b2(t, u), b3(t,u) and b4(t, u) that guarantee the exis

tence of the functions 'P(x,y) and J/!(x,y) such that the change of variables (10) transforms the coefficients of 
Eq. (11) into 

al = 0, a2 = 0, 

where OJ, a2, a3, a4 are defined by formulae (17). Thus, we have to investigate the consistency of the following 
over-determined system: 

'PyJ/!yy - 'PyyJ/!y + b4'P~ + 3b3'P~J/!y + 3b2'PyJ/!~ + b,J/!~ = 0, (28) 

~~~+~~~~+3~~~+3~~~+~~~~ 
+ 3bj:j;x:j;~ - 2CPxy l/ly + CfJxJjJw - CfJyytjtx + 2CfJyt/lxy = 0, 

3b4'P;'Py + 3bJ 'P;J/!y + 6b3'P.'PyJ/!x + 6b2'PxJ/!.J/!y + 3b2'Py !/!; 

+ 3b,J/!;J/!y - 2'PxyJ/!x - 'PnJ/!y + 2'P.J/!xy + 'PyJ/!n = 0, 

l(b4'P; + 3b3'P;J/!. + 3b2'PxJ/!; + b,!/!; - 'PuJ/!x + 'PxJ/!n) - KLl = O. 

(29) 

(30) 

(31 ) 

Remark 1. For Eq. (II) equivalent to Eq. (15) one of the values, either L j or L2, is not equal to zero. Notice 
that if L j = 0 and L2 "" 0, then the change 

t = Y, U =-x 

leads to the change 

Further without loss of generality it is assumed that L, "" O. 

Lemma 2. Let Eq. (II) which is equivalent to Eq. (15) has LI "" O. Then 'Py = 0 if and only if L z = O. 

Proof. The statement follows from Lemma I. 0 

Theorem 2. Eq. (11) with L2 = 0 is equivalent to Eq. (15) if and only if its coefficients satisfy the following 
equations: 

(32) 

(33) 
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6 6 
1" - SL, I 2L" - Sb,1, = 0, (34) 

6 2 
I," - 6b21, + SL, 12 = O. (35) 

Let Eqs. (32)-(3S) be satisfied Then Eq. (II) is mapped to Eq. (IS) by the change of variables (10) of the form 

t = <p(x), u = ",(x,y), (36) 

where <p(x) is determined by the equation 

, 12KI, 
<Px = SL2,A 

,F 

and ",(x,y) by the following integrable system: 

(37) 

"'y = ~;, (38) 

"'= = I 3 4 [S<px",;I2L;/(21, - ISM,) + S<PxKL,(2SLl- 12b4Ii) - 24"'xKl;(L" + 6L,b,)]. (39) 
2S<PJ2L,y 

Remark 2. The left-hand sides of Eqs. (32)-(3S) are relative invariants with respect to the transformation (36). 
The equations 0, = 0, w, = 0 (see (27» are Eqs. (32), the equation J4 = 4/S is Eq. (3S). In these equations, the 
variable lz is given by I, = 3b2L, - L,u' 

Theorem 3. Eq. (II) with L2 " 0 is equivalent to Eq. (IS) if and only if its coefficients satisfy the following 
equations: 

SL,1" - 6J,(LIt - b4L2 + b3L,) = 0, 

LiL2" - b4Li + 3bJL,L;- 3b2L;L, + bILl + L"L; - L,"L,L2 - L"L,L, = 0, 

5L;lzu - 6lz(4b,L;- 9bJL,L2 + Sb2L; - 4L"L2 + SL2,L, -lzL,) = 0, 

ISI,L,L It, - 63b~lzL; + l26b,bJI 2L,L2 - 22Sb4b21,L; + 8Ib,L"I,L2 - 90b4L2ti2L, + 15b,IlL, 

+ 162b;I,L; + 9b3LIt1,L, - ISb,ti2L,L2 - 7Sb4uI,L; + 90b3,1,L; - 18L1/z - 12SLi = 0, 

L;L," + biLi - 3b,b3L,L; + 3b4b,L;L2 - b4b,Ll- 3b,LlIL; + 3b4L2,L,L2 + 3bJLItL,L, - 3b,Lz,L; 

+ b4tL,L; + b4uL;L2 - 3bJ,L;L2 - b,uLl + 2b2,L1- LwL,L, + 2L;,L2 - 2LlIL2tL,) = o. 

(40) 

(41 ) 

(42) 

(43) 

(44) 

Let Eqs. (40)-(44) be satisfied. Then Eq. (11) is mapped to Eq. (IS) by the change of variables (10) with 
<Py " O. The functions <p(x,y) and ",(x,y) are determined by the following integrable system: 

L, <Py + L2",y = 0, 

Sy'(<PxL, + "'xL,)2 - l2Kl, = 0, 

'" = SL, 
y f2Y' 

SL;",= = "';( -ISb4L; + 30b3L,L2 - ISb2L; + 10L"L, - IOL2,L, + 2I2L,) 

+ 24"'x,r'y-'K(6b4L, - 6bJL, - LIt) + Ky-'I,'( -12b41; + 2SL1). 

(4S) 

(46) 

(47) 

(48) 

Remark 3. The left-hand sides of Eqs. (40)-(44) are relative invariants with respect to the general change of 
variables (10). The equations v, = 0, W, = 0 (see (27» are Eqs. (41) and (44), the equation J4 = 4/5 is Eq. (42). 

Remark 4. The conditions of Theorem 2 are particular cases of the conditions of Theorem 3 provided that 
L2 =0. 



4. Proof of Theorem 2 

We use the method similar to that employed in [8,9]. Routine calculations were made by means of the sys
tem for symbolic calculations Reduce [10]. 

According to Lemma 2, L, = 0 implies 'Py = O. Since L1 # 0, one obtains 'Pxl/ty # O. Eqs. (28)-(31) yield 

bl = 0, l/tyy = -3l/t~b2' l/txy = (2'PX
I
(l/ty'PX' - 3'P;l/tyb3 - 6'P,l/txl/tyb2 ), 

I/ln = 1{J;Il/txl{Jxx - rp;b4 - 3rp,l/txb3 - 3l/t;b2 + y.3l/tyK. 

Equating the mixed derivatives (l/txylx = (I/lxx)y and (l/txy)y = (l/tyy)x one has 

<p;(4b4, - 6b3, + 12b4b2 - 9b;) + 61{J;l/tx(bJ, - 2bz,) + 12<p;y·4K + 2<px<p,,,,, - 3<p; = 0 

and 

The derivative <Pxxx is found from Eq. (49). The equation (<Pxxx)y = 0 gives 

<p;l/t yLI = 12Ky·'. 

Differentiating this equation with respect to x and y, one obtains 

<p;(3b3LI - 2LI<) + 2<Pxl/t,(3b2LI - LI,) - 5<Px,L I = 0, 

l/tyy(3b2LI - LI") - 5LI = O. 

Since LI # 0, one has (3b2LI - L I") # O. Using Eqs. (51) and (53), one finds 

5L I 

l/ty = y(3b,LI - LI") , 

Substituting them into (52), one obtains 

1O<Pxl/t,Lli(3b,LI - LI,) + 12(3b,LI - LI")K(3b3LI - 2LI<) - 25<PxxLli = O. 

Since <Py = 0, the equation (<p;)y = 0 gives 

5LILI"" = 3( -12biLl + 3b2LI"L I + 5b2"L; + 2LU· 

Using Eq. (54) one can find the derivative <PYX: 

<Pxx = 2(3b2LI - LI,) (5<p,I/l,L;y4 + 6K(3bJLI - 2LI<))/(25L;i). 

By considering the equations 

('P;L - 2( <p; + I{Jx<Pxxx) = 0, 

(rp;lx - 2<p,<pxx = 0, 

one can obtain conditions for the coefficients bl , b" b" b4 . For example, Eq. (57) gives 

5L I LI<, = 3( -6b3b2L; + 2bJLI,LI - b2LI<LI + 5b2,L; + 2£ULI')' 

Invoking that (<Pxxh "" 0 and using the equation 2<px<Pxx - (<p;), '" 0 one obtains 

Lw = 3LI,(2LIo - bJLI)/(5LI) + 15b4b,LI - b4/2 + 5b4,L, - 6bJ,L, - 54b;LI/5 + 25Li/(3/2), 

where the relative invariant I, (25) becomes 

I, = 3b,L I - L,". 

(49) 

(50) 

(51 ) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

Eqs. (56) and (l/ty)xx - (l/txx)y = 0 are satisfied. Summing up the above results, we complete the proof of The
orem 2. 
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5. Proof of Theorem 3 

We deal now with the case L2 # 0, and hence qJy # O. Using Eqs. (28)-(31), one finds the derivatives I/Iyy, 
!/J xy, !/J xx, cp xx: 

I/Iyy = '1';1 (qJyyl/ly - I/I~bl) - 31/1;b, - 3l/1yb,qJy - b4qJ;, 

21/1,y = (qJ;r
l
(2qJ,yl/lyqJy - LlqJyy + bll/l;(qJ,l/Iy - 31/1,qJy» 

- 3b,(qJxl/ly + l/I,qJy) - 2qJ,b4 qJy - 61/1,l/Iyb" 

I/I~ = '1';'( -2qJ,yqJxl/lyqJy + 2qJ,yl/l,qJ; + qJ"l/IyqJ; + LI'I'xqJyy 

- bll/l)qJ~l/I; - 3qJ,l/Ixl/ly'l'y + 31/1;'1';» - 'I'~b4 - 3qJ,l/I,b3 - 31/1;b" 

'1'" = 'l'x'l';'(2'1',yqJy - 'I','I'yy + qJxl/l;bl - 2l/1,l/Iybl'l'y) + I/I;b l + qJyKy-'. 

Furthermore, the equations (I/Ixylx = (I/Ixx)y and (I/Ixy)y = (I/Iyy), determine the derivatives qJxyy and qJyyy, 
respectively, 

2qJ,yy = qJ;2(4'1',y'l'yyqJy - '1','1'; + qJ,l/I;b; - 4I/1,I/I;b;qJy) + 2qJ,I/I;(bl/ - 3b3bl ) 

+ 4'1',l/Iy'l'y(2b21 - b" - 2b4bJ) + qJ,qJ;(6bJt - 4b4, - 12b4b2 + 9b;) 

+ 2I/1xl/l;(bl, - 6b,bl) + 41/1,l/IyqJrCbl/ - 3b3bd + 2I/1,qJ;(2b" - b3, - 2b4bl), 

2'1'yyy = '1';1 (3'1'; - 31/1;b;) + 21/1;( -6b,bl + bl,) + 61/1;'1') -3b,bl + bl/) 

+ 6yqJ;(2b" - 2b4bl - b,,) + '1'; (6b" - 12b4b2 + 9b; - 4b4,). 

The equations (qJxyy)y = (qJyyy)x and (qJxyylr = (qJxxlry yield: 

y' LI(L'('I',I/Iy + l/I,qJy) + 2LI'I'xqJy) - 12'1'yK = O. (58) 

Eq. (22) and the condition LI # 0 yield that L21/1y # 0 and LlqJx + L21/1x # O. By virtue of Eq. (22), Eq. (58) 
becomes 

(59) 

Differentiating (22) with respect to x and y, and substituting the derivatives I/Ixx, 1/1 xy' I/Iyy, and qJxx> one obtains 

- qJyyL;(qJxL I + I/I,L2) + 1/I;'I',(2b4L;- 3b,LIL; + blL! - 2LI/L; + 1£,/LIL2) 

+ 1/I;1/I,(3b,Ll- 6b2LIL; + 3b IL;L, - 2LI,L; + 2L"LIL,) = 0, 

- b4Li + 3b3LIL;- 3b2L;L, + blL! + LI/L;- LI"LIL, - L2ILIL2 + L2,L; = O. 

Eq. (60) yields: 

qJyy = LI2(qJ,LI + I/IxL2rl(qJxl/l;(2b4Li- 3b3LIL; + blLl- 2LI/L; + 2L2ILIL2) 

+ 1/I,I/I;L2(3b3L;- 6b,L IL, + 3b1L; - 2LI,L, + 2L2,LI». 

Furthermore, Eq. (61) determines L2u: 

L2, = L,2(b4L;- 3b3LIL; + 3b2L;L2 - blLl- LI/L; + LI,LIL2 + L2ILIL2). 

(60) 

(61) 

(62) 

Using Eq. (59), one obtains the equation (qJxy)x - ('I'xx)y = O. Notice that the equations (qJy)yy - qJyyy = 0 and 
(qJy)xy - 'l'xyy = 0 are also satisfied. Now we find '1'; from Eq. (59) and substitute it into the equation 
qJxyy - ('I'yy)x = O. This leads to the following expression for L2tt: 

L2tt = L,'( -b~Ll + 3b4b3LIL;- 3b4b2L;L2 + b4blLl + 3b4LUL; - 3b4L2/LIL2 - 3b3LI/LIL, 

+ 3b3L21L; - b4/LIL;- b4,L;L, + 3b"L;L, + b3,Ll- 2b21Ll + LI//LIL, - 2L;,L, + 2LuL2ILI). (63) 



N. H. lbragimov, S. V Meleshko / Communications in Nonlinear Science and Numerical Simulation xxx (2006) xxx-xxx 9 

Differentiating (S9) with respect to x and y, one finds 'Pxy and l/Jy, respectively, 

l/Jy = SL I (J,yrl, 

'Pxy = 12K( SL;y5( 'PxLI + l/JxL,)f1 [6LuL, - 6b4L; + 6b,L IL, - SL2,Ld 

+ l/JxCJ,L;y)-1 [lOb4Ll- ISbJLIL; + 5blLllOLuLi + IOL"LIL2 - I,L IL,J. 

The equations (l/Jy)y = l/Jyy and ('P;)x = 2'Px'Pxx yield: 

5L;I" = 612(4b4L; - 9b,LIL, + Sb2L; - 4LI/L2 + SL"LI - I,Ll), 

5LI!" = 61,(Lu - b4L, + bJLJ). 

Now the equations (l/Jy)x = l/Jxy and ('PXy)y = ('Pyy)x are satisfied. 
The equation ('Pxy)x = ('Pxx)y yields: 

Lu, = (63b~I,L; - 126b4b,!,LIL2 + 22Sb4b,/zL; - 81b4LI/J,L2 + 90b4L2IJ,L I - ISb41;LI - 162bi12L; 

(64) 

(65) 

- 9b,Lu12LI + ISb4,/zLIL2 + 7Sb,,12L; - 90bJ,!2L; + 18L;,!, + 12SL1)/(IS1,LI). (66) 

Notice that the equations (l/Jy)x = l/Jxy and (l/ly)y = l/Jyy are satisfied. 
Summing up the above results, we complete the proof of Theorem 3. 
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Abstract

The second-order ordinary differential equations can have one, two, three or eight independent symmetries. Sophus Lie
showed that the equations with eight symmetries and only these equations can be linearized by a change of variables.
Moreover he demonstrated that these equations are at most cubic in the first derivative and gave a convenient invariant
description of all linearizable equations. We provide a similar description of the equations with three symmetries. There are
four different types of such equations. Classes of equations equivalent to one of these equations were studied in [Ibragimov
NH, Meleshko SV. Invariants and invariant description of second-order ODEs with three infinitesimal symmetries. Com-
munication in Nonlinear Science and Numerical Simulation, in press], where we presented the candidates for all four types
and studied one of these candidates. The present paper is the continuation of the work of Ibragimov and Meleshko and is
devoted to other three candidates.
� 2006 Elsevier B.V. All rights reserved.

PACS: 02.30.Jr; 02.20.Tw

Keywords: Equations with three symmetries; Candidates; Equivalence test

1. Introduction

According to Lie’s classification [2] in the complex domain, any ordinary differential equation of the second
order

y00 ¼ f ðx; y; y0Þ; ð1Þ

admitting a three-dimensional Lie algebra belongs to one of four distinctly different types. Each of these four
types is obtained by a change of variables from the following canonical representatives (see, e.g. [3], Section 8.4):
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y 00 þ Cy�3 ¼ 0; ð2Þ
y 00 þ ey0 ¼ 0; ð3Þ
y 00 þ y 0ðk�2Þ=ðk�1Þ ¼ 0; ð4Þ

y 00 þ 2
y0 þ Cy 03=2 þ y 02

x� y
¼ 0; ð5Þ

where k and C are constants such that k 5 0,1/2,1,2 and C 5 0.
Eqs. (2)–(5) admit non-similar three-dimensional Lie algebras L3 spanned by the operators

X 1 ¼
o

ox
; X 2 ¼ 2x

o

ox
þ y

o

oy
; X 3 ¼ x2 o

ox
þ xy

o

oy
; ð6Þ

X 1 ¼
o

ox
; X 2 ¼

o

oy
; X 3 ¼ x

o

ox
þ ðy � xÞ o

oy
; ð7Þ

X 1 ¼
o

ox
; X 2 ¼

o

oy
; X 3 ¼ x

o

ox
þ ky

o

oy
; ð8Þ

and

X 1 ¼
o

ox
þ o

oy
; X 2 ¼ x

o

ox
þ y

o

oy
; X 3 ¼ x2 o

ox
þ y2 o

oy
; ð9Þ

respectively (see, e.g. [3], Section 8.4).

2. Candidates for equations with three symmetries

Let us subject each of Eqs. (2)–(5) to the arbitrary change of variables

t ¼ uðx; yÞ; u ¼ wðx; yÞ; ð10Þ

where t is a new independent variable and u is a new dependent variable. Then we obtain from (2)–(5) the
equations of the form

u00 þ b1u03 þ 3b2u02 þ 3b3u0 þ b4 ¼ 0; ð11Þ

u00 þ b1u03 þ 3b2u02 þ 3b3u0 þ b4 þ ðb5u03 þ 3b6u02 þ 3b7u0 þ b8Þ exp
b9u0 þ b10

b11u0 þ b12

� �
¼ 0; ð12Þ

u00 þ b1u03 þ 3b2u02 þ 3b3u0 þ b4 þ ðb5u03 þ 3b6u02 þ 3b7u0 þ b8Þ
b9u0 þ b10

b11u0 þ b12

� �ðk�2Þ=ðk�1Þ

¼ 0; ð13Þ

and

u00 þ b1u03 þ 3b2u02 þ 3b3u0 þ b4 þ ðb5u03 þ 3b6u02 þ 3b7u0 þ b8ÞC
b9u0 þ b10

b11u0 þ b12

� �3=2

¼ 0; ð14Þ

respectively, where bi = bi(t,u), i = 1, . . . , 12. Eqs. (11)–(14) are the candidates for the equations with three
symmetries.

All candidates can be encapsulated in the formula

u00 þ b1u03 þ 3b2u02 þ 3b3u0 þ b4 þ ðb5u03 þ 3b6u02 þ 3b7u0 þ b8Þf
b9u0 þ b10

b11u0 þ b12

� �
¼ 0:

Namely, Eqs. (11)–(14) are obtained by letting

f ðzÞ ¼ 0; f ðzÞ ¼ ez; f ðzÞ ¼ zðk�2Þ=ðk�1Þ; f ðzÞ ¼ z3=2: ð15Þ

Using the usual formula for the transformation of derivatives under the change of variables (10), we obtain
the following statement.
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Theorem. Any equation of the form

u00 þ b1u03 þ 3b2u02 þ 3b3u0 þ b4 þ ðb5u03 þ 3b6u02 þ 3b7u0 þ b8Þf
b9u0 þ b10

b11u0 þ b12

� �
¼ 0 ð16Þ

is transformed by the change of variables (10) into an equation of the same form:

y00 þ a1y03 þ 3a2y02 þ 3a3y 0 þ a4 þ ða5y03 þ 3a6y 02 þ 3a7y 0 þ a8Þf
a9y0 þ a10

a11y 0 þ a12

� �
¼ 0: ð17Þ

Here ai and bi are functions of x,y and t,u, respectively, and are connected by:

a1 ¼ D�1½uywyy � uyywy þ b4u
3
y þ 3b3u

2
ywy þ 3b2uyw

2
y þ b1w

3
y �;

a2 ¼ D�1½b4uxu
2
y þ b3uyð2uxwy þ uywxÞ þ b2wyðuxwy þ 2uywxÞ

þ b1wxw
2
y þ ðuxwyy � uyywx � 2uxywy þ 2uywxyÞ=3�;

a3 ¼ D�1½b4u
2
xuy þ b3uxðuxwy þ 2uywxÞ þ b2wxð2uxwy þ uywxÞ

þ b1w
2
xwy þ ðuywxx � uxxwy � 2uxywx þ 2uxwxyÞ=3�;

a4 ¼ D�1½b4u
3
x þ 3b3u

2
xwx þ 3b2uxw

2
x þ b1w

3
x � uxxwx þ uxwxx�;

ð18Þ

a5 ¼ D�1½b8u
3
y þ 3b7u

2
ywy þ 3b6uyw

2
y þ b5w

3
y �;

a6 ¼ D�1½b8uxu
2
y þ b7uyð2uxwy þ uywxÞ þ b6wyðuxwy þ 2uywxÞ þ b5wxw

2
y �;

a7 ¼ D�1½b8u
2
xuy þ b7uxðuxwy þ 2uywxÞ þ b6wxð2uxwy þ uywxÞ þ b5w

2
xwy �;

a8 ¼ D�1½b8u
3
x þ 3b7u

2
xwx þ 3b6uxw

2
x þ b5w

3
x �;

ð19Þ

a9 ¼ b10uy þ b9wy ; a10 ¼ b10ux þ b9wx; a11 ¼ b12uy þ b11wy ; a12 ¼ b12ux þ b11wx; ð20Þ
where

D ¼ ðuxwy � uywxÞ 6¼ 0

is the Jacobian of the change of variables (10).
It follows from Eqs. (20) that

a9a12 � a10a11 ¼ Dðb9b12 � b10b11Þ:
Hence the equation

a9a12 � a10a11 ¼ 0 ð21Þ
is invariant under the change of variables (10). If a9a12 � a10a11 = 0, and hence b9b12 � b10b11 = 0, the function
f disappears in both Eqs. (16) and (17). This leads to the equations equivalent to Eq. (2), i.e. to the case con-
sidered in [1]. Therefore, we assume in what follows that

b9b12 � b10b11 6¼ 0; a9a12 � a10a11 6¼ 0:

3. Equations equivalent to Eqs. (3) and (4)

The test for equivalence to both Eqs. (3) and (4) have the same form. The only difference is that Eqs. (3) and
(4) have the candidates (12) and (13), respectively, with the different functions f.

Eqs. (3) and (4) have the form (17) with

a1 ¼ 0; a2 ¼ 0; a3 ¼ 0; a4 ¼ 0; a5 ¼ 0; a6 ¼ 0;

a7 ¼ 0; a8 � 1 ¼ 0; a9 � a12 ¼ 0; a10 ¼ 0; a11 ¼ 0;
ð22Þ

whereas the function f has the form f(z) = ez for (3) and f(z) = z(k�2)/(k�1) for (4). Furthermore, the change of
variables (10) leaves invariant each candidate. Hence, the equations which are equivalent to (3) and (4) belong
to equations of the form (16):

u00 þ b1u03 þ 3b2u02 þ 3b3u0 þ b4 þ ðb5u03 þ 3b6u02 þ 3b7u0 þ b8Þf
b9u0 þ b10

b11u0 þ b12

� �
¼ 0:
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Thus for the functions (10) u(x,y) and w(x,y) one obtains the overdetermined system of equations which con-
sists of Eqs. (22), where the coefficients ai, (i = 1,2, . . . , 12) are defined by the relations (18)–(20).

Analysis of compatibility of the overdetermined system depends on the value of b12. If the argument of the
function f in (16) is a linear function with respect to the derivative u 0, then without loss of generality one can
assume that b11 = 0 and b12 = 1. If the argument of the function f in (16) is a rational function with respect to
the derivative u 0, then without loss of generality one can assume that b11 = 1.

Let us consider the first case

b11 ¼ 1; b12 ¼ 0:

In this case the result of compatibility analysis gives that b5b10 5 0 and

b4 ¼ 0; b6 ¼ 0; b7 ¼ 0; b8 ¼ 0;

b5t � 3b5b3 ¼ 0; b10b5u � 3b5ð2b10b2 þ b9tÞ ¼ 0; b9u þ b10b1 ¼ 0;

b10t þ 3b10b3 ¼ 0; b10u þ 3b10b2 þ b9t ¼ 0:

The functions u(x,y) and w(x,y) are found from the compatible system of equations

ux ¼
b9

b2
10b5

; uy ¼ �
1

b2
10b5

; wx ¼ �
1

b10b5

; wy ¼ 0:

The generators corresponding to (7) are

X 1 ¼ ðb2
10b5Þ�1 b9

o

ot
� b10

o

ou

� �
; X 2 ¼ ðb2

10b5Þ�1 o

ot
;

X 3 ¼ ðb2
10b5Þ�1 ððb9 þ 1Þx� yÞ o

ot
� b10x

o

ou

� �
:

The generators corresponding to (8) are

X 1 ¼ ðb2
10b5Þ�1 b9

o

ot
� b10

o

ou

� �
; X 2 ¼ ðb2

10b5Þ�1 o

ot
;

X 3 ¼ ðb2
10b5Þ�1 ðb9x� kyÞ o

ot
� b10x

o

ou

� �
:

In the second case b12 = 1 one obtains that b8 5 0 and

b11tb11 � b11u þ b3
11b4 � 3b2

11b3 þ 3b11b2 � b1 ¼ 0;

3b2ðb11b10 � b9Þb8 þ ðb11b10 � b9Þb8u þ 3b11b8b10u ¼ 0;

6b3ðb11b10 � b9Þb8 þ ðb11b10 � b9Þb8t þ 3b11b8b10t þ 3b8b10u ¼ 0;

b4ðb11b10 � b9Þ þ b10t ¼ 0; b5 ¼ b3
11b8; b6 ¼ b2

11b8; b7 ¼ b11b8;

b8ð2b11tb10 þ b10tb11 þ b10u � 2b9tÞ þ b8tðb11b10 � b9Þ ¼ 0;

ðb11b10 � b9Þð2b8u � 2b11tb8 � b8tb11Þ þ b8ð2b11ub10 � b10tb
2
11 þ 3b10ub11 � 2b9uÞ ¼ 0:

The functions u(x,y) and w(x,y) are found from the compatible system of equations

ux ¼
b9

b8ðb11b10 � b9Þ2
; uy ¼ �

b11

b8ðb11b10 � b9Þ2
;

wx ¼ �
b10

b8ðb11b10 � b9Þ2
; wy ¼

1

b8ðb11b10 � b9Þ2
:
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The generators corresponding to (7) are

X 1 ¼ b�1
8 ðb11b10 � b9Þ�2 b9

o

ot
� b10

o

ou

� �
;

X 2 ¼ b�1
8 ðb11b10 � b9Þ�2 b11

o

ot
� o

ou

� �
;

X 3 ¼ b�1
8 ðb11b10 � b9Þ�2 ðb11ðx� yÞ þ b9xÞ o

ot
þ ðy � ð1þ b10ÞxÞ

o

ou

� �
:

The generators corresponding to (8) are

X 1 ¼ b�1
8 ðb11b10 � b9Þ�2 b9

o

ot
� b10

o

ou

� �
;

X 2 ¼ b�1
8 ðb11b10 � b9Þ�2 b11

o

ot
� o

ou

� �
;

X 3 ¼ b�1
8 ðb11b10 � b9Þ�2 ðb9x� b11kyÞ o

ot
þ ðky � b10xÞ o

ou

� �
:

4. Equations equivalent to Eq. (5)

Eq. (5) has the form (17) with

a1 ¼ 0; 3a2 � 2=ðx� yÞ ¼ 0; 3a3 � 2=ðx� yÞ ¼ 0;

a4 ¼ 0; a5 ¼ 0; a6 ¼ 0; a7 ¼ 0; a8 � Cðx� yÞ�1 ¼ 0;

a9 � a12 ¼ 0; a10 ¼ 0; a11 ¼ 0;

ð23Þ

and f has the form f(z) = Cz3/2. The equations that are equivalent to (5) belong to equations of the form (16):

u00 þ b1u03 þ 3b2u02 þ 3b3u0 þ b4 þ b5u03 þ 3b6u02 þ 3b7u0 þ b8

� �
f

b9u0 þ b10

b11u0 þ b12

� �
¼ 0:

Thus for the functions (10) u(x,y) and w(x,y) one obtains the overdetermined system of equations which con-
sists of Eqs. (23), where the coefficients ai (i = 1,2, . . . , 12) are defined by the relations (18)–(20).

Analysis of compatibility of the overdetermined system depends on the value of b12. If the argument of the
function f in (16) is a linear function with respect to the derivative u 0, then without loss of generality one can
assume that b11 = 0 and b12 = 1. If the argument of the function f in (16) is a rational function with respect to
the derivative u 0, then without loss of generality one can assume that b11 = 1.

Let us consider the first case

b11 ¼ 1; b12 ¼ 0:

In this case the result of compatibility analysis gives that b5b10 5 0 and

b4 ¼ 0; b6 ¼ 0; b7 ¼ 0; b8 ¼ 0;

b10tC � b10ð2b2
10b5 � 3b3CÞ ¼ 0;

4b2
10b9b5 þ 2b2

10b5 � 3b10b2C � b9tC � b10uC ¼ 0;

3b5ð�b2
10b5 þ b3CÞ � b5tC ¼ 0;

3b5ð�3b2
10b9b5 � b2

10b5 þ 2b10b2C þ b9tCÞ � b5ub10C ¼ 0;

b10ð2b2
9b5 þ 2b9b5 � b1CÞ � b9uC ¼ 0:
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The functions u(x, y) and w(x, y) are found from the compatible system of equations

ux ¼
b9C

b2
10b5ðx� yÞ

; uy ¼ �
C

b2
10b5ðx� yÞ

; wx ¼ �
C

b10b5ðx� yÞ ; wy ¼ 0:

The generators corresponding to (9) are

X 1 ¼ ðb2
10b5ðx� yÞÞ�1 ðb9 � 1Þ o

ot
� b10

o

ou

� �
;

X 2 ¼ ðb2
10b5ðx� yÞÞ�1 ðb9x� yÞ o

ot
� b10x

o

ou

� �
;

X 3 ¼ ðb2
10b5ðx� yÞÞ�1 ðb9x2 � y2Þ o

ot
� b10x2 o

ou

� �
:

In the second case b12 = 1 one obtains that b8 5 0 and

b5 ¼ b3
11b8; b6 ¼ b2

11b8; b7 ¼ b11b8;

� b10tC þ ðb11b10 � b9Þð2b10b8ðb10 þ 1Þ � b4CÞ ¼ 0;

b11tb11 � b11u þ b3
11b4 � 3b2

11b3 þ 3b11b2 � b1 ¼ 0;

� 3b10ub11b8C � b8uCðb11b10 � b9Þ þ 3b2
8ðb11 þ b9Þðb2

11b2
10 � b2

9Þ � 3ðb11b10 � b9Þb8b2C ¼ 0;

� 3b10tb11b8C � 3b10ub8C þ b8tCð�b11b10 þ b9Þ þ 3b2
8ðb2

11b3
10 þ 3b2

11b2
10 þ 2b11b2

10b9 � 2b11b10b9

� 3b10b2
9 � b2

9Þ � 6ðb11b10 � b9Þb3b8C ¼ 0;

2b11tb10b8C þ b10tb11b8C þ b10ub8C � 2b9tb8C þ b8tCðb11b10 � b9Þ
þ b2

8ðb2
11b3

10 � b2
11b2

10 � 2b11b2
10b9 þ 2b11b10b9 þ b10b2

9 � b2
9Þ ¼ 0;

2b11tb8Cð�b11b10 þ b9Þ þ 2b11ub10b8C � b10tb
2
11b8C þ 3b10ub11b8C þ b8tb11Cð�b11b10 þ b9Þ

þ 2b8uCðb11b10 � b9Þ þ b2
8ð�b3

11b3
10 � b3

11b2
10 þ 4b2

11b2
10b9 þ 2b2

11b10b9 � 5b11b10b2
9

� b11b2
9 þ 2b3

9Þ � 2b9ub8C ¼ 0

The functions u(x,y) and w(x,y) are found from the compatible system of equations

ux ¼
b9C

ðb11b10 � b9Þ2ðx� yÞb8

; uy ¼ �
b11C

ðb11b10 � b9Þ2ðx� yÞb8

;

wx ¼ �
b10C

ðb11b10 � b9Þ2ðx� yÞb8

; wy ¼
C

ðb11b10 � b9Þ2ðx� yÞb8

:

The generators corresponding to (9) are

X 1 ¼ ðb11b10 � b9Þ2ðx� yÞb8

� ��1

ðb9 � b11Þ
o

ot
þ ð1� b10Þ

o

ou

� �
;

X 2 ¼ ðb11b10 � b9Þ2ðx� yÞb8

� ��1

ðb9x� b11yÞ o

ot
þ ðy � b10xÞ o

ou

� �
;

X 3 ¼ ðb11b10 � b9Þ2ðx� yÞb8Þ
� ��1

ðb9x2 � b11y2Þ o

ot
þ ðy2 � b10x2Þ o

ou

� �
:
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1 Introduction

Many methods of solving differential equations use a change of variables that transform a given differential equation
into another equation with known properties. Since the class of linear equations is considered to be the simplest
class of equations, it is attractive to transform a given differential equation into a linear equation. This problem,
which is called a linearization problem, is a particular case of the equivalence problem. The equivalence problem
can be formulated as follows. Let a set of invertible transformations be given. One can introduce the equivalence
property according to these transformations: two differential equations are equivalent if there is a transformation
of the given set that transforms one equation into another. The equivalence problem involves a number of related
problems such as defining a class of transformations, finding invariants of these transformations, obtaining the
equivalence criteria, and constructing the transformation.

1.1 Introduction to the problem

We give a short review of results related to an equivalence problem for a second-order ordinary differential equation
(ODE). Furthermore, we distinguish two types of transformations used in the equivalence problem for second-order
ODEs, namely point transformations and generalized Sundman transformations. Lie [1] also noted that all sec-
ond-order ODEs can be transformed into each other by means of contact transformations and that this is not so for
third-order equations. Thus this set of transformations cannot be applied to a classification of second-order ODEs.

Among the target equations, two classes of equations can be mentioned. One set of this class was obtained by
Lie [2]. Lie’s group classification of ODEs shows that the second-order equations can possess one, two, three, or
eight infinitesimal symmetries. The equations with eight symmetries can be linearized by a change of variables.
Lie showed that the latter equations are at most cubic in the first derivative and gave a convenient invariant descrip-
tion of all linearizable equations. A similar description of the equations with three symmetries was provided in
[3,4]. Another set of target classes corresponds to the Painlevé equations. Analysis of the classes of equations
corresponding to the first and second Painlevé equations was performed in [5,6].

For the linearization problem one studies those classes of equations that are equivalent to linear equations. The
first linearization problem for ODEs was solved by Lie [1]. He found the general form of all ODEs of second order
that can be reduced to a linear equation by changing the independent and dependent variables. He showed that any
linearizable second-order equation should be at most cubic in the first-order derivative and provided a linearization
test in terms of its coefficients. The linearization criterion is written through relative invariants of the equivalence
group. Tresse [7] treated the equivalence problem for second-order ODEs in terms of relative invariants of the
equivalence group of point transformations. In [8] an infinitesimal technique for obtaining relative invariants was
applied to the linearization problem.

A different approach to tackling the equivalence problem of second-order ODEs was developed by Cartan [9].
The idea of his approach was to associate with every differential equation a uniquely defined geometric structure of
a certain form. The Cartan approach was further applied by Chern [10] to third-order differential equations. Since
none of the conditions given in [10] is an implicit expression that could be used as a test for determining the type
of the studied equation, in a series of articles [11–15] the linearization problem was also considered. Linearization
with respect to point transformations is studied in [11], with respect to contact transformations in [12–16]. The
linearization problem was also investigated with respect to the generalized Sundman transformations [17–19].

The linearization problem via point transformations

τ = ϕ(t, x), u = ψ(t, x)

for a second-order equation ẍ = F(t, x, ẋ) is attractive because of the simplicity of the general solution of a linear
equation: a linearizable second-order ODE is equivalent to the free particle equation u′′ = 0. Thus, if one found the
linearizing transformation, then the general solution of the original equation could be found easily. Note that for a
linearizable equation ẍ = F(t, x, ẋ) the expression



u′ = ẋψx + ψt

ẋϕx + ϕt

is a first integral of the equation. Here subscripts mean derivatives, for example, ϕt = ∂ϕ/∂t, ϕx = ∂ϕ/∂x and so
on. This motivated the authors of [20–22] to study equations possessing a first integral of the form

I = ẋ Ã(t, x)+ C̃(t, x)

ẋ B̃(t, x)+ Q̃(t, x)
. (1)

Notice that a second-order equation equivalent to the free particle equation via the generalized Sundman transfor-
mation also possesses a first integral of the form (1).

The authors of [20–22] came to the form of first integral (1) from the study of λ-symmetries for second-order
equations that play a fundamental role in the study of λ-symmetries. Although the equation may lack Lie point
symmetries, there always exists a λ-symmetry associated to a first integral I = I (t, x, ẋ). Such a λ-symmetry can
be defined in canonical form by the vector field v = ∂x and the function λ = −Ix/Iẋ . When I is of the form

I = C(t, x)+ 1

A(t, x)ẋ + B(t, x)
, (A �= 0), (2)

such a function λ is given by

λ(t, x, ẋ) = γ (t, x)ẋ2 + α(t, x)ẋ + β(t, x), (3)

where

γ = ACx = −a3, (4a)

α = 2BCx − Ax/A = −a2 − ACt , (4b)

β =
(

Cx B2 − Bx

)
/A = −a1 + At/A − 2BCt . (4c)

In this way the study of ODEs that admit first integrals of the form (2) can be seen as a problem of classification
of ODEs that admit v = ∂x as a λ-symmetry for some function λ of the form (3).

The case where Cx = 0,

I = C(t)+ 1

ẋ A(t, x)+ C(t, x)
,

was studied in [23]. It must be mentioned here that the case where B̃ = 0 in (1) was thoroughly examined in [22].
We denote by B the class of equations corresponding to the particular case where γ = 0 in (3). The equations in

B are ODEs of the form

ẍ + a2(t, x)ẋ2 + a1(t, x)ẋ + a0(t, x) = 0 (5)

that admit first integrals of the form (2) with Cx = 0.
A significant subclass of ODEs in B, denoted by A, is constituted by the equations that admit first integrals of

the form A(t, x)ẋ + B(t, x) [that is, C = 0 in (2)]. By (4b), the equations in A are the equations of the form (5)
that admit v = ∂x as λ-symmetry for some function λ = −a2 ẋ +β. According to the results in [22], the coefficients
of the equations in A must satisfy either S1 = S2 = 0, where

S1(t, x) = a1x − 2a2t , S2(t, x) = (a0a2 + a0x )x + (a2t − a1x )t + (a2t − a1x ) a1, (6)

or, if S1 �= 0, S3 = S4 = 0, where

S3(t, x) =
(

S2

S1

)

x
− (a2t − a1x ) , S4(t, x) =

(
S2

S1

)

t
+

(
S2

S1

)2

+ a1

(
S2

S1

)
+ a0a2 + a0x . (7)

The equations in A such that S1 = S2 = 0 constitute the subclass A1, and they admit two functionally independent
first integrals of the form A(t, x)ẋ + B(t, x).

Several properties of the linearization through local and nonlocal transformations of the equations in B are derived
in [23,24]. All the equations in A1 pass the Lie test of linearization (i.e., their coefficients satisfy L1 = L2 = 0). In



contrast, none of the equations in A2 can be linearized through a local transformation; actually, there exist equations
in A2 that lack Lie point symmetries [see, for example, Eqs. (2.6) and (4.12) in [22]].

Although there exists Eq. (5) whose coefficients satisfy L1 = L2 = 0, which are not in A1 (see Example 9 in
[24]), they must all belong to B. It is important to remark that there are equations in B not linearizable through
local transformations, apart from the subclass A2 (as the family appearing in Example 2.1 in [25]). To linearize
such types of equations, one must consider nonlocal transformations of the form

X = F(t, x), dT = (G1(t, x)ẋ + G2(t, x)) dt. (8)

The equations in B can be characterized as the unique ODEs (5) that can be linearized through some nonlocal
transformation of the form (8). When G1(t, x) = 0 in (8), the equation must belong to A2 and vice versa. In other
words, the equations in A2 are the unique ODEs (5) that can be transformed into the linear equation XT T = 0 by
means of some nonlocal transformation of the form

X = F(t, x), dT = G(t, x)dt. (9)

These transformations are known in the literature as generalized Sundman transformations (see [17,18,26–30]
and references therein). Constructive methods to determine nonlocal linearizing transformations can be derived
from the algorithms that calculate the first integrals [23,24]. In particular, local changes of variables that linearize
the equations in A1 can be determined by just dealing with first-order ODEs. We remark that such linearizing
point transformations usually appear in the literature as solutions of an involutive system of second-order partial
differential equations [31,32].

1.2 Invariants of a class of second-order equations

We recall some known properties of a second-order equation:

ẍ + a3(t, x)ẋ3 + 3a2(t, x)ẋ2 + 3a1(t, x)ẋ + a0(t, x) = 0. (10)

This form of equation is conserved with respect to any change of the independent and dependent variables:

τ = ϕ(t, x), u = ψ(t, x). (11)

In fact, derivatives are changed by the formulae

u′ = g(t, x, ẋ) = Dtψ

Dtϕ
= ψt + ẋψx

ϕt + ẋϕx
,

u′′ = P(t, x, ẋ, ẍ) = Dt g

Dtϕ
= gt + ẋ gx + ẍ gẋ

ϕt + ẋϕx

= (ϕt + ẋϕx )
−3

(
ẍ (ϕtψx − ϕxψt )+ ẋ3 (ϕxψxx − ϕxxψx )

+ ẋ2 (ϕtψxx − ϕxxψt + 2 (ϕxψt x − ϕt xψx ))

+ ẋ (ϕxψt t − ϕt tψx + 2 (ϕtψt x − ϕt xψt ))+ ϕtψt t − ϕt tψt

)
.

(12)

Here Dt is the operator of the total derivative with respect to t , and

Δ = ϕtψx − ϕxψt �= 0.

Since the Jacobian of the change of variables Δ �= 0, the equation

u′′ + b3(τ, u)u′3 + 3b2(τ, u)u′2 + 3b1(τ, u)u′ + b0(τ, u) = 0 (13)

becomes (10), where
a1 = Δ−1

(
ϕxψxx − ϕxxψx + ϕ3

x b0 + 3ϕ2
xψx b1 + 3ϕxψ

2
x b2 + ψ3

x b3
)
,

a2 = Δ−1
(
3−1 (ϕtψxx − ϕxxψt + 2 (ϕxψt x − ϕt xψx ))+ ϕtϕ

2
x b0

+ϕx (2ϕtψx + ϕxψt ) b1 + (
ϕtψ

2
x + 2ϕxψtψx

)
b2 + ψtψ

2
x b3

)
,

a3 = Δ−1
(
3−1 (ϕxψt t − ϕt tψx + 2 (ϕtψt x − ϕt xψt ))+ ϕ2

t ϕx b0

+ (
ϕ2

t ψx + 2ϕtϕxψt
)

b1 + (
2ϕtψtψx + ϕxψ

2
t

)
b2 + ψ2

t ψx b3
)
,

a0 = Δ−1
(
ϕtψt t − ϕt tψt + ϕ3

t b0 + 3ϕ2
t ψt b1 + 3ϕtψ

2
t b2 + ψ3

t b3
)
.

(14)



Two quantities play a major role in the study of Eqs. (13):

L1 = −∂Π11

∂u
+ ∂Π12

∂τ
− b0Π22 − b2Π11 + 2b1Π12,

L2 = −∂Π12

∂u
+ ∂Π22

∂τ
− b3Π11 − b1Π22 + 2b2Π12,

where

Π11 = 2
(

b2
1 − b2b0

)
+ b1τ − b0u, Π22 = 2

(
b2

2 − 3b1b3

)
+ b3τ − b2u,

Π12 = b2b1 − b3b0 + b2τ − b1u .

Under point transformation (11) these components are transformed as follows [33]:

L̃1 = Δ(L1ϕt + L2ψt ) , L̃2 = Δ(L1ϕx + L2ψx ) . (15)

Here the tilde means that a value corresponds to system (10): the coefficients bi are exchanged with ai , the variables
τ and u are exchanged with t and x , respectively.

Lie [1] showed that any equation with L1 = 0 and L2 = 0 is equivalent to the equation u′′ = 0. Liouville [33]
also found other relative invariants, for example,

v5 = L2 (L1L2τ − L2L1τ )+ L1 (L2L1u − L1L2u)− b3L3
1 + 3b2 L2

1L2 − 3b1L1L2
2 + b0 L3

2

and

w1 = L−4
1

(
−L3

1 (Π12L1 −Π11L2)+ R1

(
L2

1

)
τ

− L2
1 R1τ + L1 R1 (b1L1 − b0 L2)

)
,

where

R1 = L1L2τ − L2L1τ + b2L2
1 − 2b1L1L2 + b0 L2

2.

Notice that for the Painlevé equations L1 �= 0 and L2 = 0, v5 = 0 and w1 = 0.

Remark 1.1 Without loss of generality one can assume that L1 �= 0 and L2 = 0; otherwise a change of the
dependent and independent variables such that the functions ϕ(t, x) and ψ(t, x) satisfy the equation

ϕy L1 + ψy L2 = 0

leads to this case. For the sake of simplicity we study equations with L1 �= 0 and L2 = 0.

1.3 General difficulties of the equivalence problem

Despite the fact that the criteria for linearizability can be simply checked, there are certain difficulties associated
with finding the linearizing transformation. Let us consider a second-order ODE

y′′ + b(x, y)y′2 + c(x, y)y′ + d(x, y) = 0, (16)

where the coefficients satisfy the conditions

cy = 2bx , dyy − bxx − bx c + byd + dyb = 0. (17)

The transformation

t = ϕ(x), u = ψ(x, y) (18)

mapping Eq. (16) into the equation u′′ = 0 is found from the compatible conditions

ψyy = ψyb, 2ψxy = ϕ−1
x ψyϕxx + cψy, ψxx = ϕ−1

x ψxϕxx + ψyd (19)



and

2ϕ′ϕ′′′ − 3ϕ′′ 2

ϕ′ 2 = H, (20)

where H = 4(dy + bd)− (2cx + c2). Notice that by virtue of the second equation of (17), the function H = H(x).
To solve systems (19) and (20), one must first solve Eq. (20). The change ϕ′ = g−2 reduces Eq. (20) to the equation

g′′ + 1

4
Hg = 0. (21)

It is well known that the Riccati substitution

g′ = gv

reduces Eq. (21) to the Riccati equation

v′ + v2 + 1

4
H = 0.

Thus, to solve Eq. (20), one must be able to solve the Riccati equation, which is not solvable in the general case.
The example presented above shows that the solution of the linearization problem is only theoretical: in many

applications it becomes impossible to find the linearizing transformation. A similar problem is also encountered in
finding the intermediate integral.

2 Existence of first integral

The existence of the first integral of the form

I = A(t, x)+ 1

B(t, x)ẋ + Q(t, x)
, (B �= 0), (22)

of a second-order equation requires that the necessary form of the equation be (10), where the coefficients are
related by the equations

a0 = (
Qt − At Q2

)
/B, a1 = (

Bt + Qx − 2At B Q − Ax Q2
)
/(3B),

a2 = (
Bx − At B2 − 2Ax B Q

)
/(3B), a3 = −Ax B.

(23)

The sufficient conditions for the existence of an intermediate integral of the form (22) are obtained if one considers
(23) as equations for the functions A(t, x), B(t, x), and Q(t, x)with given coefficients ai (t, x), (i = 0, 1, 2, 3).

System (23) gives

At = B−1G, Ax = −B−1a3, Qt = a0 B + B−1G Q2, Bt = −Qx + 2G Q + 3a1 B − a3 B−1 Q2, (24)

where

G = B−1 (Bx − 3a2 B + 2a3 Q) .

The function G(t, x) is introduced in order to simplify the calculations.
The equations (Ax )t = (At )x and (Bx )t = (Bt )x give

Gx = −B−1 Qx a3 − a3t + 3a1a3 + 3a2G − B−2a2
3 Q2 + G2,

Qxx = B−2
(
Qx B (3a2 B − 4a3 Q + 3BG)− Gt B3 + B3 (3a1x − 3a2t + 2a0a3)

+ (6a2a3 − a3x ) B Q2 − 4a2
3 Q3 + 4a3 BG Q2

)
.

(25)

The equation (Qxx )t = (Qt )xx becomes

Gtt = B−4
(
4Gt Qx B3 − 3Gt B4a1 + 4Gt B2a3 Q2 − 2Q2

x B2G − 2Ga2
3 Q4

+3Qx B3 (2a2t − a1x − a0a3)− 4Qx BGa3 Q2 + B4G2a0 + B4G (a0x + 3a0a2)

+B4 (a0t a3 + a1t x + 3a1x a1 − 2a2t t − 6a2t a1 + a3t a0 + 3a0a1a3 − λ1)

−3B2a3 Q2 (a1x − 2a2t + a0a3)
)
.

(26)



The equation (Gtt )x − (Gx )t t = 0 leads to S = 0, where

S ≡ 12Gt Qx B3G − 6G2
t B4 − 6Q2

x B2G2 + 12Gt B2Ga3 Q2 − 12Qx BG2a3 Q2

+12 (a1x − 2a2t + a0a3) B2
(
Gt B2 − Qx BG − Ga3 Q2

) − 6G2a2
3 Q4 + 3B4Gλ1

−B4
(
λ1x − 3a2λ1 + 6 (a1x − 2a2t + a0a3)

2) .
Furthermore, the equations

Sx − 6 (G + a2) S = 0, B2St − 6
(

Qx B − B2a1 + a3 Q2
)

S = 0

are

Ba3 Qx = 3B2Gμ1 − 5B2G2 + B2 (3a1a3 − μ2)− a2
3 Q2, (27a)

Gt = (
15B2λ1

)−1 (
6Qx Bλ1 (5G − μ1)− 3B2G (λ1t + 6a1λ1)+ 6a3λ1 Q2 (5G − μ1)

+B2 (λ1μ1t + 12a1xλ1 − 24a2tλ1 + λ1tμ1 + 12a0a3λ1 + 6a1λ1μ1)
)
,

(27b)

where all coefficients μi , (i = 1, 2, . . . , 7) are presented in the Appendix.
For further analysis one needs to consider two cases: (a) a3 �= 0 and (b)1 a3 = 0. It is also worth noting that

because of the relative invariant v5, the property for a3 which is not equal to zero, is an invariant property of the
point transformations conserving L2 = 0.

2.1 Case a3 �= 0

Let a3 �= 0; then Eq. (27b) gives

Qx = (Ba3)
−1

(
3B2Gμ1 − 5B2G2 + B2 (3a1a3 − μ2)− a2

3 Q2
)
.

Thus, all first-order derivatives of the unknown functions A(t, x), B(t, x), Q(t, x), and G(t, x) are found:

At = B−1G, Ax = −B−1a3,

Qt = Ba0+B−1G Q2, Qx = (−5B2G2+3B2Gμ1+B2 (3a1a3−μ2)−a2
3 Q2

)
/(Ba3),

Bt =
(
5BG2 − 3BGμ1 + Bμ2 + 2Ga3 Q

)
/a3, Bx = BG + 3Ba2 − 2a3 Q,

Gt = (−10G3 + 8G2μ1 − Gμ3 + λ1μ4
)
/a3, Gx = 6G2 + 3G (a2 − μ1)− a3t + μ2. (28)

The overdetermined system (28) is compatible if the conditions

(At )x − (Ax )t = 0, (Bt )x − (Bx )t = 0,
(Qx )t − (Qt )x = 0, (Gt )x − (Gx )t = 0

(29)

are satisfied. Notice also that by virtue of Eqs. (28), (24) are satisfied. Hence, it is not necessary to substitute the
first-order derivatives into the intermediate Eqs. (25) and (26).

The conditions in (29) reduce to equations

H ≡ 12G3a3 − G2μ5 − Gμ6 − μ7 = 0, (30a)

75G4 − 80μ1G3 + 5q2G2 − q1G − q0 = 0, (30b)

where the coefficients qi (i = 0, 1, 2) are presented in the Appendix. Let us also add to this set of equations the
following ones:

Hx = 0, Ht = 0. (31)

Equation (30a) is a polynomial equation of third degree with respect to G. If we exclude from Eqs. (30b) and (31)
the value

G3 =
(

G2μ5 + Gμ6 + μ7

)
/(12a3) ,

then Eqs. (30b) and (31) become

1 This case has been studied in [23].



5α1G2 + β1G + γ1 = 0, α2G2 + β2G + γ2 = 0, 25α3G2 + β3G + 25γ3 = 0, (32)

where all coefficients αi , βi , and γi , (i = 1, 2, 3) are presented in the Appendix.
In solving Eq. (30a) with respect to G, one must also satisfy the conditions Gt = (G)t and Gx = (G)x . Satis-

fying these conditions is equivalent to satisfying Eq. (31). Thus, further study simply entails an algebraic study of
Eqs. (30a) and (32). This study depends on the coefficients αi , βi , (i = 1, 2, 3).

For example, assume that α1 �= 0. From the first equation of (32) one finds G2. Substituting G2 into (30a) and
the remaining equations of (32), one obtains linear equations with respect to G. One needs to study resolving these
linear equations with respect to G. This depends on the coefficients of these equations.

3 Case G = 0

Let us consider the case G = 0 without restrictions for λ2. Then

At = 0, Ax = −a3/B, Qt = a0 B,
Bt = ( − Qx B + 3a1 B2 − a3 Q2)/B, Bx = 3a2 B − 2a3 Q.

(33)

The equations (Ax )t − (At )x = 0 and (Bx )t − (Bt )x = 0 give

Qx a3 B = −a3t B2 + 3a1a3 B2 − a2
3 Q2, (34a)

Qxx B2 + Qx B (2a3 Q − 3a2 B)+ B3 (3a2t − 3a1x − 2a0a3)

+B Q2 (a3x − 6a2a3)+ 2B2 Q (3a1a3 − a3t )+ 2a2
3 Q3 = 0.

(34b)

3.1 Case a3 �= 0

If a3 �= 0, then Eq. (34a) defines

Qx =
(
−a3t B2 + 3a1a3 B2 − a2

3 Q2
)
/(a3 B) . (35)

This reduces Eq. (34b) and the equation (Qx )t − (Qt )x = 0 to
(

a3t x − 3a2t a3 + 2a0a2
3

)
a3 − a3t a3x = 0,

a3t t − 3a3t a1 + (a0x − 3a1t + 3a0a2) a3 = 0. (36)

Thus, if Eq. (10) satisfies condition (36), then the overdetermined system of equations consisting of Eqs. (33) and
(35) is involutive.

For example, for a3 = 1 condition (36) can be solved as follows:

a0 = 3a2t/2, a1 = a2x/2 + 3a2
2/4 + ϕ,

where ϕ(x) is an arbitrary function. This means that all equations of the form

ẍ + ẋ3 + 3a2 ẋ2 +
(

a2x/2 + 3a2
2/4 + ϕ

)
ẋ + 3a2t/2 = 0 (37)

with arbitrary functions a2(t, x) and ϕ(x) have the intermediate integral

I = A + 1

B(ẋ + 3
2 a2)+ H

,

where the functions A(x), B(x), and H(x) are solutions of the equations

A′ = −1/B, B ′ = −H, H ′ = 3Bϕ − H2/B.

Notice that for a2t = 0 Eq. (36) can be reduced to a first-order ODE by the standard change ẋ = y(x), whereas
for a2t �= 0 this technique is not applicable.



3.2 Case a3 = 0

In this case, Eq. (34a) is satisfied and Eq. (34b) becomes

Qxx = 3Qx a2 − 3B (a2t − a1x ) . (38)

The equation (Qxx )t − (Qt )xx = 0 gives

3Qxη = B (ηt + 3a1η − λ1), (39)

where η = a1x − 2a2t . Hence, for η = 0 one has that2 λ1 = 0, and there are no other additional equations for the
functions A(t, x), B(t, x), and Q(t, x). This means that the system of equations consisting of Eqs. (33) and (38)
is involutive. If η �= 0, then one can find Qx . The equations (Qx )t − (Qt )x = 0 and (Qxx )x − (Qx )x = 0 give the
conditions

3ηηt t = 4η2
t − 3ηtηa1 + 15ηtλ1 + 9η2

(
a0x − a1t + 3a0a2 − 2a2

1

) − 9η (λ1t + a1λ1)+ 9λ2
1,

ηηt x = ηtηx + 3ηxλ1 − 2η3 + 3η2a2t − 3ηλ1x .
(40)

Thus, if Eq. (10) satisfies condition (40), then the overdetermined system of equations consisting of Eqs. (33)
and (39) is involutive.

4 Examples

In this section we consider examples of first integrals of the form

I = A(t, x)ẋ + B(x, t)

ẋ + Q(x, t)
. (41)

Example 4.1 The most general equation associated with the first integral I in (41) is given by

ẍ + Ax

Δ
ẋ3 + 1

Δ
(At + Bx + Ax Q − AQx ) ẋ2

+ 1

Δ
(Bt + At Q − AQt + Bx Q − B Qx ) ẋ + 1

Δ
(Q Bt − B Qt ) = 0, (42)

where Δ = AQ − B.

Proof Rearranging (41) we obtain

I (ẋ + Q(x, t)) = A(t, x)ẋ + B(x, t),

which immediately yields

I (ẍ + Qx ẋ + Qt ) = Aẍ + Ax ẋ2 + At ẋ + Bx ẋ + Bt ,

(Aẋ + B)(ẍ + Qx ẋ + Qt ) = (ẋ + Q(x, t))(Aẍ + Ax ẋ2 + At ẋ + Bx ẋ + Bt ). ��
This equation is closely related to the (unparameterized) geodesic equations of some connection Γ on U ∈ R2

ẍ c + Γ c
ab ẋa ẋb = v ẋ c

for xa(t) = (x(t), y(t)). Eliminating the parameter t yields the second-order ODE for y as a function of x

d2 y

dx2 = a(x, y)

(
dy

dx

)3

+ b(x, y)

(
dy

dx

)2

+ c(x, y)

(
dy

dx

)
+ d(x, y) = 0, (43)

where

a(x, y) = −Γ 2
11, b(x, y) = Γ 1

11 − 2Γ 2
12, c(x, y) = 2Γ 1

12 − Γ 2
22, d(x, y) = Γ 1

22.

2 Notice that for Eq. (10), which is not linearizable, one can assume without loss of generality that λ1 �= 0.



In other words, any second-order ODEs with cubic nonlinearity in the first derivatives of the form (42) gives rise
to some projective structures.

Example 4.2 A quasimonomial q over K is defined as

q = xc =
n∏

i=1

xci
i , ci ∈ K.

A quasimonomial function is a finite sum of quasimonomials f : C → �, where � = C ∪ {∞}, defined as

x −→
∑

ai

n∏
j=1

x
ci j
j .

We assume A = xαtβ , B = xγ tδ and Q = 1 in (42) to obtain the second-order equation

ẍ + α

x(1 − xγ−α)
ẋ3 + α + β x

t + γ xγ−α

x(1 − xγ−α)
ẋ2 + β x

t + β xγ−α+1

t + γ xγ−α

x(1 − xγ−α)
ẋ + β xγ−α+1

t

x(1 − xγ−α)
= 0, (44)

which admits the first integral

I = xαtβ(ẋ + xγ−α)
ẋ + 1

.

4.1 Claim

Setting α = −1, β = 1 = δ, γ = 0 we obtain the first integral of

ẍ + 1

x(x − 1)
ẋ3 +

(
1

x(x − 1)
+ 1

t (1 − x)

)
ẋ2 + 1

t

(
1 + x

1 − x

)
ẋ + x

t (1 − x)
= 0 (45)

as

I =
(

t

x

)
ẋ + x

ẋ + 1
.

Example 4.3 The first integral of the second-order equation

ẍ + t

x2(x − 1)
ẋ3 +

(
2

1 − x
− (1 + x)t

(1 − x)x2 + 1

x

)
ẋ2 +

(
1

1 − x
+ 1 − t

(1 − x)x

)
ẋ + 1

1 − x
= 0 (46)

is

I = et/x ẋ + x

ẋ + 1
.

Example 4.4 Let us set A = Q−1 = eα(x)t and B = b (constant) in (41). Then we obtain the equation

(1 − b)ẍ + eα(x)t (α′(x)t ẋ + α(x))ẋ2 + 2(α′(x)t ẋ + α(x))ẋ + e−α(x)t (α′(x)t ẋ + bα(x)) = 0. (47)

The corresponding first integral is

I = eα(x)t ẋ + b

ẋ + e−α(x)t .



4.2 Time-independent case

Consider At = Bt = Qt = 0. Thus Eq. (41) becomes

ẍ + Ax

Δ
ẋ3 + 1

Δ
(Bx + Ax Q − AQx ) ẋ2 + 1

Δ
(At Q − AQt + Bx Q − B Qx ) ẋ = 0, (48)

which can be expressed as

ẋ = y, ẏ = − 1

Δ

(
Ax y3 + (Bx + Ax Q − AQx ) y2 + (Bx Q − B Qx ) y

)
. (49)

This yields the flow equation

dy

dx
= − 1

Δ

(
Ax y2 + (Bx + Ax Q − AQx ) y + (Bx Q − B Qx )

)
.

Assume A = 1; thus, Δ = Q − B. The flow becomes

dy

dx
− Δ′(x)
Δ(x)

y = B2

Δ

d

dx

(
Q

B

)
.

This immediately yields

y = − 1

Q/B − 1
+ C1.

Hence we obtain

t =
∫

dx

C1 Q − (C1 + 1)B(x)
.

4.3 Reduction

Let Ax = 0 and set

1

Δ
(At + Bx − AQx ) = b(x, t) = 1

2
φx ,

1

Δ
(Bt + At Q − AQt + Bx Q − B Qx ) = c(x, t) = φt . (50)

A large number of second-order ODEs in the Painlevé–Gambier classification system belong to the following
class of equations:

ẍ + 1

2
φx ẋ2 + φt ẋ + B(t, x) = 0.

This equation yields the Lagrangian description via Jacobi’s last multiplier. If we write this equation in the form

ẍ = F(t, x, ẋ) = −
[

1

2
φx ẋ2 + φt ẋ + B(t, x)

]
,

then the Jacobi last multiplier M is given by the solution of

d

dt
ln M = −∂F

∂ ẋ
.

In the present case we have

M = ∂2L

∂ ẋ2 = eφ(t, x).

We then obtain the Lagrangian as

L(t, x, ẋ) = eφ(t, x) ẋ2

2
+ f1(t, x)ẋ + f2(t, x).



4.4 Conditions for Lagrangians

Let us express φ in terms A, B, Q and find the conditions for the Lagrangian. Defining

φx = 2

Δ
(At + Bx − AQx ) ,

φt = 1

Δ
(Bt + At Q − AQt + Bx Q − B Qx )

immediately yields

φxt = 2

Δ

(
A′′(t)+ Bxt − A′(t)Qx − AQxt

) − 2

Δ2

(
A′(t)Q + AQt − Bt

) (
A′(t)+ Bx − AQx

)
,

φt x = 1

Δ

(
Btx + A′Qx − AQtx + Bxx Q − B Qxx

) − 1

Δ2 (AQx − Bx )
(
Bt + A′Q − AQt + Bx Q − B Qx

)
.

4.5 Claim

A second-order nonlinear equation of the form

ẍ + b(x, t)ẋ2 + c(x, t)ẋ + d(x, t) = 0

admits a Lagrangian provided

2A′′ + Bxt − 3A′Qx − AQxt − Bxx Q + B Qxx (AQ − B)

= A′Q
(
2A′ + 3Bx − 3AQx

) + (AQt − Bt )
(
2A′ + Bx − AQx

) − (AQx − Bx ) (Bx Q − B Qx ) ,

where b(x, t) and c(x, t) are defined as (8) and d(x, t) = 1
Δ
(Q Bt − B Qt ).

Outline of proof. It follows analogously to the argument in Sect. 4.3 and makes use of the compatibility condition
φxt = φt x . ��
Example 4.5 Set A = 1, Δ = AQ − B = xαtβ , and assume Q = xγ in (51); the equation becomes

ẍ − α

x
ẋ2 +

(
(γ − α)xγ−1 − β

t

)
ẋ − βxγ

t
= 0 (51)

whose first integral is

I = ẋ + xγ − xαtβ

ẋ + xγ
.

Let us find the conditions γ and α for which Eq. (51) gives a Lagrangian description.

4.6 Claim

For γ = α or γ = 1 Eq. (51) yields a Lagrangian description.

Proof Equate 1
2φx = −α

x and φt = (γ − α)xγ−1 − β
t . This immediately yields φxt = 0 and φt x = (γ − α)(γ −

1)xγ−2. Thus from the compatibility condition we obtain our criteria. ��

5 Conclusion

Any second-order ODE that possesses a first integral of the form (1) must be cubic with respect to the first-order
derivative (10). This paper gives complete criteria of the existence of a first integral of the form (1) for a second-order
ODE (10), which is reduced to an equation with L2 = 0. Despite the fact that any second-order ODE (10) can be
reduced to an equation with L2 = 0, the complete solution of the problem requires that sufficient conditions be
given using coefficients of the original equation (not reduced). This is still an open problem.
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Appendix

The following coefficients μi appear in Eqs. (27a) and (27b) in Sect. 2:

μ1 = (λ1x − 3a2λ1) /λ1,

μ2 = (
μ1x + 3a3t − 3a2μ1 + μ2

1

)
/3,

μ3 = (
λ1t a3 − 24a1a3λ1 + 6λ1μ

2
1 + 10λ1μ2

)
/ (5λ1) ,

μ4 = (
μ1t a3 + 12a3 (a1x − 2a2t + a0a3 + a1μ1)− 6μ3

1 − 4μ1μ2 + 5μ1μ3
)
/ (15λ1) ,

μ5 = a3x − 6a2a3 + 10a3μ1,

μ6 = (
a3t a3 − 6a1a2

3 + 18a3μ
2
1 + a3μ2 − a3μ3 − 3μ1μ5

)
/5,

μ7 = (
3a2t a2

3 − μ2x a3 − 2a0a3
3 − 18a1a2

3μ1 + 6a2a3μ2 + a3λ1μ4 + 54a3μ
3
1

−4a3μ1μ2 − 3a3μ1μ3 − 9μ2
1μ5 − 15μ1μ6 + μ2μ5

)
/5.

In addition, the coefficients αi , βi , γi appear in Sect. 2.1 and Eq. (32):

α1 = 720a2
3μ

2
1 − 432a1a3

3 + 144a2
3μ2 − 144a2

3μ3 − 80a3μ1μ5 − 300a3μ6 − 5μ2
5,

β1 = 1728a1x a3
3 − 3456a2t a

3
3 + 1776a0a4

3 + 3024a1a3
3μ1 − 1680a2

3λ1μ4 − 3456a2
3μ

3
1

−1008a2
3μ1μ2 + 1008a2

3μ1μ3 + 432a3μ
2
1μ5 + 1040a3μ1μ6 − 300a3μ7 − 25μ5μ6,

γ1 = 48a0x a4
3 − 144a1t a

4
3 + 48μ2t a

3
3 + 144a0a2a4

3 − 432a1a3
3μ2 − 144a2

3λ1μ1μ4 + 96a2
3μ

2
2

+864a2
3μ

2
1μ2 − 48a2

3μ2μ3 − 144a3μ1μ2μ5 + 320a3μ1μ7 − 240a3μ2μ6 − 25μ5μ7,

α2 = −72μ5t a
3
3 + 432a1a3

3μ5 + 2592a3
3λ1μ4 − 1296a2

3μ
2
1μ5 + 1152a2

3μ1μ6 − 72a2
3μ2μ5

−2160a2
3μ7 + 264a3μ1μ

2
5 + 180a3μ5μ6 − 5μ3

5,

β2 = −72μ6t a
3
3 + 432a1a3

3μ6 − 144a2
3λ1μ4μ5 − 1296a2

3μ
2
1μ6 + 1728a2

3μ1μ7

−72a2
3μ2μ6 − 72a2

3μ3μ6 + 264a3μ1μ5μ6 − 60a3μ5μ7 + 240a3μ
2
6 − 5μ2

5μ6,

γ2 = −72μ7t a
3
3 + 432a1a3

3μ7 − 72a2
3λ1μ4μ6 − 1296a2

3μ
2
1μ7 − 72a2

3μ2μ7 − 144a2
3μ3μ7

+264a3μ1μ5μ7 + 240a3μ6μ7 − 5μ2
5μ7,

α3 = −2μ5x a3 − 432a1a3
3 + 18a2a3μ5 + 1296a2

3μ
2
1 + 144a2

3μ2 − 72a2
3μ3

−242a3μ1μ5 − 336a3μ6 + 3μ2
5,

β3 = −1212a1x a3
3 + 2424a2t a

3
3 − 10μ5t a

2
3 + 30μ5x a3μ1 − 1244a0a4

3 + 4644a1a3
3μ1

+120a1a2
3μ5 − 270a2a3μ1μ5 + 1540a2

3λ1μ4 − 18336a2
3μ

3
1 − 1548a2

3μ1μ2 + 468a2
3μ1μ3

+3312a3μ
2
1μ5 + 5090a3μ1μ6 − 30a3μ2μ5 + 20a3μ3μ5 + 850a3μ7 + 75μ5μ6,

γ3 = −2μ7x a3 + 12a1a2
3μ6 + 30a2a3μ7 − 36a3μ

2
1μ6 − 38a3μ1μ7 − 4a3μ2μ6

+2a3μ3μ6 + 6μ1μ5μ6 + 3μ5μ7 + 10μ2
6.

The qi that follow appear in Eq. (30b):

q0 = a0x a2
3 − 3a1t a2

3 − a3tμ2 + μ2t a3 + 3a0a2a2
3 − 3a1a3μ2 − 3λ1μ1μ4 + μ2

2,

q1 = 36a1x a3 − 72a2t a3 + 3a3tμ1 + 37a0a2
3 + 45a1a3μ1 − 35λ1μ4 − 18μ1

(
μ2

1 + μ2 − μ3
)
,

q2 = a3t + 3a1a3 + 3μ2
1 − 2μ2 + 2μ3.
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C. MURIEL∗ and J. L. ROMERO†
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We characterize the equations in the class A of the second-order ordinary differential equations
ẍ = M(t, x, ẋ) which have first integrals of the form A(t, x)ẋ + B(t, x). We give an intrinsic char-
acterization of the equations in A and an algorithm to calculate explicitly such first integrals.
Although A includes equations that lack Lie point symmetries, the equations in A do admit λ-
symmetries of a certain form and can be characterized by the existence of such λ-symmetries. The
equations in a well-defined subclass of A can completely be integrated by using two independent
first integrals of the form A(t, x)ẋ + B(t, x). The methods are applied to several relevant families
of equations.

Keywords: Ordinary differential equations; first integrals; λ-symmetries; Sundman transformations.

1. Introduction

The search of new methods to solve ordinary differential equations (ODEs) plays a funda-
mental role in the treatment of physical models. In being faced with the problem of solving
a given ODE one may try to transform it into another ODE with known solutions. Usually
the considered transformed equations are linear equations and invertible point transforma-
tions are the most commonly used. The first linearization problem for ODEs was solved by
Lie [11]. He showed that a second-order ODE

ẍ = M(t, x, ẋ) (1.1)

is linearizable by a (local) change of variables if and only if the equation is of the form

ẍ + a3(t, x)ẋ3 + a2(t, x)ẋ2 + a1(t, x)ẋ + a0(t, x) = 0 (1.2)

and the coefficients ai, 0 ≤ i ≤ 3, satisfy two conditions involving their partial derivatives
[12,9,10]. If Eq. (1.1) is linearizable to equation XTT = 0, then this last equation has two

209
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independent first integrals of the form Ã(T,X)Ẋ + B̃(T,X), but in terms of variables (t, x)
the original equation may lack first integrals of the form

A(t, x)ẋ + B(t, x). (1.3)

In the literature there are plenty of examples of equations with first integrals of the form
(1.3) but, as far as we know, no characterizations of these equations have been derived.

Throughout this paper we say that a second-order ODE (1.1) belongs to the class A if
the equation has a first integral of the form (1.3), by using the same variables in (1.1) and
(1.3).

In Sec. 2 we prove that equations in A must have the form (1.2) with a3 = 0, i.e. the
equations must be of the form

ẍ + a2(t, x)ẋ2 + a1(t, x)ẋ + a0(t, x) = 0. (1.4)

The relationships between the coefficients ai, 1 ≤ i ≤ 2, and the functions A and B are
also established. We also consider in this section an equation in A that lacks Lie point
symmetries (see Eq. (2.6)). Another example is given in Sec. 4 (Eq. (4.12)).

In Sec. 3 we give an intrinsic characterization of the equations in the class A. We
also provide an algorithm to determine the first integrals of the form 1.3 in terms of the
coefficients ai, 1 ≤ i ≤ 2. The main result in Sec. 3 (Theorem 2) connects A with the class
of equations that are linearizable by a generalized Sundman transformation of the form

X = F (t, x), dT = G(t, x)dt. (1.5)

This is a consequence of Theorem 2 and the results of Duarte et al. in [6]. The three equations
appearing in the examples of [6] are also considered here to illustrate our algorithm to
determine first integrals.

We have already mentioned that there are equations in A that lack Lie point symmetries.
Recently, several relationships between first integrals and λ-symmetries have been derived
([14,15]). In Sec. 4 we characterize the equations in A in terms of the λ-symmetries of the
equation.

If the vector field ∂x is a λ-symmetry for two different functions λ1 = −a2ẋ + β1(t, x)
and λ2 = −a2ẋ + β2(t, x) then in Sec. 5 we prove that the equation necessarily admits two
independent first integrals of the form (1.3) and therefore the equation can completely be
integrated.

This complete integrability is illustrated for a large family of equations (Eq. (5.7)) that
includes several significant equations of mathematical physics. These equations have been
studied by several authors in order to find first integrals by using different approaches. The
algorithms presented in this paper allow us to unify the treatment of these equations in
a systematic and general procedure. We also characterize the equations of the form (1.4)
with a2 = 0 which have two independent first integrals of the form (1.3) as the second-order
linear equations.

Several aspects related to the linearization of the equations studied in this paper will be
dealt with in a separate work.
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2. A First Characterization of the Equations in A
We consider a second-order ordinary differential equation

ẍ = M(t, x, ẋ). (2.1)

If w = A(t, x)ẋ + B(t, x) is a first integral of (2.1) and Z = ∂t + ẋ∂x + M(t, x, ẋ)∂ẋ is the
linear operator associated to this equation then Zw = 0; i.e.

Zw = (Atẋ + Bt) + (Axẋ + Bx)ẋ + M(t, x, ẋ)A = 0. (2.2)

This proves that the equation is of the form

ẍ + a2(t, x)ẋ2 + a1(t, x)ẋ + a0(t, x) = 0, (2.3)

where the coefficients a0, a1, a2 can be written in terms of A and B as

a2(t, x) =
Ax

A
,

a1(t, x) =
Bx + At

A
,

a0(t, x) =
Bt

A
.

(2.4)

Conversely, we suppose that A and B are two functions verifying (2.4). If we define
w = Aẋ + B then w is a first integral of (2.3) since

Dtw = A ·
(

ẍ +
Ax

A
ẋ2 +

Bx + At

A
ẋ +

Bt

A

)
= A · (ẍ + a2ẋ

2 + a1ẋ + a0). (2.5)

This proves the following theorem:

Theorem 1. A function w = Aẋ+B is a first integral of (2.1) if and only if Eq. (2.1) is of
the form (2.3) and functions A and B satisfy (2.4). In this case A is an integrating factor
of (2.3).

Example 1. Ibragimov ([9]) considered the equation

ẍ − ẋ2

x
− t2 + t

x
ẋ + 2t + 1 = 0 (2.6)

as an example of an equation that does not admit Lie point symmetries but has an inte-
grating factor µ(t, x, ẋ) = 1/x, that could be found by using a method based on varia-
tional derivatives. It can be checked that the corresponding equations (2.4) are satisfied by
A(t, x) = 1/x and B(t, x) = (t2 + t)/x. Therefore w = ẋ/x + (t2 + t)/x is a first integral
of (2.6).

3. Intrinsic Characterization of the Equations in A and Construction of
First Integrals

Equations (2.4) allows us readily to obtain necessary conditions on a0, a1 and a2 in order
that (2.3) have a first integral of the form A(t, x)ẋ + B(t, x), with A �= 0. This can be
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done by eliminating A, B and their derivatives from (2.4) by using the compatibility
conditions

Axt = Atx, Bxt = Btx, Cxt = Ctx, (3.1)

where C = Bx is an auxiliar function. Condition Cxt = Ctx can be written in the form

CS1 + AS2 = 0, (3.2)

where

S1(t, x) = a1x − 2a2t,

S2(t, x) = (a0a2 + a0x)x + (a2t − a1x)t + (a2t − a1x)a1.
(3.3)

The analysis of (3.2) leads us to consider two cases:

Case I. If S1 = 0 then necessarily S2 = 0, since A �= 0. In this case a necessary condition
for the existence of two functions A and B satisfying (2.4) is S1 = S2 = 0.

Case II. If S1 �= 0 then we can write S2/S1 = −C/A, since A �= 0. By derivating this
expression, and by using (2.4), we get:

S3(t, x) ≡
(

S2

S1

)
x

− (a2t − a1x) = 0, (3.4)

S′
4(t, x) ≡

(
S2

S1

)
x

+
(

S2

S1

)
t

+
(

S2

S1

)2

+ a1

(
S2

S1

)
− (a2t − a1x) + (a0a2 + a0x) = 0. (3.5)

By using (3.4) in (3.5), this second equation can be written as

S4(t, x) ≡
(

S2

S1

)
t

+
(

S2

S1

)2

+ a1

(
S2

S1

)
+ a0a2 + a0x = 0. (3.6)

Therefore, in this case, a necessary condition for the existence of two functions A and
B which satisfy (2.4) is S3 = S4 = 0.

We now investigate if the former conditions are sufficient for the existence of two func-
tions A and B that verify (2.4). We consider the same two cases as above.

Case I. We suppose that the coefficients of (2.3) are such that S1 = S2 = 0. Condition
S1 = 0 implies that a2t = 1

2a1x and therefore the function S2 can be written as S2(t, x) =
fx(t, x), where

f(t, x) = a0a2 + a0x − 1
2
a1t − 1

4
a2

1. (3.7)

Condition S2 = fx = 0 implies that f does not depend on x and, in this case, we can write
f = f(t).

Let P = P (t, x) be a function such that

Pt =
1
2
a1, Px = a2. (3.8)

The existence of such function P can be ensured, since the compatibility condition [a2]t =
[12a1]x is equivalent to condition S1 = 0.
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Let g = g(t) be a nonzero solution of the linear equation

g′′(t) + f(t) · g(t) = 0 (3.9)

and let Q = Q(t, x) be a function such that

Qt = a0 · g · eP , Qx =
(

1
2
a1 − g′

g

)
g · eP . (3.10)

There exists a function Q which satisfies (3.10) due to the compatibility condition[(
1
2
a1 − g′

g

)
g · eP

]
t

=
[
a0 · g · eP

]
x

(3.11)

is equivalent to (3.9).
If we define

A = g · eP , B = Q (3.12)

then it can be verified that A and B satisfy (2.4).

Case II. We suppose that S1 �= 0 and that the coefficients of (2.3) are such that S3 = S4 = 0.
Since S3 = 0, we have [a2]t = [a1 + S2/S1]x and there exists a function P = P (t, x) such
that

Pt = a1 +
S2

S1
, Px = a2. (3.13)

Let Q = Q(t, x) be such that

Qt = a0 · eP , Qx = −
(

S2

S1

)
· eP . (3.14)

There exists a function Q due to the compatibility condition

[
a0 · eP

]
x

=
[
−

(
S2

S1

)
· eP

]
t

(3.15)

is equivalent to condition S4 = 0.
If we define

A = eP , B = Q (3.16)

then the functions A and B satisfy (2.4).
Therefore, we have proved the following theorem:

Theorem 2. We consider an equation of the form (2.3) and let S1 and S2 be the functions
defined by (3.3). The following alternatives hold:

(1) If S1 = 0 then the equation has a first integral of the form (1.3) if and only if S2 = 0. In
this case A and B can be given by (3.12), where P is a solution of (3.8), g is a nonzero
solution of (3.9) and Q is a solution of (3.10).
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(2) If S1 �= 0 then the equation has a first integral of the form (1.3) if and only if S3 = 0
and S4 = 0, where S3 and S4 are the functions defined by (3.4) and (3.6). In this case
A and B can be given by (3.16), where P is a solution of (3.13) and Q is a solution of
(3.14).

Duarte et al. studied in [6] some necessary conditions for which equation (2.3) is lin-
earizable by means of a generalized Sundman transformation of the form

X = F (t, x), dT = G(t, x)dt. (3.17)

Conditions (10) and (11) in [6] can be written as

S̃1 ≡ a1x − 2a2t = 0,

S̃2 ≡ 2a0xx − 2a1tx + 2a0a2x − a1xa1 + 2a0xa2 + 2a2tt = 0.
(3.18)

Some errata appear in expressions (12) and (13) in [6]. The correct expressions are

S̃3 ≡ S̃2
2−2S̃1tS̃2 − 2S̃2

1a1t + 4S̃2
1a0x + 4S̃2

1a0a2+2S̃1S̃2t − S̃2
1a2

1 = 0,

S̃4 ≡ −S̃1xS̃2 + S̃2
1a1x − 2S̃2

1a2t+S̃1S̃2x = 0.
(3.19)

It can be verified that conditions (3.18) and (3.19) are equivalent to the conditions given
in Theorem 2, since S̃1 = S1, S̃2 = 2S2 + a1S1, S̃3 = 4S2

1 S4 and S̃4 = 2S2
1 S3.

Other generalizations of Sundman transformations have been considered in the literature
(e.g. in [3]). Note also that the generalized Sundman transformation (3.17) was used to define
so-called Sundman symmetries [7, 8] of ODEs. In [8] a rich structure of Sundman symmetries
was reported for the equations in A, and also for a large class of third-order ODEs. The
complete classification of all linearizable third-order ODEs which can be transformed in
X ′′′ = 0 under the generalized Sundman transformation (3.17) was reported in [7]. For this
classification the Sundman symmetries played a fundamental role.

Example 2. The three following equations have been considered in [6] as examples of
equations that can be linearized by means of nonlocal transformations of the form (3.17).

ẍ − 2ẋ2

x
+

2x
t2

= 0, (3.20)

ẍ +
(

t − 1
x

)
ẋ2 + 2xẋ +

x2

t
− x

t2
= 0, (3.21)

ẍ −
(

tan(x) +
1
x

)
ẋ2 +

(
1
t
− tan(x)

xt

)
ẋ − tan(x)

t2
= 0. (3.22)

By the algorithm described in Theorem 2, it is possible to determine first integrals of the
form A(t, x)ẋ + B(t, x) for each equation listed above. It can be shown that the coefficients
of equations (3.20) and (3.21) verify S1 = S2 = 0 and the coefficients of Eq. (3.22) satisfy
S1 �= 0 but S3 = S4 = 0.
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• For Eq. (3.20) the corresponding system (3.8) is

Pt = 0, Px = −2/x. (3.23)

A solution of this system is given by P (t, x) = −2ln(x). The corresponding equation (3.9)
is

g′′(t) − 2/t2g(t) = 0. (3.24)

Two linearly independent solutions of this equation are given by g1(t) = t2, g2(t) = 1/t.
By considering g1(t) the corresponding system (3.14) is

Qt =
2
x

, Qx = − 2t
x2

. (3.25)

A solution of this system is Q1(t, x) = 2t/x. By (3.12) a first integral of (3.20) is given by

w1 =
t2

x2
ẋ +

2t
x

. (3.26)

Similarly, by considering g2(t) = 1/t a second first integral of (3.20) is given by

w2 =
1

tx2
ẋ − 1

t2x
. (3.27)

• For Eq. (3.21), a similar procedure can be followed to obtain two independent first
integrals:

w1(t, x, ẋ) =
etx(x + tẋ)

tx
, w2(t, x, ẋ) =

etx(x + tẋ)
x

− Ei(tx), (3.28)

where Ei(z) denotes the exponential integral function, i.e. a primitive of ez/z.
• For Eq. (3.22) we have S1 �= 0, S3 = S4 = 0 and S2/S1 = tan(x) − x/(tx). The corre-

sponding system (3.13) is

Pt = 0, Px = − tan(x) − 1
x

. (3.29)

A solution of this system is given by P (t, x) = ln(cos(x)/x). The corresponding system
(3.14) is

Qt = −sin(x)
t2x

, Qx =
cos(x)(x − tan(x))

tx2
, (3.30)

a solution of which is Q(t, x) = sin(x)/(tx). By (3.16),

w(t, x, ẋ) =
cos(x)

x
ẋ +

sin(x)
tx

(3.31)

is a first integral of (3.22).

4. First Integrals of the Form A(t, x)ẋ + B(t, x) and λ-Symmetries

We recall [13] that the vector field v = ∂x is a λ-symmetry of (2.1) if and only if λ is a
solution of the equation

Mx + λMẋ = λt + ẋλx + Mλẋ + λ2. (4.1)
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We suppose that the coefficients a0, a1, a2 of (2.3) are such that either

• S1 = S2 = 0, or
• S1 �= 0 and S3 = S4 = 0.

We now prove that (4.1) has solutions of the form λ = α(t, x)ẋ + β(t, x). In this case the
following system must be compatible

αx + α2 + a2α + a2x = 0, (4.2)

βx + 2(a2 + α)β + a1x + αt = 0, (4.3)

βt + β2 + a1β + a0x − a0α = 0. (4.4)

It is obvious that α(t, x) = −a2(t, x) solves Eq. (4.2). For this α, Eqs. (4.3)–(4.4) are

βx + a1x − a2t = 0, (4.5)

βt + β2 + a1β + a0x + a0a2 = 0. (4.6)

Case I. If S1 = S2 = 0 then we have seen that the function f defined by (3.7) is such that
f = f(t). If h(t) is any solution of the Riccati equation

h′(t) + h2(t) + f(t) = 0, (4.7)

then β(t, x) = h(t)− 1
2a1(t, x) satisfies (4.5) and (4.6), since S1 = 0 and S2 = 0, respectively.

Therefore λ = −a2ẋ + β is, in this case, such that ∂x is a λ-symmetry of (2.3).

Case II. If S1 �= 0 and S3 = S4 = 0 then (3.4) and (3.6) prove that β = S2/S1 is a solution
of (4.5)–(4.6). Therefore ∂x is a λ-symmetry of (2.3) for λ = −a2ẋ + S2/S1.

Conversely, let us suppose that ∂x is a λ-symmetry for some function λ of the form
λ = −a2ẋ + β(t, x). Then β satisfies Eqs. (4.5)–(4.6).

If we define γ(t, x) = β(t, x) + 1
2a1(t, x) then γ satisfies the following system

γx +
1
2
S1 = 0, (4.8)

γt + γ2 + f = 0, (4.9)

where S1 is defined by (3.3) and f is given by (3.7). Since γxt = γtx, Eqs. (4.8)–(4.9) imply
that

S1γ = −1
2
S1t + fx. (4.10)

This equation leads us to consider two cases, the same we have considered above.

Case I. If S1 = 0 then (4.8) implies that γx = 0, and therefore γ = γ(t), and that S2 can
be written as S2 = fx, where f(t, x) is defined by (3.7). Similarly, (4.9) or (4.10) imply that
f = f(t). Therefore f = f(t) and S2 = fx = 0.

Case II. If S1 �= 0 then γ is uniquely defined by (4.10):

γ(t, x) =
1
S1

(
−1

2
S1t + fx

)
. (4.11)
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Therefore, β(t, x) = γ(t, x) − 1
2a1(t, x) is uniquely defined by the coefficients a0, a1, a2 of

(2.3) and it can be checked that β = S2/S1. Since β satisfies Eqs. (4.5)–(4.6), it is necessary
that S2/S1 satisfies (3.4) and (3.6); i.e. S3 = S4 = 0.

This proves the following theorem:

Theorem 3. We consider an equation of the form (2.3) and let S1, S2, S3 and S4 be the
functions defined by (3.3), (3.4) and (3.6).

The equation is such that either S1 = S2 = 0 or S3 = S4 = 0 if and only if ∂x is a
λ-symmetry of (2.3) for some λ = −a2(t, x)ẋ + β(t, x).

The following theorem sum up our former results:

Theorem 4. The following conditions on an ODE of the form (2.1) are equivalent:

(1) Equation (2.1) admits a first integral of the form A(t, x)ẋ + B(t, x).
(2) Equation (2.1) is of the form (2.3) and there exist two functions A(t, x) and B(t, x) that

satisfy (2.4).
(3) Equation (2.1) is of the form (2.3) and its coefficient are such that either S1 = S2 = 0

or S3 = S4 = 0.
(4) Equation (2.1) is of the form (2.3) and ∂x is a λ-symmetry for some function λ of the

form λ = −a2(t, x)ẋ + β(t, x).

Example 3. We consider the equation

ẍ − 2
x

ẋ2 +
(

4
t
− et/xt

)
ẋ − tx2 − 2x

t2
+ et/x

(
3x2

t
+ x

)
= 0. (4.12)

This equation does not have Lie point symmetries and hence it cannot be integrated by
Lie’s method ([2]). This equation is of the form (2.3) and its coefficients satisfy S1 �= 0, and
S3 = S4 = 0. Hence statement 3 of Theorem 4 is satisfied. Consequently:

(1) Equation (4.12) has a first integral of the form w(t, x, ẋ) = A(t, x)ẋ + B(t, x), where A

and B satisfy (2.4) and can be calculated by the algorithm of Sec. 2 (Case II):

A(t, x) =
t3

x2
, B(t, x) = et/xt3 − t2

x
− t5

5
. (4.13)

(2) Equation (4.12) admits ∂x as a λ-symmetry for λ = −a2ẋ + S2/S1:

λ(t, x, ẋ) =
2
x

ẋ − 1
t

+ et/xt. (4.14)

5. Complete Integrability in Case I (S1 = S2 = 0)

We observe that in Case I Eq. (3.9) has two linearly independent solutions g1(t) and g2(t).
We denote by W (g1, g2) the Wronskian of the functions g1 and g2. We can construct two
functions Q1 and Q2 satisfying (3.10):

Qi
t = a0 · gi · eP , Qi

x =
(

1
2
a1 − g′i

gi

)
· gi · eP , (i = 1, 2). (5.1)
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Two first integrals of Eq. (2.3) are given by

w1 = g1 eP ẋ + Q1, w2 = g2 eP ẋ + Q2. (5.2)

It can be verified that ∣∣∣∣∣w
1
x w1

ẋ

w2
x w2

ẋ

∣∣∣∣∣ = eP · W (g1, g2) �= 0. (5.3)

This proves that in Case I, w1 and w2 are two functionally independent first integrals of
Eq. (2.3) that are of the form (1.3).

Conversely, let us suppose that Eq. (2.3) has two functionally independent first integrals
of the form (1.3):

w1(t, x, ẋ) = A1(t, x)ẋ + B1(t, x), w2(t, x, ẋ) = A2(t, x)ẋ + B2(t, x). (5.4)

The functions Ai and Bi, i = 1, 2, must satisfy system (2.4):

a2 =
A1

x

A1
=

A2
x

A2
,

a1 =
A1

t + B1
x

A1
=

A2
t + B2

x

A2
,

a0 =
B1

t

A1
=

B2
t

A2
.

(5.5)

The vector field ∂x is a λi-symmetry for

λi = −wi
x

wi
ẋ

= −a2ẋ − Bi
x

Ai
, (i = 1, 2). (5.6)

Since w1 and w2 are functionally independent, necessarily β1 = −B1
x/A1 �= −B2

x/A2 = β2

and therefore the system (4.5)–(4.6) has two different solutions. This cannot happen in
Case II since in this case the function β such that ∂x is a λ-symmetry for λ = −a2ẋ + β

is uniquely determined by β = S2/S1. Therefore S1 = S2 = 0 and we have proved the
following result.

Theorem 5. The following conditions on an equation of the form (2.3) are equivalent:

(1) The equation admits two functionally independent first integrals of the form (1.3).
(2) S1 = S2 = 0.
(3) The vector field ∂x is a λ1-symmetry and a λ2-symmetry for some functions

λ1 = −a2ẋ + β1 and λ2 = −a2ẋ + β2 with β1 �= β2.

5.1. Some examples

We now apply Theorem 5 to two families of second-order equations.

1. An equation of the form

ẍ + a2(x)ẋ2 + a1(t)ẋ = 0 (5.7)

satisfies any of the conditions given in Theorem 5. By (3.7), f(t) = −1
4a1(t)2 − 1

2a′1(t).
Two linearly independent solutions g1(t) and g2(t) of the corresponding equation (3.9) are
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given by

g1(t) = exp
(

1
2

∫
a1(t)dt

)
, g2(t) = g1(t)

∫
dt

g2
1(t)

. (5.8)

We define

h1(t) = exp
(
−

∫
a1(t)dt

)
, H1(t) =

∫
h1(t)dt,

h2(x) = exp
(∫

a2(x)dx

)
, H2(x) =

∫
h2(x)dx.

(5.9)

A solution P (t, x) of the corresponding system (3.8) can be written as P (t, x) = ln(g1(t) ·
h2(x)). Two particular solutions of systems (5.1) are given by Q1(t, x) = 0 and Q2(t, x) =
−H2(x). Two functionally independent first integrals of Eq. (5.7) are given by (5.10):

w1(t, x, ẋ) =
h2(x)
h1(t)

ẋ, w2(t, x, ẋ) = H1(t) · h2(x)
h1(t)

ẋ − H2(x). (5.10)

By Theorem 1, µ1(t, x) = h2(x)/h1(t) and µ2(t, x) = H1(t) · µ1(t, x) are integrating factors
of (5.7).

The general solution of Eq. (5.7) could be found by eliminating ẋ from w1 = C1 and
w2 = C2, C1, C2 ∈ R:

C1 H1(t) + H2(x) = C2, C1, C2 ∈ R. (5.11)

The vector field ∂x is a λ1-symmetry and a λ2-symmetry for

λ1(t, x, ẋ) = −a2(x)ẋ, λ2(t, x, ẋ) = −a2(x)ẋ +
h1(t)
H1(t)

. (5.12)

As a consequence, we have proved the following corollary:

Corollary 1. Any equation of the form (5.7) admits two functionally independent first
integrals of the form (1.3) that are given by (5.10), where h1, h2,H1 and H2 are defined by
(5.9). For Eq. (5.7), the vector field ∂x is a λ1-symmetry and a λ2-symmetry for λ1, λ2 given
by (5.12).

We now consider three equations of the form (5.7) that have previously been used in
the literature to illustrate several integration strategies. These equations can be solved by
using Corollary 1:

(1) The equation

xẍ = 3ẋ2 +
x

t
ẋ (5.13)

was originally derived by Buchdahl [1] in the theory of general relativity. Duarte
et al. [6] deduced a first integral by applying the extended Prelle–Singer method and
Chandrasekar et al. derived a second one in [4].

By (5.10)

w1(t, x, ẋ) =
ẋ

tx3
, w2(t, x, ẋ) =

t

x3
ẋ +

1
x2

(5.14)

are two independent first integrals.
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(2) The equation

ẍ +
ẋ2

x
+ 3

ẋ

t
= 0 (5.15)

has been considered in [9] to illustrate a method, based on variational derivatives, to
find two integrating factors and therefore the general solution of the equation. The
method in [9] requires to solve a system of two coupled second-order partial differential
equations. By using Corollary 1, two functionally independent first integrals are given
by (5.10):

w1(t, x, ẋ) = t3xẋ, w2(t, x, ẋ) = txẋ + x2. (5.16)

Two integrating factors of Eq. (5.15) can readily be found by Theorem 1:

µ1(t, x) = t3x, µ2(t, x) = tx. (5.17)

(3) Equation

txẍ + (2tx + t)ẋ2 + xẋ = 0 (5.18)

was proposed in [5] to show that the extended Prelle–Singer method can be applied to
find a non-rational first integral w = x + 1

2 ln(txẋ). Since (5.18) has the form (5.7) and
a complete system of first integrals is given by the functions w1, w2 defined by (5.10),
w must be a function of w1 and w2 (that are rational first integrals). In fact, it can be
checked that w = ln(w1)/2, where w1 = te2xxẋ. A second independent first integral is
given by w2 = e2x(t ln(t)xẋ + (1 − 2x)/4).

2. Theorem 5 can be used to obtain a characterization of second-order linear ODEs.
Suppose that an equation of the form

ẍ + a1(t, x)ẋ + a0(t, x) = 0 (5.19)

admits two independent first integrals of the form (1.3). By Theorem 2, the coefficients a0

and a1 of (5.19) must satisfy

S1 = a1x = 0 and S2 = −a1a1x + a0xx − a1tx = 0. (5.20)

This implies that a1 = a11(t) and a0xx = 0. Therefore a0(t, x) = a01(t)x + a02(t) for some
functions a01(t) and a02(t) and (5.19) has the form

ẍ + a11(t)ẋ + a01(t)x + a02(t) = 0. (5.21)

Conversely, it is obvious that any equation of the form (5.21) admits two independent first
integrals of the form (1.3). We have achieved the following characterization of the second-
order linear ODEs in terms of first integrals:

Corollary 2. An equation of the form (5.19) has two independent first integrals of the form
(1.3) if and only if it is a linear equation, i.e. it has the form (5.21).
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It must be observed that under the conditions of Corollary 2

f(t) =
1
4
(−a1(t, x)2 + 4a0x(t, x) − 2a1t(t, x)) = −a11(t)

4
− a′11(t)

2
+ a01(t). (5.22)

Therefore, for equations of the form (2.3), the function f defined by (3.7) generalizes the
usual invariant that appears in the study of equivalence transformations of second-order
linear ODEs ([9]).

6. Conclusions

We have characterized the second-order ODEs that admit first integrals of the form
A(t, x)ẋ + B(t, x) through an easy-to-check criterion expressed in terms of functions
S1, S2, S3 and S4 given by (3.3) and (3.4)–(3.6).

This criterion and a systematic procedure to calculate such first integrals have been
derived in Theorem 2. The considered equations can also be characterized as the equations
of the form (1.4) that admit the vector field ∂x as a λ-symmetry for some λ = −a2ẋ+β(t, x).

The class of equations such that S1 = S2 = 0 is composed of the equations that admits
two independent first integrals of the form (1.3). The determination of these first integrals
requires the solution of a second-order linear ODE (3.9). For these equations there are
infinitely many functions λ for which the vector field ∂x is a λ-symmetry. They are of the
form λ = −a2ẋ − a1/2 + h, where h denotes a particular solution of the Riccati equation
(4.7).

If S1 �= 0 and S3 = S4 = 0, the equations have an unique (up to multipliers) first
integral of the form (1.3), that can readily be obtained by quadratures. These equations
can also be characterized as the equations of the form (1.4) that admit the vector field ∂x

as a λ-symmetry for λ = −a2ẋ + β, where β is uniquely defined by β = S2/S1.

The equations classified in this paper are interestingly related to the equations that can
be linearized by generalized Sundman transformations of the form (1.5). This relationship
and other aspects of the problem of linearization are studied in detail in a forthcoming
paper.
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We study the class of the ordinary differential equations of the form ẍ + a2(t, x)ẋ2 + a1(t, x)ẋ +
a0(t, x) = 0, that admit v = ∂x as λ-symmetry for some λ = α(t, x)ẋ + β(t, x). This class coincides
with the class of the second-order equations that have first integrals of the form C(t)+1/(A(t, x)ẋ+
B(t, x)). We provide a method to calculate the functions A, B and C that define the first integral.
Some relationships with the class of equations linearizable by local and a specific type of nonlocal
transformations are also presented.
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1. Introduction

In this paper we consider ordinary differential equations (ODEs) of the form

ẍ + a2(t, x)ẋ2 + a1(t, x)ẋ + a0(t, x) = 0, (1.1)

where t is the independent variable of the equation, x is the dependent variable and overdot
denotes derivation with respect to t.

This class of equations has been studied from several points of view: integrating factors,
first integrals, linearizing transformations, λ-symmetries, etc. There are many relationships
between the equations that admit some of these kinds of objects. In [10,11] it is shown that,
for general second-order equations, the knowledge of a λ-symmetry permits the determina-
tion of an integrating factor or a first integral.

In [12] there appears a characterization of second-order equations that admit first inte-
grals of the form A(t, x)ẋ + B(t, x). These equations are necessarily of the form (1.1). This
class of equations is the same than the class of equations of the form (1.1) that admit v = ∂x

as λ-symmetry for some λ = −a2(t, x)ẋ + β(t, x).
In this paper we complete the study of equations of the form (1.1) that admit v = ∂x as λ-

symmetry for some λ = α(t, x)ẋ+β(t, x). The main result of the paper is a characterization
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of that class of equations as the class of equations (1.1) that have first integrals of the form

I =
1

A(t, x)ẋ + B(t, x)
+ C(t). (1.2)

This characterization raises the problem of the determination of second-orden equations
that admit first integrals of the form

I =
1

A(t, x)ẋ + B(t, x)
+ C(t, x) =

A1(t, x)ẋ + B1(t, x)
A(t, x)ẋ + B(t, x)

(1.3)

where A1 = CA and B1 = 1 + CB. However, it can be checked that the class of equations
that admit (1.3) as first integral are necessarily of the form

ẍ + a3(t, x)ẋ3 + a2(t, x)ẋ2 + a1(t, x)ẋ + a0(t, x) = 0 (1.4)

and that a3 = 0 if and only Cx(t, x) = 0. The class of Eq. (1.4) is out of the scope of this
paper and these equations will be studied in a forthcoming paper.

This paper is organized as follows. In Sec. 2 we establish some notations and recall the
known results we need to complete the characterization of equations that admit v = ∂x as
λ-symmetry for some λ = α(t, x)ẋ + β(t, x).

In Sec. 3, and in order to simplify our study, we obtain a canonical reduction of the
equations under consideration. This lets us to obtain a characterization of these equations in
terms of first integrals of the form (1.2). In this section we also provide a method to obtain
the functions A(t, x), B(t, x) and C(t) that define the first integral (1.2). This method is
illustrated with an example.

In Sec. 4 we indicate the steps that could be used to determine whether or not a given
Eq. (1.1) is in the class under study. This method could also be used to obtain an intrinsic
characterization of the equations. However, a complete study of this intrinsic characteriza-
tion is rather involved and will be considered in a separate paper.

In Sec. 5 we relate the results in this paper with the problem of the linearization through
local and nonlocal transformations. In particular, it is shown that the equations that can
be linearized by some local transformations constitute a strict subclass of the equations
studied in this paper.

2. Preliminaries

If a second-order ordinary differential equation of the form

ẍ + a2(t, x)ẋ2 + a1(t, x)ẋ + a0(t, x) = 0 (2.1)

admits the vector field v = ∂x as λ-symmetry for some function λ of the form

λ(t, x, ẋ) = α(t, x)ẋ + β(t, x) (2.2)

then the functions α and β must satisfy the following system of determining equations:

αx + α2 + a2α + a2x = 0, (2.3)

βx + 2(a2 + α)β + a1x + αt = 0, (2.4)

βt + β2 + a1β − a0α + a0x = 0. (2.5)
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The equations of the form (1.1) for which the corresponding system (2.3)–(2.5) admits
some solution (α0, β0) such that α0 = −a2 have been studied in [12,14]. The class of these
equations was denoted by A in [12]. The coefficients of the equations in A must satisfy one
of the two following alternatives: S1 = 0 and S2 = 0 where

S1(t, x) = a1x − 2a2t,

S2(t, x) = (a0a2 + a0x)x + (a2t − a1x)t + (a2t − a1x)a1,
(2.6)

or, if S1 �= 0, S3 = 0 and S4 = 0, where

S3(t, x) =
(

S2

S1

)
x

− (a2t − a1x),

S4(t, x) =
(

S2

S1

)
t

+
(

S2

S1

)2

+ a1

(
S2

S1

)
+ a0a2 + a0x.

(2.7)

Let us introduce the following notation:

Definition 2.1. We define A1 as the class of the equations of the form (1.1) whose coeffi-
cients satisfy S1 = S2 = 0 and A2 will denote the class of the equations of the form (1.1)
whose coefficients satisfy S1 �= 0 and S3 = S4 = 0.

We define B as the class of the equations of the form (1.1) for which system (2.3)–(2.5)
is compatible, i.e., the equations of the form (1.1) that admits v = ∂x as λ-symmetry for
some λ of the form (2.2).

It is clear that A1 ∩A2 = ∅, A = A1 ∪A2 and A ⊂ B, but there are equations in B that
are not in A. This is the case of the family of equations ([13])

ẍ +
b′(t)
2x

+
b(t)2

4x3
+ a(t)x = 0, b(t) �= 0. (2.8)

It can be checked that the equations in (2.8) with b′(t) �= 0 and(
b(t)
b′(t)

)′′′
+ 4 a(t)

(
b(t)
b′(t)

)′
+ 2a′(t)

(
b(t)
b′(t)

)
�= 0 (2.9)

do not have Lie point symmetries. When b′(t) = 0, Eq. (2.8) is the well-known Ermakov–
Pinney equation ([11]). It can be checked that

S1 = 0, S2 =
b′(t)x2 + 3b(t)2

x5
�= 0 (2.10)

and therefore the Eqs. (2.8) do not belong to class A. Since α = 1/x and β = b(t)/x2 solve
the corresponding system (2.3)–(2.5), the Eqs. (2.8) belong to class B.

Some properties and characterizations of the equations in A appear in [12]. For the
equations in A1 there are infinitely many solutions of system (2.3)–(2.5) of the form α0 =
−a2, β0 while for the equations in A2 system (2.3)–(2.5) has a unique solution of the form
α0 = −a2, β0. The equations in A are the only second-order equations that admit first
integrals of the form A(t, x)ẋ + B(t, x). Only the equations in the subclass A1 admit two
functionally independent first integrals of this form.

Several aspects on the linerization of the equations in A have been addressed in [14]. All
the equations in subclass A1 can be linearized by local transformations, i.e., they pass Lie’s
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test of linearization ([6–8]). On the contrary, none equation belonging to A2 passes Lie’s test
of linearization. Nevertheless, the equations in A2 have been characterized as the unique
second-order equations that can be linearized through special nonlocal transformations,
known in the literature as generalized Sundman transformations (see [1–5] and references
therein).

In what follows we address the study of properties of the equations in B, dealing with
the following topics:

• Characterization of the equations in B.

• Identification of first integrals of the equations in B and computational methods for them.
• Linearization by nonlocal and local transformations of the equations in B.

3. Order Reduction of Equations in B Through λ-symmetries

Let us assume that Eq. (1.1) admits the vector field v = ∂x as λ-symmetry for some function
λ of the form (2.2). Let A0 = A0(t, x) �= 0 and B0 = B0(t, x) be two functions such that

A0
x + αA0 = 0, B0

x + βA0 = 0. (3.1)

It is clear that w0(t, x, ẋ) = A0(t, x)ẋ + B0(t, x) is an invariant of v[λ,(1)] = ∂x + λ∂ẋ.

Since v is a λ-symmetry of (1.1), in terms of {t, w0, ẇ0} Eq. (1.1) takes (locally) the form
ẇ0 = ∆(t, w0) (see [9] for details). Due to the form of Eq. (1.1), necessarily ∆(t, w0) =
H2(t)w2

0 + H1(t)w0 + H0(t). Let us prove that it is possible to choose suitable solutions A

and B of (3.1) for which ∆(t, w0) takes simpler forms.
Let k2 = k2(t) be such that k′

2 −H2k
2
2 −H1k2 −H0 = 0 and let k1 = k1(t) be a nonzero

function such that k′
1 − (2H2k2 + H1)k1 = 0. Since A = A0/k1 and B = (B0 − k2)/k1 are

also solutions of system (3.1), w = Aẋ + B is an invariant of v[λ,(1)]. It can be checked that
in terms of {t, w, ẇ} Eq. (1.1) becomes, locally,

ẇ + J(t)w2 = 0, (3.2)

where J = −H2k1. When in (3.2) w and ẇ are expressed in terms of {t, x, ẋ, ẍ}, the following
result is obtained:

Theorem 3.1. If Eq. (1.1) belongs to the class B then there exist some functions A =
A(t, x) �= 0 and B = B(t, x) and some function J = J(t) such that

a2 =
Ax

A
+ JA,

a1 =
At

A
+

Bx

A
+ 2BJ,

a0 =
Bt

A
+

B2

A
J.

(3.3)

In terms of {t, w, ẇ}, where w = A(t, x)ẋ + B(t, x), Eq. (1.1) becomes

ẇ + J(t)w2 = 0. (3.4)

Equation (1.1) belongs to A if and only if J(t) = 0.
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In order to check if a given second-order ODE of the form (1.1) belongs to B, the
analysis of the compatibility of corresponding system (2.3)–(2.5) can be done in a systematic
way. Equation (2.3) is a Riccati-type equation with respect to x with a known particular
solution α = −a2. Hence its general solution, depending on an arbitrary function ρ1(t), can
readily be obtained. After substitution, Eq. (2.4) becomes a linear first order ODE, where
t is considered as a parameter. Its general solution depends on a function ρ2(t). Finally,
Eq. (2.5) is used to set appropriated functions ρ1 and ρ2 in order to get solutions for α

and β. Next example illustrates this procedure and shows how to construct the associated
reduced Eq. (3.4).

Example 3.1. Let us consider the second-order equation

ẍ +
(

x +
1
x

)
ẋ2 +

(
t

(
2x +

1
x

)
− 1

t

)
ẋ + x t2 = 0. (3.5)

The corresponding Eq. (2.3) becomes

αx + α2 +
(

x +
1
x

)
α − 1

x2
+ 1 = 0. (3.6)

This is a Riccati-type equation and α = −a2 = −(x + 1/x) is a particular solution; its

general solution is given by α = −x/(e
x2

2 ρ1(t) + 1) − 1/x and α = −1/x is a singular
solution. For simplicity, we try to find solutions for α = −1/x. Then (2.4) becomes

βx + 2xβ + t

(
2 − 1

x2

)
= 0. (3.7)

The general solution of this linear equation is given by β(t, x) = e−x2
ρ2(t) − t/x. The

corresponding Eq. (2.5) becomes

txρ2(t)2 + ex2 (
2x2ρ2(t)t2 − ρ2(t)t2 + xρ′2(t)t − xρ2(t)

)
= 0. (3.8)

Equation (3.8) is satisfied for ρ2(t) = 0. Therefore α = −1/x and β = −t/x solve the
corresponding system (2.3)–(2.5), i.e., v = ∂x is a λ-symmetry of (3.5) for λ = −(ẋ + t)/x.

This proves that Eq. (3.5) belongs to B.

Now we choose any pair of particular solutions of the corresponding system (3.1):

A0
x − A0

x
= 0, B0

x − t

x
A0 = 0, (3.9)

for example A0 = x and B0 = tx, and define w0 = x (ẋ+ t). In terms of {t, w0, ẇ0} Eq. (3.5)
becomes ẇ0 = H2(t)w2

0 + H1(t)w0 + H0(t), where H2(t) = −1,H1(t) = 1/t,H0(t) = 0.
Since k2 = 2/t is a particular solution of k′

2 − H2k
2
2 − H1k2 − H0 = 0 and k1 = 1/t3

solves k′
1 − (2H2k2 + H1)k1 = 0, we finally get that

A =
A0

k1
= xt3, B =

(B0 − k2)
k1

= t4x − 2t2 and J = −H2k1 =
1
t3

(3.10)

solve system (3.3) for Eq. (3.5).
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The general solution of the corresponding reduced Eq. (3.4) is given by

w(t) =
2t2

2C1t2 − 1
, C1 ∈ R. (3.11)

Substituting w by Aẋ+B in (3.11), the general solution of Eq. (3.5) arises from the general
solution of the Abel equation of the second kind

x(ẋ + t) =
4C1t

2C1t2 − 1
(3.12)

and can be written in implicit form as

√
2ϕ (ρ(t, x, C1)) − 4C1

2C1t2 − 1
exp

(
ρ(t, x, C1)2

)
= C2, C2 ∈ R, (3.13)

where ρ(t, x, C1) =
√

2
8C1

(2C1t
2 − 1 + 4C1x) and ϕ′(a) = exp(a2).

3.1. First integrals of the equations in B
Let us assume, as above, that Eq. (1.1) is in B and let us denote by Z the linear operator
associated to Eq. (1.1), i.e., Z = ∂t + ẋ∂x − M(t, x, ẋ)∂ẋ where

M(t, x, ẋ) = a2(t, x)ẋ2 + a1(t, x)ẋ + a0(t, x). (3.14)

By Theorem 3.1, such equation can be written as

ẇ + J(t)w2 = 0, (3.15)

where w = A(t, x)ẋ + B(t, x) and A, B and J satisfy system (3.3). Equation (3.15) can be
written as

Dt

(
1
w

+ C(t)
)

= 0, (3.16)

where C(t) is any primitive of −J(t). Therefore, by writing 1/w + C(t) in terms of the
original variables of the equation, we deduce that

I(t, x, ẋ) =
1

A(t, x)ẋ + B(t, x)
+ C(t) (3.17)

is a first integral of Z, the linear operator associated to Eq. (1.1). This can also be directly
proven by using system (3.3).

Conversely, if (3.17) is a first integral of (1.1) for some A = A(t, x), B = B(t, x) and
C = C(t) then

0 = Z(I) =
−AM + (At + Axẋ)ẋ + Bt + Bxẋ

(Aẋ + B)2
+ C ′ (3.18)

and therefore

M(t, x, ẋ) =
(A2 + Ax)ẋ2 + (At + Bx + 2ABC ′)ẋ + Bt + C ′B2

A
. (3.19)

Equations (3.14) and (3.19) imply that A,B and J = −C ′ solve system (3.3).
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The following result has been proven:

Theorem 3.2. If system (3.3) is satisfied for some functions A = A(t, x), B = B(t, x) and
J = J(t) and C = C(t) is any primitive of −J(t), then I = 1/(Aẋ + B) + C is a first
integral of (1.1). Conversely, if I = 1/(Aẋ + B) + C is a first integral of (1.1) for some
A = A(t, x), B = B(t, x) and C = C(t) then A,B and J(t) = −C ′(t) solve system (3.3).

Corollary 3.1. The equations in B are characterized as the second-order ordinary differen-
tial equations that admit first integrals of the form I = 1/(Aẋ + B)+ C, for some functions
A = A(t, x), B = B(t, x) and C = C(t).

Example 3.2. Theorem 3.2 can be used to calculate a first integral of Eq. (3.5) in Example
3.1: since A = xt3, B = t4x − 2t2 and J = 1/t3 solve system (3.3) for Eq. (3.5) and
C = 1/(2t2) is a primitive of −J, then I = 1/(2t2) + 1/(xt3ẋ + t4x − 2t2) is a first integral
of Eq. (3.5).

The study of the relationships between first integrals and λ-symmetries performed in
[11, 13, 10] lets us prove the converse of Theorem 3.1:

Theorem 3.3. If system (3.3) is satisfied for some A,B and J(t) then α = −Ax/A and
β = −Bx/A solve system (2.3)–(2.5) and, therefore, the vector field v = ∂x is a λ-symmetry
for λ = αẋ + β.

Proof. By Theorem 3.2, I = C + 1/(Aẋ + B) is a first integral of (1.1), where C = C(t) is
any primitive of −J(t). By Theorem 1 in [11], the vector field v = ∂x is a λ-symmetry of
the equation for λ = −Ix/Iẋ. Since Ix/Iẋ = (Axẋ + Bx)/A, system (2.3)–(2.5) is satisfied
for α = −Ax/A and β = −Bx/A.

4. Intrinsic Characterization

Corollary 3.1 gives us a characterization of the equations in B: they are equations of the
form (1.1) that admit first integrals of the form (3.17). Therefore, for these equations, the
system (3.3) is compatible. Equations in the subclass A correspond to the case C(t) =
0. An intrinsic characterization of these equations, i.e., a characterization of class A in
terms of the coefficients ai, 0 ≤ i ≤ 2, appear in [12] (Sec. 3). To obtain an intrinsic
characterization of equations in B \ A is a rather involving task: the functions A,B and J

and their derivatives must be expressed in terms of ai, 0 ≤ ai ≤ 2 and their derivatives. We
now show a procedure to obtain such characterization, that could be applied to any given
equation of the form (1.1).

For J �= 0, system (3.3) implies that functions A,B and J have to satisfy the following
system

Ax = a2A − JA, (4.1)

Bx = a1A − At − 2ABJ, (4.2)

Bt = a0A − JB2. (4.3)

By using Eqs. (4.2) and (4.3), the compatibility condition (Bx)t = (Bt)x leads to

B2 + M2B + M1 = 0, (4.4)
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where

M1 = −(a1At − A(a0(a2 + AJ) + a0x − a1t) − Att)/(2AJ2), (4.5)

M2 = −(2A(a1J − J ′) − 4JAt)/(2AJ2). (4.6)

Equation (4.4) reveals the dependence of B on A, J and the coefficients ai, 0 ≤ i ≤ 2. To
eliminate quadratic dependencies, both members of (4.4) can be derived twice with respect
to x and, by using (4.4), we get

R2B + R1 = 0, (4.7)

where

R2 = a2S1 − S1x, (4.8)

for S1 defined in (2.6) and R1 is an expression that depends on A,At, J and the coefficients
of the equation and their derivatives. If R2 �= 0, Eq. (4.7) determines B in terms of A, J

and the coefficients ai, 2 ≤ i ≤ 2. By using (4.7) and (4.2) we obtain

T2At + T1 = 0, (4.9)

where

T2 =
(
3a2

2S2
1 − 2a2S1xS1 + 4(S1xx − a2xS1)S1 − 5S1

2
x

)
/(3(a2S1 − S1x)) (4.10)

and T1 is an expression depending on A,A2, J, the coefficients of the equation and their
derivatives. If T2 �= 0 Eq. (4.9) can actually be written in the form

At = U1A
2 + U2A + U3, (4.11)

where U1, U2 and U3 do only depend on J and the coefficients ai, 0 ≤ i ≤ 2. Equations (4.1)
and (4.11) and the compatibility condition (At)x = (Ax)t lead to an expression of the form

Y3A
2 + Y2A + Y1 = 0, (4.12)

where Y1, Y2 and Y3 are given by

Y1 = a2U1 − U1x,

Y2 = −2JU1 − U2x + a2t,

Y3 = −JU2 − a2U3 − J ′ − U3x.

(4.13)

If Y3 �= 0, by derivation of (4.12) with respect to x, we get

Z2A + Z1 = 0, (4.14)

where Z1 and Z2 are defined by

Z1 = −2a2Y1 − Y3xY1/Y3 − JY2Y1/Y3 + Y1x,

Z2 = −JY2
2/Y3 − a2Y2 − Y3xY2/Y3 + 2JY1 + Y2x.

(4.15)

If Z2 �= 0, Eq. (4.14) determines A in terms of J and the coefficients of the equation.
Through (4.1), J can be calculated in terms of the coefficients ai, 0 ≤ i ≤ 2. An analogous
expression is obtained for B by using (4.7). When these expressions are substituted in
(4.1)–(4.3), compatibility conditions on the coefficients of the equation are obtained.

J.
 N

on
lin

ea
r 

M
at

h.
 P

hy
s.

 2
01

1.
18

:2
37

-2
50

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
91

.1
03

.6
.1

0 
on

 0
6/

22
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



June 1, 2011 14:54 WSPC/1402-9251 259-JNMP S1402925111001398

First Integrals of the Form C(t) + 1/(A(t, x)ẋ + B(t, x)) 245

The special cases where R2, T2, Y3 or Z2 are null must be studied separately. However
a complete study of these cases is rather involved and will be considered in a forthcoming
paper.

5. On the Linearization of Equations in B
5.1. Linearization through local transformations

If a second-order ODE (1.1) is linearizable to equation XTT = 0 by means of a local
transformation

X = R(t, x), T = S(t, x) (5.1)

then (1.1) has the form

ẍ + a3(t, x)ẋ3 + a2(t, x)ẋ2 + a1(t, x)ẋ + a0(t, x) = 0, (5.2)

where the coefficients ai(t, x), 0 ≤ i ≤ 3, can be expressed in terms of R,S and their
derivatives ([6]) as

a3(t, x) =
SxRxx − SxxRx

StRx − SxRt
, (5.3)

a2(t, x) =
StRxx − RtSxx + 2(SxRtx − RxStx)

StRx − SxRt
, (5.4)

a1(t, x) =
SxRtt − RxStt + 2(StRtx − RtStx)

StRx − SxRt
, (5.5)

a0(t, x) =
StRtt − RtStt

StRx − SxRt
. (5.6)

Let us introduce the following notation

Definition 5.1. We denote by L the set of the equations of the form (1.1) that are lin-
earizable to equation XTT = 0 by means of a local transformation (5.1).

In this section we prove that L ⊂ B, and more precisely, that L ⊂ B \A2. Since a3 = 0,
three possibilities must be considered:

Case (a): Sx = 0.
Case (b): Rx = 0.
Case (c): Sx �= 0, Rx �= 0, SxRxx − SxxRx = 0.

In Cases (a) and (b) it has been proven ([14]) that the coefficients of the equation must
satisfy S1 = S2 = 0. Therefore, the equation belongs to subclass A1 and hence to B. In
Case (c), the condition SxRxx − SxxRx = 0 implies that

R(t, x) = g(t)S(t, x) + h(t), (5.7)

for some functions g = g(t) and h = h(t). It has been proven ([14]) that in this case the
equation belongs to subclass A if and only if h = c1g + c2 for some constants c1, c2 ∈ R and
that the coefficients of the equation must satisfy S1 = S2 = 0. These results implies that
A1 ⊂ L and A2 ∩ L = ∅. A proof of these statements appears in ([14], Theorem 6).
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Let us prove that if h �= c1g + c2, then the equation belongs to B \ A2. It is clear that
XT = DtR(t, x)/DtS(t, x) is a first integral of the equation. By (5.7),

XT =
g′S + h′

St + ẋSx
+ g, (5.8)

and this is a first integral of the form (3.17) for

A =
Sx

g′S + h′ , B =
St

g′S + h′ , C(t) = g(t). (5.9)

By Theorem 3.3 the equation belongs to B. Thus we have proven the following result:

Theorem 5.1. If a given equation belongs to L then the equation belongs to subclass B\A2.

Example 5.1. The second-order equation

ẍ +
2

t − x
ẋ2 +

2
t − x

= 0 (5.10)

was proposed in [14] as an example of an equation in L that does not belong to A, because
S1 = 6/(t − x)2 �= 0 and S3 = 4/(t − x)2 �= 0. By Theorem 5.1, Eq. (5.10) must belong to
B. This can also be directly proven because, for example, α = β = 1/(x − t) are particular
solutions of the corresponding system (2.3)–(2.5).

Next example shows that B\A is strictly wider than L :

Example 5.2. In Sec. 2 it has been proven that the equations

ẍ +
b′(t)
2x

+
b(t)2

4x3
+ a(t)x = 0, b′(t) �= 0. (5.11)

belong to the subclass B\A. If (2.9) is satisfied, these equations do not have Lie point
symmetries and hence they do not belong to L. This fact can also be proven by using Lie’s
test of linearization.

5.2. Linearization through nonlocal transformations

Since there are equations in B\A that cannot be linearized by local transformations (5.1), it
raises the question if such equations could be linearized through transformations involving
nonlocal terms. The simplest transformations of this type have been named in [5] generalized
Sundman transformations (GST) and are of the form

X = F (t, x), dT = G(t, x)dt. (5.12)

The equations of the form (1.1) that can be linearized through (5.12) have been identified
in [14] as the equations in subclass A and constructive methods to calculate such trans-
formations have been derived (Theorems 2 and 3 in [14]). Hence, in order to linearize the
equations of B\A, we need to consider more general types of nonlocal transformations.

In this section we characterize the equations in B as the second-order equations of the
form (1.1) that can be transformed into XTT = 0 through a nonlocal transformation of type

X = F (t, x), dT = (G1(t, x)ẋ + G2(t, x))dt, (5.13)
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where G1 �= 0. Second-order equations that can be linearized through (5.13) have been
studied by Chandrasekar et al in [1]. The authors prove that these equations have to be
of the form (1.4) where the coefficients ai(t, x), 0 ≤ i ≤ 3, can be expressed in terms of
F,G1, G2 and their derivatives (see Eq. (15) in [1]). In particular,

a3(t, x) =
G2

1

∆

(
Fx

G1

)
x

, (5.14)

where ∆ = FxG2 − FtG1 �= 0. The first integral I1 = XT of XTT = 0 provides, by using
(5.13), a first integral of the nonlinear ODE

Ĩ1 =
Fxẋ + Ft

G1ẋ + G2
=

Fx

G1
− ∆/G1

G1ẋ + G2
. (5.15)

If the equation is of the form (1.1), i.e. if a3 = 0, then, by (5.14), the funtion Fx/G1 only
depends on t and hence the first integral (5.15) is of the form (1.2). By Corollary 3.1 we
deduce that the equations of the form (1.1) that can be linearized by (5.13) are in B.

Conversely, let us prove that any equation in B can be linearized through a nonlocal
transformation of type (5.13). An equation in B is of the form (1.1) and, by Theorem
3.1, its coefficients satisfy system (3.3) for some functions A,B and J. By Theorem 3.2,
I = C + 1/(Aẋ + B) is a first integral of the equation where C ′ = −J. By using system
(3.3), it can be checked that

DtI = − A

(Aẋ + B)2
(ẍ + a2ẋ

2 + a1ẋ + a0). (5.16)

We construct a family of linearizing transformations of the form (5.13) in terms of a nonzero
function M = M(t, x) for which the system

Ft = (CB + 1)M,Fx = CAM (5.17)

is compatible. The compatibility condition (Ft)x = (Fx)t implies that M = M(t, x) is a
solution of the first order linear partial differential equation

(CB + 1)Mx − CAMt + ((Bx − At)C − AC ′)M = 0. (5.18)

Once a nontrivial particular solution M of (5.18) has been chosen, we define F = F (t, x)
as any particular solution of system (5.17) and G1(t, x) = MA,G2(t, x) = MB. It is clear
that

XT =
DtX

DtT
=

DtF

G1ẋ + G2
=

M(CAẋ + CB + 1)
M(Aẋ + B)

= I, (5.19)

and, by (5.16),

XTT =
DtI

G1ẋ + G2
= − A

(G1ẋ + G2)(Aẋ + B)2
(ẍ + a2ẋ

2 + a1ẋ + a0). (5.20)

This proves that F,G1 and G2 define a nonlocal transformation of type (5.13) that linearizes
the equation in B. We have proven the following result:

Theorem 5.2. A second-order equation of the form (1.1) can be linearized through a non-
local transformation of the form (5.13) if and only if the equation is in class B.
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It should be noted that there can exist other second-order ODEs linearizable by (5.13)
that are not in B, but they must be of the form (1.4) with a3 �= 0 and will be studied in a
forthcoming paper.

A disadvantage of the linearization through transformations (5.12) or (5.13) compared
to the linearization through local transformations (5.1) is that the general solution of the
nonlinear ODE can not be obtained straightforwardly by the two independent integrals of
XTT = 0

I1 = XT and I2 = X − TXT , (5.21)

due to the nonlocal nature of (5.12) or (5.13) and hence of I2. It should be pointed out
that the linearization of a given ODE through nonlocal transformations (5.12) or (5.13)
does not guarantee the integrability of the equation. Euler and Euler presented in [4] an
interesting example of a Chazy-type equation which shows that, in general, a generalized
Sundman transformation does not preserve the Painlevè property nor does it preserve the
Lie symmetry structure of the equations. Another examples of this type with second-order
equations of the form (1.1) appear in [14] (example 11). Nevertheless, the first integral
I1 = XT provides, by using (5.13), the first integral (5.15) that could be used to obtain
the general solution of the nonlinear ODE by solving (if possible) the first order ODE
corresponding to Ĩ1 = C1, C1 ∈ R. By (5.19), such first order ODE can be expressed in
terms of the functions A,B and C in the form

A(t, x)ẋ + B(t, x) =
1

C1 − C(t)
. (5.22)

An alternative method to overcome the problem of the nonlocal nature of the transformation
(5.13) to obtain the general solution or a second independent first integral of the nonlinear
ODE appears in [1].

Example 5.3. For Eq. (3.5) the corresponding system (3.3) is satisfied for A = xt3, B =
t4x − 2t2 and J = 1/t3 (see Example 3.1). A primitive of −J is C = 1/(2t2). It can
be checked that M(t, x) = ϕ

(
t2

2 + x
)
/(tx) is the general solution of the corresponding

Eq. (5.18), where ϕ = ϕ(a) is an arbitrary function of one variable. The general solution of
corresponding system (5.17) becomes

F (t, x) = ϕ̃

(
t2

2
+ x

)
(5.23)

where ϕ̃ is any primitive of ϕ/2, i.e., ϕ̃′(a) = ϕ(a)/2, a ∈ R. Therefore

X = ϕ̃

(
t2

2
+ x

)
, dT = 2ϕ̃′

(
t2

2
+ x

)(
t2ẋ + t3 − 2t

x

)
dt (5.24)

is a family of nonlocal transformations of the form (5.13) that linearize Eq. (3.5). We note
that Eq. (3.5) cannot be linearized by local transformations, i.e., it does not pass the Lie
test of linearization.

The first order ODE corresponding to (5.22) is Eq. (3.11), which has been used in
Example 3.1 to derive the general solution of Eq. (3.5).
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Closely related to the concept of a generalized Sundman transformation is the notion
of an associated Sundman symmetry. This was introduced by Euler and Euler in [4] who
studied the Sundman symmetries of a large class of second-order and third-order nonlinear
ODEs. These symmetries can be calculated systematically and can be used to find first inte-
grals of the equations. Hence it would be interesting and tempting to consider symmetries
related to the nonlocal transformations (5.12) or (5.13) for the classification of ODEs in
terms of their first integrals. It is currently not clear to us what are the connections between
Sundman symmetries and λ-symmetries.

6. Conclusions

We have presented some properties and characterizations of the equations in class B con-
stituted by ODEs (1.1) that admit the vector field v = ∂x as λ-symmetry for some
λ = α(t, x)ẋ + β(t, x). This study completes and extends some of the results presented
in [12,14] for the subclass A, that considered the particular case α = −a2.

The equations in class B can be characterized as the Eqs. (1.1) that admit first integrals
of the type (1.2). A method to calculate the functions A(t, x), B(t, x) and C(t) that define
such first integrals has been presented. These results complete the study of the second-order
equations of the form (1.1) that admit first integrals of the form (1.3). Although there are
other second-order equations with first integrals of the type (1.3), they must be of the form
(1.4) with a3 �= 0 and will be studied in a forthcoming paper.

The equations in subclass A can be characterized in terms of their coefficients ai, 0 ≤ i ≤
2, in a useful and compact form through expressions (2.6) and (2.7). To obtain an intrinsic
characterization of the equations in B\A is a much more complicated task. Some guidelines
to deal with this problem have been indicated and a complete study will be considered in
a separate paper.

Some aspects on the linearization of the equations in B have also been considered.
Although there are second-order Eqs. (1.1) linearizable by some local transformations that
are not in A, it has been proven that all of them are included in B. This is a strict inclusion,
because there are equations in B that do not pass the Lie test of linearization. Nevertheless
we have proven, by a constructive method, that such equations can always be linearized
through nonlocal transformations of type (5.13) and conversely: the equations in B are the
only second-order equations of the form (1.1) that are linearizable by this type of nonlocal
transformations.
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and project P06-FQM-01448 are gratefully acknowledged. We wish to thank Prof. Euler for
his useful suggestions and comments on the problems studied in this paper.

References

[1] V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan, A unification in the theory of
linearization of second-order nonlinear ordinary differential equations, J. Phys. A 39 (2006)
L69–L76.

J.
 N

on
lin

ea
r 

M
at

h.
 P

hy
s.

 2
01

1.
18

:2
37

-2
50

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
91

.1
03

.6
.1

0 
on

 0
6/

22
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



June 1, 2011 14:54 WSPC/1402-9251 259-JNMP S1402925111001398

250 C. Muriel & J. L. Romero

[2] V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan, On the complete integrability and
linearization of certain second-order nonlinear ordinary differential equations, Proc. R. Soc. A
461 (2005) 2451–2476.

[3] L. G. S. Duarte, I. C. Moreira and F. C. Santos, Linearization under non-point transformations,
J. Phys. A 27 (1994) L739–L743.

[4] N. Euler and M. Euler, Sundman symmetries of nonlinear second-order and third-order ordinary
differential equations, J. Nonlinear Math. Phys. 11 (2004) 399–421.

[5] N. Euler, T. Wolf, P. G. L. Leach and M. Euler, Linearisable third-order ordinary differential
equations and generalised Sundman transformations: the case X ′′′ = 0, Acta Appl. Math. 76
(2003) 89–115.

[6] N. H. Ibragimov, A Practical Course in Differential Equations and Mathematical Modelling:
Classical and New Methods, Nonlinear Mathematical Models, Symmetry and Invariance Prin-
ciples (ALGA Publications, Karlskrona, 2006).

[7] N. H. Ibragimov and F. Magri, Geometric proof of Lie’s linearization theorem, Nonlinear
Dynam. 36 (2004) 41–46.

[8] S. V. Meleshko, On linearizaton of third-order ordinary differential equations, J. Phys. A 39
(2006) 15135–15145.

[9] C. Muriel and J. L. Romero, New methods of reduction for ordinary differential equations, IMA
J. Appl. Math. 66 (2001) 111–125.

[10] C. Muriel and J. L. Romero, Integrating factors and λ-symmetries, J. Nonlinear Math. Phys.
15 (2008) 290–299.

[11] C. Muriel and J. L. Romero, First integrals, integrating factors and λ-symmetries of second-
order differential equations, J. Phys. A: Math. Theor. 42 (2009) 365207 (17 pp).

[12] C. Muriel and J. L. Romero, Second-order ordinary differential equations and first integrals of
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Abstract 

In this thesis we examine the connections between conservation laws and symmetries, both 
for self-adjoint and non self-adjoint ODEs. The goal is to gain a better understanding of how 
to combine symmetry methods with the method of conservation laws to obtain results not 
obtainable by either method separately. 

We review the concepts of symmetries and integrating factors. We present two known meth
ods of obtaining conservation laws without quadrature, using known conservation laws and 
symmetries. We show that the two methods yield the same result. 

For self-adjoint systems, we examine Noether's theorem in detail and discuss its generalisation 
for ODEs admitting more than one variational symmetry. We generalise an example from 
Sheftel [20] and show how to use r-dimensional Lie Algebra of variational symmetries to obtain 
more then r reductions of order. 

We develop an ansatz for finding point variational symmetries. We also develop ansatzes that 
use a known symmetry to find an integrating factor or another symmetry. These ansatzes are 
then used to classify ODEs. New solvable cases of Emden-Fowler and Abel ODEs result. 
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Preface 

One of the most algor i thmic methods of finding exact solutions to dif ferential equations is the 

method of continuous symmetries developed by Sophius Lie in the lat ter hal f of the 19th century. 

A m o n g many applications for ODEs, one can use a continuous symmetry to find a change of 

variables tha t leads to a reduct ion of order. 

A more direct approach for reducing the order of ODEs is to use conservation laws. Each 

conservation law leads to a reduct ion of order w i thout change of variables. Th is is unl ike a 

symmet ry reduct ion which relies on a change of variables. 

I n this thesis we explore the connections that exist between symmetry reduct ion and reduct ion 

using conservation laws. 

I n Chapter 1 we review Lie theory of symmetries, inc luding how to use symmetries to obta in 

reductions of order of ODEs. 

I n Chapter 2 we study conservation laws and integrat ing factors. A conservation law is char

acterised uniquely by its integrating factor and one can obta in a conservation law f rom an 

integrat ing factor using a quadrature. Al ternat ively, any pair ( integrat ing factor, symmetry) 

and any pair (conservation law, symmetry) are shown to yield a (possibly t r i v ia l ) conservation 

law without quadrature. 

I n Chapter 3 we study self-adjoint ODEs whose integrat ing factors correspond to a special class 

of symmetries, variational symmetries. I n her famous paper [15], E m m y Noether showed how to 

construct a conservation law f rom a variat ional symmetry. Moreover, the result ing conservation 

law admits the var iat ional symmetry that was used to find i t . Thus two reductions of order are 

possible using a single var iat ional symmetry: one reduct ion in the or iginal variables and one 

symmetry reduct ion. I n general, r var iat ional symmetries do not necessarily y ie ld 2r reductions 

of order. I n Chapter 3 we w i l l establish a lower bound on how many reductions of order of 

each type is to be expected. The answer depends on the structure of commutators of admi t ted 

var iat ional symmetries. 

For a self-adjoint O D E explici t i n its highest derivative, i t is possible to te l l when a point 

symmetry is var iat ional w i thou t looking at the O D E itself. We explore this to give an ansatz 

for seeking var iat ional symmetries of such ODEs. 

I n Chapter 4 we consider a classification problem: find al l ODEs belonging to a given fami ly 

of ODEs for which a solut ion can be found. As an example, we classify the Emden-Fowler 

fami ly of ODEs and find several new solvable cases. We also develop ansatzes tha t use a known 

symmetry to help in finding an integrat ing factor or another symmetry. These ansatzes are 

then used to find new solvable cases of Abe l ODEs. 

v i i i 



Chapter 1 
Symmetries of O D E s 

I n th is chapter we introduce symmetry methods and show how symmetries can be used to reduce 

the order of ODEs. Since many physically relevant differential equations admi t symmetries, 

symmetry methods have become increasingly popular since Lie's fundamental work and its 

rediscovery i n the lat ter hal f of the 20th century, especially by mathematicians in the former 

Soviet Un ion. 

Lie gave a common framework and extended different ad-hoc techniques used to f ind solutions 

of ODEs. The symmetry methods he developed are highly algor i thmic. For instance, using 

Lie's a lgor i thm one can systematically f ind point symmetries of dif ferential equations and then 

f ind a change of variables which leads to a reduct ion of order. Many of these methods have 

been implemented on computer algebra systems (for review, see Hermann [13]). 

Some applications of symmetries include: Reduct ion of order of ODEs, f inding special solu

t ions of PDEs, f ind ing conservation laws for self-adjoint systems using Noether's Theorem, and 

l inearizing differential equations. These and other applications are described in [7]. 

I n Section 1.1 we describe how the symmetries arise as well as Lie's a lgor i thm to f ind them. For 

ODEs of second or higher order, f ind ing point symmetries leads to solving an overdetermined 

system of PDEs w i t h only f in i te ly many solutions. Such systems can often be solved completely 

and computer programs exist to f ind their solutions. 

I n Section 1.2 we show how to use symmetries to obta in reduct ion of order of ODEs using the 

method of canonical coordinates or the method of differential invariants. 

1 



1.1 Symmetries of differential equations 

Consider a dif ferential equation 

y' = f(x), x € » (1.1) 

I f we make a change of variables 

y = y + e (1.2) 

where e is any real number then y w i l l satisfy the same differential equation (1.1). Hence i f 

y = 4>(x) is a solut ion of (1.1) then so is y = <f>(x) + e. Th is is an example of a continuous 

symmetry of a differential equation. I n general, a symmetry of a dif ferential equat ion is a 

t ransformat ion tha t maps the solut ion of an equation into another solut ion of the same equation. 

Symmetries can be discrete (such as reflection or a ro ta t ion by 30°), or continuous (such as 

in the above example, or a ro ta t ion by an arb i t rary angle) which depends on a continuous 

parameter e. 

The fact tha t continuous symmetries are an uncountably inf ini te fami ly of t ransformations 

makes them much more useful for applications than discrete symmetries. I t also makes cont in

uous symmetries easier to f ind. I n what follows, we w i l l only discuss continuous symmetries. 

The mater ia l tha t we shall present in this section is wel l-known. See for example [5], [7], [21]. 

1.1.1 Continuous transformations groups 

Since continuous symmetries are continuous transformations, we f irst study the transformat ions 

themselves. 

Consider a fami ly of transformations 

xe(x) : M x I ->• M 

indexed by a continuous parameter 

e £ Z , I is an open interval of containing zero 

2 



which maps x E M into xe G M, where M is a smooth man i fo ld 1 . 

E x a m p l e 1.1.1 A ro ta t ion of the two-dimensional plane is a fami ly of t ransformat ions tha t 

can be parametrised by an angle e G (—7r, IT): 

X\(XI,X2) = xi cos e — X2 sine 

£2) = £1 sine + X2 cos e 

A l ternat ive ly this can be represented as: 

xe(x) = 
cos e 

sine 

— sine 

cos e 
x where x — Xl 

X2 
(1.3) 

Note tha t in the above example, ro ta t ing by angle e and then by angle 6 is the same as ro ta t ing 

by angle e + 5; ro ta t ion by zero is the ident i ty t ransformat ion. Thus the fami ly of rotat ions 

above forms an addit ive group w i t h respect to e. Th is motivates the fol lowing def in i t ion: 

Definit ion 1.1.2 A flow is a funct ion 

xe(x) :Xx M -> M 

w i t h the fol lowing properties: 

1. X is an open interval tha t contains zero w i t h e G X and M is a smooth mani fo ld w i t h 

x G M 

2. xs+€(x) = xs(xe(x)) whenever 6, e, S + e G X 

3. x°(x) = x 

4. xe(x) is analyt ic in e when e is near zero, for every x G M. 

A flow forms a one parameter continuous group of transformations on M, since x€(x) is an 

addit ive group w i t h respect to e. To show this, we need to show that the inverse of xe(x) exists 

and is equal to x~e(x). Indeed, 

x = x°(x) = xe e(x) — xe(x e(x)) = x e(xe(x)). 

1 For our purposes, assume M is an open subset of 3?" 



1.1.2 Infinitesimals 

A flow is completely characterised by its infinitesimal. 

D e f i n i t i o n 1.1.3 The infinitesimal of a flow x£{x) is given by 

v(x) = ^-x£(x) 
e=0 

Given an inf in i tesimal, one can recover the corresponding t ransformat ion group th rough the 

fol lowing theorem: 

T h e o r e m 1.1.4 ( L i e ' s f u n d a m e n t a l T h e o r e m ) A flow is uniquely determined by its in

finitesimal and vice-versa. 

If x£(x) is a flow with the infinitesimal v(x) = ^x£(x) , then x satisfies 

^x£(x) =v{x£{x)). (1.4) 

Conversely, if v(x) is analytic andx£(x) satisfies (1-4) with the initial condition x°(x) = x then 

x is a flow and v is its infinitesimal. 

P r o o f . F i rs t suppose that x is a flow. Then x£+5(x) = xs(x£(x)) and x°(x) = x. Di f ferent iat ing 

by S and evaluating at 5 = 0 we get (1.4). 

Conversely, f ix x and suppose x£(x) is a solut ion of (1.4) w i t h x°(x) = x. Let X = x£+s(x) and 

Y = xe(xs{x)). T h e n X\e=0 = Y | e = 0 = xs(x) and b o t h X and Y satisfy 

dX dY 
— = v { X ) , - = v ( Y ) . 

Since v is analyt ic, the above equations have an analyt ic and unique solut ion near e = 0. Thus 

X = Y is analyt ic for e in some neighbourhood of 0 by the existence and uniqueness theorem. 

Th is verifies properties (2-4) o f def ini t ion 1.1.2 • 

E x a m p l e 1.1.5 Let x£(x) be the rotat ional flow (1.3) as in Example 1.1.1. T h e n 

v(xi,x2) = — x£(xi,x2)=( ^ 
de\e=o V x\ J 



Conversely, fix x and denote xe{x) = y(e) = (^j) Then (1.4) w i t h x°(x) = x can be wr i t t en 

as a system: 

V = 
0 -1 

1 0 

\ 
y, y(0) = x 

J 
whose solut ion is precisely the rotat ional flow. 

I t is convenient to introduce the generator X of xe(x) to be a first-order dif ferential operator 

XF = ^F(x) • v(x) 

act ing on any differentiable funct ion F : M —> 5R. Then 

d d 
X = Vi- h . --Vn-

ox\ oxn 

where v; is the i - th coordinate of v. 

1.1.3 Change of coordinates; canonical coordinates 

Given a flow xe(x), suppose that we make a change of coordinates, x = x(y) and let y = y(x) 

be the inverse of x(y). I n the y-coordinates, the flow xe(x) becomes 

y e ( y ) = y(xe(x{y))). 

Let v be the inf ini tesimal of x and let w be the inf ini tesimal of y: 

i w{y) = ^(ye(y)) 
e=0 « e e=0 

Using the chain rule, we obta in : 

e=0 
= v • S/yi{x) 

where wi and yi denotes the i-th coordinate of w and y respectively. 

Using the generator X of x, XF = v • \/F, this can be re-wr i t ten as 

w = Xv 



where Xv is the vector (Xvi)T. 

I f we choose a change of coordinates 

V = (n(x), ...,rn-1(x),s(x))T 

for which w = (0, . . . , 0 , 1 ) T , then by Theorem 1.1.4 the corresponding flow becomes 

ye(y) = (yi,2/2, • • • , y n - i , y n + e). 

The resul t ing coordinates are called canonical coordinates. Thus, canonical coordinates "straighten 

ou t " the flow. 

To find canonical coordinates, proceed as follows. 

F i rs t , find n — 1 funct ional ly independent solutions of a linear f irst-order P D E 

Xr{x) = 0. (1.5) 

Using the method of characteristics, this is equivalent to solving a system of n — 1 ODEs of first 

order . 2 One can then choose r i , . . . , r n _ i to be any n — 1 funct ional ly independent solutions of 

(1.5) 

Second, find a solut ion to the pde 

Xs = l. (1.6) 

Using the method of characteristics, 5 can be found by quadrature, once r\,..., rn-\ are found. 

1.1.4 Invariance under continuous transformation 

Suppose that we are given a funct ion F : M —> A flow xe tha t leaves the curves F(x) — 0 

invariant: 

F(x) = 0 ̂  F{xe(x)) = 0, 

is called a symmetry of F. 

2These solutions correspond to n — 1 constants of motion of the flow x. 
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I f we differentiate F(xe(x)) = 0 w i t h respect to e and evaluate at e = 0, we obta in : 

d 
de 

F{x%x)) 
e=0 

= S/F{x) • v(x) = 0. (1.7) 

Thus i f xe is a symmetry of F then 

Conversely, 

\7F{x) • v(x) = 0. (1.8) 

Theorem 1.1.6 Suppose that (1.8) holds for some infinitesimal v, for all x € M. Let xe(x) 

be the flow that corresponds to the infinitesimal v, given by Lie's Fundamental Theorem 1.1.4-

Then F(xe(x)) = 0 F(x) — 0 and thus xe(x) is a symmetry of F(x) = 0. 

Proof. Let y = xs(x). Then by assumption, 

0=-F(x£(y)) 
e=0 

Expand ing y and using the group property (2) of def in i t ion 1.1.2 we obta in : 

d 
= ^-F{xe+Sx) 

e=0 « e 

d 
= T,F(x°x). 

e=0 dd 

Thus F(xs{x)) is constant for al l <5. I n part icular F(x°(x)) = F(x) = 0 =̂> F(xs(x)) =0. D 

I n terms of the symmetry generator, Theorem 1.1.6 states that a first order dif ferential operator 

X is a generator of a symmetry of F i f f 

XF = 0. 

Example 1.1.7 Cont inu ing w i t h Example 1.1.1, let 

(1.9) 

F(xi,x2) = xx + x2 - 1. 

T h e n v = ( ^ 2 ) is a solut ion to \/F • v = 0; the flow xe(x) corresponding to the inf in i tesimal v 

is jus t the ro ta t ional flow (1.3). I n part icular i f we choose xx = l,x2 = 0 then xe (J^J = (g°^). 

Hence by above theorem, F (c?*e

£) =0, f rom which follows that cos 2 e + s i n 2 e = 1. 



This characterisation of infinitesimals is of fundamental importance: i t allows us to f ind the 

infinitesimals of a symmetry of F, and thus a symmetry itself. 

I n the next section we w i l l extend this result to ODEs. 

1.1.5 Point symmetries of ODEs 

We want to study the invariance of an O D E 

G(x,y(x),y'(x),...,y^(x))=0 (1.10) 

under a point t ransformat ion 
t 

x = x€(x, y) 
V ' (1.11) 

ii = y€(x,y) 

which forms a flow and which maps solutions of (1.10) into solutions of (1.10). Thus 

dx dny 

where y = <p(x) denotes any solut ion of 1.10, and y, = , i > 1 (using convention yo = y ) . 

T h e expression y{ — c&n be wr i t t en using the total derivative operator, 

d d d 
Dx = — + y i — + y 2 - ^ + ... (1.12) 

ox ay oy\ 

as 

Di = D ^ Z ~ 1 , i > 1 w i t h yo = y. (1.13) 
Dxx 

The vector (x,y,yi, ...,yn) is called the n- th extension of the point t ransformat ion (1.11). 

I f (1.11) is a flow then so is its n- th extension, by the fol lowing theorem: 

Theorem 1.1.8 Suppose that (x,y) given by (1.11) forms a flow. Let yi be given by (LIS) 

(using convention yo = y). Then (x,y,yi, . . . , y n ) forms a flow on the n + 2 dimensional space 

spanned by (x, y, y i , y n ) . 

Proof. We w i l l prove here the case n = 1, the other cases being analogous. To do this we w i l l 

veri fy properties 2 and 3 of the def in i t ion 1.4. 
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Proper ty 3: We need to show that y\ = y\. Expand x,y i n Taylor series: 

x = x + e£ + 0 (e 2 ) , y = y + en + 0 (e 2 ) . 

Thus 

Vi 
Dxye 

Dxx6 

yi + eDx( 

£ = 0 1 + eDxn e=0 

Proper ty 2: Let xe = (xe,y£); note that x° = (x,y). We need to show tha t 

y?S(x.0,y°1)=yl(x6,yi) 

Since x forms a flow, i t follows that x e + 5 ( x ° ) = xe(x<5). Thus 

A^+*(x° ) D ^ x * ) y i ( x ° , y i ) . 

• 

We can now define: 

Definition 1.1.9 A point t ransformat ion (1.11) is a point symmetry of an n- th order O D E 

(1.10) i f i t is a flow and i f its n- th extension 

x = xe(x, y) 

y = ye(x,y) 

m = yY{x,y,yi) = % x 

Vn = yi€(x,y,yi,...,yn) - D x V n 1 

Dxx 

(1.14) 

satisfies G(x, y , y n ) — 0 whenever G(x, y, ...,yn) = 0. 

I f we are only given infinitesimals 

9x 

e=0 

dy 
de e=0 

dm 
de , i — l..n 

e=0 
(1.15) 
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of some flow 

x = xe(x, y) 

y = y£(x,y) 

m = yY{x,y,yi) (1.16) 

Vn = yn

e(x,y,yi, ...,yn) 

then i t is possible to verify whether the contact conditions (1.13) hold, w i thou t comput ing the 

flow itself. To do that we expand (1.16) in Taylor series w i t h respect to e at zero. We obta in : 

& = x + e£ + 0 ( e 2 ) 

y = y + erj + 0 ( e 2 ) 

yi = yi + er?j + 0(e2),i = 1 , . . . , n 

Imposing contact condit ions (1.13) we get: 

_ Dxji _ yi+eDxy+Q(e2) 
y i Dxx ~ l+eDxZ+0(e2) 

= (yi + eDxn)(l - eDx£ + (eDx02 - ...) + 0 ( e 2 ) 

= yi+e{Dxrj-yiDx0 + O{e2). 

Hence 

m = DxV - y i -Dis

s im i la r l y by induct ion we obta in the extension formula 

Vi = DxVi-i ~ yiDx£,,i = 1,2, . . . , n , w i t h rj0 = rj. 

(1.17) 

(1.18) 

Thus i f the contact condit ions (1.13) hold then the infinitesimals of (1.16) satisfy (1.18). 

The converse is also t rue because of uniqueness of the flow corresponding to a given inf in i tesimal 

(see Theorem 1.1.4) and since (x,y, ...,yn) is a flow (see Theorem 1.1.8). 

Hence the inf initesimals of the symmetry, (£, 77,771,%), and thus the symmetry itself, is 

uniquely determined by £ and 77 through (1.18). 

Th is leads to a much more useful characterisation of a point symmetry of an O D E : 
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Theorem 1.1.10 (Lie's algorithm) To find point symmetries of an n-th order ODE 1.10 it 

suffices to find t;(x,y),rj(x,y) such that 

£GX + nGy + mGyi + ... + 7lnGyn = 0 {mod G=0) (1.19) 

where by (mod G=0) we mean that the equality holds whenever G(x,y,yi, ...yn) = 0 and rn is 

given by (1.18). Then (^,rj) is the infinitesimal of a point symmetry of G = 0. 

Using the symmetry generator 

X = i Y x + r , d - y + r ] l d y - l

J r -

equat ion (1.19) can be wr i t t en as 

XG = 0 (mod G=0) . (1.20) 

Of ten we w i l l omi t the extensions r]i,i > 0 and wr i te 

X = ^ 0 - x + ^ y 

To find a symmetry generator of an O D E in solved fo rm, 

G = y n - 9(x,y,yi,...,yn-i) = 0, (1.21) 

we wr i te down the condit ions (1.19) together w i t h (1.18), at the same t ime replacing any 

occurrence of yn by g. W h e n n > 1, the result ing linear system of PDEs is overdetermined and 

has only finitely many independent solutions. Consequently, i t is often possible to find them. 

Furthermore, computer programs (for instance " r i f " [17], [19] and "di f fa lg" [8]) are available 

for s impl i fy ing overdetermined systems of PDEs using compartabi l i ty condit ions. 

Even though not a l l second order ODEs have point symmetries, many physical ly relevant ODEs 

do. 
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1.1.6 L i e -Back lund symmetries of O D E s 

In the future, we will need transformations more general than point symmetries. To generalise 

the concept of point symmetries we allow the infinitesimals r\ and £ of a symmetry of ODE 

(1.21) to depend on x,y,yi,y2, ...yn-\. Then 771 = Dxr\ — y\Dx£ may depend on yn which one 

can replace by g and similarly for 772, ...,r)n. The extension law (1.18) remains the same, except 

that we replace all occurences of yn by g. 

Definition 1.1.11 A generator of a symmetry of an ODE (1.21) (or simply a symmetry) is 

first-order differential operator 

dx r>' dy ^l dy\ 

where £ , 7 7 may depend on y i , . . . , y n _ i : 

£ = £{x,y,yu• • • ,yn-i), v = •n{x,y,yi,---,yn-\) 

and rji is given by 

•m = Dxr]i^i - yiDxi (mod G=0),i > 1 with 770 = 77. (1.22) 

and which has the property that 

XG = 0 (mod G=0). 

If £ or 77 depend only on x, y then the symmetry is called a point symmetry. Otherwise it is 

called a Lie-Backlund symmetry. 

The generalisation of point symmetries to Lie-Backlund symmetries was introduced in [4]. 

1.1.7 T r i v i a l symmetries 

Consider a symmetry with infinitesimals £ = 1,77 = yx. The corresponding infinitesimal gener

ator is the total derivative operator. 

d d d 
Dx = 7 r + y i 7 r + y21i- + ... (1-23) dx dy dy\ 
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Thus i f 

G{x,y,yu...,yn) = 0 

is any O D E then 

DXG = ^ G = 0 (mod G=0) . 
ax 

So Dx is a t r i v i a l symmetry of any O D E . Geometrically, a t r i v i a l symmetry represents a trans

formation in the direct ion of the solut ion curves of the equation. 

More generally, 

Proposition 1.1.12 Let X be a symmetry generator 

ox oy 

Then X is a (trivial) symmetry of any ODE G = 0. 

Proof. One can show by induct ion that the extension formula (1.18) can be rewr i t ten as 

Vi = D ^ ( n - y i 0 + y i + i C . (1-24) 

Thus i f rj = y i£ then rn = £yi+\ and hence XG = (,DXG = 0 (mod G=0) . • 

1.1.8 Evolutionary form for symmetry generators 

W h e n a symmetry does not t ransform the independent variable ux", i t is said to be in evolution

ary form. Geometrically, such a symmetry transforms the curves y(x) i n the vert ical d i rect ion 

only (see figure 1.1.8). 

The generator of a symmetry in evolut ionary fo rm is 

X = v — + V l — + ... (1.25) 
oy oyi 

where v may depend on yi,y2, ...,yn-i- The extension condi t ion (1.18) then becomes 

Vi = DxVi-i 
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Figure 1.1: A n evolut ionary symmetry transforms in the vert ical d i rect ion only. 

and hence 

XG = ^-G(y + ev) 
e=0 

The expression on the r ight hand side corresponds to a l inearisation of G, i n direct ion v. 

D e f i n i t i o n 1.1.13 A Directional (or Lie) Derivative of G in the direction v, denoted by VVG, 

is defined by 

VVG = —G(y + ev) 
dG dG dG , 

= v— + vx—- + v27r- + ... (1.26) 
6=0 dy dyi dy2 

Thus a symmetry is in evolut ionary fo rm i f and only i f its symmetry generator X is a direct ional 

derivative Vv i n some direct ion v. 

Let 

X = ^YX
+^dy-

be a symmetry generator of an ODE G = 0 and let 

v = n- y i f . 

T h e n 

X - £ I > x = ( n - y i £ ) — + ... = X>„. (1.27) 

Since £D x is a ( t r iv ia l ) symmetry and a linear combinat ion of two symmetries is also a symmetry, 

T>v is also a symmetry generator of G = 0. Thus any symmetry can be " rewr i t ten" as a 

symmetry in evolut ionary fo rm. 
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I n general, two symmetry generators are equivalent i f f they differ by a t r i v i a l symmetry i f f their 

evolut ionary forms are equal. I n part icular a symmetry generator in evolut ionary fo rm (1.25) 

is equivalent to a point symmetry i f f v depends only on x, y, y\ and is at most l inear in y\. 

Since par t ia l derivatives commute, we have: 

L e m m a 1.1.14 A Directional derivative and the total derivative operator commute: 

DVDX — DXT)V. 

As a consequence, we have: 

L e m m a 1.1.15 Let 

V c 9 ^ 9 

ox oy 

be a symmetry generator of G. Then 

XDX = DXX + {Dxi)Dx. 

Thus 
XDX = DXX (mod G=0). 

Proof. Wr i te X = Vv + (Dx where v = rj — Then 

DXX = DXVV + Dx{iDx) = VVDX + t;DxDx + (DX£)DX = XDX + (DX^)DX 

• 

1.1.9 L ie A lgeb ra of symmetries 

I t is possible for an O D E G = 0 to admi t more than one symmetry. However one can show tha t 

an O D E of second or higher order admits only f in i te ly many point symmetries. I n par t icu lar , 

any second order O D E admits at most eight point symmetries, and an O D E of order n > 2 

admits at most n+4 symmetries (see [7], [21]). Symmetry generators fo rm a vector space since 

they are solutions of a linear P D E (1.20). More interestingly, a commutator of two symmetry 

generators is again a symmetry generator: 
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T h e o r e m 1.1.16 If X,Y are two symmetry generators of G then their commutator, 

Z = [X, Y] = XY - YX, 

is also a symmetry generator of G. 

Proof. Let 

T h e n 

w i t h 

z — £z ^ + z ® + z ® + 
dx ^ dy ~*~ ^l dyi " 

i z = XiY - Y£x, vf = Xg - Ytf, i > 0 , m = v , 

is a f irst order differential operator. Furthermore, 

ZG = XYG - YXG = 0. 

Thus to show tha t Z is a symmetry generator, i t suffices to show that 

r j f = Dxri?_x - y%Dxiz\i > 1. 

Since X, Y are symmetry generators, we have 

rjf = Xtf - Yri = X{Dxrj{_x - yiDx6.Y) - Y(Dxr,f_x - yiDx£,X) 

Using L e m m a 1.1.15 and some algebra, one can show tha t this is equal to 

Dx(Xrj(_x - YVf_x) - yiDx{XiY - Yix) = Dxr,z_x - V i D x i z 

• 

Let x€,ye be two flows w i t h generators X, Y respectively, and let Z = [X,Y]. One can show 

tha t the generator of the flow 

Ze = X e o y e o xe o if 
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is Z. 

Note that i f X = Vv, Y = V w are in evolut ionary fo rm then their commutator Z — [DV,'DW\ is 

also i n evolut ionary fo rm, Z = Vu w i t h u given by 

u = Vvw — Vwv. 

Note also that a commutator of two point symmetries is a point symmetry. 

A Lie Algebra of symmetry generators is a vector space of symmetry generators tha t is closed 

under the commutat ion. The dimension of a Lie Algebra is its dimension as a vector space. B y 

Theorem 1.1.16, the set of a l l symmetry generators admi t ted by an O D E forms a L ie Algebra. 

1.2 Reduction of order using symmetries 

One of the applications of symmetries is to help in f inding expl ic i t solutions of ODEs. I f we 

know a symmetry of an n- th order O D E 

then one can reduce its order by one. For a first order O D E this is is equivalent to finding a 

general solut ion of the O D E . 

We examine two wel l -known methods of reduct ion - canonical coordinates and dif ferential 

invariants. They are also described in [7] or [21]. 

1.2.1 Canonical coordinates 

Suppose tha t an n- th order O D E wr i t t en in solved fo rm, 

G = yn -g(x,y,-,yn-i) = 0 (1.28) 

G{r,s,si,S2,...,S; "n ) = sn - g{r,s,su...,sn-i ) = 0 (1.29) 

admits a point symmetry 

r r, s = s + e (1.30) 

whose extensions are s$ = Sj. Then 

G{r,s,si,S2,...,S; "n 0 <̂> G ( r , s + e , s i , . . . , a n ) = 0 (1.31) 
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and hence g — g(r, s \ , s n - i ) is independent of s. Thus i f we let z(r) = s'(r), then the O D E 

(1.29) becomes an O D E of order n — 1: 

Zn-i = g(r,z,...,zn-2)- (1-32) 

I f n = 1 then (1.32) becomes z(r) = g(r) and hence 

s(r) = JT g{t)dt + C 

is a general solut ion to (1.29) for n = 1. 

I n general, any point symmetry can be transformed into (1.30) by using canonical coordinates 

(cf. Section 1.1.3). Thus i f an O D E admits a point symmetry then its order can be reduced by 

one. We i l lustrate by example. 

E x a m p l e 1.2.1 Consider an O D E 

G = y2 + y3

1 + ^ ± y 2

l = 0 (1.33) 

where y = y(x),yi = y',y2 = y"• I t admits two point symmetries whose generators are: 

1 ~ dy 

x = Pyr— + py— v?rpy— + 

w i t h [T, X] = X. 

Firs t consider what happens i f we use T to reduce the order of (1.33). T is already i n canonical 

fo rm; the reduct ion of order leads to a first-order Abe l O D E after a t ransformat ion z = y\ : 

Z l + z Z + ^±lz2 = r)_ ( L 3 4 ) 

X 

However the result ing first-order Abe l O D E does not have any apparent symmetries. The 

symmetry X is " lost" because Xz = z2xey contains y. 

However we can use X to reduce (1.33). To do this, we first find canonical coordinates. A 

solut ion of 

Xr(x, y) = eyxrx + eyry = 0, Xs(x, y) = eyxsx + eysy = 1 
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is found to be 

r = xe y , s = — e y y = — I n s , x = r/s. 

I n new variables s(r), we get 

s 4 

G = - T 3 - ( r 5 2 + s?) = 0 
(rsi — s)dr 

and the symmetry T becomes 

T = T 4 + T 4 + ... = - 4 * 0 a 9 + 

or os or os os\ 0S2 

Th is t ime the reduced equation for z = s\, 

does inher i t a symmetry 

rzx + z2 = 0 (1.35) 

whose canonical coordinates (v,w(v)) w i t h 

= 0,Tzw = 1 

are given by v = z, w = — l n r . Transforming (1.35) we get 

which has a general solut ion 

/ -2 
w = v 

w = — v 1 + K\. 

Untransforming we get 

z(r) 1 

l n r + Ki 

sir) = I „ . , . + K2 

/

xe~y 

Ki 

+ I n t 

-v 1 dt 
e V = l - T l n 7 + ^ 

which is a general solut ion to (1.33). 
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The above example i l lustrates an impor tan t point . I n general, i f an O D E admits two point 

symmetries X, Y w i t h [X, Y] = aX then one should start reducing its order using X? Then 

the resul t ing reduced O D E w i l l " inher i t " the symmetry Y. However i f Y is used f i rst , then the 

symmetry X w i l l be " l os t " 4 . See [7] or [21] for proof. See also [7] for an a lgor i thm to reduce 

the order of an O D E admi t t i ng an r-dimensional solvable Lie Algebra, by r. 

1.2.2 Differential invariants 

I n th is section we shall only consider point symmetries. However the results generalise to 

L ie-Backlund symmetries as well. 

Given a point symmetry generator 

X = t:{x,y)^ + n{x,y)-^ + ..., 

any solut ion w of Xw — 0 is called an invariant of A'. A n invariant w is an invariant of 

order i, i > 0 i f i t depends expl ic i t ly (where yo = y) bu t does not depend on yj for j > i: 

w — w(x, y,... ,yi). A n invariant is a differential invariant i f i t is of order greater t han zero. 

A n invariant of order zero, u = u(x, y) must satisfy a P D E 

€{x,y)ux +rj(x,y)uy = 0. 

Hence there is exactly one funct ional ly independent invariant of order zero. Similar ly, there are 

exact ly i + 1 funct ional ly independent invariants of order at most i. 

I f two indepedendent invariants are known then one can generate an inf in i te sequence of inde

pendent invariants using the fol lowing theorem. 

Theorem 1.2.2 Let u,w be any two invariants of X. Then 

dw = DxW 

du Dxu 

3 I f an O D E admits an n-dimensional Lie Algebra L, then it will be shown in Theorem 4.2.5 that for any 
Y 6 L, there exists X e L with X ^Y such that either [X, Y] = XX for some possibly complex number 
A or else [X, Y] = Y. Furthermore, A is real for n = 2. Thus a reduction of two orders is always possible 
for an O D E of order greater than one that admits a two-dimensional Lie Algebra of symmetries. 

4 I n fact, it becomes a Lie-Backlund symmetry. See [7], Chapter 7.3 for details. 
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is also an invariant of X. 

Thus if w is a differential invariant of order i > I and u is an invariant of order 0, then ^ is 

a differential invariant of order i + 1. 

Proof. Since X is a differential operator of first order, the quotient rule holds so that 

fL\w\ = (Dxu)X(Dxw) - (Dxw)X(Dxu) 
\Dxu) (Dxuf 

and using Lemma 1.1.15 and the fact that Xv = Xw = 0 shows that the numerator of the 

resulting expression is zero. rj 

Now suppose X is a point symmetry of an n-th order ODE G — 0, and let u = u(x,y),w = 

w(x,y,y\) be invariants of order zero and one respectively5 and let 

DxWj-i dwj-i . 
ivi = —— = —-—,% = 1 , n , with WQ = w. ( l - J ' j 

Dxu du 

Then any other invariant of order at most n can be written as a function of u, w, w x , w n - \ . 

Since XG = 0 (mod G = 0) it follows that G = G(u,w,wi, ...,wn-i) (mod G = 0) for some 

function G. Thus G = 0 G = 0. But because of choice (1.37) of Wi, 

G{u,w, wi, ...,wn-i) = 0 (1.38) 

is an ODE of order n — 1 for w(u). Suppose we could solve (1.38) to obtain a general solution 

w = <f>(u,Ci,C2,...,Cn-i). 

Then 

w{x,y,yi) = <t>{u(x,y),Cx,...,Cn-1) 

is a first-order ODE for y(x). This first-order ODE still admits X and hence its solution can 

be found using the method of canonical coordinates. 

5See [7] for an algorithm of obtaining w through quadrature, once u is known 
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Example 1.2.3 Consider the scaling symmetry, whose infinitesimals are £ = 0, rj = y. The 

corresponding symmetry generator is 

Vdy mdyi 2/2dy2 

Note that u = rc is an invariant of X (of order 0). To find an invariant w(x, y, yi) of order 1 we 

need to find a solution to 

ywy + y\wyi = 0. 

Using the method of characteristics we find: 

dy dy\ y\ 
— = => ln(yi) — mly) = const. =>• — = const. 
y yi y 

Thus 
yi 

w — — 
y 

is a first-order invariant. An invariant of second order is then given by 

w =dw ^ Dxw = y2y - y\ = m _ ^ 2 

du Dxu y2 y 

Note that w\ + w2 = y2/y, and in general yi/yj,i,j > 0 are also invariants of X. 

Example 1.2.4 Consider the harmonic oscillator 

. G = y2 + y = 0. 

G is invariant under X = y ̂  so we can write G in terms of the invariants 

yi Dxw y2 u = x, w = — , wi = — — = x 
y Vxu y — u r 

of X that were computed in example 1.2.3. We obtain: 

y2 = (wi + w2)y 

and hence 

G = y2 + y = (wi + w2 + l)y = 0. 
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Thus we have to solve the equation 

dw 
+ w2 + 1 = 0 

du 

for w(u). Th is equation is translat ion-invariant in u and its solut ion is thus found to be 

u + / dt/(l + t2) = C 
/

w 

dt/o 

or 

w = t a n ( C — u). 

Subst i tu t ing back u = x: w = yx/y we arrive at the equation 

yi = t a n ( C - x)y (1.39) 

which s t i l l admits the scaling symmetry 

Vdy V l dy{ 

Using canonical coordinates, r = x, s — Iny w i t h Xr = 0, Xs — 1 the O D E (1.39) becomes 

s' = t a n ( C - r ) 

and thus 

s = J t a n ( C - r)dr = ln(cos(C - r ) ) + K 

Untransforming we get the solut ion: 

y = Ci cos(C 2 - x). 

I n Section 2.1.3 we w i l l present a generalisation of the method of dif ferential invariants tha t 

also works for non-point symmetries and w i l l allow us to reduce the order of an O D E by two 

without changing coordinates. 
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1.3 Discussion 

I n Sections 1.1.1-1.1.4 we defined what is a symmetry of an O D E . A symmetry can be recovered 

f rom its symmetry generator using Lie's Fundamental Theorem. One can find al l symmetry 

generators of an O D E by solving a linear system of PDEs (1.20, 1.18). 

For po in t symmetries of order n > 1 the system (1.20, 1.18) is overdetermined and has only 

finitely many solutions. The problem of finding solutions to overdetermined systems is to a 

large extent algebraic, and algori thms are available (see [17], [19], [8]) to reduce such systems. 

The ou tpu t of such algori thms is an equivalent system, but much simpler, and whose solutions 

are often t r i v ia l l y found. 

I n Section 1.1.8 we showed how to represent any symmetry in an equivalent evolut ionary fo rm 

which leaves independent variables unchanged. The advantage of doing this w i l l become clear 

i n Chapter 3. 

A l l symmetries of an O D E form a Lie algebra under commutat ion. I ts st ructure is impor tan t 

i n applications tha t use many symmetries at once (for instance see [7] where an a lgor i thm for 

reducing an n- th order O D E admi t t ing a solvable r-dimensional Lie algebra of point symmetries 

is presented). 

I n Section 1.2 we have presented two methods of reducing the order of ODEs using symmetries. 

The first method, or iginal ly developed by Lie (Section 1.2.1), involves "straightening out " 

the flow using canonical coordinates. I n canonical coordinates the order of the O D E can be 

direct ly reduced using a quadrature. Whi le this technique works for point symmetries, i t does 

not generalise nicely to Lie-Backlund symmetries. However for first order ODEs this technique 

is general enough, since any symmetry of a f irst order O D E is a point symmetry. Another 

feature of th is method is that i t requires a change of coordinates to work. 

Al ternat ive ly , for ODEs of second order or higher, one can use the method of di f ferent ial 

invariants (Section 1.2.2), also or iginal ly developed by Lie. Wh i le this method generalises to 
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Lie-Backlund symmetries, i t requires one to f ind the general solut ion of an auxi l iary O D E (1.38) 

of order n — 1 before a successful reduct ion can be obtained! 

I n Section 2.1.3 a generalisation of the method of differential invariants w i l l be presented, by 

using the concept of conservation laws. 
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Chapter 2 
Conservation laws and integrating factors 

Not a l l ODEs whose exact solut ion can be found admi t point symmetries. For example, i f we 

start w i t h a Bernoul l i equation, 

V- = j / " - 1 + f(x) 
y 

whose solut ion is known and differentiate i t , we get a second order O D E 

^ - ^ = ( n - i ) y n " V + /'(x) 

which - except for very specific f(x) - does not admi t any point symmetries (see [12]). Nonethe

less, its solut ion can be found exactly since i t is equivalent to 

V- = yn-l + f(x) + C 
y 

which is a solvable (Bernoul l i ) O D E . 

The above reduct ion is an example of a reduct ion in the original variables. A l l such reductions 

can be obtained f rom conservation laws of an O D E . I n this chapter we study such reductions. 

I n Section 2.1.1 we define conservation laws and show how one can find them direct ly f rom 

their def in i t ion. 

The task of finding conservation laws can be simpli f ied when an O D E admits symmetries. I n 

par t icu lar , a symmetry generator applied to a conservation law again results i n a conservation 

law (see Section 2.1.2 or [21] or [20]). Based on this fact, two related ansatzes w i l l be developed 

i n Sections 2.1.3 and 2.1.4 that use a symmetry to look for a conservation law. 
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Instead of seeking the conservation laws, one can seek integrating factors which characterise 

conservation laws. Th is is done by seeking part icular solutions of the determining equations 

tha t any integrat ing factor must satisfy. I n Section 2.2 we review the developement of these 

determin ing equations (see also [16] and [1]). As a consequence of this developement, one can 

obta in a conservation law corresponding to a given integrat ing factor, using only integrat ion 

and ar i thmet ic operations. 

I n [3] i t was shown that one can also use an integrat ing factor and a symmetry to generate a 

conservation law. Th is is discussed in Section 2.3, where we also show that the conservation 

law thus generated is the same that one gets using the method of the previous paragraph. The 

relat ionship between symmetries and integrat ing factors w i l l be fur ther explored in Chapter 3, 

which w i l l discuss self-adjoint systems and Noether's Theorem. 

2.1 Conservation laws and using symmetries to find them 

2.1.1 Conservation laws 

A conservation law of an O D E 

G(x,y,yu...,yn) = 0 (2.1) 

is an expression P(x,y,yi, . . . , y n _ i ) such that 

DXP = 0 (mod G=0) . (2.2) 

Thus, P(x,y,yi,...,yn-i) = C for some constant C , for any solut ion y = ct>(x) of (2 .1) . 1 For 

example x — l n y = C is a conservation law of a differential equation y' — y = 0. 

Example 2.1.1 Let y = cb(x) be any solut ion of 

G = y2 + y = 0 (2.3) 

and let 

According to our definition of a conservation law, a constant is a (trivial) conservation law of any O D E . 
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We have 

d P t X 

= yi{y2 + y) = yiG. 

Thus P is constant for each solut ion y = 4>(x) of (2.3). Hence P is a conservation law of (2.3). 

Note tha t solving the or iginal equation (2.3) of second order is equivalent to solving P = C 

which is of first order. Thus by finding a conservation law we have reduced the order of the 

or ig inal O D E . 

Example 2.1.2 Let P = P(x,y,yi) = const, be a conservation law of a second order O D E in 

solved fo rm, 

G = y2 -g(x,y,yi) = 0. 

Then (2.2) becomes 

Px + yiPy + gPyi = 0. 

Any conservation law of an n- th order O D E G = 0 is a solut ion of (2.2) (and vice-versa) which 

is a linear first order P D E in n variables. Such a P D E has inf in i te ly many solutions (since a 

funct ion of any solut ion is again a solut ion), bu t only n of them are funct ional ly independent. 2 

Hence any funct ion of a conservation law is once again a conservation law, and an n - th order 

O D E has inf in i te ly many conservation laws, bu t only n of them are funct ional ly independent. 

By using n funct ional ly independent conservation laws to el iminate derivatives of y one can 

obta in a general solut ion depending on n arb i t rary constants. 

Example 2.1.3 Consider 

G = y% + yi = 0. 

T h e n (2.2) becomes 

Px + yiPy - yiPyi = o. 

2 Two expressions a(x) and b(x) are said to be functionally independent i f the only solution F to F(a, b) — 0 
is the zero solution. For example a = xi — X2, b = x\ — 2x±X2 + x\ are functionally dependent whereas 
a — x\, b = X2 are not. 
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B y inspect ion, P = Px = y1 + y is one of the solutions to the above P D E . By looking for 

solutions P = P2 independent of y, we f ind that P2 = y\ex is another solut ion of the same P D E 

independent of P i . Hence 

P\ = y\+y = Ci,P2 = y\ex = C2 

are two independent conservation laws of G. E l im ina t ing y\ we obta in the general solut ion, 

y = Ci- C2e~x. 

2.1.2 Action of symmetry generators on conservation laws 

The fundamenta l relat ionship between symmetries and conservation laws is provided by the 

fol lowing lemma (see [21], [20]) 

Lemma 2.1.4 if X is a symmetry of G and P is a conservation law of G then X(P) (mod G=0) 

is a conservation law. 

P r o o f . Let X = + 7 7 ^ + . . . , and apply Lemma 1.1.15: 

DXXP = XDXP + (Dxf)DxP = 0 (mod G=0) . 

• 

Below we show that the converse is also true in the fol lowing sense: 

Lemma 2.1.5 Let Po be a (possibly trivial) conservation law and X be a symmetry ofG. Then 

there exists a conservation law P of G such that XP = Po (mod G~0). 

P r o o f . To simpl i fy notat ion, we shall assume that G is of second order. Any second order 

O D E has two funct ional ly independent conservation laws (cf. Section 2.1.1). Let Q and R be 

any two such independent conservation laws. 
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We first show that at least one of XQ (mod G=0) , XR (mod G=0) is non-zero. Note tha t the 

system of PDEs 

( XP = 0 
(mod G=0). (2.4) 

DxP = 0 

has at most one funct ional ly independent solut ion for P when G is of second order. Bu t . R, Q 

are funct ional ly independent, and bo th satisfy Q',R' = 0 (mod G = 0 ) . Thus at most one of 

i?, Q can satisfy (2.4). Thus at least one of XQ (mod G=0) , XR (mod G—0) is non-zero. 

Now by Lemma (2.1.4), XQ (mod G—0),XR (mod G=0) are again conservation laws. Since 

there are at most two funct ional ly independent conservation laws of G, any conservation law of 

G must be a funct ion of Q, R. So let 

X(Q) = f{Q,R), X(R) = g(Q,R), P 0 = h(Q,R) 

for some functions / , g, h, w i t h at least one of / , g non-zero. 

Now let P(Q,R) be any non- t r iv ia l solut ion of a P D E 

f(Q,R)^P(Q,R)+g(Q,R)—P(Q,R) = h(Q,R). 

T h e n by chain rule we have 

X(P(Q,R))= X(Q)^P(Q,R)+X(R)^P(Q,R) 

= f(Q,R)^P(Q,R)+g(Q,R)^P(Q,R) = P0. 

Hence P(Q, R) is the desired conservation law. • 

I n the fol lowing section, this lemma w i l l be used to generalise the method of dif ferential invari

ants to L ie-Backlund symmetries. 

2.1.3 Using symmetries to find conservation laws 

Lemma 2.1.5 provides an ansatz for looking for a conservation law P of G = 0: we seek solutions 

P o f a system 
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X(P) = 0 
(mod G=0). (2.5) 

DXP = 0 

This ansatz was f irst used by [12] and [11]. We i l lustrate w i t h examples. 

Example 2.1.6 For a second-order O D E 

G = y2 -g(x,y,yi) = 0 

the system (2.5), when wr i t t en out , becomes 

Pxt + Pyr) + PyiVi = 0 

^ Px + VlPy + gPyi = 0 

where P = P(x,y,yi) and rji = Dxn - yiDx£ (mod G=0). 

To solve system (2.5), f i rst f ind n — 1 differential invariants u, w,... of X (which can be obtained 

f rom any two independent invariants - see Theorem 1.2.2) and wr i te P = P(u,w,...). T h e n 

subst i tute into DXP = 0 (mod G=0) and solve the result ing system for P(u,w,...). 

Example 2.1.7 Let 's apply this method to the harmonic oscillator 

G = y2 + y = 0 

which admits symmetries 

dx"1 dy' 

We first compute a conservation law P w i t h TP = 0. 

The invariants of T are u = y, w = y\; so P = P(u,w). Plugging this into P' = 0 (mod G = 0 ) 

we obta in Puw — Pwu = 0. Using method of characteristics: ^ + = 0 , udu + wdw — 

0, u2/2 + w2/2 = const., we f ind 

P = y2 + v\ = C i 

is a conservation law invariant under T . I t is now possible to f ind the solut ion of P — C\ = 0 

since i t is invariant under T. Al ternately, we w i l l compute a conservation law Q w i t h XQ = 0. 

31 



As before, u = x,w = y\jy are differential invariants of X so 

Q = Q(u,w). 

Tak ing to ta l derivative (mod G=0) we obta in 

u'Qu + w'Qw (mod G=0) = Qu + {-y2 - yj)/y2Qw = Qu - (w2 + 1)QW = 0. 

Using the method of characteristics we get du + = 0 o r ^ + i o 2 + l = 0 (which is exactly 

the same equation as obtained using differential invariants). Th is can be integrated and we 

obta in a solut ion for Q: 

Q = x + a r c t a n ( y i / y ) = 

Solving the system P = Ci, Q = C2 we obta in a fu l l solut ion of G: 

x + arctan( V 1 ~ V ) = C2. 

y 

Solving for y we obta in 

y = ±\/Ci cos(x — C2). 

Since this method works for any symmetry (point or Lie-Backlund ) , we can rewr i te the sym

met ry i n i ts evolut ionary fo rm, X — T>v. Then the first invariant is jus t u = x and another 

invariant is any solut ion to the P D E 

Vvw = 0 (mod G=0) . (2.6) 

A l l addi t ional invariants can be obtained through Theorem 1.2.2 which, for a symmetry i n 

evolut ionary fo rm, becomes W{ = DxW{^i (since u = x is an invar iant) . 

Example 2.1.8 For a general second order O D E 

G = y2-g(x,y,yi) = 0, 

a d m i t t i n g a symmetry 

d 
X = Vv = v{x,y,yi)— + 

oy 
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(2.6) becomes 

wyv + wyiv = 0 (mod G=0) (2.7) 

whose solut ion can be obtained using the method of characteristics: 

dy = dyi 
v v' 

where v = v{x, y, yi), v' = vx + yxvy + gvyi. 

Example 2.1.9 To i l lustrate that this method works for Lie-Backlund symmetries, consider 

an O D E 

G = y2- g = 0,g = — . (2.8) 
y , y 2x + 2y + 2yi-yxx 1 °> 

I t admits a Lie-Backlund symmetry X = y\-§^- Equat ion 2.7 becomes 

wyy\ + 2wyigyi = 0. 

Using the method of characteristics we f ind a solut ion: 

w = {yi - yix/2 + y + 2)e~^ 

and thus 

P = P{x,w) 

is a conservation law for some P. I n part icular, 

Dxw = ̂ e-yil2{yi - y2(x + y + V l - ^yxx)) = 0 (mod G=0) 

and thus w i tself is a conservation law. So the or iginal O D E is equivalent to 

(yi - Vix/2 + y + 2)e^ = const. (2.9) 

This conservation law is s t i l l invariant under X. Wh i le in theory the method of canonical 

coordinates can be used to integrate (2.9) fur ther, i n practice i t is necessary to isolate y\ before 

f ind ing canonical coordinates. We w i l l overcome this di f f icul ty by f ind ing another conservation 

law of (2.8) directly, using X and the method described in the next section. 
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2.1.4 Using one symmetry to find two conservation laws 

I n the previous section we considered an O D E G = 0 admi t t ing a symmetry X and showed 

how i t may be possible to f ind a conservation law P of G by solving the system 

XP = 0 
(mod G=0) . (2.10) 

DxP = 0 

I n this section we w i l l show that i f i t is possible to f ind such a P then i t may be possible to 

find another non- t r iv ia l conservation law Q for which 

XQ = 1 
(mod G=0) . (2.11) 

DxQ = 0 

B y L e m m a 2.1.5, such a Q always exists, since 1 is a ( t r iv ia l ) conservation law. Furthermore, 

Q must be funct ional ly independent of P. 

I f G is of second order and P can be found, then Q can always be found using only two 

quadratures, w i thou t having to solve any addi t ional ODEs, as we now i l lustrate using examples. 

Example 2.1.10 Harmonic oscillator, G = y2 + y = 0, admits a symmetry X' = whose 

(differential) invariants are u = y,w = y\. I n (2.3) we found that 

P(u, w) — u2 + w2 

satisfies (2.10). We now seek Q of the form 

Q = F{u,w) + s(x,y,yi) 

which satisfies (2.11). Imposing XQ = 1 XF + Xs = Xs = 1 we obta in sx — 1, whose 

par t icu lar solut ion is 

s = x. 

I n general, once u, w are known, 5 can always be obtained through quadrature using the method 

of characteristics. 
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Impos ing Q' = 0 (mod G=0) leads to 

Fuw-Fwu +1 = 0. (2.12) 

We already found a solut ion P = u2+w2 to the associated homogeneous problem Puw—Pwu — 0; 

thus the solut ion to (2.12) is obtained by solving Fuw = — 1 w i t h w = ±VP — u2 f r om which 

we find a solut ion to (2.12): 

F = a r c c o s ( u P " 1 / 2 ) . 

Thus 

Q = a r c c o s ( u P - 1 / 2 ) + x 

satisfies (2.11). Solving for u we obta in 

u = ±VP cos(Q — x) 

which leads to a general solut ion: 

y = C i cos(C 2 - a;). 

Example 2.1.11 Consider an O D E f rom example 1.2.1: 

G = y2 + yl + (l-x-1)yl=0. (2.13) 

I t has two symmetries: 

X = xey^- + ey^-,T=^-. 
ox oy oy 

We w i l l use the symmetry X to find a general solut ion of (2.13). 

The invariants of X of zero and first orders are found to be 

xyi - 1 
u = xe y, w = . 

yi 

Thus a conservation law P w i t h XP = 0 must be a funct ion of u,w: P = P(u, w). I n add i t ion 

i t must satisfy 

DXP = (Dxu)Pu + {Dxw)Pw = 0 (mod G=0) (2.14) 
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where 

Dxu = e~y(l - xyi), Dxw= 1 X y i (mod G=0) 

and thus 

^ = 1 (mod G=0) . 

Hence (2.14) is equivalent to: 

u P u -i-Pu, = 0. 

Thus 

P = ue~w (2.15) 

is a conservation law of (2.13). We now seek a conservation law Q w i t h XQ = 1. Once again, 

assume Q has fo rm 

Q = F(u,w) + s 

where F, s are to be found. Then XQ = Xs = 1. By inspection, 

satisfies X s = 1. I t remains to satisfy 

0 = DXQ = (Dxu)Fu(u,w) + (Dxw)Fw(u,w) + Dxs (mod G = 0 ) . 

where 

and hence 

DrS 1 

I t follows that F must satisfy 

uFu + P^, = . 
w 

The solut ion to the homogeneous part of this equation is given by P found in (2.15). Thus to 

find F one must solve 
u 

Fw = - w i t h ue~w = P 
w 
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or 

ewPw 

I ts solut ion is given by 

F = P 

which leads to a conservation law 

Q = P I t 
dt - e~y 

I f we now replace 

u = xe y,w = l n ( u / P ) = lna; — y — I n P 

we get a general solut ion 
In x—y—ln P „t 

-dt - e~y. 
t 

2.2 Integrating factors and Euler Operator 

A conservation law can be characterised by an associated integrating factor. There is a close 

relat ionship between integrat ing factors and Euler-Lagrange equations f rom the var iat ional 

calculus. This relat ionship leads to determining equations for integrat ing factors. I n this section 

we define integrat ing factors and derive the determining equations for them. Th is mater ia l 

i n s tandard, see for instance Olver [16]. Following [1], we w i l l also show how to compute 

the conservation law corresponding to a given integrat ing factor using only integrat ion and 

ar i thmet ic operations. 

2.2.1 Integrating factors 

Definition 2.2.1 The expression G(x, y , y n ) is exact or a divergence i f i t is a to ta l derivative 

of some expresson P(x, y, y i , y n - i ) ' -

For example y\ and yyi are exact since they are to ta l derivatives of y and y 2 / 2 respectively. 

O n the other hand y or yy2 are not exact. 

G = DX(P) 
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Definition 2.2.2 w is an integrating factor of G i f wG is exact. 

B y def in i t ion of exactness, one can then f ind an expression P such that 

wG = DX(P). (2.16) 

Note tha t i f G is exact then i t has an integrat ing factor 1. 

The above condi t ion is equivalent to (2.2): DXP = 0 (mod G=0), when the order of P is less 

than the order of G. Thus P is a conservation law of G i f f there exists an integrat ing factor w 

w i t h DXP = wG. 

Example 2.2.3 Consider an O D E G — y\ — y = 0, let P = ln(y) - x and let w = 1/y. T h e n 

DXP = y\/y — 1 = wG. Hence P = C is a conservation law of G = 0 corresponding to the 

integrat ing factor w. Solving P = C for y we obta in the general solut ion to the O D E , y = Cex. 

2.2.2 Adjoint Directional Derivative and Euler Operator 

Recall f rom Section 1.1.8 tha t the direct ional derivative VVG is defined by 

VVG = —G(y + ev) dG , dG „ dG 
= v—+v'— + „ " _ _ + ... 

e = 0 dy dyi dy2 

Definition 2.2.4 A n adjoint of a directional derivative is an operator V*w such that wVvG — 

vT>*wG is a to ta l derivative, for any w,v, G. 

A n expl ic i t formula for V*w is obtained using integrat ion by parts: 

Theorem 2.2.5 Let 

V*WG = wGy - Dx(wGyi) + D2

x(wGy2) - ... (2.17) 

Then V*w is an adjoint of a directional derivative and satisfies the identity: 

wVvG = vV*wG + DxS(w,v,G) (2.18) 
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where S is given by 

S(w,v,G) = wGyiv 

+wGV2v' — (wGy2)'v 

+ WGy3V" - (wGy3 ) V + (wGyJ'v 

+ WGy4V'" ~ (wGyJv" + (wGyJ'v' - (wGyJ"v 

+ ... 

= El>lEt-J0(-l)W^\wGyi)DtJ'1)(v) 

where (*)' = Dx* and Gyi = 

Proof. The theorem follows f rom the recursive appl icat ion of the Leibni tz rule ba! = (ab)' — ab': 

wVvG = wGyV + wGyiv' + wGy2v" + wGy3v'" + ... 

= WGyV 

+(wGyiv)' - (wGyi)'v 

+ (wGy2V' - (wGy2)'v)' + [wGy2)"v 

+ (wGy3V" - {WGyJv' + {wGy3)"v)' - (wGy3)'"v 

+... 

The r ight border of the above tr iangle gives vV^G, the rest is S'(w,v, G). • 

O f special interest w i l l be the case w = 1: 

Definition 2.2.6 The Euler operator E is 

B =* = £ - B - £ + ( 2 - 2 0 ) 

The Euler operator satisfies Euler identity: 

VVG = vEG + DxS(l,v,G). (2.21) 

Example 2.2.7 For a general t h i r d order O D E we have V*WG = wGy — (wGyi)' + (wGy2)" — 

(wGy3)'" and S(w,v, G) = wGyiv + wGy2v' - (wGy2)'v + wGy3v" — (wGy3)'v' + (wGy3)"v. 
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Figure 2.1: A maximiser and curves nearby. 

Let P = 2/2 + V, G = (y3 + y i ) / y 2 , w = y 2 , v = y. Then v is a symmetry of G = 0, P' = wG 

and so w is an integrat ing factor w i t h P being the corresponding conservation law. 

To compute V*WG and S(w, v, G) we first compute wGy = 0, wGyi = 1, w G K = — G, wGy3 = 1, 

so £>;G = 0 - 0 + ( - G ) " - 0 = 0 (mod G=0) and S(w, v, G) = y-Gyi+G'y+y2 = P (mod G=0) . 

2.2.3 Euler-Lagrange Equations 

We have introduced the Euler operator above to treat the fol lowing basic problem of the calculus 

of variations: F i n d a curve y = (f>(x) that minimizes a funct ional A [y ] : 

rb  

A[y]= L(x,y,yu...,yn)dx (2.22) 
Ja 

w i t h y i = y',...,yn = y^• Here L is called a Lagrangian, and we minimize over al l possible 

funct ions y = (/>(a;) 6 5 where S is the set of al l smoo th 3 functions w i t h prescribed values at 

fixed endpoints: 

S = [tb{x) € G°° | <f>(a) = A,<f>{b) = 5,</> ( i )(a) = Ai,</>®(b) = Bui = l . .n - l } . (2.23) 

Example 2.2.8 I f we choose L(x,y,yi) — \Jl + y\ then (2.22) is the length of any curve 

y = <j>(x) f rom a to b and hence the m i n i m u m of A is the shortest smooth pa th between two 

points (a, A) and (b,B). 

3 To simplify presentation, we define smooth to mean C°°, although only Cn is required. 

40 



The idea to find a minimiser y = cb(x) is as follows. I f y = <p(x) is a minimiser, A[y] must be 

less then Ajany curve nearby] (see Figure 2.2.3). I n part icular , i f we take any variation, i.e. 

any smooth funct ion h w i t h y + h €E S then we expect tha t A[y] < A[y + eh] for any sufficiently 

smal l e. So i f we let / ( e ) = k[y + eh] then / has a m i n i m u m at e = 0 and hence / ' ( 0 ) = 0. 

Thus i f y = cb(x) is a minimizer o f (2.22) then 

f'(0) = d A [ y + e h \ e = Q = VhjbLdx= fbVhLdx = Q 

where L = L(x,y, . . . , y n ) . Th is must hold for a l l h. Using (2.21) we get: 

fbVhLdx= jbhE{L)dx+ f S'{1, h, L)dx 
J a J a J a 

Note tha t <S(1, h, L) is l inear i n h and its to ta l derivatives. Also note tha t hi(a) — 0 = hi(b), 0 < 

i<n-l. Thus 

/ S'(l, h, L)dx = S(l, h, L)x=b - S(l, h, L)x=a = 0 
J a 

So a necessary condi t ion for y = <f>(x) to be a minimizer of (2.22) is tha t j j hE{L)dx = 0 for 

an arb i t ra ry var iat ion h. Th is forces the integrand to be zero, and hence we obta in 

Theorem 2.2.9 If y = cb(x) is a minimizer of (2.22) over a set S given by (2.23) then 

E(L) = 0. (2.24) 

Note tha t the converse does not hold. 

Definition 2.2.10 The O D E (2.24) is called Euler-Lagrange equation. 

Example 2.2.11 For a general L = L(x,y,y\), EL = Ly — DxLyi. Tak ing L = A / 1 + y i 2 as 

i n example (2.2.8), we f ind EL = (1 + y 2 ) ~ 2 y 2 = 0 => yi — 0. Thus the shortest (smooth) pa th 

between two points, i f i t exists, must be a straight l ine. 

2.2.4 Kernel of Euler Operator 

We now show that the Euler operator annihilates to ta l derivatives. Th is w i l l lead to the 

determin ing equations for integrat ing factors. The proof presented here is similar to tha t in 

[16] and [1]. 
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Suppose tha t L is exact, i.e. L = P' for some P. Then the funct ional (2.22), 

A[y] = fb Ldx = P{y)\x=b - P(y)\x=a 

Ja 

is independent of the pa th , depending only on the value of y and its derivatives at the endpoints. 

So A[y] is constant for al l y G S (where S is given by (2.23)). Thus any y G S is a minimiser. 

Thus by Theorem 2.2.9, EL = 0 for y G S. B u t since the restr ict ion on the endpoints was 

arb i t rary , EL = 0 for all y. 

Conversely, suppose that EL = 0. Then by (2.21) we have 

VhL = ±S{l,h,L) 

and so 

Thus 

T>hL\y=y+\h — —S(l,h,L)\y=y+Xh 

^L{(y + Xh) + €h)\e=0 = ~L{y + Xh)= ^-S{l,h,L)\y=y+Xh. 

Using the Fundamental Theorem of Calculus we obta in: 

f1 d d f1 

L(y + h) - L(y) = —S{l,h,L)\y=y+XhdX = — J S{l,h,L)\y=y+xhd\. 

We now choose h = —y + h(x) for some h(x) such that L(h) is f ini te then we obta in 

L(y) = -ihl! s{1> ~y+k L)\v=vn-^dX+tSL{h{x))dx 

Thus we obta in the fol lowing three theorems. 

Theorem 2.2.12 (Kernel of Euler Operator) Let H{x, y, yi,...) be any differential expres

sion. Then H is exact if and only if 

EH = 0 for all y G C°°. 

Theorem 2.2.13 (Determining equations for Integrating Factors) w is an integrating 

factor of G if and only if 

E(wG) = 0 for all y G C°°. (2.25) 
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Theorem 2.2.14 If H is exact, 

H = DXP, 

then P is given by 

P = - £ S(l,-y + h,H)\y=y{1_x)+hdX + J H(h(x))dx (2.26) 

where h(x) is any function such that the above expression is finite. 

Theorem 2.2.14 provides a way of f inding conservation laws of an O D E f rom integrat ing factors: 

i f w is an integrat ing factor of G then the corresponding conservation law P w i t h P' = wG can 

be found by apply ing formula (2.26) to H = wG. 

Theorems 2.2.12, 2.2.13 appear in [16] and [3]. Theorem 2.2.14 appears in [3]. 

The di f f icul t step is to f ind the integrat ing factor itself: one needs to seek par t icu lar solutions 

of the P D E E(wG) — 0. I f one assumes that G = yn — g{x,y,yi, . . . , y n _ i ) then the integrat ing 

factor must be of the form w = w(x, y, yi,yn-i). Consequently, since E(wG) — 0 must hold 

for a l l y, yi,y2, i t splits into a system of PDEs by equating the coefficients of y „ , y n + i> •••) yin 

to zero. 

A more natura l sp l i t t ing suggested in [16] and [1] is to f irst solve E(wG) = 0 (mod G=0). Using 

the product rule for derivatives one obtains: 

E(wG) = V*WG + V*Gw. (2.27) 

B u t VQW = Gwy — (Gwyi)' + (Gwy2)" — ... = 0 (mod G=0). Thus i f w is an integrat ing factor 

of G then one must have 

V*WG = Q ( m o d G = 0 ) . (2.28) 

I f w satisfies above then i t is called an adjoint symmetry o f G = 0. Th is leads to the fo l lowing: 

Proposition 2.2.15 An integrating factor is necessarily an adjoint symmetry. Conversly, an 

adjoint symmetry w is an integrating factor of an ODE G = 0 if it satisfies E(wG) = 0 for all 

functions y. 
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Since an O D E admits inf in i te ly many integrat ing factors, the system E(wG) = 0 is not overde

termined. So in general, i n order to find a part icular integrat ing factor, one needs to assume 

some ext ra condi t ion on w, for example, its polynomial dependence on one of x, y, y \ , y n - i -

The s i tuat ion is similar to that of symmetry methods: to find a Lie-Backlund symmetry, one 

needs to assume some extra condi t ion on its form. For symmetries, a "na tu ra l " (geometric) 

condi t ion is to seek point symmetries. This leads to an overdetermined system for ODEs of 

order two or higher. I n general, no geometric interpretat ion of integrat ing factors is known, 

and hence there is no "natura l " extra condi t ion that can be imposed. However an impor tan t 

special case occurs when an O D E is self-adjoint as w i l l be discussed in Chapter 3. 

2.3 Relationship between integrating factors, conservation laws, 
and symmetries 

Given an integrat ing factor, a conservation law can be found using a quadrature. A different 

way of finding conservation laws without quadrature is possible when a symmetry is also known. 

The fol lowing theorem was first proved in [3]: 

Theorem 2.3.1 Given an ODE G = 0, let w be an adjoint symmetry of G and let Vv be a 

symmetry of G. Then S(w,v,G) (mod G=0) is a conservation law. 

Proof. Since v is a symmetry and w is an adjoint symmetry of G, one has VVG = 0 (mod G= 

0) and V*WG = 0 ( m o d G = 0). Hence by (2.18), DxS(w,v,G) = 0 ( m o d G = 0) and. thus 

S(w,v, G) (mod G=0) is a conservation law. r j 

As was shown in Theorem 2.1.4, given a conservation law P and a symmetry X of G = 0, 

Q = XP is also a conservation law of G = 0. We now show how this is related to the 

preceeding theorem: 

Theorem 2.3.2 Given an ODE G = 0, let w be an integrating factor of G and let P be the 

conservation law corresponding to w. Then 

VVP = S(w,v,G) (mod G=0). (2.29) 
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where S(w,v, G) is given by (2.19) for any v. Furthermore, ifVv is a symmetry of G = 0, then 

the above expression is a CL. 

To prove this theorem we w i l l need the fol lowing lemma. 

L e m m a 2.3.3 If G is an expression that depends at most on x, y,yi,yn and if DXG = 0 

then G is constant. 

Proof. Note tha t 

DXG = GX + yiGy + yiGyt + ... + yn+iGyn = 0 

and since G does not depend on y n + i > one must have GVn = 0. Proceeding by induct ion we 

have GVn = 0 =• Gyn_, = 0 => ... Gyi = 0 => Gy = 0 Gx = 0. n 

The proof of theorem 2.3.2 now consists of three steps. 

Step 1 We first show tha t 

DXVVP = DxS{w,v, G) (mod G=0). (2.30) 

Since Dx and Vv commute (see Lemma 1.1.14) and since DXP = wG we have 

DXVVP = VVDXP = Vv{wG). 

We now apply the product rule to the differential operator Vv; we get 

Vv(wG) = wT>vG + GVvw. 

A p p l y i n g equation (2.18) to b o t h terms on the r ight hand side, we get: 

wVvG + GVvw = DxS(w, v, G) + DXS(G, v, w) + vV*wG + vV*Gw. 

Combin ing the last two terms by using (2.27) we obtain 

DxS(w, v, G) + DXS{G, v, w) + vV*wG + vV*Gw = DxS(w, v, G) + DXS{G, v, w) + vE(wG). 
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Since w is an integrat ing factor of G, the te rm vE(wG) vanishes (see Theorem 2.2.12). 

P u t t i n g i t al l together, we get 

DXVVP = DxS{w, TJ, G) + DXS{G, TJ, w), (2.31) 

th is being t rue for al l x, y, y\,... 

Now S(G,v,w) is linear in G and its to ta l derivatives; i t can be w r i t t e n as 

S(G,v,w) = Gc0 + (G) ' c i + ( G ) " c 2 + ... 

where Cj are some expressions involving v,w bu t independent of G. Thus S(G,v,w) = 

0 (mod G=0). Th is proves (2.30). 

2 Let 

L{v) = Z ^ P - S(>, 7j , G) - 5 ( G , TJ, w). 

We w i l l show that L{v) = 0 for al l TJ. Equat ion (2.29) then follows since, as was shown in 

Step 1, S(G,v,w) = 0 (mod G=0). 

Since L is linear in TJ and its par t ia l derivatives, one can wr i te 

L(v) = va0 + vxa\ + T j y a 2 + vyia3 + ... + vxxau + vxyai2 + vxyiai3 + ... (2.32) 

where ai — ai(x,y,yi, . . . , j / 2 n )
 a n d the equality holds for arb i t rary TJ = v(x, y, yi, yn) 

and arb i t ra ry x,y,yx,.... 

Because of (2.31), Dx(L(v)) = 0, for any TJ. Thus, by Lemma 2.3.3, L(v) is independent 

of x, y, y i , f o r any v = v(x, y, yi,ym). Th is forces al l of the coefficients to be zero, 

as the fol lowing argument demonstrates. 

Note that 1,(1) = ao and thus ao is independent of x. Similar ly, L(x) = CLQX + a\ is 

independent of x and hence a\ = —a^x + k for some constant k, independent of x. T h e n 

L(x2) = aox2 + 2a\x + 2a\\ is independent of x and thus a n is at most quadrat ic in x. 

Similar ly, one can show that al l the coefficients aj are at most po lynomia l i n x,y,yi,.... 

I f one now takes v = Inx then L ( l n x ) = a o l n x + rat ional expression in x. B u t the 

result ing expression must also be independent of x. Thus ao = 0. Using similar argument, 

one can show tha t al l coefficients in (2.32) are zero. Thus -L(TJ) = 0. 
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Step 3 The fact tha t VVP is a conservation law is a direct consequence of Lemma 2.1.4. A l ter 

nately, S(w, v, G) is a conservation law by Theorem 2.3.1. • 

A n integrat ing factor by itself always leads to a conservation law by using a quadrature (see 

Theorem 2.2.14). The advantage of the above theorem is that given an integrat ing factor and 

a symmetry, a conservation law can be obtained without quadrature. The disadvantage is tha t 

of ten the resul t ing conservation law may be t r i v ia l . For example, i t can be shown (see [1]) tha t 

a first order O D E G = y\ — g(x, y) = 0 that admits a symmetry Vv also admits an integrat ing 

factor w = ^ . I n this case S(w, v, G) = 1 is a t r i v ia l conservation law. 

E x a m p l e 2.3.4 Consider an O D E 

G = y2 - yj - b{x) = 0. (2.33) 

A search for integrat ing factors of the form w = w(x, y) reveals tha t 

w = e~yc(x) 

is an integrat ing factor of (2.33) i f f c(x) satisfies 

c"(x) + b{x)c(x) = 0. (2.34) 

As well , the O D E (2.33) is independent of the dependent variable and thus admits a symmetry 

Vv w i t h v = l. Thus 

S(w,v,G) = (-yic(x) - c'{x))e-y = C 

is a conservation law of G = 0. Let c\(x),C2{x) be two independent solutions of (2.34). T h e n 

for any solut ion y = (f>(x) of (2.33), there exist constants C\, C2 such tha t 

(-y'Cl(x) - c[(x))e-y = Cu (-y'c2(x) - c ' ^ ) ) ^ = C2 

El im ina t ing y' f r om these equations and using the fact that cic'2 — c2c[ is constant, one obtains 

y = - l n ( c i i \ i + c2K2) 
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is a solut ion of (2.33) for arb i t rary K\^K2- Thus 

y = - l n (c (a ; ) ) 

is a solut ion of (2.33) iff c satisfies (2.34). 

Theorem 2.3.2 can also be used to generate an ansatz: Given an integrat ing factor w (or a sym

metry v), one can seek a symmetry v (or an integrat ing factor w) for which either S(w, v,G) = 0 

or S(w, v, G) = 1. We w i l l i l lustrate this in Chapter 4, in connection w i t h classification of ODEs. 

Theorem 2.3.1 was first discovered by Anco & B luman in [3]. The connection made in Theorem 

2.3.2 is new. 

2.4 Discussion 

I n this chapter we have discussed how to f ind conservation laws of ODEs. We have discussed a 

direct way of looking for conservation laws by seeking part icular solutions of the P D E (2.2), as 

well as an indirect approach, by looking for integrat ing factors. These can be found by seeking 

par t icu lar solutions of the P D E (2.25). Once an integrat ing factor is found, a corresponding 

conservation law can be found through a quadrature, using the formula (2.26), due to Anco & 

B l u m a n [1]. 

We have also discussed how to generate a conservation law f rom a known conservation law and 

a known symmetry (Lemma 2.1.4). Based on i t , we developed a method of using symmetries 

to generate an ansatz for seeking conservation laws (see Section 2.1.3). Such a method is 

equivalent to the method of differential invariants for point symmetries, but works for general 

L ie-Backlund symmetries as well . Furthermore, a related method discussed in Section 2.1.4 can 

be used to f ind a second conservation law i f the method of Section 2.1.3 succeeds. The method 

of Section 2.1.3 was first presented by Gonzales [12] and by Cheb-Terrab et al . [11]. 

Simi lar methods can be developed to use a symmetry to generate an ansatz to look for inte

grat ing factors, based on Theorem 2.3.2. This w i l l be discussed Section 4.2 for the purposes of 
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classification of solvable ODEs. Theorem 2.3.2 is also of interest in itself, and will be used in 

the next chapter, in connection with Noether's Theorem. 
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Chapter 3 
Self-adjoint systems 

3.1 Introduction 

I n this chapter we w i l l s tudy a special class of ODEs that are called self-adjoint ODEs, for 

which an integrat ing factor is also a symmetry. Such ODEs have a Lagrangian formula t ion and 

a celebrated result of Noether characterises precisely those symmetries that lead to conservation 

laws. 

I n Section 3.2 we show that Euler-Lagrange equations are self-adjoint. We then state and 

prove Noether's theorem. Noether's theorem is used to f ind conservation laws for variational 

symmetries of Euler-Lagrange equations. Furthermore, we show tha t the result ing conservation 

law admits the var iat ional symmetry that generated i t , and hence every var iat ional symmetry 

provides a two-fold reduct ion of order [16], [21]. There are two versions of Noether's theorem: 

the or ig inal version, due to Noether [15] and a more modern presentation due to Bessel-Hagen 

[6]. I n this chapter we w i l l only cover the Bessel-Hagen version. 

I n i ts fu l l generality, Noether's theorem relies on a quadrature to find a conservation law ( though 

often the quadrature is t r i v ia l to per form). However when a self-adjoint O D E admits two or 

more var iat ional symmetries, we show in Section 3.2.2 tha t the conservation law corresponding 

to their commutator can be obtained w i thou t any quadrature [3]. 

I n Section 3.3 we also discuss how a scaling symmetry can be used to obta in conservation laws 

corresponding to known variat ional symmetries, w i thout using quadrature. 
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3.2 Self-adjoint systems and Noether's theorem 

3.2.1 Characterisation of a self-adjoint system 

I n this section we w i l l use the notat ion f rom previous chapters. Namely, we w i l l make use of 

the Euler operator E defined by (2.20), the direct ional derivative Vv defined by (1.26) and the 

adjoint of a direct ional derivative, V*, defined by (2.17). 

Definition 3.2.1 A n O D E G = 0 is self-adjoint i f f V%G = VVG for any v. 

The mot iva t ion for this def in i t ion is as follows: 

Proposition 3.2.2 Let G = 0 be a self-adjoint ODE and let v be its integrating factor. Then 

T>v is a symmetry generator of G. 

Proof. By proposi t ion 2.2.15, I f v is an integrat ing factor of an O D E G -

0 (mod G = 0 ) . Since G is self-adjoint, V*VG = VVG. Hence VVG = 0 (mod G 

is a symmetry of G. 

There indeed exist non- t r iv ia l self-adjoint ODEs as the fol lowing theorem shows: 

Theorem 3.2.3 Let L — L(x,y,y\, ...,yn),v = v(x,y,y\, ...ym) be any expression. Then 

V*VEL = VVEL 

for any v. 

Olver [16] proves this theorem using Var iat ional Complex. Here we provide a more elementary 

proof. I t consists of a sequence of lemmas. 

Lemma 3.2.4 Let f — f(x) be a function independent of y and its derivatives. Then E and 

T>j commute: 

EVfL = VfEL 

= 0 then V*G = 

= 0 ) and thus Vv 

• 
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Proof. Because / is independent of y and its derivatives, T>f and -^p commute. B u t to ta l and 

direct ional derivatives also commute (see Lemma (1.1.14)). Thus 

for any expression L. • 

Lemma 3.2.5 EVVL = V*EL + V*ELv. 

Proof. B y (2.21) and Theorem 2.2.12 one has 

EVVL = E(vEL + divergence) = E(vEL). 

A p p l y i n g (2.27) to the expression on the r ight proves the lemma. • 

Lemma 3.2.6 Let f = f(x) be independent of y and its derivatives. Then VJEL = VjEL. 

Proof. Using Lemma 3.2.5 we get 

V)EL = EVfL-V%Lf. 

Since f(x) is independent of y,y%,... i t follows f rom (2.17) that V*ELf = 0 and thus the second 

te rm on r ight hand side vanishes. Using Lemma 3.2.4 on the first t e rm completes the proof. • 

We now re tu rn to the proof of Theorem 3.2.3. 

F i rs t take v = f(x); then by Lemma 3.2.6 we have: 

vVfEL = vV)EL. 

Now apply (2.18) to b o t h sides to obta in 

fV*EL = fVvEL + R 

where R = —S'(f,v,EL) — S'(v, f,EL). Since S is linear in the first two arguments and their 

to ta l derivatives, one can wr i te 

R = vao + v'ai + v" a2 + ... + v^ar 
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where aj are independent of v. 

Now i f we take any v = v(x) independent of y and its derivatives, then R = 0 by L e m m a 3.2.6. 

Th is , and the fact tha t the are independent of v implies tha t a\ — 0 for a l l % (for example 

choose v = l=>R = ao = 0, then choose v = x and so on). 

Hence R = 0 for al l v. • 

One can also show that a self-adjoint equation is necessarily an Euler- Lagrange equat ion; see 

Olver [16] Theorem 5.68. A n explici t formula for the corresponding lagrangian L is also given 

there. 

3.2.2 Variational symmetries and Noether's theorem 

Since the Euler-Lagrange equation is self-adjoint, an integrat ing factor of an Euler-Lagrange 

equation is also a symmetry of i t (see Theorem 3.2.2). However not every symmetry is an 

integrat ing factor. Noether's Theorem provides a characterisation of those symmetries of an 

Euler-Lagrange equation that are integrat ing factors. 

Definition 3.2.7 A symmetry Vv of an Euler-Lagrange equation EL = 0 is variational i f there 

exists an expression A such that VVL = DXA. 

Noether's Theorem provides just i f icat ion for call ing v a symmetry: 

Theorem 3.2.8 (Noether's Theorem, Part 1) Let G — EL = 0 be an Euler-Lagrange 

equation. Then the following are equivalent: 

(a) Vv is a variational symmetry of G 

(b) E(vG) = 0 

(c) v is an integrating factor of G. 
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Proof. We first show tha t (a) => (6). By def ini t ion of a var iat ional symmetry, there exists 

some A for which T>VL = DXA. App ly ing Theorem 2.2.12 one obtains: 

EVVL = 0. 

Using (2.21) th is becomes: 

E{vEL + DxS{l,v,L)) = 0 

Using l inear i ty of E and invoking Theorem 2.2.12 for a second t ime we get: 

E{vEL) = 0. 

To show that (b) (a) s imply r u n the preceeding impl icat ions backwards. The equivalence of 

(6) and (c) follows by Theorem 2.2.13. • 

Once an integrat ing factor v of a self-adjoint O D E G = EL = 0 is known, one can find a 

corresponding conservation law P using Theorem 2.2.14 w i t h H = vG. A l ternate ly one can use 

the Lagrangian L to signif icantly reduce the computat ion of P as follows. 

Theorem 3.2.9 (Noether's Theorem, Part 2) Suppose that v is an integrating factor of a 

self-adjoint ODE G = EL = 0 and, in view of Theorem 3.2.8, let A be such that 

VVL = DXA. (3.1) 

Then 

P = A-S{l,v,L) (3.2) 

is the conservation law corresponding to v so that 

vEL = DXP. 

Proof. The formula for P follows immediately f rom (2.21): 

DXP = vEL = VVL - DxS{l,v,L) = DX{A - 5(1,v,L)). 

• 
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Note tha t i f v is a var iat ional symmetry of G then the expression A f rom (3.1) i n the preceeding 

theorem can be obtained th rough a quadrature by apply ing Theorem 2.2.14 to H = VVL. Since 

the order of EL is i n general twice that of L, Theorem 3.2.9 is more effective for comput ing 

a conservation law corresponding to a given integrat ing factor than a direct appl icat ion of 

Theorem 2.2.14 to H = vG. 

I n add i t ion to g iv ing a conservation law, an integrat ing factor of of a self-adjoint O D E is also 

its symmetry. The fol lowing theorem shows how to take advantage of this and get a two-fo ld 

reduct ion of order. Th is w i l l be i l lustrated by an example. 

Theorem 3.2.10 Let G = 0 be a self-adjoint ODE and let v be its variational symmetry. Let 

P be a corresponding conservation law: P' = vG. Then VVP = 0 (mod G = 0 ) where C is any 

constant. Thus v is also a symmetry of P — C where C is any constant. 

Proof. B y Theorem 2.29, VVP = S(v,v,G) (mod G = 0). Hence the proof follows f rom the 

fol lowing lemma. • 

Lemma 3.2.11 G is self-adjoint iff S(v,v, G) = 0 for all v 

Proof. By (2.18), S'(v, v, G) = vVvG-vV*vG = 0 for al l v i f f G is self-adjoint. B y an argument 

simi lar to the argument given in Step I I in the proof of Theorem 2.3.2, RemD(v, v, G) = const, 

for a l l v i f f S(v, v, G) = 0 for a l l v. • 

A direct proof of this theorem for ODEs of second order is given in Sheftel [20]. Olver [16] gives 

another proof of this theorem. 

Example 3.2.12 Consider a self-adjoint O D E 

G = y2 + x V = 0. (3.3) 

I ts Lagrangian is given by 

' _ y± B + -i 
T - J 0+1 2 ' P T 

1 2 

xa lay- \,P = - 1 
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I t admits a scaling symmetry 

W r i t t e n in evolut ionary fo rm, X becomes Vv w i t h 

v = (a + 2)y-x(l - f3)yx. 

To check i f v is a var iat ional symmetry, one can compute 

E(vG) = - ( 2 a + /3 + 3)G 

and thus v is a var iat ional symmetry i f f 

2a + p + 3 = 0. 

Al ternately, one can check under what conditions T>VL is exact. B y (1.27), 

VVL = XL - ZDXL = XL — DX(£L) + 

where £ = (1 — (3)x. By direct computat ion, 

XL = 2(ct + / ? + 1)L 

and thus 

2?„L = (2a + /? + 3)L - £ > x ( f L ) . 

Since EL ^ 0, L is not exact and thus VVL is exact i f f (3.5) holds. 

E x a m p l e 3.2.13 Assuming (3.5) holds, G becomes 

G = y2 + xay-3-2a 

and admits a var iat ional symmetry 

d d 
X = 2x— + y — • 

ox oy 

The conservation law P w i t h P' = (y — 2xy\)G can be computed using Theorem 3.2.9 

P = -2xL - 5 ( 1 , v, L) = -y\x + Vly +  J— , a + - 1 . 
a + 1 
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Thus G = 0 is reduced to a first order O D E 

y\x - yiy

 y— = C,a^-l (3.9) 
a + 1 

tha t , by Theorem 3.2.10, admits X. The canonical coordinates of X are 

x = e , y = re 

under which (3.9) becomes 

- 2 - 2 a \ - V 2 

s'(r)= ^(r2 + 4C) + ^ T r J « ̂ - 1 

and hence a general solut ion to G = 0 is given impl ic i t l y by 

rv*-1'2 ( , 4 r - 2 - 2 a \ - V 2 

\nx = 2j f(r 2 + d ) + ^ j dr + C 2 , a ^ - l 

where Ci ,C2 are arb i t ra ry constants. 

Thus using Noether's Theorem, a single var iat ional symmetry X led to a reduct ion of order 

of two. One can show that G = 0 has no other point symmetry, except for the t r i v i a l cases 

a = 0,a — -2, a = — | (See Section 4.1.1). 

Noether's Theorem was first proved in a sl ightly different version by Noether [15]. She consid

ered general var iat ional symmetries of the Lagrangian, involving bo th dependent and indepen

dent variables and d id not note invariance of L to w i t h i n a divergence. Bessel-Hagen [6] was 

the first to notice this impor tan t generalisation. His version is presented here. 

3.3 Obtaining conservation laws without integration 

Once a var iat ional symmetry is known, a conservation law can be found th rough a quadrature 

using Theorem 3.2. However, when more then one symmetry is known, i t is often possible to 

obta in the corresponding conservation laws w i thou t any quadrature. 

Accord ing to Theorem 2.3.1, i f w is an integrat ing factor of G = 0 and v is i ts symmetry, then 

S(w, v, G) given by (2.19) is a conservation law of G = 0. However the result ing conservation law 
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may be t r i v ia l . I n the case when G is self-adjoint, more can be said about such a conservation 

law. i f b o t h v, w are var iat ional , then such a conservation law corresponds to their commutator . 

Th is was first observed in [3] where a direct proof was given. I n Section 3.3.1 we give an 

alternat ive proof which is based on Theorem 5.48 of Olver [16] and on Theorem 2.3.1. 

We then consider non-var iat ional symmetries. I n Theorem 3.3.5 we give necessary and sufficient 

condit ions for a point symmetry to be variat ional. As far as we know, this theorem is new. 

I n Section 3.3.3, given any point symmetry v and any var iat ional symmetry w, we define an 

expression u(v,w) which results in another (possibly new) var iat ional symmetry. W h e n v is 

also var iat ional , we show that u(v,w) = [v,w\. The conservation law corresponding to u(v,w) 

is given by P = S(w, v, G). 

3.3.1 Commutator of variational symmetries 

For convenience, f rom now on we shall refer to v as a symmetry of G = 0 when T>VG = 0. T h e n v 

is a point symmetry i f f Vv is the evolut ionary fo rm of a po in t symmetry i f f v = n(x, y) — y i £ ( x , y) 

for some £(x,y),r](x,y). Also v is a var iat ional symmetry i f f i t is an integrat ing factor. 

Theorem 3.3.1 Let G = 0 be a self-adjoint ODE. Suppose that v, w are variational symmetries 

of G = 0. Then their commutator, 

u = [v, w] = Vvw — Vwv 

is also a variational symmetry of G = 0. Furthermore, suppose that Q is a conservation law 

corresponding to w, so that Q' = wG. Then the expression 

R = S{v,w,G) =VVQ [mod G=0) , 

where S is defined by equation (2.19), is the conservation law corresponding to u: R' = uG. 

Proof. The proof of this theorem is essentially the same as tha t given in Theorem 5.48 of 

Olver [16]. 
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Let Q be the conservation law corresponding to w so that Q' = wG. As w i l l be shown in the 

fol lowing lemma, for any v one has: 

DXVVQ = [v,w]G + DxS(G,w,v) +wE[vG). 

Since a var iat ional symmetry v is an integrat ing factor, E(vG) = 0 (see Theorem 2.2.13) and 

hence the last t e rm on the r ight hand side vanishes. 

Le t t i ng R = VVQ — S(G,w,v) we thus get DXR = uG. B u t S(G,w,v) = 0 (mod G = 0 ) since 

S is linear in its first argument and its to ta l derivatives. Thus R = VVQ (mod G = 0). A n 

appl icat ion of Theorem 2.3.2 completes the proof. • 

Lemma 3.3.2 Let G be self-adjoint, and let w, Q be such that Q' = wG. Then for any v, 

DXVVQ = [v, w]G + DXS{G, w, v) + wE{vG). 

where [v, w] = Vvw — Vwv. 

Proof. Using Lemma 1.1.14, def ini t ion of w, Q, product rule for the operator Vv, and self-

adjointness of G we obta in : 

DXVVQ = VVDXQ = Vv{wG) = GVvw + wVvG = GVvw + wV*vG. 

Using (2.27) and (2.18) we get 

WV*VG = -wV*Gv + wE{vG) = -GVwv + DXS{G, w, v) + wE(vG). 

Thus 

DXVVQ = GVvw - GVwv + DXS(G, w, v) + wE(vG) = [v, w]G + DXS{G, w, v) + wE(vG). 

• 

Theorem 3.3.1 can simpl i fy the appl icat ion of Noether's Theorem: the conservation law corre

sponding to the commutator of two variat ional symmetries can be obtained w i thou t any inte-
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grat ion. Thus i f a Lie Algebra of var iat ional symmetries is s imple 1 then al l its corresponding 

conservation laws can be obtained w i thout integrat ion. 

E x a m p l e 3.3.3 ( S h e f t e l ) Consider an O D E that was analysed in Sheftel [20], p.116: 

G = y4-y-3=0. (3.10) 

Th is equation is self-adjoint since i t is in solved form and is independent of odd derivatives of y. 

A symmetry analysis of this equation (see [20]) reveals that i t admits three po in t symmetries: 

X\ = —, X2 = 2x— + 3 y — , Xz = x 2 — + 3 x y — 
ox ox oy ox oy 

w i t h commutators given by 

[Xi,Xj] Xi x2 x3 

Xi 0 2Xi x2 

x2 
-2Xi 0 2X3 

x3 -x2 
- 2 X 3 0 

where the entry in the i-th row and the j-th column corresponds to [Xi,Xj]. Thus point 

symmetries of the O D E (3.10) fo rm a simple Lie Algebra. 

The evolut ionary forms corresponding to X\,X2,X3 are: 

v\ = -yi, v2 = Sy - 2xyi, v3 = 3xy - yxx2. 

I t w i l l be shown by Theorem 3.3.5 tha t the above symmetries are var iat ional ( this is easily 

checked direct ly by ver i fy ing that E(v{G) = 0). Let Pj be the corresponding conservation laws, 

so tha t P[ = ViG. Then by Theorem (3.3.1) one has: 

2Pl=S(v1,v2,G), P2 = S(vuv3,G), 2P3=S(v2,v^G) 

: A Lie Algebra is simple if it is equal to its derived algebra. A derived Lie Algebra is the Lie Algebra 
obtained by taking all possible commutators of the original Lie Algebra 
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f r om where one can compute: 

Pi = -vm + \vl - \v~ v z  

P2 = +2xy3yx + y2yi + 3y~ 2 / 3x - y\x - 3yy3 

3 1 
P 3 = -3y£y 3 + - x 2 y ~ 2 / 3 + yi2 2y 3 + 3yy2 + .xy iy 2 - - a ; 2 y | - 2y\. 

The fourth-order O D E G = 0 is thus equivalent to the first order O D E 

H(x,y,y1,C1,C2,C3) = 0, (3.11) 

tha t can obtained by e l iminat ing y 2 , y 3 f rom the system 

Pi = C1,P2 = C2,P3 = C3. (3.12) 

The resul t ing O D E H does not admi t XUX2 or X3. Nonetheless, Sheftel showed how to obta in 

a symmetry of H, and thus was able to obta in a general solut ion of G. 

The idea is to seek a symmetry 

X — \\Xi + X2X2 + A 3 X 3 

such tha t XPi = 0 (mod G = 0 ) , i = 1,2,3. Since H = 0 is equivalent to system (3.12), X is 

then also a symmetry of H. 

B y Theorem 3.3.1 and since VVi = Xi (mod G=0) one has 

X i P i = 0, X2PX = - 2 P i , XZPX = -P2 (mod G=0) 

since 

= 0, [X2,XX] = -2XU [ X 3 , X i ] = - X 2 . 

Thus X P i = — 2 A 2 P i — A 3 P 2 = 0 Similarly, one obtains a linear system for A^: 

XP2 

( 0 - 2 P i - P 2 

2Pi 0 - 2 P 3 

P 2 2P 3 0 V A 3 1 

= o. 

61 



This system admits a non-zero solut ion 

Ai = - P 3 , A 2 = P 2 , A 3 = - 2 P 1 

and hence X = —C3X\ + C2X2 — 2 C i X 3 is a symmetry of (3.11). Using X, one can ob ta in a 

general solut ion to H = 0 and thus to G = 0. 

A generalisation of the preceeding example leads to the fol lowing conjecture: 

Conjecture 3.3.4 Let G = 0 be a self-adjoint ODE admitting a r-dimensional Lie Algebra of 

variational symmetries Xi, ...,Xr. Let P\,...,Pn be the corresponding conservation laws. Let H 

be the system P\ — C i , P n = Cn, equivalent to the ODE G. Let A be the matrix with entries 

Aij — \Xi,Xj\ = 2~2,kCijkXk Let R be the rank of A. Then using linear algebra only, one can 

find r — R symmetries of H. 

I n part icular , i f G admits an r-dimensional abelian Lie Algebra of var iat ional symmetries that 

correspond to r funct ional ly independent conservation laws then 2r reductions of order are 

possible. 

The preceeding conjecture is t rue for simple var iat ional Lie algebras. 

3.3.2 Characterisation of variational point symmetries 

Given a self-adjoint O D E G = 0 and its symmetry v, one can check i f v is a var iat ional symmetry 

of G by checking i f i t verifies E(vG) = 0. However this check involves G itself. I n this section 

we develop a new, much simpler check which does not reference G. We w i l l prove the fol lowing 

theorem: 

Theorem 3.3.5 Let 

G = yn - g{x,y,yi,...,yn-i ) = 0 (3.13) 

be a self-adjoint ODE in solved form <? and let 

v = r)(x,y) -yi£(x,y). (3.14) 

2 Note that n must be even for G to be self-adjoint 
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If v is a point symmetry of G, then 

E(vG) = (2Vy + (1 - n)tx - (n + l ) £ w j / i ) G for all x, y, yi, ... (3.15) 

Consequently, a point symmetry v = n — £yi of G is a variational symmetry iff 

2r]y + (1 - n ) £ x = 0 and £y = 0. (3.16) 

The proof of this theorem w i l l be based on the fol lowing lemmas. 

Lemma 3.3.6 Let X = ^{x,y)-§^ + "n(x,y)-^ be a point symmetry generator. Then its n-th 

extension r\n given by (1.18) has the form 

Vn = yn(r]y ~ < x - (n + l ) £ j , y i ) + p{x, y, yu yn-X) 

where p is some polynomial in yi, . . . y n _ i . 

Proof. Follows by induct ion f rom (1.18). • 

Lemma 3.3.7 Let X = i{x,y)-§^. + t){x,y)-^ be a point symmetry of an ODE (3.13). Then 

. XG = {riy - n £ x - (n + l)£yyi)G. 

Proof. Since X is a symmetry generator of G, one must have XG = 0 (mod G = 0 ) . B u t b o t h 

XG and G are at most linear in yn. Thus 

XG = aG = a(yn - g) (3.17) 

for some expression a = a(x,y,y\,yn-i), f ° r ah x,y,y\, ...,yn. Also by L e m m a 3.3.6 

XG = yn(rjy - n £ x - (n + l ) ^ y i ) + f[x,y,yu ...,yn-i) (3-18) 

where / is some expression of order at most n — 1. Equat ing (3.17) and (3.18) and then collecting 

the yn coefficient, one obtains the desired result. n 
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We now re tu rn to the proof of Theorem 3.3.5. Using (2.27) and self-adjointness of G one has: 

E{vG) = V*VG + V*Gv = VVG + V*Gv. 

Using (2.17): 

VGv = vyG - (vyiG)' = vyG + (£G) ' . 

Using (1.27) and Leibni tz rule: 

VVG = XG- £.DXG = XG- (£G) ' + £'G. 

Thus 

E{vG) = XG + VyG + i'G. 

A n appl icat ion of Lemma 3.3.7 proves (3.15). Equat ion (3.16) follows immediately f rom (3.15) 

and Theorem 2.2.13. n 

E x a m p l e 3.3.8 A point symmetry A" is a var iat ional symmetry of an n- th order self-adjoint 

O D E (3.13) i f f i t is of the fo rm 

x = a x ) T x + {^tWv + f{x)) Yy
 (3"19) 

for some functions £(x),f(x). 

E x a m p l e 3.3.9 Any translat ional symmetry of (3.13) is always var iat ional . 

A scaling symmetry of (3.13) is var iat ional i f f i t is a constant mul t ip le of 

Th is provides another method of checking that a scaling symmetry (3.4) of a self-adjoint O D E 

(3.3) is var iat ional i f f (3.5) holds. 

3 .3 .3 Using non-variational symmetries in conjunction with variational sym
metries 

As we have seen in Theorem 3.3.1, a commutator of two var iat ional symmetries is a var iat ional 

symmetry. Wh i le a commutator of two non-variat ional symmetries need not be var iat ional , i t 

sometimes is. The fol lowing theorem identifies when this is the case. 
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Theorem 3.3.10 Let G = 0 be a self-adjoint ODE. Let v = w(x,y) — yi^{x,y) be a point 

symmetry of G and let w be a variational point symmetry of G. Let [v, w] = T>vw — T>wv be the 

commutator of v, w. Then 

u = [TJ, W] + w{2r]y + (1 - n)£x - (1 + n)^yi) (3.20) 

is a variational point symmetry of G. Its conservation law is given by P = S(v,w, G) [mod G= 

0). 

Proof. Th is is a direct consequence of Lemma 3.3.2 and Lemma 3.3.5. • 

Th is theorem is par t icu lar ly interesting i f G admits a scaling symmetry X = a x ^ + 

which, expressed i n evolut ionary fo rm, is v = by — axy\. Using the notat ion f rom the preceeding 

theorem we obta in 

u = [v, w] + cw, c = 26 + (1 — n)a 

is a var iat ional symmetry corresponding to a conservation law S(v, w, G). I n par t icu lar , [v, w] = 

u — cw is also a var iat ional symmetry since a difference of two var iat ional symmetries is also a 

var iat ional symmetry. Furthermore, suppose, as is often the case, that v i tself is non-var iat ional 

and tha t [v,w] = av + (3w. T h e n automat ical ly a = 0 and u = (f3 + c)w and, provided tha t 

0 + c 7̂  0, one can obta in a conservation law for u w i thout integrat ion. 

Example 3.3.11 A classification of a self-adjoint O D E 

G = y" - xay2 = 0 

(see Section 4.1.1 or [21]) reveals that there are exactly four values of a for which G has point 

symmetries other than the scaling symmetry 

v = xyi + (a - 2)y. 

These values are 

a = 0 , - 5 , — - , — - . 
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I n a l l four cases, the only other point symmetry admi t ted is var iat ional. For instance, consider 

the case a = —5. T h e n G admits a var iat ional symmetry 

w = xy — x2yi 

w i t h [v, w] = —w. Thus, c = 7, (3 = — 1 , and u = ((3 + c)w = 6w. Thus the conservation law for 

w is 

P = ls(v,w,G) (mod G=0) = \(vw' - wv1) (mod G=0) 
6 6 

f rom where 

JP = y i y ^ - ^ ( y 2 + x2yl) + \y*x~z-

Note tha t no integrat ion was required to obta in P. By comparison, Noether's Theorem relies 

on Lagrangian formulat ion as well as being able to find the divergence A f rom Theorem 3.2. 

I n [3] the authors showed that a scaling symmetry of a linear self-adjoint P D E can be used to 

obta in w i thou t integrat ion the conservation law corresponding to a given var iat ional symmetry. 

The preceeding theorem is a generalisation of this. 

3 . 4 Conclusions 

I n this chapter we have studied symmetries and integrat ing factors of self-adjoint ODEs. We 

started by showing that the Euler-Lagrange O D E is self-adjoint and that i ts integrat ing factors 

are var iat ional symmetries and vice-versa. 

We presented Noether's Theorem 3.2.9 tha t can be used to find a conservation law using a 

var iat ional symmetry and a Lagrangian. The result ing conservation law admits the var iat ional 

symmetry that was used to find i t . Thus two reductions of order are possible using a single var i 

at ional symmetry : one reduct ion in or iginal variables and one symmetry reduct ion. Theorem 

Theorem 3.3.4 generalises this result to self-adjoint ODEs admi t t i ng r var iat ional symmetries. 

I n Example 3.3.3 a simple three-dimensional L ie Algebra of var iat ional symmetries is used to 

obta in four reductions of order. 
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For a self-adjoint O D E of the fo rm 

G = yn ~ g(x,y,yi, . . . , y n - i ) , (3.21) 

a commutator of a scaling symmetry and a var iat ional symmetry is always a var iat ional symme

try . I n most cases the conservation law corresponding to such a commutator can be obtained 

w i thou t any integrat ion (see discussion after Theorem 3.3.10). More generally, a commutator 

of a var iat ional symmetry w and a non-variat ional point symmetry v need not be a var iat ional 

symmetry. However, there is an expression u(v,w) given by (3.20) which results i n a var iat ional 

symmetry. W h e n v is also var iat ional, u(v,w) = [v,w]. 

For a self-adjoint O D E (3.21) i t is possible to te l l when a given point symmetry is var iat ional , 

w i thou t using G. Th is provides an ansatz for looking for var iat ional symmetries, given by 

(3.19). 
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Chapter 4 
Classification of solvable O D E s 

A n O D E is said to be solvable i f its general solut ion can be expressed using quadratures only. 

Given a fami ly of ODEs, the classification problem is to f ind as many solvable ODEs i n tha t 

fami ly as possible. 

I n this chapter we w i l l consider the classification problem for two families of second order ODEs: 

The f irst fami ly is known as the Emden-Fowler equation and is chosen because 

1. Solvable cases are known which do not admi t two point symmetr ies. 1 (see [22]) 

2. W h e n I = 0 the O D E is self-adjoint. 

3. A n y O D E i n this fami ly admits a scaling symmetry. 

The second fami ly is chosen because 

1. Any O D E in the fami ly admits a translat ional symmetry. 

2. A n y solvable case leads to a solvable Abel equation 

y" = Axnymy'1 and y" = f(y)y' + g(y). 

u'{t) = -g{t)uZ -f(t)u2 
(4.1) 

th rough a change of variables 

x = s(t),y(x) = t,u(t) = s'(t). (4.2) 

1Note that any ODE admits Lie-Backlund symmetries. 
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To classify these ODEs we w i l l apply the theory of symmetries and integrat ing factors developed 

so far. We shall make use of the the symmetries admi t ted by the above ODEs when seeking 

other symmetries or integrat ing factors. To this end, in Section 4.2 we develop ansatzes that 

use known symmetries or integrat ing factors. 

I n Section 4.1 we classify the f irst fami ly for symmetries and integrat ing factors. The second 

fami ly w i l l be classified in Section 4.3. 

4.1 Classification of the Emden-Fowler Equation, y" = Axnyrny'1 

The goal of this section is to find solvable cases of the Emden-Fowler Equat ion, 

G = y" — Axnymy'1 = 0. (4.3) 

We shall denote such equation by a t r ip le (l,m,n). Before proceeding, we make several useful 

remarks tha t hold for any (l,m,n). F i rs t , note that a change of variables 

y(x) = t,x = u(t) (4.4) 

maps G = 0 into another Emden-Fowler Equat ion, 

u" + Atmunu'3'1 = 0. (4.5) 

Thus a solvable case (l,m,n) leads to a solvable case (3 — l,n,m). Second, note tha t G always 

admits a scaling symmetry 

(l-rn-l)x— + (2 + n-l)y—. (4.6) 

I n Section 4.1.1 we w i l l classify al l possible (I, m , n) which admit more then one point symmetry. 

I n Section 4.1.2 we w i l l f ind al l cases for which G admits an adjoint symmetry of the form 

w = a(x,y)+ b(x,y)yi. (4.7) 

Most adjoint symmetries of the form (4.7) w i l l t u r n out to be integrat ing factors. 2 Th is w i l l 

2 Note that by Proposition 2.2.15 an integrating factor is an adjoint symmetry. An adjoint symmetry is 
not necessarily an integrating factor, but often it is. 
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lead to more solvable cases, some of which w i l l be different f rom those found using a symmetry 

classification. 

4.1.1 Point symmetry classification of (4.3) 

We begin w i t h the point symmetry classification of (4.3). Using Lie's a lgor i thm, this amounts 

to solving the overdermined P D E XG = 0 (mod G = 0) for X = (,(x,y)-^ + rj(x,y)-^ + ... 

W r i t t e n i n fu l l , the result ing P D E is 

Vxx + {2l]xy — (,xx)yi + (Vyy ~ 2£XT/)?/I — ZyyVl 

-Alr)xxnymyl^x + A(l - 3)^yxnymy[+1 

-A (mrixnym-1 + n£xn-lym + {2£x - rjy + lr)y - l£x) xnym) y[ = 0 

For a fixed I, the result ing system splits by equating the coefficients of the like powers of y\ to 

zero. The sp l i t t ing depends on whether I is arb i t rary or one of / = — 1 , 0 , 1 , 2 , 3 , 4 . Since the 

change of variables (4.4) maps (4.3) into (4.5), the classification of the cases I = 2, 3,4 can be 

obtained f rom the classification of the cases / = 1 , 0 , - 1 respectively. 

A f te r considering al l possible subcases, one eventually obtains the fu l l symmetry classification of 

(4.3) l isted i n Table 4 .1 . Note tha t the cases I = — 1 , 4 do not y ie ld any addi t ional symmetr ies. 

The cases (I, m, n) = (0,2, — y ) , (0,2, — y ) were previously classified in Stephani [21]. Chapter 

two of the standard reference of solvable ODEs by Kamke [14] lists 246 non-l inear ODEs. O f 

those, seven are are Emden-Fowler ODEs w i t h n , m ̂  0. They are O D E number 96 (0, n, — 4 ) , 

100 (0,3/2, -1 /2 ) , 102 (0,1 -n,n), 105 (0,-1,1), 106 (0,-1,2), 205 (0,-2,-1), and 229 (-1,2,-3). 

Thus the non- t r iv ia l cases (0, m, 3 — m), (1,1,-1) as well as the cases obtained f rom them using 

the t ransformat ion (4.4) are not found i n [14] or in any other l i terature cited i n the bibl iography. 

4.1.2 Adjoint symmetry classification of (4.3) 

I n this section we list a l l of the cases for which (4.3) admits an adjoint symmetry of the fo rm 

w(x,y,yx) = a{x,y)+yib{x,y). (4.8) 
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Condition Point symmetries of y" = Axnymy'1, other than (4.6) 

m = 0 

I = 0, m + n + 3 = 

I = 0, m = 2, n = 

Z = 0, m = 2, n = 

/ = o,m = 1 

or Z = 1, m = 0 

Z = 1, m = 1, n = 

15 
7 

20 
7 

_3_ 

^ 6 / 7 ^ + ( l + ^ - 1 / 7 ) * 

G is linear and thus admits eight symmetries. 

-Ax\nx£- + {l + Ay)^ 

n = 0 

Z = 3,m + n + 3 = 

Z = 3, n = 2, m = 

I = 3, n = 2, m = 

Z = 3, n = 1 

or Z = 2, n = 0 

Z = 2, n = 1, m = 

dx 

xy-s-x + y2ik 
15 
7 

20 
7 i/ + ^ y 1 / 7 ) j l + ^Sy8/7^ 

G is linearisable using (4.4) and admits eight symmetries. 

(l + Ax)fx-Aylnyl 

Table 4.1: Symmetry classification of (4.3) 
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The process of finding adjoint symmetries is similar to the process of finding symmetries. F i rs t 

wr i te out the determining equation 

V*WG = 0 (mod G=0) . (4.9) 

The restr ic t ion (4.8) makes (4.9) an overdetermined system. Solving i t leads to the classification 

l isted in Table 4.2. 

There are two ways in which an adjoint symmetry may lead to a conservation law. 

1. Note tha t (4.3) always admits a scaling symmetry which, w r i t t en in evolut ionary fo rm, is 

v = {l-n-2)y-(l + m-\)xyx (4.10) 

B y Theorem 2.3.1, i f w is an adjoint symmetry then the expression S(w, v, G) (mod G=0) 

defined by (2.19) is always a (possibly t r iv ia l ) conservation law. The last co lumn in the 

Table 4.2 lists such an expression. 

2. A n integrat ing factor is always an adjoint symmetry. Conversely, some (but not all) 

adjoint symmetries are integrat ing factors. I f w is also an integrat ing factor then the 

t h i r d co lumn in Table 4.2 lists the corresponding conservation law. 

Th is classification identifies two cases which admit an integrat ing factor w i thou t admi t t i ng two 

symmetries. 

Case 1: The case I = l , n = — 1, corresponding to the O D E 

Y X 

admits an integrat ing factor w3 = x leading to a reduct ion of order P3 = C. From Table 4.2 we 

see that S(w3, v, G) = 0 (mod G=0). Thus by Theorem 2.3.2 i t follows tha t VVP3 = 0 (mod G= 

0) and hence P% = C inherits the symmetry v given by (4.10)! Thus in this case, G — 0 is 

completely solvable. Using standard symmetry methods, the solut ion is found to be 

X = C 2 6 X P (ft + Af^dt + d) 
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Condition Adjoint symmetry Conservation law S(w,v,G) 

I - -l,m = 2 wi = 2/2/1 N/A 0 

I = l , n = 0 7X»2 = 1 P2=yi-Afyndy (m + 1)P2 

/ = l , n = -1 w 3 = X P3 = x y i - y - AJ ymdy 0 

Z = l ,n = — i , m = — 2 I 
w4 = 2xyx + 2A?f- - y Pi = y2

1x + y1(2A^-y)+A^ -Pi 

Z = 0 v = (n + 2)y - (1 - m)xyi N/A 0 

Z = 0 , 7n = -3 - 2n v = (n + 2)y - 2{n + 2)xyx P 5 = -y\x + y y i + A f xndxy-2-2n 0 

I = 0, m = — 3 — n w6 =xy- x2yi 
Pe = - \{y2 +x2yl) +xyyx 

-A J xn+1dxy-2-n 

(4 + 2n)P6 

1 = 0,77i = 2,n = 
w7 = l + fAx-Wy 

-7r2Ax^yi 

P7=y1 + fAx-Wyy! - ^Ax^y2 

+ lAy2x~8/7 + ^A2x-9/7y3 

6 p 

Z = 0,777, = 2,77 = 
W s = - X + fAx-1/^ Ps = -xVl + fAx'/7yyi - ^Ax*fyl 

-\Ay2x-%<1 + ^A2x-12/7y3 

6 p 
— 7 " 8 

Table 4.2: Adjoint symmetries of (4.3) of the form (4.8). If the adjoint symmetry listed is also 
an integrating factor, then the third column lists the corresponding conservation law. If an 
adjoint symmetry is not an integrating factor, N / A is present in the third column. This table 
does not include cases that are linear or obtained from the linear case by the transformation 
(4.4). See text for description of the fourth column. 
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Case 2: The case I = l , n = - 1 / 2 , m = - 2 , corresponding to the O D E 

G = y" - x - V \ S = 0 

admits an integrat ing factor leading to a reduct ion of order P 4 — C = 0. However this 

equat ion does not inher i t v since VvPt± = <S(t/j4, u, G) = — P 4 (mod G=0) . Nevertheless, one has 

X \ ,P i = 0 (mod P i = 0 ) and hence the equation P 4 = 0 does inheri t the symmetry v. Thus one 

can find a particular solut ion of G = 0 by solving P 4 = 0 which admits the symmetry v. The 

resul t ing par t icu lar solut ion is 

Note that the two above cases are not obtainable through a point symmetry classification of 

(4.3). Neither are they found in Kamke [14] or any other l i terature cited in the bibl iography. 

4.2 Using known symmetries or integrating factors as ansatzes 

4.2.1 Using a symmetry to generate an ansatz for an integrating factor 

I n Section 2.1.3 we have discussed how to use a symmetry as an ansatz when looking for 

conservation laws. Since to every conservation law there corresponds an integrat ing factor, 

one can also use a symmetry as an ansatz for an integrat ing factor directly, w i thou t finding a 

conservation law. 

L e m m a 4 .2 .1 Let X = ̂ (x,y)-^ + rj(x,y)-J^ be a point symmetry of an ODE 

Let P be a conservation law of G and w the corresponding integrating factor. Let Q = 

XP (mod G=0). Then Q is a conservation law and 

G = yn - g(x,y,yi,...,yn-i). (4.11) 

v = w (Vy - niyVl - (n - 1)6;) + Xw (4.12) 

is the integrating factor corresponding to Q. 
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Proof. Note tha t Q = X P (mod G=0) is a conservation law by Theorem 2.1.4. Since X is 

a point symmetry and P = P(x, y , y n - i ) , i t follows that XP is independent of yn. Thus 

X P (mod G = 0) = X P . Dif ferent iat ing, using Lemma 1.1.15 and then using P' = wG, we 

obta in : 

Q' = (xpy = x(p') + e'p' = x(u>o + e'wG. 

Using Q' = vG and the product rule we get: 

vG = wXG + GXw + i'wG. 

App l ica t ion of Lemma 3.3.7 results in (4.12). • 

Theorem 4.2.2 Let X , G' be as in Lemma 4.2.1. Then for any given constants a, (3, there 

exists a conservation law P of G which satisfies 

XP = aP + p (modG=0). (4.13) 

Furthermore, let w = w(x,y,y\, ...,yn-\) be an integrating factor of G with P' = wG. Then w 

satisfies the following PDE for all x, y, y\,yn-\: 

w (•% - n£yVl - (n - 1)6 - a ) + Xw = 0. (4.14) 

Conversely, If w satisfies (4-14) then the conservation law P with P' = wG satisfies (4-13) for 

some constant p. In addition, if a ^ 0 then the conservation law P can be obtained without 

any integration: 

P =
 SJ^l91 { m o d G=o) (4.15) 

a 

where v = n — y i £ is the evolutionary form of X. 

Proof. Step 1: We first show tha t there exists a conservation law P satisfying (4.13). By 

Lemma 2.1.5 w i t h PQ = 1, there exists a conservation law Q w i t h XQ = 1. So P = f(Q) 

is also a conservation law for any funct ion / . I n part icular , choose / to be a solut ion to 

f'{Q) = <xf(Q) + 0. Then 

X ( P ) = X(f(Q)) = f'(Q)XQ = f'(Q) = af(Q) + (3 = aP + p. 
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Step 2: Equation (4.14) is obtained by differentiating both sides of (4.13) in exactly the same 

fashion as in the proof of the preceeding lemma. 

Step 3: Equation (4.15) follows from application of Theorem 2.3.2. • 

Remark: Suppose that we found a conservation law P of G = 0 with XP = aP + /3 and with 

a 0. Letting Q = P + we see that XQ = aQ and hence XQ = 0 (mod Q=0). Thus X is 

a symmetry of the ODE 

P + - = 0. (4.16) 
a 

This fact can be used to find a reduction of order of (4.16) which leads to a particular solution 

depending on an arbitrary constant, if G is of order two. See Section 4.1.2, Case 2 for example. 

The following table lists commonly encountered symmetries and the corresponding solution of 

(4.14), for the case n = 2. 

X = -§i: w = eaxF(y,yi) 

X = ̂ : w = eayF(x,yi) 
X = ai; + b c k : w = eXxF(ay-bx,yi),X = ̂  
X = V£-: w = yxF(x,^),\ = a-l y 

' dx 
X =  a x£  +  hy-L-  w = xxF(x~ b

y

a, x a- b

yf), A = s±&zzb 

X = x-£-: w = xxF(y,xyi),\ = a+l 

For example, an ODE G = 0 admitting X = ^ will have an integrating of the form w = 

eaxF(y,yi) for any a, for some function F. Note however, that not every integrating factor of 

G is of that form. Nevertheless, one has the following theorem. 

Theorem 4.2.3 Let G = yn — g(x,yi,yn_i) = 0 be an ODE of order two or higher, and 

suppose that G admits a point symmetry of the form 
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Suppose also that G admits an integrating factor of the form 

w = a0{x,y) +yiai(x,y) + y(a2(x,y) + ... + y f aN(x, y) (4.17) 

where N is an arbitrary fixed positive integer if ^y = 0 and N = n if £y ^ 0. Then G admits 

an integrating factor of the form 4-L7 which in addition satisfies (4-14)-

Before prov ing this theorem, we w i l l need the fol lowing lemma: 

L e m m a 4.2 .4 Let A : 5Rn —> 5Rn be a linear transformation and let x G 5R",x ^ 0 be such that 

Ax = 0. Then there exists y £ ffl1 independent of x such that either Ay = Ay for some constant 

X or else Ay = x. 

Proof. A n y linear t ransformat ion must admi t at least one eigenvector. I f A admits an eigen

vector independent of x then choosing y to be such an eigenvector proves the theorem. So 

assume w i thou t loss of generality that A does not admi t an eigenvector independent of x. T h e n 

x is the only eigenvector of A and zero is its only eigenvalue. B y a change of basis, we may 

assume w i thou t loss of generality that A is in its Jordan-Canonical fo rm, 

0 a i 

A = 

0 

where aj is either zero or one, i = l . .n — 1. By assumption of uniqueness of the eigenvector, i t 

follows tha t ai = 1 for i = l . .n — 1. Thus 

r 0 1 

A = (4.18) 

Also by uniqueness of the eigenvector, x = (a, 0 , 0 ) T for some a ^ 0 is the unique eigenvector 

of (4.18). Choosing y = ( 0 , a , 0, . . . , 0 ) T we obta in Ay = x as desired. • 
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Proof of Theorem 4.2.3. Step 1: Let w be an integrat ing factor of the fo rm (4.17) w i t h 

corresponding conservation law P. By Lemma 4.2.1, the integrat ing factor corresponding to 

XP is given by 

w (riy - n£yyi - (n - l ) £ x ) + Xw. 

Expand ing Xw using Lemma 3.3.6 one can show that such an integrat ing factor is also of the 

fo rm (4.17). 

Step 2: We now show that there exists an integrat ing factor w satisfying b o t h (4.17) and 

(4.14). One can show that any O D E of second order or higher admits f in i te ly many l inearly 

independent integrat ing factors of fo rm (4.17). Let wi,...,wr be such integrat ing factors and 

let Px,...,Pr be their corresponding conservation laws. Let PQ = 1 be a t r i v i a l conservation law. 

B y Step 1, XPi is a linear combinat ion of PQ, Pr. Thus X defines a linear t ransformat ion 

on the vector space spanned by P Q , . . . , P T . By Lemma 4.2.4 there exists P independent of PQ 

such tha t either XP = aP for some a. or XP = PQ = 1. Since P is independent of Po, i t is 

non- t r iv ia l . Hence there exists a non- t r iv ia l conservation P w i t h XP = aP + (3 (where /? = 0 

when a ^ O and (3=1 when a = 0). App ly ing theorem 4.2.2 concludes the proof. • 

See section 4.3.2 for example. 

4.2.2 Using a symmetry to generate an ansatz for a symmetry 

To find a symmetry X of an O D E G = 0, one needs to solve a linear P D E XG = 0 (mod G=0) 

for X. W h e n another symmetry is known, an ansatz can be made tha t decreases the number 

of independent variables in the above P D E by one. 

Theorem 4.2.5 Suppose that an ODE G = 0 admits a finite Lie algebra C of symmetries of 

dimension at least two. Then given any symmetry X G C, there exists another symmetry Y G C 

independent of X such that either [X,Y] = XY for some (possibly complex) constant X or else 

[X,Y]=X. 
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Proof. Th is is a direct consequence of Lemma 4.2.4 applied to the linear t ransformat ion 

A : Y -> [X,Y] and x = X. n 

E x a m p l e 4 .2 .6 Suppose an O D E admits a translat ional symmetry X = J j . I f i t admits any 

other point symmetries, then by Theorem 4.2.5 i t must also admi t either a non- t r iv ia l symmetry 

of the f o r m 

Y = (a(y)+x)l + o(y)ly. 

or else a non- t r iv ia l symmetry of the form 

Y = ex* (a(y)f- + b{y) d_ 
dy 

for some functions a(y),b(y) and some (possibly complex) constant A. See Section 4.3.1 for 

fur ther appl icat ion of this example. 

I n his thesis, Bou l ton [9] shows how to uti l ise structure constants of a Lie Algebra to generate 

ansatzes for symmetries. His a lgor i thm requires an explici t computat ion of these structure 

constants. 3 By contrast, no a-priori knowledge of the structure constants is required to use 

Theorem 4.2.5. 

4.3 Classification of y" + f(y)y' + g(y) = 0 

Consider the fami ly of ODEs 

G = y" + f(y)y' + g(y) = 0. (4.19) 

Note tha t (4.19) admits a point symmetry 

dx 

for any f(y),g{y)- We wish to find such f(y),g{y) for which (4.19) admits another symmetry 

or an integrat ing factor. We w i l l use ansatzes developed in Section 4.2 to simpl i fy th is task. 

3 See Reid [18] for an algorithm that finds structure constants by reducing the overdetermined system of 
determining equations to standard form and without explicitly solving the determining equations 
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4.3.1 Symmetry classification of (4.19) 

I n th is section we w i l l classify al l possible cases for which (4.19) admits a symmetry other than 

Jj. B y Example 4.2.6, i f (4.19) admits another point symmetry then i t must also admi t a point 

symmet ry X of the fo rm either 

X = (a(y)+x)^ + b(y)^y (4.20) 

or 

We analyse the two cases separately. 

Case 1: Assuming (4.20), the determining equations XG = 0 (mod G=0), s impl i fy to a system 

of ODEs for a(y),b(y)J(y),g(y): 

a" = 0, b" + 2a'f = 0, g'b - b'g + 2g = 0, f'b + 3a'g + f = 0 (4.22) 

Solving (4.22) leads to the fol lowing. 

T h e o r e m 4 .3 .1 The ODE G = y" + f{y)y' + g(y) = 0 admits a symmetry T = ^ and a 

symmetry X with [T, X] =T iff 

X = ( a ( y ) + X ) l + b ( y ) l y 

and a(y),b(y),f(y),g(y) satisfy one of: 

1. a ( y ) = a , b(y) = 0, f(y) = Q, g(y)=0 

2. a(y)=a, b(y) = A, f(y) = B e ^ , g(y) = Ce'^, A + 0 

3. a(y)=a, b(y) = A + By, f(y) = C(A + By)-1/B, g(y) — E(A + By)l~2lB, B^O 

4. a(y) = Ay + a, f{y)-±b"(y), g(y) = ̂  (b"(y)b(y) + b"(y)), A ± 0 

where b(y) satisfies 

b""b2 + m'" - b'b" + 2b" = 0 (4.23) 

where capital letters represent arbitrary constants. 
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Remark 1: One can show that case 2 can be obtained f rom case 3 by tak ing the l i m i t as B —> 0. 

Also, case 1 is jus t a special case of case 2. Thus there are actual ly two dist ict cases: either 

a' = 0 (cases 1,2,3) or a' ^ 0 (case 4). 

Remark 2: Cases 1,2 and 3 lead to solvable Abe l ODEs (4.2) . through a t ransformat ion (4.1). 

However the resul t ing O D E is also solvable by the method of " A b e l invar iant" described i n 

Kamke [14], page 26. 4 Thus Theorem 4.3.1 does not lead to any solvable Abe l ODEs not found 

in [14]. 

We now derive a sequence of transformations that transforms the fourth-order O D E (4.23) into 

an A b e l O D E 

u'(t) + t(t + 2)(2t + 3)u(t)3 - (7 + 3t)u{t)2 + 3 ^ - = 0. (4.24) 

A point symmetry analysis reveals that the O D E (4.23) admits two symmetries: 

X l = y Y y + h W X 2 = dy 

w i t h [X2,X1] = X2. 

Thus a change of variables 

r = b{y),s(r) =y 

leads to a 3rd order O D E for 

z(r) = s'(r) 

that inheri ts the symmetry X\ —f-^. The canonical coordinates 

v(q) = l n r , g = z,w(q) = v'(q) 

then lead to a second order O D E 

w"wq2 - 3 g V 2 + 3o 2 (q - 1) w2w - l O o W + q{9q - 10)w3 - 2q2 (q - l ) 2 wi. (4.25) 

4 The method of "Abel invariant" is the only general algorithm in Kamke to solve Abel ODEs. I t shows 
how to find, i f exists, a transformation y = F(t)u(t) + G(t),x — H(t) which maps an Abel ODE into a 
separable ODE. 
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A search for point symmetries of this O D E reveals a symmetry 

d d 
X3=q(q-l)-+w(l-3q) — (4.26) 

whose canonical coordinates are 

t = q{q-l)2w,p = \n(^-^j 

lead to an Abe l equation (4.24) w i t h u(t) = p'(t). No solut ion of this Abe l O D E is known. 

Using a method described in [7], a symmetry X3 leads to three part icular solutions of (4.25): 

Q 
w{q) = o w i t h c = — 2 or — 3/2 or 0. 

« ( « - ! ) 

Corresponding part icular solutions for b(y) can then be obtained when c ^ 0. 

Case 2: Assuming (4.21), the determining equations XG = 0 (mod G=0), s impl i fy to a system 

of ODEs for a(y),b(y),f(y),g(y): 

a" = 0, b" - 2Xa' + 2a'f = 0, 

X2b + bg' - b'g + A / 6 + 2Xag = 0, 

bf + 3a'g + Xaf - A 2 a + 2A6' = 0. 

Several subcases result, summarised below. 

Theorem 4.3.2 The ODE G = y" + f(y)y' + g(y) = 0 admits a symmetry T = ^ and a 

symmetry X with [T, X] = A X iff X is a constant multiple of 
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and a(y),b(y),f(y),g(y) satisfy one of: 

1. a ( y ) = 0 , b(y) = l, f(y) = A, g(y) = - A (A + A)y + B 

2. a(y) = 0, b(y)=y + A, f(y) = - 2 A In (y + A) + B, 

9{y) = - A (y + A) ((A + 5 ) In (y + A) - A I n 2 (y + A) + 6) 
3. a(y) = l , 6(2/) = 0, / ( y ) = A, y(y) = 0 

4. a (y ) = l , b(y) = A, f(y) = A ( i J e " ^ + l ) , g ( y ) = - A (A + BAe~h + C e " ^ ) , A ^ 

5. a(y) = l , b(y)=A + By, f(y) = A - 2B + (A + By)~x/B C 

g(y) = {A + By)l-2X'B E-(A + B y ) 1 ^ 8 C - (A + By) (A - B) , B^O 

6. a(y)=y + A, j'(y) = A - \b"\y) . 

9(y) = \b{y)b"'{y) + xyb"(y) + xAb"{y) - fb'(y) 

and b(y) satisfies the fourth order ODE 

b""b2 + 12A 26 + 3A(A + y)b"'b - 6A66" + 4A6' 2 - 8 A 2 ( A + y)b' 
(4.27) 

+2X2(A + y ) 2 6 " + —X(A + y)b"b' = 0 

where capital letters represent arbitrary constants. 

Remark 1: One can show that cases 1-4 can be obtained f rom case 5 by considering various 

l i m i t i n g values of various constants. Thus there are actual ly two dist ict cases: either a' = 0 

(cases 1,2,3,4,5) or a' ^ 0 (case 6). 

Remark 2: Cases 1-5 lead to solvable Abe l ODEs (4.2) th rough a t ransformat ion (4.1). For 

subcases 2, 4, 5, 6, the result ing ODEs are not solvable by the method of "Abe l invar iant" 

described in Kamke [14], page 26. Moreover, none of these ODEs are l isted among the 15 

solvable ODEs of fo rm (4.2) whose solutions are given in Kamke. 5 

A point symmetry analysis reveals that the O D E (4.27) admits two symmetries: 

n = („ + A) | + s»£, n = (»+ A? A + » ( , + A) | 

5These 15 ODEs are numbers 36, 37, 40, 41, 42, 43, 45, 47, 48, 111, 145, 146, 147, 169, 185 from Chapter 
1 of Kamke 
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w i t h [ l i , ! ^ ] = l 2 - 6 Using canonical coordinates for Y2, 

-3, s(r) = 
{y + Af y + A 

leads to a 3rd order O D E for 

z(r) = s'(r) 

t ha t inheri ts the symmetry Y\ = r^. Comput ing the the canonical coordinates of Yi we obta in 

the transformations 

v(q) = lnr,q = z,w(q) = v'{q) 

t ha t lead to a second order O D E 

w"wq2 - 3q2w'2 + 3g 2 (Xq - 1) w2w' - lOqww' + q{9Xq - 10)w3 - 2q2 {Xq - l ) 2 w4. (4.28) 

A search for po in t symmetries of this O D E reveals a symmetry 

Y 3 = (q(Xq - 1)) ~ + w{\ - 3Ag) 

whose canonical coordinates 

^ 0 ( A g - l ) 2 ^ = l n ( ^ - i ) 
lead to the Abe l equation (4.24) for u(t) = p'(t). Thus the two ODEs (4.23) and (4.27) are 

connected th rough a sequence of (non-local) t ransformations! I t is not immediately obvious 

whether these two ODEs are also connected by a point t ransformat ion. 

Sett ing A = 0 in (4.27), we obtain: 

Proposition 4.3.3 The ODE 

y" = (b2 + 36 3 y) y' - (b0 + hy + b2y2 + 6 3 y 3 ) b3 (4.29) 

admits symmetries X = and dx 

Y = y— + (b0 + biy + b2y3 + 6 3 y 3 ) — . 

with [X, Y) = 0. 

6 I t is interesting to note that Y2 satisfies the ansatz for a variational symmetry that was developed in 
Chapter 3 (see Example 3.3.8) even though neither the ODE (4.27) nor its solved form is self-adjoint. 
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Remark: One can show that the O D E (4.29) admits an eight-parameter symmetry group and 

is l inearizable. 

I n summary, the O D E (4.19) admits at least two symmetries i f f f(y),g(y) are given either by 

Theorem 4.3.2 or by Theorem 4.3.1. The subcases 2,4,5,6 of Theorem 4.3.2 lead to families of 

A b e l ODEs whose solut ion is not given in Kamke [14]. 

4.3.2 Classification of integrating factors of (4.19) 

I n th is section we w i l l f ind al l cases for which (4.19) admits an integrat ing factor w of the fo rm 

Note tha t (4.19) admits a symmetry Thus i f (4.19) admits an integrat ing of the fo rm (4.30) 

then by Theorem 4.2.3 i t must also admi t an integrat ing factor of the fo rm 

w = eXx (a(y) + yib(y)) 

for some A, a(y),b(y). The determining equations E(wG) = 0 then s impl i fy to a system of 

ODEs for f(y),g{y),a(y),b(y): 

b' = 0, 2a' + Xb - 2fb = 0, 2a" + 2A6' - fb' - bf = 0, g'a + a'g - X (bg + fa) + X2a = 0. 

Th is system reduces fur ther, w i t h two cases possible. 

Case 1: I f b =fi 0, one can assume w i thou t loss of generality that b = 1, leading to the fol lowing 

result. 

Proposition 4.3.4 The ODE 

w = a{x,y) +y1b{x,y). (4.30) 

(4.31) 

admits an integrating factor of the form 

wi = eXx (a{y)+yi) (4.32) 

iffa(y),g(y) satisfy 

2X(g - aa') + A 2 a + 2(a'g + g'a) = 0. (4.33) 
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If A ^ 0 then the conservation law corresponding to w\ is given by 

P i = S(w, - y i , G)/\ = eXx (yia(y) + \y\ + ja(y)g(yh) . (4.34) 

Sett ing A = 0 and then solving (4.33) leads to 

Corollary 4.3.5 The ODE 

admits an integrating factor 

v" - A^v1 + g(y) = 0 (4.35) 

» 2 = ^ + , , (4.36) 

The corresponding conservation law is given by 

P 2 = 4r<T2(y) + f 9(t)dt + A - ^ + l-y\ + Ax. (4.37) 

Case 2: I f b = 0 then a' = 0 and so one can assume, w i thout loss of generality, tha t a = 1, 

which leads to the fol lowing two proposit ions: 

Proposition 4.3.6 The ODE 

y"+(\g'(y) + *)y' + 9(y) = o (4.38) 

with A / 0 admits an integrating factor 

w3 = eXx. (4.39) 

The corresponding conservation law is given by 

P 3 = S(w, -yu G)/X = eXx(yi + jg(y)). (4.40) 

Proposition 4.3.7 The ODE 

y" + f(y)y' + A = 0 (4.41) 

admits an integrating factor 1. The corresponding conservation law is y' + fy f(t)dt + Ay. 
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Note tha t the O D E P 3 = 0 inherits the symmetry ^ and thus leads to a part icular solut ion of a_ 
dx 

(4.38). Using the t ransformat ion (4.1) one thus obtains: 

Corol lary 4 .3 .8 The Abel ODE 

y' = g{x)y* + ( l y ' ( x ) + \)y2 (4.42) 

admits a particular solution 

V = —^r- (4-43) 

I n summary, we have the fol lowing theorem: 

T h e o r e m 4 .3 .9 The ODE (4-19) admits an integrating factor of the form (4-30) iff the ODE 

is given by one of (4.31), (4.35), (4.38), (441). 

One can also combine the various proposit ions above to obta in cases for which (4.19) admits 

two funct ional ly independent conservation laws. For instance i f 

-Am = \s'[y)+X (444) 

then the O D E (4.35) admits conservation laws (4.37) and (4.40). Furthermore these conserva

t ion laws are funct ional ly independent whenever A ̂  0. The solut ion of (4.44) is given by 

9(y) = \ ( - A y -C+ ( (Ay + Cf + 1A) ̂  (4.45) 

where C is an arb i t rary constant. As an example, tak ing C = 0, A = 1, A = 1 we get 

g(y) = \{-y + (y2 + ±)1/2)-

Using 

j ( y 2 + 4 ) V 2 d y = I y ( y 2 + 4 ) i / 2 + 2 l n { y + {y2 + 4 ) i / 2 ) 

the conservation laws (4.37), (4.40) become: 

* - ( - , + ( ; + 4 ) v ^ - ^ + ^ 2 + 4 > i / 2 + i ' f a + b 2 + 4 ) i / 2 ' + - y + ( ^ 4 ) ^ 4 ^ + - -
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Ps = ex (yi-\y + \{y2 + ±)1'2). 

El im ina t i ng y\ f rom the system P 2 = Ci,Pz = C3 one obtains a general solut ion to the O D E 

«"wrw) y'+\(-«+<"2+4»"2) - »• <4-46> 
Th is O D E does not admit any point symmetries other than J j . The corresponding A b e l O D E 

is 

4.4 Discussion 

I n th is chapter we have shown how the methods of previous chapters can be appl ied to find 

sub-families of solvable ODEs f rom a given fami ly of ODEs. We have considered Emden-Fowler 

fami ly of equations as well as the fami ly (4.19). Any solvable case of (4.19) leads to a solvable 

Abe l equation (4.2) using transformations (4.1). For b o t h families, we have obtained several 

new solvable cases not l isted in the standard reference by Kamke [14] or any other reference i n 

the bibl iography. 

W h e n the fami ly under consideration admits a symmetry, one can use i t to generate ansatzes 

for seeking integrat ing factors and symmetries. Unl ike the symmetry ansatzes studied i n [9], 

our symmetry ansatz does not require a pr ior i knowledge of the Lie algebra structure of the 

O D E i n question. 

We have appl ied such ansatzes to (4.19) which admits a point symmetry £ . As a result, we 

found al l cases for which (4.19) admits either another point symmetry or an integrat ing factor 

l inear in y'. 

The ansatz given in Theorem 4.2.2 w i t h a ^ 0, i f successful, leads to an integrat ing factor 

whose corresponding conservation law can be found without quadrature using that theorem. 

The u t i l i t y of th is is demonstrated in Proposi t ion 4.3.4 where the integrat ing factor w\ was 

found depending on an arb i t rary funct ion. Nevertheless, the corresponding conservation law 
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P i was found w i thou t quadrature. I n addi t ion one can always f ind a part icular solut ion of the 

resul t ing conservation law when a ^ 0 and the O D E is of order two. 

F ind ing an integrat ing factor is a task no more dif f icult than finding a symmetry. However 

once found, a reduct ion of order using a symmetry requires finding canonical coordinates. To 

do this in general, one must solve an auxi l iary O D E (see Section 1.1.3). 7 By contrast, an 

integrat ing factor always leads to a reduct ion through a quadrature, w i thou t ever having to 

solve any addi t ional ODEs. As well , an integrat ing factor reduct ion is a reduct ion in the 

original variables unl ike a symmetry reduct ion which requires a change of variables involv ing a 

dif ferential subst i tu t ion. 

7 I f an n-th order ODE admits a solvable Lie Algebra of n symmetries then there is an algorithm by due to 
Lie that can find a general solution using quadratures only, never having to solve any additional ODEs 
(see Stephani [21], Chapter 9.3) 
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Chapter 5 
Conclusions and future work 

5.1 Conclusions 

I n this thesis we have examined the connections between conservation laws and symmetries, 

b o t h for self-adjoint and non self-adjoint ODEs. The goal was to gain a better understanding 

of how to combine symmetry methods w i t h the method of conservation laws to obta in results 

not obtainable by either method separately. 

I n Chapter 1 we have reviewed symmetry methods and how to use symmetries to ob ta in reduc

t ion of order of ODEs. 

I n Chapter 2 we have discussed how to f ind conservation laws. I n the absence of symmetries, 

one can look for conservation laws direct ly by seeking solutions of a linear P D E (2.2). The 

s i tuat ion is more interesting when a symmetry of an O D E is known. Lemma 2.1.4 shows tha t 

i f X is a symmetry generator and P is a conservation law of an O D E G = 0 then XP is also a 

conservation law of G = 0. Conversely, i t is shown (Lemma 2.1.5) that i f Po is any conservation 

law of G = 0 then there exists a conservation law P w i t h XP = Po- Since zero is a ( t r iv ia l ) 

conservation law, this leads to an ansatz: seek a conservation law P satisfying XP — 0. Such an 

ansatz is equivalent to the method of differential invariants for point symmetries, bu t works for 

general L ie-Backlund symmetries as well. I f such a P is found, one can also seek a conservation 

law Q w i t h XQ = 1. As shown in Section 2.1.4, for second order ODEs, Q can be found using 

quadratures only. 

Instead of looking for conservation laws, one can seek integrat ing factors tha t characterise 
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them. A n integrat ing factor w of an O D E G = 0 can be found by seeking a par t icu lar solut ion 

of the determining equation E(wG) = 0 (see Theorem 2.2.13). Given an integrat ing factor, the 

corresponding conservation law can be computed by a quadrature using Theorem 2.2.14. 

W h e n in add i t ion to an integrat ing factor one also knows a symmetry, i t is sometimes possible to 

compute a non- t r iv ia l conservation law without quadrature. I n part icular , given a conservation 

law P whose integrat ing factor is w, and given a symmetry X of G = 0, the conservation law 

XP can be obtained f rom w, X and G w i thout any quadrature, as shown i n Theorem 2.3.2. 

I n Chapter 3 we discussed self-adjoint ODEs. A n Euler-Lagrange equation is self-adjoint and 

an integrat ing factor of a self-adjoint O D E is also a symmetry of i t . Conversely, a variational 

symmetry w r i t t en i n evolut ionary fo rm is an integrat ing factor. Thus there is a one-to-one 

correspondence between integrat ing factors and var iat ional symmetries of self-adjoint ODEs. 

Given a var iat ional symmetry, one can use Noether's Theorem 3.2.9 to f ind the corresponding 

conservation law. Moreover, the result ing conservation law admits the var iat ional symmetry 

tha t was used to find i t . Thus a two-fold reduct ion of order is possible using a single var iat ional 

symmetry : one reduct ion in or iginal variables and one symmetry reduct ion. I n general, one can 

ask how many reductions are possible i f r var iat ional symmetries are known. The answer is 2r 

i f and only i f the conservation laws corresponding to variat ional symmetries are funct ional ly 

independent, and the var iat ional symmetries fo rm an abelian Lie algebra. More generally, th is 

question is answered in Theorem 3.3.4. I n Example 3.3.3, three var iat ional symmetries tha t 

f o rm a simple Lie Algebra are used to achieve a four-fold reduct ion of order. 

I n i ts fu l l generality, Noether's Theorem requires a quadrature to obta in a conservation law. 

However when more then one symmetry is known, i t is sometimes possible to obta in a conser

vat ion law w i thou t quadrature. I n part icular, a commutator of two var iat ional symmetries is 

shown in Theorem 3.3.1 to be a variat ional symmetry. Furthermore, a conservation law corre

sponding to such a commutator can always be obtained w i thou t any integrat ion, as shown i n 

Theorem 3.3.1. 
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A commutator of a var iat ional symmetry and a non-variat ional symmetry may also be a vari

at ional symmetry. I n part icular we show that for a self-adjoint O D E of the fo rm 

a commutator of a scaling symmetry and a variat ional symmetry is always a var iat ional symme

try. I n most cases the conservation law corresponding to such a commutator can be obtained 

w i thou t any integrat ion (see discussion after Theorem 3.3.10). More generally, a commutator 

of a var iat ional symmetry w and a non-variat ional point symmetry v need not be a var iat ional 

symmetry. However, there is an expression u(v,w) given by (3.20) which results in a var iat ional 

symmetry. W h e n v is also var iat ional , u(v,w) = [v,w]. 

For a self-adjoint O D E (5.1) i t is possible to te l l when a given point symmetry is var iat ional , 

w i thou t using G. One merely needs to check i f the symmetry satisfies condit ions (3.16) of 

Theorem 3.13. Th is provides an ansatz for looking for var iat ional symmetries: i f G has a 

var iat ional point symmetry X, then i t must be of the fo rm (3.19): 

Thus the determining equations for var iat ional point symmetries are immediately reduced f rom 

an overdetermined system of PDEs to an overdetermined system of ODEs. Other consequences 

are given i n Example 3.3.9. 

I n Chapter 4 we have shown how the methods of previous chapters can be appl ied to f ind 

sub-families of solvable ODEs f rom a given fami ly of ODEs. 

We have classified point symmetries of the Emden-Fowler O D E 

as well as i ts integrat ing factors linear in y'. We have identif ied two cases for which G admits 

an integrat ing factor. I n the first case, the corresponding conservation law is invariant under 

the scaling symmetry admi t ted by G and hence we were able to f ind a fu l l solut ion of G = 0. I n 

the second case the result ing conservation law does not admi t a scaling symmetry i n general, 

G = y n - g(x,y,yi,...,yn-i) (5.1) 

G = y" — Axnymy'1 = 0 (5.2) 
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bu t a specific solut ion was nevertheless found. I n bo th cases symmetry methods alone fai l to 

produce a solut ion or a reduct ion of order in the same variables since bo th cases do not admi t 

po in t symmetries other than the scaling symmetry. Together, symmetry and integrat ing factor 

classification lead to eight new solvable cases of Emden-Fowler equation not found i n Kamke 

[14] or any other l i terature in bibl iography. These cases are: 

(Z ,m,n) = ( 0 , m , 3 - m ) , ( 1 , 1 , - 1 ) , ( l , m , - 1 ) , ( 1 , - 1 / 2 , - 2 ) . 

and the four cases obtained f rom the above using the t ransformat ion (4.4). 

We have developed ansatzes that use known symmetries to find new symmetries or integrat ing 

factors. 

The ansatz for a symmetry using a known symmetry (Theorem 4.2.5) reduces by one the number 

of independent variables in the determining equations for symmetries, whi le in t roduc ing an 

ext ra constant parameter A (see Example 4.2.6). Thus for point symmetries, the determin ing 

equations are reduced f rom an overdetermined system of PDEs to an overdetermined system of 

ODEs. Th is ansatz is general enough in the fol lowing sense: i f an O D E admits more than one 

symmetry then i t must also admi t a symmetry which is different f rom the known symmetry 

and which satisfies the ansatz. Conversely, i f a symmetry is found using this ansatz and w i t h 

A ^ 0, then i t w i l l necessarily be different f rom the known symmetry. 

The ansatz for integrat ing factors using a known symmetry (Theorems 4.2.2 and 4.2.3) also 

introduces an addi t ional parameter a , whi le reducing by one the number of independent var i 

ables. I f an integrat ing factor is found using this ansatz w i t h a ^ 0, then the corresponding 

conservation law can be found w i thou t any quadrature. Moreover in such part icular 

solut ion to the O D E depending on an arb i t rary constant can then be found i f the O D E is of 

order two. Thus such an ansatz w i t h a ^ 0 leads to b o t h a conservation law and a par t icu lar 

solut ion for ODEs of order two. 

We have appl ied these ansatzes to the equation 

G = y"-f(y)y'-g(y) 

93 

(5.3) 



which admits a point symmetry ^ and which is equivalent to an A b e l O D E (4.2) using a 

t ransformat ion (4.1). Any solvable case of G thus leads to a solvable Abe l O D E . We found al l 

cases for which G admits either another point symmetry or an integrat ing factor l inear in y'. 

A symmetry classification of G resulted in four non- t r iv ia l solvable families (cases 2,4,5,6 of 

Theorem 4.3.2) of Abe l ODEs that are dist inct f rom al l solvable Abe l ODEs reported in Kamke. 

Each one of these families depends on several arb i t rary constants. 

A n integrat ing factor classification resulted in several cases for which a particular solut ion to G 

could be found. As a result, we have singled out a fami ly of Abe l equations (4.42) that depends 

on an arb i t ra ry funct ion. For this fami ly a part icular solut ion (4.43) is given. 

We have identi f ied a case for which G admits two funct ional ly independent conservation laws 

w i thou t admi t t i ng any point symmetry other then J j . Th is case is also not reported i n Kamke. 

5.2 Future research 

Possible directions for fu ture work include: 

1. Extension of ansatzes for the case where more than one symmetry is known. 

2. W h e n is a commutator of two non-variat ional symmetries a var iat ional symmetry? 

3. Exp la in the surpr is ing connection between the two fou r th order ODEs (4.23) and (4.27). 

Section 4.3. 

4. Computa t ion of the solutions of the solvable Abe l ODEs found in Section 4.3. 

5. Extension of the results to PDEs (especially those in Chapter 3). 

6. App l i ca t ion of the ansatz (3.19) to f ind ODEs of the fo rm y" = f(x,y) tha t admi t a 

var iat ional symmetry. 
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A method for finding general solutions of second-order nonlinear ordinary differential
equations by extending the Prelle–Singer (PS) method is briefly discussed. We explore
integrating factors, integrals of motion and the general solution associated with several
dynamical systems discussed in the current literature by employing our modifications
and extensions of the PS method. We also introduce a novel way of deriving linearizing
transformations from the first integrals to linearize the second-order nonlinear ordinary
differential equations to free particle equations. We illustrate the theory with several
potentially important examples and show that our procedure is widely applicable.

Keywords: integrability; integrating factor; linearization; equivalence problem

1. Introduction

Solving nonlinear ordinary differential equations (ODEs) is one of the classic but
potentially important areas of research in the theory of dynamical systems (Arnold
1978; José & Saletan 2002; Wiggins 2003). Indeed, a considerable amount of
research activity in this field was witnessed in the last century. Progress has been
made through geometrical analysis and analytical studies. Themodern geometrical
theory originated with Poincaré and vigorously developed by Arnold, Moser,
Birkhoff and others (Percival & Richards 1982; Guckenheimer & Holmes 1983;
Litchenberg & Lieberman 1983; Wiggins 2003). Various analytical methods have
been concurrently devised to tackle nonlinear ODEs. The ideas developed by
Kovalevskaya, Painlevé and his co-workers have been used to integrate a class of
nonlinear ODEs and obtain their underlying solutions (Ince 1956). As a
consequence of these studies, nonlinear dynamical systems are broadly classified
into two categories, namely, (i) integrable and (ii) nonintegrable systems. Indeed,
one of the important current problems in nonlinear dynamics is to identify
integrable dynamical systems (Ablowitz & Clarkson 1992; Lakshmanan &
Rajasekar 2003). Of course, these methods have a close connection with the
group theoretical approach introduced by Sophus Lie in the nineteenth century and
subsequently extended by Cartan and Tresse to integrate ordinary and partial
differential equations (e.g. see Olver (1995) and Bluman & Anco (2002)).
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Different techniques have been proposed for identifying such integrable
dynamical systems, including Painlevé analysis (Conte 1999), Lie symmetry
analysis (Bluman & Anco 2002) and direct methods of finding involutive
integrals of motion (Hietarinta 1987). Each method has its advantages and
disadvantages. For a detailed discussion about the underlying theory of each
method and its limitations and applications we refer to Lakshmanan & Rajasekar
(2003). Also, certain nonlinear ODEs can be solved through transformation to
linear ODEs whose solutions are known. In fact, linearization of given nonlinear
ODEs is one of the classic problems in ODE theory whose origin dates back to
Cartan. For information on recent progress in this direction we refer readers to
Olver (1995).

Prelle & Singer (1983) have proposed a procedure for solving first-order ODEs
that presents the solution, if such a solution exists, in terms of elementary
functions. The attractiveness of the Prelle–Singer (PS) method is that the
method guarantees that a solution will be found if the given system of first-order
ODEs has a solution in terms of elementary functions. Duarte et al. (2001)
modified the technique developed by Prelle & Singer and applied it to
second-order ODEs. Their approach was based on the conjecture that if an
elementary solution exists for the given second-order ODE then there exists at
least one elementary first integral I ðt; x; _xÞ whose derivatives are all rational
functions of t, x and _x. For a class of systems these authors (Duarte et al. 2001)
have deduced first integrals through their procedure, in some cases for the
first time.

In this paper we show that the theory of Duarte et al. (2001) can be extended
in different directions to isolate two independent integrals of motion and obtain
solutions. In the earlier study it was shown that the theory can be used to derive
only one integral. In this work we extend their theory and deduce a general
solution from the first integral. Our examples include those considered in Duarte
et al.’s and certain important equations discussed in the recent literature whose
solutions are not known. There are two objectives central to our study. First, it is
to show that one can deduce general solutions in a straightforward and simple
manner, as well as through finding first integrals. The method we propose is not
confined to the PS method alone but can be treated as a general one. If one has a
first integral for a given second-order ODE then our method provides the general
solution in an algorithmic way for at least a class of equations. The reason for
merging our procedure with the PS method, rather than any other method, is
owing to the following facts.

(i) It has been conjectured that the PS method is guaranteed to provide first
integrals for a given problem if a solution exists.

(ii) The PS method not only gives the first integrals but also the underlying
integrating factors, that is, by multiplying the equation with these functions
we can rewrite the equation as a perfect differentiable function, which gives
the first integrals in a separate way upon integration.

(iii) The PS method can be used to solve nonlinear as well as linear second-order
ODEs. As the PS method is based on the equations of motion rather than
Lagrangian or Hamiltonian description, the analysis is applicable to both
Hamiltonian and non-Hamiltonian systems.

V. K. Chandrasekar and others2452
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Our second reason is to introduce and demonstrate a novel and straightfor-
ward technique for constructing and exploring linearizing transformations. The
given second-order nonlinear ODEs can be transformed to linear equations, in
particular, to free particle equations by exploring the transformations. As we
illustrate below, these transformations can be deduced from the first integral,
which is an entirely new technique in the current literature. In a nutshell, once a
first integral is known then our procedure provides, at least for a class of
problems, the general solutions as well as the linearizing transformations. The
ideas proposed here can be applied to a coupled system of second-order ODEs as
well as higher order ODEs, which will be presented separately.

The paper is organized as follows. In §2, we briefly describe the PS method
applicable for second-order ODEs and indicate new features in finding the
integrals of motion. In §3, we have extended the theory in three different
directions, which indicates the novelty of the approach. The first significant
application is that the second integral can be deduced from the method itself in
many cases. The second application is that the general solution can be deduced
from the first integral. Finally, we propose a method of identifying linearizing
transformations. We emphasize the validity of the theory, with several
illustrative examples arising in different areas of physics, in §4. In §5,
we demonstrate the method for identifying linearizing transformations with
three examples, including one studied in recent literature. We present our
conclusions in §6.

2. Prelle–Singer method for second-order ODEs

In this section, we briefly discuss the theory introduced by Duarte et al. (2001)
for second-order ODEs and extend it so that general solutions can be deduced
from the modifications. Let us consider second-order ODEs of the form

€x Z
P

Q
; P;Q2C½t; x; _x�; (2.1)

where _x denotes differentiation with respect to time and P and Q are polynomials
in t, x and _x with coefficients in the field of complex numbers. Let us assume that
the ODE (2.1) admits a first integral I ðt; x; _xÞZC , with C constant on the
solutions, so that the total differential gives

dI Z It dtCIx dxCI _x d _x Z 0; (2.2)

where the subscript denotes partial differentiation with respect to that variable.
Rewriting equation (2.1) in the form ðP=QÞdtKd _xZ0 and adding a null term
Sðt; x; _xÞ _x dtKSðt; x; _xÞdx to the latter, we obtain the 1-form

P

Q
CS _x

� �
dtKS dxKd _x Z 0: (2.3)

Hence, on the solutions, the 1-forms given by (2.2) and (2.3) must be
proportional. Multiplying (2.3) by the factor Rðt; x; _xÞ, which acts as the

2453Integrability and linearization
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integrating factor for equation (2.3), we obtain

dI ZRðfCS _xÞdtKRS dxKR d _x Z 0; (2.4)

where fhP/Q. By comparing equation (2.2) with equation (2.4) we find the
relations

It ZRðfC _xSÞ;
Ix ZKRS;

I _x ZKR:

9>=
>; (2.5)

Then, the compatibility conditions, ItxZIxt, It _xZI _xt, Ix _xZI _xx , between the
equations (2.5) require that

D½S �ZKfx CSf _x CS2; (2.6)

D½R�ZKRðSCf _xÞ; (2.7)

Rx ZR _xSCRS _x ; (2.8)

where

DZ
v

vt
C _x

v

vx
Cf

v

v _x
:

Equations (2.6)–(2.8) can be solved in the following way. One can obtain an
expression for S by substituting the given expression of f into equation (2.6) and
solving it. Equation (2.7) becomes the determining equation for the function R
once S is known. One can get an explicit form for R by solving equation (2.7).
Now the functions R and S have to satisfy an extra constraint, that is, equation
(2.8). Once a compatible solution satisfying all three equations has been found,
then functions R and S fix the integral of motion I ðt; x; _xÞ with the relation

I ðt; x; _xÞZ
Ð
RðfC _xSÞdtK

Ð
RSC

d

dx

ð
RðfC _xSÞdt

� �
dx

K

ð
RC

d

d _x

ð
RðfC _xSÞdtK

ð
RSC

d

dx

ð
RðfC _xSÞdt

� �
dx

� �� �
d _x:

(2.9)

Equation (2.9) can be derived straightforwardly by integrating the equations (2.5).
Note that for every independent set (S,R), equation (2.9) defines an integral.

Thus, two independent sets, (Si,Ri), iZ1, 2, provide us with two independent
integrals of motion through the relation (2.9), which guarantees the integrability
of equation (2.1). Since we first solved equations (2.6) and (2.7) and then checked
the compatibility of this solution with equation (2.8), we often found that the
solutions that satisfied equations (2.6) and (2.7) did not need to satisfy equation
(2.8) as equations (2.6)–(2.8) constitute an overdetermined system for the
unknowns R and S. In fact, for a class of problems one often gets a set (S1,R1)
which satisfies equations (2.6)–(2.8) and another set (S2,R2) that satisfies only
equations (2.6) and (2.7), not equation (2.8). In this situation, we find that one
can use the first integral, derived from the set (S1,R1), to deduce the second
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compatible solution ðS2; R̂2Þ: For example, let the set (S2,R2) be a solution of
equations (2.6) and (2.7) and not of the constraint equation (2.8). After
examining several examples we find that one can make the set (S2,R2)
compatible by modifying the form of R2 as

R̂2 ZFðt; x; _xÞR 2; (2.10)

where R̂2 satisfies (2.7), so that we have

ðFt C _xFx CfF _xÞR 2CFD½R 2�ZKFR 2ðS2Cf _xÞ: (2.11)

Furthermore, if F is a constant of motion (or a function of it), then the first term
on the left-hand side vanishes and one gets the same equation (2.7) for R2,
provided F is non-zero. In other words, whenever F is a constant of motion or a
function of it, then the solution of equation (2.7) may provide only a factor of the
complete solution R̂2 without the factor F in equation (2.10). This general form
of R̂2 with S2 can now form a complete solution to the equations (2.6)–(2.8). In a
nutshell, we describe the procedure as follows. First, we determine S and R from
equations (2.6) and (2.7). If the set (S,R) satisfies equation (2.8) then we take it
as a compatible solution and proceed to construct the associated integral of
motion. On the other hand, if it does not satisfy equation (2.8) we then assume
the modified form R̂2ZFðI1ÞR 2, where I1 is the first integral which has already
been derived through a compatible solution, and find the explicit form of F(I1)
from equation (2.8), which in turn fixes the compatible solution ðS2; R̂2Þ. This set
ðS2; R̂2Þ can be utilized to derive the second integral.

3. Generalization

(a) Identifying a second integral of motion

Duarte et al. (2001) have considered certain physically important systems and
constructed first integrals. Furthermore, they mentioned that one can deduce the
general solution by applying the original PS algorithm to these first integrals (by
treating them as first-order ODEs). An interesting observation we make here is
that there is no need to invoke the original PS procedure to deduce the general
solution. In fact, as we show below, the general solution can be derived in a self-
contained way. As the motivation of Duarte et al. (2001) was to construct only
the first integral, they reported only one set of solutions (S,R) for the equations
(2.6)–(2.8). However, we have observed that an additional independent set of
solutions, namely, (S2,R2), of equations (2.6)–(2.8), may lead to another integral
of motion, I2, and if the latter is an independent function of I1 then one can write
down the general solution for the given problem from these two integrals alone.
Now the question is whether one will be able to find a second pair of solutions for
the system (2.6)–(2.8) and construct I2 through the relation (2.9). After
investigating several examples we observed the following.

(i) For a class of equations, including harmonic oscillator, equation coming
from general relativity and generalized modified Emden equations with
constant external forcing, one can easily construct a second pair of solutions
(S2,R2) and deduce I2 through the relation (2.9). We call this class Type I.
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(ii) For another class of equations we can find (S2,R2) explicitly from equations
(2.6)–(2.8) but are unable to integrate equation (2.9) exactly and
unambiguously obtain the second integral I2. We call this class Type II.
The examples included in this category are Helmhotz oscillator and Duffing
oscillator equations. For this class of equations we identify an alternative
way to derive the second integration constant.

(iii) There exists another category in which the systems do not even admit a
second pair (S2,R2) of solutions in simple rational forms for the equations
(2.6)–(2.8) and we call this category Type III. An example is the Duffing–
van der Pol oscillator, which is one of the prototype examples for the study
of nonlinear dynamics in many branches of science. For this class of
equations we identify an alternative way to obtain the second integral.

(b) Method of deriving general solution

To overcome the difficulties in constructing the second constant in Types II
and III we propose the following procedure. As our aim is to derive the general
solution for the given problem, we split the functional form of the first integral I
into two terms so that one involves all the variables ðt; x; _xÞ while the other
excludes _x, that is

I ZF1ðt; x; _xÞCF2ðt; xÞ: (3.1)

Now, let us split the function F1 further in terms of two functions so that F1 is a
function of the product of the two functions, say, a perfect differentiable function
ðd=dtÞG1ðt; xÞ and another function G2ðt; x; _xÞ, that is

I ZF1

1

G2ðt; x; _xÞ
d

dt
G1ðt; xÞ

� �
CF2ðG1ðt; xÞÞ: (3.2)

We note that while rewriting equation (3.1) in the form of equation (3.2), we
require that the function F2(t, x) in equation (3.1) is automatically a function of
G1(t, x). The reason for making such a specific decomposition is that in this case
equation (3.2) can be rewritten as a simple first-order ODE for the variable G1

(see equation (3.4) below). Actually, we originally realized this possibility for the
integrable force-free Duffing–van der Pol oscillator equation (Chandrasekar et al.
2004), which has been generalized in the present case. Identifying the function G1

as the new dependent variable and the integral of G2 over time as the new
independent variable, that is

w ZG1ðt; xÞ; z Z

ðt
o
G2ðt 0; x; _xÞdt 0; (3.3)

one obtains an explicit transformation to remove the time-dependent part in the
first integral (2.9). We note here that the integration leading to z on the right-
hand side of equation (3.3) can be performed provided the function G2 is an exact
derivative of t, that is, G2Zdzðt; xÞ=dtZ _xzxCzt; so that z turns out to be a
function of t and x alone. In terms of the new variables, equation (3.2) can be
modified to the form

I ZF1

dw

dz

� �
CF2ðwÞ: (3.4)
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In other words

F1

dw

dz

� �
Z I KF2ðwÞ: (3.5)

By rewriting equation (3.4) one obtains a separable equation

dw

dz
Z f ðwÞ; (3.6)

which can lead to the solution after integration. By rewriting the solution in
terms of the original variables one obtains a general solution for equation (2.1).

(c) Method of deriving linearizing transformations

Finally, the following interesting point can be noted in the above analysis.
Assuming F2(w) is zero in equation (3.4) obtains the simple equation

dw

dz
Z Î ; (3.7)

where Î is a constant. In other words, we have

d2w

dz2
Z 0; (3.8)

which is nothing but the free particle equation. In this case, the new variables z
and w helps us to transform the given second-order nonlinear ODE into a second-
order linear ODE, which in turn leads to the solution by trivial integration. The
new variables z and w turn out to be the linearizing transformations. We discuss
this possibility in detail in §5.

4. Applications

In this section, we demonstrate the theory discussed in the previous section with
suitable examples. In particular, we consider several interesting examples,
including those considered in Duarte et al. (2001), derive general solutions and
establish complete integrability of these dynamical systems. We split our
analysis into three categories. In the first category, we consider examples in
which the Ii; iZ1; 2, can be easily derived from the relation (2.9). In the second
and third categories, we follow our own procedure detailed in §3b and c , and
deduce the second constant. We note that our procedure can be applied to a wide
range of systems with second-order equations similar to equation (2.1) but we
consider only a few examples for illustrative purposes.

(a) Type-I systems

As mentioned earlier, one can obtain the second pair of solutions (S2,R2) in an
algorithmic way for certain equations from the determining equations (2.6)–(2.8)
and construct I2 through the relation (2.9). We observe that examples 1 and 2
discussed in Duarte et al. (2001) can be solved in this way and so we consider
these two examples first and then a non-trivial example.
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(i) Example 1: an exact solution in general relativity

Duarte et al. (2001) considered the following equation, which was originally
derived by Buchdahl (1964) in the theory of general relativity,

x€x Z 3 _x2 C
x _x

t
; (4.1)

and deduced the first integral I through their procedure. In the following,
we briefly discuss their results and then illustrate our ideas. Substituting
fZð3 _x2=xÞCð _x=tÞ into equations (2.6)–(2.8) we get

St C _xSx C
_xð3t _xCxÞ

tx
S _x Z

3 _x2

x2
C

6t _xCx

tx
SCS2; (4.2)

Rt C _xRx C
_xð3t _xCxÞ

tx
R _x ZKRSK

6 _xtCx

tx
R; (4.3)

Rx ZSR _x CRS _x : (4.4)

As mentioned in §2, let us first solve equation (4.2) and obtain an explicit form for
the function S. To do so, Duarte et al. (2001) considered an ansatz for S of the form

S Z
aðt; xÞCbðt; xÞ _x
cðt; xÞCdðt; xÞ _x ; (4.5)

where a, b, c and d are arbitrary functions of t and x. A rational form for S can be
justified, since from equation (4.5) it may be noted that SZðIx=I _xÞ. We consider
only rational forms for S in _x for all the examples which we consider in this paper. It
may be noted that in certain examples, including the present one and examples 3
and 5 (below), this form degenerates into a polynomial form in _x. However, for
other examples such as examples 2 and 4 (below), a rational form like equation
(4.5) is required. To be general, we carry out an analysis with the form of
equation (4.5).

By substituting equation (4.5) into equation (4.2) and equating the coefficients
of different powers of _x to zero, we get a set of partial differential equations for
the variables a, b, c and d. By solving them we find that

S1 ZK
3 _x

x
; S2 ZK

_x

x
: (4.6)

We note that Duarte et al. (2001) have reported the expression S1 as the only
solution for equation (4.2). However, we find S2 also forms a solution for equation
(4.2) and helps to deduce the general solution. Substituting forms S1 and S2 into
equation (4.3) and solving the latter one can lead to an explicit form for the
function R. Let us first consider S1. By substituting S1 into equation (4.3) we get
the following equation for R:

Rt C _xRx C
_xð3t _xCxÞ

tx
R _x Z

3 _x

x
RK

6 _xtCx

tx
R: (4.7)
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In order to solve equation (4.7) one has to make an ansatz. We assume the
following form for R:

RZAðt; xÞCBðt; xÞ _x; (4.8)

where A and B are arbitrary functions of (t, x). Since RZKI _x (vide equation
(2.5)) the form of R may be a polynomial or rational in _x. Depending upon the
problem, one has to choose an appropriate ansatz. To begin with one can
consider a simple polynomial (in _x) for R; if that fails one can go for rational
forms. Let us start with equation (4.8). By substituting equation (4.8) into
equation (4.7) and equating the coefficients of different powers of _x to zero and
solving the resultant equations, R1Zð1=tx3Þ can be obtained. The solution
S1ZKð3 _x=xÞ and R1Zð1=tx3Þ has to satisfy the equation (4.4) in order to be a
compatible solution, which it does. Once R and S have been found the first
integral I can be fixed easily using the expression (2.9) as

I1 Z
_x

tx3
: (4.9)

One can easily check that I1 is constant on the solutions, that is, ðdI1=dtÞZ0.
This integral has been deduced in Duarte et al. (2001). However, the second
expression, S2 has been ignored by the authors since the corresponding R2 coming
out of equation (4.3) does not form a compatible solution, that is, it does not
satisfy equation (4.4). In the following we show how it can be made compatible
and use it effectively to deduce the second integration constant.

By substituting the expression S2ZKð _x=xÞ into equation (4.3) and solving it
in the same way as outlined in the previous paragraph we obtain the following
form for R:

R 2 Z
1

x5t
: (4.10)

However, this set (S2,R2) does not satisfy the extra constraint in equation (4.4).
In fact, not all forms of R from equation (2.7) satisfy equation (2.8). As we
explained in §3, the form of R2 given in equation (4.10) may not be the ‘complete
form’ but might be a factor of the complete form. To recover the complete form
of R it may be assumed that

R̂ZFðI1ÞR; (4.11)

where F(I1) is a function of the first integral I1, and determine the form of F(I1)
explicitly. For this purpose we proceed as follows. Substituting

R̂2 ZFðI1ÞR 2 Z
1

tx5
FðI1Þ (4.12)

into equation (4.4), we obtain the following equation for F :

I1F
0C2F Z 0; (4.13)
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where the prime denotes differentiation with respect to I1. Upon integrating
equation (4.13) (after putting the constant of integration to zero) we get

F Z
1

I 21
Z

t2x6

_x2
; (4.14)

which fixes the form of R̂2 as

R̂2 Z
1

I 21

1

x5t
Z

tx

_x2
: (4.15)

It can easily be checked that this set S2ZKð _x=xÞ and R̂2Zðtx= _x2Þ is a compatible
solution for equations (4.2)–(4.4). By substituting S2 and R̂2 into equation (2.9) we
get an explicit form for I2, namely,

I2 Z t

�
tC

x

_x

�
: (4.16)

From the integrals I1 and I2 one can deduce the general solution directly (without
performing any further integration) for the problem in the form

x Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

I1ðI2K t2Þ

s
: (4.17)

Of course, the same result can be obtained solving equation (4.9) from the first
integral. However, the point we want to emphasize here is that an independent
second integral of motion can be deduced to find the solution without any further
integration, which can be used profitably when the expression for I1 cannot be
easily solved.

(ii) Example 2: simple harmonic oscillator

To illustrate the above procedure also works for linear ODEs, we consider the
simple harmonic oscillator and derive the general solution. As the procedure of
deriving the first integral has been discussed in detail in Duarte et al. (2001), we
omit the details and provide only the essential expressions in the following.

The equation of motion for the simple harmonic oscillator is

€x ZKx (4.18)

so that equations (2.6)–(2.8) become

St C _xSx KxS _x Z 1CS2; (4.19)

Rt C _xRx KxR _x ZKRS; (4.20)

Rx KSR _x KRS _x Z 0: (4.21)

As shown in Duarte et al. (2001) a simple solution for equations (4.19)–(4.21) can
be constructed with the form

S1 Z
x

_x
; R1 Z _x; (4.22)
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which in turn gives the first integral

I1 Z _x2 Cx2 (4.23)

through relation (2.9). However, one can easily check that

S2 ZK
_x

x
; R 2 Z x (4.24)

is also a solution for the set equations (4.17) and (4.20) (which has not been
reported earlier) but does not satisfy the extra constraint of equation (4.21).
Thus as before, let us seek an R̂2 of the form

R̂2 ZFðI1ÞR 2 ZFðI1Þx; (4.25)

where F(I1) is a function of I1. Substituting equation (4.25) into equation (4.21)

and integrating the resultant equation, we get FZð1=I1Þ. Thus, R̂2 becomes

R̂2 Z
x

I1
Z

x

x2 C _x2
: (4.26)

Now, it can be checked that ðS2; R̂2Þ satisfies equations (4.19)–(4.21) and
furnishes the second integral through relation (2.9) of the form

I2 ZKtK

ð
_x

_x2 Cx2
dxK

ð
x

_x2 Cx2
K

d

d _x

ð
_x

_x2 Cx2
dx

� �
d _x;

ZKtKtanK1 _x

x
:

(4.27)

Using equations (4.23) and (4.27), we can write down the general solution for the
simple harmonic oscillator directly in the form

x Z
ffiffiffiffi
I1

p
cosðtCI2Þ: (4.28)

In a similar way, general solutions for a class of physically important systems can
be deduced.

It may be noted that I2 can also be obtained trivially in the above two
examples by simply integrating the expressions (4.9) and (4.23) without using
the extended procedure. We stress that for certain equations it is not possible to
integrate and obtain the general solution in this simple way and the above said
procedure has to be followed to obtain the second integral. In the following we
discuss one such example for which, to our knowledge, an explicit solution was
not previously known.

(iii) Example 3: modified Emden-type equation with linear term

It is known that the generalized Emden-type equation with linear and
constant external forcing is also linearizable since it admits an eight point Lie
symmetry group (Mahomed & Leach 1989a; Pandey et al. submitted). In the
following we explore its general solution through the extended PS algorithm. Let
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us first consider the equation of the form

€xCkx _xC
k2

9
x3Cl1x Z 0; (4.29)

where k and l1 are arbitrary parameters. To explore the general solution for the
equation (4.29) we again use the PS method. In this case, we have the following
determining equations for functions R and S,

St C _xSx K kx _xC
k2

9
x3Cl1x

� �
S _x Z k _xC

k2

3
x2 Cl1 KSkxCS2; (4.30)

Rt C _xRx K kx _xC
k2

9
x3 Cl1x

� �
R _x ZKRðSKkxÞ; (4.31)

Rx KSR _x KRS _x Z 0: (4.32)

As before, let us seek an ansatz for S of the form (4.5) to the first equation in
(4.30)–(4.32). By substituting the ansatz (4.5) into equation (4.30) and equating
the coefficients of different powers of _x to zero we get

dbxKbdxKkd2¼ 0;

dbtKbdtþcbxKbcxþaxdKadxK2kcdK
k2

3
x2þl1

� �
d2þkbdxKb2¼ 0;

cbtKbctþdatKadtþcaxKacxKkc2K2
k2

3
x2þl1

� �
cdþ2kadxK2ab ¼ 0;

catKactK
k2

9
x3þl1x

� �
ðbcKadÞK k2

3
x2þl1

� �
c2þkacxKa2¼ 0;

9>>>>>>>>>>=
>>>>>>>>>>;
(4.33)

where subscripts denote partial derivative with respect to that variable. Solving
equation (4.33) we can obtain two specific solutions

S1Z
K _xCk

3x
2

x
; S2Z

kxC3
ffiffiffiffiffiffiffiffiffi
Kl1

p

3
K

k _x

kxC3
ffiffiffiffiffiffiffiffiffi
Kl1

p : (4.34)

By putting the forms of S1 and S2 into equation (4.31) and solving it the
respective forms of R can be obtained . To do so let us first consider S1. By
substituting the latter into equation (4.31) we get the following equation for
R:

RtC _xRxK kx _xC
k2

9
x3Cl1x

� �
R _xZ

_xKk
3x

2

x
Ckx

 !
R: (4.35)

To solve equation (4.35) we make an ansatz of the form

RZ
Aðt;xÞCBðt;xÞ _x

Cðt;xÞCDðt;xÞ _xCEðt;xÞ _x2 : (4.36)
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By substituting equation (4.36) into equation (4.35), equating the coefficients
of different powers of _x to zero and solving the resultant equations, we arrive
at

R1ZeK2
ffiffiffiffiffiffiffi
Kl1

p
t C0x

ð3 _xCkx2K3
ffiffiffiffiffi
l1

p
xÞ2

� �
; (4.37)

where C0Z18
ffiffiffiffiffiffiffiffiffi
Kl1

p
. It can easily be checked that S1 and R1 satisfy equation

(4.32) and, as a consequence, obtain the first integral

I1ZeK2
ffiffiffiffiffiffiffi
Kl1

p
t 3 _xCkx2C3

ffiffiffiffiffiffiffiffiffi
Kl1

p
x

3 _xCkx2K3
ffiffiffiffiffiffiffiffiffi
Kl1

p
x

� �
: (4.38)

We note that, unlike the other two examples, equation (4.38) cannot be easily
integrated to provide the second integral (although one can, in fact, explicitly
solve the resultant Riccati equation after some effort). We follow the
procedure adopted in the previous two examples and construct I2. By
substituting the expression S2 into equation (4.31) and solving it in the same
way as outlined above, we obtain the following form for R:

R 2ZC0

kxC3
ffiffiffiffiffiffiffiffiffi
Kl1

p

kð3 _xCkx2K3
ffiffiffiffiffiffiffiffiffi
Kl1

p
xÞ2

eK3
ffiffiffiffi
l1

p
t: (4.39)

However, this set (S2,R2) does not satisfy the extra constraint (4.32) and so to
deduce the correct form of R2 we assume that

R̂2ZFðI1ÞR 2ZC0

FðI1ÞðkxC3
ffiffiffiffiffiffiffiffiffi
Kl1

p
ÞeK3

ffiffiffiffiffiffiffi
Kl1

p
t

kð3 _xCkx2K3
ffiffiffiffiffiffiffiffiffi
Kl1

p
xÞ2

: (4.40)

By substituting equation (4.40) into equation (4.32) we obtain FZð1=I 21 Þ,
which fixes the form of R̂ as

R̂2ZC0

kxC3
ffiffiffiffiffiffiffiffiffi
Kl1

p

kð3 _xCkx2C3
ffiffiffiffiffiffiffiffiffi
Kl1

p
xÞ2

e
ffiffiffiffiffiffiffi
Kl1

p
t: (4.41)

Now, one can easily check that this set ðS2; R̂2Þ is a compatible solution for
the set (4.30)–(4.32), which in turn provides I2 through the relation (2.9),

I2ZK
2

k
e
ffiffiffiffiffiffiffi
Kl1

p
t 9l1C3k _xCk2x2

3 _xCkx2C3
ffiffiffiffiffiffiffiffiffi
Kl1

p
x

� �
: (4.42)

Using the explicit form of the first integrals I1 and I2, the solution can be
deduced directly as

xZ
3
ffiffiffiffiffiffiffiffiffi
Kl1

p �
I1e

2
ffiffiffiffiffiffiffi
Kl1

p
tK1

�

kI1I2e
ffiffiffiffiffiffiffi
Kl1

p
tCkð1CI1e

2
ffiffiffiffiffiffiffi
Kl1

p
tÞ

0
BB@

1
CCA: (4.43)

To our knowledge, this is the first time equation (4.43), which explicitly solves
the equation (4.29), has been given. It has several interesting consequences for
nonlinear dynamics, which will be discussed separately.
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(b) Type-II systems

In the previous category we considered examples which unambiguously give
the integrals I1 and I2 through relation (2.9). In the present category we show
that there are situations in which an explicit form of I2 is difficult to obtain
through relation (2.9), even though there is a compatible solution (2.6)–(2.8). An
alternative method is necessary to obtain the general solution for the given
problem. For this purpose, we make use of the method proposed in §3b. In the
following, we give examples of where such a possibility occurs and how to
overcome this situation.

(i) Example 4: Helmholtz oscillator

Recently, Almendral & Sanjuán (2003) studied the invariance and integr-
ability properties of the Helmholtz oscillator with friction

€xCc1 _xCc2xKbx2 Z 0; (4.44)

where c1, c2 and b are arbitrary parameters, which is a simple nonlinear oscillator
with quadratic nonlinearity. Using the Lie theory for differential equations,
Almendral & Sanjuán (2003) found a parameteric choice, c2Zð6c21=25Þ; for which
the system is integrable and derived the general solution for this parametric
value. In the following, we solve this problem through the extended PS method.

Substituting fZKðc1 _xCc2xKbx2Þ into equations (2.6)–(2.8) we obtain

St C _xSx Kðc1 _xCc2xKbx2ÞS _x Z c2 K2bxKc1SCS2; (4.45)

Rt C _xRx Kðc1 _xCc2xKbx2ÞR _x ZKRðSKc1Þ; (4.46)

Rx ZSR _x CRS _x : (4.47)

Making the same form of an ansatz, vide equations (4.5) and (4.8), we find non-
trivial solutions only exist for equations (4.45) and (4.46) for the parametric
restrictions c2ZGð6c21=25Þ. However, the case c2ZKð6c21=25Þ follows from the
case c2ZCð6c21=25Þ in equation (4.44) through the simple translation
xZXCð6c21=ð25bÞÞ. So we consider only the case c2ZCð6c21=25Þ in the following

S1 Z

2c1 _x
5 C

4c21x
25 Kbx2

� 	
_xC 2c1

5 x
; R1 ZK _xC

2c1
5

x

� �
eð6c1t=5Þ; (4.48)

S2 Z
c1 _xC

6c21x
25 Kbx2

� 	
_x

; R2 ZK_xec1t: (4.49)

Now, it can be easily checked that (S1,R1) satisfies the third equation (4.47) and,
as a consequence, leads to the first integral of the form

I1 Z eð6c1t=5Þ
_x2

2
C

2c1x _x

5
C

2c21x
2

25
K

bx3

3

� �
: (4.50)
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However, the second set (S2,R2) does not satisfy the extra constraint (4.47) and
so we take

R̂2 ZFðI ÞR 2 ZKFðI Þ _x ec1t; (4.51)

which in turn gives FZC0I
Kð5=6Þ, where C0 is an integration constant, so that

R̂2 ZK
C0

I
ð5=6Þ
1

 !
_x ec1t ZK

C0 _x

_x2

2 C 2c1x _x
5 C

2c2
1
x2

25 Kb x3

3

� 	ð5=6Þ : (4.52)

It can be checked that ðS2; R̂2Þ satisfy equations (4.45)–(4.47) and so one can
proceed to deduce the second integration constant through relation (2.9).
However, upon substituting ðS2; R̂2Þ into (2.9) we arrive at

I2 Z

ð
c1 _xC

6c21x
25 Kbx2

_x2

2 C 2c1x _x
5 C

2c2
1
x2

25 Kb x3

3

� 	ð5=6Þ dx: (4.53)

It is very difficult to evaluate the integral and so an explicit form of I2 for this
problem cannot be obtained. A similar form of I2 has been also derived by Jones
et al. (1993) and Bluman & Anco (2002) for the Duffing oscillator problem (that
is, the cubic nonlinearity in equation (4.44)).

Unlike the other examples discussed in Type I, the present example presents
difficulties in evaluating the second integration constant, in fact, for a class of
equations complicated integrals are faced. To overcome this, one has to look
for an alternative way that allows the second constant to be deduced in a
straightforward and simple manner. We tackled this situation in the following
way. As we have seen, in most of the problems, we are able to deduce the first
integral, that is, I1, straightforwardly, and the first integral often admits
explicit time-dependent terms. A useful way of overcoming this is to remove
the explicit time-dependent terms by transforming the resultant differential
equation into an autonomous form and integrate the latter and thus obtain
the solution. In order to do this, one needs a transformation, and the latter
can often be constructed through ad hoc methods. However, as we have shown
in the theory in §3b, the required transformation coordinates can be deduced
in a simple way from the first integral itself and the problem can be solved in
a systematic manner.

Rewriting the first integral I1 given by equation (4.50) in the form (3.1), we get

I1 Z
1

2
_xC

2c1x

5

� �2

eð6c1t=5Þ K
bx3

3
eð6c1t=5Þ: (4.54)

Now, splitting the first term in equation (4.54) further in the form (3.2),

I1 Z eð2c1t=5Þ
d

dt

1ffiffiffi
2

p x eð2c1t=5Þ
� �� �2

K
b

3
ðx eð2c1t=5ÞÞ3; (4.55)
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and identifying the dependent and independent variables from (4.55) and the
relations (3.3), we obtain the transformation

w Z
1ffiffiffi
2

p x eð2c1t=5Þ; z ZK
5

c1
eKðc1t=5Þ: (4.56)

It is easy to check that equation (4.44) can be transformed to an autonomous
form with the help of the transformation (4.56). We note that the transformation
(4.56) exactly coincides with the earlier one constructed via Lie symmetry
analysis in Almendral & Sanjuán (2003).

Using transformation (4.56), the first integral (4.54) can be rewritten in the
form

Î Zw 02K
b̂

3
w3; (4.57)

which in turn leads to the solution by an integration. On the other hand, the
transformation changes the equation of motion (4.44) to

w 00 Z b̂w2; (4.58)

where b̂Z2
ffiffiffi
2

p
b, which upon integration gives (4.57). From equation (4.57), we

obtain

w 02 Z 4w3 Kg3; (4.59)

where zZ2

ffiffiffiffiffiffiffiffiffiffiffiffi
ð3=b̂Þ

q
ẑ and g3ZKð12I1=b̂Þ. The solution of this differential

equation can be represented in terms of Weierstrass function 9ðẑ; 0; g3Þ
(Gradshteyn & Ryzhik 1980; Almendral & Sanjuán 2003).

(c) Type-III systems

In the previous two categories, we met the situation in which we are able to
construct a pair of solutions (S1,S2) for the equations (2.6), from which R1 and R2

have been deduced. However, there are situations where only one set of solutions
(R1,S1) can be constructed and its corresponding first integral and the second pair
of solutions (R2,S2) cannot be obtained by a simple rational form of ansatz. In this
situation, one canutilize our procedure anddeduce the general solution for the given
problem. In the following, we illustrate this with a couple of examples.

(i) Example 5: force-free Duffing–van der Pol oscillator

One of the well-studied but still challenging equations in nonlinear dynamics
is the Duffing–van der Pol oscillator equation. Its autonomous version
(force-free) is

€xCðaCbx2Þ _xKgxCx3 Z 0; (4.60)

where an over-dot denotes differentiation with respect to time and a, b and g are
arbitrary parameters. Equation (4.60) arises in a model describing the
propagation of voltage pulses along a neuronal axon and has recently received
much attention from many authors. A vast amount of literature exists on this
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equation; for details see, for example, Lakshmanan & Rajasekar (2003) and
references therein. In this case we have

StC _xSxKððaCbx2Þ _xKgxCx3ÞS _xZð2bx _xKgC3x2ÞKðaCbx2ÞSCS2; (4.61)

RtC _xRxKððaCbx2Þ _xKgxCx3ÞR _xZðaCbx2KSÞR; (4.62)

RxZSR _xCRS _x : (4.63)

To solve equations (4.61)–(4.63) we seek an ansatz for S and R of the form

SZ
aðt;xÞCbðt;xÞ _x
cðt;xÞCdðt;xÞ _x ; RZAðt;xÞCBðt;xÞ _x: (4.64)

Upon solving equations (4.61)–(4.63) with the above ansatz, we find that a non-
trivial solution exists only for the choice aZð4=bÞ; gZKð3=b2Þ, and the
corresponding forms of S and R reads

SZ
1

b
Cbx2; RZeð3t=bÞ: (4.65)

For this set, one can construct an invariant through the expression (2.9), which
turns out to be (Senthilvelan & Lakshmanan 1995)

_xC
1

b
xC

b

3
x3ZIeKð3t=bÞ: (4.66)

To obtain a second pair of solutions for the equations (4.61)–(4.63), one may seek
a more general rational form of S and R by including higher polynomials in _x.
However, they all lead to only functionally dependent integrals. As it is not
possible to seek the second pair of solutions by a simple ansatz, an alternative
way, as indicated in §3b, has to be sought. We can deduce the required
transformation coordinates from the first integral and transform the latter to an
autonomous equation and integrate it.

Using our algorithm given in §3b, one can deduce the transformation
coordinates from the first integral itself, which turns out to be (Chandrasekar
et al. 2004)

w ZKx eð1=bÞt; z Z eKð2=bÞt; (4.67)

where w and z are new dependent and independent variables, respectively.
Substituting (4.67) into (4.60) with the parametric restriction aZð4=bÞ;
gZKð3=b2Þ, we get

w 00K
b2

2
w2w 0 Z 0; (4.68)

where prime denotes differentiation with respect to z. Equation (4.68) can be
integrated trivially to yield

w 0 K
b2

6
w3 Z I ; (4.69)
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where I is the integration constant. Equivalently, the transformation (4.67)
reduces (4.60) to this form. Solving (4.69), we obtain (Gradshteyn & Ryzhik
1980)

zKz0 Z
a

3I

1

2
log

ðwCaÞ2

w2KawCa2

� �
C

ffiffiffi
3

p
arctan

w
ffiffiffi
3

p

2aKw

� �� �
; (4.70)

where aZ
ffiffiffiffiffiffiffiffiffiffiffiffi
6I=b23

p
and z0 is the second integration constant. Rewriting w and z in

terms of old variables gives the explicit solution for equation (4.60).
We have shown that the systems (4.44) and (4.60) are integrable for certain

specific parametric restrictions only. One may also assume that the functions S
and R involve higher degree rational functions in _x and then repeat the analysis.
However, such an analysis does not provide any new integrable choice. In fact,
the present results coincide exactly with the results obtained through other
methods, namely, Painlevé analysis, Lie symmetry analysis and direct methods
(Senthilvelan & Lakshmanan 1995; Almendral & Sanjuán 2003; Lakshmanan &
Rajasekar 2003).

5. Linearizable equations

In §4 we discussed the complete integrability of nonlinear dynamical systems by
constructing a sufficient number of integrals of motion and obtaining the general
solutions explicitly. Another way of solving nonlinear ODEs is to transform them
to linear ODEs, in particular, to a free particle equation and explore their
underlying solutions. Even though this is one of the classic problems in the
theory of ODEs, recently, considerable progress has been made (Mahomed &
Leach 1989b; Steeb 1993; Olver 1995; Harrison 2002). In this direction it has been
shown that a necessary condition for a second-order ODE to be linearizable is
that it should be of the form (Mahomed & Leach 1989b)

€q ZDðt; qÞCCðt; qÞ _qCBðt; qÞ _q2CAðt; qÞ _q3; (5.1)

where the functions A, B, C and D are analytic. Sufficient condition for the above
second-order equation to be linearizable is (Mahomed & Leach 1989b)

3Att C3CAt K3DAq C3ACt CCqq K6ADq CBCq K2BBt K2Btq Z 0;

Btt C6DAt K3DBq C3ADt K2Ctq K3BDq C3Dqq C2CCq KCBt Z 0;

)

(5.2)

where the suffices refer to partial derivatives.
For a given second-order nonlinear ODE, one can easily check whether it can

be linearizable or not by using the above necessary and sufficient conditions.
However, the non-trivial problem is how to deduce systematically the linearizing
transformations if the given equation is linearizable. As far as our knowledge
goes, Lie symmetries are often used to extract the linearizing transformations
(Mahomed & Leach 1985). As we pointed out in §3, the linearizing
transformations can also be deduced from the first integral itself, whenever the
system is linearizable, in a simple and straightforward way, and we stress that
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our procedure is new to the literature. In fact, we use the same procedure
discussed in §3c and deduce the linearizing transformations. The only difference
is, that in the case of linearizing transformations, the function F2 turns out to be
zero in equation (3.2) and as a consequence, the latter becomes ðdw=dzÞZI and
the transformation coordinates become the linearizing transformations. We
illustrate the theory with certain new examples in the following.

(a) Example 1: general relativity

To illustrate the underlying ideas let us begin with a simple and physically
interesting example, namely, the general relativity equation which we discussed
as example 1 in §4. We derived the solution (4.17) using the PS method. In this
section we linearize the system and derive its solution. Rewriting the first
integral (4.9) in the form (3.1),

I ZK
1

2t

d

dt

1

x2

� �
; (5.3)

and identifying (5.3) with (3.2), we get

G1 Z
1

x2
; G2 ZK2t; F2 Z 0: (5.4)

With the above choices, equation (3.3) furnishes the transformed variables

w Z
1

x2
; z ZKt2: (5.5)

Substituting (5.5) into (4.1), the latter becomes the free particle equation,
namely, ðd2w=dz2ÞZ0, whose general solution is wZI1zCI2, where I1 and I2 are
integration constants. Rewriting w and z in terms of x and t one gets exactly
(4.17), which has been derived in a different way.

(b) Example 2: modified Emden-type equations

Recently, several papers have been devoted to exploring the invariance and
integrability properties of the modified Emden-type equations (Mahomed &
Leach 1985; Duarte et al. 1987),

€xCkx _xC
k2

9
x3 Z 0: (5.6)

In fact, it is one of the rare second-order nonlinear ODEs which admit eight Lie
point symmetries and, as a consequence, is a linearizable one. Recently, Pandey
et al. (submitted) have obtained the explicit forms of the Lie point symmetries
associated with the more general equation

€xCkx _xC
k2

9
x3 Cl1xCl2 Z 0; (5.7)

where k, l1 and l2 are arbitrary parameters. They found that not only the Emden
equation (5.6), but also its general form, that is, equation (5.7), admits eight Lie
point symmetries. The authors have also reported the explicit forms of the
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symmetry generators. However, due to the complicated forms of the symmetry
generators it is difficult to derive the first integrals and linearizing transform-
ations from the symmetries straightforwardly (although in principle this is
always possible). Nevertheless, we discussed the integrability of the case l2Z0,
l1s0 of equation (5.7) as example 3 in §4 and deduced its general solution. In
this section, we transform the equation into a free particle equation and deduce
the general solution in an independent manner. We divide our analysis into two
cases, namely, (i) l1s0, l2Z0 and (ii) l1s0, l2s0, and construct linearizing
transformations and general solutions for both cases. As the procedure is the
same as given in the previous examples we give only the results.

Case (i) l2Z0, l1s0: modified Emden-type equation with linear term

Restricting l2Z0 in (5.7), we have

€xCkx _xC
k2

9
x3Cl1x Z 0: (5.8)

Since the first integral is already derived, vide equation (4.8), we utilize it here to
deduce the linearizing transformations. Rewriting the first integral (4.38) in the
form

I1 ZK
eK

ffiffiffiffiffiffi
Kl1

p
tkx2

3 _xCkx2K3
ffiffiffiffiffiffiffiffiffi
Kl1

p
x

d

dt

3

kx
C

1ffiffiffiffiffiffiffiffiffi
Kl1

p
� �

eK
ffiffiffiffiffiffi
Kl1

p
t

� �� �
(5.9)

and identifying (5.9) with (3.2), we get

G1 Z
3

kx
C

1ffiffiffiffiffiffiffiffiffi
Kl1

p
� �

eK
ffiffiffiffiffiffi
Kl1

p
t; G2 ZK

3 _xCkx2 K3
ffiffiffiffiffiffiffiffiffi
Kl1

p
x

kx2
e
ffiffiffiffiffiffi
Kl1

p
t: (5.10)

With the above functions (3.3) furnishes

w Z
3

kx
C

1ffiffiffiffiffiffiffiffiffi
Kl1

p
� �

eK
ffiffiffiffiffiffi
Kl1

p
t; z Z

3

kx
K

1ffiffiffiffiffiffiffiffiffi
Kl1

p
� �

e
ffiffiffiffiffiffi
Kl1

p
t; (5.11)

which is nothing but the linearizing transformation. Note that in this case, while
rewriting the first integral I (equation (4.38)) in the form (3.1), the function F2

disappears, and as a consequence we arrive at (vide equation (3.4))

dw

dz
Z I ; (5.12)

which, in turn, gives the free particle equation by differentiation or leads to the
solution (4.43) by an integration. On the other hand, vanishing of the function F2

in this analysis is precisely the condition for the system to be transformed into
the free particle equation.

Case (ii) l1s0, l2 s0: modified Emden-type equation with linear term and
constant external forcing

Finally, we consider the general case, that is

€xCkx _xC
k2

9
x3Cl1xCl2 Z 0: (5.13)
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To explore the first integrals associated with the system (5.13), let us again
seek the PS algorithm. The determining equations for the functions R and S
move to be

St C _xSx K kx _xC
k2

9
x3 Cl1xCl2

� �
S _x Z k _xC

k2

3
x2Cl1 KSkxCS2; (5.14)

Rt C _xRx K kx _xC
k2

9
x3 Cl1xCl2

� �
R _x Z ðkxKSÞR; (5.15)

Rx KSR _x KRS _x Z 0: (5.16)

As before, let us seek an ansatz for S to solve the equation (5.14), namely,

S Z
aðt; xÞCbðt; xÞ _x
cðt; xÞCdðt; xÞ _x : (5.17)

Substituting (5.17) into (5.14) and equating the coefficients of different powers of
_x to zero and solving the resultant equations, we arrive at

S1 Z
kxC3a

3
K

k _x

kxC3a
; S2 Z

kxC3b

3
K

k _x

kxC3b
; (5.18)

where a3Cal1Kðkl2=3ÞZ0 and bZ KaG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K3a2K4l1

p� 	
=2. Putting the forms

of S1 into (5.15) we get

RtC _xRxK kx _xC
k2

9
x3Cl1xCl2

� �
R _x Z

k _x

kxC3a
K

kxC3a

3
Ckx

� �
R: (5.19)

Again, to solve this equation we make an ansatz

RZ
Aðt;xÞCBðt;xÞ _x

Cðt;xÞCDðt;xÞ _xCEðt;xÞ _x2 : (5.20)

Substituting (5.20) into (5.19) and solving it we obtain the following form of R:

R1Z
C0ðkxC3aÞeHât

3k _xK3 ð3aGâÞ
2 ðkxC3aÞCðkxC3aÞ2

� 	2 ; (5.21)

where C0 is constant and âZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K3a2K4l1

p
. We find that the solution (S1,R1)

satisfies (5.16). Equations (5.18) and (5.21) fix the first integral of the form

I1ZeHât 3k _xK3 ð3aHâÞ
2 ðkxC3aÞCðkxC3aÞ2

3k _xK3 ð3aGâÞ
2 ðkxC3aÞCðkxC3aÞ2

 !
; (5.22)

where C0Z9kâ: Rewriting the first integral (5.22) in the form (3.1),

I1ZK
eðK3aHâ=2Þtðk1xC3aÞ2

3k _xK3 ð3aGâÞ
2 ðkxC3aÞCðkxC3aÞ2

!
d

dt

K3

kxC3a
C

3aG â

2ð3a2Cl1Þ

� �
eð3aHâ=2Þt

� �� � (5.23)
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and identifying (5.23) with (3.2), we get

G1Z
K3

kxC3a
C

3aG â

2ð3a2Cl1Þ

� �
eð3aHâ=2Þt;

G2ZK
3k _xK3

ð3aG âÞ
2

ðkxC3aÞCðkxC3aÞ2

ðkxC3aÞ2
eð3aGâ=2Þt;

9>>>>=
>>>>;

(5.24)

so that (3.3) gives

wZ
K3

kxC3a
C

3aG â

2ð3a2Cl1Þ

� �
eð3aHâ=2Þt;

z Z
K3

kxC3a
C

3aHâ

2ð3a2Cl1Þ

� �
eð3aGâ=2Þt;

9>>>=
>>>;

(5.25)

which is nothing but the linearizing transformation. Substituting (5.25) into
(5.13) we get the free particle equation

d2w

dz2
Z0; (5.26)

whose general can be written as wZI1zCI2. Rewriting w and z in terms of the
original variable x and t one obtains

xZK
3a

k
C

6

k

ð3a2Cl1Þð1KI1e
GâtÞ

3að1KI1e
GâtÞK2ð3a2Cl1ÞI2eðK3aGâ=2ÞtG âð1CI1e

GâtÞ

� �
:

(5.27)

On the other hand, the general solution can also be derived by extending the
PS method itself. To do so, one has to consider the functionS2. Thus, substituting
the expression S2 into (5.15) and solving it in the same way as outlined in the
previous paragraphs, we obtain the following form for R, that is,

R 2Z
C0ðkxC3bÞe3ðaHâÞt=2

3k _xK3 ð3aGâÞ
2 ðkxC3aÞCðkxC3aÞ2

� 	2 : (5.28)

However, this set, (S2,R2), does not satisfy the extra constraint (5.16), and to
recover the full form of the integrating factor we assume that

R̂2ZFðI1ÞR 2: (5.29)

Substituting (5.29) into equation (5.16) we obtain an equation for F, that is,
I1F

0C2FZ0, where prime denotes differentiation with respect to I1. Upon
integrating this equation we obtain FZ1=I 21 , which fixes the form of R̂ as

R̂2Z
C0ðkxC3bÞe3aGât=2

3k _xK3 ð3aHâÞ
2 ðkxC3aÞCðkxC3aÞ2

� 	2 : (5.30)

V. K. Chandrasekar and others2472

Proc. R. Soc. A (2005)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 J

an
ua

ry
 2

02
3 



Now, one can easily check that this set S2 and R̂2 is a compatible solution for
the equations (5.14)–(5.16). Substituting S2 and R̂2 into (2.9), we can obtain an
explicit form for the second integral I2, that is,

I2ZK
2âð3k _xK3akxCk2x2C9a2C9l1Þe3aGât=2

ð3aG âÞ 3k _xK3 ð3aHâÞ
2 ðkxC3aÞCðkxC3aÞ2

� 	
0
@

1
A: (5.31)

Rewriting equation (5.22) for _x and substituting it into (5.31) we get the same
expression (5.27) as the general solution.

(c) Example 3: generalized modified Emden-type equation

Recently, Pandey et al. (submitted) have considered the following Liénard
equation:

€xC f ðxÞ _xCgðxÞZ 0; (5.32)

Table 1. Integral factors, integrals of motion, linearizing transformations and the general
solution of equation (5.33)

null forms and integrating factors

S1Z
k1xC3a

3
K

k1 _x

k1xC3a
; R1Z

C0ðk1xC3aÞeHât

3k1 _xK
b̂Gâ
2 ð3k1xC9aÞCðk1xC3aÞ2

� 	2 ;

S2Z
k1xC3b

3
K

k1 _x

k1xC3b
; R 2Z

C0ðk1xC3bÞeb̂Gât=2

3k1 _xK

b̂Hâ
2 ð3k1xC9aÞCðk1xC3aÞ2

�2 ;
a3Kk 2a

2Cal1K
k1l2
3

Z0; âZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K3a2C2a2k 2Ck22K4l1

q
; b̂Z3aKk 2;

bZ
KaCk 2Gâ

2

first integrals

I1ZeHât 3k1 _xK
b̂Hâ
2 ð3k1xC9aÞCðk1xC3aÞ2

3k1 _xK
b̂Gâ
2 ð3k1xC9aÞCðk1xC3aÞ2

 !
; C0Z9k1â;

I2Z
K2âeb̂Gât=2

b̂Gâ

3k1 _xK3k1xðaKk 2ÞCk21x
2C9a2K9ak 2C9l1

3k1 _xK
b̂Hâ
2 ð3k1xC9aÞCðk1xC3aÞ2

 !

linearizing transformations

wZ
K3

k1xC3a
C

b̂Gâ

2ð3a2K2ak 2Cl1Þ

 !
eb̂Gât=2; zZ

K3

k1xC3a
C

b̂Hâ

2ð3a2K2ak 2Cl1Þ

 !
eb̂Hât=2

solution

xZK 3a
k1
C 1

k1

6ð3a2K2ak 2Cl1Þð1KI1e
GâtÞ

b̂ð1KI1e
GâtÞGðb̂GâÞI1I2eKb̂Gât=2Gâð1CI1e

GâtÞ

 !
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where f and g are arbitrary functions of their arguments, and classified
systematically, all polynomial forms of f and g which admit eight Lie point
symmetry generators with their explicit forms. They found that the most general
nonlinear ODE which is linear in _x whose coefficients are functions of the
dependent variable alone should be of the form

€xCðk1xCk 2Þ _xC
k21
9
x3C

k1k 2

3
x2Cl1xCl2 Z 0; (5.33)

where ki and li , iZ1, 2, are arbitrary parameters, which is consistent with the
criteria (5.1) and (5.2) given by Mahomed & Leach (1989b). Interestingly,
equation (5.33) and all its sub-cases possess sl(3,R) symmetry algebra. For
example, we discussed the integrability and linearization of equation (5.33) with
k2Z0 in the previous example. As the linearizing transformations and the general
solution of equation (5.33) are yet to be reported, we include this equation as an
example in the present work. As in the previous case we divide our analysis into
three cases.

(i) l1Z0, l2Z0: modified Emden-type equation with quadratic and cubic
nonlinearity

€xCðk1xCk 2Þ _xC
k21
9
x3 C

k1k 2

3
x2 Z 0: (5.34)

(ii) l1s0, l2Z0: modified Emden-type equation with quadratic and linear
terms

€xCðk1xCk 2Þ _xC
k21
9
x3 C

k1k 2

3
x2 Cl1x Z 0: (5.35)

(iii) l1s0, l2s0: the full generalized modified Emden-type equation (5.33).

We have derived the integrating factors, integrals of motion, linearizing
transformations and the general solutions for all the cases. As the calculations are
similar to the ones discussed in the previous case, we present the results in
tabular form (table 1), where the results for the most general case (5.33) have
been given, from which the results for the limiting cases (5.34) and (5.34) can be
deduced.

6. Conclusion

In this paper we have discussed the method of finding general solutions
associated with second-order nonlinear ODEs through a modified PS method.
The method can be considered as a direct one, complementing the well-known
method of Lie symmetries. In particular, we have extended the theory of Duarte
et al. (2001), such that new integrating factors and their associated integrals of
motion can be recovered. These integrals of motion can be utilized to construct
the general solution. In the situation where the second integral of motion cannot
be recovered, we introduced another approach to derive the second integration
constant. Interestingly, we showed that, in this case, it can be derived from the
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first integral itself, in a simple and elegant way. Apart from the above, we
introduced a technique which can be utilized to derive linearizing transformation
from the first integral. We illustrated the theory with several new examples and
explored their underlying solutions.

In this paper we concentrated our studies only on single second-order ODEs.
In principle, the method can also be extended to third-order ODEs and systems
of second-order ODEs. The results will be published elsewhere.

The work of V.K.C. is supported by CSIR in the form of a Junior Research Fellowship. The work of

M.S. and M.L. forms part of a Department of Science and Technology, Government of India,

sponsored research project.

References

Ablowitz, M. J. & Clarkson, P. A. 1992 Solitons, nonlinear evolution equations and inverse

scattering. Cambridge: Cambridge University Press.

Almendral, J. A. & Sanjuán, M. A. F. 2003 Integrability and symmetries for the Helmholtz

oscillator with friction. J. Phys. A 36, 695–710.

Arnold, V. I. 1978 Mathematical methods of classical mechanics. New York: Springer.

Bluman, G. W. & Anco, S. C. 2002 Symmetries and integration methods for differential equations.

New York: Springer.

Buchdahl, H. A. 1964 A relativistic fluid spheres resembling the Emden polytrope of index 5. Ap.

J. 140, 1512–1516.

Chandrasekar, V. K., Senthilvelan, M. & Lakshmanan, M. 2004 New aspects of integrability of

force-free Duffing–van der Pol oscillator and related nonlinear systems. J. Phys. A 37,

4527–4534.
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NOTICE OF CORRECTION

The sentence preceeding equation (4.48) is now present in its correct form.

Equation (4.49) is now present in its correct form.

A detailed erratum will appear at the end of volume 464.

16 September 2008
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Abstract

In this paper, we consider a generalized second order nonlinear ordinary differential equation of

the form ẍ + (k1x
q + k2)ẋ + k3x

2q+1 + k4x
q+1 + λ1x = 0, where ki’s, i = 1, 2, 3, 4, λ1 and q are

arbitrary parameters, which includes several physically important nonlinear oscillators such as the

simple harmonic oscillator, anharmonic oscillator, force-free Helmholtz oscillator, force-free Duffing

and Duffing-van der Pol oscillators, modified Emden type equation and its hierarchy, generalized

Duffing-van der Pol oscillator equation hierarchy and so on and investigate the integrability prop-

erties of this rather general equation. We identify several new integrable cases for arbitrary value

of the exponent q, q ∈ R. The q = 1 and q = 2 cases are analyzed in detail and the results are

generalized to arbitrary q. Our results show that many classical integrable nonlinear oscillators can

be derived as sub-cases of our results and significantly enlarge the list of integrable equations that

exist in the contemporary literature. To explore the above underlying results we use the recently

introduced generalized extended Prelle-Singer procedure applicable to second order ODEs. As an

added advantage of the method we not only identify integrable regimes but also construct integrat-

ing factors, integrals of motion and general solutions for the integrable cases, wherever possible,

and bring out the mathematical structures associated with each of the integrable cases.
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I. INTRODUCTION

A. Overview of the problem

In a recent paper1 we have shown that the force-free Duffing-van der Pol (DVP) oscillator,

ẍ+ (α + βx2)ẋ− γx+ x3 = 0, (1)

is integrable for the parametric restriction α = 4
β

and γ = − 3
β2 . In Eq. (1) over dot

denotes differentiation with respect to t and α, β and γ are arbitrary parameters. Under

the transformation

w = −xe
1
β
t
, z = e

− 2
β
t
, (2)

Eq. (1) with restriction α = 4
β
and γ = − 3

β2 was shown to be transformable to the form

w′′ − β2

2
w2w′ = 0, (3)

which can then be integrated1.

In a parallel direction, while performing the invariance analysis of a similar kind of prob-

lem, we find that not only the Eq. (1) but also its generalized version,

ẍ+ (
4

β
+ βx2)ẋ+

3

β2
x+ x3 + δx5 = 0, δ = arbitrary parameter, (4)

is invariant under the same set of Lie point symmetries2. As a consequence one can use the

same transformation (2) to integrate the Eq. (4). The transformation (2) modifies Eq. (4)

to the form

w′′ − β2

2
w2w′ + δw5 = 0 (5)

which is not so simple to integrate straightforwardly. However, we observe that this equa-

tion coincides with the second equation in the so called modified Emden equation (MEE)

hierarchy, investigated by Feix et al.3,

ẍ+ xlẋ+ gx2l+1 = 0, l = 1, 2, . . . , n, (6)

where g is an arbitrary parameter.

In fact Feix et al.3 have shown that through a direct transformation to a third order

equation the above Eq. (6) can be integrated to obtain the general solution for the specific

2



choice of the parameter g, namely, for g = 1
(l+2)2

. For this choice of g, the general solution

of (6) can be written as

x(t) =

(

(2 + 3l + l2)(t+ I1)
l

l(t + I1)l+1 + (2 + 3l + l2)I2

)
1
l

, I1, I2 : arbitrary constants. (7)

Consequently Eq. (4) can be integrated under the specific parametric choice δ = 1
16
, and

it belongs to the l = 2 case of the MEE hierarchy (6) with g = 1
16
. Now the question arises

as to whether there exist other new integrable second order nonlinear differential equations

which are linear in ẋ and containing fifth and other powers of nonlinearity. As far as our

knowledge goes only few equations in this class have been shown to be integrable. For

example, Smith4 had investigated a class of nonlinear equations coming under the category

ẍ+ f(x)ẋ+ g(x) = 0, (8)

with f(x) = (n + 2)bxn − 2a and g(x) = x(c + (bxn − a)2) where a, b, c and n are arbitrary

parameters. He had shown that the Eq. (8) with this specific forms of f and g admits explicit

oscillatory solutions. However, one can also expect that there should be a number of inte-

grable equations which also admit solutions which are both oscillatory and non-oscillatory

types in the class

ẍ+ (k1x
q + k2)ẋ+ k3x

2q+1 + k4x
q+1 + λ1x = 0, q ∈ R, (9)

where ki’s, i = 1, 2, 3, 4 and λ1 are arbitrary parameters. When q = 1, Eq. (9) becomes the

generalized MEE

ẍ+ (k1x+ k2)ẋ+ k3x
3 + k4x

2 + λ1x = 0, (10)

and for q = 2 it becomes

ẍ+ (k1x
2 + k2)ẋ+ k3x

5 + k4x
3 + λ1x = 0. (11)

We note that Eq. (4) is a special case of (11).

Needless to say Eq. (9) is a unified model for several ground breaking physical systems

which includes simple harmonic oscillator, anharmonic oscillator, force-free Helmholtz oscil-

lator, force-free Duffing oscillator, MEE hierarchy, generalized DVP hierarchy and so on.

As noted earlier there exists no rigorous mathematical analysis in the literature for the

second order nonlinear differential equations which contain fifth or higher degree nonlinearity

3



in x and linear in ẋ and the results are very scarce on integrability or exact solutions. Our

motivation to analyze this problem is not only to explore new integrable cases/systems of

Eq. (9) but also to synthesize all earlier results under one approach.

Having described the problem and motivation now we can start analyzing the integra-

bility properties of Eq. (9). To identify the integrable regimes we employ the recently in-

troduced extended Prelle-Singer procedure applicable to second order ODEs5−11. Through

this method we not only identify integrable regimes but also construct integrating factors,

integrals of motion and general solution for the integrable cases, wherever possible.

B. Results

We unearth several new integrable equations for any real value of the exponent q in

Eq. (9). In the following we summarize the results for the case q = arbitrary only and

discuss in detail the q = 1, q = 2 and q = arbitrary cases separately in the following

sections.

For the choice q = arbitrary we find that the following equations are completely inte-

grable (after suitable reparametrizations), all of which appear to be new to the literature:

ẍ+ (k1x
q + (q + 2)k2)ẋ+ k1k2x

q+1 + (q + 1)k2
2x = 0 (12)

ẍ+ ((q + 2)k1x
q + k2)ẋ+ k2

1x
2q+1 + k1k2x

q+1 + λ1x = 0 (13)

ẍ+ (q + 4)k2ẋ+ k4x
q+1 + 2(q + 2)k2

2x = 0 (14)

ẍ+ ((q + 1)k1x
q + k2)ẋ+

(r − 1)

r2
[(q + 1)k2

1x
2q+1

+(q + 2)k1k2x
q+1 + k2

2x] = 0, r 6= 0 (15)

ẍ+ ((q + 1)k1x
q + (q + 2)k2)ẋ+ (q + 1)[

(r − 1)

r2
k2
1x

2q+1

+k1k2x
q+1 + k2

2x] = 0, r 6= 0, (16)

where k1, k2, k4, λ1 and r are arbitrary parameters. We stress that the above results are

true for any arbitrary values of q. We discuss the special cases, namely, q = 1 and q = 2

separately in detail in sections 3 and 4 in order to put the results of q arbitrary case in

proper perspective.

We show that the Eq. (12) is nothing but a generalization of the Duffing-van der Pol

oscillator Eq. (1). In a recent work1,9 three of the present authors have established the

4



integrability of Eq. (12) with q = 2. However, in this work we show that the generalized

Eq. (12) itself is integrable. Eq. (13) is nothing but the generalized MEE among which the

hierarchy of Eq. (6), studied by Feix et al.3, can be identified as a sub-case. In fact the

general solution constructed by Feix et al., Eq. (7), can be derived straightforwardly as a

sub-case. Eq. (13) also contains the family of equations studied by Smith4. In particular

the latter author have derived general solution for the case k2
2 < 4λ1, which turns out to be

an oscillatory one. However, in this work, we show that even for arbitrary values of k2 and

λ1 one can construct the general solution. Interestingly, the system (14) generalizes several

physically important nonlinear oscillators. For example, in the case q = 1 and 2, Eq. (14)

provides us the force-free Helmholtz and Duffing oscillators, respectively, whose nonlinear

dynamics is well documented in the literature12−16. Here, we present certain integrable

generalizations of these nonlinear oscillators. Eq. (15) admits a conservative Hamiltonian

for all values of the parameters r, k1 and k2 and any integer value of q. We also provide

the explicit form of the Hamiltonian for all values of q. As a result we conclude that it is a

Liouville integrable system. As far as Eq. (16) is concerned we construct a time dependent

integral of motion and transform the latter to time independent Hamiltonian one and thereby

ensuring its Liouville integrability.

The plan of the paper is us follows. In the following section we briefly describe the ex-

tended Prelle-Singer procedure applicable to second order ODEs. In Sec. III, we consider

the case q = 1 in (9) and identify the integrable parametric choices of this equation through

the extended PS procedure. To do so first we identify the integrable cases where the system

admits time independent integrals and construct explicit conservative Hamiltonians for the

respective parametric choices. We then identify the cases which admit explicit time depen-

dent integrals of motion. To establish the complete integrability of these cases we use our

own procedure and transform the time dependent integrals of motion into time independent

integrals of motion and integrate the latter and derive the general solution. In Sec. IV,

we repeat the procedure for the case q = 2 in Eq. (9) and identify the integrable systems.

In Sec. V, we consider the case q = arbitrary in (9) and unearth several new integrable

equations and their associated mathematical structures. Finally, we present our conclusions

in Sec. VI.
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II. GENERALIZED EXTENDED PRELLE-SINGER (PS) PROCEDURE

In this section we briefly recall the generalized extended or modified PS procedure before

applying it to the specific problem in hand. Sometime ago, Prelle and Singer5 have pro-

posed a procedure for solving first order ODEs that admit solutions in terms of elementary

functions if such solutions exist. The attractiveness of the PS method is that if the given

system of first order ODEs has a solution in terms of elementary functions then the method

guarantees that this solution will be found. Very recently Duarte et al.7,8 have modified the

technique developed by Prelle and Singer5,6 and applied it to second order ODEs. Their

approach was based on the conjecture that if an elementary solution exists for the given

second order ODE then there exists at least one elementary first integral I(t, x, ẋ) whose

derivatives are all rational functions of t, x and ẋ. For a class of systems these authors have

deduced first integrals and in some cases for the first time through their procedure7. Re-

cently the present authors have generalized the theory of Duarte et al.7 in different directions

and shown that for the second order ODEs one can isolate even two independent integrals

of motion9−11 and obtain general solutions explicitly without any integration. This theory

has also been illustrated for a class of problems1,9−11. The authors have also generalized

the theory successfully to higher order ODEs10,17. For example, in the case of third order

ODEs the theory has been appropriately generalized to yield three independent integrals of

motion unambiguously so that the general solution follows immediately from these integrals

of motion17.

We stress that the PS procedure has many advantages over other methods. To name

a few, we cite: (1) For a given problem if the solution exists it has been conjectured that

the PS method guarantees to provide first integrals. (2) The PS method not only gives the

first integrals but also the underlying integrating factors, that is, multiplying the equation

with these functions we can rewrite the equation as a perfect differentiable function which

upon integration gives the first integrals directly. (3) The PS method can be used to solve

nonlinear as well as linear second order ODEs. (4) As the PS method is based on the

equations of motion rather than on Lagrangian or Hamiltonian description, the analysis is

applicable to deal with both Hamiltonian and non-Hamiltonian systems.
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A. PS method

Let us rewrite Eq. (9) in the form

ẍ = −((k1x
q + k2)ẋ+ k3x

2q+1 + k4x
q+1 + λ1x) ≡ φ(x, ẋ). (17)

Further, we assume that the ODE (17) admits a first integral I(t, x, ẋ) = C, with C constant

on the solutions, so that the total differential becomes

dI = Itdt+ Ixdx+ Iẋdẋ = 0, (18)

where each subscript denotes partial differentiation with respect to that variable. Rewriting

Eq. (17) in the form φdt− dẋ = 0 and adding a null term S(t, x, ẋ)ẋ dt−S(t, x, ẋ)dx to the

latter, we obtain that on the solutions the 1-form
(

φ+ Sẋ

)

dt− Sdx− dẋ = 0. (19)

Hence, on the solutions, the 1-forms (18) and (19) must be proportional. Multiplying (19)

by the factor R(t, x, ẋ) which acts as the integrating factors for (19), we have on the solutions

that

dI = R(φ+ Sẋ)dt− RSdx−Rdẋ = 0. (20)

Comparing Eq. (18) with (20) we have, on the solutions, the relations

It = R(φ+ ẋS), Ix = −RS, Iẋ = −R. (21)

Then the compatibility conditions, Itx = Ixt, Itẋ = Iẋt, Ixẋ = Iẋx, between the Eqs. (21),

provide us

St + ẋSx + φSẋ = −φx + φẋS + S2, (22)

Rt + ẋRx + φRẋ = −(φẋ + S)R, (23)

Rx − SRẋ −RSẋ = 0. (24)

Solving Eqs. (22)-(24) one can obtain expressions for S and R. It may be noted that any

set of special solutions (S,R) is sufficient for our purpose. Once these forms are determined

the integral of motion I(t, x, ẋ) can be deduced from the relation

I = r1 − r2 −
∫
[

R +
d

dẋ
(r1 − r2)

]

dẋ, (25)
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where

r1 =

∫

R(φ+ ẋS)dt, r2 =

∫

(RS +
d

dx
r1)dx.

Equation (25) can be derived straightforwardly by integrating the Eq. (21).

The crux of the problem lies in finding the explicit solutions satisfying all the three

determining Eqs. (22)-(24), since once a particular solution is known the integral of motion

can be readily constructed. The difficulties in constructing admissible set of solutions (S,R)

satisfying all the three Eqs. (22)-(24) and possible ways of obtaining the solutions have been

discussed in detail in Ref. 9.

III. APPLICATION OF PS PROCEDURE TO EQ. (10)

Let us first consider the case q = 1 in Eq. (9) or equivalently (10)

ẍ+ (k1x+ k2)ẋ+ k3x
3 + k4x

2 + λ1x = 0. (10)

Eq. (10) itself includes several physically important models. For example, choosing ki =

0, i = 1, ...4, we get the simple harmonic oscillator equation and the choice k1, k2 = 0 gives

us the anharmonic oscillator equation. When k1, k4 = 0 Eq. (10) becomes the force-free

Duffing oscillator equation12. The choice k2, k4, λ1 = 0 provides us the MEE18. In the limit

k3 =
k21
9
, k4 = k1k2

3
, Eq. (10) becomes MEE with linear term which is another linearizable

equation which we have studied extensively in Refs. 9 and 19. The restriction k1, k3 = 0

leads us to the force-free Helmhotz oscillator12,13. In the following we investigate whether

the system (10) admits any other integrable case besides the above.

We solve Eq. (10) through the extended PS procedure in the following way. For a given

second order equation, (10), the first integral I should be either a time independent or time

dependent one. In the former case, it is a conservative system and we have It = 0 and in

the later case we have It 6= 0. So let us first consider the case It = 0 and determine the null

forms and the corresponding integrating factors and from these we construct the integrals

of motion and then we do extend the analysis for the case It 6= 0.
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A. The case It = 0

1. Null forms

In this case one can easily fix the null form S from the first equation in (21) as

S =
−φ

ẋ
= −((k1x+ k2)ẋ+ k3x

3 + k4x
2 + λ1x)

ẋ
. (26)

2. Integrating Factors

Substituting this form of S, given in (26), into (23) we get

Rt + ẋRx − ((k1x+ k2)ẋ+ k3x
3 + k4x

2 + λ1x)Rẋ

=

(

(k1x+ k2) +
((k1x+k2)ẋ+k3x

3+k4x
2+λ1x)

ẋ

)

R. (27)

Equation (27) is a first order linear partial differential equation with variable coefficients.

As we noted earlier any particular solution is sufficient to construct an integral of motion

(along with the function S). To seek a particular solution for R one can make a suitable

ansatz instead of looking for the general solution. We assume R to be of the form,

R =
ẋ

(A(x) +B(x)ẋ)r
, (28)

where A and B are functions of their arguments, and r is a constant which are all to be

determined. We demand the above form of ansatz, (28), due to the following reason. To

deduce the first integral I we assume a rational form for I, that is, I = f(x,ẋ)
g(x,ẋ)

, where f and g

are arbitrary functions of x and ẋ and are independent of t. Since we already assumed that

I is independent of t, we have, Ix = fxg−fgx
g2

and Iẋ = fẋg−fgẋ
g2

. From (21) one can see that

R = Iẋ = fẋg−fgẋ
g2

, S = Ix
Iẋ

= fxg−fgx
fẋg−fgẋ

and RS = Ix, so that the denominator of the function S

should be the numerator of the function R. Since the denominater of S is ẋ (vide Eq. (26))

we fixed the numerator of R as ẋ. To seek a suitable function in the denominator initially

one can consider an arbitrary form R = ẋ
h(x,ẋ)

. However, it is difficult to proceed with this

choice of h. So let us assume that h(x, ẋ) is a function which is polynomial in ẋ. To begin

with let us consider the case where h is linear in ẋ, that is, h = A(x) + B(x)ẋ. Since R

is in rational form while taking differentiation or integration the form of the denominator

remains same but the power of the denominator decreases or increases by a unit order from
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that of the initial one. So instead of considering h to be of the form h = A(x) + B(x)ẋ,

one may consider a more general form h = (A(x) + B(x)ẋ)r, where r is a constant to be

determined. Such a generalized form of h and so R leads to several new integrable cases as

we see below.

Substituting (28) into (27) and solving the resultant equations, we arrive at the relation

r(ẋ(Ax +Bxẋ) + φB) = (A+Bẋ)φẋ. (29)

Solving Eq. (29) with φ = −((k1x+k2)ẋ+k3x
3+k4x

2+λ1x), we find nontrivial forms for the

functions A and B for two choices, namely, (i) k1, k2 arbitrary and (ii) k1 = arbitrary, k2 = 0

with restrictions on other parameters as given below. The respective forms of the functions

and the restriction on the parameters are

(i) k1, k2 : arbitrary

A(x) =
(r − 1)b0

r
(
k1

2
x2 + k2x), B(x) = b0 = constant, r = constant,

k3 =
b0(r − 1)

2r2
k2
1, k4 =

3b0(r − 1)

2r2
k1k2, λ1 =

b0(r − 1)k2
2

r2
, (30a)

(ii) k1 = arbitrary, k2 = 0

A(x) =
(r − 1)b0

2r
k1x

2 +
rλ1

k1
, B(x) = b0,

k3 =
b0(r − 1)

2r2
k2
1, k4 = 0, λ1 = arbitrary parameter (here). (30b)

We note that the case (ii) cannot be derived from case (i) by taking k2 = 0. For example,

choosing k2 = 0 in (30a) we get not only k4 = 0 but also λ1 = 0 whereas in the case (ii) we

have the freedom λ1 = arbitrary, so the cases (30a) and (30b) are to be treated as separate.

Making use of the forms of A and B from Eqs. (30a) and (30b) into (28), the integrating

factor, ‘R’, for the two cases can be obtained as

(i) k1, k2 : arbitrary

R =
ẋ

[

(r−1)
r

(k1
2
x2 + k2x) + ẋ

]r , r 6= 0 (31a)

(ii) k1 = arbitrary, k2 = 0

R =
ẋ

[

(r−1)
2r

k1x2 + rλ1

k1
+ ẋ

]r , r 6= 0. (31b)
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We note that b0 is a common parameter in the above and it is absorbed in the definition of

‘R’, see Eqs. (23) and (24). While deriving the above forms of R (Eqs. (31a) and (31b)) we

assumed that r 6= 0 and for the choice r = 0 we obtain consistent solution only if both the

parameters k1 and k2 become zero. Of course, this sub-case can be treated as a trivial one

since when k1, k2 = 0 the damping term in Eq. (10) vanishes and the system becomes an

integrable anharmonic oscillator. In this trivial case we have the integrating factor of the

form:

(iii) k1, k2 = 0

R = ẋ, r = 0. (31c)

Finally one has to check the compatibility of forms S and R with the third Eq. (24). We

indeed verified that the sets

(i) S = −
((k1x+ k2)ẋ+ (r−1)

r2
(
k31
2
x2 + 3k1k2

2
x2 + k2

2x))

ẋ
,

R =
ẋ

( (r−1)
r

(k1
2
x2 + k2x) + ẋ)r

, k1, k2 = arbitrary, r 6= 0 (32a)

(ii) S = −
(k1xẋ+ (r−1)

2r2
k2
1x

3 + λ1x)

ẋ
,

R =
ẋ

( (r−1)
2r

k1x2 + rλ1

k1
+ ẋ)r

, k1 = arbitrary, k2 = 0, r 6= 0 (32b)

and

(iii) S = −(k3x
3 + k4x

2 + λ1x)

ẋ
, R = ẋ, k1, k2 = 0, (32c)

satisfy the Eq. (24) individually. As a consequence all the three pairs form compatible sets

of solution for the Eqs. (22)-(24).

3. Integrals of motion

Having determined the explicit forms of S and R one can proceed to construct integrals

of motion using the expressions (25). The parametric restrictions (30a) and (30b) fix the
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equation of motion (10) to the following specific forms,

(i) ẍ+ (k1x+ k2)ẋ+
(r − 1)

2r2

(

k2
1x

3 + 3k1k2x
2 + 2k2

2x

)

= 0, r 6= 0, (33a)

(ii) ẍ+ k1xẋ+
(r − 1)k2

1

2r2
x3 + λ1x = 0, r 6= 0, (33b)

(iii) ẍ+ k3x
3 + k4x

2 + λ1x = 0, r = 0. (33c)

In the above k1, k2, k3, k4, λ1 and r are arbitrary parameters.

We note that the transformation x = y − k2
k1

transforms equation (33a) to the form

ÿ + k1yẏ +
(r − 1)k2

1

2r2
y3 − (r − 1)k2

2

2r2
y = 0, r 6= 0. (34)

Eq. (34) is obtained from Eq. (33b) by fixing λ1 = − (r−1)k22
2r2

. So, hereafter, we consider

Eq. (33a) as a special case of Eq. (33b) and so discuss only Eq. (33b) as the general one.

It may be noted that Eq. (33b) includes several known integrable cases. For example, the

choice r = 3 and λ1 = 0 in Eq. (33b) yields the MEE18. On the other hand the choice

r = −1 leads us to the equation ẍ+ k1xẋ− k2
1x

3 + λ1x = 0 which can be solved in terms of

Weierstrass elliptic function20. The other choices of r lead to new integrable cases as we see

below.

Substituting the forms of S and R (vide Eqs. (32b) and (32c)) into the general form of

the integral of motion (25) and evaluating the resultant integrals, we obtain the following

time independent first integrals for the cases (33b) and (33c):

(iia) I1 =

(

ẋ+
(r − 1)

2r
k1x

2 +
rλ1

k1

)−r

(35a)

×
[

ẋ(ẋ+
k1

2
x2 +

r2λ1

(r − 1)k1
) +

(r − 1)

r2
(
k1

2
x2 +

r2λ1

(r − 1)k1
)2
]

, r 6= 0, 1, 2,

(iib) I1 =
4k1ẋ

k2
1x

2 + 4k1ẋ+ 8λ1
− log(k2

1x
2 + 4k1ẋ+ 8λ1), r = 2, (35b)

(iic) I1 = ẋ+
k1

2
x2 − λ1

k1
log(k1ẋ+ λ1), r = 1, (35c)

(iii) I1 =
ẋ2

2
+

k3

4
x4 +

k4

3
x3 +

λ1

2
x2, r = 0. (35d)

Note that in Eq. (35a), r can take any real value, except 0, 1, 2. In the above integrals I1

given by Eqs. (35a) - (35c) correspond to the ODE (33b), while (35d) corresponds to the

Eq. (33c).
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Due to the fact that the integrals of motion (35) are time independent, one can look for

a Hamiltonian description for the respective equations of motion. In fact, we obtain the

explicit Hamiltonian forms for all the above cases.

4. Hamiltonian Description of (35)

Assuming the existence of a Hamiltonian

I(x, ẋ) = H(x, p) = pẋ− L(x, ẋ), (36)

where L(x, ẋ) is the Lagrangian and p is the canonically conjugate momentum, we have

∂I

∂ẋ
=

∂H

∂ẋ
=

∂p

∂ẋ
ẋ+ p− ∂L

∂ẋ
=

∂p

∂ẋ
ẋ,

∂I

∂x
=

∂H

∂x
=

∂p

∂x
ẋ− ∂L

∂x
. (37)

From (37) we identify

p =

∫

Iẋ

ẋ
dẋ,

L =

∫

(pxẋ− Ix)dx+

∫

[p− d

dẋ

∫

(pxẋ− Ix)dx]dẋ. (38)

Plugging the expressions (36) into (38) one can evaluate the canonically conjugate mo-

mentum and the associated Lagrangian as well as the Hamiltonian. They read as follows:

(a) The canonical momenta :

(iia, b) p =
1

r − 1

(

ẋ+
(r − 1)

r

k1

2
x2 +

rλ1

k1

)1−r

, r 6= 0, 1 (39a)

(iic) p = log(k1ẋ+ λ1), r = 1 (39b)

(iii) p = ẋ, r = 0. (39c)

(Note in the above r = 2 is included in Eq. (39b) itself).

(b) The Lagrangian :

(iia) L =
1

(2− r)(r − 1)

(

ẋ+
(r − 1)

r

k1x
2

2
+

rλ1

k1

)2−r

, r 6= 0, 1, 2 (40a)

(iib) L = log(4k1ẋ+ 8λ1 + k2
1x

2), r = 2 (40b)

(iic) L =
λ1

k1
log(k1ẋ+ λ1) + ẋ(log(k1ẋ+ λ1)− 1)− 1

2
k1x

2, r = 1 (40c)

(iii) L =
ẋ2

2
− k3

4
x4 − k4

3
x3 − λ1

2
x2, r = 0. (40d)
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(c) The Hamiltonian :

(iia) H =

[

(

(r − 1)p

)
r−2
r−1

(r − 2)
− p(

(r − 1)

2r
k1x

2 +
rλ1

k1
)

]

, r 6= 0, 1, 2 (41a)

(iib) H =
2λ1

k1
p+

k1

4
x2p+ log(

4k1
p

), r = 2 (41b)

(iic) H =
1

k1
(ep − λ1p+

k2
1

2
x2 − λ1), r = 1 (41c)

(iii) H =
p2

2
+

k3

4
x4 +

k4

3
x3 +

λ1

2
x2, r = 0. (41d)

One can check that the Hamilton’s equations of motion are indeed equivalent to the appro-

priate equation (10).

Since Eqs. (33b) and (33c) admit time independent Hamiltonians they can be classified as

Liouville integrable systems. The important fact we want to stress here is that for arbitrary

values of r, including fractional values, the equation (33b) is integrable.

5. Canonical transformation for the Hamiltonian Eqs. (41)

Interestingly, we also identifed suitable canonical transformation to standard particle in

a potential description for the Hamiltonians (41). Now introducing the canonical transfor-

mations

x = 2rP
k1U

, p = −k1U
2

4r
, r 6= 0, 1, (42)

x = P
k1
, p = −k1U, r = 1 (43)

the Hamiltonian H in Eq. (41) can be recast in the standard form (after rescaling)

H =







































































1
2
P 2 + (1−r)

(r−2)

(

(r−1)k1U2

4r

)

(r−2)
r−1

+ (r−1)λ1

4
U2, r 6= 0, 1, 2

1
2
P 2 + λ1

4
U2 + log( 32

U2 ), r = 2

1
2
P 2 + e−k1U + λ1k1U, r = 1

1
2
P 2 + k3

4
U4 + λ1

2
U2, r = 0.

(44)
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It is straightforward to check that when U and P are canonical so do x and p (and vice

versa) and the corresponding equations of motion turn out to be

Ü − 2

(

(r − 1)k1
4r

)

(2−r)
(1−r)

U
(3−r)
(1−r) +

(r − 1)λ1

2
U = 0, r 6= 0, 1 (45a)

Ü − k1e
−U + k1λ1 = 0, r = 1 (45b)

Ü + k3U
3 + λ1U = 0, r = 0. (45c)

One may note that the equations of motion now become standard type anharmonic oscillator

equations.

B. The case It 6= 0

In the previous sub-section we considered the case It = 0. As a consequence S turns out

to be −φ

ẋ
. However in the case It = 0, the function S has to be determined from Eq. (22),

that is,

St + ẋSx − ((k1x+ k2)ẋ+ k3x
3 + k4x

2 + λ1x)Sẋ

= (k1ẋ+ 3k3x
2 + 2k4x+ λ1)− (k1x+ k2)S + S2. (46)

Since it is too difficult to solve Eq. (46) for its general solution, we seek a particular solution

for S, which is sufficient for our purpose. In particular, we seek a simple rational expression

for S in the form

S =
a(t, x) + b(t, x)ẋ

c(t, x) + d(t, x)ẋ
, (47)

where a, b, c and d are arbitrary functions of t and x which are to be determined. Of

course, the analysis of this form alone does not exhaust all possible cases of interest. We

hope to make a more exhaustive study of Eq. (46) separately. Substituting (47) into (46)
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and equating the coefficients of different powers of ẋ to zero, we get

dbx − bdx − k1d
2 = 0,

dbt − bdt + cbx − bcx + axd− adx − 2k1cd− (3k3x
2 + 2k4x+ λ1)d

2

+(k1x+ k2)bd − b2 = 0,

cbt − bct + dat − adt + cax − acx − k1c
2 − 2(3k3x

2 + 2k4x+ λ1)cd

+2(k1x+ k2)ad− 2ab = 0,

cat − act − (k3x
3 + k4x

2 + λ1x)(bc− ad)− (3k3x
2 + 2k4x+ λ1)c

2

+(k1x+ k2)ac− a2 = 0. (48)

The determining equation for the functions a, b, c and d have now turned out to be nonlinear.

To solve these equations we further assume that the functions a, b, c and d are polynomials in

x with coefficients which are arbitrary functions in t. Substituting these forms into Eqs. (48)

we obtain another enlarged set of determining equations for the unknowns and solving the

latter consistently we obtain nontrivial solutions for the functions a, b, c and d for four sets

of parametric choices. We present the explicit forms of the associated null function S given

by (47) and the parametric restrictions in Table I.

Now substituting the forms of S into Eq. (23) and solving the resultant equation we

obtain the corresponding forms of R. To solve the determining equation for R we again seek

the same form of ansatz (28) but with explicit t dependence on the coefficient functions, that

is, R = Sd

(A(t,x)+B(t,x)ẋ)r
, where Sd is the denominator of S. We report the resultant forms of

R in Table I. Once S and R are determined then one has to verify the compatibility of this

set (S,R) with the extra constraint Eq. (24). We find that the forms S and R given in Table

I do satisfy the extra constraint equation and form a compatible solution. Now substituting

Si’s and Ri’s into Eq. (25) one can construct the associated integrals of motion. We report

the integrals of motion (I) in Table I along with the forms S and R.

At this stage, we note that the first integral for the case (i) with k2, λ1 = 0 has been

derived in Ref. 18 through Lie symmetry analysis. However, recently, we have derived9 the

first integral for arbitrary values of k2 and λ1. The case (ii) is new to the literature. The

first integral for the case (iii) was reported recently in Refs. 9,12 and 13. The first integral

for the case (iva) is new to the literature. The case r = 0 discussed as (ivb) is nothing but

the force-free Duffing oscillator whose integrability has been discussed in Refs. 12 and 14.
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TABLE I: Parametric restrictions, null forms (S), integrating factors (R) and time dependent integrals of motion (I) of

ẍ+ (k1x+ k2)ẋ+ k3x
3 + k4x

2 + λ1x = 0 (identified with the assumed ansatz form of S and R)

Cases Parametric restrictions Null form (S) Integrating factor (R) Integrals of motion (I)

(i) k3 =
k21
9 , k4 =

k1k2
3 (a) I = e∓ωt

(

3ẋ−
3(−k2∓ω)

2
x+k1x

2

3ẋ−
3(−k2±ω)

2
x+k1x2

)

,

(
k1
3
x2−ẋ)

x

xe∓ωt

(ẋ− (k2±ω)
2 x+ k1

3 x
2)2

k2, λ1 6= 0, ω = (k22 − 4λ1)
1
2

(k1, k2, λ1 : arbitrary) (b) I = −t+ x

(
k2
2
x+

k1
3
x2+ẋ)

, k22 = 4λ1

(ii) k3 = 0, k4 = k1
4 (k2 ± ω),

1

2
(k2 ∓ ω) + k1x, e

(k2±ω)
2

t I =

(

ẋ+ k2∓ω
2 x+ k1

2 x
2

)

e(
k2±ω

2
)t,

(k1, k2, λ1 : arbitrary) ω = (k22 − 4λ1)
1
2

(iii) k1, k3 = 0, λ1 =
6k22
25

(2k2ẋ5 +
4k22x
25 + k4x

2)

(ẋ+ 2k2
5 x)

(ẋ+
2k2
5

x)e
6
5
k2t I = e

6
5
k2t

(

ẋ2

2 + 2k2
5 xẋ+

2k22
25 x

2 + k4
3 x

3

)

(k2, k4 : arbitrary)

(iva) k3 =
(r−1)k21

2r2
, k4 =

k1k2
3 , I =

(

k3
2 x

4 + (ẋ+ k2
3 x)(ẋ+ k2

3 x+ k1
2 x

2)

)

λ1 =
2k22
9 , r 6= 0 k2

3 + k1x+ 3k3x3

(3ẋ+k2x)

(k2x+ 3ẋ)e(
2(2−r)k2

3
)t

(k23 x+ rk3x2 + ẋ)r
×
(

ẋ+ k2
3 x+ rk3x

2

)−r

e
2(2−r)

3
k2t, r 6= 2

(k1, k2, r : arbitrary) I = 2
3k2t+ log(4k2x+ 3k1x

2 + 12ẋ)

− 4(k2x+ 3ẋ)

(4k2x+ 3k1x2 + 12ẋ)
, r = 2

(ivb) k1 = 0, k4 = 0,
(k23 ẋ+

k22
9 x+ k3x

3)

(ẋ+ k2x
3 )

e
4
3
k2t(ẋ+

k2x

3
) I = e

4
3
k2t

[

ẋ2

2 + k2
3 xẋ+

k22
18x

2 + k3
4 x

4

]

λ1 =
2k22
9 , r = 0

(k2, k3 : arbitrary)
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Since we obtained only one integral in each case, (except case (i) where we have found

second explicit time dependent integral, see Ref. 9), which are also time dependent ones,

we need to integrate them further to obtain the second integration constant and prove the

complete integrability of the respective systems, which is indeed a difficult task.

In this connection we have introduced a new method1,9 which can be effectively used to

transform the time dependent integral into a time independent one, for a class of problems,

so that the latter can be integrated easily. We invoke this procedure here in order to integrate

the time dependent first integrals and obtain the general solution for all the cases in Table

I (except case (iv), see below). For the case (iv), we prove the Liouville integrability of it.

C. Method of transforming time dependent first integral to time independent one

Let us assume that there exists a first integral for the equation (10) of the form,

I = F1(t, x, ẋ) + F2(t, x). (49)

Now let us split the function F1 further in terms of two functions such that F1 itself is a

function of the product of the two functions, say, a perfect differentiable function d
dt
G1(t, x)

and another function G2(t, x, ẋ), that is,

I = F1

(

1

G2(t, x, ẋ)

d

dt
G1(t, x)

)

+ F2 (G1(t, x)) , (50)

where F1 is a function which involves the variables t, x and ẋ whereas F2 should involve only

the variable t and x. We note that while rewriting Eq. (49) in the form (50), we demand

that the function F2(t, x) in (49) automatically to be a function of G1(t, x). Now identifying

the function G1 as the new dependent variable and the integral of G2 over time as the new

independent variable, that is,

w = G1(t, x), z =

∫ t

o

G2(t
′, x, ẋ)dt′, (51)

one indeed obtains an explicit transformation to remove the time dependent part in the first

integral. We note here that the integration on the right hand side of (51) leading to z can

be performed provided the function G2 is an exact derivative of t, that is, G2 =
d
dt
z(t, x) =

ẋzx + zt, so that z turns out to be a function t and x alone. In terms of the new variables,

Eq. (50) can be modified to the form

I = F1

(

dw

dz

)

+ F2(w). (52)
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In other words,

F1

(

dw

dz

)

= I − F2(w). (53)

Now rewriting Eq. (52) one obtains a separable equation

dw

dz
= f(w), (54)

which can lead to the solution after an integration. Now rewriting the solution in terms of

the original variables one obtains a general solution for the given equation.

In the following using the above idea we integrate the first integrals given in Table I and

deduce the second integration constant and general solution.

D. Application

Case (ia): k3 =
k21
9
, k4 =

k1k2
3
, k1, k2 and λ1 : arbitrary:

The parametric restrictions given above fix the equation of motion (10) in the form

ẍ+ (k1x+ k2)ẋ+
k2
1

9
x3 +

k1k2

3
x2 + λ1x = 0, (55)

Let us rewrite the first integral associated for this case (vide case (i) in Table I) in the form

I1 = − k1e
k2∓ω

2
tx2

(3ẋ− (−k2±ω)
2

3x+ k1x2)

[

d

dt

(

(
−3

k1x
+

−k2 ± ω

2λ1

)e
−k2∓ω

2
t

)]

, (56)

where ω =
√

k2
2 − 4λ1. Comparing this with the equation (50), and using (51), we obtain

w = (
−3

k1x
+

−k2 ± ω

2λ1

)e
−k2∓α

2
t, z = (

−3

k1x
+

−k2 ∓ ω

2λ1

)e
−k2±ω

2
t. (57)

Substituting (57) into Eq. (55), the latter becomes the free particle equation, namely, d2w
dz2

=

0, whose general solution is w = I1z+I2, where I1 and I2 are integration constants. Rewriting

w and z in terms of x and t one gets

x(t) =

(

6λ1(1− I1e
ωt)

k1ω(1 + I1eωt)− (k2 ± ω)I2e
k2±ω

2
t − k1k2(1− I1eωt)

)

, (58)

where ω =
√

k2
2 − 4λ1.
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Interestingly one can consider several sub-cases. In the following we discuss some impor-

tant ones which are being widely discussed in the current literature. In particular, the dif-

ference in dynamics arises mainly depending on the sign of the parameter α (=
√

k2
2 − 4λ1).

We consider the cases (i) k2
2 < 4λ1 (ii) k2

2 > 4λ1 and (iii) k2
2 = 4λ1 separately. The

restriction k2
2 < 4λ1 reduces the solution (58) to the form4,

x(t) =
A cos(ω0t + δ)

(

e
k2
2
t + 2k1A

3(k22+4ω2
0)
(2ω0 sin(ω0t + δ)− k2 cos(ω0t+ δ))

) , (59)

where ω0 =

√
4λ1−k22
2

and δ, A are arbitrary constants. A further restriction k2 = 0 gives us

the purely sinusoidally oscillating solution19

x(t) =
A sin (ω0t+ δ)

1− ( k
3ω0

)A cos (ω0t + δ)
, 0 ≤ A <

3ω0

k
, ω0 =

√

λ1, (60)

where A and δ are arbitrary constants. The associated equation of motion, namely ẍ +

k1xẋ+
k21
9
x3 + λ1x = 0, admits very interesting nonlinear dynamics, see for example in Ref.

19.

On the other hand, in the limit k2
2 > 4λ1 the solution looks like a dissipative/front-like

one19. A further restriction λ1 = 0 takes us to the solution of the form11

x(t) =

(

3k2(I1e
k2t − 1)

k1 + k2(3I2 + k1I1t)ek2t

)

. (61)

Case (ib): k3 =
k21
9
, k4 =

k1k2
3
, k2

2 = 4λ1, k1 and k2 : arbitrary:

The third choice k2
2 = 4λ1 in (58) leads us to the solution

x(t) =

(

3(I1 + t)

3I2e
k2
2
t − 2k1

k22
(2 + I1k2 + k2t)

)

. (62)

Further parametric restriction k2, λ1 = 0 provides us the general solution of the form

x(t) =

(

6(I1 + t)

k1(I1 + t)2 + 6I2

)

. (63)

The underlying equation, that is, ẍ+k1xẋ+
k21
9
x3 = 0, is the l = 1 integrable case of Eq. (6)

with the solution (7) (see for example in Refs. 18 and 19).
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Case (ii): k3 = 0, k4 =
k1
4
(k2 ±

√

k2
2 − 4λ1), k1, k2 and λ1 : arbitrary:

In this case we have the equation of the form

ẍ+ (k1x+ k2)ẋ+
k1

4
(k2 ±

√

k2
2 − 4λ1)x

2 + λ1x = 0. (64)

The associated first integral reads (vide case (ii) in Table 1)

I =

(

ẋ+
k2 ∓

√

k2
2 − 4λ1

2
x+

k1

2
x2

)

e
k2±

√
k2
2
−4λ1

2
t. (65)

Note that Eq. (65) can be rewritten as a Riccati equation of the form21

ẋ = Ie(
−k2∓

√
k2
2
−4λ1

2
)t −

(

k2 ∓
√

k2
2 − 4λ1

2

)

x− k1

2
x2. (66)

The general solution of the Riccati equation is known to be free from movable critical points

and satisfies the Painlevé property. In this sense Eq. (64) can be considered as integrable in

the Painlevé criteria sense. However, in the general case, (66), it is not clear whether it can

be explicitly integrated further. However, for the special case λ1 =
2k22
9

it can be integrated

as follows.

The restriction λ1 =
2k22
9

fixes the equation of motion (64) and the first integral (65) in

the forms

ẍ+ (k1x+ k2)ẋ+
k1k2

3
x2 +

2k2
2

9
x = 0, (67)

and

I =

(

ẋ+
k2

3
x+

k1

2
x2

)

e
2k2
3

t, (68)

respectively. Now rewriting (68) in the form (50), we get

I = e
k2
3
t

(

d

dt
(xe

k2
3
t)

)

+
k1

2
(xe

k2
3
t)2. (69)

Identifying the dependent and independent variables from (69) and using the identities (51),

we obtain the transformation

w = xe
k2
3
t, z = − 3

k2
e−

k2
3
t. (70)

Using the transformation (70) the first integral (68) can be rewritten in the form

Î = w′ +
k1

2
w2 (71)
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which in turn leads to the solution by an integration, that is,

w(z) =

√

2I

k1
tanh

[

√

k1I

2
(z − z0)

]

, (72)

where z0 is arbitrary constant. Rewriting (72) in terms of old variables we get

x(t) =

√

2I

k1
e−(

k2
3
)t tanh

[

3

k2
(

√

k1I

2
)(e−

k2
3
t0 − e−

k2
3
t)

]

, (73)

where t0 is the second integration constant.

Case (iii): k1, k3 = 0, λ1 =
6k22
25
, k2 and k4 : arbitrary:

The corresponding equation of motion is

ẍ+ k2ẋ+ k4x
2 +

6k2
2

25
x = 0. (74)

Rewriting the associated first integral I1, given in Case (iii) in Table I, in the form (49), we

get

I =
1

2

(

ẋ+
2k2
5

x

)2

e
6
5
k2t +

k4

3
x3e

6
5
k2t. (75)

Now splitting the first term in Eq. (75) further in the form (50), we obtain

I = e
2k2t
5

(

d

dt
(
1√
2
xe

2k2t
5 )

)2

+
k4

3
(xe

2
5
k2t)3. (76)

Identifying the dependent and independent variables from (76) and using the relations (51),

we obtain the transformation

w =
1√
2
xe

2k2t
5 , z = − 5

k2
e−

k2t
5 . (77)

Using this transformation, (77), the first integral (75) can be rewritten in the form

Î = w′2 +
k̂4

3
w3, (78)

where k̂4 = 2
√
2k4, which inturn leads to

w′2 = 4w3 − g3, (79)

where z = 2
√

3

k̂4
ẑ and g3 = −12I1

k̂4
. The solution of this differential equation can be

represented in terms of Weierstrass function12,13 ̺(ẑ; 0, g3).
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Case (iv): k3 =
(r−1)
2r2

k2
1, k4 =

k1k2
3
, λ1 =

2k22
9
, k1, k2 and r : arbitrary (but not zero):

The above parameters fix the equation of motion (10) in the form

ẍ+ (k1x+ k2)ẋ+
(r − 1)k2

1

2r2
x3 +

k1k2

3
x2 +

2k2
2

9
x = 0, r 6= 0. (80)

The associated first integral reads (vide case (iva) in Table I)

I =



















































(

(r−1)
4r2

k2
1x

4 + (ẋ+ k2
3
x)(ẋ+ k2

3
x+ k1

2
x2)

))

×
(

ẋ+ k2
3
x+ (r−1)

2r
k1x

2

)−r

e
2(2−r)

3
k2t, r 6= 0, 2

2
3
k2t+ log(4k2x+ 3k1x

2 + 12ẋ)− 4(k2x+3ẋ)
(4k2x+3k1x2+12ẋ)

, r = 2.

(81)

Rewriting Eq. (81) in the form (50), we get

I =























































(

(r−1)k21
4r2

(xe
k2
3
t)4 + d

dt
(xe

k2
3
t)

(

d
dt
(xe

k2
3
t)e

k2
3
t + k1

2
(xe

k2
3
t)2
)

e
k2
3
t

)

×
(

d
dt
(xe

k2
3
t)e

k2
3
t + k1(r−1)

2r
(xe

k2
3
t)2
)−r

, r 6= 0, 2

4 d
dt
(xe

k2
3 t)e

k2
3 t

k1(xe
k2
3 t)2+4 d

dt
(xe

k2
3 t)e

k2
3 t

− log

(

k1(xe
k2
3
t)2 + 4 d

dt
(xe

k2
3
t)e

k2
3
t

)

, r = 2.

(82)

Identifying the dependent and independent variables from (82) and the relations (51), we

obtain the transformation

w = xe
k2
3
t, z = − 3

k2
e−

k2
3
t. (83)

In terms of the new variables, (83), the first integral I given above, (82), can be written as

I =























(

w′ + (r−1)
2r

k1w
2

)−r[

(r−1)
4r2

k2
1w

4 + w′(w′ + k1
2
w2)

]

, r 6= 0, 2

4w′

k1w2+4w′ − log(k1w
2 + 4w′), r = 2.

(84)

On the other hand the transformation (83) modifies the equation (80) to the form

w′′ + k1ww
′ +

(r − 1)k2
1

2r2
w3 = 0, r 6= 0 and ′ =

d

dz
. (85)
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Finally, for the case r = 0, we have an equation of the form (vide case (ivb) in Table I),

ẍ + k2ẋ + k3x
3 + 2

9
k2
2x = 0, which is nothing but the force-free Duffing oscillator equation.

Again using the transformation (83), the associated time dependent integral given in Table

I can be rewritten as

I =
w′2

2
+

k3

4
w4, r = 0. (86)

Though it is difficult to integrate the above time independent first integrals, (84), as they

are in complicated forms, one can easily check that Eq. (86) (r = 0) can be integrated in

terms of Jacobian elliptic function14 and the case r = 1 is already discussed as case (ii) in

this section. For the other cases one can give a Hamiltonian formulation as in Sec. IIIA 4

and write the corresponding Hamiltonian as

H =















































































[

(

(r−1)p

)
r−2
r−1

(r−2)
− p( (r−1)

2r
k1w

2)

]

, r 6= 0, 1, 2,

k1
4
w2p+ log(4k1

p
), r = 2

ep + k1
2
w2, r = 1

p2

2
+ k3

4
w4, r = 0

(87)

where

p =















































1
r−1

(

(r−1)
2r

k1w
2 + w′

)1−r

, r 6= 0, 1

log(w′), r = 1

w′, r = 0.

(88)

Thus one is ensured of Liouville integrability of system (85) and so (80) for all values of

r. Further, following the analysis in the above subsection IIIA 5, one can make a canonical

transformation (vide Eqs. (42)-(44)) to standard nonlinear oscillator equations.
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E. Summary of results for the q = 1 case:

To summarize the results obtained in this section, we have identified six integrable cases

in Eq. (10) among which four of them were already known in the literature and the remaining

two are new. In the following, we tabulate all of them for convenience.

1. Integrable equations already known in the literature

(1) ẍ+ (k1x+ k2)ẋ+
k2
1

9
x3 +

k1k2

3
x2 + λ1x = 0, (55)

(2) ẍ+ (k1x+ k2)ẋ+
k1k2

3
x2 +

2k2
2

9
x = 0, (67)

(3) ẍ+ k2ẋ+ k4x
2 +

6k2
2

25
x = 0, (74)

(4) ẍ+ k3x
3 + k4x

2 + λ1x = 0. (33c)

We note that the dynamics and certain transformation properties of Eq. (55) have been

studied in detail by three of the present authors in Refs. 9 and 11 recently. In particular, we

have shown that this equation admits certain unusual nonlinear dynamics19. The dynamics

of Eqs. (67),(74) and (33c) can be found in Ref. 12.

2. New integrable equations

(1) ẍ+ k1xẋ+ k3x
3 + λ1x = 0, (33b)

(2) ẍ+ (k1x+ k2)ẋ+ k3x
3 +

k1k2

3
x2 +

2k2
2

9
x = 0, (80)

where r2k3 =
(r−1)k21

2
and k1, k2, λ1 and r are arbitrary parameters. We note that (33b)

includes the first equation of MEE hierarchy (6) as a sub-case. Importantly, we showed that

(33b) is a Hamiltonian system (see Eq. (41)) and so it is Liouville integrable. Equation (80)

can be transformed to the integrable Eq. (85). Explicit general solution of certain special

cases, namely, r = 3 or 3
2
and r = −1 or 1

2
are reported in Ref. 20.
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IV. GENERALIZED FORCE FREE DVP FORM OF EQUATIONS

Let us now consider the case q = 2 in Eq. (9) or equivalently (11), that is,

ẍ = −((k1x
2 + k2)ẋ+ k3x

5 + k4x
3 + λ1x) ≡ φ(x, ẋ). (11)

Interestingly Eq. (11) includes another class of physically important nonlinear oscillators.

For example, choosing k3 = 0 one can get force-free Duffing-van der Pol oscillator equation.

With the choice k2, k4, λ1 = 0, it coincides with the second equation in the MEE hierarchy

equation. Equation (11) with the restriction k3 =
k21
16
, k4 = k1k2

4
and λ1 = (ω2

0 +
k22
4
), has

been investigated in a different perspective in Ref. 4. However, the general equation of the

form (11) has never been considered for integrability test and so we perform the same here.

To identify integrals of motion and the general solution of Eq. (11) we again seek the PS

procedure. As the calculations are similar to the q = 1 case of Eq. (9) which was carried

out in the previous section, in the following, we give only the important steps.

A. The case It = 0

By considering the same arguments given in Sec. IIIA 1, the null form S can be fixed

easily in the form

S = −((k1x
2 + k2)ẋ+ k3x

5 + k4x
3 + λ1x)

ẋ
. (89)

The respective R equation becomes

Rt + ẋRx − ((k1x
2 + k2)ẋ+ k3x

5 + k4x
3 + λ1x)Rẋ

= ((k1x
2 + k2) +

((k1x
2 + k2)ẋ+ k3x

5 + k4x
3 + λ1x)

ẋ
)R. (90)

To seek a particular form for R one may seek a suitable ansatz. We assume R to be of the

form (28) and investigate the system (90) as before. Following a similar procedure we find

that a nontrivial particular solution for (90) exists in the form

R =
ẋ

( (r−1)
r

(k1
3
x3 + k2x) + ẋ)r

, (91)

where r, k1 and k2 are arbitrary parameters and the remaining parameters, k3, k4 and λ1,

are fixed by the relations

k3 =
(r − 1)

3r2
k2
1, k4 =

4(r − 1)

3r2
k1k2, λ1 =

(r − 1)

r2
k2
2. (92)
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Further, we confirmed the compatibility of the functions S and R with the extra constraint

(24) also. We note that unlike the earlier case, q = 1, we do not get a nontrivial solution

for the parametric restriction k2, k4 = 0. The above restrictions fix the Eq. (11) to the

following specific forms:

(ia) ẍ+ (k1x
2 + k2)ẋ+

(r − 1)

3r2
k2
1x

5 +
4(r − 1)k1k2

3r2
x3 +

(r − 1)k2
2

r2
x = 0, r 6= 0(93a)

(ib) ẍ+ k3x
5 + k4x

3 + λ1x = 0, r = 0 (93b)

Now substituting (89) and (91) into (25) and evaluating the integrals we obtain the first

integrals in the form

(ia) I1 =

(

ẋ+
(r − 1)

r
(
k1

3
x3 + k2x)

)−r

×
[

ẋ(ẋ+
k1

3
x3 + k2x) +

(r − 1)

r2
(
k1

3
x3 + k2x)

2

]

, r 6= 0, 2, (94a)

(ib) I1 =
6ẋ

(6ẋ+ 3k2x+ k1x3)
− log(6ẋ+ 3k2x+ k1x

3), r = 2, (94b)

(ii) I1 =
ẋ2

2
+

k3

6
x6 +

k4

4
x4 +

λ1

2
x2, r = 0. (94c)

Further, as in the q = 1 case in Sec. IIIA 4, the integrals (94) can be recast into the

Hamiltonian form

(ia) H =

[

(

(r − 1)p

)
r−2
r−1

(r − 2)
− (r − 1)

r
p(
k1

3
x3 + k2x)

]

, r 6= 0, 1, 2, (95a)

(ib) H =
k2

2
xp+

k1

6
x3p+ log(

6

p
), r = 2, (95b)

(ic) H = ep +
k1

3
x3 + k2x, r = 1, (95c)

(ii) H =
p2

2
+

k3

6
x6 +

k4

4
x4 +

λ1

2
x2, r = 0. (95d)

where the corresponding canonical momenta respectively are

(ia, b) p =
1

(r − 1)

(

ẋ+
(r − 1)

r
(
k1

3
x3 + k2x)

)(1−r)

, r 6= 0, 1, (96a)

(ic) p = log ẋ, r = 1, (96b)

(ii) p = ẋ, r = 0. (96c)
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Note that in the above the parameters r, k1, k2, k3 and λ1 are all arbitrary. We also note

here that unlike the q = 1 case discussed in Sec. III, so far we have been unable to find

suitable canonical transformations for the above Hamiltonian systems so that the standard

’potential’ equation results. The problem is being further investigated.

B. The case It 6= 0

Now let us study the case It 6= 0. In this case S has to be determined from Eq. (22), that

is,

St + ẋSx − ((k1x
2 + k2)ẋ+ k3x

5 + k4x
3 + λ1x)Sẋ

= (2k1xẋ+ 5k3x
4 + 3k4x

2 + λ1)− (k1x
2 + k2)S + S2. (97)

As we did in the q = 1 case of Eq. (9) we proceed to solve Eq. (97) with the same form of

ansatz (47). Doing so we find that Eq. (97) admits non-trivial forms of solutions for certain

specific parametric restrictions. We report both the parametric values and their respective

forms of S in Table II.

Now substituting the forms of S into Eq. (23) and solving the resultant equation we

obtain the corresponding forms of R. Once S and R are determined then one has to verify

the compatibility of this solution with the extra constraint (24). Then one can substitute

the null forms and integrating factors into (25) and construct the associated integrals of

motion. We report the integrating factors (R) and time-dependent integrals of motion (I)

in Table II.

The remaining task is to derive the general solution and establish the complete integra-

bility of Eq. (11) for each parametric restriction. We again adopt the procedure given in Sec.

IIIC and transform the time dependent integrals into time independent ones and integrate

the latter and deduce the general solution. As the procedure is exactly the same we provide

only the results in the following.

Case (ia): k3 =
k21
16
, k4 =

k1k2
4
, k1, k2 and λ1 : arbitrary:

Substituting the parametric restrictions given above in Eq. (11), we get

ẍ+ (k1x
2 + k2)ẋ+

k2
1

16
x5 +

k1k2

4
x3 + λ1x = 0. (98)
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TABLE II: Parametric restrictions, null forms (S), integrating factors (R) and time dependent integrals of motion (I) of

ẍ+ (k1x
2 + k2)ẋ+ k3x

5 + k4x
3 + λ1x = 0 (identified with the assumed ansatz form of S and R)

Cases Parametric restrictions Null form (S) Integrating factor (R) Integrals of motion (I)

(i) k3 =
k21
16 , k4 =

k1k2
4 (a) I = e∓ωt

(

4ẋ+2(k2±ω)x+k1x
3

4ẋ+2(k2∓ω)x+k1x3

)

,

k1
2 x

3 − ẋ

x

xe∓ωt

(ẋ− (k2±ω)
2 x+ k1

4 x
3)2

k2, λ1 6= 0, ω = (k22 − 4λ1)
1
2

(k1, k2, λ1 : arbitrary) (b) I = −t+ x

(
k2
2
x+

k1x
3

4
+ẋ)

, k22 = 4λ1

(ii) k3 = 0, k4 = k1
6 (k2 ± ω),

1

2
(k2 ∓ ω) + k1x

2 e
(k2±ω)

2
t I =

(

ẋ+ k2∓ω
2 x+ k1

3 x
3

)

e(
k2±ω

2
)t,

(k1, k2, λ1 : arbitrary) ω = (k22 − 4λ1)
1
2

(iii) k1, k3 = 0, λ1 =
2k22
9

( k2
3 ẋ+

k22
9 x+ k4x

3

ẋ+ k2
3 x

)

(ẋ+
k2

3
x)e

4
3
k2t I = e

4
3
k2t

[

ẋ2

2 + k2
3 xẋ+

k22
18x

2 + k4
4 x

4

]

(k2, k4 : arbitrary)

(iva) k3 =
(r−1)k21

3r2 , k4 =
k1k2
4 , I =

(

k3
3 x

6 + (ẋ+ k2
4 x)(ẋ+ k2

4 x+ k1
3 x

3)

)

λ1 =
3k22
16 , r 6= 0

k2

4
+ k1x

2 +
4k3x

5

(4ẋ+ k2x)

(k2x+ 4ẋ)e
3(2−r)

4
k2t

(k24 x+ rk3x3 + ẋ)r
×
(

ẋ+ k2
4 x+ rk3x

3

)−r

e
3(2−r)

4
k2t, r 6= 2

(k1, k2, r : arbitrary) I = 3
4k2t+ log(6k2x+ 4k1x

3 + 24ẋ)

− 6(k2x+ 4ẋ)

(6k2x+ 4k1x3 + 24ẋ)
, r = 2

(ivb) k1 = 0, k4 = 0,

( k2
4 ẋ+

k22
16x+ k3x

5

ẋ+ k2
4 x

)

e
3k2
2

t(ẋ+
k2

4
x) I = e

3k2
2

t

(

ẋ2

2 + k2
4 xẋ+

k22
32x

2 + k3
6 x

6

)

λ1 =
3k22
16 , r = 0

(k2, k3 : arbitrary)
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We observed that the first integral of this case (i) (see Table II), when rewritten, is nothing

but the Bernoulli equation which can be integrated strightforwardly21 and it leads to the

general solution of the form

x(t) =

(

8k2λ1(e
ωt − I1)

2

I21k1k2(−k2 + ω)− e2ωtk1k2(k2 + ω) + 8I2k2λ1e(k2+ω)t + 8I1k1λ1eωt

)
1
2

, (99)

where ω =
√

k2
2 − 4λ1. A sub-case of the Eq. (98), namely, k2

2 < 4λ1 has been studied by

Smith4,22 who showed that the corresponding equation of motion admits a damped oscillatory

form of solution, namely,

x(t) =
Acos(ω0t+ δ)

(

ek2t − k1A
4k2

+ k1A
4(k22+4ω2

0)

(

2ω0sin2(ω0t+ δ)− k2cos2(ω0t + δ)

))
1
2

, (100)

where ω0 =
1
2

√

4λ1 + k2
2 and δ, A are arbitrary constants.

On the other hand for k2
2 > 4λ1, the solution (99) becomes dissipative type having a

front-like structure. In particular, for λ1 = 0 we get a solution of the form

x(t) =

(

2
√
k2(I1e

k2t − 1)

(−k1 + 2k1I1ek2t(2 + k2I1tek2t) + 4k2I2e2k2t)
1
2

)

. (101)

Case (ib): k3 =
k21
16
, k4 =

k1k2
4
, k2

2 = 4λ1, k1 and k2 : arbitrary:

In this case we get the general solution of the form from (101) as

x(t) =

(

2(I1 + t)2

2ek2tI2 − k1
k32
(2 + I21k

2
2 + 2k2t + k2

2t
2 + 2I1k2(1 + k2t))

)
1
2

. (102)

One may note that a sub-case of this equation, namely, k2 = λ1 = 0 leads us to the second

equation in the MEE hierarchy (6) and the corresponding solution follows from Eq. (102) as

x(t) =
√
6

(

(I1 + t)2

6I2 + k1t(3I21 + 3I1t + t2)

)
1
2

. (103)

This form exactly coincides with the solution (7) for l = 2.

Case (ii): k3 = 0, k4 =
k1
6
(k2 ±

√

k2
2 − 4λ1), k1, k2 and λ1 : arbitrary:
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The repective equation of motion and the first integral are (see Table II)

ẍ+ (k1x
2 + k2)ẋ+

k1

6
(k2 ±

√

k2
2 − 4λ1)x

3 + λ1x = 0, (104)

and

I =

(

ẋ+
k2 ∓

√

k2
2 − 4λ1

2
x+

k1

3
x3

)

e
k2±

√
k2
2
−4λ1

2
t. (105)

Eq. (105) can be rewritten as an Abel’s equation in the form

ẋ = Ie(
−k2∓

√
k2
2
−4λ1

2
)t −

(

k2 ∓
√

k2
2 − 4λ1

2

)

x− k1

3
x3. (106)

It is not clear whether Eq. (106) can be explicitly integrated in general. However, for the

special case λ1 =
3
16
k2
2 it can be integrated as follows.

The restriction λ1 =
2k22
9

fixes the equation of motion (104) and the first integral (105) in

the forms

ẍ+ (k1x
2 + k2)ẋ+

k1k2

4
x3 +

3k2
2

16
x = 0, (107)

and

I =

(

ẋ+
k2

4
x+

k1

3
x3

)

e
3k2
4

t, (108)

respectively.

Now following our procedure given in Sec. 3.3 one arrives at the general solution1 as

z + z0 = − a

3I

[

1

2
log

(

(w − a)2

w2 + aw + a2

)

+
√
3 arctan

(

−w
√
3

2a+ w

)]

, (109)

with w = xe
k2
4
t, z = − 2

k2
e−

k2
2
t and a = 3

√

3I
k1

and z0 is the second integration constant.

Rewriting w and z in terms of old variables one can get the explicit solution.

Case (iii): k1, k3 = 0, λ1 =
2k22
9
, k2 and k4 : arbitrary:

The parametric restrictions given above fix the equation of motion (11) to the force-free

Duffing oscillator, namely, ẍ+k2ẋ+k4x
3+

2k22
9
x = 0. We have already discussed the general

solution of this equation in Sec. III (vide case (iv)).

31



Case (iv): k3 =
(r−1)k21

3r3
, k4 =

k1k2
4
, λ1 =

3k22
16
, k1, k2 and r : arbitrary:

The equation of motion turns out to be

ẍ+ (k1x
2 + k2)ẋ+

(r − 1)k2
1

3r2
x5 +

k1k2

4
x3 +

3k2
2

16
x = 0, r 6= 0. (110)

Rewriting the associated first integral I, given in Case (iv) in Table II, in the form (50), we

get

I =



















































































(

(r−1)k21
9r2

(xe
k2
4
t)6 + d

dt
(xe

k2
4
t)

(

d
dt
(xe

k2
4
t)e

k2
2
t + k1

3
(xe

k2
4
t)3
)

e
k2
2
t

)

×
(

d
dt
(xe

k2
4
t)e

k2
2
t + k1(r−1)

3r
(xe

k2
4
t)3
)−r

, r 6= 0, 2,

6 d
dt
(xe

k2
4 t)e

k2
2 t

k1(xe
k2
4 t)3+6 d

dt
(xe

k2
4 t)e

k2
2 t

− log(k1(xe
k2
4
t)3 + 6 d

dt
(xe

k2
4
t)e

k2
2
t), r = 2

1
2

(

d
dt
(xe

k2
4
t)

)2

ek2t + k3
6
(xe

k2
4
t)6, r = 0

(111)

and identifying the dependent and independent variables from (111) and the relations (51),

we obtain the transformation

w = xe
k2
4
t, z = − 2

k2
e−

k2
2
t. (112)

In terms of the new variables (112) the first integral I given above, (111) can be written as

I =















































(

w′ + (r−1)
3r

k1w
3

)−r[

w′(w′ + k1
3
w3) + (r−1)

9r2
k2
1w

6

]

, r 6= 0, 2

6w′

k1w3+6w′ − log(k1w
3 + 6w′), r = 2,

w′2

2
+ k3

6
w6, r = 0.

(113)

On the other hand substituting the transformation (112) into the equation of motion

(110) we get

w′′ + k1w
2w′ +

(r − 1)k2
1

3r2
w5 = 0, r 6= 0, ′ =

d

dz
. (114)
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In the case r = 0, we have an equation of the form (vide case (ivb) in Table II)

ẍ+ k2ẋ+ k3x
5 +

3k2
2

16
x = 0. (115)

We note that the Eq. (114) is the l = 2 case of Eq. (6). As we mentioned in the introduction

the general solution of this equation can be obtained only for certain specific choices, namely,
(r−1)k21

3r2
= 1

16
. This in turn gives r = 4k1 or 4

3
k1. The respective solutions for these values

of r of Eq. (114) can be fixed from Eq. (7) with l = 2. The other cases do not seem to

be amenable to explicit integration. However, all of them can be recast in the Hamiltonian

form as we see below.

As the first integrals (113) are now ‘time’ independent ones, one can give a Hamiltonian

formalism for all the integrals (113) by following the ideas given in Sec. IIIA 4. Doing so we

obtain

H =















































































[

(

(r−1)p

)
r−2
r−1

(r−2)
− (r−1)

3r
k1w

3p

]

, r 6= 0, 1, 2,

k1
6
w3p+ log(6

p
), r = 2

ep + k1
3
w3, r = 1

p2

2
+ k3

6
w6, r = 0

(116)

where

p =















































1
(r−1)

(

w′ + (r−1)
3r

k1w
3

)(1−r)

, r 6= 0, 1

logw′, r = 1

p2

2
+ k3

6
w6, r = 0.

(117)

In this sense these cases may be considered as Liouville integrable systems. Finally,

for r = 0 case in Eq. (113) can be integrated in terms of Jacobian elliptic function (see for

example in Ref. 23). Again, here, we have not been able to identify canonical transformations

which can lead to the identification of suitable ’potential’ equations.
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C. Summary of results in q = 2 case:

To summarize the results obtained for the q = 2 case, we have identified six integrable

cases in Eq. (11) among which three of them were already known in the literature and the

remaining three are new. In the following, we tabulate both of them.

1. Integrable equations already known in the literature

(1) ẍ+ (k1x
2 + k2)ẋ+

k1k2

4
x3 +

3k2
2

16
x = 0, (107)

(2) ẍ+ k2ẋ+ k3x
3 +

2k2
2

9
x = 0, (118)

(3) ẍ+ k3x
5 + k4x

3 + λ1x = 0. (93b)

We mention that Eq. (107) is nothing but the force-free DVP whose integrability is estab-

lished in Ref. 1 and Eq. (118) is nothing but the force-free Duffing oscillator12,14.

2. New integrable equations

(1) ẍ+ (k1x
2 + k2)ẋ+ k3x

5 +
4(r − 1)k1k2

3r2
x3 +

(r − 1)k2
2

r2
x = 0, r 6= 0 (93a)

(2) ẍ+ (k1x
2 + k2)ẋ+

k2
1

16
x5 +

k1k2

4
x3 + λ1x = 0, (98)

(3) ẍ+ (k1x
2 + k2)ẋ+ k3x

5 +
k1k2

4
x3 +

3k2
2

16
x = 0, (110)

where r2k3 =
(r−1)k21

3
and k1, k2, λ1 and r are arbitrary parameters. We proved that Eq. (93a)

is Liouville integrable one. As far as equation (98) is concerned we derived the general

solution for arbitrary values of k1, k2 and λ1. Finally, for Eq. (110) though we identified

only one time dependent integral, we have demonstrated that it can be transformed into

time independent Hamiltonian and thereby ensuring its Liouville integrability.

34



V. EXTENDED PRELLE-SINGER METHOD TO GENERALIZED EQ. (9)

One can investigate the integrability properties of Eq. (9) by considering the cases

q = 3, 4, 5, . . . , one by one and classify the integrable equations. Since the procedure and

the mathematical techniques in exploring the integrating factors (R), null forms (S), first

integrals (I) and general solution are the same in each case we do not consider each case in

detail. We straightaway move to the case q = arbitrary, that is, q ∈ R and not necessarily

an integer, and present the outcome of our investigations.

As we did earlier, we consider the cases It = 0 and It 6= 0 separately for the choice

q = arbitrary also. First let us consider the case It = 0.

A. The case It = 0

By considering the same arguments given in Sec. 3.1.1 the null form S and the integrating

factor R can be fixed easily in the form

S = −((k1x
q + k2)ẋ+ k3x

2q+1 + k4x
1+q + λ1x)

ẋ
,

R =
ẋ

( (r−1)
r

( k1
(q+1)

xq+1 + k2x) + ẋ)r
, (119)

where k1 and k2 are arbitrary and the remaining parameters, k3, k4 and λ1, are related to

the parameters k1 and k2 through the relations

k3 =
(r − 1)

r2
(q + 1)k̂2

1, k4 =
(r − 1)

r2
(q + 2)k̂1k2, λ1 =

(r − 1)

r2
k2
2, (120)

where k̂1 =
k1

(q+1)
. The above restrictions fix Eq. (9) to the following specific forms:

(ia) ẍ+ ((q + 1)k̂1x
q + k2)ẋ+

(r − 1)

r2
[(q + 1)k̂2

1x
2q+1

+(q + 2)k̂1k2x
q+1 + k2

2x] = 0, r 6= 0 (15)

(ib) ẍ+ k3x
2q+1 + k4x

q+1 + λ1x = 0, r = 0. (121)

Now substituting (119) into (25) and evaluating the integrals we obtain the first integrals
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of the form

(ia) I1 =

(

ẋ+
(r − 1)

r
(k̂1x

q+1 + k2x)

)−r

×
[

ẋ(ẋ+ k̂1x
q+1 + k2x) +

(r − 1)

r2
(k̂1x

q+1 + k2x)
2

]

, r 6= 0, 2, (122a)

(ib) I1 =
ẋ

(ẋ+ k2
2
x+ k̂1

2
xq+1)

− log(ẋ+
k2

2
x+

k̂1

2
xq+1), r = 2, (122b)

(ii) I1 =
ẋ2

2
+

k3

2(q + 1)
x2(q+1) +

k4

(q + 2)
xq+2 +

λ1

2
x2, r = 0. (122c)

Further, using the above forms of the first integrals, one can show that the equation of

motion (9), with the parametric restrictions (120), can also be derived from the Hamiltonians

(ia) H =

[

(

(r − 1)p

)
r−2
r−1

(r − 2)
− (r − 1)

r
p(k̂1x

q+1 + k2x)

]

, r 6= 0, 1, 2, (123a)

(ib) H =
k2

2
xp +

k̂1

2
xq+1p+ log(

2(q + 1)

p
), r = 2 (123b)

(ic) H = ep + k̂1x
q+1 + k2x, r = 1, (123c)

(ii) H =
p2

2
+

k3

2(q + 1)
x2(q+1) +

k4

(q + 1)
xq+1 +

λ1

2
x2, r = 0, (123d)

where the corresponding canonical momenta respectively are

(ia, b) p =
1

(r − 1)

(

ẋ+
(r − 1)

r
(k̂1x

q+1 + k2x)

)(1−r)

, r 6= 0, 1, (124a)

(ic) p = log ẋ, r = 1, (124b)

(ii) p = ẋ, r = 0. (124c)

With the above Hamiltonian formulation, for the parametric set (120), the integrability

of the associated equation of motion is assured for these parametric cases through Liouville

theorem.

B. The case It 6= 0

We use the same ansatz and ideas which we followed for the q = 1 and q = 2 cases to

determine the forms of S and R. As the procedure is exactly the same as in the earlier cases
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we present the parametric restrictions and the respective form of expressions of the inte-

grating factors, null forms and integrals of motions in Table III without further discussion.

Since we derived only one integral, which is also a time dependent one for each parametric

restriction, we need to integrate each one of them further and obtain the second integration

constant in order to prove the complete integrability of each of the cases reported in Table

III. In the following we deduce the second integral and general solution by utilizing the

proceduce given in Sec. IIIC.

Case (ia): k3 =
k21

(q+2)2
, k4 =

k1k2
(q+2)

, k1, k2 and λ1 : arbitrary:

We have an equation of the form

ẍ+ ((q + 2)k̂1x
q + k2)ẋ+ k̂2

1x
2q+1 + k̂1k2x

q+1 + λ1x = 0, (13)

where k1 = (q + 2)k̂1. The corresponding first integral given in Table 3 is nothing but the

Bernoulli equation which can be solved using the standard method21. The general solution

turns out to be

x(t) =

(

eωt − I1

)(

e
q

2
(k2+ω)t

(

I2 + k̂1q

∫
(

eωt − I1

e
1
2
(k2+ω)t

)q

dt

))
−1
q

, (125)

where ω =
√

k2
2 − 4λ1. We note here that a sub-case of the above, namely, k2

2 < 4λ1, has

been studied by Smith4 who had shown that the corresponding system admits the general

solution of the form

x(t) = Acos(ω0t+ δ)e−
k2
2
t

(

1 + qk̂1A

∫

e
−qk2

2
tcosq(ω0t+ δ)dt

)− 1
q

, (126)

where ω0 = 1
2

√

4λ1 + k2
2 and δ, A are arbitrary constants. For k2

2 > 4λ1, the solution

become a dissipative type/front-like structure. In particular, for λ1 = 0 the general solution

takes the form

x(t) =

(

ek2tI1 − 1

)[

eqk2t
(

I2 + k̂1q

∫
(

I1 − e−k2t

)q

dt

)]− 1
q

. (127)
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TABLE III: Parametric restrictions, null forms (S), integrating factors (R) and time dependent integrals of motion (I) of

ẍ+ (k1x
q + k2)ẋ+ k3x

2q+1 + k4x
q+1 + λ1x = 0 (identified with the assumed ansatz form of S and R)

Cases Parametric restrictions Null form (S) Integrating factor (R) Integrals of motion (I)

(i) k3 =
k21

(q+2)2
, k4 =

k1k2
(q+2) (a) I = e∓ωt

(

ẋ−
(−k2∓ω)

2
x+

k1
q+2

xq+1

ẋ−
(−k2±ω)

2
x+

k1
q+2

xq+1

)

,

( qk1
(q+2)x

q+1 − ẋ)

x

xe∓ωt

(ẋ− (k2±ω)
2 x+ k1

(q+2)x
q+1)2

k2, λ1 6= 0, ω = (k22 − 4λ1)
1
2

(k1, k2, λ1 : arbitrary) (b) I = −t+ x

(
k2
2
x+

k1x
q+1

q+2
+ẋ)

, k22 = 4λ1

(ii) k4 =
k1(k2±ω)
2(q+1) , k3 = 0,

1

2
(k2 ∓ ω) + k1x

q, e
(k2±ω)

2
t I =

(

ẋ+ k2∓ω
2 x+ k1

(q+1)x
q+1

)

e(
k2±ω

2
)t,

(k1, k2, λ1 : arbitrary) ω = (k22 − 4λ1)
1
2

(iii) k1, k3 = 0, λ1 =
2(q+2)k22
(q+4)2

2k2ẋ
(q+4) +

4k22x
(q+4)2 + k4x

q+1

(ẋ+ 2k2x
(q+4))

(ẋ+
2k2x

(q + 4)
)e

2(q+2)
(q+4)

k2t I = e
2(q+2)
(q+4)

k2t

[

ẋ2

2 + 2k2xẋ
(q+4) +

2k22x
2

(q+4)2
+ k4x

q+2

(q+2)

]

(k2, k4 : arbitrary)

(iv)a k3 =
(r−1)k21
(q+1)r2

, I =

(

k3x
2(q+1)

(q+1) + (ẋ+ k2x
q+2)(ẋ+ k2x

q+2 +
k1x

q+1

q+1 )

)

k4 =
k1k2
(q+2) ,

k2
(q+2) +k1x

q+ k3x
2q+1

(ẋ+
k2

(q+2)
x)

(k2x+ (q + 2)ẋ)e
(q+1)(2−r)

(q+2)
k2t

( k2
(q+2)x+ rk3xq+1 + ẋ)r

×
(

k2
(q+2)x+rk3x

q+1+ ẋ

)−r

e
(q+1)(2−r)

(q+2)
k2t, r 6= 2

λ1 =
(q+1)k22
(q+2)2

, r 6= 0 I = q+1
q+2k2t+ log(k1x

q+1 + 2(q + 1)(ẋ+ k2
q+2x))

(k1, k2, r : arbitrary) −(
2(q + 1)(ẋ + k2

q+2x)

k1xq+1 + 2(q + 1)(ẋ + k2
q+2x)

), r = 2

(iv)b k1 = 0, k4 = 0,
k2

(q + 2)
+

k3x
2q+1

(ẋ+ k2
(q+2)x)

e
(2q+2)k2

(q+2)
t
(ẋ+

k2

(q + 2)
x) I =

(

ẋ2

2 + k2xẋ
(q+2) +

k22x
2

2(q+2)2 + k3x
2q+2

(2q+2)

)

e
(2q+2)k2
(q+2)

t

λ1 =
(q+1)k22
(q+2)2

, r = 0

(k2, k3 : arbitrary)
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Case (ib): k3 =
k21
16
, k4 =

k1k2
4
, k2 = 4λ1, k1 and k2 : arbitrary:

A general solution for this case can be fixed from (127) as

x(t) = (I1 + t)e−
k2
2
t

(

I2 + qk̂1

∫

e−
qk2
2

t(I1 + t)qdt

)− 1
q

. (128)

On the other hand the general solution for the parametric choice k2, λ1 = 0 turns out to be

x(t) =

(

(q + 1)(I1 + t)q

k̂1q(I1 + t)q+1 + (q + 1)I2

)
1
q

, (129)

which exactly coincides with the result (7) obtained by Feix et al.3 for integer q(= l) values.

Case (ii): k3 = 0, k4 =
k1

2(q+1)
(k2 ±

√

k2
2 − 4λ1), k1, k2 and λ1 : arbitrary:

The associated equation of motion and the first integral are (see Table III)

ẍ+ ((q + 1)k̂1x
q + k2)ẋ+

k̂1

2
(k2 ±

√

k2
2 − 4λ1)x

q+1 + λ1x = 0, (130)

and

I =

(

ẋ+
k2 ∓

√

k2
2 − 4λ1

2
x+ k̂1x

q+1

)

e(
k2±

√
k22−4λ1

2
)t, (131)

where k1 = (q + 1)k̂1. Like in the earlier cases, that is, q = 1 and q = 2, we are able to

integrate the first integral (131) explicitly only for a specific parametric restriction, namely,

λ1 = (q+1)k̂2
2, where k2 = (q+2)k̂2. In this case the equation of motion (130) and the first

integral, Eq. (131), can be recast in the form

ẍ+ (k1x
q + (q + 2)k̂2)ẋ+ k1k̂2x

q+1 + (q + 1)k̂2
2x = 0, (12)

and

I =

(

ẋ+ k̂2x+ k̂1x
q+1

)

e(q+1)k̂2t, (132)

respectively. Now comparing (132) with (50), we get

I = eqk̂2t
(

d

dt
(xek̂2t)

)

+ k̂1(xe
k̂2t)(q+1). (133)
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Next identifying the dependent and independent variables from (133) using the relations

(51), we obtain the transformation

w = xek̂2t, z = − 1

qk̂2
e−qk̂2t. (134)

Using the transformation (134) the first integral (133) can be rewritten in the form

I = w′ + k̂1w
(q+1) (135)

which in turn leads to the solution by an integration, that is,

z − z0 =

∫

dw

I − k̂1w(q+1)
, (136)

where z0 is an arbitrary constant. Solving Eq. (136) we get24

z − z0 =
1

Ig
1

(q+1)



















































− 2

q + 1

q−1
2
∑

i=0

Pi cos
2i

q + 1
π +

2

q + 1

q−1
2
∑

i=0

Qi sin
2i

q + 1
π

+ 1
q+1

ln
(1+w)
(1−w)

, q-a positive odd number,

− 2

q + 1

q−2
2
∑

i=0

Ri cos
2i+ 1

q + 1
π +

2

q + 1

q−2
2
∑

i=0

Ti sin
2i+ 1

q + 1
π

+ 1
q+1

ln(1 + w), q-a positive even number,

(137)

where g = k̂1
I
and

Pi =
1

2
ln

(

w2 − 2w cos
2i

q + 1
π + 1

)

, Qi = arctan

[

w − cos 2i
q+1

π

sin 2i
q+1

π

]

,

Ri =
1

2
ln

(

w2 + 2w cos
2i+ 1

q + 1
π + 1

)

, Ti = arctan

[

w + cos 2i+1
q+1

π

sin 2i+1
q+1

π

]

.

Rewriting w and z in terms of old variables one can get the explicit solution.

Case (iii): k1, k3 = 0, λ1 =
2(q+2)k22
(q+4)2

, k2 and k4 : arbitrary

The parametric choice given above fixes the equation of motion of the form

ẍ+ (q + 4)k̂2ẋ+ k4x
(q+1) + 2(q + 2)k̂2

2x = 0, (14)

where k2 = (q + 4)k̂2. Rewriting the first integral I given in Case (iii) in Table III, in the

form (49), we get

I =
1

2

(

ẋ+ 2k̂2x
)2

e2(q+2)k̂2t +
k4x

(q+2)

(q + 2)
e2(q+2)k̂2t. (138)
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Now splitting the first term in Eq. (138) further in the form of (50),

I =

[

eqk̂2t
d

dt

(

x√
2
e2k̂2t

)]2

+
2(

q+2
2

)k4

(q + 2)

(

x√
2
e2k̂2t

)(q+2)

(139)

and identifying the dependent and independent variables from (139) using the relations (51),

we obtain the transformation

w =
x√
2
e2k̂2t, z = − 1

qk̂2
e−qk̂2t. (140)

Using the transformation (140) the first integral (138) can be brought to the form

I = w′2 +
2(

q+2
2

)k4

(q + 2)
w(q+2). (141)

Separating the dependent and independent variables and integrating the resultant equation

we get

z − z0 =

∫

dw
√

I − k̂4w(q+2)
, (142)

where k̂4 =
2(

q+2
2 )

(q+2)
k4 and z0 is an arbitrary constant.

Case (iv): k3 =
(r−1)k21
(q+1)r2

, k4 =
k1k2
(q+2)

, λ1 =
(q+1)k22
(q+2)2

, k1, k2 and r : arbitrary:

The equation of motion in this case turns out to be

ẍ+ ((q + 1)k̂1x
q + (q + 2)k̂2)ẋ+ (q + 1)(

(r − 1)

r2
k̂2
1x

2q

+k̂1k̂2x
q + k̂2

2)x = 0, r 6= 0 (16)

where k1 = (q+1)k̂1, k2 = (q+2)k̂2. Rewriting the associated first integral I, given in Case

(iv) in Table III, in the form (50), we get

I =























































































(

(r − 1)k̂2
1

r2
(xek̂2t)2(q+1) +

d

dt
(xek̂2t)

(

d

dt
(xek̂2t)eqk̂2t + k̂1(xe

k̂2t)q+1

)

eqk̂2t
)

,

×
(

d

dt
(xek̂2t)eqk̂2t +

k̂1(r − 1)

r
(xek̂2t)q+1

)−r

, r 6= 0, 2

d
dt
(xek̂2t)eqk̂2t

k̂1
2
(xek̂2t)q+1 + d

dt
(xek̂2t)eqk̂2t

− log(
k̂1

2
(xek̂2t)q+1 +

d

dt
(xek̂2t)eqk̂2t), r = 2

1
2

(

d
dt
(xek̂2t)

)2

e2qk2t + k3
2(q+1)

(xek̂2t)2(q+1), r = 0.

(143)
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Identifying the dependent and independent variables from (143) and the relations (51), we

obtain the transformation

w = xek̂2t, z = − 1

qk̂2
e−qk̂2t. (144)

Subsituting the transformation (144) into (16), one obtains

w′′ + (q + 1)k̂1w
qw′ + (q + 1)

(r − 1)

r2
k̂2
1w

2q+1 = 0, r 6= 0, ′ =
d

dz
. (145)

In terms of the new variables (144) change the time dependent first integral into time

independent ones of the form

I =















































(

w′ + (r−1)
r

k̂1w
q+1

)−r[

w′(w′ + k̂1w
q+1) + (r−1)

r2
k̂2
1w

2(q+1)

]

, r 6= 0, 2,

w′

w′+
k̂1
2
xq+1

− log(w′ + k̂1
2
wq+1), r = 2,

w′2

2
+ k3

2(q+1)
w2(q+1), r = 0.

(146)

Once again one can deduce the Hamiltonians in the form

H =















































































[

(

(r−1)p

)
r−2
r−1

(r−2)
− (r−1)

r
k̂1w

q+1p

]

, r 6= 0, 1, 2,

1
2
k̂1w

q+1p+ log(2(q+1)
p

), r = 2,

ep + k̂1w
q+1, r = 1,

p2

2
+ k3

2(q+1)
w2(q+1), r = 0,

(147)

with

p =















































1
(r−1)

(

w′ + (r−1)
r

k̂1w
q+1

)(1−r)

, r 6= 0, 1

log(w′), r = 1

w′, r = 0,

(148)

and thereby ensuring liouville integrability of Eq. (16).
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C. Summary of results in q = arbitrary case:

To conclude the integrability of Eq. (9), we have established the fact that the following

equations, are integrable

(1) ẍ+ (k1x
q + (q + 2)k2)ẋ+ k1k2x

q+1 + (q + 1)k2
2x = 0, (12)

(2) ẍ+ ((q + 2)k1x
q + k2)ẋ+ k2

1x
2q+1 + k1k2x

q+1 + λ1x = 0, (13)

(3) ẍ+ (q + 4)k2ẋ+ k4x
q+1 + 2(q + 2)k2

2x = 0, (14)

(4) ẍ+ ((q + 1)k1x
q + k2)ẋ+

(r − 1)

r2
((q + 1)k2

1x
2q

+(q + 2)k1k2x
q + k2

2)x = 0, r 6= 0 (15)

(5) ẍ+ ((q + 1)k1x
q + (q + 2)k2)ẋ+ (q + 1)(k3x

2q + k1k2x
q + k2

2)x = 0, (16)

where r2k3 = (r− 1)k2
1 and k1, k2, k4, λ1 and r are arbitrary parameters (for simplicity we

have removed hats in ki’s, i = 1, 2, in Eqs. (12)-(16)) . The significance and newness of the

equations (12)-(16) are already pointed out in Sec. I B.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the integrability properties of Eq. (9) and shown that

it admits a large class of integrable nonlinear systems. In fact, many classical integrable non-

linear oscillators can be derived as sub-cases of our results. One of the important outcomes

of our investigation is that the entire class of Eq. (6) can be derived from a conservative

Hamiltonian (vide Eq. (123)) eventhough the system deceptively looks like a dissipative

equation.

From our detailed analysis we have shown that Eq. (9) admits both conservative Hamil-

tonian systems and dissipative systems, depending on the choice of parameters. As far as

the former is concerned we have deduced the explicit forms of the Hamiltonians for the

respective equations. In fact, for the case, q = 1, we have constructed suitable canonical

transformations and transformed the equations into conservative nonlinear oscillator equa-

tions. However, the canonical transformations for the conservative Hamiltonian systems for

the cases q = 2, . . . , arbitrary, if at all they exist, still remain to be obtained. Exploring the

classical dynamics underlying these conservative Hamiltonian systems is also of consider-

oble interest for further study. As far as dissipative systems are concerned we have not only
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shown that Eq. (9) contains the well known force-free Helmholtz, Duffing and Duffing-van

der Pol oscillators but also have several integrable generalizations which is another important

outcome of our investigations. The study of chaotic dynamics of these nonlinear oscillators

under further perturbations is one of the current topics22 in the contemporary literature

in nonlinear dynamics. In principle one can extend such analysis to the above generalized

equations as well.

In this paper, we have also not touched the question of linearizability of the integrable

cases of Eq. (9). In our earlier work, we have shown that the Eq. (55) is linearizable to the

free particle equation, d2w
dz2

= 0. Of course one can show that this is the only linearizable

equation in (9) through invertible point transformation9,11,18. However, linearizablity of

other integrable cases through more general transformations still remains to be explored.

In addition to the above, we have also carried out the Painlevé singularity structure

analysis of Eq. (9) and compared the results obtained through both the methods. The

details of this will be published elsewhere.

As we mentioned at the end of Sec. II, the crux of the PS procedure lies in finding the

explicit solutions satisfying all the three determining Eqs. (22)-(24). In this paper we have

considered only certain specific ansatz forms to determine the null forms S, and integrating

factors R. As a consequence only a specific class of integrable equations have been derived.

It is not clear, whether these ansatz forms used in this paper exhaust all possible integrable

cases of Eq. (9). One needs to consider more generalized ansatz forms, and if possible to

solve Eqs. (22)-(24) for the most general forms of R and S, and try to identify all possible

integrable cases underlying Eq. (9). This is being explored further.
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Abstract. Symmetries of the first integrals for scalar linear or linearizable second-
order ordinary differential equations (ODEs) have already been derived and shown
to exhibit interesting properties. One of these is that the symmetry algebra sl(3, IR )
is generated by the three triplets of symmetries of the functionally independent first
integrals and its quotient. In this paper, we first investigate the Lie-like operators
of the basic first integrals for the linearizable maximally symmetric system of two
second-order ODEs represented by the free particle system, obtainable from a com-
plex scalar free particle equation, by splitting the corresponding complex basic first
integrals and its quotient as well as their associated symmetries. It is proved that
the 14 Lie-like operators corresponding to the complex split of the symmetries of the
functionally independent first integrals I1, I2 and their quotient I2/I1 are precisely
the Lie-like operators corresponding to the complex split of the symmetries of the
scalar free particle equation in the complex domain. Then, it is shown that there are
distinguished four symmetries of each of the four basic integrals and their quotients
of the two-dimensional free particle system which constitute four-dimensional Lie
algebras which are isomorphic to each other and generate the full symmetry algebra
sl(4, IR ) of the free particle system. It is further shown that the (n+2)-dimensional
algebras of the n + 2 first integrals of the system of n free particle equations are
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2 A. Aslam, K.S. Mahomed and E. Momoniat

Key words: Systems, maximal symmetry algebra, first integral, complex symmetry,
linearization.

1. Introduction. First integrals and integrating factors play a central role in
the study of ODEs. In fact, finding a first integral of a given ODE is equivalent
to obtaining an integrating factor of the equation. For first-order ODEs, Lie [12]
showed how to construct an integrating factor from each admitted point symme-
try. Conversely, Lie showed that each integrating factor yields an admitted point
symmetry of the equation. In general, for a scalar or systems of ODEs, an inte-
grating factor is a set of functions, multiplying each of the ODEs, which yields a
first integral. For a first-order scalar ODE, a first integral is a quadrature. For
an nth-order (n > 1) scalar ODE, a first integral is an expression relating the
independent variable, the dependent variable and derivatives up to order n − 1,
which is constant for all solutions of the ODE. It is well-known that two inde-
pendent first integrals of a second-order ODE provide the general solution of the
equation. First integrals provide means for reducing the order of an ODE, see e.g.
[6, 7, 10, 21]. The symmetry of the Emden equation and its first integrals have
been discussed in [22] amongst other works. The possible reductions in order for
nonlinear ODEs with first integrals and Lie group of symmetries are widely dis-
cussed [8]. For a scalar linear second-order ODE represented by the free particle
equation, symmetries of three first integrals have been studied in [11] and it was
shown there that the three triplets of first integrals have isomorphic algebras and
generate the complete symmetry group of the equation itself. Recently, a complete
symmetry classification of the first integrals of a scalar linearizable second-order
ODE was derived in [13]. First integrals for second-order ODEs are also studied
in [17, 18, 19, 20]. In the work [15] a complete symmetry classification of the first
integrals for scalar second-order ODEs was studied.

A method, known as complex symmetry analysis, was established in [1, 2]. This
method provides a connection between a complex ODE or partial differential equa-
tion (PDE) and a system of ODEs/PDEs by splitting the base complex equation
into real and imaginary parts.

This paper is organized as follows. A brief review of the mathematical formalism
is given in the next section. In the subsequent section we present the relationship
between the Lie-like operators and first integrals of the system of two ODEs of
maximal symmetry by the complex method. In the fourth section we present the
symmetries of the basic first integrals of the free particle system and show how
these are utilized to generate the full symmetry algebra of the system. A summary
and brief discussion are given in the last section.

2. Preliminaries. It is well-known that the system of second order ODEs

Ei(t, x, x
′, x′′, y, y′, y′′) = 0, i = 1, 2 (1)

is invariant under the infinitesimal generator

X = ξ(t, x, y)
∂

∂t
+ µ(t, x, y)

∂

∂x
+ ν(t, x, y)

∂

∂y
(2)
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Algebraic properties for ODI systems 3

if and only if
X[2] (Ei) |Ei=0 = 0, i = 1, 2, (3)

where

X[2] = X+ µ
(1)
t

∂

∂x′ + µ
(2)
tt

∂

∂x′′ + ν
(1)
t

∂

∂y′
+ ν

(2)
tt

∂

∂y′′
, (4)

with

µ
(1)
t = Dtµ− x′Dtξ (5)

µ
(2)
tt = Dtµ

(1)
t − x′′Dtξ (6)

ν
(1)
t = Dtν − y′Dtξ (7)

ν
(2)
tt = Dtν

(1)
t − y′′Dtξ (8)

in which Dt is the total differentiation operator, is called the second prolongation
of the generator X.

It is the case that (2) is the point symmetry of the system (1), whereas for first
integrals, the first integral given by

I = f(t, x, y, x′, y′), (9)

of the system of ODEs (1), is an invariant of X, that is, (2) is the symmetry
generator of (9) if and only if

X[1]I = 0. (10)

Here X is said to annihilate I and does not leave it invariant as for symmetries
of the equations. Therefore, the procedure for determining symmetries of ODEs
is different to that of finding symmetries of their first integrals. As a matter of
fact the symmetries of a first integral constitute a subalgebra of the symmetries of
the equation(s) itself/themselves that give(s) rise to it as is known from the work
[9]. It is important to state that the symmetries of the first integral are not in
general the symmetries of the system. We clarify this by means of the example of
the Ermakov-Lewis invariant given in [5]. The operator [5]

Xa = a(t)
∂

∂t
+

1

2
ȧr

∂

∂r
(11)

is a symmetry of the Ermakov-Lewis invariant

I =
1

2
(r2θ̇)2 −

∫
G(θ)dθ. (12)

This means that I as in (12) has an infinite-dimensional Lie algebra as there is no
restriction on a (see [5]). The Ermakov system in plane polar coordinates is

r̈ − rθ̇2 = F (θ)/r3, (13)

rθ̈ + 2ṙθ̇ = G(θ)/r3. (14)

The second of these equations give rise to the integral (12) and the infinite sym-
metries generated by Xa in (11) are (by [9]) symmetries of the equation (14). This
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4 A. Aslam, K.S. Mahomed and E. Momoniat

can easily be verified. However, it is important to stress that the infinite symmetry
algebra of (12) is not the symmetry algebra of the Ermakov system above.

We study the symmetries of the first integrals of second-order linearizable sys-
tems which generate the full algebra of the system.

We consider only those classes of the ODE system (1) which are linearizable via
point transformations to the simplest system, viz. the free particle system. These
are characterized by the class which is cubic in the first derivatives as given in [16].

Thus here we only focus on those systems of second-order ODEs which are
reducible to the free particle system by point transformation. In the works [4, 11,
14] the generation and characterization of algebraic properties of scalar second- and
higher-order ODEs of maximal symmetries were investigated. In [4], the number of
symmetries associated with the ratio of any two linear first integrals of an nth-order
scalar ODE is shown to be n− 1, where n ≥ 4 (see Proposition 2). The work [14]
gives the generation result (see Theorem 4) that the full Lie algebra of the nth-order
ODE y(n) = 0, n ≥ 3 is generated by two subalgebras: an (n + 1)-dimensional
algebra and a three-dimensional subalgebra. For systems of second-order ODEs, we
see that the results are quite different to that of the scalar higher-order ODEs (see
Proposition 3 in Section 4). However, there is a pattern which is similar to scalar
second-order ODEs as in [11] and here we have a natural extension for systems. It
is also the case that in this work we also pursue the complex method and Lie-like
operators which have interesting consequences as encapsulated in Proposition 1 in
Section 3.

We now consider the scalar free particle equation

u′′ = 0, ′ = d/dt. (15)

It is well-known that (15) has eight point symmetries which are

X1 =
∂

∂t
, X2 =

∂

∂u
, X3 = t

∂

∂t
,

X4 = u
∂

∂u
, X5 = t

∂

∂u
, X6 = u

∂

∂t
,

X7 = t2
∂

∂t
+ tu

∂

∂u
, X8 = tu

∂

∂t
+ u2 ∂

∂u
. (16)

The free particle equation (15) has two functionally independent first integrals

I1 = u′, (17)

I2 = tu′ − u. (18)

The first integral (17) has the following symmetries [11]

X1 = ∂
∂t , X2 = ∂

∂u , X3 = t ∂
∂t + u ∂

∂u , (19)

and the first integral (18) has the symmetries [11]

Y1 = t ∂
∂t , Y2 = t ∂

∂u , Y3 = t2 ∂
∂t + tu ∂

∂u . (20)
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Algebraic properties for ODI systems 5

The quotient of both of the first integrals (17) and (18), that is

I3 =
I2
I1

= t− u

u′ , (21)

is also a first integral and has the following three symmetries [11]

Z1 = u ∂
∂t , Z2 = u ∂

∂u , Z3 = tu ∂
∂t + u2 ∂

∂u . (22)

An important result was proved in [11] that the three triplets of symmetries (as
given above) have isomorphic algebras, denoted as LI

3;5 (in the classification of first
integrals presented in [13]), which generate the complete algebra sl(3, IR ) of the
free particle equation (15) or linearizable scalar ODEs.

In this paper, inter alia, we focus our attention on systems of ODEs of maximal
symmetry which have the property in that the algebras of their integrals generate
their full algebra. This is investigated in Section 4.

The system of two free particle equations, as is well-known as well,

x′′ = 0,

y′′ = 0, (23)

has the fifteen point symmetries, which are

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
,

X4 = t
∂

∂t
, X5 = x

∂

∂x
, X6 = y

∂

∂y
,

X7 = t
∂

∂x
, X8 = t

∂

∂y
, X9 = x

∂

∂t
,

X10 = y
∂

∂t
, X11 = y

∂

∂x
, X12 = x

∂

∂y
,

X13 = t2
∂

∂t
+ tx

∂

∂x
+ ty

∂

∂y
,

X14 = tx
∂

∂t
+ x2 ∂

∂x
+ xy

∂

∂y
,

X15 = ty
∂

∂t
+ xy

∂

∂x
+ y2

∂

∂y
. (24)

These symmetries (24) constitute the Lie algebra sl(4, IR ). We show how these or
a subset of these symmetries arise in the way the symmetries of the first integrals
of the free particle system or the complex split of the complex symmetries of the
complex first integrals of the scalar complex free particle equation are used.

3. First integral of the system of two ODEs by the complex method.
In this section, we apply the complex symmetry analysis on the scalar complex free
particle ODE (15) and its basic first integrals to obtain a system of two ODEs and
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6 A. Aslam, K.S. Mahomed and E. Momoniat

the first integrals for the free particle system. The scalar second-order free particle
ODE (15) is split into a system of two second-order free particle ODEs (23) (as is
known [2]) by taking

u = x+ iy, (25)

and the corresponding eight symmetries (16) are transformed into 14 Lie-like op-
erators, which are written as

X1 = ∂
∂t ,

X2 = ∂
∂x ,

X3 = ∂
∂y ,

X4 = t ∂
∂t ,

X5 = x ∂
∂x + y ∂

∂y ,

X6 = y ∂
∂x − x ∂

∂y ,

X7 = t ∂
∂x ,

X8 = t ∂
∂y ,

X9 = x ∂
∂t ,

X10 = y ∂
∂t ,

X11 = t2 ∂
∂t +

1
2 tx

∂
∂x + 1

2 ty
∂
∂y ,

X12 = ty ∂
∂x − tx ∂

∂y ,

X13 = tx ∂
∂t +

1
2 (x

2 − y2) ∂
∂x + xy ∂

∂y ,

X14 = ty ∂
∂t + xy ∂

∂x − 1
2 (x

2 − y2) ∂
∂y . (26)

All these 14 Lie-like operators are not the Lie point symmetries of the free particle
system (see also discussion on similar systems in [1, 2]). Only X1 to X10 are the
Lie point symmetries. Under the transformation (25), the first integral (17) splits
into the following two first integrals

I11 = x′, (27)

I12 = y′, (28)

and the corresponding three symmetries (19) split into five symmetries

X1 = ∂
∂t ,

X2 = ∂
∂x ,

X3 = ∂
∂y ,

X4 = t ∂
∂t +

1
2x

∂
∂x + 1

2y
∂
∂y ,

X5 = y ∂
∂x − x ∂

∂y . (29)
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Algebraic properties for ODI systems 7

The first integral (18) splits into the two first integrals, under the complex trans-
formation (25), written as

I21 = tx′ − x, (30)

I22 = ty′ − y, (31)

and we have the five operators after splitting the corresponding three symmetries
(20), as

X1 = t ∂
∂t ,

X2 = t ∂
∂x ,

X3 = t ∂
∂y ,

X4 = t2 ∂
∂t +

1
2 tx

∂
∂x + 1

2 ty
∂
∂y ,

X5 = ty ∂
∂x − tx ∂

∂y . (32)

Finally, by applying the transformation (25) and splitting the real and imaginary
parts, the first integral (21) gives the following two first integrals

I31 = t− xx′ + yy′

x′2 + y′2
, (33)

I32 =
x′y − xy′

x′2 + y′2
, (34)

and in this case the three symmetries (22) split into the following six operators

X1 = x ∂
∂t ,

X2 = y ∂
∂t ,

X3 = x ∂
∂x + y ∂

∂y ,

X4 = y ∂
∂x − x ∂

∂y ,

X5 = tx ∂
∂t +

1
2 (x

2 − y2) ∂
∂x + xy ∂

∂y ,

X6 = ty ∂
∂t + xy ∂

∂x − 1
2 (x

2 − y2) ∂
∂y . (35)

We make the following deduction here. The complex split of the scalar free
particle equation results in 14 Lie-like operators (only 10 are symmetries). Exactly
the same occurs for the complex split of the complex symmetries of the basic
first integrals of the complex free particle equation: 14 Lie-like operators arise
as the rotation symmetry is repeated and the one scaling generator is a a linear
combination of the two scaling operators.

We have therefore the following proposition.

Proposition 1. The 14 Lie-like operators corresponding to the complex split
of the symmetries of the functionally independent first integrals I1, I2 and their
quotient I2/I1 are precisely the Lie-like operators corresponding to the complex
split of the symmetries of the scalar free particle equation in the complex domain.
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8 A. Aslam, K.S. Mahomed and E. Momoniat

4. Symmetries of the first integrals of a system of two ODEs of maximal
symmetry. In this section, we discuss the symmetries of the basic first integrals
and their quotients of a system of two ODEs of maximal symmetry represented by
the free particle system and its relation to the complete symmetries of the system
of free particle ODEs.

The first integral (27) has the following seven point symmetries

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
,

X4 = y
∂

∂y
, X5 = t

∂

∂y
, X6 = x

∂

∂y
,

X7 = t
∂

∂t
+ x

∂

∂x
. (36)

The first integral (28) possesses the seven symmetries

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
,

X4 = x
∂

∂x
, X5 = t

∂

∂x
, X6 = y

∂

∂x
,

X7 = t
∂

∂t
+ y

∂

∂y
. (37)

The first integral (30) admits the following seven symmetries

X1 =
∂

∂y
, X2 = t

∂

∂t
, X3 = y

∂

∂y
,

X4 = t
∂

∂x
, X5 = t

∂

∂y
, X6 = x

∂

∂y
,

X7 = t2
∂

∂t
+ tx

∂

∂x
+ ty

∂

∂y
. (38)

The first integral (31) has the seven symmetries

X1 =
∂

∂x
, X2 = t

∂

∂t
, X3 = x

∂

∂x
,

X4 = t
∂

∂x
, X5 = t

∂

∂y
, X6 = y

∂

∂x
,

X7 = t2
∂

∂t
+ tx

∂

∂x
+ ty

∂

∂y
. (39)

The symmetries for the first integral I21
I11

= t− x/x́ are

X1 =
∂

∂y
, X2 = x

∂

∂x
, X3 = y

∂

∂y
,

X4 = t
∂

∂y
, X5 = x

∂

∂t
, X6 = x

∂

∂y
,

X7 = tx
∂

∂t
+ x2 ∂

∂x
+ xy

∂

∂y
. (40)
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Algebraic properties for ODI systems 9

The symmetries for the first integral I22
I12

= t− y/ý are given by

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = y

∂

∂y
,

X4 = t
∂

∂x
, X5 = y

∂

∂t
, X6 = y

∂

∂x
,

X7 = ty
∂

∂t
+ xy

∂

∂x
+ y2

∂

∂y
. (41)

Guided by the symmetries of the basic first integrals and its quotient of the
scalar free particle equation as reviewed in Section 2, we have the following four-
dimensional distinguished subalgebras of the seven-dimensional algebras generated
by (36) to (41). These have basis vectors

Y11 =
∂

∂t
, Y12 =

∂

∂x
, Y13 =

∂

∂y
, Y14 = t

∂

∂t
+ x

∂

∂x
+ y

∂

∂y
, (42)

Y21 = t
∂

∂t
, Y22 = t

∂

∂x
, Y23 = t

∂

∂y
, Y24 = t2

∂

∂t
+ tx

∂

∂x
+ ty

∂

∂y
, (43)

Y31 = x
∂

∂t
, Y32 = x

∂

∂x
, Y33 = x

∂

∂y
, Y34 = tx

∂

∂t
+ x2 ∂

∂x
+ xy

∂

∂y
(44)

and

Y41 = y
∂

∂t
, Y42 = y

∂

∂x
, Y43 = y

∂

∂y
, Y44 = ty

∂

∂t
+ xy

∂

∂x
+ y2

∂

∂y
. (45)

The operators (42) come from (36) and (37). Those of (43) arise from (38) and (39).
Finally the generators (44) and (45) result from (40) and (41), respectively. We
also observe that these symmetries are the symmetries of the free particle system as
given in (24) with the proviso that the scaling symmetries are linearly dependent,
e.g. Y14 = Y21 +Y32 +Y43. The Lie algebras of the operators (42) to (45) are
isomorphic to each other as can be seen by simple changes of bases for each case.
The algebra is a dilation algebra (similar to that which occurs for the symmetry
algebra of the basic integrals and its quotient of the scalar free particle equation
[11] except here we have a four-dimensional algebra) with commutation relations

[X1, X2] = [X1, X3] = [X2, X3] = 0, [Xi, X4] = Xi, i = 1, 2, 3. (46)

in appropriate basis. We denote this algebra by D4. It is interesting to point
out that in [23] precisely this algebra implies with the representation (42) implies
linearization for a nonlinear system that admits it and the construction of the
transformation reduces the system to the free particle system.

We thus have the following proposition.

Proposition 2. The four quadruplets of symmetries (42) to (45) of the basic
integrals I1 = x′, I2 = tx′ − x and the quotients J1 = t − x/x′ and J2 = t − y/y′

which have Lie algebra isomorphic to the algebra D4, generate the full symmetry
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10 A. Aslam, K.S. Mahomed and E. Momoniat

algebra sl(4, IR ) of the two-dimensional free particle system.

The above discussion is easily extendible to n-dimensional free particle systems
in that now one has that the n + 2 basic integrals Ii = x′

i and Ii+n = tx′
i − xi,

for any fixed i = 1, . . . , n and their quotients Ji = Ii+n/Ii, i = 1, . . . , n of the
n-dimensional free particle system each has n+ 2 symmetries given by

Y11 =
∂

∂t
, Y1k+1 =

∂

∂xk
, k = 1, . . . , n,Y1n+2 = t

∂

∂t
+ xi ∂

∂xi
, (47)

Y21 = t
∂

∂t
, Y2k+1 = t

∂

∂xk
, k = 1, . . . , n,Y2n+2 = t2

∂

∂t
+ txi ∂

∂xi
, (48)

and

Yj+21 = xj ∂

∂t
, Yj+2k+1 = xj ∂

∂xk
, k = 1, . . . , n,

Yj+2n+2 = t2
∂

∂t
+ txi ∂

∂xi
, j = 1, . . . , n. (49)

The symmetries of the n-dimensional (n ≥ 2) free particle system comprise of the
n+1 translations, the n+1 dilations, the n solution symmetries, the n symmetries of
type xi∂/∂t, the n(n+1) symmetries of mixed type in the space variables xi∂/∂xj

and the n+1 true projective symmetries t2∂/∂t+txi∂/∂xi and txi∂/∂t+xjxi∂/∂xi

making a total of n2 + 4n+ 3 symmetries which constitute the symmetry algebra
sl(n + 2, IR ). We see that the symmetries (47) to (49) are symmetries of the
n-dimensional free particle system except for the linear dependency as previously
noted of the dilations. The Lie algebra of the symmetries (47) to (49) are isomorphic
to each other. They form the dilation algebra Dn+2, n ≥ 2.

We hence have the following proposition.

Proposition 3. The (n+2)2 symmetries (47) to (49) of the basic integrals Ii = x′
i

and Ii+n = tx′
i − xi, for any fixed i = 1, . . . , n and their quotients Ji = Ii+n/Ii,

i = 1, . . . , n which have Lie algebra isomorphic to the algebra Dn+2, generate the
full symmetry algebra sl(n+2, IR ) of the n-dimensional (n ≥ 2) free particle system.

We remark that the algebra Dn+2 which has representation given by (47) is
precisely the algebra that yields linearization for an n-dimensional (n ≥ 2) system
which admits it as a symmetry algebra. This is investigated in the work [3]. Also
one gets linearization to the free particle system in this case.

5. Conclusion. Symmetries of the fundamental first integrals for a scalar lin-
ear or linearizable second-order ordinary differential equation have already been
derived and display interesting properties. One of these is that the three isomor-
phic triplets of symmetries of the integrals generate the full symmetry algebra
sl(3, IR ) of the equation itself. In this paper, we firstly apply complex symmetry
analysis on the scalar complex second-order linearizable ODE represented by the
free particle equation. We have shown that the 14 Lie-like operators corresponding
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Algebraic properties for ODI systems 11

to the complex split of the symmetries of the basic functionally independent first
integrals and its quotient of the free particle equation are precisely the Lie-like
operators corresponding to the complex split of the symmetries of the scalar free
particle equation in the complex domain. We also have proved that certain (n+2)-
dimensional (n ≥ 2) subalgebras of the symmetry algebra of the basic first integrals
and their quotients of the n-dimensional free particle system together generate the
full algebra of symmetries of the free particle system which is sl(n+ 2, IR ).
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Integrating factors and first integrals for ordinary 
differential equations 

S T E P H E N  C. A N C O  and G E O R G E  B L U M A N  

Department of Mathematics, University of Brirish Columbia, Vancouver, BC. Canada V6T IZ2 

(Receiced 25 July 1997; recised 13 Januarjj 1998) 

We show how to find all the integrating factors and corresponding first integrals for any system 
of Ordinary Differential Equations (ODEs). Integrating factors are shown to be all solutions of 
both the adjoint system of the linearised system of ordinary differential equations and a system 
that represents an extra adjoint-invariance condition. We present an explicit construction 
formula to find the resulting first integrals in terms of integrating factors, and discuss 
techniques for finding integrating factors. In particular, we show how to utilize known first 
integrals and symmetries to find new integrating factors. Illustrative examples are given. 

1 Introduction 

For first-order scalar Ordinary Differential Equations (ODEs), Sophus Lie (cf. Lie, 1874) 
showed how to construct an integrating factor from each admitted point symmetry. 
Conversely, Lie showed that each integrating factor yields an admitted point symmetry. 

In general, for systems of one or more ODEs, an integrating factor is a set of functions, 
multiplying each of the ODEs, which yields a first integral. If the system is self-adjoint, then 
its integrating factors are necessarily solutions of its linearized system. Such solutions are 
the symmetries of the given system of ODEs. If a given system of ODEs is not self-adjoint, 
then its integrating factors are necessarily solutions of the adjoint system of its linearized 
system. Such solutions are known as adjoint symmetries (Gordon, 1986; see also Sarlet et 
al., 1987, 1990) of the given system of ODEs. 

In this paper, we introduce an adjoint-invariance condition which is a necessary and 
sufficient condition for an admitted adjoint symmetry to be an integrating factor. We 
present an explicit formula for the first integral corresponding to each integrating factor. 
These results are the counterparts of our work on Partial Differential Equations (PDEs) 
(Anco & Bluman, 1997, 1998). 

For a first-order scalar ODE, a first integral is a quadrature. For an nth-order scalar 
ODE, a first integral is an expression relating the independent variable, the dependent 
variable and derivatives to order n - 1, which is constant for all solutions of the ODE. First 
integrals are defined analogously for systems of ODEs. 

If r independent first integrals are known, then an nth-order scalar ODE can be reduced 
to one or more (n-r)th-order ODEs in terms of r essential constants' and the given 

Constants are essential if none of them can be reduced in terms of function combinations of the 
others. 
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dependent and independent variables. In particular, n independent first integrals yield the 
general solution involving IZ essential constants. 

Sophus Lie (cf. Lie, 1888; Bluman, 1990) showed that if an nth-order scalar ODE admits 
an r-parameter solvable group of point symmetries, then it can be reduced to an (n-r)th- 
order ODE plus Y quadratures.2 Lie's reduction uses derived independent and dependent 
variables, given by invariants and differential invariants to order M - r ,  arising from the 
admitted point symmetries. Consequently, the 'reduced ' ODE is not an (n-  r)th-order 
ODE in terms of the given dependent and independent variables. Thus, Lie's reduction is 
not as useful as a reduction in terms of first integrals. 

In $2 we establish our framework. We define integrating factors and first integrals for 
systems of ODEs. We show that each integrating factor must be an adjoint symmetry, and 
derive the adjoint-invariance condition for an adjoint symmetry to be an integrating factor. 
We give the explicit formula for the first integral arising from an integrating factor. Finally, 
we show how our framework treats the well-known situation for first-order scalar ODEs. 

In 5 3 we treat the case of second-order scalar ODEs, and make some remarks about the 
situation for higher-order scalar ODEs. In $4 we discuss techniques for finding and utilizing 
adjoint symmetries in conjunction with the adjoint-invariance condition. We show how to 
use an adjoint symmetry and functions of known first integrals to obtain new first integrals. 
Finally, in 5 5 we consider various examples. 

2 The basic framework 

Consider any nth-order system of one or more ODES 

G,(x, y,  y', . . . ,y(%)) = 0, CT = 1 , .  . . , N (2.1) 

with any number of dependent variables y = {y' ,  ... ,y") and one independent variable 
x; J' represents the first-order derivative of J>;  y(I) represents the jth-order derivative of y. 
For arbitrary functions Y = {Y',  ... , Y">, let G,[Y] = G,(x, Y, Y ,  ... , Ycpz)) .  The aim is to 
find all factors nu[ Y ]  = k ( x ,  Y,  Y' ,  . . . , YcnP1)) and functions @[ Y ]  = @(x, Y,  Y',  . . . , Ycn-l)) 
so that 

d 
dx 

.4"[ Y ]  G,[ Y ]  = - @[ Y ]  

holds for all Y(x) for which A"[ Y ]  G,[ Y ]  is finite. (Throughout this paper, we use the index 
notation o- = 1, , . . , N ;  p = 1,.  . . , M ;  and the convention that summation is assumed over 
any repeated index in all expressions.) 

From equation (2.2), it follows that 

@[y] = const (2.3) 

on the solutions y(x) of system (2.1) for which each A"[y] is finite. In particular, if nu[ Y ]  
is finite for arbitrary Y(x), then @[y] = const holds for all solutions of system (2.1). 

We allow P [ Y ]  and @[Y] to depend at most upon Y(n-'), since we assume that the system 
(2.1) determines y(") in terms of lower-order derivatives of y.  

Lie's method can be extended to invariance under r-parameter solvable groups of higher order 
symmetries. 
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Definition 2.1 A set of factors {A"[ Y ] }  satisfying (2.2) is an integrating factor of system (2.1) 
and, correspondingly, @[y] = const is a first integral of system (2.1). 

Before defining adjoint symmetries and introducing our adjoint-invariance condition, we 

The linearized system is given by 
first consider the linearized system, and its adjoint, obtained from equation (2.1). 

4Tp[Yl@ = 0 (2.4) 
where 

dVP d" Vp 
Lup[ Y ]  V' = GJ Y ]  + G&[ Y ]  --& + . . . + eP[ YI dx" 

with 

In equation (2.4), v = { v ' ,  ... , v " }  is a solution of the linearized system holding for all 
solutions y(x) of system (2.1); in equation (2.5), V = { V' ,  . . . , V"} and Y = { Y',  . .. , Y"} are 
arbitrary functions of x. 

The linearized system (2.4) is the set of determining equations for the symmetries of 
system (2.1). In particular, a solution v of system (2.4) is a symmetry of the system (2.1) with 
infinitesimal generator vp d/ay.  

The adjoint of the linearized system (2.4) is given by 

L,*[Yl w' = 0, (2.6) 
where 

d d" 
dx  dx" 

L,*,[Y] W " =  G,[Y] W"--(G&[Y] W " ) + . . . + ( - l ) " - ( G : P I Y ]  W").  (2.7) 

In system (2.6), w = {w' ,  . . . , w"} is a solution of the adjoint system holding for all solutions 
y ( x )  of the given system of ODES (2.1); in system (2.7), W = { W ' ,  ..., W " }  and Y = 
{ Y', . . . , Y M }  are arbitrary functions of x. 

Definition 2.2 The adjoint system (2.6) is the set of determining equations for the adjoint 
symmetries of system (2.1). In particular, a solution w of the adjoint system (2.6) is an adjoint 
symmetry of the system (2.1). 

Definition 2.3 System (2.1) is self-adjoint if and only if L:J Y ]  = LuP[ Y ] .  

Theorem 2.4 Every integrating factor of system (2.1) satisfies the adjoint-invariance 
condition 

d dn-I 
L,*,[Y]A"[Y] = - A ~ [ Y ] G , [ Y ] + - ( A ~ " [ Y ] G , [ Y J ) + ~ ~ ~ + ( -  l)n-'-(A$-""[Y]G,[Y]) 

dx  dx"-' 

(2.8) 
for arbitrary Y(x)  where 
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Proof Since system (2.2) holds for arbitrary Y(x), it also holds with Y ~ ( . Y )  replaced by the 
one-parameter (A)  family of functions YP(x; A)  = Yp(x) + A V'(x), where Yp(x), VQ(x)  are 
arbitrary functions of x. Thus, we have 

(2.9) 
d 

dx A"[Y(x; A)] G,[Y(x; A)]  = -@[ Y(x;  A)].  

Now differentiate system (2.9) with respect to h and set A = 0. Then use 

given by the linearizing expression (2.5). This leads to 

Now apply the Euler operators 

(2.11) 

to each side of equation (2. lo), which is an expression in terms of the arbitrary functions 
{ YP(x)}, { VP(x)j. Since Euler operators annihilate total derivatives, the left-hand side of 
equation (2.10) vanishes upon action by the Euler operators (2.11). On the right-hand 
side of equation (2. lo), the Euler operators (2.11) applied to A"[ Y ]  (L,[ Y ]  Vp) yield 
L,*[Y]A"[Y], given by system (2.7) with W" = A"[Y]. The Euler operators (2.11) applied 
to the rest of the right-hand side of equation (2.10) yield 

dic-l d 
d.x dXn- l  

A~[Y]G,[Y]- - (A~ ' [Y]  G,[Y])+ ... +(- l ) " ~ ' - - - ( ~ ~ ~ ' ' " [ Y ] G , [ Y ] ) .  

Thus the adjoint-invariance condition (2.8) is obtained. 0 

Corollary 2.5 I f  @[y]  = const is a first integral of the system of ODES (2.1), then its 
integrating factor {A"[ Y ] }  satisfies the adjoint system 

L,*,[Yl A"CYl = 0, (2.12) 

holding for  all solutions y(x)  of system (2.1). 

The proof of Corollary 2.5 follows immediately from the adjoint-invariance condition 
(2.8) with Y(x) = y(x)  given by any solution of system (2.1). 

An important consequence of Corollary 2.5 is that all first integrals arise from solutions 
of the adjoint system (2.12). If system (2.1) is self-adjoint, then solutions of the adjoint 
system (2.12) are symmetries of system (2.1). If system (2.1) is not self-adjoint, the solutions 
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of the adjoint system (2.12) are not symmetries of (2.1) but adjoint symmetries (Gordon, 
1986; Sarlet et al., 1987, 1990) of system (2.1). However, as will be shown in the examples 
in 0 5, an adjoint symmetry does not always satisfy the adjoint-invariance condition (2.8), 
i.e. an adjoint symmetry does not always give rise to a first integral. 

For any adjoint symmetry that satisfies the adjoint-invariance condition (2.8), we now 
derive a formula which yields the corresponding first integral. To proceed, we first need to 
establish the following identity. 

Lemma 2.6 The operators Lup[ Y ]  and L,*,[ Y ]  satisfy the identity 

d 
dx 

W" LUp[ Y ]  Vp- Vp L,*[ Y ]  W "  - q W ,  V ;  G[ Y ] ]  

for arbitrary functions Yp(x), Vp(x), W"(x) ,  where 

(2.13) 

dn-I vp n-2 dn-1-1 Vp d' dn-I 
-+(-l)n-l VP-)(W"G'&J. (2.14) +(-+ dx"-' c (-'I' dxn-l-l dx' dx"-' 

Proof The identity (2.13) follows from a direct expansion of both sides of (2.13), using the 
definitions of Lup[ Y ]  and Lzu[ Y ]  given by equations (2.5) and (2.7), respectively. 

We are now ready to establish the converse of Theorem 2.4. 

Theorem 2.7 Suppose {A"[ Y ] }  satisfies the adjoint-invariance condition (2.8). Then {A"[ Y ] }  is 
an integrating factor for  the system of ODES (2.1). In particular, 

(2.15) 
d 

dx 
A"[ Y ]  G,[ Y ]  = - @[ Y ]  

with @[ Y ]  = @'(x, Y ,  Y ' ,  . . . , Ycen))  + @,(x) given by the formulae : 

where 

D2 = k(x)dx ,  s (2.16) 

(2.17) 

d a Yp(x; A )  + (&( ~A )-a y p ( x ; A )  ") (Au[ Y ( x ;  A)]  G;J Y ( x ;  A)] )+  ... 
aA dx  
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x (G,[Y(x; h ) ] ~ l ~ - ~ ) " [ Y ( x ; A ) ] ) ;  (2.19) 

Here ?(x) = { pl(x), ... , pLw(x)] are anyfixedfirnctions such that the fztnction k(x)  isfinite, 
and Y(x; A) is the one-pammefer ( A )  family of junctions Y"(x; A)  = A Y"(x) + (1 - A) e ( x ) ,  
for arbitrary Y"(x), cr = 1, ... , M .  

k(sj  = A"[~?[x)] G,[Y((x)]. (2.20) 

Proof Let V(s)  = (c?Y(x; hjj/&t = Y(.v) - f?xj. From the adjoint-invariance condition 
(2.8). we obtain 

P(x) (LTo[Y(x; A)] Ar[ Y(x;  A)] +A;[  Y(x;  A)]  G,[ Y ( L ;  A)] --(A;.[Y(x; A)] G,[Y(x: A)])  + ... 
& - I  

dxn-l 

Now we manipulate the terms in equation (2.21) as follows. From identity (2.13), the first 
terinin (2.21) becomes VpLT,Ar = A"L, VP-dSldx, where Sis given by expression (2.18). 
Using the Leibniz rule for d/d.x, the third term of equation (2.21) becomes 

d 
dx 

i + ( - l ) ~ - ( ~ 4 ~ - 1 ' u [ ~ ' ( . ~ ; / ~ ) ] G " [ Y ( ~ ; ~ ) ] )  = 0. (2.21) 

and the other terms of (2.21) become 

for q = 1, ..., n-I .  
Hence equation (2.21) becomes 

where N is given by expression (2.19). 
Now observe that L+[ Y(x;  A)] VP(x) = (aG,[Y(.r; A)])/aA, and that 
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Then equation (2.22) becomes 

c? 
A"[Y(x;h)]  -GG,[Y(x;h)] + -A"[Y(x;h)]  G,,[Y(x;h)] = - ( A " [ Y ( ~ ; h ) l G , [ Y ( x ; h ) l )  

(:A ) (:A 1 (7h 

d 
d x  = - ( s l 4 Y ( x ; h ) l ,  V(x);G[Y(x;h)ll+yn[Y(x;h)l, V ( x ) ;  C[Y(x;A)l l ) ,  (2.23) 

where S and N are given by expressions (2.18) and (2.19), respectively. 
Now integrate equation (2.23) with respect to h from h = 0 to h = 1. Then we obtain 

A"[ Y ]  G,[ Y ]  -A"[ F ]  C,[ F ]  = d Q,/dx,  

where Q1 is given by expression (2.16). To complete the proof, we observe that 
A"[ f l  G,[ F ]  = k ( x )  = dQ,/dx.  0 

Note that, if A"[ Y ] ,  C,[ Y ] ,  rr = 1, ... , n  are finite for Yp = 0,  p = 1, ... , M ,  then we can 
choose ffl = 0,  p = 1, ... , M ,  and thus simplify the integral for Ql. Moreover, if y p  = 0, 
p = 1, ... , M ,  is a solution of system (2.1), then Q2 vanishes. 

As a consequence of Theorems 2.4 and 2.7, we see that for any system of ODEs, all first 
integrals arise from adjoint symmetries that satisfy the adjoint-invariance condition. 

2.1 First-order ODEs 

We now consider the classical problem of finding the integrating factor for any first-order 
scalar ODE written in solved form 

G(x,y ,y ' )  = y ' -g(x ,y)  = 0. (2.24) 

Here the linearized ODE is 

(2.25) 
dv 

U Y l V  = z- g,v = 0,  

and the corresponding adjoint ODE is given by 

dw 
L*[y]  w = -dx-g,  w = 0. (2.26) 

The symmetries of ODE (2.24) are the solutions of (2.25), while the adjoint symmetries of 
ODE (2.24) are the solutions of (2.26), which hold for all solutions y ( x )  of ODE (2.24). 

For arbitrary Y = Y(x) ,  each integrating factor A ( x ,  Y )  of ODE (2.24) satisfies the 
adjoint-invariance condition 

(2.27) 
dA(x,  Y )  

dx 
- -g,.(x, Y ) A ( x ,  Y )  = -( Y ' - g ( x ,  Y))A,.(X, Y ) ,  

which reduces to 
g,.A+Ax+gA,. = 0. (2.28) 

Theorem 2.8 I f A ( x ,  y )  is an a4oint symmetry of ODE (2.24), then A(x ,  Y )  is an integrating 
factor of ODE (2.24). 

Proof From (2.26t(2.27) it follows that A(x ,  Y )  is a solution of (2.28) if and only if 
w = A ( x ,  y )  is a solution of (2.26). 0 
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Theorem 2.9 Each symmetry v(x, y )  of ODE (2.24) yields an adjoint symmetry A(x,  y )  = 
l/(v(x,y)) of ODE (2.24). Conversely, each adjoint symmetry A(x,J]) of ODE (2.24) yields 
u q]nmetrj+ v(x,y)  = l/(A(x,y)) of ODE (2.24). 

Proof From (2.24)-(2.25), it follows that any symmetry v(x,j>) of ODE (2.24) satisfies 

U L ( X ,  Y)+g(x,  Y)v,(x, Y>-gy(x, Y)”, Y )  = 0, (2.29) 

for arbitrary Y(x). In turn, by direct substitution, one can show that ~ ( x ,  1’) satisfies (2.29) 
if and only if A(.Y, Y )  = l j ( v ( s ,  Y ) )  satisfies 

(2.30) 

13 
-g , (x ,  Y )  A(x ,  Y )  -Az(& Y )  +g(x, Y )  Y )  = 0. 

Hence A(x ,  Y )  satisfies the adjoint-invariance condition (2.28). 

For any integrating factor A(x,  Y ) ,  the first integral formula (2.16)-(2.20) yields 

@,(x,y) + D2(x) = const, 

which gives the general solution of ODE (2.24). In terms of any fixed function y”(x), one has 

s = (V-Y)4x,h(y- ,9+Y)> 

k ( 4  = 4% y”) cv”’ -g(x ,  j%, 

N = O ,  

whch leads to 

Unl(x, y )  = 1; Sdh = A(x, z )  dz, @,(x) = k(x) dx. S (2.3 1) 

From the above, we see that for any first-order ODE each adjoint symmetry is an 
integrating factor and, conversely, each integrating factor is an adjoint symmetry. In the 
next section, we will show that this is not the case for higher-order ODEs. 

3 Second-order and higher-order scalar ODEs 

We now show how the framework presented in 52 applies to any second-order scalar ODE 

Y” - ‘ d . 1 . 3  y ,  Y’) = 0 

yen) - g ( x ,  y ,  y’, y”, . . . , y‘n-1’) = 0. 

(3.1) 

(3.2) 

and higher-order scalar ODEs 

3.1 Second-order ODEs 

The linearized ODE for equation (3.1) is given by 

d’v dv 
dx2 dx L [ y ] v  = --g ,--g = 0,  (3.3) 

and the corresponding adjoint ODE is 

d 2 w  d d 2 w  d w  
dx dx dx dx L * [ y ] w  = :+-(gv,w)-gyw = --z+g,>-+(g,,.+J”gz,, +gg,y-g,)w = 0. (3.4) 

The solutions w = A(x, y ,  y’) of ODE (3.4), holding for any y(x) satisfying the second-order 
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ODE (3. l), are the adjoint symmetries of (3.1). Explicitly, the determining equation for an 
adjoint symmetry A ( x , v ,  y’) is given by 

L*[Yl4*x? Y ,  Y’) = A,, + 2Y’ A,.# + 2g Ax.#, + (Y’ ) z  A,, + 2Y’ gA,,, + g’ A,,,, 

+(g,+y’g,+2gg,.)A,.+(g”‘g,.)n,+g,,A,+(g,,.+L’’g,,,+gg,.,.-g,)A = 0,  (3.5) 

which must hold for arbitrary x,y,y ’ .  In turn, an adjoint symmetry A ( x , y , y ’ )  of ODE (3.1) 
yields an integrating factor A(x ,  Y ,  Y’)  of (3.1) i f  and only if A(x ,  Y ,  Y’) satisfies the sdjoint- 
invariance condition 

L*[ Y ] A ( x ,  Y ,  Y’ )  = -( Y”-g)(Ax,.,+ Y ’ A , . ~ , + g A , . , , . , + 2 g , . , A , . , + 2 A ~ + g , . , ~ ,  A) ,  
(3.6) 

which must hold for arbitrary x, Y ,  Y’,  Y” with g = g(x, Y ,  Y’). Thus, the adjoint- 
invariance condition for A(x ,  Y ,  Y’) to be an integrating factor of (3.1) reduces to A(x ,  Y ,  
Y’) ,  solving the linear system of PDEs 

A,, + 2 Y’A,, + 2gA,,, + ( Y’I2 A,, + 2 Y’gA,,, + g2A,,,, + (g,  + Y’g, + 2gg,,) A,,  

+k+ Y’g,.)A,+g,,/i,+(g,,,+ Y’g,,.+gg,,,,-g,)A = 0 (3.7) 

A,,..+ Y’A,.,..+g/i,..,..+2g,.A,..+2A,.+g,..,..A = 0. (3.8) 

given by equation (3.5) with y replaced by Y ,  and 

given by (3.6). Equations (3.7H3.8) must hold for arbitrary values of x, Y ,  Y’. 
Since every second-order ODE (3.1) has an infinite number of integrating factors, it 

follows that there must exist an infinite number of solutions of the system (3.7)-(3.8). 
Unlike the situation for a first-order ODE, where each adjoint symmetry yields an 
integrating factor, solutions of (3.7) are not always integrating factors, since they must also 
satisfy condition (3.8). 

Correspondingly, for each integrating factor the construction formula (2.16H2.20) 
yields the first integral 

@[y]  = @ , ( ~ , y , y ’ ) + @ ~ ( x )  = const 

of equation (3.1). In terms of any fixed function p(x), with r = hy + (1 - h ) j ,  A = A ( x ,  r ,  r’), 
one has 

S = ((Y’ - j’)  - ( Y - 3  g,(x, r ,  r’)) A 

N = (y - j ) (hg(x ,y ,y ’ )+( l  -h)y’”-g(x,r,r’))Ar,, 

- ( y  - j )  ( A ,  + (hy’ + (1 - 47) A ,  + ( M x ,  y ,  y’) + (1  - 4y’”)  4 1 ,  

so that 

S + N  = ( y ’ - j ’ )  A - ( y  - j )  (g(x ,  r,  r’) A,.+(hy’+(l - h ) j ’ ) A r  + A,+g,.(x, r ,  r’) A ) ,  (3.9) 

(3.10) k ( x )  = [ y’” - g(x ,  j ,  7)] A(x ,  j ,  7). 
Consequently, 

@,(x,Y,Y’) = ( S + N ) d h ,  (3.11) s: 
(3.12) 
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3.2 Higher-order ODEs 

For higher-order scalar ODEs (3.2), the adjoint-invariance condition for an integrating 
factor A(x, Y,  Y’, . . . , YCn-l)) yields a linear determining equation which is a relation 
involving x, Y, Y’, ... , Yczn-’), where each of the 2n quantities x,  Y, Y’, ... , Y(2n-2) are to be 
treated as independent variables. This relation is a polynomial expression in terms of Y(n),  
y(n+l) , ‘.. 9 Y(2n-Z),  whose coefficients depend on x,  Y, Y’, . . . , Y(”-l). The coefficient of the 
term independent of Y(n),  Y(lZ+l), . . . , Y(2n-2) ,  yields the determining equation for the adjoint 
symmetries. The coefficients of the other terms in the polynomial expression yield further 
linear PDEs satisfied by A(x, Y,  Y’, . . . , YCn-l)). For n = 2, as shown in (3.6), this splitting 
yields one such linear PDE (from the coefficient of the Y” term). For n = 3, one can show 
that this splitting yields three such linear PDEs from the coefficients of the terms involving 
Y(4),  (Y”’)’ and Y”‘. For n = 4, the splitting yields five such linear PDEs from the coefficients 
of the terms involving Y@),  Y(4)  Y(5) ,  Y(5) , (Y(4))2 and Y(4).  

4 Techniques for obtaining adjoint symmetries yielding first integrals 

For any system of ODEs (2. l), there is an infinite number of linearly independent solutions 
of its corresponding adjoint system (2.6). Hence, a system of ODEs (2.1) always has an 
infinite number of adjoint symmetries. Consequently, in practice one must resort to specific 
ansatze in order to find adjoint symmetries. 

We now focus on nth-order scalar ODEs. Here, one such ansatz is to seek solutions of 
the form w = A(x,  y,  y’, . . . , y(n-z)), which depend upon derivatives of order at most n - 2 
rather than n - 1, for the corresponding adjoint symmetry determining equation (2.6). 

More importantly, if one knows an adjoint symmetry and one or more first integrals 
arising from other adjoint symmetries, then one can use a second ansatz to seek further first 
integrals as follows. For a given nth-order scalar ODE, suppose that 

@,[Yl = c,, . . ‘ , @,[A = c, 
are m functionally independent first integrals corresponding to the nz integrating factors 
A,[ Y ] ,  . . . , A,[ Y ] ,  respectively. Note that 

for any function T(Cl,. . . , C,), generates an inessential first integral T(C,, . . . , C,) = const. 
Now suppose w = A [ y ]  is an adjoint symmetry such that 
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for all functions T(C,, ... , CJ. We observe that for an arbitrary function F(C,, ..., C”,), 

255 

12?= A, [y ]  = F(C,, ..., C,,)A[y] (4.2) 

is also an adjoint symmetry. 
If we substitute w = A,[ Y ] ,  given by equation (4.2) with y replaced by Y ,  into the adjoint- 

invariance condition (2.8), then we obtain a linear determining equation for F. Each 
solution, if any, of this determining equation yields a new integrating factor for the nth- 
order ODE. This will be illustrated through examples in $5. 

A third ansatz which can lead to finding further adjoint symmetries is suggested by the 
following observation. If a given nth-order ODE admits a point symmetry, then each 
integrating factor of the ODE can always be expressed as a product of a multiplier 
expression, and some function of the invariants/differential invariants of the point 
symmetry. Consequently, the ODE admits adjoint symmetries of such a product form. One 
can then try using a known adjoint symmetry or integrating factor as the multiplier 
expression in a trial form in order to seek new adjoint symmetries. In particular, suppose 
a given nth-order ODE admits an integrating factor A [ Y ]  and a point symmetry with 
corresponding invariants/differential u(x, y ) ,  v , ( s ,  y ,  y’), . . . , ~,- , (x ,y ,y ‘ ,  . . . , 
y(”-’)). Let 

(4.3) 

for an arbitrary function f l u ,  u , ,  . . . , un-,). If we substitute w = A,[y] into the adjoint 
symmetry determining equation (2.6), then we obtain a linear determining equation for .f. 
Each solutionf+ const of this determining equation yields a new adjoint symmetry of the 
nth order ODE. In turn, we feed such a new adjoint symmetry into the second ansatz to 
seek further first integrals. 

invariants 

A,[Yl = f lu ,  01,. . . 1  v,-,> “1, 

The above discussion extends naturally to systems of ODES. 

5 Examples 

We now use three examples to illustrate our procedure for obtaining first integrals. 

5.1 Harmonic oscillator 

Consider the harmonic oscillator equation 

y”+y = 0. (5.1) 

The ODE (5.1) is self-adjoint, so that its adjoint symmetries are symmetries. The 
corresponding determining equation (3.5) for an adjoint symmetry w = A ( x , y , y ’ )  becomes 

(5.2) 

Here the extra adjoint-invariance determining equation (3.8) for w = A ( x , y ,  y’) to yield an 
integrating factor becomes 

(5.3) 

Obviously ODE (5.1) admits translations in x and scalings in y which respectively yield 
adjoint symmetries A ,  = y’ and A 2  = y satisfying (5.2). 

Ax= + 2y’A,, - 2yAx,.  + (y’)51yy- 2yy’A,,. +y2Ay.,.  -.v’Ay, -YAY + A = 0. 

A,,. +y’ A,,, -yA,.,. + 2A,  = 0. 
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Clearly, A = y’ satisfies the adjoint-invariance condition (5.3). Since y”+y and y’ are 
= 0 in our construction formula (3.9)-(3.12). Then we non-singular for y = 0, we can set 

have 
S + N  = h[(y’), +y2], 

and hence the corresponding first integral is the energy 

@ = h((y’)’ + V 2 )  dh = :((y’), +y2)  = C, J”: (5.4) 

It is easy to check that the adjoint symmetry A = y does not satisfy the adjoint-invariance 
condition (5.3). Now we try the second ansatz presented in $4, using the previously- 
obtained first integral (5.4). Let 

A = A ,  = F(C,) Y, (5 .5)  

where C, = f((Y’)’+ Y z ) .  Substituting (5 .5)  into the adjoint-invariance condition (5.3), we 
find that F(C,) satisfies the ODE C, F‘ + F = 0. This yields the integrating factor A = 

Y/(( Y’)’ + Yz) .  Since A is singular for Y = 0, we choose y” = 1 in our construction formula 
(3.9)-(3.12). Correspondingly, r = h(y- 1)+ 1,r’ = A>)’, so that 

y’ Y - ( y  - 1) Y’ 

r2 + (r’)’ 
S + N =  , k(x) = 1. 

This leads to the first integral 

which is the phase. 

sin(x - C, + ~ c / 2 ) .  
The first integrals (5.4) and (5.6) lead to the complete reduction y = 

5.2 Frequency-damped oscillator 

As a second example, we use the frequency-damped oscillator equation 

y” + y(y’)2 = 0, (5.7) 
considered by Gordon (1986), Sarlet et al. (1987) and Mimura & N6no (1994). The ODE 
(5.7) is not self-adjoint, so that its adjoint symmetries are not symmetries. Here the adjoint 
symmetry determining equation (3.5) for w = A(x,y,y’) is 

4, + 2Y’ A%?/ - 2Y(Y’)2 4, + (.JV Ayv - AYU, +Y2(Y’)4 Ayfy, 

+(4y2- 1)(y’)3Aii,.-33y(y’)2A,-2~~~’A(i,+(2y2- 1)b’)’A = 0. (5.8) 
The extra adjoint-invariance determining equation (3.8) becomes 

~%?/ ,+y’A~y, -3y(~’)~A?/ ,? / , -4y~’Av,+2Av-2yA = 0. (5.9) 

We try the first ansatz A = A(x,y). Then equation (5.8) leads to the adjoint symmetry 

A ~ axeU2,’2 + 4 Y ) ,  (5.10) 
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with a = const, and l (y )  satisfying the ODE 1“- 3yl‘+ (2y2 - 1 )  I = 0. Substituting (5.10) 
into the adjoint-invariance condition (5.9), we obtain l‘-yl= 0, and thus I(y) = bey”’, 
b = const. Hence we get two integrating factors, A ,  = eY2/’, A ,  = xey2/2.  

Next, we construct the first integral arising from A = A ,  = eY2/’. Clearly, we can set 
j j  = 0 in the construction formulae (3.9H3.12). This leads to the first integral 

@ = y’ s,’ [ 1 + h2 y2]  $*Y2/’ dA = y’ e,2/2 = C 1 7  (5.1 1 )  

after integration by parts on the second term. 

j j  = 0, the construction formulae (3.9H3.12) reduces to 
Now the first integral arising from A = A ,  = xeY2/’ is easy to construct since, again with 

@ = C , x -  y$ , l2dy  = C x -  eU2/’du = C,. (5.12) J-: = =  4 
This yields the general solution l i e U 2 / 2  du = C,  x -  C,  of the ODE (5.7). 

5.3 Wave-speed equation 

For a third example, we consider the fourth-order wave-speed equation 

G 01, y’, y”, y”’~‘~’) = (yy’(y/y’)”)’ = 0, (5.13) 

which arises when one seeks potential symmetries for a wave equation with a variable wave 
speed y(x)  (see Bluman & Kumei, 1987). The ODE (5.13) is not self-adjoint. Its adjoint 
symmetry determining equation for w = A(x, y ,  y’, y”, y”’) is given by 

((A’yy’)” y / (  y’),)’ + (A’yy’)”/y’ - (A’y(y/y”)’)’ + A’y’(y/y’)” = 0. (5.14) 

The adjoint-invariance condition is 

((A’ Y Y ’y Y / (  Y ’)2)’ + (A’ Y Y ’) ”/ Y’ - (A’ Y( Y /  Y”)’)’ + A’ Y ’( Y /  Y ’)” 

= - ((GA m)’’’ - (GA .)” + (GA .)’ - G A  Y)r (5.1 5) 

with A = A(x,  Y, Y’ ,  Y” ,  Y”‘) and G = (YY’ (  Y /  Y’)”)’. 
By inspection, A = 1 satisfies (5.14H5.15), which leads to the first integral 

@ = yy’( y/y’)” = c,. (5.16) 

Since the ODE (5.13) admits translations in x with corresponding invariants y and y’, we 
employ the third ansatz of $4, in conjunction with the integrating factor A = 1 and these 
invariants, and seek adjoint symmetries of the form A = A, =f(y,y’). Then (5.14) becomes 
a polynomial in y”’,y”. The coefficient of (y”’)’ gives y’f,.,. + 3f,. = 0. This yields 
f,. = h ( ~ ) / ( y ’ ) ~  for some function h(y).  Then the coefficient of y”‘ gives the equation 
12y(y’)’ f,.,., + 3y2 f,.,. + 41yy’f,., + 9y’f,. + 12yf, = 0. This leads to h = const, and hence 
f = l/(y’)’. Once can check that A = l/(y’)’ satisfies both the adjoint symmetry determin- 
ing equation (5.14) and the adjoint-invariance condition equation (5.15). The singularity 
of A at y’ = 0 leads us to choose j j  = x in our construction formula (3.9H3.12). The 
resulting first integral is 

@ = -y”’y2/(y’”y’”(y’)~+(yy’’)2/(y’)4 = c,. (5.17) 
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The first integrals (5.16H5.17) reduce the ODE (5.13) to the second-order ODE 

(Y”)’ = ( (C,  - C’(Y’)’) (Y’)’)/Y’. (5.18) 

Now we again use the third ansatz in conjunction with the integrating factors A = 1 and 
A = l/(y’)’ together with the differential invariant a = yy”/(y’)‘ arising from the invariance 
of ODE (5.13) under scalings in both x and y .  

Using the integrating factor 1, we try A = A,  =A&). The adjoint symmetry determining 
equation (5.14) yields f = a’. Feeding this into the second ansatz, we first substitute 
A = AF = F(C,) a’ into the adjoint-invariance restriction (5.1 5). Unfortunately, this yields 
F = 0. Next we substitute A = A ,  = F(C,) a’ into (5.1 5) ,  which then becomes a polynomial 
with terms y(6) ,y(4)y(5) ,y(5) ,  (y‘,)),, (y (4) )2 ,y (4) .  The coefficient of y“) yields F = l/(Cz)‘. One 
can then check that 

satisfies (5.15). From our construction formula we obtain the corresponding first integral 

@ = (yy”/y’)’/C, + (y’)’ = c,. 
However, one can show that the first integral (5.19) is inessential, since C,  = C,/C, .  

adjoint symmetry determining equation (5.14) leads to 
Finally, using the integrating factor l/(y’)’, we try A = A, =fla)/(y’)’. In this case, the 

c / a  
1 + (c/a)’ 

f = tan-’(c/a) + (5.20) 

with c = const. Here c arises from the scaling symmetry a+a/c admitted by the 
determining ODE satisfied by fla). 

One can check that A = fla)/(y’)’ does not satisfy the adjoint-invariance determining 
equation (5.15). Now we try a variant of the second ansatz as follows. We substitute A = 
AF = F(C,) f/(y’)’, where f is given by equation (5.20) with c = H(C,), into the adjoint- 
invariance determining equation (5.15). This leads to F = (CJ3/’ and H = (Cz)’/’. 
Consequently, we obtain the integrating factor 

and our construction formula yields the first integral 

@ = (Cz)-’/’ tan-’(</a)-lny = C,. (5.21) 

The first integrals (5.16), (5.17) and (5.21) reduce the ODE (5.13) to a first order ODE. In 
particular, we have 

y’dC,/C,  - (y’)’ = y cot( <(C4 +In y)).  

Isolating y’, we obtain 
y’ = Gsin(<(C,+lny)) .  
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6 Conclusion 

For any system of ODES, we have derived determining equations which are necessary and 
sufficient conditions satisfied by its integrating factors. In particular, the solutions of these 
determining equations yield all integrating factors. We have also derived a simple explicit 
formula which yields a first integral for each solution. For an nth-order scalar ODE the 
determining equations are a linear system of 2n - 2 PDEs consisting of the adjoint of the 
determining equation for symmetries of the nth-order ODE and an additional 2n-3 
equations when n 2 2. No additional equations arise in the case of a first-order scalar ODE. 

We have introduced special techniques to seek solutions of the determining equations. 
These techniques involve the use of known first integrals, eliminations of variables and 
symmetry considerations. We have exhibited several examples illustrating combinations of 
these techniques. 
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In this paper,theconnectionbetweenpoint symmetriesandtheintegrabilityby quadraturesof second-orderordinary differ-
ential equationsis discussed.An exampleis givenof a familyof second-orderordinarydifferentialequations integrableby quad-
ratureswhosepointsymmetrygroupis, nevertheless,trivial. This refutesthewidespreadbelief that theexistenceof nontrivial
pointsymmetriesisanecessarycondition for theintegrabilityby quadraturesofordinarydifferentialequations.Thesignificance
ofdynamical (versuspoint) symmetriesin this field is illustratedwith a fewrecentresults.

1. Introduction coveredby Lie connectingsymmetry and integra-
bility by quadraturesis the fact that the knowledge

The attempt at understandingthe deepreasons of a (transverse) infinitesimalsymmetryof a first-
underlyingthe integrability by quadraturesof ordi- orderordinarydifferential equation
narydifferentialequationswas oneof themeanrea-

a(x,y)y+b(x,y)=O (1.1)
sonsthat led SophusLie to introduce whatare now
calledLie groups.Basically,Lie’s idea wasthat the automaticallyprovidesan integratingfactor of the
symmetry groupofa differentialequationshouldplay equationand,therefore, enablesusto integrateit by
a central role in itsintegrabilityby quadratures,much quadratures.This integratingfactorhas avery sim-
the same as the roleplayedby the Galois groupofan ple expression; indeed,if
algebraicequationin its solubility by radicals.This

S=~(x,y)o,~+7(x,y)o~ (1.2)idea, althoughnevercarriedoutinall itsscope,is the
leitmotif behindmany successfulapplicationsof Lie is an infinitesimal symmetryof (1.1), then
groupsto theintegrationof differential equations.In M— a +~ ‘ ~13
whatfollows,we shall only list acoupleofkey results —‘ ‘1 ‘~‘

in this direction, referringthe readerto refs. [1—41 is its associated integrating factor.As a matterof fact,
for a morecomprehensivesurvey, this result can be usedto relate mostelementary

(i) Integratingfactorfor first-order ordinary dif- methodsof integratingby quadraturesfirst-orderor-
ferential equations.An infinitesimal (point) sym- dinarydifferentialequationstosymmetryproperties
metry (also calledsymmetryvector) of a differential [1, p. 1391.
equationis avectorfield generating aone-parameter (ii) Integration by quadraturesofsecond-orderor-
group of (point) symmetrytransformationsof the dinary differentialequations.A less well-known re-
equation[1]. The qualifier “point” in the previous suit of SophusLie is that the knowledgeof a two-
definition meansthat we aredealingwith transfor- dimensionalgroupof symmetriesof a second-order
mationsinvolving only the dependentandindepen- ordinarydifferential equation
dentvariablesofthedifferentialequation,butnotits ,, — , 1 4
derivatives;for a moredetailedexplanationof this, y —.~~ y,y
seee.g. ref. [1]. Perhapsthemostgeneral resultdis- makes it possible to integrateit by quadratures

190 0375-9601/88/$03.50© ElsevierSciencePublishersB.V.
(North-HollandPhysicsPublishingDivision)
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[2,4,5]. To give just theflavor of Lie’s method,sup- The resultsdescribedabove, and many others,
posefor instancethat thegeneratorsS1 andS2of the corroborateLie’s beliefin the power,generalityand
known two-parametersymmetry group of (1.4) eleganceof group-theoreticalmethodsfor the inte-
commute: gration of ordinary differential equations.It has

IS S 1 —0 ,,~ ~ graduallybecome clear, however,that the connec-
1, 2 J — ‘ tion betweensymmetry and integrabilityby quad-

Let raturesis far lessdirectandmuch subtlerthanthese
resultssuggest.To illustratethis point, considerthe

S=~(xy)8 +~(xy)a i=l 2 (1.6) .

Y ‘ relatively simple caseof linear second-orderordi-
and narydifferential equations:

1 y’ f y”+a1(x)y’+a0(x)y+b(x)=0. (1.9)
4= ~ ~ —y’~ , (1.7) As iswell known [6], the symmetry groupofall these

~2 12 P7’2 —y’~ equationsis isomorphicto SL(3, ~). However, it is

h obviousthatnot all of them areintegrableby quad-w ere ratures.Hencein this case thestructureof the sym-

g’ g~+y’g~+fg~~. metry group isofno help indetecting the integrability
of (1.9) by quadratures.It is also remarkablethat

Thenthe one-forms
the symmetry groupof any equationof the form

dx dy dy’ (1.9),evenif it is not integrableby quadratures,has
w, =4’ 1 y’ f , ~= 1, 2, (1.8) the maximumdimensionallowedto any second-or-

,~ ,~~y’~~ derdifferential equation,namelyeight [5,7]. Thus,
for example, theequation

are closed,i.e. locally y”=y
3, (1.10)

= dl,, which is integrableby quadratures,has atwo-di-

where thefunctionsI~canbe explicitlycomputedby mensionalsymmetry group(generatedby thevector
integrating (1.8) along suitablepaths.Lie showed fields8. andxä~—y8~),whereas
that I~and‘2 aretwo functionally independentfirst + —0 111
integralsof (1.4),andthereforethisequationcanbe ~‘ xy—
integratedby quadraturesalone, which isnot integrableby quadratures[8], admits

It is importantto emphasizethat Lie’s methodis an eight-dimensionalgroupof point symmetries!
completelyconstructiveandcomputational.In fact, This andotherexamplesshouldmake clearthat
it gives analgorithm, requiringonly a finite number the presenceof symmetriesis not alwayssufficient
of differentiationsandquadratures,forobtainingtwo to ensurethe integrabilityby quadraturesof a dif-
functionally independentfirst integralsof the differ- ferentialequation.It is very tempting, however,to
ential equation(1.4). This algorithmshouldnot be assume the converse,i.e. thateverydifferentialequa-
confusedwith the generalmethod describedin ref. lion which is integrableby quadratures has anon-
[1] to lower by two the order of an arbitraryordi- trivial symmetrygroup.In fact, thebeliefin thelatter
narydifferential equationinvariantundera two-pa- assertionis so widespreadthat it has virtually at-
rameterLie group of transformations.Indeed,the tamedthe statusof a “folk theorem”. This is cer-
latter method,unlike Lie’s, requiresin general the tainly notsurprising, since wehavenotbeenable to
integrationof auxiliary first-orderdifferential equa- find in the copiousliterature on the integrationof
tionsto find the differential invariantsof the sym- ordinary differential equationsa single explicit ex-
metrygroup. Itspracticalvalue,therefore,is limited ampleof a differential equation witha trivial sym-
tothecasesin which the generators are simple enough metry group which isintegrableby quadratures.
that their differential invariantscan be found by Recently, however, this situation has changed,
inspection, since thereare now available explicit examples of

191
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systemsof two second-orderordinary differential y”=y~y’ 2+pg(x)y”y’+g’(x)y”~1 (y>0),
equationsintegrableby quadraturesbutwith a triv- ~2 1
ial symmetry group [9]. It is thegoal of thispaper
to extendthe resultsin ref. [9]to scalar second-or- where p ~ 0 isarealconstantandg�0 isanarbitrary
der ordinary differential equations, presentingex- function. Multiplying this equationby the obvious
amples of equations of this type integrable by integratingfactory —‘ andintegratingoncewe ob-
quadraturesbutpossessing atrivial symmetrygroup. tam the first-orderequation
Theinterestof this stemsfrom thefactthat the case ~ —

of second-orderscalardifferential equationsis the y y —g~x
1y—

simplestfrom both the mathematicalandthe phys- whereC is a realconstant,or equivalently
ical pointsof view. Indeed,physically we aredealing C — ~. .,~ ‘2 2
with particle motion on a straight line, whereas y — y_g~x)y .

mathematicallyscalar second-orderequationsare the This is a Bernouilli equation,and therefore [11,
lowest-order and lowest-dimensionaldifferential p.

22] it is integrableby quadratures.
equationsforwhich theabove“folk theorem”is not Let usnow provethat (2.1)has nonontrivialpoint
trivially true. (This is so because,as iswell known symmetries, unlessg is of one of the special forms
[5,10], every systemof first-orderordinarydiffer- thatwill be describedin a moment. Indeed,let
ential equationspossessesan infinite-dimensional

S=~(xy)ö,~+P7(x,y)ô~ (2.3)symmetrygroup.)Thus,the existence of scalarsec-
ond-orderdifferentialequationsintegrablebyquad- denotea symmetryvector of (2.1). The necessary
raturesandwith atrivial symmetrygroupshowsthat andsufficientconditionfor this is [1,2,5,71
the lack of a direct and universalconnectionbe-
tweensymmetryandintegrabilityby quadraturesis ,7(2) = ~ (2y— ‘y’ +pgy”)
notdue to any subtletyarisingfrom higher-orderor + 17 [ —y— 2y’2+p2gy”~+ (p +1 )g’y”]

higher-dimensionpeculiarities,but lies at the heart
of the matterinstead. +~(pg’y”y’+g”y”~1), (2.4)

We shall endthis sectionwith a few words on the Here as usual
organizationofthis paper.In the next sectionwe shall
deal withthe detailsof the constructionof second- 17(1~P7’_y’~~’,P

7(
2)=(U)’_f~’, (2.5)

order differential equationswith trivial symmetry ~= ~ +3’~8+J~ (2 6)
groupbut integrableby quadratures.Theconcluding — X Y Y

sectionwill be devotedto abrief discussionof the When(2.5) and (2.6) are substitutedin (2.4),it is
possibility of circumventingthe limitations on the clearthat bothsides ofthisequationreduceto poly-
application of symmetries to the integration by nomialsiny’. Equatingthecoefficientsof thesepoly-
quadraturesof differentialequationsoutlinedabove nomials, weobtain the following systemof partial
with the help ofdynamicalsymmetries, differential equationsfor ~and 17:

y~+~,=O, (2.7)

~ (2.8)
2. Integrable differential equationswith a trivial
symmetry group 217xv ~~=pgy”~+ 3g~yP+I ~

(2.9)
In thissection we are going topresenta second- ~.= (2~.—P7

1,)g’y°~’+pgy~P7,~

order differential equation (or, more precisely, a
family of suchequations)with no nontrivial point + (p+ 1 )g’y°17+g”y”~~. (2.10)
symmetries whichis, nevertheless, integrableby Thefirst of theseequationsis easily solvedto yield
quadratures.

Coi~sider,indeed, thedifferential equation ~= d(x) +c(x) lny. (2.11)
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Eq. (2.8) is anEuler equation[ll,p.14l 1. Its gen- (2.20) (which include, in particular,the caseg=0
eralsolution, taken(2.11) into account,is foundto discardedat the outset), (2.1) has nononzeroin-
be finitesimalsymmetries.To concludethissection, let

us summarizeour findingsin a theorem:
~=y[a(x)+b(x)lny+c’(x)(lny)2]

+ ~c(x)g(x)y’~’. (2.12) Theorem. Ifgis notof the form (2.19) or (2.20),
the second-order differentialequation(2.1) admits
no nontrivial symmetries,but it is neverthelessin-

Substitutingnow (2.11) and(2.12) into (2.9) and tegrableby quadratures.
simplifying we obtain the followingequation:

—2pcg2y2”+ [3c”—p(gc)’y”] lny
3. The role of dynamical symmetries

—p2cgy”(lny)2+(4c’g+cg’)y”

= (d”—2b’) +py”(dg)’+2p2gy~(a+blny), As the examplepresentedin theprevioussection
(2.13) shows,theabsenceofpointsymmetriesis no obstruc-

tion to the integrability by quadraturesofa differ-
From the first term in the left-handside of (2.13) entialequation.In otherwords,Lie’s original program
wereadilyobtain of explainingintegrabilityby quadraturesvia sym-

c= 0. (2.14) metryproperties,while certainly fruitful andinspir-
ing, cannot be carriedout in its entirety, at least

Substitutingthis backin (2.14) yields withintherestrictedframeworkofpoint symmetries.
In this section weshallbriefly discussthe possi-b=0 (2.15)

bility of overcomingthisdifficulty by using dynam-
and ical symmetries.A dynamical symmetry(also called

Lie—Bäcldundor generalized symmetry byotherau-d”=O, (2.16)
thors,cf. ref. [1]) of a second-orderordinarydif-

(gd)’+pag=O. (2.17) ferential equation

Finally, it is immediateto check that when eqs. y”=f(x, y,y’) (3.1)
(2.l4)—(2.l6) are taken into account (2.11) re-

is avectorfield
duces to
a”=O. (2.18) X=~(x,y,y’)0~+17(x,y,y’)8~

Now whenad,t~0,i.e. wheneq. (2.1) admitsnon- +~(x,y,y)ô~, (3.2)
trivial symmetries,the form of g is obviously re- such that
strictedby (2.17). It is actuallyquite easyto find
explicitly all the solutionsof (2.17),in view of (2.16) [A, XJ =p(x, y, y’)A, (3.3)
and(2.18).The result is where

g(x)=k
1 e~’(k3+k4x)”~, (2.19) A=8~+y’ô~+f(x,y,y’)ô~ (3.4)

or is thevectorfield associatedto the differentialequa-

g(x)=k6ek71
2, (2.20) tion (3.1).If

wherek
1, ..., k~are realconstantsrelatedto a and d. S~~(x,y)ô + i~(x, y)8,,

(Whengisoftheform (2.20), (2.17) forcesdtobe
is an infinitesimal symmetry of (3.1), then its first

constant, whereaswheng is of the form (2.19) the prolongationmost generald is anaffine functionof x.) Therefore,

unlessg is of one of the special forms(2.19) or S
t1~=S+17~(x,y,y’)8~ (3.5)
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(cf (2.5)) is adynamicalsymmetryof thisequation. its integrationby theabovemechanism. Remarkably
Thus the conceptofdynamicalsymmetry generalizes enough,this is indeedthe case [13]:
that of infinitesimal (point) symmetryintroduced
earlier. Out of a givendynamicalsymmetry(3.2) it Theorem 3.2. If the second-order differential
is always possibleto constructa newdynamicalsym- equation(3.1) is integrableby quadratures,it is al-
metry A” whosex-componentvanishes,namely ways possibleto find two (commuting)nonpropor-

tional dynamicalsymmetriesof the latter equation
(3.6) by quadraturesalone.

Indeed,from (3.3) and (3.6) actually follows the
stronger equality Theprecedingtheoremsstronglysuggestthat there

is a very closelink between integrabilityby quad-
[A, A”] =0. (3.7) raturesof ordinary differential equationsand dy-

namical,insteadof point, symmetries.Thiscertainly
In what follows, we shall alwaysimplicitly assume agreeswith the spirit — if not entirelywith theletter
that our dynamicalsymmetriessatisfy the above — of Lie’s original views on this matterdiscussedin
normalization,i.e. the introduction.Additional work on this subject,

~= 0. (3.8) includingits generalizationto ordinarydifferential
equationsof arbitraryorder,is currentlyinprogress.

A dynamical symmetrysatisfying (3.8) is oftensaid
to be in evolutionaryform, cf. ref. [1].

References
The rationaleof using dynamical symmetriesis

that, while differential equations seldompossess [11P. Olver, Applicationsof Lie groupsto differential equa-

nontrivial point symmetries,it canbe shown that lions (Springer,Berlin, 1986).

everyordinarydifferentialequationadmitsan infin- [21A. Cohen,An introductionto theLie theoryof one-param-
ity of linearly independentdynamical symmetries etergroups(Heath,New York, 1911).

[10]. On theother hand,it canalso beshownthat [31L.E.Dickson,Ann. Math.25 (1924)287.[4] L. Bianchi, Lezionisullateoriadcigruppicontinuifiniti di
Lie’s result on theintegrabilityby quadraturesof trasformazioni(Spoerri,Pisa,1918).
second-orderordinarydifferential equationsinvar- [5] S. Lie, Differentialgleichungen (Teubner,Leipzig, 1891).

iant undera two-dimensionalgroupof point sym- [61A. Gonzalez-Lopez,J. Mat. Phys.29 (1988)1097.

metriesquotedin the introductioncanbe suitably [7] F. Gonzãlez-GascOnandA. Gonzalez-LOpez,J. Math.Phys.24 (1983)2006.
generalized to dynamical symmetries.More pre- [811. Kaplansky,An introductionto differentialalgebra(Her-

cisely [12], we havethe followingtheorem: mann,Paris, 1976)§26.

[9] F. Gonzhlez-GascOnandA. Gonzalez-LOpez, Phys.Lett. A

Theorem 3.1. If two nonproportionaldynamical 129 (1988) 153.
symmetries— not necessarily generating a Liealge- [10] F. González-GascOnandA. Gonzalez-LOpez,Lett. Nuovo

Cimento32(1981)353.bra— ofthe second-orderdifferentialequation(3.1) [11] EL. Ince, Ordinary differential equations (Dover, New

areknown,thenthelatterequationcanbeintegrated York, 1957) [reprint].

by two quadraturesat most. [12] F. Gonzhlez-GascOnand A. Gonzalez-LOpez,Dynamical
symmetriesandintegrationof differential equations,Proc.
International Days on Synergetics,order and chaos,

It is thereforenotunreasonableto conjecturethat, Madrid (Spain),October1987.
whenevera second-order differentialequationis in- [13] A. Gonzalez-LOpez,Integrationby quadraturesof ordinary

tegrable byquadratures,it isalwayspossibletoeffect differentialequations,in preparation.

194



15 Integrating Factors and ODE Patterns. By E.S.
Cheb-Terraba, A.D. Rochea (1997)

380



ar
X

iv
:p

hy
si

cs
/9

71
10

27
v2

  [
ph

ys
ic

s.
co

m
p-

ph
] 

 1
 J

un
 1

99
8 Universidade do Estado do Rio de Janeiro

Instituto de F́ısica

IF-UERJ-2/97
Preprint
November 1997

Integrating Factors and ODE Patterns

E.S. Cheb-Terrab1,2, A.D. Roche1

Abstract

A systematic algorithm for building integrating factors of the form µ(x, y′) or µ(y, y′) for non-linear
second order ODEs is presented. When such an integrating factor exists, the algorithm determines
it without solving any differential equations. Examples of ODEs not having point symmetries are
shown to be solvable using this algorithm. The scheme was implemented in Maple, in the framework
of the ODEtools package and its ODE-solver. A comparison between this implementation and other
computer algebra ODE-solvers in tackling non-linear examples from Kamke’s book is shown.

(Submitted for publication in Journal of Symbolic Computation)

1Department of Computer Science, Faculty of Mathematics, University of Waterloo, Ontario, Canada
2Symbolic Computation Group, Departamento de F́ısica Teórica, IF-UERJ.
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1 Introduction

¿From a practical point of view, when developing solving methods for ODEs, what one actually does is
attempt to determine families of ODEs which can be transformed into algebraic problems or into simple
ODEs such as3 y′ = F (x) or y′ = F (y) by changes of variables or equivalent processes. For high order
ODEs, one hopes that such a simplification of the problem will be possible after successive reductions of
order. Some more powerful schemes are also able to exploit other information, as for instance integrating
factors or the ODE’s symmetries, and so to try a multiple reduction of order at once (see for instance [2]
and [3]).

In the specific case of integrating factors, although in principle it can always be determined whether
a given ODE is exact (a total derivative), there is no known universal scheme for making ODEs exact.
Actually, for nthorder ODEs - as in the case of symmetries - integrating factors are determined as solutions
of an nthorder linear PDE in n+1 variables, and to solve this determining PDE is a major problem in
itself.

Bearing this in mind, this paper presents a method for obtaining integrating factors of the form
µ(x, y′) and µ(y, y′) for non-linear second order explicit ODEs4, using a different approach, based only
on a computerized analysis of the pattern of the given ODE. That is, for a given ODE, if an integrating
factor with such a functional dependence exists, the scheme returns the integrating factor itself without
solving any differential equations.

The exposition is organized as follows. In sec. 2, the use of integrating factors for solving ODEs is
briefly reviewed. In sec. 3, the scheme for obtaining the aforementioned integrating factors µ(x, y′) or
µ(y, y′) is presented and some examples are given. In sec. 4, some aspects of the integrating factor and
symmetry approaches are reviewed, and their complementariness is illustrated with two ODE families
not having point symmetries. Sec. 5 contains some statistics concerning the new solving method and
the second order non-linear ODEs found in Kamke’s book, as well as a comparison of performances of
computer algebra packages in solving a related subset of these ODEs. In sec. 6 the computer algebra
implementation of the scheme in the framework of the ODEtools package [4] is outlined, and a description
of the package’s new command, redode, is presented. Finally, the conclusions contain some general
remarks about this work and its possible extensions.

Aside from this, in the Appendix, a table containing extra information concerning integrating factors
for some of Kamke’s ODEs is presented.

2 Integrating factors and reductions of order

2.1 First order ODEs

The idea of looking for an integrating factor (µ) is usually presented in the framework of solving a given
first order ODE, say,

y′ = Φ(x, y) (1)

If by multiplying Eq.(1) by a factor µ(x, y), the ODE becomes a total derivative5,

µ(x, y) (y′ − Φ(x, y)) =
d

dx
R(x, y) (2)

for some function R, then one can look for µ as a solution to the first order PDE:

∂µ

∂x
+

∂

∂y

(

µΦ

)

= 0 (3)

which arises as the exactness condition for the problem (see Eq.(7)). Once µ has been obtained, R(x, y)
- an implicit form solution - can be calculated as a line integral.

3Throughout this article, we use the notation y = y(x), y′ = dy

dx
, y(n) = dny

dxn .
4We say that a second order ODE is in explicit form when it appears as y′′ −Φ(x, y, y′) = 0.
5In this paper we use the term “integrating factor” in connection with the explicit form of the ODE, i.e., the ODE,

turned exact by taking the product µODE, is assumed to be of the form y′′ = Φ(x, y, y′) or y′′ − Φ(x, y, y′) = 0.
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Although to solve Eq.(3) for µ is as difficult as the original problem, it turns out that for a given

N(x, y), when a solution of the form µ(x, y) =
∼

µ (q)N(x, y) exists - q is either x or y only - µ can

be determined by solving an auxiliary linear first order ODE. For example, introducing µ(x, y) =
∼

µ

(x)N(x, y) and M(x, y) = N(x, y)Φ(x, y), one obtains:

∼

µ (x) = C1 e

−
∫

1

N

(

∂M

∂y
+
∂N

∂x

)

dx

(4)

and a solution
∼

µ (x) exists only when the integrand in above does not depend on y. This gives both an
existence condition and an explicit solution to the problem; however, the advantages of the scheme are
only apparent since there is no way to determine in advance what would be the appropriate N(x, y).

2.2 High order ODEs

Integrating factors for high order ODEs are defined as in the first order case. Here, we consider
µ(x, y, y′, ..., y(n−1)) to be an integrating factor for an nthorder ODE, say

y(n) = Φ(x, y, y′, ..., y(n−1)) (5)

if after multiplying the explicit ODE by µ we obtain a total derivative:

µ
(

y(n) − Φ
)

=
dR

dx
(6)

for some function R(x, y, y′, ..., y(n−1)). To determine µ, one can try to solve for it in the exactness
condition, obtained applying Euler’s operator to the total derivative H ≡ µ

(

y(n) − Φ
)

:

∂H

∂y
− d

dx

(

∂H

∂y′

)

+
d2

dx2

(

∂H

∂y′′

)

+ ...+ (−1)n
dn

dxn

(

∂H

∂y(n)

)

= 0 (7)

Now, it can be shown by induction that Eq.(7) is always of the form

A(x, y, y′, ..., y(2n−3)) + y(2n−2)B(x, y, y′, ..., y(n−1)) = 0 (8)

where A is of degree n-1 in y(n) and linear in y(k) for n < k ≤ (2n− 3), so that Eq.(8) can be split into
an overdetermined system of PDEs for µ. For example, for second order ODEs Eq.(7) is of the form

A(x, y, y′) + y′′ B(x, y, y′) = 0 (9)

Hence, by taking A(x, y, y′) = 0 and B(x, y, y′) = 0 we have a system of two PDEs for µ:

A(x, y, y′) ≡ (10)
(

∂2µ

∂y′∂x
+

(

∂2µ

∂y′∂y

)

y′ − ∂µ

∂y

)

Φ +

(

∂2Φ

∂y′∂x
− ∂Φ

∂y
+

(

∂2Φ

∂y′∂y

)

y′
)

µ

+

(

∂2µ

∂y2

)

y′
2
+

((

∂µ

∂y′

)

∂Φ

∂y
+

(

∂µ

∂y

)

∂Φ

∂y′
+ 2

(

∂2µ

∂x∂y

))

y′

+

(

∂µ

∂y′

)

∂Φ

∂x
+

(

∂µ

∂x

)

∂Φ

∂y′
+
∂2µ

∂x2
= 0

B(x, y, y′) ≡ (11)

2
∂µ

∂y
+

(

∂2µ

∂y′
2

)

Φ+ 2

(

∂µ

∂y′

)

∂Φ

∂y′
+ µ

∂2Φ

∂y′
2 +

∂2µ

∂y′∂x
+

(

∂2µ

∂y′∂y

)

y′ = 0
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Nonetheless, there are no general rules which might help in solving these PDEs6.
Alternatively, a possible strategy for directly obtaining R instead of looking for µ can be formulated

as follows. Consider the first order linear operator associated to Eq.(5)

A : f → ∂f

∂x
+ y′

∂f

∂y
+ y′′

∂f

∂y′
+ ...+Φ

∂f

∂y(n−1)
(12)

where x, y and its derivatives are all treated as independent variables on the same footing. Now

A(R) = 0 (13)

and there are n functionally independent solutions (first integrals) to the problem. In some cases, a first
integral R such that dR/dy(n−1) 6= 0 can be obtained as the solution to a subset of the characteristic
strip of A(R) = 0, or by other means.

3 Integrating Factors and ODE patterns

Since the classical way for determining integrating factors leads to problems similar in difficulty to solving
the ODEs themselves, we consider here a different approach, based on a careful matching of an ODE
pattern.

The starting point is the observation that it is trivial to solve the inverse problem; i.e., to find the
most general ODE having a given µ. In fact, from Eq.(6), we have

µ(x, y, y′, ..., y(n−1)) =
∂ R

∂y(n−1)
(14)

and hence the reduced ODE R is of the form

R = G(x, y, ..., y(n−2)) +

∫

µ dy(n−1) (15)

for some function G. Inserting Eq.(15) into Eq.(13) and solving for y(n) leads to the general form of an
ODE having µ as integrating factor:

y(n) =
−1

µ

[

∂

∂x

(∫

µ dy(n−1) +G

)

+ ...+ y(n−1) ∂

∂y(n−2)

(∫

µ dy(n−1) +G

)]

(16)

The expression above then becomes an ODE pattern which one can try to match against an input ODE.
The generation of such pattern matching routines is difficult, even for restricted subfamilies of integrating
factor, but once built, they are a powerful and computationally efficient way to reduce the order of the
corresponding ODEs (see sec. 5).

3.1 Second order ODEs and the integrating factor family µ(x, y′)

In the case of second order ODEs, if instead of considering the general case µ(x, y, y′) we restrict the
family of integrating factors under consideration to µ(x, y′), Eq.(15) - the reduced ODE - becomes

R(x, y, y′) = F (x, y′) +G(x, y) (17)

for some functions G and F , where

µ(x, y′) = Fy′(x, y
′) (18)

(we denote Fy′ =
∂F

∂y′
). Eq.(16) can then be written in terms of F and G as

6In a recent work by [5] (1997), the authors arrive at Eq.(9) and Eq.(11) - numbered there as (3.5) and (3.8) - departing
from the adjoint linearized system corresponding to a given ODE; the possible splitting of Eq.(8) into an overdetermined
system for µ is also mentioned. However, in formula (3.5) of that work, y′′ of Eq.(9) above appears replaced by Φ(x, y, y′),
and the authors discuss possible alternatives to tackle Eqs.(9) and (11) instead of Eqs.(10) and (11).
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y′′ = Φ(x, y, y′) ≡ −Fx(x, y
′) +Gx(x, y) +Gy(x, y) y

′

Fy′(x, y
′)

(19)

The idea is now to build a routine to determine if a given ODE can be written in the form Eq.(19), in
which case it will have an integrating factor of the form µ(x, y′), and if so, determine it, leading to the
reduced ODE Eq.(17) by means of standard methods (see for instance [6] p.221). The feasibility of such
a computational routine is based on the following theorem.

Theorem 1 Given a nonlinear second order ODE

y′′ = Φ(x, y, y′) (20)

(∂Φ∂y 6= 0) 7 for which an integrating factor of the form µ(x, y′) exists, such an integrating factor can be

systematically determined without solving any differential equations.

PROOF. We divide the proof in two steps. In the first step we assume that, given Eq.(20), it is always
possible to determine µ(x, y′) up to a factor depending on x; that is, to find some F(x, y′) satisfying

F(x, y′) =
µ(x, y′)
∼

µ (x)
(21)

for some unknown function
∼

µ (x). We then prove that the knowledge of F(x, y′) is enough to determine
∼

µ (x) by means of a simple integral, hence leading to the desired µ(x, y′).
In a second step, we prove our assumption, that is, we show how to find F(x, y′) satisfying Eq.(21),

concluding the proof of the theorem.

3.1.1 Determination of
∼

µ (x) when F(x, y′) is known

Starting with the first aforementioned step, we assume that we can determine F(x, y′). It follows from
Eqs.(18), (19) and (21) that

∂

∂y

(

Φ(x, y, y′) F(x, y′)

)

=
Gy x(x, y) +Gy y(x, y) y

′

∼

µ (x)
(22)

so that by taking coefficients of y′ in ∂Φ
∂y F we obtain

ϕ1 ≡ Φy(x, y, y
′)F(x, y′)− y′

∂

∂y′

(

Φy(x, y, y
′)F(x, y′)

)

=
Gy x(x, y)

∼

µ (x)

ϕ2 ≡ ∂

∂y′

(

Φy(x, y, y
′)F(x, y′)

)

=
Gy y(x, y)

∼

µ (x)
(23)

Similarly, we obtain

ϕ3 ≡ − ∂

∂y′

(

Φ(x, y, y′) F(x, y′)

)

=
Fy′ x(x, y

′) +Gy(x, y)
∼

µ (x)

ϕ4 ≡ ∂

∂y′
F(x, y′) =

Fy′ y′(x, y
′)

∼

µ (x)
(24)

Now, since Eq.(20) is nonlinear by hypothesis, either ϕ2 or ϕ4 is different from zero, so that at least

one of the pairs of ratios {ϕ1, ϕ2} or {ϕ3, ϕ4} can be used to determine
∼

µ (x) as the solution of an
auxiliary first order linear ODE. For example, if ϕ2 6= 0,

7ODEs missing y may also have integrating factors of the form µ(x, y′), which cannot be determined using the scheme
here presented. However, such integrating factors are not really relevant since these ODEs can always be reduced to first
order by a simple change of variables.
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∂

∂y

(

ϕ1(x, y)
∼

µ (x)
)

=
∂

∂x

(

ϕ2(x, y)
∼

µ (x)
)

(25)

and we obtain

∼

µ (x) = e

∫

1

ϕ2

(

∂ϕ1

∂y
− ∂ϕ2

∂x

)

dx

(26)

If ϕ2 = 0 then ϕ4 6= 0 and we obtain

∼

µ (x) = e

∫

1

ϕ4

(

∂ϕ3

∂y′
− ∂ϕ4

∂x

)

dx

(27)

Eqs.(26) and (27) alternatively give both an explicit solution to the problem and an existence condition,

since a solution
∼

µ (x) - and hence an integrating factor of the form µ(x, y′) - exists if the integrand in
Eq.(26) or Eq.(27) only depends on x. △
Example: Kamke’s ODE 37.

y′′ = −2 y y′ − f(x)
(

y′ + y2
)

+ g(x) (28)

This example is interesting8 because it has no point symmetries for arbitrary f(x) and g(x) (see sec. 4).
For this ODE, F(x, y′) was determined (see sec. 3.1.2) as:

F(x, y′) = 1 (29)

from which (Eq.(22))

Gy x(x, y) +Gy y(x, y) y
′

∼

µ (x)
= −2y f(x)− 2y′ (30)

and then as in Eq.(23) we obtain

ϕ1 = −2y f(x)

ϕ2 = −2 (31)

Using this in Eq.(26), we get

∼

µ (x) = e

∫

f(x) dx

(32)

and so, from Eq.(21), since F(x, y′) = 1, µ(x, y′) =
∼

µ (x).

3.1.2 Determination of F(x, y′)

We now prove our assumption, that is, we show how to obtain a function F(x, y′) satisfying Eq.(21) from
the knowledge of Φ(x, y, y′), and without solving any differential equations.

Since we have already assumed that the given ODE has an integrating factor of the form µ(x, y′),
then there exist some functions F (x, y′) and G(x, y) such that it is possible to rewrite Φ(x, y, y′) - the
right-hand-side (RHS) of the given ODE - as in Eq.(19). We then start by considering the expression

Υ ≡ ∂Φ

∂y
= −Gx y(x, y) +Gy y(x, y) y

′

Fy′(x, y
′)

(33)

8For ODE 6.37, Kamke shows a reduction of order to a general Riccati ODE, based on the theory for ODEs having
solutions with no movable critical points - see [7], and [8] p 331.
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and the possible cases.

Case A

The first case happens when the ratio Gx y(x, y)/Gy y(x, y) depends on y; i.e., Gx y(x, y) and Gy y(x, y)
are linearly independent w.r.t y. To determine whether this is the case, note that we cannot just analyze
the mentioned ratio itself since it is unknown. However, we can always select the factors of Υ containing
y, and check if this expression also contains y′. If so, we just determine Fy′(x, y

′) up to a factor depending

on x, that is, the required F(x, y′), as the reciprocal of the factors of Υ which depend on y′ but not y. △
Example: Kamke’s ODE 226

This ODE is presented in Kamke’s book already in exact form, so we start by rewriting it in explicit
form as

y′′ =
x2yy′ + xy2

y′
(34)

We determine Υ (Eq.(33)) as

Υ =
x(xy′ + 2y)

y′
(35)

The only factor of Υ containing y is:

xy′ + 2y (36)

and since this also depends on y′, F(x, y′) is immediately given by

F(x, y′) = y′ (37)

Case B

When the expression formed by all the factors of Υ containing y does not contain y′, it is impossible
to determine a priori whether one of the functions {Gxy(x, y), Gy y(x, y)} is zero, or alternatively their
ratio does not depend on y. We then proceed by assuming the former, build an expression for F(x, y′)

as in Case A, and determine
∼

µ (x) as explained in the previous subsection. If this doesn’t lead to the
required integrating factor, we then proceed as follows.

Case C

In this case, we assume that neither Gx y(x, y) nor Gy y(x, y) are zero and their ratio is a function of
just x, so that we have

Gx y(x, y) = v1(x) w(x, y)

Gy y(x, y) = v2(x) w(x, y) (38)

for some unknown functions v1(x) and v2(x), such that Eq.(33) can be factored as

Υ = w(x, y)
(v1(x) + v2(x) y

′)

Fy′(x, y
′)

(39)

for some function w(x, y) which can always be determined as the factors of Υ depending on y. To
determine Fy′(x, y

′) up to a factor depending on x, we then need to determine the ratio v1(x)/v2(x). For

this purpose, from Eq.(38) we build an auxiliary PDE for Gy(x, y),

Gx y(x, y) =
v1(x)

v2(x)
Gy,y(x, y) (40)

The general solution of Eq.(40) is given by

Gy(x, y) = G (y + p(x)) (41)
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where G is an arbitrary function of its argument and for convenience we introduced

p′(x) ≡ v1(x)/v2(x) (42)

We can now determine p′(x), that is, the ratio v1/v2 we were looking for, as follows. Taking into account
Eq.(38), we arrive at

v2(x)w(x, y) = G′(y + p(x)) (43)

By taking the ratio between this expression and its derivative w.r.t y we obtain

H(y + p(x)) ≡ ∂w

∂y
/w =

G′′(y + p(x))

G′(y + p(x))
(44)

that is, a function of y + p(x) only, which we can determine since we know w(x, y). If H′ 6= 0, we obtain
p′(x) as

p′(x) =
∂H
∂x

/
∂H
∂y

=

(

∂2w
∂y2∂x

)

w −
(

∂w
∂y

)

∂w
∂x

(

∂2w
∂y2

)

w −
(

∂w
∂y

)2 (45)

Once we determined p′(x), from Eq.(39) we determine F(x, y′) as

F(x, y′) =
(p′ + y′) w

Υ
(46)

where Υ, w(x, y) and p′(x) are now all known. △
Example: Kamke’s ODE 136.

We begin by writing the ODE in explicit form as

y′′ =
h(y′)

x− y
(47)

This example is interesting since the standard search for point symmetries is frustrated from the very
beginning: the determining PDE for the problem will not split due to the presence of an arbitrary function
of y′. Here Υ (Eq.(33)) is determined as

Υ = − h(y′)

(x− y)2
(48)

and w(x, y) as

w(x, y) =
1

(x− y)2
(49)

Then H(y + p(x)) (Eq.(44)) becomes

H =
2

x− y
(50)

and hence, from Eq.(45), p′(x) is

p′(x) = −1 (51)

so from Eq.(46):

F(x, y′) =
1− y′

h(y′)
(52)

Case D

We now discuss how to obtain p′(x) when H′(y + p(x)) = 0. We consider at first the case in which
H = 0, hence G′′ = 0, and so, recalling Eq.(41), we see that
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G(x, y) = B1 (y + p(x))2 +B2 (y + p(x)) + g(x) (53)

for some function g(x) and some constants B1, B2. Recalling Eq.(19), Φ(x, y, y′) takes the form

Φ(x, y, y′) = −Fx(x, y
′) + g′(x) + (2B1 (y + p(x)) +B2)(y

′ + p′(x))

Fy′(x, y
′)

(54)

We can now obtain explicit equations where the only unknown is p(x) as follows. First, from the knowledge
of Υ and Φ we build the two explicit expressions:

Λ ≡ 1

Υ
= −

Fy′

2B1 (y′ + p′(x))
(55)

and

Ψ ≡ Φ(x, y, y′)

Υ
− y =

Fx + g′(x)

2B1 (y′ + p′(x))
+ p(x) +

B2

2B1
(56)

It is now clear from Eq.(55) and Eq.(56) that Λ and Ψ are related by the following equation:

∂

∂x

(

(y′ + p′(x)) Λ

)

+
∂

∂y′

(

(y′ + p′(x)) Ψ

)

= p(x) +
B2

2B1
(57)

where the only unknowns are p(x), B1, and B2. By differentiating the equation above w.r.t y′ and x we
obtain two equations where the only unknown is p′(x):

Λy′p
′′(x) + (Λ

xy′ +Ψy′y′)(y
′ + p′(x)) + Λx + 2Ψy′ = 0 (58)

Λ p′′′(x) + (Λxx +Ψy′x)(y
′ + p′(x)) + (Λx +Ψy′)p

′′(x) + Ψx = p′(x) (59)

As a shortcut, if (Λ
xy′ + Ψy′y′)/Λy′ depends on y′, then we can build a linear algebraic equation for

p′(x) by solving for p′′(x) in Eq.(58) and differentiating w.r.t. y′. Otherwise, in general we obtain p′(x)
by solving a linear algebraic equation built by eliminating p′′(x) between Eq.(58) and Eq.(59)9.

If Eq.(58) depends neither on p′(x) nor on p′′(x) this scheme will not succeed. However, it is possible
to prove that in that case the original ODE is already linear, and easy to solve. To see this, we set to
zero the coefficients of p′(x) and p′′(x) in Eq.(58), obtaining:

Λy′ = Λ
xy′ +Ψy′y′ = Λx + 2Ψy′ = 0 (60)

from which Λ is a function of x only, and then

Ψy′y′ = 0 (61)

If we now rewrite F (x, y′) as in

F (x, y′) = Z(x, y′)− g(x)− Λ(y′ + p′)2 B1 (62)

and introduce this expression in Eq.(55), we obtain Zy′ = 0; similarly, using this result, Eq.(56), Eq.(61)

and Eq.(62) we obtain Zx = 0. Hence, Z is a constant. Finally, taking into account that Z is constant,
Eq.(62) and Eq.(54), we see that the ODE Eq.(20) which led us to this case is just a non-homogeneous
linear ODE of the form

(y + p)′′ + (Λ′(y + p)′ − 2(y + p)−B2/B1)/2Λ = 0 (63)

which homogeneous part does not depend on p(x):

9From Eq.(55), Λ 6= 0, so that Eq.(59) always depends on p′′′(x), and solving Eq.(58) for p′′(x) and substituting twice
into Eq.(59) will lead to the desired equation for p′(x). If Eq.(58) depends on p′(x) but not on p′′(x), then Eq.(58) itself is
already a linear algebraic equation for p′(x).
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y′′ +
Λ′(x)

2Λ(x)
y′ − y

Λ(x)
= 0 (64)

and which solution is in any case straightforward. △
Example: Kamke’s ODE 66.

This ODE is given by

y′′ = a (c+ bx+ y)
(

y′
2
+ 1
)3/2

(65)

Proceeding as in Case A, we determine Υ, w(x, y), and H(y + p(x)) as

Υ = a
(

y′2 + 1
)3/2

; w(x, y) = 1; H = 0 (66)

From the last equation we realize that we are in Case D. We determine Λ and Ψ (Eqs. (55), (56)) as:

Λ =
1

(

y′
2
+ 1
)3/2

a

Ψ = c+ b x (67)

We then build Eq.(57) for this ODE:

p′′(x)
(

y′
2
+ 1
)3/2

a

+ c+ b x = p(x) +
B2

2B1
(68)

Differentiating w.r.t. y′ leads to Eq.(58):

− 3
p′′(x) y′

(

y′
2
+ 1
)5/2

a

= 0 (69)

from which it follows that p′′(x) = 0. Using this in Eq.(59) we obtain:

p′(x) = b (70)

after which Eq.(46) becomes

F(x, y′) =
y′ + b

a
(

y′
2
+ 1
)3/2

(71)

Case E

We now show how to obtain p′(x) when H′(y + p(x)) = 0 and H = G′′/G′ is a constant, B1, which is
different from zero; so G′ is an exponential function of its argument (y + p(x)) and hence from Eq.(41)

G(x, y) = B2e
(y+p(x))B1 + (y + p(x))B3 + g(x) (72)

for some constants B2, B3 and some function g(x). In this case, it is always possible to arrive at an
algebraic equation for p′(x), though the case entails some subtleties. First of all, Φ(x, y, y′) will be of the
form

Φ(x, y, y′) = −Fx(x, y
′) + g′(x) +

(

B2B1e
(y+p(x))B1 +B3

)

(y′ + p′(x))

Fy′(x, y
′)

(73)

Now, taking advantage of the fact that we explicitly know B1, we build our first explicit expression by
dividing B1e

yB1 by Υ:
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Λ ≡ −
Fy′

B2ep(x)B1 (y′ + p′(x))
(74)

We now multiply Φ by Λ and subtract B1e
B1y to obtain our second explicit expression:

Ψ ≡ 1

B2ep(x)B1

(

Fx + g′(x)

y′ + p′(x)
+B3

)

(75)

Now, as in Case D, Λ and Ψ are related by

∂

∂x

(

(y′ + p′(x)) Λ

)

+ (y′ + p′(x)) p′(x)ΛB1 +
∂

∂y′

(

(y′ + p′(x))Ψ

)

=
B3

B2ep(x)B1

(76)

where the only unknowns are B2, B3 and p(x). We build a first equation for p′(x) by differentiating
Eq.(76) with respect to y′

(

p′′(x) + p′(x)
2
B1

)

Λy′ + p′(x)

(

y′Λy′B1 + ΛB1 + Λ
xy′ +Ψy′y′

)

(77)

+2Ψy′ + Λx + y′Λ
xy′ + y′Ψy′y′ = 0

The problem now is that, due to the exponential on the RHS of Eq.(76), differently from Case D, we are
not able to obtain a second expression for p′(x) by differentiating w.r.t x. The alternative we have found
to determine p′(x) can be summarized as follows.
We first note that if Λy′ = 0, Eq.(77) is already a linear algebraic equation for p′10, so that we are

only worried with the case Λy′ 6= 0. With this in mind, we divide Eq.(77) by Λy′ and, if the resulting

expression depends on y′, we directly obtain a linear algebraic equation in p′(x) just differentiating w.r.t
y′.△
Example:

y′′ =
y′ (xy′ + 1) (−2 + ey)

y′x2 + y′ − 1
(78)

This example is interesting because it involves a non-rational dependency on y(x) - the dependent variable
- thus being out of the scope of most of the symmetry analysis software presently available. It is also
curious that there are no examples of this type in all of Kamke’s set of non-linear second order ODEs. On
the other hand, using the algorithm here presented, proceeding as in Case A, we determine Υ, w(x, y),
and H(y + p(x)) as

Υ =
y′(xy′ + 1)ey

y′x2 + y′ − 1
; w(x, y) = ey; H = 1 (79)

From the last equation we know that we are in Case E. We then determine Λ and Ψ as in Eqs. (74) and
(75):

10We can see this by assuming Λy′ = 0 and that Eq.(77) does not contain p′, and then arriving at a contradiction as

follows. We first set the coefficients of p′ in Eq.(77) to zero, arriving at

0 = B1 Λ + Ψy′y′ = 2Ψy′ +Λx +Ψy′y′y
′ (A)

Eliminating Ψy′y′ gives

2Ψy′ = B1 Λ y′ − Λx

Differentiating the expression above w.r.t y′ and since Λy′ = 0 we have,

2Ψy′y′ = B1 Λ

Finally using Eq.(A), 0 = Λ, contradicting Fy′ 6= 0.
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Λ =
y′x2 + y′ − 1

y′(xy′ + 1)

Ψ = −2 (80)

Now, we build Eq.(76):

1

xy′ + 1

((

p′′ + p′
2
+ y′

2 (xp
′ − 1)

xy′ + 1

)(

x2 + 1− 1

y′

)

+ 2 xp′ − 2

)

=
B3

B2 ep
(81)

and, differentiating w.r.t. y′, we obtain (Eq.(77)),

2 xy′ + 1− (x3 + x)y′
2

y′
2
(xy′ + 1)2

(

p′′ + p′
2
)

+
2 y′ − 1− 2 x+ xy′

(xy′ + 1)
3 (xp′ − 1) = 0 (82)

Proceeding as explained, dividing by Λy′ and differentiating w.r.t. y′ gives

∂

∂y′

(

y′
2 2 y′ − 1− 2 x+ xy′

(xy′ + 1) (2 xy′ + 1− (x3 + x)y′
2
)

)

(xp′ − 1) = 0 (83)

Solving for p′(x) gives p′(x) = 1/x, from which (Eq.(46)):

F(x, y′) =

(

y′ − 1

x

)

y′x2 + y′ − 1

y′(xy′ + 1)
(84)

Case F

The final branch occurs when Eq.(77) divided by Λy′ does not depend on y′ (so that we will not be

able to differentiate w.r.t y′). In this case we can build a linear algebraic equation for p′(x) as follows.
Let us introduce the label β(x, p′, p′′) for Eq.(77) divided by Λy′ , so that Eq.(77) becomes:

Λy′(x, y
′) β(x, p′, p′′) = 0 (85)

Again, since we obtained Eq.(77) by differentiating Eq.(76) with respect to y′, we see that Eq.(76) can
be written in terms of β by integrating Eq.(85) with respect to y′:

Λ(x, y′)β(x, p′, p′′) + γ(x, p′, p′′) =
B3

B2ep(x)B1

(86)

where γ(x, p′, p′′) is the constant of integration, and can be determined explicitly in terms of x, p′ and
p′′ by comparing Eq.(86) with Eq.(76). Taking into account that β(x, p′, p′′) = 0, we see that Eq.(86)
reduces to:

γ(x, p′, p′′) =
B3

B2ep(x)B1

(87)

We can remove the unknowns B2 and B3 after multiplying Eq.(87) by ep(x)B1 , differentiating with respect
to x, and then dividing once again by ep(x)B1 . We now have our second equation for p′, which we can
build explicitly in terms of p′, since we know γ(x, p′, p′′) and B1:

dγ

dx
+B1 p

′γ = 0 (88)

Eliminating the derivatives of p′ between Eq.(85) and Eq.(88) leads to a linear algebraic equation in p′.
Once we have p′, the determination of F(x, y′) follows directly from Eq.(46). ✷
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3.2 Integrating factors of the form µ(y, y′)

Just as in the previous section, from Eq.(16), the ODE family admitting an integrating factor of the form
µ(y, y′) is given by

y′′ = − y′

µ(y, y′)

(∫

µydy
′ +Gy

)

− Gx

µ(y, y′)
(89)

For this ODE family, it would be possible to build a pattern matching routine as done in the previous
section for the case µ(x, y′). However, it is straightforward to notice that under the transformation
y(x) → x, x → y(x), Eq.(89) transforms into an ODE of the form Eq.(19) with integrating factor

µ(x, y′
−1

)/y′
2
. This means that the above pattern can be matched by merely changing variables in the

given ODE and matching Eq.(19). It follows that any explicit 2nd order ODE having an integrating
factor of the form µ(y, y′) can be reduced to a first order ODE by first changing variables, and then using
the scheme outlined in the previous section (unless the resulting ODE is linear).

Example:

y′′ − y′
2

y
+ sin(x) y′ y + cos(x) y2 = 0 (90)

Changing variables as in y(x) → x, x→ y(x) we obtain

y′′ +
y′

x
− sin(y) y′

2
x− cos(y)x2y′

3
= 0 (91)

Using the algorithm outlined in the previous section, an integrating factor of the form µ(x, y′) for Eq.(91)
is given by

1

y′
2
x

(92)

from where an integrating factor of the form µ(y, y′) for Eq.(90) is 1/y, leading to the first integral

sin(x)y +
y′

y
+ C1 = 0, (93)

which is a first order ODE of Bernoulli type. The solution to Eq.(90) then follows directly. This example
is particularly interesting since from [9] we know ODE Eq.(90) has no point symmetries.

3.3 Integrating factors of the form µ(x, y)

For completeness, we review here the determination of integrating factors of the form µ(x, y) for second
order ODEs, already found in the literature (see for instance Lemma 3.8 in [10]). Contrary to the cases
µ(x, y′) or µ(y, y′), an integrating factor depending only on x and y can easily be found - when it exists
- by directly solving the determining equations (10) and (11).

¿From Eq.(16), the general second order ODE having an integrating factor µ(x, y) takes the form

y′′ = a(x, y) y′
2
+ b(x, y) y′ + c(x, y), (94)

where

a(x, y) = −µy

µ
, b(x, y) = −Gy + µx

µ
, c(x, y) = −Gx

µ
(95)

for some unknown function G(x, y). As a shortcut to solving Eqs. (10) and (11), one can directly tackle
Eqs.(95); the calculations are straightforward. There are two cases to be considered.

Case A: 2ax − by 6= 0

Defining the two auxiliary quantities

ϕ ≡ cy − a c− bx, Υ ≡ ax,x + ax b+ ϕy (96)
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an integrating factor of the form µ(x, y) exists only when

Υy − ax = 0, Υx + ϕ+ bΥ−Υ2 = 0 (97)

and is then given by

µ(x, y) = exp

(∫ (

−Υ+
∂

∂x

∫

a dy

)

dx −
∫

a dy

)

(98)

Case B: 2ax − by = 0

Redefining ϕ ≡ cy − a c, an integrating factor of the form µ(x, y) exists only when

ax,x − ax b − ϕy = 0, (99)

Then, µ(x, y) is given by

µ(x, y) = ν(x) e

−

∫

a dy

(100)

where ν(x) is either one of the independent solutions of the second order linear ODE

ν′′ = A(x) ν′ +B(x) ν, (101)

and

I ≡ ∂

∂x

∫

a dy, A(x) ≡ 2 I − b, B(x) ≡ ϕ+

(

I − ∂

∂x

)

(b− I) (102)

It should be noted that when the attempt to solve the linear ODE Eq.(101) is successful, using each of
its two independent solutions for integrating factors leads to the general solution of Eq.(94), instead of
just a reduction of order. Also, when the original ODE was linear, Eq.(101) is just the corresponding
adjoint equation, as was to be expected (see for instance Murphy’s book).

3.4 The Connection to PDEs

Let R(x, y, y′) be a first integral of Eq.(20). We rewrite Eq.(13) by renaming y′ ≡ z

∂R

∂x
+ z

∂R

∂y
+Φ(x, y, z)

∂R

∂z
= 0 (103)

From Theorem 3.1, if a given PDE of the form Eq.(103) has a particular solution of the form R(x, y, z) =
F (x, z) +G(x, y), such that R(x, y, z) is nonlinear in y or z; or R(x, y, z) = F (y, z) +G(x, y), such that
R(x, y, z) is nonlinear in y or z−1, then F and G can be determined in a systematic manner.

Although this is a natural consequence of the previous sections, it is worth mentioning that the
determination of R using the scheme here presented does not require solving the characteristic strip of
Eq.(103), thus being a genuine alternative.

4 Integrating factors and symmetries

The main result being presented in this paper is a systematic algorithm for the determination of inte-
grating factors of the form µ(x, y′) and µ(y, y′) without solving any auxiliary differential equations, and
this last fact is the most relevant point. Nonetheless, it is interesting to briefly review the similarities
and differences between the standard integrating factor (µ) and symmetry approaches, so as to have an
insight of how complementary these methods can be in practice.

To start with, both methods tackle an nth order ODE by looking for solutions to a linear nth order

determining PDE in n+ 1 variables (see sec. 2). Any given ODE has infinitely many integrating factors
and symmetries. When many solutions to these determining PDEs are found, both approaches can, in
principle, give a multiple reduction of order.

In the case of integrating factors there is one unknown function, while for symmetries there is a pair
of infinitesimals to be found. But symmetries are defined up to an arbitrary function, so that we can
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always take one of these infinitesimals equal to zero; hence we are facing approaches of equivalent levels
of difficulty and actually of equivalent solving power too.

Also valid for both approaches is the fact that, unless some restrictions are introduced on the functional
dependence of µ or the infinitesimals, there is no hope that the corresponding determining PDEs will
be easier to solve than the original ODE. In the case of symmetries, it is usual to restrict the problem
to ODEs having point symmetries, that is, to consider infinitesimals depending only on x and y. The
restriction to the integrating factors here discussed is similar: we considered µ’s depending on only two
variables.

At this point it can be seen that the two approaches are complementary: the determining PDEs
for µ and for the symmetries are different11, so that even using identical restrictions on the functional
dependence of µ and the infinitesimals, problems which may be untractable using one approach may be
easy or even trivial using the other one.

As an example of this, consider Kamke’s ODE 6.37, appearing in this paper as Eq.(28):

y′′ + 2 y y′ + f(x)
(

y′ + y2
)

− g(x) = 0

As mentioned in the exposition, for arbitrary f(x) and g(x), this ODE has an integrating factor depending
only on x, easily determined using the algorithm presented. Now, for non-constant f(x) and g(x), this
ODE has no point symmetries, that is, no solutions of the form [ξ(x, y), η(x, y)], except for the particular
case in which g(x) can be expressed in terms of f(x) as in12

g(x) =
f ′′

4
+

3 f f ′

8
+
f3

16
−

C2 exp

(

−3/2

∫

f(x)dx

)

4

(

2C1 +

∫

exp

(

−1/2

∫

f(x)dx

)

dx

)3 (104)

Furthermore, this ODE has no non-trivial symmetries of the form [ξ(x, y′), η(x, y′)] either, and for
symmetries of the form [ξ(y, y′), η(y, y′)] the determining PDE does not even split into a system.

Another ODE example of this type is found in a paper by [9] (1988):

y′′ − y′
2

y
− g(x) p ypy′ − g ′ yp+1 = 0 (105)

In that work it is shown that for constant p, the ODE above only has point symmetries for very restricted
forms of g(x). For instance, Eq.(90) is a particular case of the ODE above and has no point symmetries.
Nonetheless, for arbitrary g(x), Eq.(105) has an obvious integrating factor depending on only one variable:
1/y, leading to a first integral of Bernoulli type:

y′

y
− g(x)yp + C1 = 0 (106)

so that the whole family Eq.(105) is integrable by quadratures.
We note that Eq.(28) and Eq.(105) are respectively particular cases of the general reducible ODEs

having integrating factors of the forms13 µ(x):

y′′ = − (µx +Gy)

µ(x)
y′ − Gx

µ(x)
(107)

where µ(x) and G(x, y) are arbitrary; and µ(y):

y′′ = − (µy y
′ +Gy)

µ(y)
y′ − Gx

µ(y)
(108)

11We are considering here ODEs of order greater than one.
12To determine g(x) in terms of f(x) we used the standard form Maple package by Reid and Wittkopf complemented

with some basic calculations.
13To obtain the general ODE family reducible by a given integrating factor we used the routine redode also presented

in this paper in sec. 6
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In turn, these are very simple cases if compared with the general ODE families Eq.(19) and Eq.(89),
respectively having integrating factors of the forms µ(x, y′) and µ(y, y′), and which can be systematically
reduced in order using the algorithm here presented.

It is then natural to conclude that the integrating factor and the symmetry approaches can be useful
for solving different types of ODEs, and can be viewed as equivalently powerful and general, and in
practice complementary. Moreover, if for a given ODE, an integrating factor and a symmetry are known,
in principle one can combine this information to build two first integrals and reduce the order by two at
once ([3], chap. 3).

5 Tests

After plugging the reducible-ODE scheme here presented into ODEtools, we tested the scheme and
routines using Kamke’s non-linear 246 second order ODE examples14. The purpose was to confirm the
correctness of the returned results and to determine which of these ODEs have integrating factors of the
form µ(x, y′) or µ(y, y′). The test consisted of determining µ and testing the exactness condition Eq.(7)
of the product µ times ODE.

We then ran a comparison of performances in solving a related subset of Kamke’s examples using dif-
ferent computer algebra ODE-solvers (Maple, Mathematica, MuPAD and the Reduce package Convode).
The idea was to situate the new scheme in the framework of a sample of relevant packages presently
available. As a secondary goal, we were also interested in comparing the solving performance of the new
scheme with the one of the symmetry scheme implemented in ODEtools.

Finally we considered the table of integrating factors for second order non-linear ODEs found in
Murphy’s book and the answers for them returned by all these ODE-solvers.

5.1 The reducible-ODE solving scheme and Kamke’s ODEs

To run the test with Kamke’s ODEs, the first step was to classify these ODEs into: missing x, missing

y, exact and reducible, where the latter refers to the new scheme. The reason for such a classification is
that ODEs missing variables are straightforwardly reducible, so they are not the relevant target of the
new scheme. Also, ODEs already in exact form can be easily reduced after performing a simple check
for exactness; before running the tests all these ODEs were rewritten in explicit form by isolating y′′.
For classifying the ODEs we used the odeadvisor command from ODEtools. All the integrating factors
found satisfied the exactness condition Eq.(7). The classification we obtained for these 246 ODEs is as
follows

Classification ODE numbers as in Kamke’s book
99 ODEs are missing x

or missing y

1, 2, 4, 7, 10, 12, 14, 17, 21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 40, 42, 43, 45,
46, 47, 48, 49, 50, 54, 56, 60, 61, 62, 63, 64, 65, 67, 71, 72, 81, 89, 104, 107,
109, 110, 111, 113, 117, 118, 119, 120, 124, 125, 126, 127, 128, 130, 132,
137, 138, 140, 141, 143, 146, 150, 151, 153, 154, 155, 157, 158, 159, 160,
162, 163, 164, 165, 168, 188, 191, 192, 197, 200, 201, 202, 209, 210, 213,
214, 218, 220, 222, 223, 224, 232, 234, 236, 237, 243, 246

13 are in exact form 36, 42, 78, 107, 108, 109, 133, 169, 170, 178, 226, 231, 235
40 ODEs are reducible

with integrating factor
µ(x, y′) or µ(y, y′) and
missing x or y

1, 2, 4, 7, 10, 12, 14, 17, 40, 42, 50, 56, 64, 65, 81, 89, 104, 107, 109, 110,
111, 125, 126, 137, 138, 150, 154, 155, 157, 164, 168, 188, 191, 192, 209,
210, 214, 218, 220, 222, 236

28 ODEs are reducible

and not missing x or y
36, 37, 51, 66, 78, 97, 108, 123, 133, 134, 135, 136, 166, 169, 173, 174, 175,
176, 178, 179, 193, 196, 203, 204, 206, 215, 226, 235

Table 1. Missing variables, exact and reducible Kamke’s 246 second order non-linear ODEs.

¿From the table above, ≈ 30% of these 246 ODEs from Kamke’s book are reducible to first order
using the scheme here presented. Also, although the symmetry scheme implemented in ODEtools - which
works with dynamical symmetries and includes heuristic procedures - finds symmetries for 191 of these
246 ODEs, it is unsuccessful in reducing the order of five ODEs which the new scheme does reduce.
These are the ODEs numbered 36, 37, 123, 215, and 235. It is interesting to note that ODEs 36, 37 and
123 have no point symmetries; ODE 215 lead to a third order PDE system whose solution - in terms of

14Kamke’s ODEs 6.247 to 6.249 cannot be made explicit and are then excluded from the tests.
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elliptic integrals - can be obtained by computer plus hand if one uses trial and error; and for ODE 235,
the determining PDE for the symmetries does not split into a system due to the presence of an arbitrary
function of y′. Also, none of the other computer algebra ODE-solvers tested during this work succeeded
in solving or reducing the order of any of these five ODEs15, even though the corresponding integrating
factors depend on only one variable (see sec. 5.2).

For ODE 215, which we write in explicit form as

ode := y′′ =

(

6 y2 − a
2

)

y′
2

4 y3 − a y − b
− f(x) y′ (109)

the integrating factor found by the computer algebra implementation of the new scheme (see sec. 6) is16:

> mu = intfactor(ode,y(x));

µ =
1

y′
(110)

This integrating factor leads to a reduced ODE which can be solved as well, resulting in the following
implicit solution in terms of an elliptic integral17:

> odsolve(ode);

∫

e

−

∫

f(x)dx

dx− C1

∫ y 1√
−4 z3 + z a+ b

dz + C2 = 0 (111)

The integrating factor found for ODE 37 (see Eqs.(28) and (32)) leads to a reduction of order resulting
in the most general first order Riccati type ODE; in this example odsolve just returns the reduction
of order obtained by the new integrating factor scheme. For ODE 123, the integrating factor found is
1/y, and the reduced ODE is also a generic Riccati ODE. Finally, ODE 235 appears in Kamke’s book
written in exact form, but the ODE is interesting because it contains three arbitrary functions, of the
first derivative, the dependent and the independent variables, respectively. Such an arbitrary dependence
makes this ODE almost intractable for most computer algebra ODE-solvers and related packages. We
then first isolated the highest derivative as to make the ODE non-exact

ode := y′′ = − (G(y) y′ + F (x))

H(y′)
(112)

The integrating factor here found is

> mu = intfactor(ode,y(x));

µ = H(y′) (113)

Concerning timings, it is worth mentioning that in the specific subset of 28 Kamke’s examples which
are not missing variables, the average time consumed by odsolve in solving each ODE using the new
scheme was 2.5 sec, while using symmetries this time jumps to 21 sec. These tests were performed using a
Pentium 200, 64 Mb RAM, running Windows 95. In summary: for these 28 ODEs having an integrating
factor of the form µ(x, y′) or µ(y, y′), the new scheme seems to be, on the average, ≈ 10 times faster than
the symmetry scheme.

15A table of results obtained using the Reduce package CRACK, kindly sent to us by Dr. T. Wolf, shows that out of
these five, CRACK is determining symmetries only for ODE 215, and concluding that there exist no point symmetries for
ODEs 6.36, 6.37, 6.123 and 6.235, but perhaps for some undetermined special values of the function parameters entering
the ODEs (see details for ODE 6.37 in sec. 4).

16In what follows, the input can be recognized by the Maple prompt >.
17For ODE 6.215, there is a typographical mistake in Kamke’s book concerning the reduced ODE: instead of

...
√

4y3 − g2y − g3..., one should read ...
√

4 y3 − g2y − g3....
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5.2 Comparison of performances

With the classification presented in Table 1. in hands, we used different computer algebra systems to
run a comparison of performances in solving these ODEs having integrating factors of the form µ(x, y′)
or µ(y, y′). For our purposes, the interesting subset is the one comprised of the 28 ODEs not already
missing variables (see Table 1.). The results we obtained are summarized in the following table18:

Kamke’s ODE numbers
Convode Mathematica 3.0 MuPAD 1.3 ODEtools

Solved: 51, 166, 173, 174,
175, 176, 179.

78, 97, 108, 166,
169, 173, 174, 175,
176, 178, 179, 206.

78, 97, 108, 133,
166, 169, 173, 174,
175, 176, 179,

51, 78, 97, 108, 133,
134, 135, 136, 166, 169,
173, 174, 175, 176, 178,
179, 193, 196, 203, 204,
206, 215.

Totals: 7 12 11 22
Reduced: 36, 37, 66, 123, 226,

235.
Totals: 0 0 0 6
Table 2. Performances in solving 28 Kamke’s ODEs having an integrating factor µ(x, y′) or µ(y, y′)

As shown above, while the scheme here presented is finding first integrals in all the 28 ODE examples,
opening the way to solve 22 of them to the end, the next scores are only 12 and 11 ODEs, respectively
solved by Mathematica 3.0 and MuPAD 1.3.

Concerning the six reductions of order returned by odsolve, it must be said that neither MuPAD
nor Mathematica provides a way to convey them, so that perhaps their ODE-solvers are obtaining first
integrals for these cases but the routines are giving up when they cannot solve the problem to the end.

Maple R4 is not present in the table since it is not solving any of these 28 ODEs. This is understandable
since in R4 the only methods implemented for high order non-linear ODEs are those for ODEs which
are missing variables. This situation is being resolved in the upcoming Maple R5, where the ODEtools
routines are included in the Maple library, and the previous ODE-solver has been replaced by odsolve

19.
Although the primary goal of this work is just to obtain first integrals for second order ODEs, it is

also interesting to comment on the six ODEs shown in Table 2. for which the new scheme succeeds in
determining integrating factors but the reduced ODEs remain unsolved. First of all, for ODEs 36, 37
and 123 the reduction of order lead to general Riccati type ODEs, so that in these cases no more than a
reduction of order should be expected. Concerning ODE 235 (Eq.(112)), the reduced ODE is:

∫ y′

H(z)dz +

∫ y

G(z)dz +

∫

F (x)dx + C1 = 0 (114)

Methods for solving such a first order ODE are known only for very special explicit combinations of H ,
G and F . Concerning ODEs 66 and 226, the obtained reduced ODEs are the same as those shown in
Kamke’s book, and are out of the scope of odsolve.

5.3 The reducible-ODE scheme and Murphy’s table of integrating factors

There is an explicit paragraph in Murphy’s book concerning integrating factors of the form µ(y′), where
it is shown a table with four second order non-linear ODE families for which µ(y′) is already known. The
first two families are trivial in the sense that they are already missing variables. The third of these ODE
families is:

ode := y′′ = P (x) y′ +Q(y) y′
2

(115)

where P and Q are arbitrary functions of its arguments; this is actually Liouville’s ODE. The integrating
factor mentioned in the book is the same found by the scheme here presented: y′; and the corresponding
reduced ODE can be solved in implicit form:

18When building the statistics for ODEtools, we passed to odsolve the optional argument [reducible], meaning: try
the reducible scheme, and if it does not solve the problem just give up. To solve the reduced ODE all of odsolve’s methods,
including symmetries, were used. The input and output in the respective format for all the packages tested are available in
http://dft.if.uerj.br/odetools/mu odes.zip.

19However, the scheme here presented was not ready when the development library was closed; the reducible scheme
implemented in Maple R5 is able to determine, when they exist, integrating factors only of the form µ(y′).
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> odsolve(ode);

∫

e
∫

P (x)dxdx−
∫ y

e−
∫

Q(z)dz+C1dz + C2 = 0 (116)

The fourth ODE family is the most general second order ODE having 1/y′ as integrating factor (see sec.
6):

ode := y′′ =
∂R(x, y)

∂x
y′ +

∂R(x, y)

∂y
y′2 (117)

for some function R(x, y). Here the new scheme finds the integrating factor 1/y′ and returns the reduced
ODE

ln(y′)− R(x, y) + C1 = 0 (118)

actually a generic first order ODE20.

6 Computer algebra implementation

We implemented the scheme for finding integrating factors described in sec. 3 in the framework of the
ODEtools package [4], taking advantage of its set of programming tool routines specifically designed to
work with ODEs. The implementation consists of:

• The plugging of the reducible-ODE solving scheme here presented in the block of methods for nonlinear
second order ODEs of the ODEtools command odsolve;

• The extension of the capabilities of the ODEtools intfactor command to determine integrating factors
for non-linear second order ODEs using the scheme here presented;

• A new user-level routine, redode, returning the most general explicit ODE having a given integrating
factor (Eq.(16));

The computational implementation follows straightforwardly the explanations of sec. 3 and includes

three main routines, for determining F(x, y′),
∼

µ (x) and the reduced ODE R(x, y, y′), respectively. Call-
ings to these routines were in turn added to both the intfactor and odsolve commands, so that the
scheme becomes available at user-level.

A test of this implementation in odsolve and some related examples are found in sec. 5. Since
detailed descriptions of the ODEtools commands are found in the On-Line help, we have restricted this
section to a description of the new command redode followed by two examples.

Description of redode

Command name: redode

Feature: returns the nthorder ODE having a given integrating factor
Calling sequence:

> redode(mu, n, y(x));
> redode(mu, n, y(x), R);

Parameters:
n - indicates the order of the requested ODE.

mu - an integrating factor depending on x, y, ..., y(n−1).
y(x) - the dependent variable.

R - optional, the expected reduced ODE depending on x, y, ..., y(n−1).

Synopsis:

• Given an integrating factor µ(x, y, ...y(n)), redode’s main goal is to return the ODE of order n
having µ as integrating factor

20For the third ODE family, Mathematica 3.0 returns a wrong answer and MuPAD 1.3 gives up, while for the fourth
family, Mathematica gives up and MuPAD returns an ERROR message.
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y(n) =
−1

µ

[

∂

∂x

(∫

µ dy(n−1) +G

)

+ ...+ y(n−1) ∂

∂y(n−2)

(∫

µ dy(n−1) +G

)]

where G ≡ G(x, y, ...y(n−2)) is an arbitrary function of its arguments (see sec. 3). This command is
useful to identify the general ODE problem related to a given µ, as well as to understand the possible
links between the integrating factor scheme for reducing the order and other reduction schemes (e.g.,
symmetries).

• When the expected reduced ODE (differential order n−1), here called R, is also given as argument,
the routine proceeds as follows. First, a test to see if the requested ODE exists is performed:

µ(x, y, ...y(n−1)) = ν(x, y, ...y(n−2))
∂

∂y(n−1)
R(x, y, ..., y(n−1)) (119)

for some function ν(x, y, ...y(n−1)). If the problem is solvable, redode will then return an nthorder
ODE(n) = y(n) − Φ(x, y, ..., y(n−1)) satisfying

µ(x, y, ..., y(n−1)) ODE(n) =
d

dx

(

ν(x, y, ...y(n−2)) R(x, y, ..., y(n−1))

)

(120)

that is, an ODE having as first integral ν R+ constant.
• When the given µ does not depend on y(n−1) and R is non-linear in y(n−1), the requested nthorder

ODE nevertheless exists if R can be solved for y(n−1).

Examples:

The redode command is interesting mainly as a tool for generating solving schemes for given ODE
families; we illustrate with two examples.

1. Consider the family of second order ODEs having as integrating factor µ = F (x) - an arbitrary
function - such that the reduced ODE has the same integrating factor. We want to set up an algorithm
such that, given a second order linear ODE,

y′′ = ψ1(x) y
′ + ψ2(x) y + ψ3(x) (121)

where there are no restrictions on ψ1(x), ψ2(x) or ψ3(x), the scheme determines if the ODE belongs to
the family just described, and if so it also determines F (x). The knowledge of F (x) will be enough to
build a closed form solution for the ODE.

To start with we obtain the first order ODE having F (x) as integrating factor via

> ode_1 := redode(F(x), y(x));

ode1 := y′ = − 1

F (x)

(

y
dF (x)

dx
+ F1 (x)

)

(122)

where F1 (x) is an arbitrary function. To obtain the second order ODE aforementioned we pass ode_1
as argument (playing the role of the reduced ODE) together with the integrating factor F (x) to obtain

> ode_2 := redode(F(x), y(x), ode_1);

ode2 := y′′ = − 1

F (x)

(

2 y′
dF (x)

dx
+ y

d2F (x)

dx2
+
d F1 (x)

dx

)

(123)

Taking this general ODE pattern as departure point, we setup the required solving scheme by com-
paring coefficients in Eq.(121) and Eq.(123), obtaining

−2

F (x)

dF (x)

dx
= ψ1(x),

−1

F (x)

d2F (x)

dx2
= ψ2(x) (124)

By solving the first equation, we get F (x) as
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F (x) = C1 e

−
∫

ψ1(x)

2
dx

(125)

and by substituting this result into the second one we get the pattern identifying the ODE family

1

2

dψ1(x)

dx
− 1

4
(ψ1(x))

2 − ψ2(x) = 0 (126)

Among the ODE-solvers of Maple R4, Mathematica 3.0, MuPAD 1.3 or Convode (Reduce), only those
of MuPAD and Maple succeed in solving this ODE family.

2. Consider the second order ODE family having as integrating factor µ = F (x) - an arbitrary function
- also having the symmetry21 [ξ = 0, η = F (x)], and such that the reduced ODE is the most general first
order linear ODE

ode1 := y′ = A(x) y +B(x) (127)

where A(x) and B(x) are arbitrary functions. To start with, we obtain the aforementioned second order
ODE having the integrating factor F (x) as in Example 1.

> ode_2 := redode(F(x), y(x), ode_1);

y′′ =





dA(x)

dx
+

(

dF (x)
dx

)

A(x)

F (x)



 y +

(

A(x) −
dF (x)
dx

F (x)

)

y′ +
dB(x)

dx
+

(

dF (x)
dx

)

B(x)

F (x)
(128)

In this step, ode_2 is in fact the most general second order linear ODE. If we now impose the symmetry
condition22 X(ode_2)=0, where X = [0, F (x)] we arrive at the following restriction on A(x)

− F (x)
dA(x)

dx
− 2

(

dF (x)

dx

)

A(x) +

(

dF (x)
dx

)2

F (x)
+
d2F (x)

dx2
= 0 (129)

Solving this ODE for A(x), introducing the result into Eq.(128) and disregarding the non-homogeneous
term (irrelevant in the solving scheme) we obtain the homogeneous ODE family pattern:

y′′ =







1

2

dH(x)

dx
+

3

4

(

dH(x)
dx

)2

(H(x))
2 − 1

2

d2H(x)
dx2

H(x)






y +H(x) y′ (130)

where we introduced H(x) = (F (x))−2. Although this ODE family appears more general than the one
treated in Example 1., the setting up of a solving scheme here is easier: one just needs to check if the
coefficient of y in a given ODE is related to the coefficient of y′ as in equation Eq.(130), in which case
the integrating factor is just 1√

H(x)
.

7 Conclusions

This paper presented a systematic method for obtaining integrating factors of the form µ(x, y′) and µ(y, y′)
- when they exist - for second order non-linear ODEs, as well as its computer algebra implementation in
the framework of the ODEtools package. The scheme is new, as far as we know, and the implementation
has proven to be a valuable tool since it leads to reductions of order for varied ODE examples, as shown
in sec. 5. Actually, the implementation of the scheme solves ODEs not solved by using standard or
symmetry methods (see sec. 4) or other computer algebra ODE-solvers (see sec. 5.2); furthermore, it
involves only algebraic operations, so that - in principle - it gives answers remarkably faster than the
symmetry scheme.

21Here we denote the infinitesimal symmetry generator by [ξ, η] ≡ ξ ∂
∂x

+ η ∂
∂y

22For linear ODEs, symmetries of the form [0, F (x)] are also symmetries of the homogeneous part.
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It is also worth mentioning that restricting the dependence of µ in Eq.(7) to µ(x, y′), does not lead to
a straightforwardly solvable problem except for few or simple cases. Moreover, when the determination
of µ from Eq.(7) is frustrated, there is no way to determine whether such a solution µ(x, y′) exists. It
is then a pleasant surprise to see such integrating factors - provided they exist - being systematically
determined in all cases and without solving any differential equations, convincing us of the value of the
new scheme.

On the other hand, we are restricting the problem to the universe of second order ODEs having
integrating factors depending only on two variables - the general case is µ(x, y, y′) - and even so, for
integrating factors of the form µ(x, y) the method may fail in solving the auxiliary linear ODE Eq.(101)
which appears in one of the subcases.

Some natural extensions of this work then would be to develop a scheme for building integrating
factors of the forms considered in this work, now for higher order ODEs, at least for restricted ODE
families yet to be determined. Concerning these extensions, the redode routine presented, designed to
find the most general nthorder ODE having a given integrating factor, optionally reducing to a given kth

order ODE (k < n), can be of use in investigating further problems. We are presently working on these
possible extensions23, and expect to succeed in obtaining reportable results in the near future.
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Appendix A

This appendix contains some additional information which may be useful as a reference for developing
computer algebra implementations of this work, or for improving the one here presented.

As explained in sec. 3.1.2, the scheme presented can be subdivided into six different cases: A, B, C,
D, E and F. Actually, there are just five cases since case B is always either A or C. From the point of
view of a computer implementation of the scheme it is interesting to know what one would expect from
such an implementation concerning Kamke’s ODEs and the cases aforementioned. We then display here
both the integrating factors obtained for the 28 Kamke’s ODEs used in the tests (see sec. 5) and the
“case” corresponding to each ODE.

Integrating factor Kamke’s book ODE-number Case
1 36 D

e

∫

f(x)dx
37 A

y′−1 51, 166, 169, 173, 175, 176, 179, 196, 203, 204, 206, 215 C
b+y′

(

1+y′2
)

3/2 66 D

x 78 D
x−1 97 A
y 108 D
y−1 123 A

1+y′
(

y′−1
)

y′
133 C

y′−1
(

1+y′
)

y′
134 C

y′−1
(

1+y′
)(

1+y′
2
) 135 C

y′−1

h(y′)
136 C

x

2 xy′−1
174 C

(1 + y′)−1 178 C
1

y′
(

1+2 yy′
) 193 C

y′ 226 A
h(y′) 235 C
Table A.1 Integrating factors for Kamke’s reducible and ODEs not missing variables.
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Abstract

A systematic algorithm for building integrating factors of the form µ(x, y), µ(x, y′) or µ(y, y′)
for second order ODEs is presented. The algorithm can determine the existence and explicit
form of the integrating factors themselves without solving any differential equations, except
for a linear ODE in one subcase of the µ(x, y) problem. Examples of ODEs not having point
symmetries are shown to be solvable using this algorithm. The scheme was implemented in
Maple, in the framework of the ODEtools package and its ODE-solver. A comparison between
this implementation and other computer algebra ODE-solvers in tackling non-linear examples
from Kamke’s book is shown.

1 Introduction

Although in principle it is always possible to determine whether a given ODE is exact (a total
derivative), there is no known method which is always successful in making arbitrary ODEs exact.
For nth order ODEs - as in the case of symmetries - integrating factors (µ) are determined as
solutions of an nth order linear PDE in n+1 variables, and to solve this determining PDE is a
major problem in itself.

Despite the fact that the determining PDE for µ naturally splits into a PDE system, the problem
is - as a whole - too general, and to solve it a restriction of the problem in the form of a more
concrete ansatz for µ is required. For example, in a recent work by [2] the authors explore possible
ansatzes depending on the given ODE, which are useful when this ODE has known symmetries of
certain type. In another work, [3] explores the use of computer algebra to try various ansatzes for
µ, no matter the ODE input, but successively increasing the order of the derivatives (up to the
nth −1 order) on which µ depends; the idea is to try to maximize the splitting so as to increase
the chances of solving the resulting PDE system by first simplifying it using differential Groebner
basis techniques.



Bearing this in mind, this paper presents a method, for second order explicit ODEs1, which
systematically determines the existence and the explicit form of integrating factors when they
depend on only two variables, that is: when they are of the form µ(x, y), µ(x, y′) or µ(y, y′). The
approach works without solving any auxiliary differential equations - except for a linear ODE in one
subcase of the µ(x, y) problem - and is based on the use of the forms of the ODE families admitting
such integrating factors. It turns out that with this restriction - µ depends on only two variables
- the use of differential Groebner basis techniques is not necessary; these integrating factors, when
they exist, can be given directly by identifying the input ODE as a member of one of various related
ODE families.

The exposition is organized as follows. In sec. 2, the standard formulation of the determination
of integrating factors is briefly reviewed and the method we used for obtaining the aforementioned
integrating factors µ(x, y), µ(x, y′) or µ(y, y′) is presented. In sec. 3, some aspects of the integrating
factor and symmetry approaches are discussed, and their complementariness is illustrated with
two ODE families not having point symmetries. Sec. 4 contains some statistics concerning the
new solving method and the second order non-linear ODEs found in Kamke’s book, as well as a
comparison of performances of some popular computer algebra packages in solving a related subset
of these ODEs. Finally, the conclusions contain some general remarks about the work.

Aside from this, in the Appendix, a table containing extra information concerning integrating
factors for some of Kamke’s ODEs is presented.

2 Integrating Factors and ODE patterns

In this paper we use the term “integrating factor” in connection with the explicit form of an
nth order ODE

y(n) − Φ(x, y, y′, ..., y(n−1)) = 0 (1)

so that µ(x, y, y′, ..., y(n−1)) is an integrating factor if

µ
(

y(n) − Φ
)

=
d

dx
R(x, y, y′, ..., y(n−1)) (2)

for some function R. The knowledge of µ is - in principle - enough to determine R by using standard
formulas (see for instance Murphy’s book). To determine µ, one can try to solve for it in the

exactness condition, obtained applying Euler’s operator to the total derivative H ≡ µ
(

y(n) − Φ
)

:

∂H

∂y
−

d

dx

(

∂H

∂y′

)

+
d2

dx2

(

∂H

∂y′′

)

+ ...+ (−1)n
dn

dxn

(

∂H

∂y(n)

)

= 0 (3)

Eq.(3) is of the form

A(x, y, y′, ..., y(2n−3)) + y(2n−2)B(x, y, y′, ..., y(n−1)) = 0 (4)

1We say that a second order ODE is in explicit form when it appears as y′′ − Φ(x, y, y′) = 0. Also, we exclude
from the discussion the case of a linear ODE and an integrating factor of the form µ(x), already known to be the
solution to the adjoint ODE.
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where A is of degree n − 1 in y(n) and linear in y(k) for n < k ≤ (2n − 3), so that Eq.(4) can be
split into a PDE system for µ. In the case of second order ODEs - the subject of this work - Eq.(3)
is of the form

A(x, y, y′) + y′′ B(x, y, y′) = 0 (5)

and the PDE system is obtained by taking A and B equal to zero2:

A ≡
(

y′µy′y − µy + µy′x

)

Φ+
(

Φy′x + y′Φy′y − Φy
)

µ+ y′
2
µyy

+
(

µyΦy′ + µy′Φy + 2µxy
)

y′ + µy′Φx + µxΦy′ + µxx = 0 (6)

B ≡ y′µy′y +Φµy′y′ + µΦy′y′ + 2µy + 2µy′Φy′ + µy′x = 0 (7)

Regarding the solvability of these equations, unless a more concrete ansatz for µ(x, y, y′) is given,
the problem is in principle as difficult as solving the original ODE. We then studied the solution
for µ of Eqs.(6) and (7) when µ depends only on two variables, that is: for µ(x, y), µ(x, y′) and
µ(y, y′). Concretely, we searched for the existence conditions for such integrating factors, expressed
as a set of equations in Φ, plus an algebraic expression for µ as a function of Φ, valid when the
existence conditions hold. Formulating the problem in that manner and taking into account the
integrability conditions of the system, Eqs.(6) and (7) turned out to be solvable for µ(x, y), but
appeared to us untractable when µ depends on two variables one of which is y′.

We then considered a different approach, taking into account from the beginning the form of
the ODE family admitting a given integrating factor. As shown in the following sections, it turns
out that, using that piece of information (Eq.(11) below), when µ depends only on two variables
the existence conditions and the integrating factors themselves can be systematically determined;
and in the cases µ(x, y′) and µ(y, y′), this can be done without solving any differential equations.

Concerning the ODE families admitting given integrating factors, we note that, from Eq.(2)

µ(x, y, y′, ..., y(n−1)) =
∂ R

∂y(n−1)
(8)

and hence the first integral R is of the form

R = G(x, y, ..., y(n−2)) +

∫

µ dy(n−1) (9)

for some function G. In turn, since R is a first integral, it satisfies

Rx + y′Ry + ...+ΦRy(n−1) = 0 (10)

Inserting Eq.(9) into the above and solving for y(n) leads to the general form of an ODE admitting
a given integrating factor:

2In a recent work by [2], the authors arrive at Eq.(5) and Eq.(7) departing from the adjoint linearized system
corresponding to a given ODE; the possible splitting of Eq.(4) into an overdetermined system for µ is also mentioned.
However, in that work, y′′ of Eq.(5) above appears replaced by Φ(x, y, y′), and the authors discuss possible alternatives
to tackle Eqs.(5) and (7) instead of Eqs.(6) and (7).
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y(n) =
−1

µ

[

∂

∂x

(
∫

µdy(n−1) +G

)

+ ...+ y(n−1) ∂

∂y(n−2)

(
∫

µdy(n−1) +G

)

]

(11)

2.1 Second order ODEs and integrating factors of the form µ(x, y)

We consider first the determination of integrating factors of the form µ(x, y), which turns out to
be straightforward3. The determining equations (6) and (7) for this case are given by:

y′2µyy + 2µxyy
′ + µΦy′x + µΦy′yy

′ − µΦy − µyΦ+ µyy
′Φy′ + µxx + µxΦy′ = 0

µΦy′y′ + 2µy = 0
(12)

Although the use of integrability conditions is enough to tackle this problem, the solving of Eqs.(12)
can be directly simplified if we take into account the ODE family admitting an integrating factor
µ(x, y). From Eq.(11), that ODE family takes the form

y′′ = a(x, y) y′2 + b(x, y) y′ + c(x, y), (13)

where

a(x, y) = −
µy

µ
, b(x, y) = −

Gy + µx

µ
, c(x, y) = −

Gx

µ
(14)

and G(x, y) is an arbitrary function of its arguments. Hence, as a shortcut to solving Eqs.(12),
one can take Eq.(13) as an existence condition - Φ must be a polynomial of degree two in y′ - and
directly solve Eqs.(14) for µ. The calculations are straightforward; there are two different cases.

Case A: 2ax − by 6= 0

Defining the two auxiliary quantities

ϕ ≡ cy − a c− bx, Υ ≡ axx + ax b+ ϕy (15)

an integrating factor of the form µ(x, y) exists only when

Υy − ax = 0, Υx + ϕ+ bΥ−Υ2 = 0 (16)

and is then given in solved form, in terms of a, b and c by

µ(x, y) = exp

(
∫
(

−Υ+
∂

∂x

∫

a dy

)

dx−

∫

a dy

)

(17)

So, in this case, when an integrating factor of this type exists there is only one4 and it can be
determined without solving any differential equations.

Case B: 2ax − by = 0

3The result for Case A presented in this subsection is also presented as lemma 3.8 in [5].
4We recall that if µ is an integrating factor leading to a first integral ψ, then the product µF (ψ) - where F is an

arbitrary function - is also an integrating factor, which however does not lead to a first integral independent of ψ.
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Redefining ϕ ≡ cy − a c, an integrating factor of the form µ(x, y) exists only when

axx − ax b− ϕy = 0, (18)

and then µ(x, y) is given by

µ(x, y) = ν(x) e

−

∫

a dy

(19)

where ν(x) is either one of the independent solutions of the second order linear ODE5

ν ′′ = A(x) ν ′ +B(x) ν, (20)

and

A(x) ≡ 2I − b, B(x) ≡ ϕ+

(

I −
∂

∂x

)

(b− I) , I ≡
∂

∂x

∫

a dy (21)

So in this case, to transform Eq.(19) into an explicit expression for µ we first need to solve a
second order linear ODE. When the attempt to solve Eq.(20) is successful, using each of its two
independent solutions as integrating factors leads to the general solution of Eq.(13), instead of just
a reduction of order.

2.2 Second order ODEs and integrating factors of the form µ(x, y′)

When the integrating factor is of the form µ(x, y′), the determining equations (6) and (7) become

(Φyy
′ +Φx)µy′ +

(

−Φy +Φy′x +Φy′yy
′
)

µ+ µxx + µxΦy′ + µy′xΦ = 0

Φµy′y′ + µΦy′y′ + 2µy′Φy′ + µy′x = 0
(22)

As in the case µ(x, y), the solution we are interested in is an expression for µ(x, y′) in terms
of Φ, as well as existence conditions for such an integrating factor expressed as equations in Φ.
However, differently than the case µ(x, y), we didn’t find a way to solve the µ(x, y′) problem
just using integrability conditions, neither working by hand nor using the specialized computer
algebra packages diffalg [6] and standard form [7]. We then considered approaching the problem as
explained in the previous subsection, departing from the form of Eq.(9) for µ = µ(x, y′):

y′′ = Φ(x, y, y′) ≡ −
Fx +Gx +Gy y

′

Fy′
(23)

where G(x, y) and F (x, y′) are arbitrary functions of their arguments and

µ(x, y′) = Fy′ (24)

Now, Eq.(23) is not polynomial in either x, y or y′, and hence its use to simplify and solve the
problem is less straightforward than in the case µ(x, y). However, in Eq.(23), all the dependence
on y comes from G(x, y) in the numerator, and as it is shown below, this fact is a key to solving

5When the given ODE is linear, Eq.(20) is just the corresponding adjoint equation.
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the problem. Considering ODEs for which Φy 6= 06, the approach we used can be summarized in
the following three lemmas whose proofs are developed separately for convenience.

Lemma 1. For all linear ODEs of the family Eq.(23), an integrating factor of the form µ(x, y′)
such that µy′ 6= 0, when it exists, can be determined directly from the coefficient of y in the input
ODE.

Lemma 2. For all non-linear ODEs of Eq.(23), the knowledge of µ(x, y′) up to a factor depending
on x, that is, of F(x, y′) satisfying

F(x, y′) =
µ(x, y′)
∼

µ(x)
(25)

is enough to determine
∼

µ(x) by means of an integral.

Lemma 3. For all non-linear ODEs members of Eq.(23), it is always possible to determine a
function F(x, y′) satisfying Eq.(25).

Corollary. For all second order ODEs such that Φy 6= 0, the determination of µ(x, y′) (if the ODE
is linear we assume µy′ 6= 0), when it exists, can be performed systematically and without solving
any differential equations.

2.2.1 Proof of Lemma 1

For Eq.(23) to be linear and not missing y, either Gx or Gy must be linear in y. Both Gx and Gy

cannot simultaneously be linear in y since, in such a case, Gx/Fy′ or y
′Gy/Fy′ would be non-linear

in {y, y′}7; therefore, either Gyy = 0 or Gxy = 0.

Case A: Gy is linear in y and Gxy = 0

Hence, G is given by

G = C2y
2 + C1y + g(x) (26)

where g(x) is arbitrary. From Eq.(23), in order to have y′Gy/Fy′ linear in {y, y′}, Fy′ must of
the form ν(x)y′ for some function ν(x). Also, Fx/Fy′ can have a term linear in y′, and a term
proportional to 1/y′ to cancel with the one coming from Gx/Fy′ = g′/Fy′ , so that

Fy′ = νy′, Fx =
ν ′y′2

2
− g′ (27)

where the coefficient ν ′/2 in the second equation above arises from the integrability conditions
between both equations. Eq.(23) is then of the form

y′′ = −
ν ′

2 ν
y′ −

2 C2

ν
y −

C1

ν
(28)

6ODEs missing y may also have integrating factors of the form µ(x, y′). Such an ODE however can always be
reduced to first order by a change of variables, so that the determination of a µ(x, y′) for it is equivalent to solving a
first order ODE problem - not the focus of this work.

7We are only interested in the case µy′ = Fy′y′ 6= 0.
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and hence, a linear ODE y′′ = a(x)y′ + b(x)y has an integrating factor µ(x, y′) = y′/b when
b′/b− 2a = 0. △

Case B: Gx is linear in y and Gyy = 0

In this case, in order to have Eq.(23) linear, Fy′ cannot depend on y′, so that the integrating factor
is of the form µ(x) and hence the case is of no interest: we end up with the standard search for
µ(x) as the solution to the adjoint of the original linear ODE. △

2.2.2 Proof of Lemma 2

It follows from Eqs.(23) and (24) that, given F satisfying (25),

∂

∂y

(

Φ(x, y, y′) F(x, y′)

)

= −
Gy x(x, y) +Gy y(x, y) y

′

∼

µ(x)
(29)

Hence, by taking coefficients of y′ in the above,

ϕ1 ≡ Φy(x, y, y
′)F(x, y′)− y′

∂

∂y′

(

Φy(x, y, y
′)F(x, y′)

)

= −
Gy x(x, y)

∼

µ(x)

ϕ2 ≡
∂

∂y′

(

Φy(x, y, y
′)F(x, y′)

)

= −
Gy y(x, y)

∼

µ(x)
(30)

where the left-hand-sides can be calculated explicitly since they depend only on Φ and the given
F . Similarly,

ϕ3 ≡ −
∂

∂y′

(

Φ(x, y, y′) F(x, y′)

)

=
Fy′x(x, y

′) +Gy(x, y)
∼

µ(x)

ϕ4 ≡
∂

∂y′
F(x, y′) =

Fy′y′(x, y
′)

∼

µ(x)
(31)

Now, since in this case the ODE family Eq.(23) is nonlinear by hypothesis, either ϕ2 or ϕ4 is
different from zero, so that at least one of the pairs {ϕ1, ϕ2} or {ϕ3, ϕ4} can be used to determine
∼

µ(x) as the solution of a first order linear ODE. For example, if ϕ2 6= 0,

∂

∂y

(

ϕ1(x, y)
∼

µ(x)
)

=
∂

∂x

(

ϕ2(x, y)
∼

µ(x)
)

(32)

from where

∼

µ(x) = e

∫

1

ϕ2

(

∂ϕ1

∂y
−

∂ϕ2

∂x

)

dx

(33)

If ϕ2 = 0 then ϕ4 6= 0 and we obtain
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∼

µ(x) = e

∫

1

ϕ4

(

∂ϕ3

∂y′
−

∂ϕ4

∂x

)

dx

(34)

When combined with Eq.(25), Eqs.(33) and (34) alternatively give both an explicit solution to the

problem and an existence condition, since a solution
∼

µ(x) - and hence an integrating factor of the
form µ(x, y′) - exists if the integrand in Eq.(33) or Eq.(34) only depends on x. △

2.2.3 Proof of Lemma 3

We start from Eq.(23) by considering the expression

Υ ≡ Φy = −
Gx y(x, y) +Gy y(x, y) y

′

Fy′(x, y
′)

(35)

and develop the proof below splitting the problem into different cases. For each case we show how
to find F(x, y′) satisfying Eq.(25). F will then lead to the required integrating factor when, in

addition to the conditions explained below, the existence conditions for
∼

µ (x) mentioned in the
previous subsection are satisfied.

Case A: Gx y/Gy y depends on y

To determine whether this is the case, we cannot just analyze the ratio Gx y/Gy y itself since it
is unknown. However, from Eq.(35), in this case the factors of Υ depending on y will also depend
on y′, and this condition can be formulated as

∂

∂y′

(

Υy

Υ

)

6= 0 (36)

When this inequation holds, we determine Fy′(x, y
′) up to a factor depending on x, that is, the

required F(x, y′), as the reciprocal of the factors of Υ which depend on y′ but not y. △

Example: Kamke’s ODE 226

This ODE is presented in Kamke’s book already in exact form, so we start by rewriting it in explicit
form as

y′′ =
x2yy′ + xy2

y′
(37)

We determine Υ (Eq.(35)) as

Υ =
x(xy′ + 2y)

y′
(38)

The only factor of Υ containing y is:

xy′ + 2y (39)

and since this also depends on y′, F(x, y′) is given by
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F(x, y′) = y′ (40)

Case B: either Gxy = 0 or Gyy = 0

When the expression formed by all the factors of Υ containing y does not contain y′, in Eq.(36)

we will have ∂
∂y′ (

Υy

Υ ) = 0, and it is impossible to determine a priori whether one of the functions
{Gx y, Gy y} is zero, or alternatively their ratio does not depend on y. We then proceed by assuming

the former, build an expression for F(x, y′) as in Case A, and check for the existence of
∼

µ (x) as

explained in the previous subsection. If
∼

µ (x) exists, the problem is solved; otherwise we proceed
as follows.

Case C: Gx y/Gy y 6= 0 and does not depend on y

In this case, neither Gx y nor Gy y is zero and their ratio is a function of just x, so that

Gx y = v1(x) w(x, y)

Gy y = v2(x) w(x, y) (41)

for some unknown functions v1(x) and v2(x). Eq.(35) is then given by

Υ = w(x, y)
(v1(x) + v2(x) y

′)

Fy′(x, y
′)

(42)

for some function w(x, y), which is made up of the factors of Υ depending on y and not on y′. To
determine Fy′(x, y

′) up to a factor depending on x, we need to determine the ratio v1(x)/v2(x).
For this purpose, from Eq.(41) we build a PDE for Gy(x, y),

Gx y =
v1(x)

v2(x)
Gy,y (43)

The general solution of Eq.(43) is

Gy = G (y + p(x)) (44)

where G is an arbitrary function of its argument and for convenience we introduced

p′(x) ≡ v1(x)/v2(x) (45)

We now determine p′(x) as follows. Taking into account Eq.(41),

v2(x)w(x, y) = G′(y + p(x)) (46)

By taking the ratio between this expression and its derivative w.r.t y we obtain

H(y + p(x)) ≡
∂ ln(w)

∂y
=

G′′(y + p(x))

G′(y + p(x))
(47)
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that is, a function of y+ p(x) only, which we can determine since we know w(x, y). If H′ 6= 0, p′(x)
is given by

p′(x) =
Hx

Hy
=

wxyw − wxwy

wyyw − wy
2

(48)

In summary, the conditions for this case are

Υy 6= 0,
∂

∂y′

(

Υy

Υ

)

= 0,
∂2

∂y∂x
ln(w) 6= 0,

∂2

∂y∂y
ln(w) 6= 0 (49)

and then, from Eq.(42), F(x, y′) is given by

F(x, y′) =
(p′ + y′) w

Υ
(50)

where at this point Υ, w(x, y) and p′(x) are all known. △

Example: Kamke’s ODE 136.

We begin by writing the ODE in explicit form as

y′′ =
h(y′)

x− y
(51)

This example is interesting since the standard search for point symmetries is made difficult by the
presence of an arbitrary function of y′. Υ (Eq.(35)) is determined as

Υ = −
h(y′)

(x− y)2
(52)

and w(x, y) as

w(x, y) =
1

(x− y)2
(53)

Then H(y + p(x)) (Eq.(47)) becomes

H =
2

x− y
(54)

and hence, from Eq.(48), p′(x) is

p′(x) = −1 (55)

so from Eq.(50):

F(x, y′) =
1− y′

h(y′)
(56)

Case D: H = 0

We now discuss how to obtain p′(x) when H′(y+ p(x)) = 0. We consider first the case in which
H = 0. Then, G′′ = 0 and the condition for this case is
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Υy = 0 (57)

Recalling Eq.(44), G is given by

G(x, y) = C1 (y + p(x))2 + C2 (y + p(x)) + g(x) (58)

for some function g(x) and some constants C1, C2. From Eq.(23), Φ(x, y, y′) takes the form

Φ(x, y, y′) = −
Fx(x, y

′) + g′(x) + (2C1 (y + p(x)) + C2)(y
′ + p′(x))

Fy′(x, y
′)

(59)

We now determine p′(x) as follows. First, from the knowledge of Υ and Φ we build the two explicit
expressions:

Λ ≡
1

Υ
= −

Fy′

2C1 (y′ + p′(x))
(60)

and

Ψ ≡
Φ(x, y, y′)

Υ
− y =

Fx + g′(x)

2C1 (y′ + p′(x))
+ p(x) +

C2

2C1
(61)

From Eq.(60) and Eq.(61) Λ and Ψ are related by:

∂

∂x

(

(y′ + p′(x)) Λ

)

+
∂

∂y′

(

(y′ + p′(x)) Ψ

)

= p(x) +
C2

2C1
(62)

where the only unknowns are p(x), C1, and C2. By differentiating the equation above w.r.t y′ and
x we obtain two equations where the only unknown is p′(x):

Λy′p
′′(x) + (Λxy′ +Ψy′y′)(y

′ + p′(x)) + Λx + 2Ψy′ = 0 (63)

Λ p′′′(x) + (Λxx +Ψy′x)(y
′ + p′(x)) + (Λx +Ψy′)p

′′(x) + Ψx = p′(x) (64)

from where we obtain p′(x) by solving a linear algebraic equation built by eliminating p′′(x) between
Eq.(63) and Eq.(64)8. Also, as a shortcut, if (Λxy′ +Ψy′y′)/Λy′ depends on y′, then we can build a
linear algebraic equation for p′(x) by solving for p′′(x) in Eq.(63) and differentiating w.r.t. y′. △

Remark

If Eq.(63) depends neither on p′(x) nor on p′′(x) this scheme will not succeed. However, in
that case the original ODE is actually linear and given by Eq.(28). To see this, we set to zero the
coefficients of p′(x) and p′′(x) in Eq.(63), obtaining:

Λy′ = Λxy′ +Ψy′y′ = Λx + 2Ψy′ = 0 (65)

8From Eq.(60), Λ 6= 0, so that Eq.(64) always depends on p′′′(x), and solving Eq.(63) for p′′(x) and substituting
twice into Eq.(64) will lead to the desired equation for p′(x). If Eq.(63) depends on p′(x) but not on p′′(x), then
Eq.(63) itself is already a linear algebraic equation for p′(x).
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which implies that Λ is a function of x only, and then

Ψy′y′ = 0 (66)

If we now rewrite F (x, y′) as

F (x, y′) = Z(x, y′)− g(x) − Λ(y′ + p′)2 C1 (67)

and introduce this expression in Eq.(60), we obtain Zy′ = 0; similarly, using this result, Eq.(61),
Eq.(66) and Eq.(67) we obtain Zx = 0. Hence, Z is a constant, and taking into account Eq.(67)
and Eq.(59), the ODE which led us to this case is just a non-homogeneous linear ODE of the form

(y + p)′′ + (Λ′(y + p)′ − 2(y + p)− C2/C1)/2Λ = 0 (68)

whose homogeneous part does not depend on p(x):

y′′ +
Λ′(x)

2Λ(x)
y′ −

y

Λ(x)
= 0 (69)

and as mentioned, it is the same as Eq.(28).

Example: Kamke’s ODE 66.

This ODE is given by

y′′ = a (c+ bx+ y)
(

y′2 + 1
)3/2

(70)

Proceeding as in Case A, we determine Υ, w(x, y), and H(y + p(x)) as

Υ = a
(

y′2 + 1
)3/2

; w(x, y) = 1; H = 0 (71)

From the last equation we realize that we are in Case D. We determine Λ and Ψ (Eqs. (60), (61))
as:

Λ =
1

(

y′2 + 1
)3/2

a

Ψ = c+ b x (72)

We then build Eq.(62) for this ODE:

p′′(x)
(

y′2 + 1
)3/2

a
+ c+ b x = p(x) +

C2

2C1
(73)

Differentiating w.r.t. y′ leads to Eq.(63):

− 3
p′′(x) y′

(

y′2 + 1
)5/2

a
= 0 (74)
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from which it follows that p′′(x) = 0. Using this in Eq.(64) we obtain:

p′(x) = b (75)

after which Eq.(50) becomes

F(x, y′) =
y′ + b

a
(

y′2 + 1
)3/2

(76)

Case E: H′ = 0 and H 6= 0

In this case H(y+p(x)) = G′′/G′ = C1, so G
′ is an exponential function of its argument (y+p(x))

and hence from Eq.(44)

G(x, y) = C2e
(y+p(x))C1 + (y + p(x))C3 + g(x) (77)

for some constants C2, C3 and some function g(x). In this case one of the conditions to be satisfied
is

Υy = constant 6= 0 (78)

and Φ(x, y, y′) will be of the form

Φ(x, y, y′) = −
Fx(x, y

′) + g′(x) +
(

C2C1e
(y+p(x))C1 + C3

)

(y′ + p′(x))

Fy′(x, y
′)

(79)

Taking advantage of the fact that we explicitly know C1, we build a first expression for p′ by
dividing C1e

yC1 by Υ:

Λ ≡ −
Fy′

C2ep(x)C1 (y′ + p′(x))
(80)

We obtain a second expression for p′ by multiplying Φ by Λ and subtracting C1e
C1y

Ψ ≡
1

C2ep(x)C1

(

Fx + g′(x)

y′ + p′(x)
+ C3

)

(81)

As in Case D, Λ and Ψ are related by

∂

∂x

(

(y′ + p′(x))Λ

)

+
(

y′ + p′(x)
)

p′(x)ΛC1 +
∂

∂y′

(

(y′ + p′(x))Ψ

)

=
C3

C2ep(x)C1
(82)

where the only unknowns are C2, C3 and p(x). Differentiating Eq.(82) with respect to y′ we have

(

p′′(x) + p′(x)
2
C1

)

Λy′ + p′(x)

(

y′Λy′C1 + ΛC1 + Λxy′ +Ψy′y′

)

+2Ψy′ + Λx + y′Λxy′ + y′Ψy′y′ = 0

(83)

The problem now is that, due to the exponential on the RHS of Eq.(82), differently from Case D,
we are not able to obtain a second expression for p′(x) by differentiating w.r.t x. The alternative
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we have found can be summarized as follows. We first note that if Λy′ = 0, Eq.(83) is already a
linear algebraic equation9 for p′, so that we are only worried with the case Λy′ 6= 0. With this in
mind, we divide Eq.(83) by Λy′ and, if the resulting expression depends on y′, we directly obtain a
linear algebraic equation in p′(x) by just differentiating w.r.t y′. △

Example10:

y′′ =
y′ (xy′ + 1) (−2 + ey)

y′x2 + y′ − 1
(84)

We determine Υ, w(x, y), and H(y + p(x)) as

Υ =
y′(xy′ + 1)ey

y′x2 + y′ − 1
; w(x, y) = ey; H = 1 (85)

From the last equation we know that we are in Case E. We then determine Λ and Ψ as in Eqs.
(80) and (81):

Λ =
y′x2 + y′ − 1

y′(xy′ + 1)

Ψ = −2 (86)

Now, we build Eq.(82):

1

xy′ + 1

((

p′′ + p′
2
+ y′2

(xp′ − 1)

xy′ + 1

)(

x2 + 1−
1

y′

)

+ 2xp′ − 2

)

=
C3

C2 ep
(87)

and, differentiating w.r.t. y′, we obtain Eq.(83):

2xy′ + 1− (x3 + x)y′2

y′2(xy′ + 1)2

(

p′′ + p′
2
)

+
2 y′ − 1− 2x+ xy′

(xy′ + 1)3
(xp′ − 1) = 0 (88)

Proceeding as explained, dividing by Λy′ and differentiating w.r.t. y′, we have

∂

∂y′

(

y′2
2 y′ − 1− 2x+ xy′

(xy′ + 1) (2xy′ + 1− (x3 + x)y′2)

)

(xp′ − 1) = 0 (89)

9We can see this by assuming that Λy′ = 0 and that Eq.(83) does not contain p′, and then arriving at a contradiction
as follows. We first set the coefficients of p′ in Eq.(83) to zero, arriving at

0 = C1 Λ+Ψy′y′ = 2Ψy′ + Λx +Ψy′y′y′ (A)

Eliminating Ψy′y′ gives
2Ψy′ = C1 Λ y′ − Λx

Differentiating the expression above w.r.t y′ and since Λy′ = 0, we have

2Ψy′y′ = C1 Λ

Finally, using Eq.(A), 0 = Λ, contradicting Fy′ 6= 0.
10There are no examples of this type in all of Kamke’s set of non-linear second order ODEs.
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Solving for p′(x) gives p′(x) = 1/x, from which Eq.(50) becomes:

F(x, y′) =

(

y′ −
1

x

)

y′x2 + y′ − 1

y′(xy′ + 1)
(90)

Case F

The final branch occurs when Eq.(83) divided by Λy′ does not depend on y′ (so that we will not
be able to differentiate w.r.t y′). In this case we can build a linear algebraic equation for p′(x) as
follows. Let us introduce the label β(x, p′, p′′) for Eq.(83) divided by Λy′ , so that Eq.(83) becomes:

Λy′(x, y
′) β(x, p′, p′′) = 0 (91)

Since we obtained Eq.(83) by differentiating Eq.(82) with respect to y′, Eq.(82) can be written in
terms of β by integrating Eq.(91) with respect to y′:

Λ(x, y′)β(x, p′, p′′) + γ(x, p′, p′′) =
C3

C2ep(x)C1
(92)

where γ(x, p′, p′′) is the constant of integration, and can be determined explicitly in terms of x,
p′ and p′′ by comparing Eq.(92) with Eq.(82). Taking into account that β(x, p′, p′′) = 0, Eq.(92)
reduces to:

γ(x, p′, p′′) =
C3

C2ep(x)C1
(93)

We can remove the unknowns C2 and C3 after multiplying Eq.(93) by ep(x)C1 , differentiating with
respect to x, and then dividing once again by ep(x)C1 . We now have our second equation for p′,
which we can build explicitly in terms of p′, since we know γ(x, p′, p′′) and C1:

dγ

dx
+ C1 p′γ = 0 (94)

Eliminating the derivatives of p′ between Eq.(91) and Eq.(94) leads to a linear algebraic equation
in p′. Once we have p′, the determination of F(x, y′) follows directly from Eq.(50). △

2.3 Integrating factors of the form µ(y, y′)

From Eq.(11), the ODE family admitting an integrating factor of the form µ(y, y′) is given by

y′′ = −
y′

µ

(

Gy +
∂

∂y

∫

µ dy′
)

−
Gx

µ
(95)

where µ(y, y′) and G(x, y) are arbitrary functions of their arguments. For this ODE family, it
would be possible to develop an analysis and split the problem into cases as done in the previous
section for the case µ(x, y′). However, it is straightforward to notice that under the transformation
y(x) → x, x → y(x), Eq.(95) transforms into an ODE of the form Eq.(23) with integrating factor
µ(x, y′−1)/y′2. It follows that an integrating factor for any member of the ODE family above can be
found by merely changing variables in the given ODE and calculating the corresponding integrating
factor of the form µ(x, y′).
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Example:

y′′ −
y′2

y
+ sin(x) y′ y + cos(x) y2 = 0 (96)

Changing variables y(x) → x, x → y(x) we obtain

y′′ +
y′

x
− sin(y) y′2x− cos(y)x2y′3 = 0 (97)

Using the algorithm outlined in the previous section, an integrating factor of the form µ(x, y′) for
Eq.(97) is given by

1

y′2x
(98)

from where an integrating factor of the form µ(y, y′) for Eq.(96) is 1/y, leading to the first integral

sin(x) y +
y′

y
+ C1 = 0, (99)

which is a first order ODE of Bernoulli type. The solution to Eq.(96) then follows directly. This
example is interesting since from [8] Eq.(96) has no point symmetries.

3 Integrating factors and symmetries

Besides the formulas for integrating factors of the form µ(x, y), the main result presented in this
paper is a systematic algorithm for the determination of integrating factors of the form µ(x, y′) and
µ(y, y′) without solving any auxiliary differential equations or performing differential Groebner basis
calculations, and these last two facts constitute the relevant point. Nonetheless, it is interesting
to briefly compare the standard integrating factor (µ) and symmetry approaches, so as to have an
insight of how complementary these methods can be in practice.

To start with, both methods tackle an nth order ODE by looking for solutions to a linear nth

order determining PDE in n+ 1 variables. Any given ODE has infinitely many integrating factors
and symmetries. When many solutions to these determining PDEs are found, both approaches can,
in principle, give a multiple reduction of order.

In the case of integrating factors there is one unknown function, while for symmetries there is a
pair of infinitesimals to be found. But symmetries are defined up to an arbitrary function, so that
we can always take one of these infinitesimals equal to zero11; hence we are facing approaches of
equivalent levels of difficulty and actually of equivalent solving power.

Also valid for both approaches is the fact that, unless some restrictions are introduced on the
functional dependence of µ or the infinitesimals, there is no hope that the corresponding determining
PDEs will be easier to solve than the original ODE. In the case of symmetries, it is usual to restrict
the problem to ODEs having point symmetries, that is, to consider infinitesimals depending only

11Symmetries [ξ(x, y, ..y(n−1)), η(x, y, ..y(n−1))] of an nth order ODE can always be rewritten as [G, (G− ξ)y′ + η],
where G(x, y, ..y(n−1)) is an arbitrary function (for first order ODEs, y′ must replaced by the right-hand-side of the
ODE). Choosing G = 0 the symmetry acquires the form [0, η̄]

16



on x and y. The restriction to the integrating factors here discussed is similar: we considered µ’s
depending on only two variables.

At this point it can be seen that the two approaches are complementary: the determining
PDEs for µ and for the symmetries are different12, so that even using identical restrictions on the
functional dependence of µ and the infinitesimals, problems which may be untractable using one
approach may be easy or even trivial using the other one.

As an example of this, consider Kamke’s ODE 6.37

y′′ + 2 y y′ + f(x)
(

y′ + y2
)

− g(x) = 0 (100)

For arbitrary f(x) and g(x), this ODE has an integrating factor depending only on x, easily de-
termined using the algorithms presented. Now, for non-constant f(x) and g(x), this ODE has no
point symmetries, that is, no infinitesimals of the form [ξ(x, y), η(x, y)], except for the particular
case in which g(x) can be expressed in terms of f(x) as in13

g(x) =
f ′′

4
+

3 f f ′

8
+

f3

16
−

C2 exp

(

−3/2

∫

f(x)dx

)

4

(

2C1 +

∫

exp

(

−1/2

∫

f(x)dx

)

dx

)3 (101)

Furthermore, this ODE does not have non-trivial symmetries of the form [ξ(x, y′), η(x, y′)] either,
and for symmetries of the form [ξ(y, y′), η(y, y′)] the determining PDE does not split into a system.

Another ODE example of this type is found in a paper by [8] (1988):

y′′ −
y′2

y
− g(x) p ypy′ − g ′ yp+1 = 0 (102)

In that work it is shown that for constant p, the ODE above only has point symmetries for very
restricted forms of g(x). For instance, Eq.(96) is a particular case of the ODE above and has no
point symmetries. On the other hand, for arbitrary g(x), Eq.(102) has an obvious integrating factor
depending on only one variable: 1/y, leading to a first integral of Bernoulli type:

y′

y
− g(x)yp + C1 = 0 (103)

so that the whole family Eq.(102) is integrable by quadratures.
We note that Eq.(100) and Eq.(102) are respectively particular cases of the general reducible

ODEs having integrating factors of the form µ(x):

y′′ = −
(µx +Gy)

µ(x)
y′ −

Gx

µ(x)
(104)

where µ(x) and G(x, y) are arbitrary; and µ(y):

12We are considering here ODEs of order greater than one.
13To determine g(x) in terms of f(x) we used the standard formMaple package by Reid and Wittkopf complemented

with some basic calculations.
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y′′ = −
(µy y

′ +Gy)

µ(y)
y′ −

Gx

µ(y)
(105)

In turn, these are very simple cases if compared with the general ODE families Eq.(23) and Eq.(95),
respectively having integrating factors of the forms µ(x, y′) and µ(y, y′), and which can be system-
atically reduced in order using the algorithms here presented.

It is then natural to conclude that the integrating factor and the symmetry approaches are
useful for solving different types of ODEs, and can be viewed as equivalently powerful and general,
and in practice complementary. Moreover, if for a given ODE, an integrating factor and a symmetry
are known, in principle one can combine this information to build two first integrals and reduce
the order by two at once (see for instance [9]).

4 Tests

After plugging the reducible-ODE scheme here presented into the ODEtools package [10], we tested
the scheme and routines using Kamke’s non-linear 246 second order ODE examples14. The purpose
was to confirm the correctness of the returned results and to determine which of these ODEs have
integrating factors of the form µ(x, y), µ(x, y′) or µ(y, y′). The test consisted of determining µ and
testing the exactness condition Eq.(3).

In addition, we ran a comparison of performances in solving a subset of Kamke’s examples
having integrating factors of the forms µ(x, y′) or µ(y, y′), using different computer algebra ODE-
solvers (Maple, Mathematica, MuPAD and the Reduce package Convode). The idea was to situate
the new scheme in the framework of a sample of relevant packages presently available.

To run the comparison of performances, the first step was to classify Kamke’s ODEs into:
missing x, missing y, exact and reducible, where the latter refers to ODEs having integrating factors
of the forms µ(x, y′) or µ(y, y′). ODEs missing variables were not included in the test since they
can be seen as first order ODEs in disguised form, and as such they are not the main target of the
algorithm being presented. The classification we obtained for these 246 ODEs is as follows

Classification ODE numbers as in Kamke’s book

99 ODEs are missing x
or missing y

1, 2, 4, 7, 10, 12, 14, 17, 21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 40, 42, 43, 45, 46, 47, 48,
49, 50, 54, 56, 60, 61, 62, 63, 64, 65, 67, 71, 72, 81, 89, 104, 107, 109, 110, 111, 113,
117, 118, 119, 120, 124, 125, 126, 127, 128, 130, 132, 137, 138, 140, 141, 143, 146, 150,
151, 153, 154, 155, 157, 158, 159, 160, 162, 163, 164, 165, 168, 188, 191, 192, 197, 200,
201, 202, 209, 210, 213, 214, 218, 220, 222, 223, 224, 232, 234, 236, 237, 243, 246

13 are in exact form 36, 42, 78, 107, 108, 109, 133, 169, 170, 178, 226, 231, 235

40 ODEs are reducible

with integrating factor
µ(x, y′) or µ(y, y′) and
missing x or y

1, 2, 4, 7, 10, 12, 14, 17, 40, 42, 50, 56, 64, 65, 81, 89, 104, 107, 109, 110, 111, 125, 126,
137, 138, 150, 154, 155, 157, 164, 168, 188, 191, 192, 209, 210, 214, 218, 220, 222, 236

28 ODEs are reducible

and not missing x or y
36, 37, 51, 66, 78, 97, 108, 123, 133, 134, 135, 136, 166, 169, 173, 174, 175, 176, 178,
179, 193, 196, 203, 204, 206, 215, 226, 235

Table 1. Missing variables, exact and reducible Kamke’s 246 second order non-linear ODEs.

14Kamke’s ODEs 6.247 to 6.249 cannot be made explicit and are then excluded from the tests.
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For our purposes, the interesting subset is the one comprised of the 28 ODEs not already missing
variables. The results we obtained using the aforementioned computer algebra ODE-solvers15 are
summarized as follows16:

Kamke’s ODE numbers

Convode Mathematica 3.0 MuPAD 1.3 ODEtools

Solved: 51, 166, 173,
174, 175, 176,
179.

78, 97, 108, 166,
169, 173, 174, 175,
176, 178, 179, 206.

78, 97, 108, 133,
166, 169, 173, 174,
175, 176, 179,

51, 78, 97, 108, 133, 134, 135, 136,
166, 169, 173, 174, 175, 176, 178,
179, 193, 196, 203, 204, 206, 215.

Totals: 7 12 11 22

Reduced: 36, 37, 66, 123, 226, 235.

Totals: 0 0 0 6

Table 2. Performances in solving 28 Kamke’s ODEs having an integrating factor µ(x, y′) or µ(y, y′)

As shown above, while the scheme here presented is finding first integrals in all the 28 ODE
examples, opening the way to solve 22 of them to the end, the next scores are only 12 and 11 ODEs,
respectively solved by Mathematica 3.0 and MuPAD 1.3.

Concerning the six reductions of order returned by odsolve, it must be said that neither MuPAD
nor Mathematica provide a way to convey them, so that perhaps their ODE-solvers are obtaining
first integrals for these cases but the routines are giving up when they cannot solve the problem to
the end.

5 Conclusions

In connection with second order ODEs, this paper presented a systematic method for determining
the existence of integrating factors and their explicit form, when they have the forms µ(x, y), µ(x, y′)
and µ(y, y′). The scheme is new, as far as we know, and its implementation in the framework of the
computer algebra package ODEtools has proven to be a valuable tool. Actually, the implementation
of the scheme solves ODEs not solved by using standard or symmetry methods (see sec. 3) or some
other relevant and popular computer algebra ODE-solvers (see sec. 4).

Furthermore, the algorithms presented involve only very simple operations and do not require
solving auxiliary differential equations, except in one branch of the µ(x, y) problem. So, even for
examples where other methods also work, for instance by solving the related PDE system Eqs.(6)
and (7) using ansatzes and differential Groebner basis techniques, the method here presented can
return answers faster and avoiding potential explosions of memory17.

On the other hand, we have restricted the problem to the universe of second order ODEs having
integrating factors depending only on two variables while packages as CONLAW (in REDUCE) can
try and in some cases solve the PDE system Eqs.(6) and (7) by using more varied ansatzes for µ.

15Maple R4 is not present in the table since it is not solving any of these 28 ODEs. This situation is being resolved
in the upcoming Maple R5, where the ODEtools routines are included in the Maple library, and the previous ODE-
solver was replaced by odsolve. However, the scheme here presented was not ready when the development library
was closed; the reducible scheme implemented in Maple R5 is able to determine, when they exist, integrating factors
only of the form µ(y′).

16Some of these 28 ODEs are given in Kamke in exact form and hence they can be easily reduced after performing
a check for exactness; before running the tests all these ODEs were rewritten in explicit form by isolating y′′.

17Explosions of memory may happen when calculating all the integrability conditions involved at each step in the
differential Groebner basis approach.
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A natural extension of this work would be to develop a scheme for building integrating factors of
restricted but more general forms, now for higher order ODEs. We are presently working on these
possible extensions18, and expect to succeed in obtaining reportable results in the near future.
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New York (1959).

[2] S.C. Anco and G.W. Bluman, Integrating Factors and First Integrals for Ordinary Differential
Equations, Preprint, University of British Columbia (1997).

[3] T. Wolf, Computer algebra algorithms and routines for the computation of conservation laws
and fixing of gauge in differential expressions, J. Symb. Comp. 27 (1999), pp 221-238.

[4] Murphy, G.M., Ordinary Differential Equations and their solutions. Van Nostrand, Princeton,
1960.

[5] Sheftel, M.B., A Course in Group Analysis of Differential Equations, Part II: Ordinary Differ-
ential Equations. St. Petersburg Institute of Economics and Finance, 1997. In Russian.

[6] F. Boulier, Lazard, Ollivier and Petitot, Representation for the radical of a finitely generated
differential ideal, Proceedings of ISSAC95, pp. 158-166

[7] G.J. Reid and A.D. Wittkopf, Long Guide to the Standard Form Package, Pre-print, Department
of Mathematics, University of British Columbia, Vancouver, Canada, 1993.
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Appendix A

We display here both the integrating factors obtained for the 28 Kamke’s ODEs used in the tests
(see sec. 4) and the “case” corresponding to each ODE when using just the algorithms for µ(x, y′)
or µ(y, y′)20. As explained in sec. 2.2.3, the algorithm presented is subdivided into different cases:
A, B, C, D, E and F, and case B is always either A or C.

Integrating factor Kamke’s book ODE-number Case

1 36 D

e

∫

f(x)dx
37 A

y′
−1

51, 166, 169, 173, 175, 176, 179, 196, 203, 204, 206,
215

C

b+y′

(1+y′2)3/2
66 D

x 78 D

x−1 97 A

y 108 D

y−1 123 A
1+y′

(y′
−1)y′ 133 C

y′
−1

(1+y′)y′
134 C

y′
−1

(1+y′)(1+y′2)
135 C

y′
−1

h(y′)
136 C

x
2 xy′

−1
174 C

(1 + y′)
−1

178 C
1

y′ (1+2 yy′)
193 C

y′ 226 A

h(y′) 235 C

Integrating factors for Kamke’s ODEs which are reducible and not missing x or y.

20We note that for non-linear ODEs these two algorithms work as well when µy′ = 0, but in practice these very
simple examples are covered by the algorithm for µ(x, y) presented in sec. 2.1.
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Abstract

Integrating factors and adjoint equations are determined for linear and non-linear differential equations
of an arbitrary order. The new concept of an adjoint equation is used for construction of a Lagrangian for an
arbitrary differential equation and for any system of differential equations where the number of equations is
equal to the number of dependent variables. The method is illustrated by considering several equations tradi-
tionally regarded as equations without Lagrangians. Noether’s theorem is applied to the Maxwell equations.
 2005 Elsevier Inc. All rights reserved.

Keywords: Integrating factor for higher-order equations; Adjoint equation to non-linear equations; Lagrangian;
Noether’s theorem

1. Introduction

It is a traditional custom to associate adjoint equations exclusively with linear equations. It is
also customary to discuss integrating factors for non-linear ordinary differential equations only
in the case of first-order equations. Recall that Noether’s theorem provides a connection between
conservation laws for variational problems with symmetries of the Euler–Lagrange equations. In
this introduction, we outline the corresponding definitions and results.

1.1. Integrating factor

The usual approach to integrating factors is as follows. A first-order ordinary differential
equation

a(x, y)y′ + b(x, y) = 0, (1.1)

E-mail address: nib@bth.se.

0022-247X/$ – see front matter  2005 Elsevier Inc. All rights reserved.
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where y′ = dy/dx, is written in the differential form:

a(x, y) dy + b(x, y) dx = 0. (1.2)

Equation (1.2) is said to be exact if its left-hand side is the differential, i.e.,

a(x, y) dy + b(x, y) dx = dΦ(x, y) (1.3)

with some function Φ(x,y). If Eq. (1.2) is exact, its solution is defined implicitly by Φ(x,y) =
C = const.

In general, Eq. (1.2) is not exact but it becomes exact upon multiplying by a certain function
µ(x, y):

µ(a dy + b dx) = dΦ ≡ Φy dy + Φx dx, (1.4)

where

Φy = ∂Φ

∂y
, Φx = ∂Φ

∂x
·

The function µ(x, y) is called an integrating factor for Eq. (1.2). It follows from (1.4) that

Φy = µa, Φx = µb. (1.5)

The integrability condition for the system (1.5) is written Φxy = Φyx and yields the following
equation for determining the integrating factors:

∂(µa)

∂x
= ∂(µb)

∂y
· (1.6)

Theoretically, Eq. (1.6) provides an infinite number of integrating factors for Eq. (1.2). Prac-
tically, however, the integration of Eq. (1.6) is not usually simpler than the integration of the
differential equation (1.2) in question. Nevertheless, the concept of an integrating factor gives
us a useful tool since integrating factors for certain particular equations can be found by ad
hoc methods. If one knows two linearly independent integrating factors, µ1(x, y) and µ2(x, y),
for (1.2) then the general solution of (1.2) is obtained without additional quadratures from the
equation

µ1(x, y)

µ2(x, y)
= C. (1.7)

1.2. Adjoint linear differential operators

Let x = (x1, . . . , xn) be n independent variables and u = (u1, . . . , um) be m dependent vari-
ables with the partial derivatives u(1) = {uα

i }, u(2) = {uα
ij }, . . . of the first, second, etc. orders,

where uα
i = ∂uα/∂xi, uα

ij = ∂2uα/∂xi∂xj . Denoting

Di = ∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ · · · (1.8)

the total differentiation with respect to xi , we have

uα
i = Di

(
uα

)
, uα

ij = Di

(
uα

j

) = DiDj

(
uα

)
, . . . .

Recall the definition of the adjoint linear operator. Let us consider, e.g., the scalar (i.e., m = 1)
second-order linear partial differential equations

L[u] ≡ aij (x)uij + bi(x)ui + c(x)u = f (x), (1.9)
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where L is the following linear differential operator:

L = aij (x)DiDj + bi(x)Di + c(x). (1.10)

The summation convention is used throughout the paper. Here, for example, the summation is
assumed over i, j = 1, . . . , n. The coefficients aij (x) are symmetric, i.e., aij = aji .

The adjoint operator to L is a second-order linear differential operator L∗ such that

vL[u] − uL∗[v] = Di

(
pi

) ≡ divP(x) (1.11)

for all functions u and v, where P(x) = (p1(x), . . . , pn(x)) is any vector. The adjoint operator
L∗ is uniquely determined and has the form

L∗[v] = DiDj

(
aij v

) − Di

(
biv

) + cv. (1.12)

The operator L is said to be self-adjoint if L[u] = L∗[u] for any function u(x). Recall that the
operator (1.10) is self-adjoint if and only if

bi(x) = Dj

(
aij

)
, i = 1, . . . , n. (1.13)

The linear homogeneous equation

L∗[v] ≡ DiDj

(
aij v

) − Di

(
biv

) + cv = 0 (1.14)

is called the adjoint equation to the linear differential equation (1.9), L[u] = f (x).

The definitions of the adjoint operator and the adjoint equation are the same for systems of
second-order equations. They are obtained by assuming in Eq. (1.9) that u is an m-dimensional
vector-function and that the coefficients aij (x), bi(x) and c(x) of the operator (1.10) are m × m-
matrices.

If n = m = 1 we have the definition of the adjoint operator to linear ordinary differential
equations. Let us set u = y and consider the first-order equation

L[y] ≡ a0(x)y′ + a1(x)y = f (x). (1.15)

The adjoint operator L∗[z] to L[y] has the form

L∗[z] = −(a0z)
′ + a1z. (1.16)

The definition of the adjoint operator to higher-order equations is similar. For example, in the
case of the second-order equation

L[y] ≡ a0y
′′ + a1y

′ + a2y = f (x) (1.17)

with variable coefficients a0(x), a1(x), a2(x), the adjoint operator L∗[z] to L[y] is

L∗[z] = (a0z)
′′ − (a1z)

′ + a2z. (1.18)

Likewise, in the case of the third-order equation

L[y] ≡ a0y
′′′ + a1y

′′ + a2y
′ + a3y = f (x), (1.19)

the adjoint operator L∗[z] to L[y] is given by

L∗[z] = −(a0z)
′′′ + (a1z)

′′ − (a2z)
′ + a3z. (1.20)

The homogeneous equation L∗[z] = 0 is called the adjoint equation to L[y] = f (x).
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1.3. Noether’s theorem

Noether’s theorem [9] manifests a connection between symmetries and conservation laws
for variational problems and provides a simple procedure for construction of conservation laws
for Euler–Lagrange equations with known symmetries. The main steps of this procedure are as
follows.

For the sake of brevity, consider Lagrangians L(x,u,u(1)) involving, along with the inde-
pendent variables x = (x, . . . , xn) and the dependent variables u = (u, . . . , um), the first-order
derivatives u(1) = {uα

i } only. Then the Euler–Lagrange equations have the form

δL
δuα

≡ ∂L
∂uα

− Di

(
∂L
∂uα

i

)
= 0, α = 1, . . . ,m. (1.21)

They are obtained by variation of the integral
∫
L(x,u,u(1))dx taken over an arbitrary n-

dimensional domain in the space of the independent variables.
Noether’s theorem states that if the variational integral is invariant under a continuous trans-

formation group G with a generator

X = ξ i(x,u)
∂

∂xi
+ ηα(x,u)

∂

∂uα
, (1.22)

then the vector field C = (C1, . . . ,Cn) defined by

Ci = ξ iL+ (
ηα − ξjuα

j

) ∂L
∂uα

i

, i = 1, . . . , n, (1.23)

provides a conservation law for the Euler–Lagrange equations (1.21), i.e., obeys the equation
divC ≡ Di(C

i) = 0 for all solutions of (1.21).
The invariance of the variational integral implies that the Euler–Lagrange equations (1.21)

admit the group G. Therefore, in order to apply Noether’s theorem, one has first of all to find
the symmetries of Eqs. (1.21). Then one should single out the symmetries leaving invariant the
variational integral (1.21). This can be done by means of the following infinitesimal test for the
invariance of the variational integral (proved in [5], see also [6]):

X(L) +LDi

(
ξ i

) = 0, (1.24)

where the generator X is prolonged to the first derivatives u(1) by the formula

X = ξ i ∂

∂xi
+ ηα ∂

∂uα
+ [

Di

(
ηα

) − uα
j Di

(
ξj

)] ∂

∂uα
i

· (1.25)

If Eq. (1.24) is satisfied, then the vector (1.23) provides a conservation law.
The invariance condition (1.24) can be replaced by the divergence condition

X(L) +LDi

(
ξ i

) = Di

(
Bi

)
. (1.26)

Then Eq. (1.21) has a conservation law Di(C
i) = 0, where (1.23) is replaced by

Ci = ξ iL+ (
ηα − ξjuα

j

) ∂L
∂uα

i

− Bi. (1.27)

It is a common belief that the applicability of Noether’s theorem is severely restricted because
Lagrangians exists only for very special types of differential equations. The aim of the present
paper is to dispel this myth.
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2. Main constructions

Here, the notion of an integrating factor is extended to higher-order ordinary differential equa-
tions. Furthermore, an adjoint equation is defined for non-linear ordinary and partial differential
equations of an arbitrary order. Then, using the new concept of an adjoint equation, I obtain a
Lagrangian for any ordinary and partial differential equation. It follows that Noether type con-
servation theorems can be applied to any differential equation as well as to any system where the
number of differential equations is equal to the number of the dependent variables.

2.1. Preliminaries

We will use the calculus in the space A of differential functions introduced in [4] (see also [5,
Section 19.1] and [6, Section 8.2]). Let us denote by z the sequence

z = (x,u,u(1), u(2), . . .) (2.1)

with elements zν (ν � 1), where zi = xi (1 � i � n), zn+α = uα (1 � α � m) and the remaining
elements represent the derivatives of u. Finite subsequences of z are denoted by [z].

A differential function f is a locally analytic function f ([z]) (i.e., locally expandable in a
Taylor series with respect to all arguments) of a finite number of variables (2.1). The highest
order of derivatives appearing in a differential function f is called the order of f and is denoted
by ord(f ). Thus, ord(f ) = s means that f = f (x,u,u(1), . . . , u(s)). The set of all differential
functions of finite order is denoted by A. The set A is a vector space endowed with the usual
multiplication of functions. In other words, if f ([z]) ∈ A and g([z]) ∈ A and if a and b any
constants, then

af + bg ∈A, ord(af + bg) � max
{
ord(f ),ord(g)

}
,

fg ∈A, ord(fg) = max
{
ord(f ),ord(g)

}
.

Furthermore, the space A is closed under the total derivation: if f ∈ A, then

Di(f ) ∈A, ord
(
Di(f )

) = ord(f ) + 1.

The Euler–Lagrange operator in A is defined by the formal sum

δ

δuα
= ∂

∂uα
− Di

∂

∂uα
i

+ DiDj

∂

∂uα
ij

+ · · · , α = 1, . . . ,m, (2.2)

where, for every s, the summation is presupposed over the repeated indices i, j, . . . running from
1 to n. The operator δ/δuα is termed also the variational derivative.

The operator (2.2) with one independent variable x is written

δ

δuα
= ∂

∂uα
− Dx

∂

∂uα
x

+ D2
x

∂

∂uα
xx

− D3
x

∂

∂uα
xxx

+ · · · . (2.3)

In the case of one independent variable x and one dependent variable y, we will use the
common notation and write z = (x, y, y′, y′′, . . . , y(s), . . .). Then the total differentiation (1.8) is
written as follows:

Dx = ∂

∂x
+ y′ ∂

∂y
+ y′′ ∂

∂y′ + · · · (2.4)
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and the Euler–Lagrange operator (2.3) becomes

δ

δy
= ∂

∂y
− Dx

∂

∂y′ + D2
x

∂

∂y′′ − D3
x

∂

∂y′′′ + · · · . (2.5)

The main constructions of this section are based on the concept of multipliers and the follow-
ing lemmas (for the proofs, see [6, Section 8.4]).

Lemma 2.1. Let f (x, y, y′, . . . , y(s)) ∈ A. If Dx(f ) = 0 identically in all variables x, y, y′, . . . ,
y(s), and y(s+1), then f = C = const. Likewise, if f (x,u,u(1), . . . , u(s)) is a differential function
with one independent variable x and several dependent variables u = (u1, . . . , um), the equation
Dx(f ) = 0 implies that f = C.

Lemma 2.2. A differential function f (x,u, . . . , u(s)) ∈ A with one independent variable x is a
total derivative:

f = Dx(g), g(x,u, . . . , u(s−1)) ∈A, (2.6)

if and only if the following equations hold identically in x,u,u(1), . . . :

δf

δuα
= 0, α = 1, . . . ,m. (2.7)

Lemma 2.3. A function f (x,u, . . . , u(s)) ∈ A with several independent variables x =
(x1, . . . , xn) and several dependent variables u = (u1, . . . , um) is a divergence of a vector field
H = (h1, . . . , hn), hi ∈A:

f = divH ≡ Di

(
hi

)
, (2.8)

if and only if the following equations hold identically in x,u,u(1), . . . :

δf

δuα
= 0, α = 1, . . . ,m. (2.9)

2.2. Integrating factor for higher-order equations

Definition 2.1. Consider sth-order ordinary differential equations of the form

a
(
x, y, y′, . . . , y(s−1)

)
y(s) + b

(
x, y, y′, . . . , y(s−1)

) = 0. (2.10)

A differential function µ(x, y, y′, . . . , y(s−1)) is called an integrating factor for Eq. (2.10) if
the multiplication by µ converts the left-hand side of Eq. (2.10) into a total derivative of some
function Φ(x,y, y′, . . . , y(s−1)) ∈ A:

µay(s) + µb = Dx(Φ). (2.11)

Knowledge of an integrating factor allows one to reduce the order of Eq. (2.10). Indeed,
Eqs. (2.10)–(2.11) are written Dx(Φ) = 0, and Lemma 2.1 yields the (s − 1)-order equation

Φ
(
x, y, y′, . . . , y(s−1)

) = C. (2.12)

Definition 2.1 can be readily extended to systems of ordinary differential equations of any
order.
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Theorem 2.1. The integrating factors for Eq. (2.10) are determined by the following equation:

δ

δy

(
µay(s) + µb

) = 0, (2.13)

where δ/δy is the variational derivative (2.5). Equation (2.13) involves the variables x, y, y′, . . . ,
y(2s−2) and should be satisfied identically in all these variables.

Proof. Equation (2.13) is obtained from Lemma 2.2. The highest derivative that may appear
after the variational differentiation (2.5) has the order 2s − 1. It occurs in the terms

(−1)sDs
x(µa) and (−1)s−1Ds−1

x

[
y(s) ∂(µa)

∂y(s−1)

]
.

We have, dropping the terms that certainly do not involve y(2s−1):

(−1)sDs
x(µa) = −(−1)s−1Ds−1

x

[
y(s) ∂(µa)

∂y(s−1)

]
+ · · · .

Thus, the terms containing y(2s−1) annihilate each other, and hence Eq. (2.13) involves only the
variables x, y, y′, . . . , y(2s−2). This completes the proof. �

For the first-order equation (1.1), a(x, y)y′ + b(x, y) = 0, Eq. (2.13) is written:

δ

δy
(µay′ + µb) = y′(µa)y + (µb)y − Dx(µa) = 0.

Since Dx(µa) = (µa)x + y′(µa)y , we arrive at Eq. (1.6), (µb)y − (µa)x = 0.
Consider the second-order equation

a(x, y, y′)y′′ + b(x, y, y′) = 0. (2.14)

The integrating factors µ depend on x, y, y′, and Eq. (2.13) for determining µ(x, y, y′) is written:

δ

δy
(µay′′ + µb) = y′′(µa)y + (µb)y − Dx

[
y′′(µa)y′ + (µb)y′

] + D2
x(µa) = 0.

We have

Dx(µa) = y′′(µa)y′ + y′(µa)y + (µa)x,

D2
x(µa) = y′′′(µa)y′ + y′′2(µa)y′y′ + 2y′y′′(µa)yy′ + 2y′′(µa)xy′

+ y′′(µa)y + y′2(µa)yy + 2y′(µa)xy + (µa)xx,

Dx

(
y′′(µa)y′

) = y′′′(µa)y′ + y′′2(µa)y′y′ + y′y′′(µa)yy′ + y′′(µa)xy′ ,

Dx

(
(µb)y′

) = y′′(µb)y′y′ + y′(µb)yy′ + (µb)xy′ ,

and hence

δ

δy
(µay′′ + µb) = y′′[y′(µa)yy′ + (µa)xy′ + 2(µa)y − (µb)y′y′

]

+ y′2(µa)yy + 2y′(µa)xy + (µa)xx − y′(µb)yy′ − (µb)xy′ + (µb)y.

Since this expression should vanish identically in x, y, y′ and y′′, we arrive at the following
statement.
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Theorem 2.2. The integrating factors µ(x, y, y′) for the second-order equation (2.14) are de-
termined by the following system of two equations:

y′(µa)yy′ + (µa)xy′ + 2(µa)y − (µb)y′y′ = 0, (2.15)

y′2(µa)yy + 2y′(µa)xy + (µa)xx − y′(µb)yy′ − (µb)xy′ + (µb)y = 0. (2.16)

Theorem 2.2 shows that the second-order equations, unlike the first-order ones, may have
no integrating factors. Indeed, the integrating factor µ(x, y) for any first-order equation is de-
termined by the single first-order linear partial differential equation (1.6) which always has
infinite number of solutions. In the case of second-order equations (2.14), one unknown function
µ(x, y, y′) should satisfy two second-order linear partial differential equations (2.15)–(2.16). An
integrating factor exists only if the over-determined system (2.15)–(2.16) is compatible.

Remark 2.1. If a second-order equation (2.14) has two integrating factors, its general solution
can be found without additional integration.

Example 2.1. Let us calculate integrating factors for the following equation:

y′′ + y′2

y
+ 3

y′

x
= 0. (2.17)

Equation (2.17) has the form (2.14) with

a = 1, b = y′2

y
+ 3

y′

x
·

For the sake of simplicity, we will look for the integrating factors of the particular form µ =
µ(x, y). Then Eq. (2.15) reduces to 2µy − (µb)y′y′ = 0. Since (µb)y′y′ = 2µ/y, we obtain the
equation

∂µ

∂y
− µ

y
= 0,

whence µ = φ(x)y. Thus, we have

µ = φ(x)y, µyy = 0, µxy = φ′, µxx = φ′′y, µb = φy′2 + 3
φ

x
yy′,

(µb)y = 3
φ

x
y′, (µb)yy′ = 3

φ

x
, (µb)xy′ = 2φ′y′ + 3

(
φ′

x
− φ

x2

)
y.

Substitution in Eq. (2.16) leads to the following Euler’s equation:

x2φ′′ − 3xφ′ + 3φ = 0.

Integrating it by the standard change of the independent variable, t = lnx, we obtain two inde-
pendent solutions, φ = x and φ = x3. Thus, Eq. (2.17) has two integrating factors:

µ1 = xy, µ2 = x3y, (2.18)

and can be solved without an additional integration (see Remark 2.1).
Indeed, multiplying Eq. (2.17) by the first integrating factor, we have

xy

(
y′′ + y′2

y
+ 3

y′

x

)
= xyy′′ + xy′2 + 3yy′ = 0.
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Substituting xyy′′ = Dx(xyy′) − yy′ − xy′2, we reduce it to

Dx(xyy′) + 2yy′ = Dx

(
xyy′ + y2) = 0,

whence

xyy′ + y2 = C1. (2.19)

The similar calculations by using the second integrating factor (2.18) yields

x3yy′ = C2. (2.20)

Eliminating y′ from Eqs. (2.19)–(2.20), we obtain the following general solution to Eq. (2.17):

y = ±
√

C1 − C2

x2
. (2.21)

2.3. Adjoint equations

Definition 2.2. Consider a system of sth-order partial differential equations

Fα(x,u, . . . , u(s)) = 0, α = 1, . . . ,m, (2.22)

where Fα(x,u, . . . , u(s)) ∈ A are differential functions with n independent variables x =
(x1, . . . , xn) and m dependent variables u = (u1, . . . , um), u = u(x). The system of adjoint equa-
tions to Eqs. (2.22) is defined by

F ∗
α (x,u, v, . . . , u(s), v(s)) ≡ δ(vβFβ)

δuα
= 0, α = 1, . . . ,m, (2.23)

where v = (v1, . . . , vm) are new dependent variables, v = v(x).

Remark 2.2. In the case of linear equations, adjoint equations given by Definition 2.2 are iden-
tical with the classical adjoint equations discussed in Section 1.2. Therefore, the adjoint equation
to a linear equation (or a system) F(x,u, . . . , u(s)) = 0 for u(x) is a linear equation (a system)
F ∗(x, v, . . . , v(s)) = 0 for v(x), and the relation to be adjoint is symmetric, i.e., F ∗∗ = F . More
specifically, if the adjoint equation to F ∗(x, v, . . . , v(s)) = 0 is F ∗∗(x,w, . . . ,w(s)) = 0, then
setting w = u in the latter equation we obtain the original equation.

Definition 2.3. A system of equations (2.22) is said to be self-adjoint if the system obtained
from the adjoint equations (2.23) by the substitution v = u:

F ∗
α (x,u,u, . . . , u(s), u(s)) = 0, α = 1, . . . ,m,

is identical with the original system (2.22).1

Example 2.2. Let us take n = 1,m = 1, set u = y, v = z, and consider the first-order linear
ordinary differential equation (1.15):

F(x, y, y′) ≡ a0y
′ + a1y − f (x) = 0.

1 In general, it does not mean that F ∗
α (x,u,u, . . . , u(s), u(s)) = Fα(x,u, . . . , u(s)), see, e.g., Example 2.6.
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Equation (2.23) defining the adjoint equation is written:

δ(zF )

δy
=

(
∂

∂y
− Dx

∂

∂y′

)(
z
[
a0y

′ + a1y − f (x)
]) = 0.

Since

∂

∂y

(
z
[
a0y

′ + a1y − f (x)
]) = a1z,

∂

∂y′
(
z
[
a0y

′ + a1y − f (x)
]) = a0z,

Eq. (2.23) yields the adjoint equation a1z − Dx(a0z) = 0, or

a1z − (a0z)
′ = 0

the left-hand side of which is identical with the adjoint operator (1.16).

Example 2.3. For the second-order equation (1.17),

a0y
′′ + a1y

′ + a2y = f (x),

Definition 2.2 yields the adjoint equation(
∂

∂y
− Dx

∂

∂y′ + D2
x

∂

∂y′′

)(
z
[
a0y

′′ + a1y
′ + a2y − f (x)

]) = 0.

Proceeding as in the previous example, one obtains the adjoint equation (1.18):

(a0z)
′′ − (a1z)

′ + a2z = 0.

Example 2.4. Consider the second-order linear partial differential equation (1.9):

L[u] ≡ aij (x)uij + bi(x)ui + cu = f (x).

The definition (2.23) of the adjoint equation is written(
∂

∂u
− Di

∂

∂ui

+ DiDj

∂

∂uij

)(
v
[
aij (x)uij + bi(x)ui + cu − f (x)

]) = 0

and yields the adjoint equation (1.14):

L∗[u] ≡ DiDj

(
aij v

) − Di

(
biv

) + cv = 0.

Example 2.5. Consider the heat equation

ut − c(x)uxx = 0,

where c(x) is a variable or constant coefficient. Equation (2.23) is written (see (2.2)):

δ

δu

(
v
[
c(x)uxx − ut

]) =
(

−Dt

∂

∂ut

+ D2
x

∂

∂uxx

)(
v
[
c(x)uxx − ut

]) = 0

and yields the adjoint equation D2
x(c(x)v) + Dt(v) = 0, or

vt + (cv)xx = 0.

Let us calculate by Definition 2.2 the adjoint equations to several well-known non-linear equa-
tions from mathematical physics.
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Example 2.6. Consider the Korteweg–de Vries equation

ut = uxxx + uux. (2.24)

We take F(t, x,u, . . . , u(3)) = ut − uxxx − uux and write the left-hand side of Eq. (2.23) in the
form

δ

δu

(
v[ut − uxxx − uux]

) = −vt + vxxx − vux + Dx(uv) = −vt + vxxx + uvx.

Hence, F ∗(t, x, u, v, . . . , u(3), v(3)) = −(vt − vxxx − uvx), and the adjoint equation to the
Korteweg–de Vries equation (2.24) is

vt = vxxx + uvx. (2.25)

We have

F ∗(t, x, u,u, . . . , u(3), u(3)) = −(ut − uxxx − uux) ≡ −F(t, x,u, . . . , u(3)).

Thus, Eq. (2.24) is self-adjoint (see Definition 2.3).
Let us find the adjoint equation to Eq. (2.25). We have

δ

δv

(
w[vt − vxxx − uux]

) = −wt + wxxx + Dx(uw) = −wt + wxxx + uwx + wux.

Hence, the adjoint to Eq. (2.25) is wt = wxxx + uwx + wux . Setting here w = u, we obtain the
equation

ut = uxxx + 2uux

different from the original Korteweg–de Vries equation (2.24) (cf. Remark 2.2).

Example 2.7. Consider the Burgers equation

ut = uux + uxx. (2.26)

The left-hand side of Eq. (2.23) is written:

δ

δu

(
v[ut − uux − uxx]

) = −vt − vux + Dx(uv) − vxx = −vt + uvx − vxx.

Hence, adjoint equation to the Burgers equation (2.26) is (see also [7])

vt = uvx − vxx. (2.27)

Example 2.8. Consider the non-linear heat equation:

ut = [
k(u)ux

]
x
. (2.28)

The left-hand side of Eq. (2.23) is written:

δ

δu

(
v
[
ut − k(u)uxx − k′(u)u2

x

])
= −vt − k′(u)vuxx − k′′(u)vu2

x − D2
x

(
k(u)v

) + 2Dx

(
k′(u)vux

)
. (2.29)

We have Dx(k(u)v) = kvx + k′vux and therefore

−D2
x

(
k(u)v

) + 2Dx

(
k′(u)vux

) = −Dx(kvx) + Dx

(
k′vux

)
.
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Inserting this in Eq. (2.29) and making simple calculations we arrive at the following adjoint
equation to the non-linear heat equation (2.28) (see also [7]):

vt + k(u)vxx = 0. (2.30)

Let us find the adjoint equation to (2.30). We have

δ

δv

(
w

[
vt + k(u)vxx

]) = −wt + D2
x

[
k(u)w

]
.

Hence, the adjoint equation to (2.30) is wt = [k(u)w]xx and does not coincide with Eq. (2.28)
upon setting w = u.

2.4. Lagrangians

Theorem 2.3. Any system of sth-order differential equations (2.22),

Fα(x,u, . . . , u(s)) = 0, α = 1, . . . ,m, (2.22)

considered together with its adjoint equation (2.23),

F ∗
α (x,u, v, . . . , u(s), v(s)) ≡ δ(vβFβ)

δuα
= 0, α = 1, . . . ,m, (2.23)

has a Lagrangian. Namely, the simultaneous system (2.22)–(2.23) with 2m dependent variables
u = (u1, . . . , um) and v = (v1, . . . , vm) is the system of Euler–Lagrange equations (1.21) with
the Lagrangian L defined by2

L= vβFβ. (2.31)

Proof. Indeed, we have

δL
δvα

= Fα(x,u, . . . , u(s)) (2.32)

and

δL
δuα

= F ∗
α (x,u, v, . . . , u(s), v(s)). � (2.33)

Let us turn to examples. Consider linear equations, e.g. the homogeneous linear second-order
partial differential equation (1.9):

L[u] ≡ aij (x)uij + bi(x)ui + c(x)u = 0. (2.34)

The Lagrangian (2.31) is written:

L= vL[u] = v
(
aij (x)uij + bi(x)ui + c(x)u

)
. (2.35)

We have

δL
δv

= ∂L
∂v

= L[u] (2.36)

2 See also the concept of a weak Lagrangian introduced in [3].
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and

δL
δuα

= DiDj

(
∂L
∂uij

)
− Di

(
∂L
∂ui

)
+ ∂L

∂u

= DiDj

(
aij v

) − Di

(
biv

) + cv = L∗[v]. (2.37)

Theorem 2.4. Let the linear operator L[u] be self-adjoint, L∗[u] = L[u]. Then Eq. (2.34) is
obtained from the Lagrangian

L= 1

2

[
c(x)u2 − aij (x)uiuj

]
. (2.38)

Proof. We rewrite the Lagrangian (2.35) in the form

L= v
(
aijuij + biui + cu

) = Dj

(
vaijui

) − vuiDj

(
aij

) + vbiui − aijuivj + cuv.

The first term at the right-hand side can be dropped by Lemma 2.3, while the second and the
third terms annihilate each other by the condition (1.13). Finally, we set v = u, divide by two and
arrive at the Lagrangian (2.38). �
Example 2.9. For the Helmholtz equation ∆u + k2u = 0, (2.38) gives the well-known La-
grangian L = (k2u2 − |∇u|2)/2.

If one deals with linear equations that are not self-adjoint or with non-linear equations, one
obtains a Lagrangian formulation by considering the equation in question together with its adjoint
equation.

Example 2.10. The linear heat equation is not self-adjoint. Therefore, we consider it together
with its adjoint equation and obtain the system of two equations:

ut − c(x)uxx = 0, vt + (cv)xx = 0 (2.39)

which is derived from the Lagrangian

L= vut − c(x)vuxx. (2.40)

Example 2.11. According to Example 2.6, the Lagrangian

L= v[ut − uxxx − uux] (2.41)

leads to the Korteweg–de Vries equation (2.24) and its conjugate (2.25) combined in the follow-
ing system:

ut = uxxx + uux, vt = vxxx + uvx. (2.42)

Example 2.12. Likewise, we obtain from Example 2.8 the Lagrangian

L= v
[
ut − k(u)uxx − k′(u)u2

x

]
(2.43)

that leads to the non-linear heat equation (2.28) and its conjugate (2.30) combined in the follow-
ing system:

ut = [
k(u)ux

]
x
, vt + k(u)vxx = 0. (2.44)
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Example 2.13. One of fundamental equations in quantum mechanics is the Dirac equation

γ k ∂ψ

∂xk
+ mψ = 0, m = const. (2.45)

The dependent variable ψ is a 4-dimensional column vector with complex valued compo-
nents ψ1,ψ2,ψ3,ψ4. The independent variables compose the four-dimensional vector x =
(x1, x2, x3, x4), where x1, x2, x3 are the real valued spatial variables and x4 is the complex
variable defined by x4 = ict with t being time and c the light velocity. Furthermore, γ k are the
following 4 × 4 complex matrices called the Dirac matrices:

γ 1 =



0 0 0 −i

0 0 −i 0
0 i 0 0
i 0 0 0


 , γ 2 =




0 0 0 −1
0 0 −1 0
0 1 0 0

−1 0 0 0


 ,

γ 3 =



0 0 −i 0
0 0 0 i

i 0 0 0
0 −i 0 0


 , γ 4 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 .

Equation (2.45) does not have a Lagrangian. Therefore, it is considered together with the
conjugate equation

∂ψ̃

∂xk
γ k − mψ̃ = 0. (2.46)

Here ψ̃ = ψT γ 4 is the row vector, where ψ denotes the complex-conjugate to ψ and T the
transposition. The system (2.45)–(2.46) has the Lagrangian

L= 1

2

[
ψ̃

(
γ k ∂ψ

∂xk
+ mψ

)
−

(
∂ψ̃

∂xk
γ k − mψ̃

)
ψ

]
.

Indeed, we have

δL
δψ

= −
(

∂ψ̃

∂xk
γ k − mψ̃

)
,

δL
δψ̃

= γ k ∂ψ

∂xk
+ mψ.

3. Application to the Maxwell equations

This section is dedicated to illustration of the method by applying Noether’s theorem to the
Maxwell equations. Consider the Maxwell equations in vacuum:

1

c

∂E

∂t
= curlH , divE = 0,

1

c

∂H

∂t
= − curlE, divH = 0. (3.1)

The system (3.1) contains six dependent variables, namely, the components of the electric field
E = (E1,E2,E3) and the magnetic field H = (H 1,H 2,H 3), and eight equations, i.e. it is over-
determined. On the other hand, the number of equations in the Euler–Lagrange equations (1.21)
is equal to the number of dependent variables. Consequently, the system (3.1) cannot have a
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Lagrangian. What is considered in the literature as a variational problem in electrodynamics
(see, e.g. [1,8]) provides a Lagrangian for the wave equation

∆A − 1

c2

∂2A

∂t2
= 0

for the vector potential A of the electromagnetic field, but not for the Maxwell equations (3.1).
Let us find a Lagrangian for the electromagnetic field by using Theorem 2.3. First we note

that the equations divE = 0, divH = 0 hold at any time provided that they are satisfied at the
initial time t = 0. Hence, they are merely initial conditions (see, e.g. [2] or [6]). Therefore, we
will consider the following determined system of differential equations (we set t ′ = ct and take
t ′ as new t):

curlE + ∂H

∂t
= 0, curlH − ∂E

∂t
= 0. (3.2)

We introduce six new dependent variables, namely the components of the vectors V =
(V 1,V 2,V 3) and W = (W 1,W 2,W 3), and introduce the Lagrangian

L= V ·
(

curlE + ∂H

∂t

)
+ W ·

(
curlH − ∂E

∂t

)
(3.3)

in accordance with the definition (2.31).
One can readily verify that the Lagrangian (3.3) yields the system (3.2) together with its

adjoint, namely:

δL
δV

≡ curlE + ∂H

∂t
= 0,

δL
δW

≡ curlH − ∂E

∂t
= 0, (3.4)

δL
δE

≡ curlV + ∂W

∂t
= 0,

δL
δH

≡ curlW − ∂V

∂t
= 0. (3.5)

If we set V = E, W = H , Eqs. (3.5) coincide with (3.4). Hence, the operator in (3.2) is self-
adjoint. Therefore we set V = E, W = H in (3.3), divide by two and obtain the Lagrangian for
the Maxwell equations (3.2) (cf. Theorem 2.4):

L= 1

2

[
E ·

(
curlE + ∂H

∂t

)
+ H ·

(
curlH − ∂E

∂t

)]
. (3.6)

In coordinates, the Lagrangian (3.6) is written:

L= E1(E3
y − E2

z + H 1
t

) + E2(E1
z − E3

x + H 2
t

) + E3(E2
x − E1

y + H 3
t

)
+ H 1(H 3

y − H 2
z − E1

t

) + H 2(H 1
z − H 3

x − E2
t

) + H 3(H 2
x − H 1

y − E3
t

)
. (3.7)

The symmetries of the Maxwell equations are well known, and one can apply Noether’s the-
orem by using the Lagrangian (3.6). We will employ, as an example, the invariance of Eqs. (3.2)
with respect to the group of transformations

H ′ = H cos θ + E sin θ, E′ = E cos θ − H sin θ (3.8)

with the generator

X = E
∂

∂H
− H

∂

∂E
≡

3∑
i=1

(
Ei ∂

∂H i
− Hi ∂

∂Ei

)
. (3.9)
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The prolongation (1.25) of this generator is written

X = E
∂

∂H
− H

∂

∂E
+ Et

∂

∂H t

− H t

∂

∂Et

+ Ex

∂

∂H x

− H x

∂

∂Ex

+ · · · . (3.10)

Acting by the operator (3.10) on the Lagrangian (3.6), we have

X(L) = 1

2

[−H · (curlE + H t ) + E · (curlH − Et )

+ E · (− curlH + Et ) + H · (curlE + H t )
] = 0.

Hence, the condition (1.24) is satisfied and one can obtain a conservation law by the formula
(1.23). We will write the conservation law in the form

Dt(τ) + divχ = 0, (3.11)

where χ = (χ1, χ2, χ3), divχ = Dx(χ
1) + Dy(χ

2) + Dz(χ
3). Equation (1.23) yields

τ = E · ∂L
∂H t

− H · ∂L
∂Et

= 1

2

[
E · E − H · (−H )

] = 1

2

[
E2 + H 2].

Hence, τ is the energy density. Likewise, calculating the spatial coordinates of the conserved
vector (1.23), one can verify that χ is the Poynting vector, χ = E × H . Thus, we have obtained
the conservation of energy (see, e.g. [8]):

Dt

(
E2 + H 2

2

)
+ div(E × H ) = 0. (3.12)
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Abstract

A new problem is studied, the concept of exactness of a second order nonlinear ordinary

differential equations is established. A method is constructed to reduce this class into a

first order equations. If the second order equation is not exact we introduce, under certain

conditions, an integrating factor that transform it to an exact one.

Keywords and Phrases: Second order differential equation, Exact equations, Non-exact equa-

tions, Integrating factor.
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1 Introduction

The concept of exactness for a class of a first order nonlinear differential equations was presented

[5] with a well-defined method of solution. The notion of integrating factor were introduced to

convert differential equation that is not exact into an exact one.

Second order nonlinear differential equations play an important role in Applied Mathematics,

Physics, and Engineering [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. To find the general solution of a nonlinear

second order differential equation is not an easy problem in the general case. In fact, a very

specific class of nonlinear second order differential equations can be solved by using special

transformations. Another approach to study the solution of nonlinear second order differential

equations is the dynamical systems approach. Using this approach a qualitative solution is given

instead of the particular solution of the equation. A class of these equations will be solved in

this paper.

The outline of the paper: we give mathematical formulation for the exactness of a class of

second order nonlinear equations based on transforming them into a first order equations. Also,

we will introduce the idea of integrating factor to convert some differential equations into exact

equations, and we will prove some related results.
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2 Exact Second Order Differential Equations

Consider the following nonlinear second order differential equation

a2(x, y, y
′)y′′ + a1(x, y, y

′)y′ + a0(x, y, y
′) = 0. (2.1)

If a function Ψ(x, y, y′) exists with the properties that

∂Ψ(x, y, y′)

∂x
= a0(x, y, y

′),
∂Ψ(x, y, y′)

∂y
= a1(x, y, y

′), and
∂Ψ(x, y, y′)

∂y′
= a2(x, y, y

′), (2.2)

then we have
∂Ψ(x, y, y′)

∂y′
y′′ +

∂Ψ(x, y, y′)

∂y
y′ +

∂Ψ(x, y, y′)

∂x
= 0.

So, by the chain rule, we get
dΨ(x, y, y′)

dx
= 0.

Hence,

Ψ(x, y, y′) = c

reduces Eq. (2.1) into a first order differential equation.

Definition 2.1. The nonlinear second order differential equation (2.1) is called exact equation

if there exists a function Ψ(x, y, y′) such that (2.2) holds.

Theorem 2.1. Let the functions a2(x, y, y
′), a1(x, y, y

′), a0(x, y, y
′),

∂a2

∂y
,
∂a2

∂x
,
∂a1

∂x
,
∂a1

∂y′
,
∂a0

∂y′
,

and
∂a0

∂y
be continuous functions in a simply connected region R ⊆ R

3. Then Eq. (2.1) is exact

if and only if
∂a2

∂y
=

∂a1

∂y′
,

∂a2

∂x
=

∂a0

∂y′
, and

∂a1

∂x
=

∂a0

∂y
. (2.3)

Proof. Assume that (2.3) hold. We are going to construct a function Ψ(x, y, y′) such that

∂Ψ(x, y, y′)

∂x
= a0(x, y, y

′).

Then by integrating this equation with respect to x, we get

Ψ(x, y, y′) =

∫ x

x0

a0(α, y, y
′)dα+Φ(y, y′). (2.4)

Therefore, by differentiating the above equation with respect to y and using the assumption, we

get
∂Φ(y, y′)

∂y
= a1(x0, y, y

′).

Hence,

Φ(y, y′) =

∫ y

y0

a1(x0, β, y
′)dβ + ξ(y′).

To find ξ(y′), we substitute Φ(y, y′) in Eq. (2.4) to get

Ψ(x, y, y′) =

∫ x

x0

a0(α, y, y
′)dα+

∫ y

y0

a1(x0, β, y
′)dβ + ξ(y′).



Differentiate this equation with respect to y′ and again use the assumptions, to get

ξ′(y′) = a2(x0, y0, y
′).

Therefore,

ξ(y′) =

∫ y′

y′
0

a2(x0, y0, γ)dγ.

Hence,

Ψ(x, y, y′) =

∫ x

x0

a0(α, y, y
′)dα+

∫ y

y0

a1(x0, β, y
′)dβ +

∫ y′

y′
0

a2(x0, y0, γ)dγ.

The proof of the other direction is obvious. In fact, it comes from the assumption that a2(x, y, y
′),

a1(x, y, y
′), and a0(x, y, y

′) are continuous with their first partial derivatives.

Remark 2.1. From the above theorem, we conclude that the nonlinear second order differential

equation (2.1) is exact equation if the conditions

∂a2

∂y
=

∂a1

∂y′
,

∂a2

∂x
=

∂a0

∂y′
, and

∂a1

∂x
=

∂a0

∂y
(2.5)

hold.

Example 2.1. (The Plane Hydrodynamic Jet) Consider the second order nonlinear differential

equation

3ǫy′′ + yy′ = 0.

This is exact. By using the result in the above theorem, we have

Ψ(x, y, y′) =

∫ y

0
βdβ + 3ǫ

∫ y′

0

dγ (2.6)

=
y2

2
+ 3ǫy′. (2.7)

Hence, the equation is reduced to Ψ(x, y, y′) = c2, which is equivalent to

3ǫy′ +
y2

2
= c2.

Remark 2.2. Consider the following nonlinear second order differential equation

y′′ + a1(x, y)y
′ + a0(x, y) = 0, (2.8)

where a1(x, y) and a0(x, y) satisfy the condition (2.2). Note that a2(x, y, y
′) = 1, a1(x, y, y

′) =

a1(x, y), and a0(x, y, y
′) = a0(x, y), and so, it is obvious to see that the conditions (2.5) hold.

Therefore, (2.8) is exact.

Example 2.2. The second order nonlinear initial value problem
{

y′′ + 12xy3y′ +
(

3y4 − 1
)

= 0

y(0) = 2, y′(0) = 0,
(2.9)

is exact. Therefore, there exists a function Ψ(x, y, y′) which reduces the above equation into a

first order differential equation. By applying the above theorem, we have

Ψ(x, y, y′) =

∫ x

x0

a0(α, y, y
′)dα+

∫ y

y0

a1(x0, β, y
′)dβ +

∫ y′

y′
0

a2(x0, y0, γ)dγ,



and since x0 = 0, y0 = 2, and y′0 = 0, we have

Ψ(x, y, y′) =

∫ x

0
a0(α, y, y

′)dα+

∫ y

2
a1(0, β, y

′)dβ +

∫ y′

0
a2(0, 2, γ)dγ,

=

∫ x

0
(3y4 − 1)dα +

∫ y′

0
dγ,

= y′ + (3y4 − 1)x.

Hence, Ψ(x, y, y′) = c reduces Eq. (2.9) to

y′ + (3y4 − 1)x = c.

By applying the initial data, we get c = 0. Hence, Eq. (2.9) is reduced to the following first order

differential equation

y′ + 3xy4 − x = 0.

For which an implicit solution can be obtained by separating the variable.

3 Non-exact Second Order Differential Equations and Integrating

Factors

In this section, we introduce the notion of the integrating factor for the second order differential

equation (2.1). Also, we deduce some conditions for the existence of such integrating factor.

First, we start by the following definition for the integrating factor:

Definition 3.1. An integrating factor of Eq. (2.1) is a non zero function µ(x, y, y′), such that

the equation

µ(x, y, y′)a2(x, y, y
′)y′′ + µ(x, y, y′)a1(x, y, y

′)y′ + µ(x, y, y′)a0(x, y, y
′) = 0 (3.1)

is exact. i.e.,
∂A2

∂y
=

∂A1

∂y′
,

∂A2

∂x
=

∂A0

∂y′
, and

∂A1

∂x
=

∂A0

∂y
, (3.2)

where

A2(x, y, y
′) = µ(x, y, y′)a2(x, y, y

′),

A1(x, y, y
′) = µ(x, y, y′)a1(x, y, y

′),

and

A0(x, y, y
′) = µ(x, y, y′)a0(x, y, y

′).

Theorem 3.1. Assume that Eq. (2.1) is not an exact equation. Then, it has no integrating

factor of one of the forms µ(x, y, y′), µ(x, y), µ(x, y′), or µ(y, y′) if and only if

(

∂a0

∂y
−

∂a1

∂x

)

a2 +

(

∂a2

∂x
−

∂a0

∂y′

)

a1 +

(

∂a1

∂y′
−

∂a2

∂y

)

a0 6= 0. (3.3)



Proof. If such an integrating factor exists, then the conditions in Eq. (3.2) should be hold. A

simple calculations shows that the following equations:

a2
∂µ

∂y
+ µ

∂a2

∂y
= a1

∂µ

∂y′
+ µ

∂a1

∂y′
,

a2
∂µ

∂x
+ µ

∂a2

∂x
= a0

∂µ

∂y′
+ µ

∂a0

∂y′
,

and

a1
∂µ

∂x
+ µ

∂a1

∂x
= a0

∂µ

∂y
+ µ

∂a0

∂y
,

must be hold. By solving the above three algebraic equations, simultaneously, we get

[(

∂a0

∂y
−

∂a1

∂x

)

a2 +

(

∂a2

∂x
−

∂a0

∂y′

)

a1 +

(

∂a1

∂y′
−

∂a2

∂y

)

a0

]

µ(x, y, z) = 0.

Clearly, if
[(

∂a0

∂y
−

∂a1

∂x

)

a2 +

(

∂a2

∂x
−

∂a0

∂y′

)

a1 +

(

∂a1

∂y′
−

∂a2

∂y

)

a0

]

6= 0,

then

µ(x, y, y′) = 0.

Similarly, for Eq. (2.1), we can show that there is no integrating factor of one of the forms

µ(x, y), µ(x, y′), or µ(y, y′) if (3.3) holds. �

Example 3.1. Consider the second order nonlinear equation

xy(2x+ y)y′′ + (x2 + xy)y′ + (3xy + y2) = 0. (3.4)

Theorem 3.1 shows that the above equation has an integrating factor. In fact, the integrating

factor is given by µ(x, y) = 1
xy(2x+y) . This integrating factor transforms Eq. (3.4) into an exact

equation, which can be reduced into a first order differential equation. In fact, it is reduced into

the following equation:
dy

dx
+ ln

(

xy
√

y + 2x
)

= c.

The following result gives necessary conditions for the integrating factor to be a function of

x only.

Remark 3.1. Through out this paper, we use the notation ∂ηf :=
∂f

∂η
.

Lemma 3.1. Assume that Eq. (2.1) is not an exact equation. Then, it has an integrating factor

µ(x) = exp

{
∫ x ∂ya0 − ∂xa1

a1
dx

}

= exp

{
∫ x ∂y′a0 − ∂xa2

a2
dx

}

if and only if
∂ya0 − ∂xa1

a1
and

∂y′a0 − ∂xa2

a2
depend only on x,

∂ya0 − ∂xa1

a1
=

∂y′a0 − ∂xa2

a2
,

and

∂ya2 = ∂y′a1.



Proof. Assume that Eq. (2.1) has an integrating factor µ(x). Therefore, conditions (3.2) hold.

Hence, we get the following algebraic equations:

µ
∂a2

∂y
= µ

∂a1

∂y′
,

a2µ
′ + µ

∂a2

∂x
= µ

∂a0

∂y′
,

and

a1µ
′ + µ

∂a1

∂x
= µ

∂a0

∂y
.

Using the first equation, we have a non zero integrating factor, if ∂a2
∂y

= ∂a1
∂y′

. The last two

equations implies that

µ′

µ
=

∂a0
∂y′

− ∂a2
∂x

a2
=

∂a0
∂y

− ∂a1
∂x

a1
.

By integrating the above equation with respect to x, we get

µ(x) = exp

{
∫ x ∂ya0 − ∂xa1

a1
dx

}

= exp

{
∫ x ∂y′a0 − ∂xa2

a2
dx

}

.�

Lemma 3.2. The integrating factor of Eq. (2.1) in terms of y is given by

µ(y) = exp

{
∫ y ∂y′a1 − ∂ya2

a2
dy

}

= exp

{
∫ y ∂xa1 − ∂ya0

a0
dy

}

,

provided that
∂y′a1 − ∂ya2

a2
and

∂xa1 − ∂ya0

a0
depend only on y,

∂y′a1 − ∂ya2

a2
=

∂xa1 − ∂ya0

a0
,

and

∂xa2 = ∂y′a0.

Lemma 3.3. The integrating factor of Eq. (2.1) in terms of y′ is given by

µ(y′) = exp

{
∫ y′ ∂ya2 − ∂y′a1

a1
dy′

}

= exp

{

∫ y′ ∂xa2 − ∂y′a0

a0
dy′

}

,

provided that
∂ya2 − ∂y′a1

a1
and

∂xa2 − ∂y′a0

a0
depend only on y′,

∂ya2 − ∂y′a1

a1
=

∂xa2 − ∂y′a0

a0
,

and

∂xa1 = ∂ya0.



Example 3.2. Consider the nonlinear second order differential equation

(1 + y2)yy′′ + g(y)y′ + (1 + y2)y = 0,

where g(y) is an arbitrary function in y. This equation is not exact. In fact, it has an integrating

factor µ(y) = 1
y(1+y2)

which transforms this equation into the exact second order differential

equation

y′′ +
g(y)

y(1 + y2)
y′ + 1 = 0.

Since the condition (3.3) can not be held easily. i.e., to have an integrating factor of the

form µ(x, y, y′), we are looking for an integrating factor of the form µ(α(x)β(y)γ(y′)), where

α(x), β(y) and γ(y′) are arbitrary functions in x, y, and y′, respectively. For such an integrating

factor to exist, we have the following theorem:

Theorem 3.2. Assume that Eq. (2.1) is not an exact equation. Then, an integrating factor

µ(α(x)β(y)γ(y′)) of Eq. (2.1) exists and is given by

µ(ξ) = µ(α(x)β(y)γ(y′)) = exp

{
∫ ξ ∂y′a1 − ∂ya2

α(x) [β′(y)γ(y′)a2 − β(y)γ′(y′)a1]
dξ

}

= exp

{
∫ ξ ∂ya0 − ∂xa1

γ(y′) [α(x)β′(y)a1 − α′(x)β(y)a0]
dξ

}

= exp

{
∫ ξ ∂xa2 − ∂y′a0

β(y) [α(x)γ′(y′)a0 − α′(x)γ(y′)a2]
dξ

}

,

if and only if

∂y′a1 − ∂ya2

α(x) [β′(y)γ(y′)a2 − β(y)γ′(y′)a1]
=

∂ya0 − ∂xa1

γ(y′) [α(x)β′(y)a1 − α′(x)β(y)a0]

=
∂xa2 − ∂y′a0

β(y) [α(x)γ′(y′)a0 − α′(x)γ(y′)a2]
,

and they depend on ξ(x, y, y′) := α(x)β(y)γ(y′).

Proof. The proof is a direct consequence of conditions (3.2).

Using the above theorem, and by either assuming γ(y′) = 1, β(y) = 1, or α(x) = 1, we can

deduce that the integrating factors are µ(α(x)β(y)), µ(α(x)γ(y′)) and µ(β(y)γ(y′)), respectively.

The results are listed in the following corollaries:

Corollary 3.1. An integrating factor, µ(α(x)β(y)), of Eq. (2.1) exists and is given by

µ(α(x)β(y)) = exp

{
∫ ξ ∂y′a1 − ∂ya2

α(x)β′(y)a2
dξ

}

= exp

{
∫ ξ ∂y′a0 − ∂xa2

α′(x)β(y)a2
dξ

}

= exp

{
∫ ξ ∂ya0 − ∂xa1

α(x)β′(y)a1 − α′(x)β(y)a0
dξ

}

,

if and only if

∂y′a1 − ∂ya2

α(x)β′(y)a2
=

∂y′a0 − ∂xa2

α′(x)β(y)a2
=

∂ya0 − ∂xa1

α(x)β′(y)a1 − α′(x)β(y)a0
,

and they depend on ξ(x, y) := α(x)β(y).



Corollary 3.2. An integrating factor, µ(α(x)γ(y′)), of Eq. (2.1) exists and is given by

µ(ξ) = µ(α(x)γ(y′))

= exp

{
∫ ξ ∂ya2 − ∂y′a1

α(x)γ′(y′)a0
dξ

}

= exp

{
∫ ξ ∂xa1 − ∂ya0

α′(x)γ(y′)a1
dξ

}

= exp

{
∫ ξ ∂y′a0 − ∂xa2

α′(x)γ(y′)a2 − α(x)γ′(y′)a0
dξ

}

,

provided that

∂ya2 − ∂y′a1

α(x)γ′(y′)a0
=

∂xa1 − ∂ya0

α′(x)γ(y′)a1
=

∂y′a0 − ∂xa2

α′(x)γ(y′)a2 − α(x)γ′(y′)a0
,

and they depend on ξ(x, y′) := α(x)γ(y′).

Corollary 3.3. An integrating factor, µ(β(y)γ(y′)), of Eq. (2.1) exists and is given by

µ(ξ) = µ(β(y)γ(y′))

= exp

{
∫ ξ ∂ya0 − ∂xa1

β′(y)γ(y′)a1
dξ

}

= exp

{
∫ ξ ∂xa2 − ∂y′a0

β(y)γ′(y′)a0
dξ

}

= exp

{
∫ ξ ∂y′a1 − ∂ya2

β′(y)γ(y′)a2 − β(y)γ′(y′)a1
dξ

}

,

provided that
∂ya0 − ∂xa1

α′(y)β(y′)a1
=

∂xa2 − ∂y′a0

α(y)β′(y′)a0
=

∂y′a1 − ∂ya2

α′(y)β(y′)a2 − α(y)β′(y′)a1
,

and they depend on ξ(y, y′) := β(y)γ(y′).

4 Conclusions and Remarks

In this paper, we imposed conditions on the equation

a2(x, y, y
′)y′′ + a1(x, y, y

′)y′ + a0(x, y, y
′) = 0,

so that it is exact. In addition, we introduced an integrating factor in case where the equation

is not an exact differential equation. Moreover, we presented some examples showing that this

method is powerful in solving a class of second order nonlinear differential equations. For further

studies, it is reasonable to improve this definition and this technique to a more complicated

class of differential equations. For example, if we consider the general form of the second order

nonlinear differential equation f(x, y, y′, y′′) = 0. Also, it is reasonable to improve this method

to work for higher order nonlinear differential equations.
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A New Approach for Solving Second Order Ordinary Differential Equations 

 
Laith K. AL-Hwawcha and Namh A. Abid 
Al-Zaytoonah University, Amman, Jordan 

 
Abstract: A new approach is presented to solve second order linear differential equations with 
variable coefficients and some illustrative examples are given. 
 
Key words: Second order equations, general solution, homogeneous and nonhomogeneous equations 

 
INTRODUCTION 

 
 Consider the second order linear ordinary 
differential equation 
 
  y� +P(x) y� +Q(x) y = G(x)  (1) 
 
where, P, Q and G are continuous functions. It is known 
that the power series method is a powerful method for 
solving Eq.(1). However, this method needs a lot of 
time, space and high concentration during calculations. 
In this research, we present a new approach which can 
be used to a wide class of equations either to find a 
general solution to the associated homogeneous 
equation or to find a particular solution to Eq.(1) 
without requiring the general solution or any solution of 
the associated homogeneous equation as most methods 
require. For more details, see[1]. 
 

MAIN RESULTS 
 

 In this section we introduce our main results. 
 
Theorem 1: Consider the equation  
 
  y� +P(x) y� +Q(x) y = 0  (2) 
 
If v(x) = y�(x) + �(x)y(x), where �(x) is a solution of the 
Riccati equation ��(x) = Q(x) – P(x) �(x) + �²(x), 
then,                 
 

  (x)dx (2 (x ) P(x))dx
y(x) e e dx

− β β −� �= �   (3) 

 
is a solution of Eq.(2). 
 
Proof: It is easy to show that v′ = ( (x) P(x))β − v,  where 

Riccati equation has been used and v(x) = ( (x) P(x))dx
e

β −� , 
then the result is achieved. 

Note: It is known that the substitution v(x) = y
y

′−  

transfers Eq. (2) to a Riccati equation and v(x)dx
y e

−�=  is 
a solution of the equation. This result is included in the 
theorem (1) and the formula (3) really gives a second 
linearly independent solution to Eq. (2) and therefore 
the general solution is constructed. These facts are 
illustrated in the following example.  
 
Example 1: Find a general solution of the equation 
 
  x y� - (1+x) y�+ y = 0  (4) 
 

Solution: Here, P(x)= (1 x)
x

− + , 1
Q(x)

x
=  , so the 

Riccati equation is  
 

��(x) = 1
x

+ 1 x
x
+� �

� �
� �

 �(x) + � 2 (x)  

 
and �(x) = -1 is a solution of the equation, and then 

dx x
1y (x) e e�= = is a solution of the equation. Thus 

  

   
1 x

2 dxdx x
2y (x) e e dx

x 1.

+� �− +� �
� ���=

= − −
�  

 
Hence the general solution is  
 
  x

1 2y(x) c e c (x 1)= + + . 
  
 By using the same technique, naturally one can get 
the following result, which can be used to find a 
particular solution of Eq. (1). In particular, this 
procedure can be used easily to find a particular 
solution of second order ordinary differential equations 
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with constants coefficients and for Cauchy- Euler 
equation because the associated Riccati equation is 
solvable.  
 
Theorem 2: Consider the equation  
 
  y�+P(x) y�+Q(x) y = G(x)  (5) 
 
 If  v(x) = y�(x)+ �(x)y(x), where �(x) is a solution 
of the Riccati equation 
 
  ��(x) = Q(x) – P(x) �(x) + �²(x), 
 
then 
 

 (x)dx (2 (x) P(x ))dx ( (x) P(x ))dx
y(x) e (e G(x)e dx)dx

− β β − − β −� � �= � �                  
 
is a solution of Eq. (5). 
 
Example 2: Find a particular solution of the equation 
 
  2 2x y 3xy y x ln x, x 0′′ ′+ + = >   (6) 
 

Solution: Here, 3
P(x)

x
=  and 2

1
Q(x)

x
= , so the Riccati 

equation is given by:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  ��(x) = 2

1
x

- 3
x
�(x)+�2 (x), 

 

and �(x) = 1
x

 is a solution of the equation. Thus  

 

  

1 1 1
dx dx 2 dx

x x x
p

2

y (x) e (e ln(x)e dx)dx

1 2
x (ln(x) )

9 3

− −� � �=

= −

� �
 

                     
is a particular solution of the given equation.  
 

CONCLUSION 
 

In this research we introduce a new approach for 
solving second order ordinary differential equations, 
and it seems an easier way to teach these equations than 
the usual ones.  
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Abstract 
In this paper, a new approach for solving the second order nonlinear ordinary differential equa-
tion y’’ + p(x; y)y’ = G(x; y) is considered. The results obtained by this approach are illustrated by 
examples and show that this method is powerful for this type of equations. 

 
Keywords 
Nonlinear Ordinary Differential Equation, Partial Differential Equation, Riccati Differential 
Equation 

 
 

1. Introduction 
Exact solutions have always played and still play an important role in properly understanding the qualitative 
features of many phenomena and processes in various fields of natural science. Exact solutions of nonlinear eq-
uations, including those without a clear physical sense which do not correspond to real phenomena and pro- 
cesses, play an important role of test problems for verifying the correctness and assessment of accuracy of vari-
ous numerical, asymptotic, and approximate methods. Moreover, the model equations admitting exact solutions 
serve as the basis for the development of new numerical, asymptotic, and approximate methods, which, in turn, 
enable us to study more complicated problems having no analytical solutions [1]. In the paper [2], Laith and Nama 
introduced a new approach for solving second order linear differential equation with variable coefficients 

( ) ( ) ( ).y p x y q x y g x′′ ′+ + =                                    (1) 

To look for exact solution of (1) the authors introduced the substitution 

( ) ( )v x y x yβ′= +                                           (2) 

How to cite this paper: Zraiqat, A. and Al-Hwawcha, L.K. (2015) On Exact Solutions of Second Order Nonlinear Ordinary 
Differential Equations. Applied Mathematics, 6, 953-957. http://dx.doi.org/10.4236/am.2015.66087  
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and have looked for a solution of the Riccati equation 

( ) ( ) 2 .q x p xβ β β′ = − +                                      (3) 

In this paper, we generalize the idea of [2] and propose a general approach for solving the nonlinear second 
order equation 

( ) ( ) ( ), , ,y p x y y q x y y g x y′′ ′+ + =                               (4) 

which can be written as 

( ) ( ), ,y p x y y G x y′′ ′+ =                                        (5) 

where ( ) ( ) ( ), , , .G x y g x y q x y y− −  

2. The Main Results 
In this section, we propose an algorithm that enables us to reduce the Equations (4) and (5) by looking for solu-
tions of the partial differential equations 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ), , , , , , , , ,x y yv x y v x y x y y v x y g x y x y y p x y x y v x yβ β β+ − = + − +     (6) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2, , , , , , , .x yx y y x y x y q x y p x y x y x yβ β β β β− = − +                       (7) 

Theorem 1. If v(x; y) is any solution of (6) where (x; y) is a solution of (7), then Equation (4) can be reduced 
to a first order equation. 

Proof. In order to prove this theorem, consider the transformation 

( ) ( )v x y x yβ′= +                                           (8) 

if we differentiate both sides of (8) with respect to x we obtain 

( ) ( ) ( ) ( ) ( ), , , , ,x y x yv x y y v x y y x y y x y y x y y yβ β β′ ′′ ′ ′+ = + + +                (9) 

substituting (4) and (8) in (9), we have 

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )( )
, , , ,

, , , , , ,
x y

x y

v x y v x y x y y v x y

g x y x y q x y y x y y p x y x y y

β

β β β

+ −

′= + − + − +
          (10) 

assuming that ( ),x yβ  is a solution of (7), Equation (10) can be reduced to (6), solving (6) for ( ),v x y  we 
have the result.                                                                             ■ 

Theorem 2. If ( ),v x y  is any solution of the equation 

( ) ( ) ( ) ( ) ( ) ( ), , , , , , .x yv x y v x y v x y G x y p x y v x y+ = −                    (11) 

Then (5) can be reduced to a first equation. 
Proof. From theorem (1) the associated equation with ( ),x yβ  is 

( ) ( ) ( ) ( ) ( ) ( )2, , , , , ,x yx y y x y x y p x y x y x yβ β β β β− = +                 (12) 

which has a solution ( ), 0x yβ = , thus the equation associated with ( ),v x y  is (11), solving for ( ),v x y  Eq-
uation (5) reduced to a first order equation.                                                      ■ 

Theorem 3. If ( ),x yβ  is any solution of the equation 

( ) ( ) ( ) ( ) ( ) ( ) ( )2,
, , , , , , , 0.x y

G x y
x y y x y x y p x y x y x y y

y
β β β β β

−
− = − + ≠          (13) 

Then Equation (5) can be reduced to first order equation. 
Proof. Equation (5) can be written as 

( ) ( ),
, 0

G x y
y p x y y y

y
′′ ′+ − =                               (14) 
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applying theorem (1), we have that ( ), 0v x y =  is a solution of 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ), , , , , , , ,x yv x y v x y x y y v x y x y y p x y x y v x yβ β β+ − = − +          (15) 

solving (13) for ( ),x yβ , the result follows.                                                     ■ 

Theorem 4. If ( ) ( ), ,p x y G x y
x y

∂ ∂
=−

∂ ∂
, then Equation (5) can be reduced to a first order equation. 

Proof. Applying theorem (2) the result follows.                                                 ■ 

3. Examples 
In this section, we give some examples on our approach for reduction and finding solutions of nonlinear second 
order ordinary differential equations, these equations and more equations that can be easily solved by this me-
thod can be found in [1] [3]-[7]. 

Example 1. Consider the equation 

( )y f y′′=                                       (16) 

comparing with Equation (4) we note that ( ), 0p x y = , ( ), 0q x y = , ( ) ( ),g x y f y= . 
First, we solve 

( ) ( ) ( ) ( )2, , , ,x yx y y x y x y x yβ β β β− =                           (17) 

the associated ratios with Equation (17) are 

2

d d d
1 y

x y β
β β

= =
−

 

from which, we find that ( ) 1, .
cx y
y

β =  

Second, we solve 
( ) ( )( ) ( ) ( )1, , ,x yv x y v x y c v x y f y+ − =                          (19) 

the associated ratios with Equation (19) are 

( )1

d d d
1
x y v

v c f y
= =

−
                                    (20) 

from which, we find that ( ) ( )( )
1
2

1 2 2 d .xy c c f y y= ± + ∫  

Finally, we substitute ( ),x yβ , ( ),v x y  in Equation (8) to get 

( )( )
1
2

3 2 2 d .x c c f y y± = +∫ ∫                              (21) 

Example 2. Consider the equation  

( )2 1nxy n y x f y+′′ ′= +                                   (22) 

this equation can be written as 

( )2nny y x f y
x

′′ ′− =                                    (23) 

comparing with Equation (5) we have that ( ), np x y
x
−

= , ( ), 0q x y = , ( ) ( )2, nG x y x f y= . 

The equation associated with ( ),x yβ  is 

( ) ( ) 2, ,x y
nx y y x y
x

β β β β− = +                           (24) 
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from which we find that ( ), 0x yβ = . The equation associated with ( ),v x y  is 

( ) ( ) ( ) ( )2, , , n
x y

nv x y v x y v x y x f y v
x

+ = +                          (25) 

we look for a solution of the form 

( ) ( ) ( ),v x y m x n y=                                       (26) 

substituting ( ),v x y  in Equation (25), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 .n nm x n y m x n y n y x f y m x n y
x

′ ′+ = +                    (27) 

Thus, ( )m x  and ( )n y  must satisfy the following equations 

( ) ( )nm x m x
x

′ =                                          (28) 

( )2 2nm x x=                                             (29) 

( ) ( ) ( )n y n y f y′ =                                       (30) 
from which we find that 

( ) nm x x=                                              (31) 

( ) ( )( )1 2 dn y c f y y=± + ∫                                 (32) 

so, ( ) ( )( )
1
2

1, 2 dnv x y x c f y y=± + ∫ . Finally we solve 

( )( )
1
2

1 2 dny x c f y y′ =± + ∫                                 (33) 

and two cases are considered, 

1n = − , the solution is ( )( )
1
2

1 22 d lnc f y y x c+ =± +∫ ∫                      (34) 

1n≠ − , the solution is ( )( )
1 2 1
2

1 22 d d .
1

nxc f y y y c
n

+

+ =± +
+∫ ∫                  (35) 

Example 3. Consider the equation 

( )2 31 1
2

y y x y y ′′ ′− − + − = − 
 

                             (36) 

Equation (36) can be written as 

( )2

3
12 .

11

x
y y

yy

 + 
 ′′ ′− − =

−−
                                  (37) 

Comparing with Equation (5) we have ( )
( )2

3
2,

1

x
p x y

y

 + 
 =
−

, ( ) 1,
1

G x y
y

=
−

, furthermore  

( ) ( ), ,p x y G x y
x y

∂ ∂
=−

∂ ∂
. So, theorem (4) can be applied as follows: 

( ) 1,
1xv x y

y
=

−
                                    (38) 
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which implies that 

( ) ( ), .
1

xv x y y
y

ψ= +
−

                                  (39) 

Differentiating both sides of (39), we have 

( )
( )

( )2, .
1

y
xv x y y
y

ψ ′= +
−

                              (40) 

Assuming that ( ) ( ), ,yv x y p x y=− , yields 

( ) ( )
( )2 2

3
2

1 1

x
x y

y y
ψ

 + 
  ′= +
− −

                              (41) 

thus, Equation (36) reduced to the first order exact ordinary differential equation 

2 3
2 2

xy
y

+′=
−

                                         (42) 

which has the solution 
2 23 2 .x x y y C+ + − =                                   (43) 

4. Conclusion 
In this article, a new method is considered for solving second order nonlinear ordinary differential equations. 
The small size of computation in comparison with the computational size required by other analytical methods 
[1], and the dependence on first order partial differential equations show that this method can be improved and 
introduces a significant improvement in solving this type of differential equations over existing methods. This 
method is proposed to be considered as an alternative approach being employed to a wide variety of equations. 
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In this paper, we introduce some analytical techniques to solve some classes of second

order differential equations. Such classes of differential equations arise in describing some

mathematical problems in Physics and Engineering.

AMS Subject Classification: 34A25, 34A30.

Key Words and Phrases: Chebyshev’s Differential Equation, Hypergeometric Differential

Equation, Cauchy-Euler’s Differential Equation, Exact Second Order Differential Equations,

Nonlinear Second Order Differential Equations.

1 Introduction

One of the most important applications in the calculus of variation is to maximize (minimize)

the functional

Q[y] =

∫ b

a

(

√

p(x)(y′(x))2 +
h(y(x))
√

p(x)

)

dx, (1.1)

where p(x) is a positive and differentiable function on some open interval (a, b) ⊂ R, and

h(x) is a differentiable function. In fact, the functional

Q[y] =

∫ b

a

(

√

p(x)(y′(x))2 +
h(y(x))
√

p(x)

)

dx (1.2)

attains its extreme values at a function y(x) ∈ C2(a, b) that y(x) satisfies the Euler’s-Lagrange

differential equation [5, 7, 10],

∂F

∂y
(x, y, y′)− d

dx

(

∂F

∂y′
(x, y, y′)

)

= 0, (1.3)

∗rami_thenat@yu.edu.jo
†mohammad.ja@yu.edu.jo
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where

F (x, y, y′) :=
√

p(x)(y′(x))2 +
h(y(x))
√

p(x)
. (1.4)

Therefore, the problem of maximizing (minimizing) Q[y] is reduced to solve the differential

equation (1.3). i.e., to solve

p(x)y′′(x) +
1

2
p′(x)y′(x) =

1

2
h′(y(x)). (1.5)

Hence, it is a matter to solve such differential equations. In the first part of this paper, we solve

the following class of second order differential equation:

p(x)y′′(x) +
1

2
p′(x)y′(x) + f(

√

p(x) y′(x), y(x)) = 0 (1.6)

which generalizes the differential equation (1.5). Here, we assume that p(x) is a positive and

differentiable function on some open interval (a, b) ⊂ R, and f(
√

p(x) y′(x), y(x)) is continuous

function on some domain D ⊂ R
2. In fact, equation (1.6) not only generalizes (1.5), but also it

generalizes many of well known differential equation. For example,

1. the Chebyshev’s Differential Equation [5, 12],

(1− x2)y′′(x)− x y′(x) + n2y(x) = 0, |x| < 1,

2. the Cauchy-Euler’s Differential Equation [6, 8, 11],

ax2y′′(x) + a x y′(x) + b y(x) = 0, x > 0,

3. the Nonlinear Chebyshev’s Equation,

(1− x2)y′′(x) +
(

α
√

1− x2 − x
)

y′(x) + f(y(x)) = 0, |x| < 1,

4. the Hypergeometric Differential Equation [4, 12],

x(1− x)y′′(x) + [c− (a+ b+ 1)x] y′(x)− a b y(x) = 0, 0 < x < 1, with c = 1/2, a = −b,

and

5. the Nonlinear Hypergeometric Differential Equation,

x(1− x)y′′(x) +

(

1

2
− x+ α

√

x(1− x)

)

y′(x) + f(y(x)) = 0, 0 < x < 1.

Throughout this paper, we call the class of differential equation in (1.6) by Chebyshev’s-type of

differential equations.

In the second part of this paper, we introduce an approach to solve the differential equation

a2
(

f ′(y)y′′ + (y′)2f ′′(y)
)

+ a1f
′(y)y′ + a0f(y) = g(x), (1.7)
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where a0, a1 and a2 are constants, and f ∈ C2(a, b), for some open interval (a, b) ⊂ R. We also

give an approach to solve the differential equation

p(x)
(

f ′(y)y′′ + (y′)2f ′′(y)
)

+
1

2
p′(x)f ′(y)y′ + a0f(y) = 0, (1.8)

where p(x) is a positive and differentiable function on some open interval (a, b) ⊂ R, and f ∈
C2(c, d), for some open interval (c, d) ⊂ R. Throughout this paper, we call these classes of second

order differential equations by f−type second order differential equations.

In the third part of this paper, we introduce an approach to solve the second order nonlinear

differential equation

a2(x, y, y
′)
(

f ′(y)y′′ + f ′′(y)(y′)2
)

+ a1(x, y, y
′)(f ′(y)y′) + a0(x, y, y

′) = 0, (1.9)

where f(y) is an invertible function (y = f−1(z)), and f ∈ C2(a, b) where (a, b) is the open

interval in R. To solve this class of differential equations, we assume that

a2

(

x, f−1(z),
z′

f ′ (f−1(z))

)

z′′+a1

(

x, f−1(z),
z′

f ′ (f−1(z))

)

z′+a0

(

x, f−1(z),
z′

f ′ (f−1(z))

)

= 0

(1.10)

is exact differential equation. The differential equation (1.10) is called exact if the conditions

∂a2
∂z

=
∂a1
∂z′

,
∂a2
∂x

=
∂a0
∂z′

, and
∂a1
∂x

=
∂a0
∂z

. (1.11)

hold [1, 2]. In this case, the first integral of (1.10) exists and it is given by

∫ x

x0

a0(α, z, z
′)dα+

∫ z

z0

a1(x0, β, z
′)dβ +

∫ z′

z′
0

a2(x0, z0, γ)dγ = c.

Throughout this paper, we call this class of differential equations by f−type second order differ-

ential equations that can be transformed into exact second order differential equations.

The layout of the paper: In the first section, we solve Chebyshev’s-type of Second Order

Differential Equations. In the second section, we solve the f−type of second order differential

equations. In the third section, we solve f−type second order differential equation that can be

transformed into exact second order differential equations. The fourth section is devoted for the

concluding remarks.

2 Solving Chebyshev’s-type of Second Order Differential Equa-

tions

In this section, we present an approach to solve Chebyshev’s-type of second order differential

equations

p(x)y′′(x) +
1

2
p′(x)y′(x) + f(

√

p(x) y′(x), y(x)) = 0, (2.1)

where p(x) is a positive and differentiable function on some open interval (a, b) ∈ R, and f(
√

p(x)

y′(x), y(x)) is continuous function on some domain D ⊂ R
2. The approach is described in the

following theorem:
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Theorem 2.1. Assume that p(x) be a positive and differentiable function on the open interval

(a, b) ⊂ R. Let x0 be any point in the interval (a, b). Then

t =

∫ x

x0

dξ
√

p(ξ)

transforms the differential equation (2.1) into the second order differential equation

y′′(t) + f(y(t), y′(t)) = 0. (2.2)

Proof. Let

t =

∫ x

x0

dξ
√

p(ξ)
.

Since,
dy

dx
=
dy

dt

dt

dx
.

Hence,
dy

dt
=
√

p(x)
dy

dx
. (2.3)

Therefore,

d2y

dt2
=

d

dt

(

√

p(x)
dy

dx

)

=
d

dx

(

√

p(x)
dy

dx

)

dx

dt
= p(x)y′′ +

1

2
p′(x)y′. (2.4)

By substituting (2.3) and (2.4) in Equation (1.6), we get the result.

Remark 2.1. The differential equation (2.2) is independent of the variable t, and so, it is easy to

solve by setting η(t) = y′(t). Hence, it reduces into the following first order differential equation:

η
dη

dy
+ f(y, η) = 0. (2.5)

In case that f(
√

p(x) y′, y) = f(y), we get

η2(t) = −2

∫ y

f(ξ)dξ + c.

Hence,

y′(t) =

(

c− 2

∫ y

f(ξ)dξ

)
1

2

where c is the integration constant.

Next, we present some examples to explain this approach.

Example 2.1. Consider the nonlinear Chebyshev’s differential equation







(1− x2)y′′(x)− xy′(x) + 4
√
1− x2 y′y(x) = 0,

y(0) = 1
2 , y

′(0) = −1
2 .

(2.6)
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Then

t =

∫ x dξ
√

1− ξ2
= arcsin(x)

transforms (2.6) into

y′′(t) + 4y′(t)y(t) = 0.

Set η(t) = y′(t). The above equation becomes

η
dη

dy
+ 4ηy = 0.

The solution of this equation is y(t) =
1

2(t+ 1)
. Therefore, y(x) =

1

2(arcsin(x) + 1)
.

Example 2.2. Consider the initial value problem

{

x2y′′ + xy′ − 3y2 = 0, x > 0,

y(1) = 2, y′(1) = 4.
(2.7)

Then

t =

∫ x

1

dξ

ξ
dξ = ln(x)

transforms the (2.7) into
{

y′′ − 3y2 = 0,

y(0) = 2, y′(0) = 4.
(2.8)

The solution of the above differential equation is

y(t) =
2

(1− t)2
.

Hence,

y(x) =
2

(1− ln(x))2
.

Example 2.3. Consider the linear form of (1.6)

φ(x)y′′ +
1

2
φ′(x)y′ + λ2y = 0, (2.9)

where λ ∈ R, and φ(x) is a positive and differentiable function on some open interval (a, b) ⊂ R.

By applying the transformation

t =

∫ x

x0

dξ
√

φ(ξ)
dξ,

equation (2.9) can be transformed into the following second order differential equation:

d2y

dt2
+ λ2y = 0.

The solution of this different5ial equation is

y(t) = C1 sin(λt) + C2 cos(λt).
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Hence, the general solution of equation (2.9) is

y(x) = C1 sin

(

λ

∫ x

x0

dξ
√

φ(ξ)
dξ

)

+ C2 cos

(

λ

∫ x

x0

dξ
√

φ(ξ)
dξ

)

.

Example 2.4. Consider the following second order linear differential equation (see Eq. 239, p.

335 in [11]):

4xy′′ + 2y′ + y = 0. (2.10)

From the previous example, the general solution of this equation is given by

y(x) = C1 sin

(
∫ x

x0

dξ

2
√
ξ
dξ

)

+ C2 cos

(
∫ x

x0

dξ

2
√
ξ
dξ

)

and so,

y(x) = C1 sin
(√
x
)

+ C2 cos
(√
x
)

.

Remark 2.2. Consider the second order linear differential equation

(φ(x))2y′′(x) + φ(x)φ′(x)y′(x) + λy(x) = 0, x ∈ (a, b), (2.11)

and assume that φ(x) is a positive and differentiable function on an open interval (a, b) ⊂ R.

Moreover, assume that φ(a) = φ(b) = 0. Define the linear differential operator

L[y] := −
(

(φ(x))2y′′(x) + φ(x)φ′(x)y′(x))
)

= λy(x).

Then the boundary value problem
{

L[y] = −
(

(φ(x))2y′′(x) + φ(x)φ′(x)y′(x)
)

= λy(x), a < x < b,

φ(a) = φ(b) = 0,
(2.12)

satisfies the Lagrange Identity
∫ b

a
φL[ψ]dx =

∫ b

a
ψL[φ]dx, where φ and ψ satisfy the above bound-

ary value problem. Therefore, the operator L[y] is self-adjoint. Hence, the boundary value prob-

lem (2.12) has an orthogonal set of eigenfunctions {φn(x)}∞n=1 with corresponding eigenvalues

{λn}∞n=1. Since the above boundary value problem is a special case of (1.6). Then, by using the

approach described in Theorem 2.1, it is easy to find its orthogonal set of eigenfunctions.

By using the same approach described in Theorem 2.1. We can solve the following class of

second order linear differential equations:

[P (x)]2 y′′(x) + P (x)
[

α+ P ′(x)
]

y′(x) + βy(x) = 0, (2.13)

where P (x) > 0, P (x) ∈ C1(a, b), and α and β are constants. In fact, the transformation

t =

∫ x

x0

dξ

P (ξ)
, (2.14)

where x0, x ∈ (a, b), transforms Eq. (2.13) into the following second order differential equation:

y′′(t) + αy′(t) + βy(t) = 0.

This differential equation is with constant coefficients which can be solved by using the elementary

techniques of solving second order differential equations. For illustration, we present the following

examples:
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Example 2.5. Consider the well-known Cauchy-Euler’s Equation

x2y′′(x) + (α+ 1)xy′(x) + βy = 0, x > 0.

Then P (x) = x, and the t−transformation is t = ln(x), which transforms the equation into

y′′(x) + αy′(x) + βy = 0

Example 2.6. Consider the Chebyshev’s Equation
[

1− x2
]

y′′(x)− 2xy′(x) + n2y = 0, |x| < 1.

Then P (x) =
√
1− x2, and the t−transformation is t = sin−1(x), which transforms the equation

into

y′′(x) + n2y = 0.

Using this transformation, the solution of Chebyshev’s Equation is given by

y(x) = A cos(n sin−1(x)) +B sin(n sin−1(x)).

Example 2.7. Consider the Hypergeometric Equation

x(1− x)y′′(x) +
1

2
(1− 2x)y′(x) + a2y = 0, x ∈ (0, 1). (2.15)

Then P (x) =
√

x(1− x), and the t−transformation is t = sin−1(2x − 1). This transforms the

equation into

y′′(t) + a2y(t) = 0.

Hence, the solution of (2.15) is given by

y(x) = A cos(a sin−1(2x− 1)) +B sin(a sin−1(2x− 1)).

For certain functions, h(x) ∈ C(a, b), for some open interval (a, b) ∈ R , we can solve the

nonhomogeneous second order differential equation

[P (x)]2 y′′(x) + P (x)
[

α+ P ′(x)
]

y′(x) + βy = h(x). (2.16)

Particularly, when h(x) can be written in the form H(t), where t =
∫ x

x0

dξ
P (ξ) . The following

example shows this idea:

Example 2.8. Consider the nonhomogeneous differential equation

x(1− x)y′′(x) +
1

2
(1− 2x)y′(x) + a2y = 2x, x ∈ (0, 1). (2.17)

Then P (x) =
√

x(1− x). The t−transformation is t = sin−1(2x − 1). This transforms the

equation into

y′′(t) + a2y(t) = 1 + sin(t).

Hence, the solution of equation (2.17) is given by

y(x) =











A cos(a sin−1(2x− 1)) +B sin(a sin−1(2x− 1)) +
2x− 1

a2 − 1
+

1

a2
, if a 6= ±1,

A cos(sin−1(2x− 1)) +B(2x− 1) +
1

2
(1− 2x) sin−1(2x− 1) + 1, if a = ±1.
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3 Solving f−type Second Order Differential Equations

In this section, we solve the following class of second order nonlinear differential equation

a2
(

f ′(y)y′′ + (y′)2f ′′(y)
)

+ a1f
′(y)y′ + a0f(y) = g(x), (3.1)

where a2, a1 and a0 are constants, and f ∈ C2(a, b), for some open interval (a, b) ⊂ R. In this

section, we also solve the following class of second order nonlinear differential equation:

p(x)
(

f ′(y)y′′ + (y′)2f ′′(y)
)

+
1

2
p′(x)f ′(y)y′ + a0f(y) = 0, (3.2)

where p(x) is a positive and differentiable function on an open interval (a, b) ⊂ R, and f ∈
C2(c, d), for some open interval (c, d) ⊂ R. To solve (3.1), let z = f(y). Hence, z′ = f ′(y)y′, and

z′′ = f ′(y)y′′ + (y′)2f ′′(y). Substitute z, z′ and z′′ in equation (3.1), we get

a2z
′′ + a1z

′ + a0z = g(x), (3.3)

Similarly, equation (3.2) becomes

p(x)z′′ +
1

2
p′(x)z′ + a0z = 0, (3.4)

which is the linear form of (1.6). Therefore, it can be solved by using the technique described

in Example 2.3. To illustrate the procedure of solving (3.1) and (3.2), we present the following

examples:

Example 3.1. Consider Langumir Equation, with a slightly modification,

3yy′′ + 3(y′)2 + 4yy′ + y2 = 1. (3.5)

The original Langumir Equation is given by

3yy′′ + (y′)2 + 4yy′ + y2 = 1

which originally appears in connection with the theory of current flow from hot cathode to an anode

in a hight vacuum [3, 9]. To solve (3.5), we let z =
y2

2
. Then z′ = yy′ and z′′ = yy′′ + (y′)2.

Hence, equation (3.5) becomes

3z′′ + 4z′ + 2z = 1.

The solution of this equation is

z(x) = e−
2

3
x

(

A cos

(√
2

3
x

)

+B sin

(√
2

3
x

))

+
1

2
.

Hence, the solution of (3.5) is given by

y2 = 2e−
2

3
x

(

A cos

(√
2

3
x

)

+B sin

(√
2

3
x

))

+ 1.
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Example 3.2. Consider the initial value problem

{

y′′ + (y′)2 + 1 = (cosωx)e−y, ω 6= ±1,

y(0) = y′(0) = 0.

This problem is equivalent to

{
(

y′′ + (y′)2
)

ey + ey = (cosωx), ω 6= ±1,

y(0) = y′(0) = 0.

Let z = ey. Then z′ = y′ey and z′′ = y′′ey + (y′)2ey. By substituting z, z′ and z′′ in the above

initial value problem, we get
{

z′′ + z = cosωx, ω 6= ±1,

z(0) = 1, z′(0) = 0.

The solution of this problem is z(x) = 1
1−ω2

(

cosωx− ω2 cos x
)

, ω 6= ±1. Therefore, y(x) =

ln
(

1
1−ω2

(

cosωx− ω2 cos x
)

)

, ω 6= ±1.

Example 3.3. Let φ(x) be a positive and differentiable function on an open interval (a, b) ⊂ R,

and consider the differential equation

φ(x)
(

y′′ + (y′)2
)

+
1

2
φ′(x)y′ + λ = 0.

By multiplying this equation by ey, we get

φ(x)
(

y′′ + (y′)2
)

ey +
1

2
φ′(x)y′ey + λey = 0.

Let z = ey. Then z′ = y′ey and z′′ = y′′ey + (y′)2ey. By substituting z, z′ and z′′ in the above

differential equation, we get

φ(x)z′′ +
1

2
φ′(x)z′ + λz = 0.

The solution of this equation is (see Example 2.3)

z(x) = C1 sin

(

λ

∫ x

x0

dξ
√

φ(ξ)
dξ

)

+ C2 cos

(

λ

∫ x

x0

dξ
√

φ(ξ)
dξ

)

.

Therefore,

y(x) = ln

[

C1 sin

(

λ

∫ x

x0

dξ
√

φ(ξ)
dξ

)

+ C2 cos

(

λ

∫ x

x0

dξ
√

φ(ξ)
dξ

)]

.

4 Solving f -type Second Order Differential Equations that can be

Transformed into Exact Second Order Differential Equations

In this section, we solve the following class of second order nonlinear differential equations:

a2(x, y, y
′)
(

f ′(y)y′′ + f ′′(y)(y′)2
)

+ a1(x, y, y
′)(f ′(y)y′) + a0(x, y, y

′) = 0, (4.1)
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where f(y) is an invertible function and f ∈ C2(a, b). To solve this class of differential equations,

we let z = f(y). Then z′ = f ′(y)y′ and z′′ = f ′′(y)(y′)2 + f ′(y)y′′. Moreover, we let y = f−1(z).

Then y′ = z′

f ′(f−1(z)) . Hence, equation (4.1) can be transformed into the following differential

equation:

a2

(

x, f−1(z),
z′

f ′ (f−1(z))

)

z′′+a1

(

x, f−1(z),
z′

f ′ (f−1(z))

)

z′+a0

(

x, f−1(z),
z′

f ′ (f−1(z))

)

= 0

(4.2)

Assume that (4.2) is exact, then it can be solved. To explain the procedure of solving such

differential equations, we consider the following example:

Example 4.1. Consider the second order nonlinear differential equation

{

ey
[

y′′ + (y′)2
]

+ 12xe4yy′ +
(

3e4y − 1
)

= 0,

y(0) = ln 2, y′(0) = 0.
(4.3)

Let z = ey. Then z′ = eyy′ and z′′ = eyy′′ + ey(y′)2. Hence, Eq. (4.3) becomes

{

z′′ + 12xz3z′ +
(

3z4 − 1
)

= 0,

z(0) = 2, z′(0) = 0.
(4.4)

Therefore, a2(x, z, z
′) = 1, a1(x, z, z

′) = 12xz3, and a0(x, z, z
′) =

(

3z4 − 1
)

. In addition, we

have
∂a2
∂z

=
∂a1
∂z′

= 0,
∂a2
∂x

=
∂a0
∂z′

= 0, and
∂a1
∂x

=
∂a0
∂z

= 12z3, (4.5)

Therefore, equation (4.4) is exact differential equation. Hence, its first integral exists and it is

given by

z′ + 3xz4 − x = 0.

For which an implicit solution of this equation can be obtained by separating the variables, and

so, y(x) = ln(z(x)).

Remark 4.1. Assume that (4.2) is not exact. Then an integrating factor of (4.2) could be exist.

Hence, it can be transformed into an exact differential equation (see [1]). To explain the procedure

of solving (4.2) in case it is not exact, we present the following example:

Example 4.2. Consider the second order nonlinear differential equation

xey (2x+ ey)
(

y′′ + (y′)2
)

+ x (x+ ey) y′ + (3x+ ey) = 0. (4.6)

By multiplying this equation by ey, we get

xe2y (2x+ ey)
(

y′′ + (y′)2
)

+ x (x+ ey) eyy′ + ey (3x+ ey) = 0. (4.7)

Let z = ey. Then z′ = eyy′ and z′′ = eyy′′ + ey(y′)2. Hence, by substituting z, z′ and z′′ in (4.7),

we get

xz(2x+ z)z′′ + x(x+ z)z′ + z(3x + z) = 0. (4.8)
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This equation is not exact since ∂a2
∂z

= 2(x + z) 6= 0 = ∂a1
∂z′

. An integrating factor of this second

order nonlinear differential equation exists, and it is given by µ(x, z) =
1

xz(2x+ z)
. Multiplying

(4.8) by µ(x, z), we get

z′′ +
(x+ z)

z(2x+ z)
z′ +

(3x+ z)

x(2x+ z)
= 0. (4.9)

Clearly,
∂a2
∂z

=
∂a1
∂z′

= 0,
∂a2
∂x

=
∂a0
∂z′

= 0, and
∂a1
∂x

=
∂a0
∂z

=
−1

(2x+ z)2
. (4.10)

Therefore, the differential equation (4.9) is exact, and its first integral is given by

c = z′ + ln
(

xz
√
2x+ z

)

. (4.11)

This first order differential equation can be solved by using the elementary techniques of solving

first order differential equations. Hence, y(x) = ln(z(x)).

Finally, we consider the nonhomogeneous second order linear differential equation

a2(x)y
′′ + a1(x)y

′ + a0(x)y = h(x),

where a2(x) 6= 0, a1(x), and a0(x) are differentiable functions on an open interval (a, b) ⊂ R. This

equation admits an integrating factor µ(x) =
1

a2(x)
provided that W (a2, a1)(x) = a0(x)a2(x),

where W (a2, a1)(x) = a2(x)a
′
1(x)− a1(x)a

′
2(x). For this case, we present the following example:

Example 4.3. consider the second order linear differential equation

exy′′ + cos xy′ − (cos x+ sinx)y = h(x).

By multiplying this equation by the integrating factor e−x, we get

y′′ + e−x cos xy′ − e−x(cos x+ sinx)y = h(x)e−x.

This equation can be written as

d

dx

[

y′ + (e−x cos x)y
]

= h(x)e−x

Hence, its first integral is given by

y′ + (e−x cos x)y =

∫ x

h(ξ)e−ξdξ + c1

which can be solved by using the elementary techniques of solving first order differential equations.
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5 Concluding Remarks

In this paper, we solved some classes of second order differential equation. In fact, we solved the

following classes of second order differential equations:

1. The Chebyshev’s type of second order differential equation

p(x)y′′(x) +
1

2
p′(x)y′(x) + f(

√

p(x) y′(x), y(x)) = 0, x ∈ (a, b), (5.1)

where p(x) is a positive and differentiable function on an open interval (a, b) ⊂ R, and

f(
√

p(x) y′(x), y(x)) is a continuous function on some domain D ⊂ R
2.

2. The f−type of second order differential equations

a)

a2
(

f ′(y)y′′ + (y′)2f ′′(y)
)

+ a1f
′(y)y′ + a0f(y) = g(x), (5.2)

where a2, a1 and a0 are constants, and the function f(y) is of C2−class on some open

interval (a, b) ⊂ R, and

b)

p(x)
(

f ′(y)y′′ + (y′)2f ′′(y)
)

+
1

2
p′(x)f ′(y)y′ + a0f(y) = 0, (5.3)

where p(x) is a positive and differentiable function on some open interval (a, b) ⊂ R,

and f ∈ C2(c, d), for some open interval (c, d) ⊂ R.

3. f -type second order differential equations that can be transformed into exact second order

Differential Equations

a2(x, y, y
′)
(

f ′(y)y′′ + f ′′(y)(y′)2
)

+ a1(x, y, y
′)(f ′(y)y′) + a0(x, y, y

′) = 0, (5.4)

where the function f(y) is an invertible function and f ∈ C2(a, b), for some open interval

(a, b) ⊂ R.

Moreover, we presented some examples to explain our approach of solving the above classes of

second order differential equation.
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INTRODUCTION  

Symmetries method have been widely used to reduce 

the order of an ordinary differential equation (ODE) 

and to reduce the number of independent variables in a 

partial differential equation (PDE)[1].  

There are many examples of ODEs that have trivial Lie 

symmetries. In 2001, Muriel and Romero introduced λ-

symmetry method to reduce the order of an ODEs and 

to find general solutions for such examples.  

Recently, they [2] presented techniques to obtain first 

integral, integrating factor, 𝜆-symmetry of second-

order ODEs �̈� = 𝐹(𝑡, 𝑥, �̇�) and the relationship between 

them.  

In addition, the study of a 𝜆-symmetry method of the 

ODEs permits us the de termination of an integrating 

factor and reduce the order of the ODEs and explain the 

reduction process of many ODEs that lack Lie 

symmetries. 

In this paper, first we will recall some of the 

foundational results about symmetry and λ-symmetry 

rather briefly. we present some theorems about an 

integrating factor, first integral and reduce the order of 

the ODEs. second, we will calculate an integrating 

factor, first integral and reduce the or der the non-

Linear second-order ODEs �̈� = (𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)�̇�)𝑒𝑥, 

through 𝜆 symmetry method, which are non-Lie 

symmetry equation and functions 𝑓(𝑡, 𝑥) and 𝑔(𝑡, 𝑥) 

are arbitrary.  

Moreover, we will reduce the order particular cases of 

the equation 𝑥 =̈ (𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)�̇�)𝑒𝑥, which are �̈� =

(𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)�̇�)𝑒𝑥, and �̈� = (𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)�̇�)𝑒𝑥, 

through 𝜆-symmetry method. we will present many 

examples for these equations. 

 

𝝀-SYMMETRIES ON ODES 

In this section we recall some of the foundational 

results about symmetry and λ-symmetry rather briefly 

[2-9].  

Let v be a vector field defined on an open subset 𝑀 ⊂
𝑇 × 𝑋.  
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We denote by 𝑀(𝑛) the corresponding jet space 𝑀(𝑛) ⊂

𝑇 × 𝑋(𝑛), for 𝑛 ∈ 𝑁. Their elements are (𝑡, 𝑥(𝑛)) =

(𝑡, 𝑥, 𝑥1,· · · , 𝑥𝑛), where, for 𝑖 =  1, 2,· · · , 𝑛, 𝑥𝑖  

denotes the derivative of order 𝑖 of 𝑥 with respect to t. 

Suppose  

∆(𝑡,  𝑥(𝑛)) = 0    (1)  

 

be an ODE defined over the total space 𝑀. The latter 

characterizes a Lie symmetry of an ODE as a vector 

filed v= 𝜉(𝑡, 𝑥)𝜕/𝜕𝑡 + 𝜂(𝑡, 𝑥)𝜕/𝜕𝑥, that satisfies 

𝐯(𝑛)[∆(𝑡, 𝑥(𝑛))] = 0, if ∆(𝑡, 𝑥(𝑛)) = 0, where 𝐯(𝑛)that 

called 𝑛 − 𝑡ℎ prolongation of v is 

 

𝐯(𝑛) = 𝜉(𝑡, 𝑥)
𝜕

𝜕𝑡
+ 𝜂(𝑡, 𝑥)

𝜕

𝜕𝑥
+ ∑ 𝜂(𝑖)

𝑛

𝑖=1

(𝑡, 𝑥(𝑖))
𝜕

𝜕𝑥𝑖

 

 

Where 

𝜂(𝑖)(𝑡, 𝑥(𝑖)) = 𝐷𝑡 (𝜂(𝑖−1)(𝑡, 𝑥(𝑖−1))) 

−𝐷𝑡(𝜉(𝑡, 𝑥))𝑥𝑖 

 

and  𝜂(0)(𝑡, 𝑥) = 𝜂(𝑡, 𝑥) for  𝑖 = 1,· · · , 𝑛, where 𝐷𝑡  

denote the total derivative operator with respect to 𝑡 

[9].  

If an ODE does not have Lie point symmetry, then we 

using λ-symmetry method for reduce of order the ODE. 

λ-symmetry method is as follows [3]. 

For every function 𝜆 ∈ 𝐶∞(𝑀(1)), we will define a new 

prolongation and Lie symmetry of v in the following 

way. 

Let v= 𝜉(𝑡, 𝑥)𝜕/𝜕𝑡 + 𝜂(𝑡, 𝑥)𝜕/𝜕𝑥, be a vector field 

defined on 𝑀, and let 𝜆 ∈ 𝐶∞(𝑀(1)) be an arbitrary 

function. The λ-prolongation of order n of v, denoted 

by 𝐯[𝜆,(𝑛)], is the vector field defined on 𝑀 by 

 

𝐯[𝜆,(𝑛)] = 𝜉(𝑡, 𝑥)
𝜕

𝜕𝑡
+ 𝜂(𝑡, 𝑥)

𝜕

𝜕𝑥

+ ∑ 𝜂(𝑖)

𝑛

𝑖=1

(𝑡, 𝑥(𝑖))
𝜕

𝜕𝑥𝑖
 

where 

 

𝜂[𝜆,(𝑖)](𝑡, 𝑥(𝑖)) = (𝐷𝑡 + 𝜆) (𝜂[𝜆,(𝑖−1)](𝑡, 𝑥(𝑖−1)))

− ((𝐷𝑡 + 𝜆)𝜉(𝑡, 𝑥))𝑥𝑖 

 

and  𝜂[𝜆,(0)] (𝑡, 𝑥) = 𝜂(𝑡, 𝑥) for  𝑖 =  1,· · · , 𝑛.   

A vector field v is a λ-symmetry of the Eq. (1), if there 

exists function 𝜆 ∈ 𝐶∞(𝑀(1)), such that 

𝐯[𝜆,(𝑛)][Δ(𝑡, 𝑥(𝑛))] = 0, if  Δ(𝑡, 𝑥(𝑛)) = 0.  

 

Note. Suppose vector field 𝑣 = 𝜕/𝜕𝑥 be a λ-symmetry 

of the Eq.(1), then 

𝜂[𝜆,(𝑛−1)] =
𝜕

𝜕𝑥
+ (𝐷𝑡 + 𝜆)(1)

𝜕

𝜕𝑥1

+ (𝐷𝑡 + 𝜆)(𝐷𝑡 + 𝜆)(1)
𝜕

𝜕𝑥2
+∙ ∙ 

∙  +(𝐷𝑡 + 𝜆)(𝐷𝑡 + 𝜆)(1) 
𝜕

𝜕𝑥𝑛−1
  

or equivalent 

𝑣[𝜆,(𝑛−1)] = ∑(𝐷𝑡 + 𝜆)(𝑖)(1)

𝑛

𝑖=1

𝜕

𝜕𝑥𝑖
 

(2) 
 

An integrating factor of the Eq. (1), is a function 

𝜇(𝑡, 𝑥(𝑛−1)) such that the equation 𝜇. ∆ =  0 is an exact 

equation, 

  

𝜇(𝑡, 𝑥(𝑛−1)). ∆(𝑡, 𝑥(𝑛)) = 𝐷𝑡 (𝐺(𝑡, 𝑥(𝑛−1))). 

 

Function 𝐺(𝑡, 𝑥(𝑛−1)), will be called a first integral of 

the Eq. (1), and 𝐷𝑡 (𝐺(𝑡, 𝑥(𝑛−1))) = 0, is a conserved 

form of the Eq.(1) [6, 10]. Let  

 

𝑥𝑛  =  𝐹(𝑡, 𝑥(𝑛−1))    (3)  

 

be a nth-order ordinary differential equation, where F 

is an analytic function of its arguments. We denote by 

 𝐴 = 𝜕𝑡 + 𝑥1𝜕𝑥 + 𝑥2𝜕𝑥(1) +· · · +𝐹(𝑡, 𝑥(𝑛−1))𝜕𝑥(𝑛−1)  

the vector field associated with (3) [3].  

Function 𝐼(𝑡, 𝑥(𝑛−1)) is a first integral [7]of (3), such 

that 𝐴(𝐼) = 0 and an integrating factor of (3), is any 

function 𝜇(𝑡, 𝑥(𝑛−1)) such that 

 

 𝜇 ((𝑡, 𝑥(𝑛−1))𝑥(𝑛) − 𝐹(𝑡, 𝑥(𝑛−1))) = 𝐷𝑡𝐼(𝑡, 𝑥(𝑛−1)). 

 

By using (2), It can be checked that the vector field 𝑣 =
𝜕𝑥  is a λ-symmetry of (3), if the function λ(t, x(k)) is any 

particular solution of the equation 
 

(𝐷𝑡 + 𝜆)(𝑛)(1) = ∑(𝐷𝑡 + 𝜆)(𝑖)(1)

𝑛−1

𝑖=0

𝜕𝐹

𝜕𝑥𝑖
 

(4) 
 
Theorem 2.1. If I(t, x(n−1)) is a first integral of (3), then 

µ(𝑡, 𝑥(𝑛−1)) = 𝐼𝑥(𝑛−1)  (𝑡, 𝑥(𝑛−1))is an integrating 

factor of (3).  

 

Proof. Let I(t, x(n−1)) be a first integral of (3), then 

 

 𝐴(𝐼) = 𝐼𝑡 + 𝑥(1)𝐼𝑥 + 𝑥(2)𝐼𝑥(1) +· · · 

+𝐹(𝑡, 𝑥(𝑛−1))𝐼𝑥(𝑛−1) = 0. 
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Therefore 

 𝐼𝑡 + 𝑥(1)𝐼𝑥 + 𝑥(2)𝐼𝑥(1) +· · · +𝑥(𝑛−1)𝐼𝑥(𝑛−2) = 

 

−𝐹(𝑡, 𝑥(𝑛−1))𝐼𝑥(𝑛−1) 

 and  

 

𝐷𝑡𝐼 = 𝐼𝑡 + 𝑥(1)𝐼𝑥 + 𝑥(2)𝐼𝑥(1) + · · ·  + 𝑥(𝑛−1)𝐼𝑥(𝑛−2) +

𝑥(𝑛)𝐼 𝑥(𝑛−1) = −𝐹(𝑡, 𝑥(𝑛−1))𝐼𝑥(𝑛−1) + 𝑥(𝑛)𝐼𝑥(𝑛−1) =

𝐼𝑥(𝑛−1)(𝑥(𝑛) − 𝐹(𝑡, 𝑥(𝑛−1))).  

 

Hence 𝜇(𝑡, 𝑥(𝑛−1))  =  𝐼𝑥(𝑛−1)(𝑡, 𝑥(𝑛−1)). The vector 

field 𝑣 = 𝜉(𝑡, 𝑥)𝜕𝑡  +  𝜂(𝑡, 𝑥)𝜕𝑥  is a λ-symmetry of 

equation (3) if and only if [𝑣[𝜆,(𝑛−1)], 𝐴]  =

 𝜆𝑣[𝜆,(𝑛−1)]  +  𝜏𝐴 where 𝜏 = −(𝐴 +  𝜆)(𝜉(𝑡, 𝑥)) [3]. 

When 𝑣 =  𝜕𝑥  is a λ-symmetry of equation 3) if and 

only if [𝑣[𝜆,(𝑛−1)], 𝐴] =  𝜆𝑣[𝜆,(𝑛−1)] . 

  

Theorem 2.2. If v = ∂x is a λ-symmetry of (3) for some 

function λ(t, x(n−1)), then there is a first integral I(t, 

x(n−1)) of (3) such that 𝑣[𝜆,(𝑛−1)] (I) = 0 

 

Proof. If 𝑣 = 𝜕𝑥  is a 𝜆-symmetry of (3) for some 

function 𝜆(𝑡 , 𝑥(𝑛−1)), then [ 𝑣[𝜆,(𝑛−1)] , 𝐴] =
𝜆𝑣[𝜆,(𝑛−1)]. 

Therefore {𝑣[𝜆,(𝑛−1)], 𝐴} is an involutive set of vector 

fields in 𝑀(n−1) and there is function 𝐼(𝑡, 𝑥(𝑛−1)) such 

that 𝑣[𝜆,(𝑛−1)](𝐼) = 0 and 𝐴(𝐼) = 0. 

Let 𝜔(𝑡, 𝑥(𝑛−1)) be a first integral of 𝑣[𝜆,(𝑛−1)], i.e, 

𝑣[𝜆,(𝑛−1)](𝜔) = 0, then by using of (2), 𝜔(𝑡,  𝑥(𝑛−1)) is 

a solution of PDE:  

𝜔𝑥 + (𝐷𝑡 + 𝜆)(1)𝜔𝑥(1) + · · 

· + (𝐷𝑡 + 𝜆)𝑛−1(1)𝜔𝑥(𝑛−1) = 0 

(5)  

 

Let 𝐼(𝑡, 𝑥(𝑛−1)) = 𝐺(𝑡, 𝜔(𝑡, 𝑥(𝑛−1))) be a first integral 

of (3), then 

 

 0 = 𝐴(𝐼) = 𝐼𝑡 + 𝑥(1)𝐼𝑥 + 𝑥(2)𝐼𝑥(1) + · · ·

+ 𝐹(𝑡, 𝑥(𝑛−1))𝐼𝑥(𝑛−1) 

= (𝐺𝑡 + 𝐺𝜔𝜔𝑡) + 𝑥(1)(𝐺𝜔𝜔𝑥) + 𝑥(2)(𝐺𝜔𝜔𝑥(1)) + · · 

·  + 𝐹(𝑡, 𝑥(𝑛−1))(𝐺𝜔𝜔𝑥(𝑛−1)) 

= 𝐺𝑡 + 𝜔𝑡 + 𝑥(1)𝜔𝑥 + 𝑥(2)𝜔𝑥(1) + · · 

· + 𝐹(𝑡, 𝑥(𝑛−1))𝜔𝑥(𝑛 − 1))𝐺𝜔  

= 𝐺𝑡 + 𝐴(𝜔)𝐺𝜔 = 𝐺𝑡 + 𝐻(𝑡, 𝜔)𝐺𝜔 

 

where 𝐴(𝜔) = 𝐻(𝑡, 𝜔). Hence, if 𝐺(𝑡, 𝜔) is a 

particular solution of 𝐺𝑡 + 𝐻(𝑡, 𝜔)𝐺𝜔 = 0 then 

𝐼(𝑡, 𝑥(𝑛−1)) = 𝐺(𝑡, 𝜔(𝑡, 𝑥(𝑛−1))) is a first integral of 

(3). In summary, a procedure to find a first integral 

𝐼(𝑡, 𝑥(𝑛−1)) and consequently an integrating factor 

𝜇(𝑡, 𝑥(𝑛−1)) of (3), by using λ-symmetry method is as 

follows. 

  

• The vector field 𝑣 =  𝜕𝑥 is a λ-symmetry of (3), if 

function λ(t, x(n−1)) is any particular solution of the 

equation (4).  

• Find a first integral ω(t, x(n−1)), i.e. a particular 

solution of the equation (5).  

• Evaluate A(ω) = H(t, ω).  

• Find a first integral G(t,ω) from the solution of the 

equation Gt + H(t, ω)Gω = 0.  

• The function 𝐼(𝑡, 𝑥(𝑛−1)) = 𝐺(𝑡, 𝜔(𝑡, 𝑥(𝑛−1))) is a 

first integral of (3).  

• The function µ(𝑡, 𝑥(𝑛−1)) = 𝐼𝑥(𝑛−1)  (𝑡, 𝑥(𝑛−1)) is an 

integrating factor of (3). 

 

We focus our attention on second order ODEs, 𝑛 = 2 

in equation (3), i.e. 

 

�̈� = 𝐹(𝑥, 𝑢, �̇�)    (6)  

 

where F is an analytic function of its arguments. A 

procedure to find a first integral 𝐼(𝑡, 𝑥, �̇�) and 

consequently an integrating factor µ(𝑡, 𝑥, �̇�) of (3), by 

using λ-symmetry method is as follows. 

 

• The vector field 𝑣 =  𝜕𝑥  is a λ- symmetry of (6), if 

function 𝜆(𝑡, 𝑥, �̇�) is any particular solution of the 

equation 

  

𝐷𝑡(𝜆) + 𝜆2 =
𝜕𝐹

𝜕𝑥
+ 𝜆

𝜕𝐹

𝜕𝑥
   (7) 

 
• Let v be a λ-symmetry of (6), then 𝜔(𝑡, 𝑥, �̇�) is a first-

order invariant of 𝑣[𝜆,1], that is, any particular solution 

of the equation  

 

𝜔𝑥 + 𝜆(𝑡, 𝑥, �̇�). 𝜔�̇� = 0    (8)  

 

• Evaluate A(ω) = H(t, ω).  

• Find a first integral G(t, ω) from the solution of the 

equation Gt + H(t, ω)Gω = 0.  

• The function 𝐼(𝑡, 𝑥, �̇�) = 𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) is a first 

integral of (6). 

• The function 𝜇(𝑡, 𝑥, �̇�) = 𝐼𝑥˙(𝑡, 𝑥, �̇�) is an integrating 

factor of (6). 
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REDUCTION OF �̈� = (𝒇(𝒕, 𝒙) + 𝒈(𝒕, 𝒙)�̇�)𝒆𝑥, BY 

λ-SYMMETRY METHOD  

Let  

𝑥¨ = (𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)�̇�)𝑒𝑥   (9)  

 

be a second-order ordinary differential equation, where 

𝐹(𝑡, 𝑥, �̇�) = (𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)�̇�)𝑒𝑥 is an analytic 

function on its arguments and 𝑓(𝑡, 𝑥) and 𝑔(𝑡, 𝑥) are 

arbitrary functions. It can be checked that this equation 

does not have Lie point symmetry. There exists a 

function 𝜆(𝑡, 𝑥, �̇�) such that the vector field 𝑣 =  𝜕𝑥  is 

a λ-symmetry of the equation (9). To determine such 

functions 𝜆(𝑡, 𝑥, �̇�), by (7), λ is any particular solution 

for the equation.  

 

0 = 𝐷𝑡(𝜆) +  𝜆2 −
𝜕𝐹

𝜕𝑥
− 𝜆

𝜕𝐹

𝜕�̇�
 

=  𝜆𝑡 + �̇�𝜆𝑥 + �̈�𝜆�̇� + 𝜆2 − (𝑓𝑥 + 𝑔𝑥�̇�)𝑒𝑥 − (𝑓 +

𝑔�̇�)𝑒𝑥 − 𝜆𝑔𝑒𝑥  

or corresponding to  

 

𝜆𝑡 + �̇�𝜆𝑥 + (𝑓 + 𝑔�̇�)𝑒𝑥𝜆�̇� + 𝜆2 − (𝑓𝑥 + 𝑔𝑥�̇�)𝑒𝑥

− (𝑓 + 𝑔�̇�)𝑒𝑥 − 𝜆𝑔𝑒𝑥 = 0 

(10)  

For the sake of simplicity, we try to find a solution λ 

(10) of the form 𝜆(𝑡, 𝑥, �̇�) =  𝜆1(𝑡, 𝑥)�̇� + 𝜆2(𝑡, 𝑥), we 

obtain the following system: 

  

𝜆1
2 + (𝜆1)𝑥 = 0  

(𝜆1)𝑡 + (𝜆2)𝑥 + 2𝜆1𝜆2 − 𝑔𝑥𝑒𝑥  −  𝑔𝑒𝑥 = 0, 

(𝜆2)𝑡 + 𝑓𝑒𝑥𝜆1 + 𝜆2
2 − 𝑓𝑥𝑒𝑥 − 𝑓𝑒𝑥 − 𝜆2𝑔𝑒𝑥 = 0, 

 

A particular solution of the first equation is given 

by 𝜆1 = 0. The second and third equations become  

(𝜆2)𝑥 − 𝑔𝑥𝑒𝑥 − 𝑔𝑒𝑥 = 0 

(𝜆2)𝑡 + 𝜆2
2 − 𝑓𝑥𝑒𝑥 − 𝑓𝑒𝑥 − 𝜆2𝑔𝑒𝑥 = 0 

 

For the first equation and the second equation, we have  

 

𝑔 = (𝜆2 + 1)𝑒−𝑥, and 𝑓 = (∫ ((𝜆2)𝑡 − 𝜆2)𝑑𝑥)𝑒−𝑥 

 
A particular solution of this system is 𝜆2 = 𝑔𝑒𝑥 − 1, 

where 𝑔𝑡 − 𝑔 + 𝑒−𝑥 = 𝑓𝑥 + 𝑓. Hence, 

 

𝜆(𝑡, 𝑥, �̇�) = 𝜆1(𝑡, 𝑥)�̇� + 𝜆2(𝑡, 𝑥) = 𝜆2(𝑡, 𝑥) = 

𝑔(𝑡, 𝑥)𝑒𝑥 − 1. 

 

Therefore, the vector field 𝑣 =  𝜕𝑥 is a λ-symmetry of 

(9) for  

𝜆(𝑡, 𝑥, �̇�) = 𝑔(𝑡, 𝑥)𝑒 𝑥 − 1    (11)  

 

To find an integrating factor associated to 𝜆, first, we 

find a first integral invariant 𝜔(𝑡, 𝑥, �̇�) of 𝑣[𝜆,1] by the 

equation that corresponds to (8), which means, 

 

 𝜔𝑥 + (𝑔𝑒𝑥 − 1)𝜔�̇� = 0    (12)  

 

For the sake of simplicity, we try to find a solution 𝜔 

of the form 𝜔(𝑡, 𝑥, �̇�) = 𝜔1(𝑡, 𝑥)�̇� + 𝜔2(𝑡, 𝑥), we have 

 

(𝜔1)𝑥�̇� + (𝜔2)𝑥 + (𝑔𝑒𝑥 − 1)𝜔1 = 0 

 

or corresponding 

 

(𝜔1)𝑥 = 0, (𝜔2)𝑥 + (𝑔𝑒𝑥 − 1)𝜔1 = 0 

 

A particular solution of the first equation is given by 

𝜔1 = 1. the second equation become (𝜔2)𝑥 + (𝑔𝑒𝑥 −
1) = 0, the solution of this equation is 𝜔2 =
−∫ 𝑔𝑒𝑥𝑑𝑥 + 𝑥. Hence,  

 

𝜔(𝑡, 𝑥, �̇�) = 𝜔1(𝑡, 𝑥)�̇� + 𝜔2(𝑡, 𝑥)�̇� 

− ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥 + 𝑥 

(13)  

 

is a particular solution for (12). The vector field 

associated 𝐴 = 𝜕𝑡 + �̇�𝜕𝑥 + 𝐹(𝑡, 𝑥, �̇�)𝜕�̇� acts on ω, 

then, we have  

 

𝐴(𝜔) = − ∫ 𝑒𝑥𝑔𝑡𝑑𝑥 + �̇� + 𝑓𝑒𝑥 

= − ∫ 𝑒𝑥𝑔𝑡𝑑𝑥 + �̇� + (∫((𝜆2)𝑡−𝜆2) 𝑑𝑥) 

  

= − ∫ 𝑒𝑥𝑔𝑡𝑑𝑥 + �̇� + ∫(𝑔𝑡𝑒𝑥 − 𝑔𝑒𝑥 + 1) 𝑑𝑥 

 

= �̇� − ∫ 𝑔𝑒𝑥𝑑𝑥 + 𝑥 = 𝜔 = 𝐻(𝑡, 𝜔) 

 

Therefore, 𝐴(𝜔) = 𝜔 = 𝐻(𝑡, 𝜔). The function 

  

𝐺(𝑡, 𝜔) = 𝜔𝑒−𝑡     (14) 

 

 is a particular solution for the equation Gt + ωGω = 0. 

Therefore,  

𝐼(𝑡, 𝑥, �̇�) = 𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�))

= ( �̇� + 𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥)𝑒−𝑡 

 

is a first integral of (9) also the function 
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 µ(𝑡, 𝑥, �̇�) = 𝐼�̇�(𝑡, 𝑥, �̇�) = 𝑒−𝑡    (15) 

 

is an integrating factor of (9). Also, 

𝐷𝑡(𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�))

= 𝐷𝑡(�̇� + 𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥)𝑒−𝑡)
= 0 

is a conserved form of (9). 

Summation. λ-symmetry method to find a first integral 

𝐼(𝑡, 𝑥, �̇�) and con sequently an integrating factor 

µ(𝑡, 𝑥, �̇�) of (9) is as follows. 

  

• The vector field v = ∂x is a λ- symmetry of (9), and 

function 𝜆(𝑡, 𝑥, �̇�) = 𝑔(𝑡, 𝑥)𝑒𝑥 − 1 is a particular 

solution of the equation 𝐷𝑡(𝜆) + 𝜆2 = 𝜕𝐹/𝜕𝑥 +
 𝜆 𝜕𝐹/𝜕�̇�. 

• Let v be a λ-symmetry of (9), then 𝜔(𝑡, 𝑥, �̇�) = �̇� +
𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥 is a first-order invariant of 𝑣[𝜆,1], 

that is, a particular solution of the equation 𝜔𝑥 +
(𝑔(𝑡, 𝑥)𝑒𝑥 − 1)𝜔𝑥˙ = 0.  

• We have 𝐴(𝜔) = 𝐻(𝑡, 𝜔) = 𝜔.  

• The function 𝐺(𝑡, 𝜔) = 𝜔𝑒−𝑡 is a particular solution 

for the equation Gt + ωGω = 0.  

• The function 𝐼(𝑡, 𝑥, �̇�) = 𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) = (�̇� + 𝑥 −

∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥)𝑒−𝑡 is a first integral of (9). Also, 

𝐷𝑡(𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) = 𝐷𝑡 ((�̇� + 𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥)𝑒−𝑡) = 0, is a 

conserved form of (9).  

• The function 𝜇(𝑡, 𝑥, �̇�) = 𝐼�̇�(𝑡, 𝑥, �̇�) = 𝑒−𝑡, is an 

integrating factor of (9).  

 

Corollary 3.1. Equality 𝐷𝑡 ((�̇� + 𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥)𝑒−𝑡) =

0 is a conserved form of (9), therefore reduce the order 

of equation �̈� = (𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)�̇�)𝑒𝑥 is the equation 

�̇� + 𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥 = 0.  

 

SPECIAL CASES OF THE EQUATION 

 �̈� = (𝒇(𝒕, 𝒙) + 𝒈(𝒕, 𝒙)�̇�)𝒆𝒙 

 

Special cases of the equation �̈� = (𝑓(𝑡, 𝑥) +
𝑔(𝑡, 𝑥)�̇�)𝑒𝑥 are  �̈� = (𝑓( 𝑥) + 𝑔(𝑥)�̇�)𝑒𝑥. We consider 

the second-order ODE 

  

�̈� = (𝑓(𝑡) + 𝑔(𝑡)�̇�)𝑒𝑥   (16)  

 

where 𝐹(𝑡, 𝑥, �̇�) = (𝑓(𝑡)  +  𝑔(𝑡)�̇�)𝑒𝑥  is an analytic 

function on its arguments and f(t) and g(t) are arbitrary 

functions. It can be checked that this equation does not 

have Lie point symmetry.  

Similar of the equation (9), λ-symmetry method to find 

a first integral 𝐼(𝑡, 𝑥, �̇�) and consequently an 

integrating factor µ(𝑡, 𝑥, �̇�) of (16) is as follows: The 

vector field v = ∂x is a λ-symmetry of (16), and function 

𝜆(𝑡, 𝑥, 𝑥 ̇ ) = 1/𝑡 + 𝑔(𝑡)𝑒𝑥  is a particular solution of 

the equation 𝐷𝑡(𝜆) + 𝜆2 = 𝜕𝐹/𝜕𝑥 + 𝜆 𝜕𝐹/𝜕𝑥 ̇. 
Let v be a λ-symmetry of (16), then 𝜔(𝑡, 𝑥, �̇�) = �̇� −
𝑔(𝑡)𝑒𝑥 − 𝑥/𝑡 is a first-order invariant of v[λ,1], that is, a 

particular solution of the equation 𝜔𝑥 + (1/𝑡 +
𝑔(𝑡)𝑒𝑥)𝜔�̇� = 0. We have A(ω) = H(t, ω) = −(1/t)ω.  

The function G(t, ω) = tω is a particular solution for the 

equation Gt − (1/t) ω Gω = 0. The function 𝐼(𝑡, 𝑥, �̇�) =
𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) =  𝑡�̇� − 𝑡𝑔(𝑡)𝑒𝑥 − 𝑥, is a first integral 

of (16).  

Also, 𝐷𝑡(𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) = 𝐷𝑡(𝑡�̇� − 𝑡𝑔(𝑡)𝑒𝑥 − 𝑥) = 0, is 

a conserved form of (16). The function 𝜇(𝑡, 𝑥, �̇�) =

 𝐼�̇�(𝑡, 𝑥, �̇�) = 𝑡 is an integrating factor of (16).  

 

Corollary 4.1. Equality 𝐷𝑡(𝑡�̇� − 𝑡𝑔(𝑡)𝑒𝑥 − 𝑥) = 0, is a 

conserved form of (4.1), therefore reduce the order of 

the equation �̈� = (𝑓(𝑡) + 𝑔(𝑡)�̇�)𝑒𝑥, is the 

equation 𝑡�̇� − 𝑡𝑔(𝑡)𝑒𝑥 − 𝑥 = 0.  

 

We consider the second-order ODE  

 

�̈� = (𝑓(𝑡) + 𝑔(𝑡)�̇�)𝑒𝑥    (17)  

 

where 𝐹(𝑡, 𝑥, �̇�) = (𝑓(𝑥) + 𝑔(𝑥) �̇�)𝑒𝑥  is an analytic 

function on its arguments and f(x) and g(x) are arbitrary 

functions. It can be checked that this equation does not 

have Lie point symmetry.  

Similar of the equation (9), λ-symmetry method to find 

a first integral 𝐼(𝑡, 𝑥, �̇�) and consequently an 

integrating factor µ(𝑡, 𝑥, �̇�) of (17) is as follows: The 

vector field v = ∂x  is a λ-symmetry of (17), and function 

𝜆(𝑡, 𝑥, �̇�) = 𝑔(𝑥)𝑒𝑥 − 1 is a particular solution of the 

equation 𝐷𝑡(𝜆) + 𝜆2 = 𝜕𝐹 /𝜕𝑥 + 𝜆𝜕𝐹/𝜕�̇�,  

Let v be a λ-symmetry of (17), then 𝜔(𝑡, 𝑥, �̇�) = �̇� +

 𝑥 − ∫ 𝑔(𝑥)𝑒𝑥𝑑𝑥 is a first-order invariant of 𝑣[𝜆,1], that 

is, a particular solution of the equation 𝜔𝑥 +
(𝑔(𝑥)𝑒𝑥 − 1)𝜔�̇� = 0. We have 𝐴(𝜔) = 𝐻(𝑡, 𝜔) = 𝜔.  

The function G(t, ω) = ωe−t, is a particular solution for 

the equation 𝐺𝑡 + 𝜔𝐺𝜔 = 0. The function 𝐼(𝑡, 𝑥, �̇�) =

 𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) = (�̇� + 𝑥 − ∫ 𝑔(𝑥)𝑒𝑥𝑑𝑥)𝑒−𝑡, is a 

first integral of (4.2). Also, 𝐷𝑡(𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) =

 𝐷𝑡 (( �̇� + 𝑥 − ∫ 𝑔(𝑥)𝑒𝑥𝑑𝑥)𝑒−𝑡) = 0, is a conserved 

form of (17). The function µ(𝑡, 𝑥, �̇�)  =  𝐼 �̇�(𝑡, 𝑥, �̇�) =
𝑒−𝑡, is an integrating factor of (17).  

 

Corollary 4.2. Equality 𝐷𝑡(�̇� + 𝑥 − ∫ 𝑔(𝑥)𝑒𝑥𝑑𝑥) =

0, is a conserved form of (4.2), therefore reduce the 

order of the equation �̈� = (𝑓(𝑥) + 𝑔(𝑥)�̇�)𝑒𝑥, is the  

equation �̇� + 𝑥 − ∫ 𝑔(𝑥)𝑒𝑥𝑑𝑥 = 0.  
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SOME ILLUSTRATIONS  

Example 1. We consider the second-order ordinary 

differential equation 

 

 �̈� = (𝑡3 − 1)𝑐𝑜𝑠 𝑥 + (𝑡𝑠𝑖𝑛 𝑥 + 1)�̇�   (18)  

 

where in the Eq. (9), 𝑓(𝑡, 𝑥) = (𝑡3 − 1) 𝑐𝑜𝑠 𝑥𝑒−𝑥 and 

𝑔(𝑡, 𝑥) = (𝑡 𝑠𝑖𝑛 𝑥 + 1)𝑒−𝑥 and also the function 

𝐹(𝑡, 𝑥, �̇�) = (𝑡3 − 1)𝑐𝑜𝑠 𝑥 + (𝑡𝑠𝑖𝑛 𝑥 + 1)�̇�, is an 

analytic function on its arguments. It can be checked 

that this equation does not have Lie point symmetry. 

Therefore, we have for the equation (18). 

The vector field v = ∂x is a λ-symmetry of (18), and 

function 𝜆(𝑡, 𝑥, �̇�) = 𝑔(𝑡, 𝑥)𝑒𝑥 − 1 = 𝑡𝑠𝑖𝑛 𝑥, is a 

particular solution of the equation 𝐷𝑡(𝜆) + 𝜆2 =
𝜕𝐹/𝜕𝑥 +  𝜆𝜕𝐹/𝜕 �̇�.  

Let v be a λ-symmetry of (5.1), then 𝜔(𝑡, 𝑥, �̇�) =  �̇� +
 𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥 =  �̇� + 𝑡 𝑐𝑜𝑠 𝑥, is a first-order 

invariant of 𝑣[𝜆,1], that is, a particular solution of the 

equation ωx+(tsin x)ωx˙ = 0. We have 𝐴(𝜔) =
𝐻(𝑡, 𝜔) = 𝜔. The function G(t, ω) = ωe−t, is a 

particular solution for the equation Gt + ωGω = 0.  

The function  

𝐼(𝑡, 𝑥, �̇�) = 𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) = 

( �̇� + 𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥)𝑒 − 𝑡 = ( �̇� + 𝑡 𝑐𝑜𝑠 𝑥)𝑒−𝑡, 

is a first integral of (5.1). 𝐷𝑡(𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) =

𝐷𝑡((�̇� + 𝑡 𝑐𝑜𝑠 𝑥)𝑒−𝑡) = 0, is a conserved form of 

(18). The function µ(𝑡, 𝑥, �̇�) = 𝐼�̇�(𝑡, 𝑥, �̇�) = 𝑒−𝑡, is an 

integrating factor of (18). Therefore, we reduce the 

order of the equation �̈� = (𝑡3 − 1)𝑐𝑜𝑠 𝑥 + (𝑡𝑠𝑖𝑛 𝑥 +
1)�̇�, to the equation (�̇� + 𝑡 𝑐𝑜𝑠 𝑥)𝑒−𝑡 = 0. This 

equation does not have Lie point symmetries.  

 

Example 2. Let  

 

�̈� = (𝑠𝑖𝑛ℎ 𝑡 + 𝑐𝑜𝑠ℎ 𝑡/𝑡 + 𝑐𝑜𝑠ℎ 𝑡�̇�)𝑒𝑥  (19) 

  

where in the Eq. (19), 𝑓(𝑡) = 𝑠𝑖𝑛 𝑡 + 𝑐𝑜𝑠ℎ 𝑡/𝑡 and 

𝑔(𝑡) = 𝑐𝑜𝑠ℎ 𝑡 and also the function 𝐹(𝑡, 𝑥, �̇�) =
(𝑠𝑖𝑛 𝑡 + 𝑐𝑜𝑠ℎ𝑡/𝑡 + 𝑐𝑜𝑠ℎ 𝑡�̇�)𝑒𝑥, is an analytic 

function on its arguments.  

This equation does not have Lie point symmetry. We 

have for the equation (19). 

The vector field v = ∂x is a λ-symmetry of (19), and 

function 𝜆(𝑡, 𝑥, �̇�) = 1/𝑡 + 𝑔(𝑡)𝑒𝑥 = 1/𝑡 +  𝑐𝑜𝑠ℎ(𝑡)𝑒𝑥, 

is a particular solution of the equation 𝐷𝑡(𝜆) + 𝜆2 =
 𝜕𝐹/𝜕𝑥 +  𝜆𝜕𝐹/𝜕�̇�.  

Let v be a λ-symmetry of (19), then 𝜔(𝑡, 𝑥, �̇�) = �̇� −
𝑔(𝑡)𝑒𝑥 − 𝑥/𝑡 = �̇� − 𝑐𝑜𝑠ℎ 𝑡𝑒𝑥 − 𝑥/𝑡, is a first-order 

invariant of 𝑣[𝜆,1], that is, a particular solution of the 

equation 𝜔𝑥 + (1/𝑡 + 𝑐𝑜𝑠ℎ 𝑡𝑒𝑥)𝜔𝑥 =̇ 0. We have 

𝐴(𝜔) = 𝐻(𝑡, 𝜔) = −(1/𝑡)𝜔.  

The function 𝐺(𝑡, 𝜔) = 𝑡𝜔, is a particular solution for 

the equation 𝐺𝑡 − (1/𝑡)𝜔𝐺𝜔 = 0. The function 

𝐼(𝑡, 𝑥, �̇�) = 𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) = 𝑡�̇� − 𝑡𝑔(𝑡)𝑒𝑥 − 𝑥 =

𝑡�̇� − 𝑡 𝑐𝑜𝑠ℎ 𝑡𝑒𝑥 − 𝑥, is a first integral of (19). Also, 

𝐷𝑡(𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) = 𝐷𝑡(𝑡�̇� − 𝑡 𝑐𝑜𝑠ℎ 𝑡𝑒𝑥 − 𝑥) = 0, 

is a conserved form of (19).  

The function µ(𝑡, 𝑥, �̇�) = 𝐼�̇�(𝑡, 𝑥, �̇�) = 𝑡, is an 

integrating factor of (19).  

Therefore, we reduce the order of the equation �̈� =
(𝑠𝑖𝑛ℎ 𝑡 + 𝑐𝑜𝑠ℎ𝑡/𝑡 + 𝑐𝑜𝑠ℎ 𝑡�̇�)𝑒𝑥, to the equation 𝑡�̇� −
𝑡 𝑐𝑜𝑠ℎ 𝑡𝑒𝑥 − 𝑥 = 0. This equation dose not have Lie 

point symmetries. 
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Abstract

Bagderina [1] solved the equivalence problem for a family of scalar second-order

ordinary differential equations (ODEs), with cubic nonlinearity in the first-order

derivative, via point transformations. However, the question is open for the general

class y′′ = f(x, y, y′) which is not cubic in the first-order derivative. We utilize Lie’s

infinitesimal method to study the differential invariants of this general class under

an arbitrary point equivalence transformations. All fifth order differential invariants

and the invariant differentiation operators are determined. As an application, in-

variant description of all the canonical forms in the complex plane for second-order

ODEs y′′ = f(x, y, y′) where both of the two Tressé relative invariants are non-zero

is provided.

Keywords: Lie’s infinitesimal method, differential invariants, second order ODEs, equiv-

alence problem, point transformations, canonical forms, Lie symmetries.
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1 Introduction

Lie’s group classification of ODEs shows that the second-order equations can possess one,

two, three or eight infinitesimal symmetries. According to Lie’s classification [2] in the

complex domain, any second order ODE

y′′ = f(x, y, y′), (1.1)

is obtained by a change of variables from one of eight canonical forms. The equations

with eight symmetries and only these equations can be linearized by a change of variables.

The initial seminal studies of scalar second-order ODEs which are linearizable by means

of point transformations are due to Lie [2] and Tressé [3]. They showed that the latter

equations are at most cubic in the first derivative and gave a convenient invariant descrip-

tion of all linearizable equations. Mahomed and Leach [4] proved that Lie linearization

conditions are equivalent to the vanishing of the Tressé relative invariants (1.2) as stated

in the next theroem

Theorem 1.1. [5] The equation y′′ = f(x, y, y′) is equivalent to the normal form y′′ = 0

with eight symmetries under point transformations if and only if the Tressé relative

invariants

I1 = fy′,y′,y′,y′

I2 = Ḋ2
xfy′,y′ − 4Ḋxfy,y′ − 3fyfy′,y′ + 6fy,y + fy′

(

4fy,y′ − Ḋxfy′,y′
) (1.2)

both vanish identically. Where Ḋx = ∂
∂x

+ y′ ∂
∂y

+ f ∂
∂y′

.

Regarding the equivalence of the second-order differential equations to the normal form

y′′ = 0 via contact transformations, it is well known that all second-order differential

equations have y′′ = 0 as the sole equivalence class.

The linearization problem is a particular case of the equivalence problem. For the general

theory of the equivalence problem including algorithms of construction of differential
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invariants, the interested reader is referred to [6, 9]. Ibragimov [10, 12] developed a

simple method for constructing invariants of families of linear and nonlinear differential

equations admitting infinite equivalence transformation groups. Lie’s infinitesimal method

was applied to solve the equivalence problem for several linear and nonlinear differential

equations [13, 14, 15, 16, 17, 18, 19, 20, 21]. Cartan’s equivalence method [6, 22] is another

systematic approach to solve the equivalence problem for differential equations.

By using Lie’s infinitesimal method, Bagderina [1] solved the equivalence problem of

second-order ODEs which are at most cubic in the first-order derivative (I1 = 0)

y′′ = a(x, y)y′3 + b(x, y)y′2 + c(x, y)y′ + d(x, y) (1.3)

with respect to the group of point equivalence transformations

x̄ = φ(x, y), ȳ = ψ(x, y). (1.4)

As an extension, in this paper, we use Lie’s infinitesimal method to study the differential

invariants of the second-order ODEs (1.1) which are not cubic in the first-order derivative

(I1 6= 0) with respect to the group of point equivalence transformations. The motivation

of this study is finding invariant description of the canonical forms for second-order ODEs

in the complex plane [6] which are not cubic in the first-order derivative.

Invariant description of the canonical forms for second-order ODEs in the complex plane

with three infinitesimal symmetries was given in [8, 15] where they presented the can-

didates for all four types and then they studied these candidates. In this paper, invari-

ant description of all the canonical forms in the complex plane for second-order ODEs

y′′ = f(x, y, y′) where both of the two Tressé relative invariants (1.2) are non-zero is

provided.

The structure of the paper is as follows. In the next section, we give a short description of

Lie’s infinitesimal method to find the differential invariants and invariant differentiation
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operators of the class of ODEs (1.1) with respect to the group of point equivalence trans-

formations (1.4). In Section 3, using the methods described in Section 2, the infinitesimal

point equivalence transformations are recovered. In Section 4, we find the fifth-order

differential invariants and invariant differentiation operators of the class of ODEs (1.1),

which are not cubic in the first-order derivative, under point equivalence transformations.

In Section 5, invariant description of all the canonical forms in the complex plane [6] for

second-order ODEs y′′ = f(x, y, y′) where both of the two Tressé relative invariants (1.2)

are non-zero is provided. Finally, the conclusion is presented.

Throughout this paper, we use the notation A = [a1, a2, ..., an] to express any differential

operator A =

n
∑

j=1

aj
∂

∂bj
. Also, we denote y′ by p.

2 Lie’s infinitesimal method

In this section, we briefly describe the Lie method used to derive differential invariants

using point equivalence transformations.

Consider the kth-order system of PDEs of n independent variables x = (x1, x2, ..., xn) and

m dependent variables u = (u1, u2, ..., um)

Eα(x, u, ..., u(k)) = 0, α = 1, ..., m , (2.5)

where u(1), u(2), ..., u(k) denote the collections of all first, second, ..., kth-order partial

derivatives, i.e., uαi = Di(u
α), uαij = DjDi(u

α),..., respectively, in which the total differ-

entiation operator with respect to xi is

Di =
∂
∂xi + uαi

∂
∂uα + uαij

∂
∂uα

j

+ ..., i = 1, ..., n , (2.6)

with the summation convention adopted for repeated indices.
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Definition 2.1. The Lie-Bäcklund operator is

X = ξi ∂
∂xi + ηα ∂

∂uα ξi, ηα ∈ A , (2.7)

where A is the space of differential functions.

The operator (2.7) is an abbreviated form of the infinite formal sum

X(s) = ξi ∂
∂xi + ηα ∂

∂uα +
∑

s≥1

ζαi1i2...is
∂

∂uα
i1i2...is

,

= ξiDi +W α ∂
∂uα +

∑

s≥1

Di1 ...Dis(W
α) ∂

∂uα
i1i2...is

,
(2.8)

where the additional coefficients are determined uniquely by the prolongation formulae

ζαi = Di(η
α)− uαjDi(ξ

j) = Di(W
α) + ξjuαij,

ζαi1...is = Dis(ζ
α
i1...is−1

)− uαji1...is−1
Dis(ξ

j) = Di1 ...Dis(W
α) + ξjuαji1...is, s > 1,

(2.9)

in which W α is the Lie characteristic function

W α = ηα − ξjuαj . (2.10)

Definition 2.2. The point equivalence transformation of a class of PDEs (2.5) is an

invertible transformation of the independent and dependent variables of the form

x̄ = φ(x, u), ū = ψ(x, u), (2.11)

that maps every equation of the class into an equation of the same family, viz.

Eα(x̄, ū, ..., ū(k)) = 0, α = 1, ..., m. (2.12)

In order to describe Lie’s infinitesimal method for deriving differential invariants using

point equivalence transformations, we use as example the class of equations (1.1). It is

well-known that the point equivalence transformation

x̄ = φ(x, y), ȳ = ψ(x, y), (2.13)
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maps (1.1) into the same family, viz.

ȳ′′ = f̄(x̄, ȳ, ȳ′), (2.14)

for arbitrary functions φ(x, y) and ψ(x, y), where f̄ , in general, can be different from the

original function f . The set of all equivalence transformations forms a group denoted by

E .

The standard procedure for Lie’s infinitesimal invariance criterion [9] is implemented in

the next section to recover the continuous group of point equivalence transformations

(2.13) for the class of second-order ODEs (1.1) with the corresponding infinitesimal point

equivalence transformation operator

Y = ξ(x, y)Dx +W∂y +Dx(W )∂p + µ(x, y, p, f)∂f , (2.15)

where ξ(x, y) and η(x, y) are arbitrary functions obtained from

x̄ = x+ ǫ ξ(x, y) +O(ǫ2) = φ(x, y), (2.16)

ȳ = y + ǫ η(x, y) +O(ǫ2) = ψ(x, y), (2.17)

and

µ = Ḋ2
x(W ) + ξ(x, y)Ḋxf, (2.18)

with W = η − ξp and Ḋx = ∂
∂x

+ p ∂
∂y

+ f ∂
∂p
.

Definition 2.3. An invariant of a class of second-order ODEs (1.1) is a function of the

form

J = J(x, y, p, f), (2.19)

which is invariant under the equivalence transformation (2.13).

Definition 2.4. A differential invariant of order s of a class of second-order ODEs (1.1)

is a function of the form

J = J(x, y, p, f, f(1), f(2), ..., f(s)), (2.20)
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which is invariant under the equivalence transformation (2.13) where f(1), f(2), ..., f(s) de-

note the collections of all first, second,..., sth-order partial derivatives.

Definition 2.5. An invariant system of order s of a class of second-order ODEs (1.1) is

the system of the form Eα(x, y, p, f, f(1), f(2), ..., f(s)) = 0, α = 1, ..., m which satisfies the

condition

Y (s)Eα(x, y, p, f, f(1), f(2), ..., f(s)) = 0 (mod Eα = 0, α = 1, ..., m), α = 1, ..., m.

(2.21)

An invariant system with α = 1 is called an invariant equation.

Now, according to the theory of invariants of infinite transformation groups [9], the in-

variant criterion

Y J(x, y, p, f) = 0, (2.22)

should be split by means of the functions ξ(x, y) and η(x, y) and their derivatives. This

gives rise to a homogeneous linear system of PDEs whose solution gives the required

invariants.

It should be noted that since the generator Y contains arbitrary functions ξ(x, y) and

η(x, y), the corresponding identity (2.22) leads to m linear PDEs for J , where m is the

number of the arbitrary functions and their derivatives that appear in Y . We point out

that these m PDEs are not necessarily linearly independent.

In order to determine the differential invariants of order s, we need to calculate the

prolongations of the operator Y using (2.8) by considering f as a dependent variable and

the variables x, y, p as independent variables:

Y (s) = Y (x)D̃x + Y (y)D̃y + Y (p)D̃p + W̃ ∂
∂f

+
∑

s≥1

D̃i1 ...D̃is(W̃ ) ∂
∂fi1i2...is

,

i1, i2, ..., is ∈ {x, y, p},

(2.23)
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where

D̃k = ∂k + fk∂f + fki∂fi + fkij∂fij + ..., i, j, k ∈ {x, y, p}. (2.24)

in which W̃ is the Lie characteristic function

W̃ = µ− Y (x)fx − Y (y)fy − Y (p)fp. (2.25)

The differential invariants are determined by the equations

Y (s)J(x, y, p, f, f(1), f(2), ..., f(s)) = 0. (2.26)

It should be noted that since the generator Y (s) contains arbitrary functions ξ(x, y) and

η(x, y), the corresponding identity (2.26) leads to m linear PDEs for J , where m is the

number of the arbitrary functions and their derivatives that appear in Y (s).

For simplicity, from here on, we denote the derivative of f(x, y, p) with respect to the

independent variables x, y, p as f1, f2, f3. The same notation will be used for higher-order

derivatives.

Now, in order to find all the fifth order differential invariants of the third-order ODE

(1.1), one can solve the invariant criterion (2.26) with s = 5. However, for compactness

of the derived differential invariants, one can replace any partial derivative with respect

to x by the total derivative with respect to x. So, we need to solve the following invariant

criterion

Y (5)J(x, y, y1, f, f2, f3, f2,2, f2,3, f3,3, f2,2,2, f2,2,3, f2,3,3, f3,3,3, f2,2,2,2, f2,2,2,3, f2,2,3,3, f2,3,3,3, f3,3,3,3,

f2,2,2,2,2, f2,2,2,2,3, f2,2,2,3,3, f2,2,3,3,3, f2,3,3,3,3, f3,3,3,3,3, d1,1, d1,2, d1,3, d1,4, d1,5, d1,6, d1,7, d1,8, d1,9, d1,10,

d1,11, d1,12, d1,13, d1,14, d1,15, d2,1, d2,2, d2,3, d2,4, d2,5, d2,6, d2,7, d2,8, d2,9, d2,10, d3,1, d3,2, d3,3, d3,4,

d3,5, d3,6, d4,1, d4,2, d4,3, d5,1) = 0

(2.27)

by prolonging the infinitesimal operator Y (5) to the variables di,j through the infinitesimals
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Y (5)di,j, where

d1,1 = Ḋxf, d1,2 = Ḋxf2, d1,3 = Ḋxf3, d1,4 = Ḋxf2,2, d1,5 = Ḋxf2,3, d1,6 = Ḋxf3,3, d1,7 = Ḋxf2,2,2,

d1,8 = Ḋxf2,2,3, d1,9 = Ḋxf2,3,3, d1,10 = Ḋxf3,3,3, d1,11 = Ḋxf2,2,2,2, d1,12 = Ḋxf2,2,2,3, d1,13 = Ḋxf2,2,3,3,

d1,14 = Ḋxf2,3,3,3, d1,15 = Ḋxf3,3,3,3, d2,1 = Ḋ2
xf, d2,2 = Ḋ2

xf2, d2,3 = Ḋ2
xf3, d2,4 = Ḋ2

xf2,2,

d2,5 = Ḋ2
xf2,3, d2,6 = Ḋ2

xf3,3, d2,7 = Ḋ2
xf2,2,2, d2,8 = Ḋ2

xf2,2,3, d2,9 = Ḋ2
xf2,3,3, d2,10 = Ḋ2

xf3,3,3,

d3,1 = Ḋ3
xf, d3,2 = Ḋ3

xf2, d3,3 = Ḋ3
xf3, d3,4 = Ḋ3

xf2,2, d3,5 = Ḋ3
xf2,3, d3,6 = Ḋ3

xf3,3,

d4,1 = Ḋ4
xf, d4,2 = Ḋ4

xf2, d4,3 = Ḋ4
xf3, d5,1 = Ḋ5

xf

(2.28)

Definition 2.6. An invariant differentiation operator of a class of second-order ODEs

(1.1) is a differential operator D which satisfies that if I is a differential invariant of ODE

(1.1), then DI is its differential invariant too.

As it is shown in [9], the number of independent invariant differentiation operators D

equals the number of independent variables x, y and p. The invariant differentiation

operators D should take the form

D = KD̃x + LD̃y +MD̃p, (2.29)

with the coordinates K,L and M satisfying the non-homogeneous linear system

Y (5)K = D(Y (x)), Y (5)L = D(Y (y)), Y (5)M = D(Y (p)), (2.30)

where K,L and M are functions of the following variables

x, y, y1, f, f2, f3, f2,2, f2,3, f3,3, f2,2,2, f2,2,3, f2,3,3, f3,3,3, f2,2,2,2, f2,2,2,3, f2,2,3,3, f2,3,3,3, f3,3,3,3,

f2,2,2,2,2, f2,2,2,2,3, f2,2,2,3,3, f2,2,3,3,3, f2,3,3,3,3, f3,3,3,3,3, d1,1, d1,2, d1,3, d1,4, d1,5, d1,6, d1,7, d1,8, d1,9, d1,10,

d1,11, d1,12, d1,13, d1,14, d1,15, d2,1, d2,2, d2,3, d2,4, d2,5, d2,6, d2,7, d2,8, d2,9, d2,10, d3,1, d3,2, d3,3, d3,4,

d3,5, d3,6, d4,1, d4,2, d4,3, d5,1

(2.31)

In reality, the general solution of the system (2.30) gives both the differential invari-

ants and the differential operators. This general solution can be found by prolonging
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the infinitesimal operator Y (5) to the variables K,L and M through the infinitesimals

Y (5)K, Y (5)L and Y (5)M respectively. Then solving the invariant criterion

Y (5)J(x, y, y1, f, f2, f3, f2,2, f2,3, f3,3, f2,2,2, f2,2,3, f2,3,3, f3,3,3, f2,2,2,2, f2,2,2,3, f2,2,3,3, f2,3,3,3, f3,3,3,3,

f2,2,2,2,2, f2,2,2,2,3, f2,2,2,3,3, f2,2,3,3,3, f2,3,3,3,3, f3,3,3,3,3, d1,1, d1,2, d1,3, d1,4, d1,5, d1,6, d1,7, d1,8, d1,9, d1,10,

d1,11, d1,12, d1,13, d1,14, d1,15, d2,1, d2,2, d2,3, d2,4, d2,5, d2,6, d2,7, d2,8, d2,9, d2,10, d3,1, d3,2, d3,3, d3,4,

d3,5, d3,6, d4,1, d4,2, d4,3, d5,1,K, L,M) = 0

(2.32)

gives the implicit solution of the variables K,L and M with the differential invariants.

In this paper, we are interested in finding the fifth order differential invariants and differ-

ential operators of the general class y′′ = f(x, y, y′) under point transformations (2.13).

So, according to the theory of invariants of infinite transformation groups [9], the invariant

criterion (2.32) should be split by the functions ξ(x, y) and η(x, y) and their derivatives.

This gives rise to a homogeneous linear system of partial differential equations (PDEs):

XiJ = 0, TiJ = 0, i = 1 . . . 36, (2.33)

where Xi, i = 1 . . . 36, are the differential operators corresponding to the coefficients of

the following derivatives of η(x, y) up to the seven order in the invariant criterion

η, η1, η2, η1,1, η1,2, η2,2, η1,1,1, η1,1,2, η1,2,2, η2,2,2, η1,1,1,1, η1,1,1,2, η1,1,2,2, η1,2,2,2, η2,2,2,2, η1,1,1,1,1, η1,1,1,1,2,

η1,1,1,2,2, η1,1,2,2,2, η1,2,2,2,2, η2,2,2,2,2, η1,1,1,1,1,1, η1,1,1,1,1,2, η1,1,1,1,2,2, η1,1,1,2,2,2, η1,1,2,2,2,2, η1,2,2,2,2,2, η2,2,2,2,2,2,

η1,1,1,1,1,1,1, η1,1,1,1,1,1,2, η1,1,1,1,1,2,2, η1,1,1,1,2,2,2, η1,1,1,2,2,2,2, η1,1,2,2,2,2,2, η1,2,2,2,2,2,2, η2,2,2,2,2,2,2

(2.34)

and Ti, i = 1 . . . 36, are the differential operators corresponding to the coefficients of the

following derivatives of ξ(x, y) up to the seven order in the invariant criterion

ξ, ξ1, ξ2, ξ1,1, ξ1,2, ξ2,2, ξ1,1,1, ξ1,1,2, ξ1,2,2, ξ2,2,2, ξ1,1,1,1, ξ1,1,1,2, ξ1,1,2,2, ξ1,2,2,2, ξ2,2,2,2, ξ1,1,1,1,1, ξ1,1,1,1,2,

ξ1,1,1,2,2, ξ1,1,2,2,2, ξ1,2,2,2,2, ξ2,2,2,2,2, ξ1,1,1,1,1,1, ξ1,1,1,1,1,2, ξ1,1,1,1,2,2, ξ1,1,1,2,2,2, ξ1,1,2,2,2,2, ξ1,2,2,2,2,2, ξ2,2,2,2,2,2,

ξ1,1,1,1,1,1,1, ξ1,1,1,1,1,1,2, ξ1,1,1,1,1,2,2, ξ1,1,1,1,2,2,2, ξ1,1,1,2,2,2,2, ξ1,1,2,2,2,2,2, ξ1,2,2,2,2,2,2, ξ2,2,2,2,2,2,2

(2.35)

Functionally independent solutions of the system (2.33) provide all independent differ-

ential invariants of y′′ = f(x, y, y′) up to the fifth order under point transformations, as

well as an implicit solution of the variables K,L and M which provide the differential
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operators via (2.29). The solution of system (2.33) is found in many steps using Maple

as follows:

First, let us consider the subsystem induced by the sixth and seventh derivatives of ξ and

η

XiJ = 0, TiJ = 0, i = 22 . . . 36. (2.36)

where the operators Xi and Ti, i = 22 . . . 36 are given in Appendix A in term of the

variables zi, i = 1 . . . 62 after relabeling the variables

x, y, y1, f, f2, f3, f2,2, f2,3, f3,3, f2,2,2, f2,2,3, f2,3,3, f3,3,3, f2,2,2,2, f2,2,2,3, f2,2,3,3, f2,3,3,3, f3,3,3,3,

f2,2,2,2,2, f2,2,2,2,3, f2,2,2,3,3, f2,2,3,3,3, f2,3,3,3,3, f3,3,3,3,3, d1,1, d1,2, d1,3, d1,4, d1,5, d1,6, d1,7, d1,8, d1,9, d1,10,

d1,11, d1,12, d1,13, d1,14, d1,15, d2,1, d2,2, d2,3, d2,4, d2,5, d2,6, d2,7, d2,8, d2,9, d2,10, d3,1, d3,2, d3,3, d3,4,

d3,5, d3,6, d4,1, d4,2, d4,3, d5,1,K,L,M

(2.37)

by the variables zi, i = 1 . . . 62, respectively.

In 62-dimensional space of variables zi, i = 1 . . . 62, the rank of the system (2.36) is 16, so

it has 46 functionally independent solutions which are given as:

l1 = z1, l2 = z2, l3 = z3, l4 = z4, l5 = z5, l6 = z6, l7 = z7, l8 = z8, l9 = z9, l10 = z10, l11 = z11, l12 = z12, l13 = z13,

l14 = z15, l15 = z16, l16 = z17, l17 = z18, l18 = z21, l19 = z22, l20 = z23, l21 = z24, l22 = z25, l23 = z26, l24 = z27,

l25 = z28, l26 = z29, l27 = z30, l28 = z32, l29 = z33, l30 = z34, l31 = z37, l32 = z38, l33 = z39, l34 = z40, l35 = z41,

l36 = z42, l37 = z44, l38 = z45, l39 = z48, l40 = z49, l41 = z50, l42 = z52, l43 = z55, l44 = z60, l45 = z61, l46 = z62

(2.38)

Second, let us consider the subsystem induced by the fifth derivatives of ξ and η

XiJ = 0, TiJ = 0, i = 16 . . . 21. (2.39)

where the inherited operators Xi and Ti, i = 16 . . . 21 are given in Appendix B in term

of the new variables li, i = 1 . . . 46.

In 46-dimensional space of variables li, i = 1 . . . 46, the rank of the system (2.39) is 10, so
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it has 36 functionally independent solutions which are given as:

m1 = l1, m2 = l2, m3 = l3, m4 = l4, m5 = l5, m6 = l6, m7 = l7, m8 = l8, m9 = l9,

m10 = l11, m11 = l12, m12 = l13, m13 = l15, m14 = l16, m15 = l17, m16 = l19, m17 = l20,

m18 = l21, m19 = l22, m20 = l23, m21 = l24, m22 = l26, m23 = l27, m24 = l29, m25 = l30,

m26 = l32, m27 = l33, m28 = l34, m29 = l36, m30 = l38, m31 = −4 l28 + 6 l10 + l39, m32 = l40,

m33 = −4 l37 + 6 l25 + l43, m34 = l44, m35 = l45, m36 = l46

(2.40)

Third, let us consider the subsystem induced by the fourth derivatives of ξ and η

XiJ = 0, TiJ = 0, i = 11 . . . 15. (2.41)

where the inherited operators Xi and Ti, i = 11 . . . 15 are given in Appendix C in term

of the new variables mi, i = 1 . . . 36.

In 36-dimensional space of variables mi, i = 1 . . . 36, the rank of the system (2.41) is 10,

so it has 26 functionally independent solutions which are given as:

n1 = m1, n2 = m2, n3 = m3, n4 = m4, n5 = m5, n6 = m6, n7 = m8, n8 = m9, n9 = m11,

n10 = m12, n11 = m14, n12 = m15, n13 = m17, n14 = m18, n15 = m19, n16 = m21, n17 = m23,

n18 = m25, n19 = m27, n20 = 6m7 − 4m22 +m30, n21 = −3m9m7 +m12m20 −m6m24+

4m6m10 +m31, n22 = −2m24 + 2m10 +m32, n23 = 6m6m7 − 3m9m20 +m33,

n24 = m34, n25 = m35, n26 = m36

(2.42)

Fourth, let us consider the subsystem induced by the third derivatives of ξ and η

XiJ = 0, TiJ = 0, i = 7 . . . 10. (2.43)

where the inherited operators Xi and Ti, i = 7 . . . 10 are given in Appendix D in term of

the new variables ni, i = 1 . . . 26.

In 26-dimensional space of variables ni, i = 1 . . . 26, the rank of the system (2.43) is 8, so
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it has 18 functionally independent solutions which are given as:

t1 = n1, t2 = n2, t3 = n3, t4 = n4, t5 = n6, t6 = n8, t7 = n10, t8 = n12, t9 = n13, t10 = n14,

t11 = n19, t12 = −3n8n5 − n6n17 + 4n7n6 + n20, t13 = 4n7
2 − n17n7 + 2n5n18 − 6n5n9 + n21,

t14 = −2n10n5 − n8n17 + n7n8 + n16n10 + n6n18 + n22, t15 = −3n6n8n5 − n17n6
2 − 3n17n5

+4n6
2n7 + 4n16n7 − n16n17 + n23, t16 = n24, t17 = n25, t18 = n26

(2.44)

Finally, let us consider the subsystem induced by the zero, first and second derivatives of

ξ and η

XiJ = 0, TiJ = 0, i = 1 . . . 6. (2.45)

where the inherited operators Xi and Ti, i = 1 . . . 6 are given in Appendix E in term of

the new variables ti, i = 1 . . . 18 which can be rewritten, by backing substitution, as

t1 = x, t2 = y, t3 = y1, t4 = f, t5 = f3, t6 = f3,3, t7 = f3,3,3, t8 = f3,3,3,3,

t9 = f2,3,3,3,3, t10 = f3,3,3,3,3, t11 = Ḋxf3,3,3,3, t16 = K, t17 = L, t18 =M
(2.46)

and

t12 = 4 f3f2,3 − f3Ḋxf3,3 − 3 f3,3f2 + 6 f2,2 + Ḋ2
xf3,3 − 4 Ḋxf2,3,

t13 = D̃yt12

t14 = D̃pt12,

t15 = f3 t12 + Ḋxt12

(2.47)

It should be noted here that t8 and t12 are the fourth order Tresse relative invariants. It

is well known that a scalar second-order ODE is linearizable via a point transformation if

and only if they both vanish identically as shown by Theorem 1.1. Moreover, it is noted

that t13, t14 and t15 vanish identically when t12 = 0.

One can see that the operators Xi and Ti, i = 1 . . . 6 form a Lie algebra L12 with the
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nonzero commutators

[X2, X3] = X2, [X2, X5] = 2 X4, [X2, X6] = X5, [X2, T2] = −X2,

[X2, T3] = T2 −X3, [X2, T4] = −X4, [X2, T5] = −X5 + 2 T4, [X2, T6] = −X6 + T5,

[X3, X4] = −X4, [X3, X6] = X6, [X3, T3] = T3, [X3, T5] = T5,

[X3, T6] = 2 T6, [X4, T2] = −2 X4, [X4, T3] = T4 −X5, [X5, T2] = −X5,

[X5, T3] = −2 X6 + T5, [X6, T3] = T6, [T2, T3] = −T3, [T2, T4] = T4,

[T2, T6] = −T6, [T3, T4] = T5, [T3, T5] = 2 T6
(2.48)

Moreover, the projection of the operatorsXi and Ti, i = 1 . . . 6 on the 4-dimensional space

of variables ti, i = 1 . . . 4 are the generators of the original infinite Lie algebra spanned by

the infinitesimal operators (2.15) before the prolongation to the fifth order.

In section 4, the joint invariants of the operators (2.45) provide all differential invariants

of y′′ = f(x, y, y′), with f3,3,3,3 6= 0, up to the fifth order under point transformations.

3 The infinitesimal point equivalence transformations

In order to find continuous group of equivalence transformations of the class (1.1) we

consider the arbitrary function f that appears in our equation as a dependent variable

and the variables x, y, y′ = p as independent variables and apply the Lie infinitesimal

invariance criterion [9], that is we look for the infinitesimal ξ, η and µ of the equivalence

operator Y :

Y = ξ(x, y)∂x + η(x, y)∂y + µ(x, y, p, f)∂f , (3.49)

such that its prolongation leaves the equation (1.1) invariant.

The prolongation of operator Y can be given using (2.8) as

Y = ξ(x, y)Dx +W∂y +Dx(W )∂p +D2
x(W )∂y′′ + µ(x, y, p, f)∂f , (3.50)
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where

Dx =
∂

∂x
+ p

∂

∂y
+ y′′

∂

∂p
+ y′′′

∂

∂y′′
+ ...

is the operator of total derivative and W = η(x, y) − ξ(x, y)p is the characteristic of

infinitesimal operator X = ξ(x, y)∂x + η(x, y)∂y.

So, the Lie infinitesimal invariance criterion gives µ = Ḋ2
x(W ) + ξ(x, y)Ḋxf for arbitrary

functions ξ(x, y) and η(x, y) where Ḋx = ∂
∂x

+ p ∂
∂y

+ f ∂
∂p
.

Thus, equation (1.1) admits an infinite continuous group of equivalence transformations

generated by the Lie algebra LE spanned by the following infinitesimal operators

U = ξ(x, y)
∂

∂x
− pDx(ξ)∂p − (2fDx(ξ) + pḊ2

x(ξ))∂f , (3.51)

V = η(x, y)∂y +Dx(η)∂p + Ḋ2
x(η)∂f , (3.52)

The infinitesimal point equivalence transformations (3.51)-(3.52) can be written in the

finite form as in (2.16)-(2.17), respectively, where φ and ψ are arbitrary functions of the

indicated variables.

4 Fifth-order differential invariants and invariant equa-

tions under point transformations

In this section, we derive all the fifth-order differential invariants of the general class

y′′ = f(x, y, y′), with f3,3,3,3 6= 0, under point transformations (2.13). Moreover, the

invariant differentiation operators [9] are constructed in order to get some higher-order

differential invariants from the lower-order ones. Precisely, we obtain the following theo-

rem.
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Theorem 4.1. Every second-order ODE y′′ = f(x, y, y′), with f3,3,3,3 6= 0, belongs to one

of two classes of equations. For the first class of equation (ν1 6= 0), there are three fifth

order differential invariants, under point transformations,

β1 = ν2
4ν1

− 7
2 , β2 = ν3

4ν1
− 11

2 , β3 = ν4
4ν1

−5, (4.53)

and three invariant differential operators

D1 = (f3,3,3,3)
−

2

5 ν
1

8

1 D̃p,

D2 = (f3,3,3,3)
1

5 ν
−

3

8

1

(

D̃x + p D̃y + fD̃p

)

,

D3 = (f3,3,3,3)
−

6

5 ν
−

1

4

1

(

f3,3,3,3,3D̃x + (5f3,3,3,3 + p f3,3,3,3,3)D̃y + (10f3f3,3,3,3 + ff3,3,3,3,3 + 5 Ḋxf3,3,3,3)D̃p

)

,

(4.54)

which satisfy the higher order relations

D1D2H −D2D1H − ρ1D1H − ρ2D2H − ρ3D3H = 0,

D1D3H −D3D1H − σ1D1H − σ2D2H − σ3D3H = 0,

D2D3H −D3D2H − ω1D1H − ω2D2H − ω3D3H = 0,

(4.55)

for any differential invariant H.

However, there is no fifth-order differential invariants for the second class (ν1 = 0), where

ν1, ν2, ν3 and ν4 are the relative invariants given by (4.56) and the commutator invariants

ρ1, ρ2, ρ3, σ1, σ2, σ3 and ω1, ω2, ω3 can be given by (4.65).

Proof. The joint invariants of the operators (2.45) provide all differential invariants of

y′′ = f(x, y, y′), with f3,3,3,3 6= 0, up to the fifth order under point transformations, as

well as an implicit solution of the variables K,L and M which provide the differential

operators via (2.29).

The joint invariants of the first derived subgroup of L12 can be given for the case f3,3,3,3 6= 0
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after backing substitution as an arbitrary function J(x, y, ν1, ν2, ν3, ν4.ν5, ν6, ν7), where

ν1 = t8
1

5 t12,

ν2 = t8
−

6

5 (t12t10 + 5 t8t14) ,

ν3 = t8
−

3

5 (5 t11t12 + (7 t5t12 + t15) t8) ,

ν4 = t8
−2

(

(10 t5t14 − 5 t12t6 + 5 t13) t8
2 + ((−3 t5t10 − 5 t9) t12 + t15t10 + 5 t14t11) t8

)

(4.56)

and

ν5 = f3,3,3,3
1
5 (L −Ky1) ,

ν6 =
1
5
f3,3,3,3

− 6
5 (5Kf3,3,3,3 +Ky1f3,3,3,3,3 − f3,3,3,3,3L) ,

ν7 = f3,3,3,3
− 3

5

(

2 f3,3,3,3Kf3y1 − f3,3,3,3Kf − 2 f3,3,3,3f3L + f3,3,3,3M + Ḋxf3,3,3,3(Ky1 − L)
)

.

(4.57)

The non-zero inheritance of the operators Xi and Ti, i = 1 . . . 12 in term of the new

variables x, y, νi, i = 1 . . . 7 is

X1 = [0, 1, 0, 0, 0, 0, 0, 0, 0],

T1 = [1, 0, 0, 0, 0, 0, 0, 0, 0],

X3 = [0, 0,−8
5
ν1,−

7
5
ν2,−

11
5
ν3,−2 ν4,

2
5
ν5,

3
5
ν6,−

1
5
ν7],

T2 = X3.

(4.58)

The joint invariants of the operators (4.58) are the invariants of the operator

Z = 8 ν1
∂

∂ν1
+ 7 ν2

∂
∂ν2

+ 11 ν3
∂

∂ν3
+ 10 ν4

∂
∂ν4

− 2 ν5
∂

∂ν5
− 3 ν6

∂
∂ν6

+ ν7
∂

∂ν7
. (4.59)

The invariants of the operators (4.59) can be given using characteristic method for two

classes as follows:

(1) First class of equation (ν1 6= 0)

β1 = ν2
4ν1

− 7
2 , β2 = ν3

4ν1
− 11

2 , β3 = ν4
4ν1

−5, (4.60)

and

γ1 = ν5
8ν1

2, γ2 = ν6
8ν1

3, γ3 =
ν7

8

ν1
(4.61)
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(2) Second class of equation (ν1 = 0) does not have fifth-order differential invariants

independent from the variables K,L and M . This because of vanishing the variables

t13, t14 and t15 identically when t12 = 0, and so ν2 = ν3 = ν4 = 0 whenever ν1 = 0.

Regarding the invariant differentiation operators, γ1, γ2 and γ3 are the only invariants

depending on the variables K,L and M . Then the general solution of (2.30) can be given

implicitly as

γ1 = F1 , γ2 = F2 , γ3 = F3 , (4.62)

where F1, F2 and F3 are the arbitrary functions of differential invariants βi, i = 1 . . . 3.

Solving system (4.62) gives the variables K,L andM in terms of three arbitrary functions

F1, F2 and F3 which provide three independent invariant differentiation operators D1,D2

and D3 via (2.29).

Finally, since the matrix

A =











D1x D2x D3x

D1y D2y D3y

D1p D2p D3p











(4.63)

is an invertible matrix with the non-zero determinant J = 5 f3,3,3,3
− 2

5ν1
− 1

2 , then the

invariant differential operators should satisfy the commutation relations

[D1,D2] = ρ1D1 + ρ2D2 + ρ3D3,

[D1,D3] = σ1D1 + σ2D2 + σ3D3,

[D2,D3] = ω1D1 + ω2D2 + ω3D3,

(4.64)
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where










ρ1

ρ2

ρ3











= A−1











D1D2x−D2D1x

D1D2y −D2D1y

D1D2p−D2D1p











,











σ1

σ2

σ3











= A−1











D1D3x−D3D1x

D1D3y −D3D1y

D1D3p−D3D1p











,











ω1

ω2

ω3











= A−1











D2D3x−D3D2x

D2D3y −D3D2y

D2D3p−D3D2p











.

(4.65)

Hence the commutator identities (4.64) can be applied to any differential invariants H to

give the higher order relations (4.55).

5 Application

In this section, invariant description of all the canonical forms in the complex plane [6] for

second-order ODEs y′′ = f(x, y, y′) where both of the two Tressé relative invariants (1.2)

are non-zero is provided. Moreover, one example of the second class (ν1 = 0) is given

from the canonical forms of second order ODE in the real plane [5].

Example 5.1. Consider the canonical form of second order ODE in the complex plane

with three infinitesimal symmetries [6]

y′′ = c exp(−y′). (5.66)

It is an equation of the first class (ν1 6= 0), with the three constant fifth-order differential

invariants

β1 = −65536, β2 = −65536, β3 = 2825761. (5.67)

Example 5.2. Consider the canonical form of second order ODE in the complex plane
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with three infinitesimal symmetries [6]

y′′ = c y′(
α−2
α−1

), α 6= 0,
1

2
, 1, 2. (5.68)

It is an equation of the first class (ν1 6= 0), with the three fifth-order differential invariants

β1 = −4096 (α+1)4

2α3−5α2+2α
, β2 = −4096 (α+1)4

2α3−5α2+2α
, β3 =

(14α2+13α+14)
4

α2(2α−1)2(α−2)2
. (5.69)

As a special case, when α = −1, one have the second order ODE

y′′ = c y′
3
2 . (5.70)

with the three fifth-order differential invariants

β1 = 0, β2 = 0, β3 = 625. (5.71)

Example 5.3. Consider the canonical form of second order ODE in the complex plane

with three infinitesimal symmetries [6]

y′′ = 6 yy′ − 4 y3 + c (y′ − y2)
3
2 , c 6= ±4i. (5.72)

It is an equation of the first class (ν1 6= 0), with the three fifth-order differential invariants

β1 = 0, β2 = 0, β3 = 625 c2

16+c2
. (5.73)

Example 5.4. Consider the canonical form of second order ODE in the complex plane

with three infinitesimal symmetries [6]

y′′ = 6 yy′ − 4 y3 + c (y′ − y2)
3
2 , c = ±4i. (5.74)

It is an equation of the second class (ν1 = 0), so it does not have fifth-order differential

invariants.

Example 5.5. Consider the canonical form of second order ODE in the real plane [5]

x y′′ = y′ + y′
3
+ (1 + y′2)

3
2 . (5.75)

It is an equation of the second class (ν1 = 0), so it does not have fifth-order differential

invariants.
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Example 5.6. Consider the canonical form of second order ODE in the complex plane

with two infinitesimal symmetries [6]

y′′ = f(y′). (5.76)

It is an equation of the first class (ν1 6= 0). It has three non-constant fifth-order differential

invariants. However, this class can be characterized by the relation β1 + β2 = 0 and the

Jacobian matrix ∂(β1,β2,β3)
∂(x,y,p)

where it has rank one.

Example 5.7. Consider the canonical form of second order ODE in the complex plane

with two infinitesimal symmetries [6]

y′′ = y′ + f(y′ − y). (5.77)

For the case (ν1 6= 0), it has three non-constant fifth-order differential invariants. However,

this class can be characterized by the relation β1 + β2 6= 0 and the Jacobian matrix

∂(β1,β2,β3)
∂(x,y,p)

where it has rank one.

Example 5.8. Consider the canonical form of second order ODE in the complex plane

with one infinitesimal symmetries [6]

y′′ = f(x, y′). (5.78)

For the case (ν1 6= 0), it has three non-constant fifth-order differential invariants. However,

this class can be characterized by the Jacobian matrix ∂(β1,β2,β3)
∂(x,y,p)

where it has rank two.

6 Conclusion

The paper provides an extension of the work of Bagderina [1] who solved the equivalence

problem for scalar second-order ordinary differential equations (ODEs), cubic in the first-

order derivative, via point transformations. However, the question is open for the general
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class y′′ = f(x, y, y′) which is not cubic in the first-order derivative. Lie’s infinitesimal

method was utilized to study the differential invariants of this general class under an

arbitrary point equivalence transformations. All fifth order differential invariants and the

invariant differentiation operators were determined. These are stated as Theorems 4.1 in

Section 4.

As an application, the symmetry algebra of the second order ODE y′′ = f(x, y, y′) where

both of the two Tressé relative invariants (1.2) are non-zero is characterized as follows:

1) The symmetry algebra is 3-dimensional iff the rank of the Jacobian matrix ∂(β1,β2,β3)
∂(x,y,p)

is

zero (the differential invariants β1, β2 and β3 are constant).

2) The symmetry algebra is 2-dimensional iff the rank of the Jacobian matrix ∂(β1,β2,β3)
∂(x,y,p)

is

one.

3) The symmetry algebra is 1-dimensional iff the rank of the Jacobian matrix ∂(β1,β2,β3)
∂(x,y,p)

is

two.

Moreover, invariant description of all the canonical forms in the complex plane for second-

order ODEs y′′ = f(x, y, y′) where both of the two Tressé relative invariants (1.2) are

non-zero is provided.
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Appendix A: The differential operators of the homo-

geneous linear system of PDEs (2.36)

X22 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

X23 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 6 z3,−z6, 2, 21 z4, 0, 0, 0]

X24 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 5 z3, 0,−z6, 2, 0, 15 z3
2
, 15 z4 − 5 z6z3, 10 z3, 105 z4z3, 0, 0, 0]

X25 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4 z3,

0, 0,−z6, 2, 0, 0, 0, 10 z3
2
, 0, 10 z4 − 4 z6z3, 8 z3, 0, 20 z3

3
, 60 z4z3 − 10 z6z3

2
, 20 z3

2
, 210 z4z3

2
, 0, 0, 0]

X26 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3 z3, 0, 0, 0,−z6, 2, 0, 0, 0, 0, 0, 0, 6 z3
2
,

0, 0,−3 z6z3 + 6 z4, 6 z3, 0, 0, 0, 10 z3
3
, 0, 30 z4z3 − 6 z6z3

2
, 12 z3

2
, 0, 15 z3

4
,−10 z6z3

3
+ 90 z4z3

2
, 20 z3

3
,

210 z4z3
3
, 0, 0, 0]

X27 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 z3, 0, 0, 0, 0,−z6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3 z3
2
, 0, 0, 0, 3 z4 − 2 z6z3, 4 z3,

0, 0, 0, 0, 0, 0, 4 z3
3
, 0, 0, 12 z4z3 − 3 z6z3

2
, 6 z3

2
, 0, 0, 0, 5 z3

4
, 0,−4 z6z3

3
+ 30 z4z3

2
, 8 z3

3
, 0, 6 z3

5
,

60 z4z3
3
− 5 z6z3

4
, 10 z3

4
, 105 z4z3

4
, 0, 0, 0]

X28 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, z3
2
, 0, 0, 0, 0,−z6z3 + z4, 2 z3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, z3

3
, 0, 0, 0,

−z6z3
2
+ 3 z4z3, 2 z3

2
, 0, 0, 0, 0, 0, 0, z3

4
, 0, 0,−z6z3

3
+ 6 z4z3

2
, 2 z3

3
, 0, 0, 0, z3

5
, 0,−z6z3

4
+ 10 z4z3

3
,

2 z3
4
, 0, z3

6
,−z6z3

5
+ 15 z4z3

4
, 2 z3

5
, 21 z4z3

5
, 0, 0, 0]

X29 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

X30 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 7 z3, 0, 0, 0]

X31 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 6 z3, 0, 21 z3
2
, 0, 0, 0]

X32 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 5 z3, 0, 0, 0, 15 z3
2
, 0, 35 z3

3
, 0, 0, 0]

X33 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 4 z3, 0, 0, 0, 0, 0, 0, 10 z3
2
, 0, 0, 0, 20 z3

3
, 0, 35 z3

4
, 0, 0, 0]

X34 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3 z3, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 6 z3
2
, 0, 0, 0, 0, 0, 0, 10 z3

3
, 0, 0, 0, 15 z3

4
, 0, 21 z3

5
, 0, 0, 0]

X35 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 z3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3 z3
2
, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 4 z3
3
, 0, 0, 0, 0, 0, 0, 5 z3

4
, 0, 0, 0, 6 z3

5
, 0, 7 z3

6
, 0, 0, 0]

X36 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, z3
2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, z3

3
, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, z3
4
, 0, 0, 0, 0, 0, 0, z3

5
, 0, 0, 0, z3

6
, 0, z3

7
, 0, 0, 0]
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T22 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−z3, 0,−1,−7 z4, 0, 0, 0]

T23 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0,−z3, 0, 0,−1, 0,−6 z3
2
,−6 z4 + z6z3,−8 z3,−63 z4z3, 0, 0, 0]

T24 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−z3,

0, 0, 0,−1, 0, 0, 0,−5 z3
2
, 0,−5 z4 + z6z3,−7 z3, 0,−15 z3

3
,−45 z4z3 + 5 z6z3

2
,−25 z3

2
,−210 z4z3

2
, 0, 0, 0]

T25 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−z3, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0,−4 z3
2
,

0, 0, z6z3 − 4 z4,−6 z3, 0, 0, 0,−10 z3
3
, 0, 4 z6z3

2
− 30 z4z3,−18 z3

2
, 0,−20 z3

4
,−120 z4z3

2
+ 10 z6z3

3
,

−40 z3
3
,−350 z4z3

3
, 0, 0, 0]

T26 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−z3, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−3 z3
2
, 0, 0, 0,−3 z4 + z6z3,−5 z3,

0, 0, 0, 0, 0, 0,−6 z3
3
, 0, 0,−18 z4z3 + 3 z6z3

2
,−12 z3

2
, 0, 0, 0,−10 z3

4
, 0, 6 z6z3

3
− 60 z4z3

2
,−22 z3

3
, 0,

−15 z3
5
, 10 z6z3

4
− 150 z4z3

3
,−35 z3

4
,−315 z4z3

4
, 0, 0, 0]

T27 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−2 z3
2
, 0, 0, 0, 0,−2 z4 + z6z3,−4 z3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−3 z3

3
, 0, 0, 0,

2 z6z3
2
− 9 z4z3,−7 z3

2
, 0, 0, 0, 0, 0, 0,−4 z3

4
, 0, 0,−24 z4z3

2
+ 3 z6z3

3
,−10 z3

3
, 0, 0, 0,−5 z3

5
, 0,

4 z6z3
4
− 50 z4z3

3
,−13 z3

4
, 0,−6 z3

6
, 5 z6z3

5
− 90 z4z3

4
,−16 z3

5
,−147 z4z3

5
, 0, 0, 0]

T28 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−z3
3
, 0, 0, 0, 0, z6z3

2
− 3 z4z3,−3 z3

2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−z3

4
, 0, 0, 0,

z6z3
3
− 6 z4z3

2
,−3 z3

3
, 0, 0, 0, 0, 0, 0,−z3

5
, 0, 0,−10 z4z3

3
+ z6z3

4
,−3 z3

4
, 0, 0, 0,−z3

6
, 0,

−15 z4z3
4
+ z6z3

5
,−3 z3

5
, 0,−z3

7
,−21 z4z3

5
+ z6z3

6
,−3 z3

6
,−28 z4z3

6
, 0, 0, 0]

T29 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−z3, 0, 0, 0]

T30 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−z3, 0,−7 z3
2
, 0, 0, 0]

T31 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0,−z3, 0, 0, 0,−6 z3
2
, 0,−21 z3

3
, 0, 0, 0]

T32 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,−z3, 0, 0, 0, 0, 0, 0,−5 z3
2
, 0, 0, 0,−15 z3

3
, 0,−35 z3

4
, 0, 0, 0]

T33 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−z3, 0, 0, 0, 0, 0, 0, 0, 0

, 0, 0,−4 z3
2
, 0, 0, 0, 0, 0, 0,−10 z3

3
, 0, 0, 0,−20 z3

4
, 0,−35 z3

5
, 0, 0, 0]

T34 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−z3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−3 z3
2
, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0,−6 z3
3
, 0, 0, 0, 0, 0, 0,−10 z3

4
, 0, 0, 0,−15 z3

5
, 0,−21 z3

6
, 0, 0, 0]

T35 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−2 z3
2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−3 z3

3
, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0,−4 z3
4
, 0, 0, 0, 0, 0, 0,−5 z3

5
, 0, 0, 0,−6 z3

6
, 0,−7 z3

7
, 0, 0, 0]

T36 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−z3
3
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−z3

4
, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0,−z3
5
, 0, 0, 0, 0, 0, 0,−z3

6
, 0, 0, 0,−z3

7
, 0,−z3

8
, 0, 0, 0]
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Appendix B: The differential operators of the homo-

geneous linear system of PDEs (2.39)

X16 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

X17 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 5 l3 , 2, 0, 0, 0, 0]

X18 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 4 l3, 0, 2, 0, 0, 0, 10 l3
2, 8 l3, 2, 0, 0, 0]

X19 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3 l3 , 0, 0, 2, 0, 0, 0, 0,

0, 0, 6 l3
2, 0, 6 l3, 0, 2, 0, 10 l3

3, 12 l3
2, 6 l3, 0, 0, 0]

X20 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 2 l3 , 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3 l3
2, 0, 0, 4 l3, 0, 0,

2, 0, 0, 0, 4 l3
3, 0, 6 l3

2, 0, 4 l3, 0, 5 l3
4, 8 l3

3, 6 l3
2, 0, 0, 0]

X21 = [0, 0, 0, 0, 0, 0, 0, 0, 0, l3
2, 0, 0, 0, 2 l3 , 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, l3

3, 0, 0, 2 l3
2, 0, 0,

2 l3, 0, 0, 0, l3
4, 0, 2 l3

3, 0, 2 l3
2, 0, l3

5, 2 l3
4, 2 l3

3, 0, 0, 0]

T16 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0,−l3 ,−1, 0, 0, 0, 0]

T17 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,−l3, 0,−1, 0, 0, 0,−5 l3
2,−7 l3,−4, 0, 0, 0]

T18 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−l3 , 0, 0,−1, 0, 0, 0,

0, 0, 0,−4 l3
2, 0,−6 l3, 0,−4, 0,−10 l3

3,−18 l3
2,−18 l3, 0, 0, 0]

T19 = [0, 0, 0, 0, 0, 0, 0, 0, 0,−l3 , 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−3 l3
2, 0, 0,−5 l3,

0, 0,−4, 0, 0, 0,−6 l3
3, 0,−12 l3

2, 0,−14 l3, 0,−10 l3
4,−22 l3

3,−30 l3
2, 0, 0, 0]

T20 = [0, 0, 0, 0, 0, 0, 0, 0, 0,−2 l3
2, 0, 0, 0,−4 l3, 0, 0, 0,−4, 0, 0, 0, 0, 0, 0,−3 l3

3, 0, 0,

−7 l3
2, 0, 0,−10 l3, 0, 0, 0,−4 l3

4, 0,−10 l3
3, 0,−16 l3

2, 0,−5 l3
5,−13 l3

4,−22 l3
3, 0, 0, 0]

T21 = [0, 0, 0, 0, 0, 0, 0, 0, 0,−l3
3, 0, 0, 0,−3 l3

2, 0, 0, 0,−6 l3 , 0, 0, 0, 0, 0, 0,−l3
4, 0, 0,

−3 l3
3, 0, 0,−6 l3

2, 0, 0, 0,−l3
5, 0,−3 l3

4, 0,−6 l3
3, 0,−l3

6,−3 l3
5,−6 l3

4, 0, 0, 0]
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Appendix C: The differential operators of the homo-

geneous linear system of PDEs (2.41)

X11 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

X12 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4m3 , 2, 0,−m12, 0,

3m9, 0, 0, 0]

X13 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3m3 , 0, 2, 0, 0, 0, 0, 0, 6m3
2, 6m3, 2,

3m9 − 3m3m12, 0,−6m6 + 9m3m9, 0, 0, 0]

X14 = [0, 0, 0, 0, 0, 0, 2m3 , 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3m3
2, 0, 4m3, 0, 2, 0, 0, 0, 4m3

3,

6m3
2, 4m3,−6m6 + 6m3m9 − 3m3

2m12, 0,−12m6m3 + 9m3
2m9, 0, 0, 0]

X15 = [0, 0, 0, 0, 0, 0,m3
2, 0, 0, 2m3, 0, 0, 2, 0, 0, 0, 0, 0, 0,m3

3, 0, 2m3
2, 0, 2m3, 0, 0, 0,m3

4,

2m3
3, 2m3

2,−6m6m3 + 3m3
2m9 −m3

3m12, 0,−6m6m3
2 + 3m3

3m9, 0, 0, 0]

T11 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−m3 ,−1, 0, 0, 0, 0, 0, 0, 0]

T12 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−m3 , 0,−1, 0, 0, 0, 0, 0,−4m3
2,−6m3,−4,

m3m12, 0,−3m3m9, 0, 0, 0]

T13 = [0, 0, 0, 0, 0, 0,−m3 , 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−3m3
2, 0,−5m3, 0,−4, 0, 0, 0,−6m3

3,

−12m3
2,−14m3,−3m3m9 + 3m3

2m12,−6, 6m6m3 − 9m3
2m9, 0, 0, 0]

T14 = [0, 0, 0, 0, 0, 0,−2m3
2, 0, 0,−4m3, 0, 0,−4, 0, 0, 0, 0, 0, 0,−3m3

3, 0,−7m3
2, 0,−10m3,

0,−6, 0,−4m3
4,−10m3

3,−16m3
2, 6m6m3 − 6m3

2m9 + 3m3
3m12,−12m3,

12m6m3
2 − 9m3

3m9, 0, 0, 0]

T15 = [0, 0, 0, 0, 0, 0,−m3
3, 0, 0,−3m3

2, 0, 0,−6m3, 0, 0,−6, 0, 0, 0,−m3
4, 0,−3m3

3, 0,−6m3
2,

0,−6m3, 0,−m3
5,−3m3

4,−6m3
3, 6m6m3

2 − 3m3
3m9 +m3

4m12,−6m3
2,

6m6m3
3 − 3m3

4m9, 0, 0, 0]
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Appendix D: The differential operators of the homo-

geneous linear system of PDEs (2.43)

X7 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X8 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3n3 , 2, 0, 0, 0, 3n8 ,−2n18 + 6n9, 0, 5n17 − 8n7 + 3n8n6,

0, 0, 0]

X9 = [0, 0, 0, 0, 2n3 , 0, 2, 0, 0, 0, 0, 0, 0, 0, 3n3
2, 4n3, 2, 0, 0,−6n6 + 6n3n8, 12n3n9 − 4n3n18

−14n7 + 2n17, 0,−6n6
2 + 6n8n6n3 − 16n3n7 + 10n3n17 + 6n5 − 6n16, 0, 0, 0]

X10 = [0, 0, 0, 0, n3
2, 0, 2n3, 0, 2, 0, 0, 0, 0, 0, n3

3, 2n3
2, 2n3, 0, 0,−6n6n3 + 3n3

2n8,−2n3
2n18

+6n3
2n9 + 2n3n17 − 14n3n7 + 12n5, 0,−6n6

2n3 + 3n8n6n3
2 + 5n3

2n17 − 8n3
2n7

+6n3n5 − 6n3n16, 0, 0, 0]

T7 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−n3 ,−1, 0, 0, 0, 0, 0, n10 , 4n7 − n17, 0, 0, 0]

T8 = [0, 0, 0, 0,−n3, 0,−1, 0, 0, 0, 0, 0, 0, 0,−3n3
2,−5n3,−4, 0, 0,−3n3n8,−6n3n9 + 2n3n18

+4n7 − n17,−3n8 + 3n3n10,−3n8n6n3 + 20n3n7 − 8n3n17 − 12n5, 0, 0, 0]

T9 = [0, 0, 0, 0,−2n3
2, 0,−4n3, 0,−4, 0, 0, 0, 0, 0,−3n3

3,−7n3
2,−10n3,−6, 0, 6n6n3

−6n3
2n8,−12n3

2n9 + 4n3
2n18 − 4n3n17 + 22n3n7 − 12n5, 6n6 − 6n3n8 + 3n3

2n10,

6n6
2n3 − 6n8n6n3

2 − 13n3
2n17 + 28n3

2n7 − 30n3n5 + 6n3n16, 0, 0, 0]

T10 = [0, 0, 0, 0,−n3
3, 0,−3n3

2, 0,−6n3, 0,−6, 0, 0, 0,−n3
4,−3n3

3,−6n3
2,−6n3, 0, 6n6n3

2

−3n3
3n8,−6n3

3n9 + 2n3
3n18 + 18n3

2n7 − 3n3
2n17 − 24n3n5,−3n3

2n8 + 6n6n3

+n3
3n10, 6n6

2n3
2 − 3n3

3n8n6 + 12n3
3n7 + 6n3

2n16 − 18n3
2n5 − 6n3

3n17, 0, 0, 0]
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Appendix E: The differential operators of the homo-

geneous linear system of PDEs (2.45)

X1 = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X2 = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, t16 , 0]

X3 = [0, 0, t3, t4, 0,−t6,−2 t7,−3 t8,−4 t9,−4 t10,−3 t11,−t12,−2 t13,−2 t14,−t15, 0, t17, t18]

X4 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, t16 ]

X5 = [0, 0, 0, 2 t3, 2, 0, 0, 0,−t10 , 0,−3 t8, 0,−t14, 0, t12, 0, 0, t17 + t16t3]

X6 = [0, 0, 0, t3
2, 2 t3, 2, 0, 0,−3 t8 − t3t10, 0,−3 t3t8, 0,−t3t14 − t12, 0, t3t12, 0, 0, t17t3]

T1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

T2 = [0, 0,−t3,−2 t4,−t5, 0, t7, 2 t8, 2 t9, 3 t10, t11,−2 t12,−2 t13,−t14,−3 t15, t16, 0,−t18]

T3 = [0, 0,−t3
2,−3 t4t3,−t5t3 − 3 t4,−4 t5 + t3t6,−3 t6 + 3 t3t7, 5 t3t8,−t11 + t4t10 + 6 t3t9,

5 t8 + 7 t3t10, 5 t4t8 + 4 t3t11,−t3t12, t5t12 + t4t14 − t15, t3t14 − t12,−4 t4t12 − 2 t3t15, t17, 0,−2 t18t3]

T4 = [0, 0, 0,−t3,−1, 0, 0, 0, 0, 0, 2 t8 , 0, 0, 0,−3 t12 , 0, 0,−t16t3]

T5 = [0, 0, 0,−2 t3
2,−4 t3,−4, 0, 0, t3t10 + 2 t8, 0, 7 t3t8, 0, t3t14 − 2 t12, 0,−7 t3t12, 0, 0,−t16t3

2 − t17t3]

T6 = [0, 0, 0,−t3
3,−3 t3

2,−6 t3,−6, 0, t3
2t10 + 5 t3t8, 0, 5 t3

2t8, 0,−t3t12 + t3
2t14, 0,−4 t3

2t12, 0, 0,−t17t3
2]
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Abstract

Using the only admissible rank-two realisations of the Lie algebra of the
affine group in one dimension in terms of the Lie algebra of Lie symmetries
of the Ermakov-Pinney (EP) equation, some classes of second order nonlinear
ordinary differential equations solvable by reduction method are constructed.
One class includes the standard EP equation as a special case. A new EP
equation with a perturbed potential but admitting the same solution formula
as EP itself arises. The solution of the dissipative EP equation is also discussed.

1 Introduction

Among the most general second order linear differential equations in normal form

ψ′′ + q(x)ψ′ + p(x)ψ = 0, (1.1)

those with q ≡ 0 are especially important in both classical and quantum physics and
will be said to be of Schrödinger type, because the usual Schrödinger equation for

∗jfc@unizar.es
†gungorf@itu.edu.tr
‡ptorres@ugr.es
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the determination of stationary states is of this type with a coefficient p given by
p(x) = E−V (x), where V is the potential and E is the energy eigenvalue. Then, the
equation can be written as

ψ′′ + p(x)ψ = 0. (1.2)

Changing variables to t for the independent variable and x for the dependent variable,
and using the dot notation for time derivative, the corresponding equation

ẍ+ p(t)x = 0 (1.3)

is known in a more mathematical context as Hill’s equation [1–3]. It has been shown
in [4] (see also [5]) that there is an infinitesimal point transformation of symmetry of
such a Schrödinger type equation of the form

Xa(t, x) = a(t)
∂

∂t
+
ȧ(t)

2
x
∂

∂x
, (1.4)

where the function a satisfies the following third order linear ODE

M(a) =
...
a + 4p(t)ȧ+ 2ṗ(t)a = 0, (1.5)

which was called in [6] projective vector field equation. Moreover, as the differential
equation (1.3) is linear, all vector fields of the form X = b(t)∂/∂x with b being a
solution of (1.3) are also infinitesimal symmetries of the equation.

Similarly, we can consider the nonlinear Ermakov-Pinney (EP) differential equa-
tion

ẍ+ p(t) x =
k

x3
, x 6= 0, k ∈ R. (1.6)

One can show (see Section 2) that such differential equation is invariant under a 3-
dimensional Lie algebra of Lie symmetries generated by vector fields of the form (1.4)
where a satisfies Eq. (1.5). Let us mention that the differential equation (1.5) is very
related to the theory of higher order Adler-Gelfand-Dikii differential operators [7, 8]
and it plays a key role in the study of projective connections and gl(n,R) current
algebras [6, 9].

The main objective of this paper is to identify families of second order ordinary
differential equations that are invariant under a two-dimensional affine Lie subalgebra
of the Lie algebra associated to the EP equation, i.e., the Lie algebra generated by
vector fields (1.4). One of the identified families of equations will be seen to include
the EP equation (1.6) as a special case. This analysis is performed on Section 3. The
presence of the non-Abelian two-dimensional symmetry Lie algebra, which is solvable,
is sufficient for a second order ODE to be fully integrable by quadratures. In a final
section devoted to conclusions and remarks, we point out that the identified invariant
equations are not only of theoretical interest, but they are related to some recent
models arising in population dynamics. This connection has been explored in more
detail in a separate paper [10].
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2 Preliminaries

In order to show our main motivation we will start with the derivation of the Lie
algebra of infinitesimal point transformations of symmetry of (1.6) using the prolon-
gation algorithm for differential equations (see for example [11,12]). Given the vector
field X ∈ X(R2) with coordinate expression

X = ξ(t, x)
∂

∂t
+ η(t, x)

∂

∂x
, (2.1)

its second order prolongation X(2) is given by

X(2) = X + η(1)(t, x, ẋ)
∂

∂ẋ
+ η(2)(t, x, ẋ, ẍ)

∂

∂ẍ
, (2.2)

where
η(1) = Dtη − ẋDtξ, η(2) = Dtη

(1) − ẍDtξ.

Here Dt = d/dt is a symbol for the total derivative

d

dt
=

∂

∂t
+ ẋ

∂

∂x
+ ẍ

∂

∂ẋ
+ · · · . (2.3)

More explicitly, the coefficients of two first prolongations of (2.1) are:

η(1) = ηt + (ηx − ξt)ẋ− ξx ẋ
2,

and

Dtη
(1) = ηtt + (2ηtx − ξtt)ẋ+ (ηxx − 2ξxt)ẋ

2 − ξxx ẋ
3 − 2ξx ẋẍ+ (ηx − ξt)ẍ,

and consequently,

η(2) = Dtη
(1) − ẍDtξ = ηtt + (2ηtx − ξtt)ẋ+ (ηxx − 2ξxt)ẋ

2

− ξxx ẋ
3 + (ηx − 2ξt)ẍ− 3ξx ẋẍ.

In the particular case of Ermakov-Pinney equation (1.6) with k 6= 0, the property
characterizing the functions ξ and η such that a vector field, (2.1) is a Lie symmetry
of such equation is given by

(
X(2)(ẍ+ p(t)x− k x−3)

) ∣∣∣
ẍ+p(t)x−k x−3=0

= 0, x > 0, (2.4)

or more explicitly,

(
η(2)

) ∣∣∣
ẍ+p(t)x−k x−3=0

+ ṗ(t)xξ + η
(
p(t) + 3kx−4

)
= 0. (2.5)

The particularly interesting case is when the vector field is a projectable vector
field, i.e. like in (2.1) but with ξx = 0, because its flow is made of bundle map
diffeomophisms φt : R

2 → R
2.
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The coefficients of the different powers of ẋ in (2.5) must be zero, i.e. taking into
account the corresponding form of η(2):

(k x−3 − p(t)x) (ηx − 2ξt − 3ξxẋ) + ηtt + (2ηxt − ξtt)ẋ+ (ηxx − 2ξxt)ẋ
2 − ξxxẋ

3

+ṗ(t)xξ + η(p(t) + 3kx−4) = 0,

and consequently we find the following set of conditions:

ξxx = 0,
ηxx − 2ξtx = 0,
2ηtx − ξtt + 3(p(t)x− k x−3)ξx = 0,
(k x−3 − p(t)x)(ηx − 2ξt) + ηtt + ṗ(t)xξ + (p(t) + 3kx−4)η = 0.

(2.6)

The two first equations lead to the following form for ξ and η

ξ(t, x) = d(t)x+ b(t), η(t, x) = ḋ(t)x2 + c(t) x+ e(t),

and using these expressions in the third equation of the preceding system we find

2(2d̈(t)x+ ċ(t))− (d̈(t) x+ b̈(t)) + 3(p(t)x− k x−3)d(t) = 0. (2.7)

This condition implies, first, that the function d must be zero, because the coefficient
of x−3 is k d(t), and furthermore 2ċ(t) − b̈(t) = 0, and then the expressions of the
functions ξ and η are

ξ(t, x) = b(t), η = c(t)x+ e(t),

which shows that X is a projectable vector field.
Finally, the fourth equation reduces to

(k x−3−p(t)x)(c(t)−2ḃ(t))+ c̈(t)x+ ë(t)+ ṗ(t)xb(t)+(p(t)+3kx−4)(c(t)x+e(t)) = 0,

and for the coefficients of different powers of x to be zero we obtain:

e(t) = 0,

2k (2c(t)− ḃ(t)) = 0,

c̈(t) + 2p(t) ḃ(t) + ṗ(t) b(t) = 0.

(2.8)

The second equation shows that

c(t) =
1

2
ḃ(t), (2.9)

and a substitution in the third equation gives rise to

1

2

...
b (t) + 2p(t) ḃ(t) + ṗ(t) ḃ(t) = 0, (2.10)

i.e. b is a solution of (1.5).
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This means that the symmetry vector fields we are looking for are of the form

Xb(t, x) = b(t)
∂

∂t
+

1

2
ḃ(t) x

∂

∂x
, (2.11)

where b(t) is a solution of (1.5).
The correspondence a 7→ Xa mapping each solution of (1.5) into an infinitesimal

symmetry of the nonlinear Ermakov-Pinney differential equation (1.6) is R-linear,
because Xa1+λ a2 = Xa1 + λXa2 , for each real number λ ∈ R. Consequently, as (1.5)
is a linear third order differential equation, the set of vector fields determined by
solutions a of the differential equation (1.5) is a three-dimensional real linear space.

Note that if we consider Hill’s equation (1.3), it is possible to show that if u1 and
u2 are two linearly independent solutions of (1.3), then the three functions fij = ui uj,
i ≤ j = 1, 2, are solutions of (1.5).

In fact, remark first that taking derivatives we obtain that

...
u i + p(t) u̇i + ṗ(t) ui = 0, i = 1, 2,

and if we make use of these two equations, then the following third-order derivative

D3
t (uiuj) =

...
u iuj + 3üi u̇j + 3u̇iüj + ui

...
u j ,

can be rewritten as follows

D3
t (uiuj) = −(p(t) u̇i + ṗ(t) ui)uj − 3p(t) uiu̇j + 3u̇i(−p(t) uj)− ui(p(t) u̇j + ṗ(t) uj),

that after simplification becomes

D3
t (uiuj) = −[2ṗ(t) uiuj + 4p(t)(u̇iuj + uiu̇j)] .

We have therefore obtained

D3
t (uiuj) + 4p(t)D(uiuj) + 2 ṗ(t) uiuj = 0 ,

what proves that the three functions fij = ui uj, i ≤ j = 1, 2, are solutions of (1.5).
Moreover, as the Wronskian of the three functions fij is

W (u21, u1u2, u
2
2) = 2(u1 u̇2 − u2 u̇1)

3 ,

we see that if {u1, u2} is a fundamental set of solutions of the second-order equation
(1.3), then the functions u21, u1u2 and u22 are linearly independent and they span
the three-dimensional linear space of solutions of (1.5) whose general solution can be
written as a linear combination

a(t) = Au21 + 2Bu1u2 + Cu22, A, B, C ∈ R. (2.12)

We can prove now that the set of vector fields of the form (1.4) that are Lie
symmetries of the Ermakov-Pinney (EP) equation (1.6) is a Lie algebra: such Lie
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symmetries of (1.6) close on the three-dimensional real Lie algebra sl(2,R) spanned
by the vector fields

Xij = fij
∂

∂t
+

1

2
ḟijx

∂

∂x
, i ≤ j = 1, 2. (2.13)

In fact, the set of vector fields as in (1.4) is closed under commutator because

[Xa1 , Xa2 ] = XW (a1,a2), (2.14)

whereW (a1, a2) denotes the WronskianW (a1, a2) = a1 ȧ2−a2 ȧ1, and, moreover, if a1
and a2 are solutions of (1.5), then the function w12(t) = W (a1(t), a2(t)) is a solution
of (1.5) too, because

(W (a1, a2))
˙ = ȧ1 ȧ2 + a1 ä2 − ä1 a2 − ȧ2 ȧ1 = a1 ä2 − ä1 a2,

and then,
ẇ12 = (W (a1, a2))

˙ = a1 ä2 − a2 ä1,

and when taking derivatives in this expression we get

ẅ12 = a1
...
a 2 − a2

...
a 1 + ȧ1 ä2 − ȧ2 ä1,

and therefore, if a1 and a2 are solutions of (1.5), a simple calculation shows that the
preceding relation reduces to

ẅ12 = −4p(t)w12 + ȧ1 ä2 − ȧ2 ä1,

from where we see that

...
w12 = −4p(t)ẇ12 − 4ṗ(t)w12 + ȧ1(−4p(t) ȧ2 − 2ṗ(t) a2)− ȧ2(−4p(t) ȧ1 − 2ṗ(t) a1),

and simplifying terms we arrive at

...
w12 = −4p(t)ẇ12 − 2ṗ(t)w12.

We note that the same argument with more computational efforts can be used to
show that the Wronskian w12 of any two independent solutions of the general third
order linear PDE

...
a + c2(t)ä+ c1(t)ȧ+ c0(t)a = 0, (2.15)

is also a solution if and only if the coefficients satisfy c2 = 0, ċ1 = 2c0, (a formally
self-adjoint equation).

Having in mind the mentioned property that for any pair of functionally indepen-
dent solutions of (1.3), u1 and u2, the functions u21, u1 u2, and u

2
2 form a basis of the

three-dimensional real linear space of solutions of (1.5), we can consider as a basis of
the three-dimensional real Lie algebra of infinitesimal symmetries of (1.5) the vector
fields Xu2

1
, Xu1 u2

, and Xu2

2
, and as

W (u21, u1 u2) = u21W (u1, u2),
W (u21, u

2
2) = 2u1 u2W (u1 u2),

W (u1 u2, u
2
2) = u22W (u1, u2),
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where W (u1(t), u2(t)) is constant, and we obtain from (2.14) that

[Xu2

1
, Xu1 u2

] = XW (u2

1
,u1 u2) = Xu2

1
W (u1,u2),

[Xu2

1
, Xu2

2
] = XW (u2

1
,u1 u2) = 2Xu1 u2 W (u1,u2),

[Xu1 u2
, Xu2

2
] = XW (u1 u2,u2

2
) = Xu2

2
W (u1,u2).

(2.16)

We can conclude from here that: If u1 and u2 are two functionally independent
solutions of (1.3) such thatW (u1, u2) = 1, then the vector fields Y1 = Xu2

1
, Y2 = Xu1 u2

and Y3 = Xu2

2
generate a Lie algebra of vector fields of infinitesimal Lie symmetries

of (1.5) isomorphic to sl(2,R), because they satisfy the commutation relations

[Y1, Y2] = Y1, [Y1, Y3] = 2Y2, [Y2, Y3] = Y3. (2.17)

This leads to the following result: The set of infinitesimal symmetries of (1.6) is a
three-dimensional real Lie algebra of vector fields like (1.4) where a is solution of
(1.5).

It is also to be remarked that it has been proved in [13] that the Ermakov-Pinney
equation

ẍ = −ω2(t)x+
k

x3
,

when written as a first-order system

ẋ = v, v̇ = −ω2(t)x+
k

x3

is a Lie system with associated Lie algebra sl(2,R), generated by the vector fields

X1 = x
∂

∂v
, X2 = v

∂

∂x
+

k

x3
∂

∂v
, X3 =

1

2

(
x
∂

∂x
− v

∂

∂v

)
,

which satisfy the following commutation relations

[X1, X2] = 2X3, [X1, X3] = −X1, [X2, X3] = X2.

As it happens for each Lie system, the flow of generators of its Vessiot Lie algebra,
the vector fields X1, X2 and X3, transforms each Lie system defined by them into
another one of the same type.

Eq. (1.5) admits the first integral

K =
1

4
(2a ä− ȧ2) + p(t)a2, (2.18)

because multiplying the left hand side of (1.5) by 1
2
a we obtain

1

2
a (

...
a + 4p(t)ȧ + 2ṗ(t)a) =

d

dt

(
1

4
(2a ä− ȧ2) + p(t)a2

)
= 0.

The value of K for the general solution of (1.5) written in terms of two linearly
independent solutions of (1.3) as in (2.12) is specified as K = (AC−B2)w2

12, because
introducing the notation for the bilinear form 〈·, ·〉

a = Au21 + 2Bu1u2 + Cu22 = (u1, u2)

(
A B
B C

)(
u1
u2

)
≡ 〈u,u〉,
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where u = u1 e1 + u2 e2, with A = 〈e1, e1〉, B = 〈e1, e2〉 and C = 〈e2, e2〉, then

ȧ = 2〈u̇,u〉, ä = −2p(t)〈u,u〉+ 2〈u̇, u̇〉,

and using the expression (2.18) we find

K = 〈u,u〉(〈u̇, u̇〉 − p(t)〈u,u〉 − 〈u̇,u〉2) + p〈u,u〉2 = 〈u̇, u̇〉〈u,u〉 − 〈u̇,u〉2.

The right hand side of the preceding expression reminds that of the square of
exterior product when 〈·, ·〉 is the Euclidean product. We can then define a skew-
symmetric bilinear form F either by this expression for the module when the two
vectors have positive orientation and the opposite if the pair of vectors have the
inverse orientation. This expression K = |F (u, u̇)|2 shows that as for the exterior
product

‖u× u̇‖ = |W (u1, u2)| ‖e1 × e2‖,
and any two skew-symmetric forms are proportional

K = |W (u1, u2)|2 |F (e1, e2)|2,

and as
|F (e1, e2)|2 = 〈e1, e1〉〈e2, e2〉 − 〈e1, e2〉2 = AC − B2,

we find from here the announced result.
We refer the interested readers to [14,15] for solutions and Lie symmetry properties

of EP equation (1.6) and projective vector field equation (1.5). Let us comment that
Eq. (1.3) still has a sl(2,R) Lie algebra of Lie symmetry. In general, the third-order
auxiliary equation (1.5) crops up in symmetry analysis of second and higher order
linear ODEs with the property of being anti-self adjoint or of maximal Lie symmetry
and, as we have seen above, in second order nonlinear ODEs whose solutions are
expressed in terms of (1.3) like EP and also its generalisations [14,16], and it is used
in the derivation of first integrals for time-dependent Hamiltonian systems [17].

While it is possible to remove the coefficient p from (1.6) by the change of variables
(t, x) → (τ, ξ) defined by

x = ξ(τ)u1, τ = (W (u1, u2))
−1u2
u1
, (2.19)

with u1 and u2 particular solutions of (1.3), we prefer to keep the potential p to serve
our purposes in the current context. Moreover, we can use the orientation-preserving
transformation

t̄ = τ(t), ā(t̄) = τ̇(t)a(t), τ̇ > 0, (2.20)

where τ satisfies the third-order Kummer–Schwarz equation

{τ ; t} = 2 p(t), (2.21)

with {τ ; t} being the Schwarz derivative (see [18] for a short introduction), i.e.

{τ ; t} =

...
τ

τ̇
− 3

2

(
τ̈

τ̇

)2

. (2.22)
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See e.g. [19] and references therein, and [20–22] for related concepts and their physical
applications. Such transformation maps Eq.(1.5) into its Laguerre-Forsyth canonical
form ā′′′(t̄) = 0 [23], where the prime denotes derivative with respect to the new
independent variable t̄ (See for example [24, 25]). As remarked by Kummer [26]
the solutions of (2.21) can be expressed as the quotient of two linearly independent
solutions of (1.3). This implies that transformation (2.20) can be written in the form

t̄ = τ(t) =
αu1 + βu2
γu1 + δu2

, ā(t̄) = −∆W (u1, u2)(γu1 + δu2)
−2a(t), ∆ = αδ − βγ 6= 0.

(2.23)
With the special choice α = 0, β = 1, γ = W (u1, u2), δ = 0 (∆ = −W (u1, u2) 6= 0)
and the relationship x =

√
a between (2.18) and the equation ẍ + px = Kx−3,

transformation (2.19) is recovered.
We can reobtain the general solution (2.12) from (2.23)

a(t) = − 1

∆W (u1, u2)
(γu1 + δu2)

2(c1 + c2τ + c3τ
2) = Au21 +Bu1u2 + Cu22

after a redefinition of the arbitrary constants.
In particular, if we choose p = 0 (u1(t) = t, u2(t) = 1, W = −1) then we obtain

the SL(2,R) subgroup of the symmetry group of the canonical equation
...
a = 0

t̄ =
αt+ β

γt + δ
, ∆ = 1, (2.24)

together with ā = (γt + δ)−2a.
The SL(2,R) symmetry group of the canonical EP equation ẍ = kx−3 is thus

given by (2.24) with x̄ = (γt+ δ)−1x.
In passing, we comment that Eq. (2.15) can be reduced to the canonical form

...
a = 0 by a point transformation if and only if the following singular invariant equation
relative to the general form-preserving transformation τ = τ(t), ā = φ(t)a of (2.15)
is satisfied [27, 28]

9c̈2 + 18ċ2c2 − 27ċ1 + 4c32 − 18c1c2 + 54c0 = 0. (2.25)

The special case c2 = 0 is equivalent to the formal self-adjointness of the equation.

3 Second order ODEs invariant under the two-

dimensional affine algebra

We start this section by looking for the second order differential equations which admit
as a Lie algebra of symmetry a Lie subalgebra of the Lie algebra of symmetries of the
Ermakov-Pinney equation. The only two-dimensional Lie subalgebra is isomorphic
to that of the affine group of transformations of the real line. It is spanned by two
vector fields X1 and X2 such that [X1, X2] = X1. Then, if X1 and X2 are vector fields
of the form

Xa1(t, x) = a1(t)
∂

∂t
+

1

2
ȧ1(t) x

∂

∂x
, Xa2(t, x) = a2(t)

∂

∂t
+

1

2
ȧ2(t) x

∂

∂x
,
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where a1 and a2 are positive solutions of (1.5), then using the relation (2.14) we see
that the functions a1 and a2 must be related by

W (a1, a2) = a1,

and therefore,
a1 ȧ2 − a2 ȧ1 = a1,

then, starting from a solution a1 of (1.5) we obtain that a2 must be a solution of the
inhomogeneous linear differential equation

ȧ2 =
ȧ1
a1
a2 + 1.

As a2 = a1 is a solution of the associated linear homogeneous equation we should
introduce the change of variable a2 = a1 s, and the given equation becomes

a1 ṡ = 1,

which gives

s(t) =

∫ t 1

a1(ζ)
dζ.

Since a2 = a1 s and
d

dt
(a1 s) = ȧ1 s+ a1 ṡ = ȧ1 s+ 1,

this proves that

Xa2 = s(t)Xa1 +
1

2
x
∂

∂x
.

We are now interested in the most general class of second order ODEs involving
functions expressed in terms of arbitrary solutions of (1.5) for a given p(t) and solvable
by a pair of quadratures. We start by realising the two-dimensional non-Abelian Lie
algebra, generated by two vector fields X1 and X2 such that X1 is of the form (1.4),
i.e. is an infinitesimal point transformation of symmetry of both (1.3) and (1.6), and
X2 is a vector field satisfying the commutation relations [X1, X2] = X1. Such Lie
algebra is generated by

X1 = a(t)
∂

∂t
+
ȧ(t)

2
x
∂

∂x
, X2 = s(t)X1+βX0, X0 = x

∂

∂x
, s(t) =

∫ t dζ

a(ζ)
, (3.1)

with β 6= 0 and where a was assumed to be solution of (1.5) for the given p(t) and
β a real number. This is so because given X1 of the above mentioned form, then we
can write X2 as a linear combination of the form

X2 = c(t)X1 + b(t) x
∂

∂x
= c(t)X1 + b(t)X0,

and then, as [X1, X0] = 0,

[X1, X2] = [X1, c(t)X1] +

[
X1, b(t) x

∂

∂x

]
= X1(c)X1 + a(t) ḃ(t) x

∂

∂x
,
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and therefore, in order to have [X1, X2] = X1, the functions b and c must satisfy

aċ = 1, ḃ = 0,

from where we obtain that b(t) must be constant, b(t) = β, and c(t) must be given
by s(t) as indicated by (3.1). The constant β must be different from zero, otherwise
X2 and X1 would be proportional in each point

The 2-dimensional Lie algebra spanned by X1 and X2 (recall that we assumed
β 6= 0) is isomorphic to the Lie algebra of the affine group in the real line. They
define a transitive action of this Lie algebra on the plane (t, x) (no nontrivial ordinary
invariants exist). Recall that if a is not constant, only in the particular case β = 1/2
the vector field X2 is of the family of vector fields (1.4), in other words we only have
a rank-two realisation of the algebra within the class of vector fields (1.4).

Our aim is to construct the general second order ODE invariant under the realisa-
tion (3.1) of the two-dimensional affine algebra aff(1,R). This is a standard procedure
and requires finding invariants for the second prolongation pr(2) aff(1,R) by solving a
pair of first order linear PDEs by the method of characteristics.

3.1 Invariant equation in the case β = 1/2.

We should look for the most general second order ODE invariant under the realisation
(3.1) with β = 1/2. We start by looking for the invariant functions for the second

prolongation of X1, X
(2)
1 , given by

X
(2)
1 = a(t)

∂

∂t
+
ȧ(t)

2
x
∂

∂x
+

1

2
(äx− ȧẋ)

∂

∂ẋ
+

1

2
(
...
ax− 3ȧẍ)

∂

∂ẍ
.

The can be are computed as characteristic solutions of the partial differential equation
X

(2)
1 H = 0 and we find as solution a function H(J1, J2, J3) where

J1 =
x√
a
, J2 =

√
a

(
ẋ− ȧ

2a
x

)
= aJ̇1, J3 = a3/2(ẍ+ px). (3.2)

In order to impose X2 invariance we first remark that as

X
(2)
2 (J1) =

1

2
J1, X

(2)
2 (J2) = −1

2
J2

and

X
(2)
2 (J3) =

1

2
a3/2(−3ẍ+ px) +

a−1/2

2
(2aä− ȧ2)x,

that using the first integral (2.18) we can rewrite as

X
(2)
2 (J3) = −3

2
J3 + 2KJ1,

the differential invariants of order ≤ 2 of the algebra aff(1,R) are found by solving
the PDE

1

2
J1
∂H

∂J1
− 1

2
J2
∂H

∂J2
+

(
−3

2
J3 + 2KJ1

)
∂H

∂J3
= 0. (3.3)
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Then we consider the associated system

dJ1
J1

= −dJ2
J2

=
dJ3

−3J3 + 4KJ1

and from the first fraction with the second or with the third one we find the invariant
functions

I = J1J2 = xẋ− ȧ

2a
x2, J = J3

1J3 −KJ4
1 = x3(ẍ+ px)− K

a2
x4, (3.4)

such that the general solution of X
(2)
1 H = X

(2)
2 H = 0 is an arbitrary function of I

and J .
The invariant second order ODE are therefore of the form

x3(ẍ+ px) =
K

a2
x4 +G(I), (3.5)

with G an arbitrary smooth function, or written in a different way,

ẍ+
(
p(t)−Ka(t)−2

)
x = x−3G(I). (3.6)

So for a given function p we can produce a class of ODEs integrable by quadratures.
The first integral condition (2.18) gives us

ẍ− 1

4a2
(2aä− ȧ2)x = x−3G

(
xẋ− ȧ

2a
x2
)
, (3.7)

which actually depends on p in a disguise form. The above equation can be written
explicitly with ν = ȧ/a as

ẍ− 1

4
(2ν̇ + ν2)x = x−3G

(
xẋ− 1

2
νx2

)
. (3.8)

It is straightforward to see that Eq. (3.8) allows the following invariant (particular
solutions)

x(t) = C0

√
a(t), G(0) = 0, (3.9)

x(t) = C0

√
s(t)a(t), C0 + 4G

(
C2

0

2

)
= 0. (3.10)

It is useful to find an equivalent form of (3.8) under the transformation x = z1/k,
which takes (3.5) to

z̈ − k

4

(
2ν̇ + ν2

)
z =

k − 1

k

ż2

z
+ kz(k−4)/kG(I), (3.11)

where

I =
1

k
z(2−k)/k

(
ż − k

2
νz

)
, ν =

ȧ

a
.
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Of course, the constant k multiplying the arbitrary function G can be absorbed into
G. The symmetry algebra is

X1 = a(t)
∂

∂t
+
kȧ(t)

2
z
∂

∂z
, X2 = s(t)X1+

k

2
z
∂

∂z
= a(t)s(t)

∂

∂t
+
k

2
(1+ȧs)z

∂

∂z
. (3.12)

It is more convenient to put k = 4/(1− n) for some real n 6= 1 for which (3.11) takes
the form

z̈ +
1

n− 1
(2ν̇ + ν2)z =

n + 3

4

ż2

z
+ znG(I), (3.13)

where

I =
1− n

4
z−(n+1)/2

(
ż − 2ν

1− n
z

)
, ν =

ȧ

a
.

Now we will examine some particular cases. For p = −λ2/4 we have the possi-
bilities a = 1 (ν = 0, K = −λ2/4), and a = e±λt, λ 6= 0 (ν = ±λ, K = 0) and the
corresponding invariant equations have the form

ẍ = x−3G(xẋ), (3.14)

ẍ− λ2

4
x = x−3G

(
xẋ± λ

2
x2
)
. (3.15)

The corresponding symmetry vector fields are

X1 =
∂

∂t
, X2 = t

∂

∂t
+
x

2

∂

∂x
,

X1 = exp[±λt]
(
∂

∂t
± λ

2
x
∂

∂x

)
, X2 = ±1

λ

∂

∂t
.

(3.16)

For p = λ2/4, we have either a = cos(λt) (and ν = −λ tan(λt), K = −λ2/4) or
a = sin(λt) (and then ν = λ cot(λt),K = −λ2/4). The value ofK is determined either
by direct computation from (2.18) or by making use of the relationK = (AC−B2)W 2.
For example, comparing the relation

a = cos(λt) = cos2
λt

2
− cos2

λt

2
= u21 − u22

with (2.12) implies A = −C = 1, B = 0 and with W (u1, u2) = λ/2 we find K =
−λ2/4. For a = sin(λt), we have A = C = 0, B = 1. The corresponding equation
and symmetries for a = cos(λt) are

ẍ+
λ2

4
(1 + sec2(λt))x = x−3G

(
xẋ+

λ

2
tan(λt) x2

)
, (3.17)

X1 = cos(λt)
∂

∂t
− λ

2
sin(λt)x

∂

∂x
,

X2 =
2

λ
tanh−1

(
tan

(λt)

2

)
cos(λt)

∂

∂t
+

1

2

(
1− 2 tanh−1

(
tan

λt

2

)
sin(λt)

)
x
∂

∂x
.

(3.18)
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3.2 Reduction to quadrature and solutions

We can introduce the new coordinates (r, s) adapted to the vector field X1, i.e. such
that X1r = 0, X1s = 1, which are therefore given by

r =
x√
a
, s =

∫ t dζ

a(ζ)
, (3.19)

so that X1 = ∂/∂s. Then as X2r = r/2 and X2s = s, the rank-two affine algebra is
transformed to the one generated by the vector fields

X1 =
∂

∂s
, X2 = s

∂

∂s
+
r

2

∂

∂r
.

If we note the relations

r
dr

ds
= x

(
ẋ− ȧ

2a
x

)
,

d2r

ds2
= a3/2

(
ẍ− 1

4a2
(2aä− ȧ2)x

)
,

the canonical form of invariant equation (3.6) or (3.7) has the form of the generalised
Ermakov-Pinney equation

d2r

ds2
= r−3G

(
r
dr

ds

)
. (3.20)

The equivalent form (3.13) is reduced to the canonical form

r′′(s) =
n+ 3

4

r′2

r
+ rnG(ω), ω =

(1− n)

4
r−(n+1)/2r′ (3.21)

by means of the coordinate transformation

r = a2/(n−1)z, s =

∫ t dζ

a(ζ)
. (3.22)

Eq. (3.21) is invariant under the Lie algebra spanned by the vector fields

X1 =
∂

∂s
, X2 = s

∂

∂s
+

2

1− n
r
∂

∂r
.

When G is restricted to a constant, say G = 4G0/(1 − n), with G0 a constant, it is
known as a special case of second order Kummer-Schwarz equation (see Eq. (3.40)),
which has a general solution formula so that solution z of (3.13) is given by

z(t) = a2/(1−n)r(s) = (Aa + 2Bas+ Cas2)2/(1−n), AC − B2 = G0. (3.23)

The structure of the canonical equation (3.20) or (3.21) for n = −3 suggests
the special choice G = const. which reduces to the canonical form of the standard
Ermakov-Pinney equation, namely

r′′(s) = G0r
−3. (3.24)
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In this case the affine symmetry algebra (3.1) with β 6= 0 extends to an sl(2,R) algebra
isomorphic to the second type in Lie’s classification list. The additional symmetry
vector field is given by

X3 = s2
∂

∂s
+ sr

∂

∂r
.

We already know that Eq. (3.24) admits a general solution formula given by

r(s) = (A+ 2Bs+ Cs2)1/2, AC − B2 = G0. (3.25)

From this fact we immediately see that the following equation

ẍ+ [p(t)−Ka(t)−2]x = G0x
−3 (3.26)

admits a sl(2,R) symmetry algebra spanned by the vector fields (3.1) and an addi-
tional one

X3 = a(t)s(t)2
∂

∂t
+

1

2
(ȧ(t)s(t)2 + 2s(t))x

∂

∂x
. (3.27)

We note that the realisation of the sl(2,R) Lie algebra is generated by

X1 = a
∂

∂t
+
ȧ

2
x
∂

∂x
, X2 = sX1 +

1

2
X0, X3 = s2X1 + sX0, (3.28)

where the vector field X0 is X0 = x∂/∂x, with commutation relations

[X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3, (3.29)

which can be derived from the following commutation relations

[X1, X0] = 0, [X1, sX0] = X0, [X1, sX1] = X1, (3.30)

[X1, s
2X1] = 2sX1, [sX1, sX0] = sX0, [sX1, s

2X1] = s2X1, (3.31)

from where we see that the symmetry vector fields X1, X2, X3 of (3.28) satisfy the
commutation relations (3.29) characteristics of sl(2,R) Lie algebra. The general so-
lution of (3.26) is now given by the formula

x(t) =
√
a(t)r(s(t)) =

√
Aa + 2Bas+ Cas2, AC − B2 = G0. (3.32)

This solution is somewhat surprising because as long asK is a non-vanishing constant
we obtain the general solution of the Ermakov-Pinney equation with a considerably
modified potential p̃(t) = p(t)−Ka(t)−2, and only when K = 0 it coincides with the
usual Ermakov-Pinney solution.

As an example we consider a case where K = −λ2/4 6= 0, p = λ2/4, a = cos(λt):

ẍ+
λ2

4
(1 + sec2(λt))x = G0x

−3. (3.33)

The general solution of (3.33), despite being too complicated, is given exactly by the
formula (3.32) with s(t) being

s(t) =
1

λ
log

[
1 + tan λt

2

1− tan λt
2

]
.
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The choice p = 1, a = 1 + α cos(2t), |α| < 1 (K = 1− α2) leads to the EP equation

ẍ+

(
1 +

α2 − 1

(1 + α cos(2t))2

)
x = G0x

−3, |α| < 1. (3.34)

The π-periodic general solution of (3.34) is given by (3.32) with s(t) being

s(t) =
1√

1− α2
arctan

(
1− α

1 + α
tan t

)
.

The linear version of (3.34) with G0 = 0 belongs to a one-parameter family of Hill’s
equations with coefficients periodic of period π (also a subclass of the so-called four-
parameter Ince equations [29]).

On the other hand, the special choice G(I) = 4G0/(1 − n) in (3.13) produces
the following important form of a sl(2,R)-invariant equation that frequently arises in
many applications

z̈ +
4

1− n

(
p−Ka−2

)
z =

n+ 3

4

ż2

z
+

4G0

1− n
zn. (3.35)

A basis of the symmetry algebra is given by

X1 = a
∂

∂t
+
kȧ

2
x
∂

∂x
, X2 = sX1 +

k

2
X0, X3 = s2X1 + ksX0, X0 = x

∂

∂x
, (3.36)

where k = 4/(1− n). The general solution of (3.35) is given by (see solution (3.23))

z(t) = (Aa+ 2Bas + Cas2)2/(1−n), AC − B2 = G0. (3.37)

This equation can be regarded as a generalisation of the second order Kummer-
Schwarz (2KS) equation provided that K 6= 0.

The following dissipative form of (3.35) for K = 0 can also be of some interest

ẅ+r(t)ẇ+
4p(t)

1− n
w = σ

ẇ2

w
+

4q

1− n
exp

[
−2

∫ t

r(ζ)dζ

]
wn, n 6= 1, q ∈ R, σ =

n+ 3

4
.

(3.38)
We call (3.38) dissipative second order Kummer-Schwarz (d2KS) equation. The linear
transformation

w(t) = φ(t)z(t), φ(t) = exp

[
1

2(σ − 1)

∫ t

r(ζ)dζ

]
, 2(σ − 1) =

n− 1

2
, (3.39)

transforms (3.38) into

z̈ +
4

1− n
I(t)z = σ

ż2

z
+

4q

1− n
zn, (3.40)

where

I(t) = p− 1

4
(r2 + 2ṙ).
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We already know that Eq. (3.40) has the general solution

z = (Au21 + 2Bu1u2 + Cu22)
2/(1−n), (AC − B2)W 2(u1, u2) = q, (3.41)

where u1, u2 are two linearly independent solutions of the equation

z̈ + I(t)z = z̈ +

(
p− 1

4
(r2 + 2ṙ)

)
z = 0. (3.42)

The general solution of (3.38) is given by

w(t) = exp

[
2

n− 1

∫ t

r(ζ)dζ

]
(Au21+2Bu1u2+Cu

2
2)

2/(1−n), (AC−B2)W 2(u1, u2) = q.

(3.43)
The d2KS equation (3.38) is invariant under the real Lie algebra of vector fields

Xa = a
∂

∂t
+

2

1− n
(ȧ− ar)w

∂

∂w
,

where the function a is in the real linear space spanned by the functions u21, u1u2, u
2
2,

where u1, u2 are solutions of

ẅ + [p− 1

4
(r2 + 2ṙ)]w = 0.

The commutation relations between the three components of the algebra satisfy those
of the sl(2,R) algebra in (2.17).

We note that a Lagrangian L of the 2KS equation (3.40) is provided by

L(t, z, ż) =

(
1− n

4

)2

z−(n+3)/2ż2 − I(t)z(1−n)/2 − qz(n−1)/2. (3.44)

3.3 Reduction to quadratures of Eq. (3.21)

We now turn to perform reduction to quadratures of the differential equation (3.21).
To this end, we let R = dr/ds and exchange the roles of (r, s). This gives the first
order equation

dR

dr
=
n+ 3

4

R

r
+
rn

R
G(ω), ω =

1− n

4
r−(n+1)/2R.

Invariance of this equation under the dilational symmetry generated by the vector
field r∂/∂r + (n+1)

2
R∂/∂R implies reduction to the separable form

dω

dξ
=

1− n

4
ω +

(1− n)2

16ω
G(ω), (3.45)

which is achieved by changing coordinates to (ω, ξ = ln r) and r, s defined by (3.22).
Once a solution ω = Φ(ξ, C1) to (3.45) has been found, the general solution is obtained
by integrating another separable first order ODE

dr

ds
= R =

4

(1− n)
r(n+1)/2Φ(ln r, C1).
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More conveniently, one can use the change of coordinates s̄ = r(1−n)/2, r̄ = s +
r(1−n)/2 to transform (3.21) into

s̄
d2r̄

ds̄2
= Ĝ

(
dr̄

ds̄

)
(3.46)

with symmetry Lie algebra generated by 〈∂/∂r̄, s̄∂/∂s̄ + r̄∂/∂r̄〉 and a new arbitrary

function Ĝ. Integration of (3.46) is straightforward.

3.4 Linearizable subclasses by Lie’s test

In this subsection, we reconsider the canonical equation (3.20) for r(s)

r′′ = f(r, r′) = r−3G(rr′) = r−3G(I) (3.47)

and apply the Lie’s test for a second order ODE in normal form r′′ = f(s, r, p),
p = r′, which determines the necessary and sufficient conditions for transformability
to a linear equation by a point transformation. Such conditions are expressed by the
vanishing of the following fourth order relative invariants [31]

I1 = fpppp = 0, I2 = D̂2
sfpp − 4D̂sfrp − fpD̂sfpp +6frr − 3frfpp +4fpfrp = 0, (3.48)

where D̂s = ∂/∂s + p∂/∂r + f∂/∂p. The first condition requires that G must be a
cubic polynomial of I, G(I) = G0I

3+G1I
2+G2I+G3. The second condition restricts

the coefficients in two possible forms

G2 = G3 = 0, (3.49)

G0 =
G2

27G3
3

(G2
2 − 18G3), G1 =

G2
2 − 5G3

3G3
, G3 6= 0. (3.50)

The first choice gives the equation r′′ = G0r
′3 + G1s

−1r′2, which is equivalent to the
linear equation s′′(r)+G1r

−1s′(r)+G0 = 0 by an exchange of the coordinates s↔ r.
The other possibility gives the linearizable equation

r′′(s) =
G2

6G3

(
G2

2

18G3
− 1

)
r′3

r3
+ 3

(
1− G2

2

18G3

)
r′2

r
+G2rr

′ − 2G3r
3. (3.51)

Reverting (s, r) back to (t, x) gives us a more general form of a linearizable second
order ODE.

The special choice G3 = G2
2/18, G2 = −3ℓ of the coefficients singles out a well-

known second member of the Riccati chain (the modified Emden equation) [32, 33]

r′′ + 3ℓrr′ + ℓ2r3 = 0, (3.52)

which is generated by the second iteration of the Riccati operator D = Ds + ℓr:

D
2r = (Ds + ℓr)(Ds + ℓr)r = 0. (3.53)
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Eq. (3.53) is also recognised as a spacial case of the second order Riccati equation in
the sense of Vessiot and Wallenberg [34]. This sl(3,R) invariant equation can also be
obtained from (3.11) by choosing k = −2, a = 1 (s(t) = t) andG(I) = 3I2−3ℓI+ℓ2/2.
By scaling r → ℓr we can put ℓ = 1.

Just like the ordinary first order Riccati equation, the Hopf–Cole transformation
r = ρ′/ρ linearizes (3.52) to the third order linear equation ρ′′′ = 0. Moreover, a
point transformation linearizing (3.52) to R′′(S) = 0 is provided by (see Example 5.5
of [12])

S = s− 1

r
, R =

s2

2
− s

r
. (3.54)

We comment that though the more general form

r′′ + arr′ + br3 = 0 (3.55)

does not pass Lie test unless b = a2/9, it was shown to be linearizable to

d2r̄

ds̄2
+ a

dr̄

ds̄
+ 2br̄ = 0

by the nonlocal transformation s̄ =

∫ s

r(ζ) dζ , r̄ = r2 [35].

Finally, we mention that it was shown in [36] using an ansatz that a special case
of second-order Riccati equation, in particular (3.52) with ℓ = 1, admits the (non-
natural) Lagrangian

L =
1

r′ + r2
. (3.56)

We can recover L by transforming the Lagrangian L0 = R′2 of the free particle
equation R′′ = 0 by (3.54). The transformed Lagrangian L̄ is obtained as

L̄ =
[s(r′ + r2)− r]2

(r′ + r2)2
DsS =

1

r′ + r2
+ s2 +

s2r′

r2
− 2s

r
= L+Ds

[
s3

3
− s2

r

]
.

Remark that as the Lagrangians L̄ and L differ by a total derivative they give rise
to the same Euler-Lagrange equation (3.52). In other words, L and L̄ are gauge
equivalent Lagrangians [37].

4 Conclusions and outlook

In this paper we have analysed the invariance of second order ODEs under a 2-
dimensional affine Lie algebras realised by vector fields (3.1) as extensions of the
EP-symmetry vector field (1.4). By construction, these type of equations can be
integrated by Lie’s standard reduction procedure. It is also possible to give some
particular (invariant) solutions. In the rank two case, for a constant choice of the
arbitrary function G appearing in the ODE, we have produced an equation of EP type
(see (1.6)) but with potential p(t) replaced by p(t)−Ka−2(t), K being some constant
fixed by choice of a. The general solution formula for (1.6) remains unchanged. We
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have introduced a dissipative (damped) version of EP equation and presented its
general solution (nonlinear superposition). Linearisable subclasses of the canonical
ODEs are obtained by Lie’s test.

As a final remark, let us mention that the presented study is not merely academic,
for some equations treated here arise in different applications. For example, in the
recent paper [38], the authors investigated solutions and first integrals of a second
order ODE falling within the class (3.38), based on symmetry approach. This ODE
is obtained from elimination of a dynamical system modeling the total population
of Easter island [39]. Solutions can be readily recovered from our general results.
A separate article [10] has recently been devoted to study integrability properties of
a variable coefficient variant of the above-mentioned model by using results of the
present work.
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Abstract. We investigate the use of invariants of the admitted Lie groups of transformation in finding solutions of the systems of
ordinary differential equations (ODEs). Bluman’s theorem (1990) of invariant solutions of ODEs is extended for systems of ODEs.
Differential invariants of a Lie group are used in reducing order of the given system. Examples are given to illustrate the methods.

INTRODUCTION

Invariant curves of Lie groups of transformations admitted by differential equations (DEs) provide a practical way of
constructing their solutions and are known as invariant solutions of DEs. Invariants of the one-parameter Lie group
admitted by an ordinary differential equation (ODE), if is not an invariant solution, may be used to reduce the order of
the ODE. It was proved that if the r-parameter Lie group admitted by an nth order ODE is solvable, then the invariants
of the group can reduce that ODE to (n − r)th order [1–6]. Bluman built a theorem which establishes a method of
using one-parameter Lie groups admitted by a scalar ODE to find its invariant solutions [2,7]. In the case an invariant
solution does not exist, differential invariants play an important role in reduction of order of ODEs. Stephani [3]
discussed the advantage of the method using differential invariants of r-parameter group admitted by a scalar ODE to
find solution and gave a suggestion to use the method to find solutions of systems of ODEs. Here we extend Bluman’s
theorem for systems of ODEs, illuminate the use of differential invariants in reduction of order of systems of ODEs,
and demonstrate the advantages of these methods by some examples.

Consider a system of k nth order ordinary differential equations (ODEs)

Fi(t, x, x′, ..., x(n)) = 0, i = 1, ..., k, (1)

where xT = [x1(t), x2(t), ..., xk(t)], and x′ = dx
dt . Assume the system (1) admits the one parameter Lie group of trans-

formations with infinitesimal generator

X = ξ(t, x)
∂

∂t
+ ηi(t, x)

∂

∂xi
, i = 1, ..., k. (2)

We concentrate on the case where the number of equations in the system (1) is same as the number of dependent vari-
ables of the system, which is the case in most applications [4]. In what follows, we give some preliminaries required
to be used in the next sections. Theorems mentioned in this section are well known and are given in many references.
The notation ∂x means the partial differential operator ∂/∂x, while d/dt defines the total differential operator

d
dt

=
∂

∂t
+ x′i

∂

∂xi
+ x′′i

∂

∂x′i
+ ... + x(n)

i
∂

∂x(n−1)
i

. (3)

A curve Φ(t, x) =
[
φ1(t, x), φ2(t, x), ..., φk(t, x)

]T is an invariant of X if

XΦ(t, x) = 0 when Φ(t, x) = 0, (4)
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whereas Φ(t, x) = 0 is called an invariant solution of the system (1) related to its invariance under X, if it is an invariant
curve of X and it satisfies the system (1). The prolonged nth order form of X in (2) is given by

X(n) = ξ(t, x)
∂

∂t
+ ηi(t, x)

∂

∂xi
+ η′i(t, x, x

′)
∂

∂x′i
+ ... + η(n)

i (t, x, x′, ..., x(n))
∂

∂x(n)
i

, (5)

where

η(m)
i =

dη(m−1)
i

dt
− x(m)

i
dξ
dt
, m = 1, ..., n.

According to (4), the symmetry condition for the operator (2) to be admitted by the system of ODEs (1) is

X(n)Fi(t, x, x′, ..., x(n)) = 0 when Fi(t, x, x′, ..., x(n)) = 0, ∀i = 1, ..., k. (6)

Assume that Φ(t, x, x′, ..., x(n)) is an invariant of (5), then

X(n)Φ = 0,

and the characteristic equations
dt
ξ

=
dxi

ηi
=

dx′i
η′i

= ... =
dx(n)

i

η(n)
i

(7)

provide an invariant Φ of X(n). Equations (7) can be written in the form

x(m)
i =

η(m−1)
i

ξ
, m = 1, ..., n (8)

with the same solution Φ. An invariant of an infinitesimal (5) depending on the derivatives of the dependent variables
is called a differential invariant. The order of the differential invariant is the highest derivative on which it depends.
We conclude this section with the following theorem [3, 8].

Theorem 1 If φ(t, x, x′, ..., x(p)) and ψ(t, x, x′, ..., x(q)) are two functionally independent differential invariants of
the symmetry generator X(n) of orders p and q respectively, where p < q < n, then

ρ =
dψ
dφ

=
dψ/dt
dφ/dt

is a differential invariant of X(n) of order q + 1.

EXTENSION OF BLUMAN’S THEOREM FOR A SYSTEM OF ORDINARY
DIFFERENTIAL EQUATIONS

Theorem 2 Suppose that the system of ODEs (1) admits a one parameter Lie group of transformations with
infinitesimal generator (2) in Domain D ⊂ Rk+1. We have two cases.

case 1: ξ(t, x) , 0 in D. Let

ψi(t, x) =
ηi(t, x)
ξ(t, x)

, Y =
∂

∂t
+ ψi(t, x)

∂

∂xi
=

1
ξ(t, x)

X, i = 1, ..., k, (9)

and
Qi(t, x) = Fi(t, x, ψ1, ..., ψk,Yψ1...,Yψk, ...,Yn−1ψ1, ...,Yn−1ψk).

1. If any of Qi(t, x) = 0 is not defined in D, then the system (1) has no invariant solution related to its invariance
under (2).

2. If Qi(t, x) ≡ 0 in D, then each invariant curve of (2) is an invariant solution of the system (1).
3. If Qi(t, x) . 0 but Qi(t, x) = 0 defines curves in D, then these curves define invariant solutions for the system

(1) in D.
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case 2: ξ(t, x) ≡ 0 in D.

1. If ηi(t, x) = 0 defines curves xi = φi(t) in D, then these curves define invariant solutions for the system (1).
2. If ηi(t, x) , 0 in D, then the system (1) has no invariant solution relating to its invariance under (2).

Proof. case 1: ξ , 0:
The corresponding prolonged vector field of Y in equation (9) is given by

Y (n) =
1

ξ(t, x)
X(n) =

∂

∂t
+
ηi

ξ

∂

∂xi
+
η′i
ξ

∂

∂x′i
+ ... +

η(n−1)
i

ξ

∂

∂x(n−1)
i

.

Using the invariance condition (8)

Y (n) =
∂

∂t
+ x′i

∂

∂xi
+ x′′i

∂

∂x′i
+ ... + xn

i
∂

∂x(n−1)
i

=
d
dt
. (10)

which is the total differential defined in equation (3). Furthermore, if

ψi(t, x) =
ηi(t, x)
ξ(t, x)

,

then from the invariance condition (8)
x′i = ψi, (11)

and from (10)

x′′i =
dx′i
dt

=
dψi

dt
= Yψi.

Then by induction,
x(m)

i = Y (m−1)ψi, i = 1, ..., k, m = 1, ..., n,

and the solution of the above equations are invariants of (5). Using (8), the latter equations can be written as

η(m)
i = ξY (m)ψi. (12)

Now assume that system (1) admits the symmetry generator given by (2), then the invariance condition (6) holds, i.e.,

ξ

∂Fi

∂t
+
η j

ξ

∂Fi

∂x j
+
η′j

ξ

∂Fi

∂x′j
+ ... +

ηn
j

ξ

∂Fi

∂xn
j

 = 0,

and from (12),

ξ

∂Fi

∂t
+ ψ j

∂Fi

∂x j
+ Yψ j

∂Fi

∂x′j
+ ... + Y (n)ψ j

∂Fi

∂xn
j

 = 0. (13)

Writing
Qi(t, x) = Fi(t, x, ψ1, ..., ψk,Yψ1...,Yψk, ...,Yn−1ψ1, ...,Yn−1ψk),

then

1. if any of Qi(t, x) = 0 is not defined in D, then the invariants φi(t, x) are not solutions of (1), and hence there is
no invariant solution of (1) related to (2).

2. if Qi(t, x) ≡ 0, ∀i, i.e, Qi is identically zero, then all solutions of (11) are invariant solutions of system (1).
3. if Qi(t, x) . 0, i.e, Qi is not identically vanishing, then when Qi(t, x) = 0 we have

X(n)Qi = ξ

∂Qi

∂t
+
η j

ξ

∂Qi

∂x j
+
η′j

ξ

∂Qi

∂x′j
+ ... +

ηn
j

ξ

∂Qi

∂xn
j

 .
Using equation (12)

X(n)Qi = ξ

∂Fi

∂t
+ ψ j

∂Fi

∂x j
+ Yψ j

∂Fi

∂x′j
+ ... + Y (n)ψ j

∂Fi

∂xn
j

 ,
which, from equation (13) reduces to

X(n)Qi = 0.

Therefore Qi(t, x) = 0 defines an invariant solution of system (1).

020002-3



case 2: ξ ≡ 0 :

1. If ηi(t, x) = 0, then solving for xi gives

Ei ≡ xi − φi(t) = x − Φ(t) = 0, i = 1, ..., k, (14)

where ΦT =
[
φ1(t), φ2(t), ..., φk(t)

]
. But since ξ ≡ 0, using ηi(t, x) = ηi(t,Φ(t)) = 0, we have

XEi = η j(t,Φ(t)).δ j
i = 0, where δ

j
i =

{
1, i = j
0, i , j , (15)

showing that (14) is an invariant of X. Now, we show that (14) satisfies the system (1), i.e., if

x = Φ(t), x′ = Φ′(t), x′′ = Φ′′(t), x(n) = Φ(n)(t),

then
Fi =

(
t,Φ(t),Φ′(t), ...,Φ(n)(t)

)
= 0, i = 1, ..., k.

From the special form of the generator X, (ξ = 0), then any function Ψ(t) of t only will be invariant of X. Let
Ψ = Φ(t) of equation (15). Then the functions of the vector Φ(t) and all their ordinary derivatives, as well as the
simple function ψ(t) = t, will be invariants of X. Then the general form of the nth order invariant of X is

G
(
t,Φ(t),Φ′(t), ...,Φ(n)(t)

)
= 0,

where G is an arbitrary function of t,Φ(t),Φ′(t), ...,Φ(n)(t). Let G be Fi. Then,

Fi

(
t,Φ(t),Φ′(t), ...,Φ(n)(t)

)
= 0. (16)

Hence from (16) and (15), x = Φ(t) are invariant solution system of (1).
2. If ηi(t, x) , 0 in D, then, it is obvious that there is no invariant solution for system (1) related to its invariance

under (2).

�

Example 1 The system

ẍ = ẋ +
ẏ
y

e−t, (17)

ÿ =
ẏ2

y
+ ẏ + y, (18)

admits, among others, the symmetry generators

X1 =
∂

∂t
+

1
2

e−t ∂

∂x
+ y(ln y + t)

∂

∂y
, X2 = (ln y + t)

∂

∂x
.

We will choose the symmetry generator X1 since ξ , 0. Here ξ = 1, η1 = 1
2 e−t and η2 = y(ln y + t). Then

Y =
1
ξ

X1 = X1, ψ1 =
1
2

e−t, ψ2 = y(ln y + t),

and
Yψ1 = −

1
2

e−t, Yψ2 = y(1 + (ln y)2 + ln y + 2t ln y + t2 + t).

Therefore

Q1(t, x, y, ψ1, ψ2,Yψ1,Yψ2) = e−t(ln y + t − 1),
Q2(t, x, y, ψ1, ψ2,Yψ1,Yψ2) ≡ 0.
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Q1 = 0 gives
y(t) = e1−t,

while the second equation means that the solution of ẋ = ψ1 is an invariant curve of the system, namely,

x(t) = −
1
2

e−t + c,

where c is a constant.
Regarding to the symmetry generator X2, where ξ ≡ 0, ηi = 0 implies

η1(t, x, y) = ln y + t = 0,

giving
y(t) = e−t

which when substituted into the equations (17) and (18) gives

x(t) = −
1
2

e−t + c1et + c2.

THE USE OF DIFFERENTIAL INVARIANTS

Scalar ODEs
We consider the case when ξ = 0, and use differential invariants either to find invariant first integrals of the ODE, or
use them to reduce the order of an ODE. Following theorem illustrates this idea.

Theorem 3 Let
F(t, x, x′, ..., x(n)) = 0 (19)

be a single nth order ODE admitting the symmetry generator

X = η(t, x)
∂

∂x
, (20)

and
x′ − f (t, x, φ) = 0 (21)

is a solution of the ODE
dx′

dx
=
η′(t, x, x′)
η(t, x)

.

Then (21) is an invariant solution for (19) if and only if

F
(
t, x, f , f (1), ..., f (n−1)

)
≡ 0,

where f (m) = d f (m−1)/dt, m = 1, ..., n−1, η′ = dη/dt and φ is the integration constant. If F
(
t, x, f , f (1), ..., f (n−1)

)
. 0,

then
F

(
t, x, f (t, x, φ), f (1)(t, x, x′, φ′), ..., f (n−1)(t, x, x′, ..., x(n−1), φ(n−1))

)
= 0

is an (n − 1)th order ordinary differential equation of the variables t, φ(t, x, x′), φ′(t, x, x′),...,φ(n−1)(t, x, x′, ..., x(n−1)).

Proof. The first prolongation of the generator (20) is

X(1) = η(t, x)
∂

∂x
+ η′(t, x, x′)

∂

∂x′
.

whose first order invariant, φ = φ(t, x, x′) or x′ = f (t, x, φ), can be found by solving the characteristic equation

dx
η(t, x)

=
dx′

η′(t, x, x′)
.
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Since ξ ≡ 0, then any function φ◦ = φ◦(t) is a zero order invariant of (20). We choose φ◦(t) = t. Then by theorem (1),
the second order invariant is

φ′(t, x, x′, x′′) =
dφ/dt
dφ◦/dt

=
dφ/dt

1
= x′′ −

d
dt

f = 0.

Consequently

x′ = f , x′′ =
d
dt

f = f (1), ..., x(n) =
d
dt

f (n−2) = f (n−1). (22)

Now, suppose that (21) is an invariant solution, then it must satisfy the ODE (19). Equations (22) then gives

F
(
t, x, f , f (1), ..., f (n−1)

)
= F

(
t, x, x′, ..., x(n)

)
≡ 0. (23)

Conversely, if (23) is satisfied, then
x′ = f , x′′ = f (1), ..., x(n) = f (n−1),

are first integrals of (19). Thus from equations (22), x′ − f (t, x, φ) = 0 is an invariant solution of (19). Consequently,
from equation (22),

φ(n−1)(t, x, x′, ..., x(n)) = φ(n−1)(t, x, f , f ′, ..., f (n−1)) ≡ 0.

If F
(
t, x, f , f (1), ..., f (n−1)

)
. 0, the nth order invariant of the generator X is of the form

G(t, φ, φ′, ..., φ(n−1)) = 0,

where G is arbitrary. Hence

G(t, φ(t, x, x′), φ′(t, x, x′, x′′), ..., φ(n−1)(t, x, x′, ..., x(n))) = 0.

Since G is arbitrary, we can choose it such that the above equation can be written as

F(t, x, x′, ..., x(n)) = 0,

or
F

(
t, x, f , f (1), ..., f (n−1)

)
= 0.

�

Example 2 The ODE

x′′ −
2x′2

x
− x′ − tx2 = 0 (24)

admits the symmetry generator

X(1) = x2 ∂

∂x
+ 2xx′

∂

∂x′
.

The first order invariant of the above generator is

φ(t, x, x′) =
x′

x2 ,

which by solving for x′ we get
x′ = f (t, x, φ) = φx2.

Thus f (1) = 2φxx′ + φ′x2, while F(t, x, f , f (1)) = φ′x2 + 2φ2x3 − 2φ2x3 − φx2 − tx2 . 0. Hence F(φ, φ◦) = 0 gives the
reduced ODE

φ′ − φ − φ◦ = 0
whose solution is

φ(φ◦) = −(φ◦ + 1) + c exp(φ◦).
Now substituting back the values of φ and φ◦ into the latter equation gives the reduced first order ODE

x′

x2 = −(t + 1) + c1et,

with solution
x(t) =

2
t2 + 2t − 2c1t + c1

,

where c1 and c2 are constants of integration.
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System of second order ODEs
If the differential invariant satisfies the given system of ODEs then it is an invariant solution, namely, first integral
for the system of ODEs. If not, we can use functionally independent differential invariants to reduce the order of the
system of ODEs and we can obtain from zero to nth order differential invariants by solving the characteristic equations
(7). Here we will concentrate on a system of second order ODEs

Fi(t, x, x′, x′′) = 0, i = 1, 2, (25)

admitting the symmetry generator

X(1) = ηi(t, x)
∂

∂xi
+ η′i(t, x, x

′)
∂

∂x′i
, i = 1, 2, (26)

with ξ ≡ 0. Any function of the independent variable t will be an invariant of (26) of order zero, and so the function
u◦(t) = t will be the simplest invariant with du◦/dt = 1. The first order invariants ui = ui(t, x, x′) are solutions of the
characteristic system

dx′i
dxi

=
η′i(t, x, x

′)
ηi(t, x)

, i = 1, 2.

Note that in solving the latter equations, we treat the variable t as constant since it is invariant of X in (26) and so
constant along it. From theorem (1),

u′i(t, x, x
′, x′′) =

dui/dt
du◦/dt

=
dui/dt

1
=

dui

dt
, i = 1, 2,

is an invariant of (26) of second order. If both components of x1 and x2 are not vanishing in (26), then we can find the
zero order differential invariant u◦ = u◦(t, x1, x2) as the solution of the characteristic

dx1

η1(t, x)
=

dx2

η2(t, x)
,

and in this case
u′i(t, x, x

′, x′′) =
dui/dt
du◦/dt

, i = 1, 2.

Once we find the above differential invariants, we substitute the original variables t, x1, x2 and their derivatives using
system (25) and the invariants u◦, u1 and u2. This will give a system of first order ODEs

u′i = Gi (u◦, u1, u2) , i = 1, 2.

The solution of this latter system gives a reduced form of the system (25)

ui = fi (u◦) , i = 1, 2,

of order 1.

Example 3 The system in example (1) admits, in addition to others, the Lie point symmetry generator

X(1)
3 := y

∂

∂y
+ ẏ

∂

∂ẏ
,

whose zero and first order invariants are, respectively,

u◦ = t, u1 =
ẏ
y
. (27)

We have
du1

du◦
=

ÿ
y
−

ẏ2

y2 , or u′1 = u1 + 1.
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Solving the above first order ODE and substituting back the original variables from (27) we get

ẏ = y(c1et − 1). (28)

Substituting this result into (17), we get ẍ − ẋ = c1 − et, whose first integral

ẋ = c1 +
1
2

e−t + c2et. (29)

Hence from (28) and (29) we have a first order reduced system which solves to

x(t) = − 1
2 e−t + c1t + c2et + c3,

y(t) = c4eα, where α = c1et − 1.

CONCLUSION

An ODE admitting a symmetry group may be either completely solved by using the generators of the Lie algebra of
the symmetry group or otherwise the generators may be used to reduce the order of the ODE. The invariants of the
generators of the Lie algebra admitted by a single ODE is widely discussed in literature [1–9]. The invariant curves
when satisfy the ODE appear as invariant solutions. Bluman developed a method of finding invariant solutions for a
single ODE and proved a theorem which provides a criterion for a given ODE to admit an invariant solution [2, 7].
In this paper we have extended these methods for finding solutions of a system of ODEs. We have concentrated on
the case where the number of dependent variables are identical to the number of ODEs and have been able to prove
Theorem 2 which provides conditions for a system of ODEs to admit invariant solutions.

In the case of non-existence of invariant solutions, we have made use of the idea of differential invariants, elabo-
rated in Theorem 1. This explains method of finding all functionally independent differential invariants of a symmetry
generator in the case of a single ODE. Using this approach we have been able to prove Theorem 3 which provides a
criterion of reducing the order of an nth order scalar ODE either to order one or n − 1.

Stephani [3] discussed the advantage of the method of using differential invariants of Lie groups admitted by a
scalar ODE to find their solutions and gave a suggestion to use the method to find solutions of systems of ODEs. We
are presently working on the methods of finding solutions of systems of ODEs for which invariant solutions cannot
be obtained in the light of Theorem 2. For a system of ODEs, Theorem 1 does not guarantee to provide full set of
differential invariants [3]. Due to this limitation Theorem 3 cannot be generalised for a system of ODEs. However, in
the case where ξ ≡ 0 (refer to equation (5)) this approach may be useful to reduce the order of a system of second
order ODEs. Examples have been provided to illustrate the results proved in the paper.
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Abstract: There are many routines developed for solving ordinary differential Equations (ODEs) of
different types. In the case of an nth-order ODE that admits an r-parameter Lie group (3 ≤ r ≤ n),
there is a powerful method of Lie symmetry analysis by which the ODE is reduced to an (n− r)th-
order ODE plus r quadratures provided that the Lie algebra formed by the infinitesimal generators
of the group is solvable. It would seem this method is not widely appreciated and/or used as it
is not mentioned in many related articles centred around integration of higher order ODEs. In the
interest of mainstreaming the method, we describe the method in detail and provide four illustrative
examples. We use the case of a third-order ODE that admits a three-dimensional solvable Lie algebra
to present the gist of the integration algorithm.

Keywords: ordinary differential equation; lie symmetry analysis; solvable lie algebra; differential
invariant; reduction of order

MSC: 34A05; 34C14; 34C20

1. Introduction

The study of ODEs poses significant challenges, especially in cases involving equations
of higher order that are nonlinear. As a result, various methods have been proposed for
investigating different types of ODEs. Chandrasekar et al. [1], for example, propose a
method that unifies and generalises known linearising transformations for finding general
solutions of third-order nonlinear ODEs. Related work is done by Mohanasubha et al. [2]
who propose a method of solution that involves deriving linearising transformations for
a class of second-order nonlinear ordinary differential equations. In [3], conditions are
provided for the linearisation of third-order ODEs by tangent transformations (see also
the references in [3] for related work on the problem of transforming a given differential
equation into a linear equation). It turns out that “symmetry properties”, which are
central in Lie symmetry analysis of differential equations, by and large, provide a basis
for systematically solving the majority of ordinary differential equations for which exact
solutions can be found [3–13].

There are several ways in which the symmetry group associated with a differential
equation can be used to analyse the equation. For a given differential equation, the sym-
metry group may be used to derive new solutions of the equation from old ones [5,7], to
reduce the order of the equation [5,7,8] or to establish whether or not the equation can
be linearised, and to construct explicit linearisations when such exist [14–16]. Other uses
include the derivation of conserved quantities [7].

Many symmetry-based approaches for solving ODEs involve reduction of order,
whereby for a given ODE of order n, the problem is reduced to that of solving one or more
ODEs of order at most n− 1. Lie symmetry analysis has well-established algorithms for
solution methods based on reduction of order. It is well known, in particular, that if an
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nth-order ODE admits a one-parameter Lie symmetry group, then the order of the equation
can be reduced by one. The method of differential invariants extends this in that an ODE
of order n is reduced to an ODE of order n − 1 plus r quadratures (where 3 ≤ r ≤ n)
provided that the ODE is invariant under an r-parameter Lie group whose infinitesimal
generators form an r-dimensional solvable Lie algebra [5,12,17]. The method is essentially
a general integration procedure for solving (or, at least, reduction of order of) any higher
order ODE that admits a solvable lie algebra of the right dimension. It consists of a number
of successive iterations that reduce the problem to integration of a number of first-order
ODEs each of which has an admitted Lie point symmetry. Therefore, each of the first-order
ODEs may be integrated routinely using the admitted Lie point symmetry [4–9]. It seems
that the method of differential invariants has not been used widely to study higher order
ODEs as we could not find many applications in the literature.

In this paper, we describe the method of differential invariants and provide four
instructive examples involving nonlinear third-order ODEs that arise in different contexts.

The rest of the article is organised as follows: In Section 2, we present the algorithm
of the method of differential invariants in the case where a third-order ODE admits a
three-dimensional solvable Lie algebra. In Section 3, we provide four illustrative examples.
We give concluding remarks in Section 4.

2. Reduction Algorithm for an nth-Order ODE (n ≥ 3) with a Solvable Lie Algebra

Let us assume that an nth-order ODE admits an r-parameter Lie group of transforma-
tions. There is a reduction algorithm [5] by means of which the ODE can be reduced to an
(n− 1)th-order ODE plus r quadratures provided that the infinitesimal generators of the
admitted Lie group form an r-dimensional solvable Lie algebra. We present the reduction
algorithm in the simplified case involving a third-order ODE that admits a 3-parameter
solvable Lie algebra. In this case, the reduction algorithm results in the general solution of
the ODE.

Consider a third-order
f (x, y, y′, y′′, y′′′) = 0 (1)

that admits a 3-parameter Lie group of point transformations, and for which the associated
infinitesimal generators Y1, Y2, Y3 form a solvable Lie algebra. Without loss of generality,
we can assume that the infinitesimal generators have the following commutation relations:

[Yi, Yj] =
j−1

∑
k=1

Ck
ijYk, 1 ≤ i < j, j = 2, 3. (2)

for some real structure constants Ck
ij [5].

Let r1(x, y), v1(x, y, y′) be such that

Y1r1 = 0, Y(1)
1 v1 = 0,

so that
w1 =

dv1

dr1
(3)

is a differential invariant, i.e., Y(2)
1 w1 = 0. In terms of the invariants r1 and v1, and the

differential invariant w1, (1) is reduced to a second-order ODE

w1 = ψ1(r1, v1), (4)

for some function ψ1. Writing Y(1)
2 in terms of r1 and v1, we obtain

Y(1)
2 = α1(r1)

∂

∂r1
+ β1(r1, v1)

∂

∂v1
, (5)
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with the first extension given by

Y(2)
2 = Y(1)

2 + γ1(r1, v1, w1)
∂

∂w1
, (6)

where
α1(r1) = Y2r1, β1(r1, v1) = Y(1)

2 v1, γ1(r1, v1, w1) = Y(2)
2 w1,

for some functions α1, β1 and γ1. It is noteworthy that (5) is admitted by Equation (4).
Let r2(r1, v1), v2(r1, v1, w1) be such that

Y(1)
2 r2 = 0, Y(2)

2 v2 = 0,

so that
w2 =

dv2

dr2
(7)

is a differential invariant, i.e., Y(3)
2 w2 = 0. In terms of the invariants r2, v2 and w2, the

ODE (1) reduces to a first-order ODE

w2 = ψ2(r2, v2), (8)

for some function ψ2. Writing Y(2)
3 in terms of r2 and v2, we obtain

Y(2)
3 = α2(r2)

∂

∂r2
+ β2(r2, v2)

∂

∂v2
, (9)

with the first extension given by

Y(3)
3 = Y(2)

3 + γ2(r2, v2, w2)
∂

∂w2
, (10)

where
α2(r2) = Y(1)

3 r2, β2(r2, v2) = Y(2)
3 v2, γ2(r2, v2, w2) = Y(3)

3 w2,

for some functions α2, β2 and γ2. Here also (9) is admitted by Equation (8).
In light of the admitted symmetry (10), the first-order Equation (8) can be integrated

routinely to give a solution of the form

v2 = ω2(r2) (11)

for some function ω2. Expressing (11) in terms of v1 and r1, we obtain a first-order ODE

dv1

dr1
= ψ1(v1, r1), (12)

i.e., we determine the hitherto unknown function ψ1 in (4). Solving Equation (12), we
obtain a solution of the form

v1 = ω1(r1) (13)

for some function ω1. Again, the solution (13) can be expressed in terms of x and y to
obtain the last first-order ODE in the form

dy
dx

= ψ0(x, y), (14)

for some function ψ0. Equation (14) admits Y1 and, when solved, provides the general
solution of Equation (1).



Axioms 2022, 11, 555 4 of 12

3. Illustrative Examples

In this section, we use the method of differential invariants to find general solutions
of four third-order ODEs, each of which admits a symmetry Lie algebra of order greater
than three. In each case, we identify a three-dimensional solvable subalgebra and use it to
perform complete integration of the ODE.

Example 1. Consider the ODE(
y′
)2y′′ − 2y

(
y′′
)2

+ yy′y′′′ = 0, (15)

which arises in the context of group classification of the 1 + 1 Fokker–Planck diffusion-convection
equation [18]

θt = [D(θ)θz]z − K′(θ)θz, (16)

where t is time, z is the depth, θ(t, z) is the volumetric soil water content, D(θ) is the soil water
diffusivity and K(θ) is the hydraulic conductivity, with K′(θ) = dK

dθ 6= 0.
Besides the translation symmetries

X1 =
∂

∂z
and X2 =

∂

∂t
, (17)

which are clearly admitted by (16), additional symmetries are possible only if D solves this third-
order nonlinear ODE [19]

D′(θ)2D′′(θ)− 2D(θ)D′′(θ)2 + D(θ)D′(θ)D′′′(θ) = 0, (18)

which is Equation (15) with θ and D replaced with x and y, respectively.
Equation (15) admits a four-dimensional symmetry Lie algebra spanned by the operators

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = y

∂

∂y
, X4 = y ln y

∂

∂y
. (19)

We use the solvable algebra 〈X1, X3, X4〉, for which

[X3, X4] = X3 (20)

is the only nonzero Lie bracket. We relabel the symmetries as follows:

X3 → Y1, X4 → Y2, X1 → Y3,

to ensure that the commutation relations of the operators Y1, Y2 and Y3 satisfy (2).
To carry out the reduction algorithm, we first need the following extended infinitesimal

generators:

Y(1)
1 = y ∂

∂y + y′ ∂
∂y′

Y(2)
2 = y ln y ∂

∂y + y′(1 + ln y) ∂
∂y′ +

(
y′2

y + y′′ + y′′ ln y
)

∂
∂y′′

Y(3)
3 = ∂

∂x .

 (21)

Starting with Y(1)
1 , we solve the corresponding characteristic equations

dx
0

=
dy
y

=
dy′

y′
(22)

to obtain invariants

r1 = x, v1 =
y′

y
, (23)
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and derive the differential invariant

w1 =
dv1

dr1
=

yy′′ − (y′)2

y2 . (24)

Writing Y(2)
2 in terms of r1, v1 and w1, we obtain

Y(2)
2 = v1

∂

∂v1
+ w1

∂

∂w1
. (25)

From the corresponding characteristic equation

dr1

0
=

dv1

v1
=

dw1

w1
, (26)

we obtain invariants
r2 = r1 and v2 =

w1

v1
, (27)

which, in view of (23), can be written in terms of x, y, y′ and y′′ as follows:

r2 = x and v2 =
yy′′ − (y′)2

yy′
. (28)

From (28) we derive the differential invariant

w2 =
dv2

dr2
=

(y′)2

y2 −
y′′

y
+

y′y′′′ − (y′′)2

(y′)2 . (29)

Equation (15) can now be reduced into a first-order ODE of the form

dv2

dr2
= ψ2(r2, v2)

for some function ψ2. To find ψ2, we express Equation (15) as

y′′′ =
2y(y′′)2 − (y′)2y′′

yy′
. (30)

and replace y′′′ in (29) by the right hand-side of (30). We obtain

dv2

dr2
=

[
yy′′ − (y′)2

yy′

]2

= v2
2, (31)

which is a first-order ODE that admits Y(2)
3 written in terms of r2 and v2, i.e.,

Y(2)
3 =

∂

∂r2
. (32)

Solving (31) we obtain

v2 = − 1
r2 + κ1

, (33)

where κ1 is an arbitrary constant. In terms of r1 and v1, Equation (33) is transformed, via (27), into
another first-order ODE,

dv1

dr1
= − v1

r1 + κ1
, (34)
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which admits symmetry (25). Equation (34) is another simple ODE, the solution of which is

v1 =
κ2

r1 + κ1
, (35)

where κ2 is another arbitrary constant. Using (23), we write (35) as a first-order ODE in the
variables x and y, namely

y′ =
κ2y

x + κ1
, (36)

which admits symmetry Y1 from (21). Equation (36) is the last first-order ODE in the series of
iterations and is also a simple variables-separable equation. The solution of (36) is

y = κ3(x + κ1)
κ2 , (37)

where κ3 is a further arbitrary constant. This is in fact the general solution of Equation (15).

Example 2. Consider the nonlinear ODE

y′′′ =
3
2

y′′2
y′

, (38)

which is the canonical form of every third ODE that admits a transitive fiber-preserving six-
dimensional point symmetry group [20].

Equation (38) admits a six-dimensional symmetry Lie algebra L6 spanned by the operators

X1 = ∂
∂x X2 = x ∂

∂x X3 = x2 ∂
∂x

X4 = ∂
∂y X5 = y ∂

∂y X6 = y2 ∂
∂y .

}
(39)

The symmetries X2, X3 and X4 span a solvable Lie algebra which has

[X2, X3] = X3 (40)

as the only nonzero Lie bracket. With relabelling

X3 → Y1, X2 → Y2, X4 → Y3,

the commutation relations of the operators Y1, Y2 and Y3 satisfy (2).
We extend the identified infinitesimal generators:

Y(1)
1 = x2 ∂

∂x − 2xy′ ∂
∂y′

Y(2)
2 = x ∂

∂x − y′ ∂
∂y′ − 2y′′ ∂

∂y′′

Y(3)
3 = ∂

∂y .

 (41)

Solving the characteristic equations

dx
x2 =

dy
0

=
dy′

−2xy′
(42)

arising from Y(1)
1 , we obtain invariants

r1 = y, v1 = x2y′, (43)

and derive the differential invariant

w1 =
dv1

dr1
= x

(
xy′′

y′
+ 2
)

. (44)
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In terms of r1, v1 and w1, Y(2)
2 becomes

Y(2)
2 = v1

∂

∂v1
+ w1

∂

∂w1
. (45)

From the corresponding characteristic equation

dr1

0
=

dv1

v1
=

dw1

w1
, (46)

we obtain the next set of invariants

r2 = r1 and v2 =
w1

v1
, (47)

which, in view of (43), can be written in terms of x, y, y′ and y′′ as follows:

r2 = y and v2 =
2y′ + xy′′

x(y′)2 . (48)

From (48) we derive the differential invariant

w2 =
dv2

dr2
=

y′′′

(y′)3 −
2(y′′)2

(y′)4 −
2y′′

x(y′)3 −
2

x2(y′)2 . (49)

Equation (38) can now be reduced into a first-order ODE of the form

dv2

dr2
= ψ2(r2, v2)

for some function ψ2. To find ψ2, substitute out y′′′ from (49) using (38) and then use (48) to write
the resulting equation in terms of r2 and v2. We obtain the first-order ODE

dv2

dr2
= −

v2
2

2
, (50)

which admits Y(2)
3 , written in terms of r2 and v2, i.e.,

Y(2)
3 =

∂

∂r2
. (51)

The solution of (50) is

v2 =
2

r2 − κ1
, (52)

where κ1 is an arbitrary constant. In terms of r1 and v1, Equation (52) is transformed, using (47),
into the next first-order ODE

dv1

dr1
=

2v1

r1 − κ1
, (53)

which admits symmetry (45). Equation (53) is solved easily. We obtain

v1 = κ2(κ1 − r1)
2, (54)

where κ2 is another arbitrary constant. Using (43) we write (54) as a first-order ODE in the
variables x and y, namely

y′ =
κ2(y− κ1)

2

x2 . (55)



Axioms 2022, 11, 555 8 of 12

Equation (55) admits Y1, i.e., the symmetry X4 from (39) and is the last ODE in the series of
iterations. Furthermore, it is a variables-separable ODE, the solution of which is

y =
x

κ2 − κ3x
+ κ1, (56)

where κ3 is another arbitrary constant. This is the general solution of Equation (38).

Example 3. Consider the nonlinear ODE

y′′′ + x
(
y′′
)2

+ 1
x y′′ = 0, (57)

an example of third-order ODEs that are equivalent to linear second-order ODEs via tangent
transformations [3]. Equation (57) admits a four-dimensional symmetry Lie algebra spanned by the
operators

X1 = x2 ∂
∂x + x(y + ln x− 1) ∂

∂y , X2 = x ∂
∂x , X3 = ∂

∂y , X4 = x ∂
∂y . (58)

The commutator relations of X2, X3 and X4 are such that

[X2, X4] = X4 (59)

is the only nonzero Lie bracket. This means that X1, X2 and X4 span a solvable Lie algebra and
satisfy (2), with the following labelling:

X4 → Y1, X2 → Y2, X3 → Y3.

The extensions of the identified infinitesimal generators are:

Y(1)
1 = x ∂

∂y + ∂
∂y′

Y(2)
2 = x ∂

∂x − y′ ∂
∂y′ − 2y′′ ∂

∂y′′

Y(3)
3 = ∂

∂y .

 (60)

We solve characteristic equations

dx
0

=
dy
x

=
dy′

1
(61)

associated with Y(1)
1 , we obtain invariants

r1 = x, v1 = y′ − y
x

, (62)

and derive the differential invariant

w1 =
dv1

dr1
=

y
x2 −

y′

x
+ y′′. (63)

Writing Y(2)
2 in terms of r1, v1 and w1, we obtain

Y(2)
2 = r1

∂

∂r1
− v1

∂

∂v1
− 2w1

∂

∂w1
, (64)

for which the corresponding characteristic equations are

dr1

r1
=

dv1

−v1
=

dw1

−2w1
. (65)
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We obtain from the solution of (65) invariants

r2 = r1v1 and v2 =
w1

v2
1

, (66)

which, in view of (62), can be written in terms of x, y, y′ and y′′ as follows:

r2 = xy′ − y and v2 =
y + x(xy′′ − y′)

(y− xy′)2 . (67)

From (67) we derive the differential invariant

w2 =
dv2

dr2
=

x(yy′′′ − 3y′y′′) + 3yy′′ + x2
(

2(y′′)2 − y′y′′′
)

y′′(y− xy′)3 . (68)

Equation (57) can now be reduced into a first-order ODE of the form

dv2

dr2
= ψ2(r2, v2)

for some function ψ2. To find ψ2, we use (57) to substitute out y′′′ from (68) and then use (67) to
write the resulting equation in terms of r2 and v2. We obtain the first-order ODE

dv2

dr2
= − (r2 + 2)v2 + 1

r2
, (69)

that admits Y(2)
3 written in terms of r2 and v2, i.e.,

Y(2)
3 = − ∂

∂r2
+

2r2v2 + 1
r2

2

∂

∂v2
. (70)

The solution of (69) is

v2 =
κ1e−r2 − r2 + 1

r2
2

, (71)

where κ1 is an arbitrary constant. In terms of r1 and v1, Equation (71) is transformed, using (66),
into another first-order ODE

dv1

dr1
=

κ1e−r1v1 − r1v1 + 1
r2

1
, (72)

which admits symmetry (64). The solution of (72) is

er1v1 = κ2r1 − κ1, (73)

where κ2 is another arbitrary constant. Finally, we use (62) to write (73) as an ODE in the variables
x and y. We obtain

exy′−y = xκ2 − κ1, (74)

which admits Y1, i.e., the symmetry X4 from (58). The solution of (74), namely

y = x ln
[(κ1

x
− κ2

)κ2/κ1
(κ2x− κ1)

−1/x
]
+ κ3x, κ1 6= 0, (75)

where κ3 is another arbitrary constant is the general solution of Equation (57).

Example 4. The equation we consider here

y′′′ +
3y′y′′

y
− 3y′′ − 3(y′)2

y
+ 2y′ = 0, (76)
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drawn from [1] admits a seven-dimensional symmetry Lie algebra spanned by the operators

X1 = ∂
∂x , X2 = 1

y
∂

∂y , X3 = 2 ∂
∂x + y ∂

∂y

X4 = ex ∂
∂x + ex

(
y +

1
y

)
∂

∂y , X5 = e−x ∂
∂x , X6 = ex

y
∂

∂y

X7 = e2x

y
∂

∂y .

 (77)

Using the solvable algebra 〈X1, X3, X7〉, for which nonzero Lie brackets are

[X1, X7] = 2X7 and [X3, X7] = 2X7, (78)

we relabel the symmetries as follows:

X7 → Y1, X3 → Y2, X1 → Y3,

to ensure that the commutation relations of Y1, Y2 and Y3 satisfy (2).
As in the previous examples, the following extensions of Y1, Y2 and Y3 are needed in the

calculations that follow:

Y(1)
1 = e2x

y
∂

∂y + e2x
(

2
y −

y′

y2

)
∂

∂y′

Y(2)
2 = 2 ∂

∂x + y ∂
∂y + y′ ∂

∂y′ + y′′ ∂
∂y′′

Y(3)
3 = ∂

∂x .

 (79)

We compute two invariants of Y(1)
1 ,

r1 = x, v1 = yy′ − y2, (80)

from which we derive the differential invariant

w1 =
dv1

dr1
= y(y′′ − 2y′) +

(
y′
)2. (81)

In terms of r1, v1 and w1, Y(2)
2 becomes

Y(2)
2 =

∂

∂r1
+ v1

∂

∂v1
+ w1

∂

∂w1
. (82)

Invariants of (82) are
r2 = e−r1 v1 and v2 =

w1

v1
, (83)

or, in terms of x, y and the derivatives,

r2 = ye−x(y′ − y) and v2 =
y(y′′ − 2y′) + (y′)2

y(y′ − y)
. (84)

The differential invariant derived from (84) is

w2 =
dv2

dr2
= ex

[
y3(2y′′ − y′′′)− y2

(
2
(
y′
)2

+ y′(y′′ − y′′′) +
(
y′′
)2
)
−
(
y′
)4

+ y
(
y′
)2
(2y′ + y′′)

][
y2(y− y′)2

(
y2 + y(y′′ − 3y′) +

(
y′
)2
)]−1

. (85)
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We now use Equation (76) to substitute out y′′′ from (85) and then express the resulting
equation in terms of r2 and v2 using (84). We obtain

dv2

dr2
= −v2

r2
, (86)

a first-order ODE that admits Y(2)
3 written in terms of r2 and v2, i.e.,

Y(2)
3 = r2

∂

∂r2
. (87)

The solution of (86) is
v2 =

κ1

r2
, (88)

where κ1 is an arbitrary constant. We now use (83) to express (88) in terms of r1 and v1. We obtain

dv1

dr1
= κ1er1 , (89)

which admits symmetry (82). Upon solving (89), we obtain

v1 = κ1er1 + κ2, (90)

where κ2 is another arbitrary constant. Using (80) we write (90) an order ODE in the variables x
and y,

y′ =
κ1ex + κ2 + y2

y
, (91)

which admits Y1, i.e., the symmetry X7 from (77). Equation (91) is easily solved and we obtain

y =
(

κ3e2x − 2κ1ex − κ2

)1/2
, (92)

where κ3 is another arbitrary constant. This is in fact the general solution of Equation (76).

4. Concluding Remarks

In this paper, we have provided a clear exposition of the method of differential
invariants for integrating (or, at least, reduction of order of) any higher order ODE that
admits a solvable Lie algebra. We have included in the paper four illustrative examples
that involve nonlinear ODEs of different classes and drawn from different contexts, each of
which admits a three-dimensional solvable lie algebra. The presentation of the reduction
algorithm in this paper is instructive in that the exposition is based on a third-order ODE,
which makes the method easy to appreciate. In this connection, it is our hope that this
paper will serve as an invitation to others to consider using the method of differential
invariants on ODEs that they encounter.
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Introduction

The technique of Lie group theory in resolution of differential equations 
is relatively modern.  Sophus Lie, the originator of this technique, developed 
its foundations very late into the nineteenth century.  The theorems 
discovered by Lie on second order ordinary differential equations are 
actually classical; with consequences harnessed by Kummer and Liouville 
[1,2], creating prospective gateways into functional analytic research 
(consider the necessity to find the kernel of the Kummer-Liouville transform 
addressed in the relevant section ). As  recently as the late twentieth 
century, there has been a resurgence of attempts to prove a reduction 
theorem by Lie for linearizable second order O.D.E's (see Results section  
below for the theorem).  Take as an example, the publication by Govinder 
and Leach [3].  The popular attempts encountered in academic archives fall 
short of rigorous descriptive detail.  This paper offers a well-detailed proof 
of the above mentioned reduction theorem, with a rare, tactfully systematic 
and didactic approach.

Given an nth  order O.D.E f(x, y, y’(x),…, y(n)(x))=0, there could possibly 
exist a non-trivial, non-degenerate map on its domain of definition (x, y) ↦ 
(X, Y) such that we have also f(X, Y, Y’(X),…, Y(n)(X))=0. If there exists a 
one-parameter family of such maps (Pλ)λ∈R :(x, y) ↦ (X(λ), Y(λ)) such that 
the following properties hold-

1. Pλ2 ∘ Pλ1=Pλ2 + λ1

2. P0=Identity

3. Pλ is infinitely many times differentiable with respect to x, y and λ,

then we say that the family { Pλ} is a one-parameter symmetry Lie 
group of transformations that is accommodated by the O.D.E. (X(λ), 
Y(λ)) is referred to as the global form of the group, and the corresponding 
infinitesimal form:

( ) ( )x, y x, y
x

v
y

ξ φ∂
+

∂
=

∂
∂

   

called an infinitesimal generator for the group is obtained by setting

0 0: / | : |dYandX d d
dλ λφ

λ
ξ λ = ===

Given the infinitesimal form, we can as well deduce the global form by 
integrating the autonomous system of differential equations

, ( , )(X Y) andX dYd X Y
d d

φ
λ λ

ξ= =

subject to the initial conditions 0X | xλ= = and 0Y | yλ = = .

Symmetry considerations of differential equations usually simplify 
these problems, by illuminating their reducibility properties.  The method 
of symmetry groups for differential equations gives rise to certain solutions 
called group invariant solutions, which may or may not be the entire solution 
set [4]. The most general technique for discovering Lie symmetries of an 
equation is by prolonging the infinitesimal vector field action into a jet 
space.  For the case of the O.D.E f(x, y, y ’(x),…, y(n)(x))=0,

the jet space will be an open subset of R 2+n, in which we will have the 
prolonged vector field action 

( )
1 ( )pr

in n x
i iv v

y
φ=

∂
= + Σ

∂

The prolonged vector field action on the jet space gives an induced 
invariance on that space from the underlying O.D.E.  For details on how 
the algorithm to compute the coefficients 

ixφ is derived, we refer the reader 
to [5]. Generally, the implementation of this prolongation technique in 
resolution of O.D.E's involves intuitively equating coefficients of monomials 
from the process, in line with the theorem given below.

Prolongation theorem Olver [5]

Let f(x, y, y’(x),…, y(n)(x))=0, be an O.D.E that is defined over an open 
subset M⊆R2. If G is a local group of transformations with infinitesimal 
generator v  acting on M and pr(n)v[ f(x, y, y’(x),…, y(n)(x))]=0 whenever f(x, y, 
y’(x),…, y(n)(x))=0, then G is a symmetry group of the O.D.E.

It is substitution of the initial variables with the canonical co-ordinates 
of the accommodated one-parameter symmetries that simplifies a given 
differential equation.  The pair of canonical co-ordinates (µ, ψ) must satisfy 
µ(X, Y)=µ(x, y) and ψ(X, Y)=ψ(x, y) + λ. The functions µ and ϕ(µ) for any 
real-valued analytic function ϕ are called invariants of the group.

Much work has been done on symmetry considerations in the specific 
case of linear second order O.D.E's.  For instance, we have explicit 
derivations of eight independent accommodated infinitesimal symmetries 
[6]. Detailed account of the crucial Kummer-Liouville transform which 
pertains to this class of equations [1].  In the ensuing content of this paper, 
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the importance of semi-invariants of the generic equation is frequently 
brought up.  This is an aspect required in obtaining a quality overview of 
the symmetries, which often tends to be overlooked.  Hence, a rare and 
accurate proof of Sophus Lie's theorem on linear second order O.D.E's is 
systematically constructed.

The relevance of Lie symmetries in resolution of higher order O.D.E's is 
then briefly discussed in conclusion.

Point Symmetries of Generic Second 
Order Linear O.D.E's

Point symmetries without point transformations

The equation under examination throughout this section will be the 
homogenous equation 

1 0'' ( ) ' a ( ) 0 (1).y a x y x y+ + =

We need not include the case where a1 and a0 are both constants, which 
is immediately resolved by means of the characteristic quadratic equation.  
Although the generic case in non-homogenous, the superposition principle 
for linear O.D.E's emphasizes the need for solving (1).  Solutions to (1) exist 
locally whenever 

1
1( ) ( ),a x C I∈  0a ( ) ( )x C I∈

for an open, non-empty subinterval (I) of the real number line, so we 
take this as given a-priori.

Let ‘v’ be a vector field 
x y

ξ φ∂ ∂
+

∂ ∂
defined on some open subset U ⊆ I × 

R. The second prolongation of ‘v’ is given as (2) : x xx

x xx

pr v v
y y

φ φ∂ ∂
= + +

∂ ∂
.  

By the given prolongation theorem, equation (1) accommodates ‘v’ if

(2)
1 0[ '' (x) y' a (x) y] 0pr v y a+ + =  whenever 1 0'' (x) y' a (x) y 0y a+ + = ,

in which case ‘v’ is referred to as an infinitesimal Lie symmetry of (1). 
The collection of all infinitesimal symmetries accommodated by a differential 
equation forms a linear space referred to as a Lie algebra. Symmetry 
considerations of (1) arise from the need to simplify or give more elaborate 
procedures for computing its solutions, and this leads us to implement the 
prolongation technique for differential equations. To this end, we compute 
the coefficients φx and φxx respectively to be

2) (( [ )x
x x y xx xx x x x xD yy y y yξ ξ ξφ ξφ φ φ= + = + − +−

2(y ) ,] x yxx xx x y xx xyyy yξ ξ ξφ ξφ+ + = + − −

2 2)( 2 ( )xx
xx x xxx xx xy x yy xyD y y Yφ φ ξ ξ φ φ φ+ = + += −

2 32 (y ) 2 )3 (yy x xx x xy x x xx y yyx x x xy yY yyξ ξ ξ ξ ξφ+ − −−− −

The symbol ‘D’ stands for the total derivative, subscripts of ξ 
and φ symbolize partial derivation, and otherwise, subscripts denote 
total derivation with respect to the given variables. We will now go into 
considerable detail on how to compute the infinitesimal symmetries (or 
generators) of (1) directly.  First of all, we determine that

(2)
1 0[ '' ( ) ' a ( ) ]pr v y a x y x y+ +

1 0 0 1'( ). a '( ) a ( ) a (. . )'( ) x xxa x x xy yx xξ ξ φ φ φ++= ++

1 0 0 1' ' a 'y a ( ' 'x
y xa y a y yφ φ φξ ξ ξ+ + + −= +

2 2( ') ) 2 ' ( ') ''y xx xy yy yy y y yξ φ φ φ φ− + + + +

2 3' 2 ( ') 2 '' 3 ' '' ( ')xx xy x y yyy y y y y yξ ξ ξ ξ ξ− − − − − .

Imposing that (1) accommodates ‘v’, we use the symmetry condition 

(2)
1 0[ '' ( ) ' a ( ) ] 0pr v y a x y x y+ + =   whenever, 

1 0'' ( ) ' a ( ) 0y a x y x y+ + =  to 
determine further that

3 2
1 1 1( ') [ 2 2 ]( ') [ ' 2yy yy xy y x xyy a y a aξ φ ξ ξ ξ ξ φ− + − + + − +

1 0 0 0 1 02 3 ] ' 'y a 2 0xx x y x xx xa a y y a a a yξ ξ ξ ξ φ φ φ ξ− + + + + + + + =

 Because the coefficients from the infinitesimal generators do not 
depend on derivatives of y, we set the coefficients of (y’)3 , (y’)2 and y’ above 
each equal to zero to realize three equations.  A fourth equation also arises 
by way of the other terms.

From the coefficient of (y’)3, we have ξyy= 0 ↔  ξ(x, y) = A(x) + B(x).y.

From the coefficient of (y’)2, we have

φ(x,y)=[C(x)+2A’(x)-2a1A(x)]y+B’(x)y2 - a1B(x)y2 +D(x). 

From the coefficient of y’,

-3 a1' A(x) - 3 a1' B(x)y - 3 a1A'(x) - 3 a1B'(x)y + 2C'(x) + 3A''(x) + 3B''(x)

y + 3 a0B(x) y = 0  

giving two consequential equations;

-3 a1A(x)+2C(x)+3A′(x)=k                           (I) 

- a1 ′B(x)- a1B′(x)+B′′(x)+a0B(x)=0               (II),

from the free terms and coefficients of y respectively, where k is a 
constant in (I).  Afterwards, the terms from the symmetry condition which 
are not multiplied by y′ yield three more consequential equations;

a0′B- a1 a1′B- a1
2B′+B′′′-2 a1′B′- a1 ′′B+ a0 a1B=0             (III),

a0′A+2 a0A′+ a1C′-2 a1 a1′A-2 a1
2A′+C′′+2A′′-2 a1′A-4 a1′A′=0       (IV),

D′+ a1 D′+ a0 D=0                         (V).

Equations (II) and (III) are both derived directly from the adjoint of the 
original equation (1), that is, 

B′′- (a1B) ′+ a0 B=0                     (II′).

By straightforward computations involving (I), equation (IV) can be 
reduced to the conditions

a0′A+2 a0A′=(C′′+ a1C′)/3              (IV′),

A′′+(4 a0 - a1
2

 - 2a1′)A′+(2 a0′
 - a1 a1′- a1′)A=0           (IV′′).  

At this juncture, we have obtained sufficient information to tell the most 
general appearances of the coefficient functions from the infinitesimal 
symmetries.  Let the constant k in (I) be denoted c1.  In (V), we determine 
that D(x)=c2y1+c3y2, where y1 and y2 are specific linearly independent 
solutions of (1).  From (II′), we have 

1 4 1 5 2( ) exp( )[ ].B x a dx c y c y= ∫ +

To solve for A(x), it is helpful to examine the normal form of (1), that is,

(y*)'' + p(x)y* = 0                (1')

obtained via the point transform  

( )1y exp( 1/ 2 )
x

a d yτ τ= − ∫ *

Hence, the coefficient of y* in the normal form, which is identified as the 
semi-invariant of (1) is given as, 

2'
1 1) 0 2

p(
4

aa
x a= − − .  Therefore, we can rewrite (IV′′) as A''' + 4pA' + 

2p'A = 0.  It is then easy to check that y*1 . y*2 is a solution to (IV'') where y*1 , 

y*2 are both solutions to the normal form of (1). Therefore, we determine the 
most general solution to the third order linear O.D.E (IV'') to be:

2 2
1 6 1 7 1 2 8 2exp( )[ 2 ].A a dx c y c y y c y= ∫ + +
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This is substituted in (I) to give 
' ' ' '1

1 1 1 6 1 1 7 1 2 1 2 8 2 2
1C ( 3 3 ') 3.exp( )[ ( ) ].
2 2

cc a A A a dx c y y c y y y y c y y= + − = − ∫ + + +   

Hence, we obtain the most general point symmetry of (1), without any 
prior point transformation, to be 

2
1 1( ) ([ 2 ' 2a ] [B' a ] ) .A By c A A y B y D

x y x y
ξ φ∂ ∂ ∂ ∂

+ = + + + − + − +
∂ ∂ ∂ ∂

After substituting the values obtained above, we can separate the most 
general symmetry by the eight constants 8{ } 1ci i= as follows:

8

1
i i

i
c v

=
∑
Suggestive of an eight-parameter symmetry group of (1).  The process 

of computing the symmetries as done above for this case turns up an obvious 
problem: almost all the single-parameter symmetries depend on having a 
specific solution y1 or y2 of (1) in hand a-priori. The only single-parameter 

symmetry which does not depend on any specific solution is y
y

∂
∂

, which 

corresponds to the so called scaling group.  It is accommodated by all 
linear differential equations.  In this study, the scaling group reduces (1) to 
a Riccati equation of the first order, when applied alone. We observe this 
development by computing the global form of this one-parameter group to 
be

( , ) ( , ),X Y x e yλ=

and then a canonical co-ordinate for the group is ψ ln  y=  because 
ψ( , ) ψ( , )X Y x y λ= + Substituting the dependent variable in (1)  with the 
canonical co-ordinate, we obtain the first order non-linear Riccati equation

2w' w ( ) ( ) 0,1 0a x w a x+ + + =     where   'w Ψ= .

In fact, there is also a reverse correspondence in this regard, being 
that every Riccati equation can be transformed into a linear O.D.E of the 
second order.

We will hereby make a few further remarks on Riccati equations, as 
they are relevant to this study.  Special Riccati equations have the form

2y'(x) ay ,abx= +

where a, b, α are real constants. When α = 0, the special Riccati 
equation is integrated by separation of variables:

2 .dy dx
ay b

=
+

Another easily solved case is α=-2, in which substitution of the 
dependent variable z=1/2 maps the above Riccati equation to the form 

2dz za b
dx x

 = − −  
 

which can then be integrated by quadrature. Riccati and Bernoulli 
both discovered that the special Riccati equation can be mapped to the 
form wherein α=0, and can hence be integrated by quadrature in terms of 
elementary functions, if α takes values in one of the two rational sequences

4 4, 1,2,3,...
2 1 2 1

n n n
n n

   − − =   − +   

The limit of both of these sequences is -2. Later, Liouville showed that 
these Riccati equations can be mapped to a form that can be integrated by 
quadrature in terms of elementary functions only if α takes a value in one of 
these two rational sequences.

In the case of a general Riccati equation
2y' P( ) Q( ) ( )x x y R x y= + +

it is linearizable by a point transformation of the dependent variable y to 
a linear O.D.E of the first order, if and only if it has a constant solution [7]. 
More details on the simplification and integration of such O.D.E's can be 
readily accessed, but we now return our focus to point symmetries of (1).

To modify the result on symmetries of (1) obtained prior to remarks on 
Riccati equations, there are point transformations which we may implement 
before employing the prolongation technique.  The most general point 
transformation which preserves the order and linearity of (1) is called the 
Kummer-Liouville (KL) transformation, and we will unravel more subtle 
properties of the infinitesimal symmetries by engaging it.

Point symmetries with KL point transforms

The Kummer-Liouville transform is given by 
2y v( ) , ( ) ( ); , ( ), uv 0x z dt u x dx KL u v C I x I= = ∈ ≠ ∀ ∈

which rearranges (1)  to be of the form
1

1 0 1 0( ) ( ) 0 (2); ( ) ( ), ( ) ( )z b t z b t z b t C J b t C J+ + = ∈ ∈    

Where J is an open, non-empty sub-interval of the real number line. 

Theorem (St ckel - Lie) [1]

The Kummer-Liouville transform is the most general point transform 
which preserves the order and linearity of (1).

For clarity, we will use the prime sign (' ) to denote differentiation with 
respect to x and an overset dot to denote differentiation with respect to t. 
Observe that we need the following three to occur in order to obtain (2)  from 
(1)  by way of transform (KL).

(i)  We must have the non-commutative factorization

2 1
' ' 'Ly ( ) ( ) 0;v u v dD r t u D r t u y D

v u v dx
  = − − − − − = =  
  

where r1 (t) and r2 (t)satisfy the Riccati equations:

2 2
1 1 1 1 0 2 2 1 2 1 0( ) ( ) 0; ( ) ( ) 0r r b t r b t r r b t r b b t+ + + = − − + − =

 

(ii)  1 12 ' ' ( ) ( )1v v u u b t u a x− −− − + =

(iii) 2'' ' ( ) 0.1 0 0v a v a v b t u v+ + − =

The reduction of (1) to (2)  was posed as Kummer's problem, which was 
to find the set of all KL transformations that could do this.  It is known that 
Kummer's problem is always solvable.  As a combination of the above three 
requirements for the KL transform, we get that (1) can be reduced to (2) if 
and only if the following two conditions are satisfied

1
2

1 1
1 1( ) exp( ( ) ) exp( (t) ) ( )
2 2

v x u a x dx b dt E−= − ∫ ∫

2
2

0 0 2
1 ''' 3 '' ( ) ' ( ) (E )
2 ' 4 '

t t B t t A x
t t

 − + = 
 

where 
2 2

1 1 1 1
0 0 0 0

'A ( ) ; ( )
2 4 2 4

a a b bx a B t b= − − = − −


are respectively called the semi-invariants of (1)  and (2).  We solve (ii) 
over v in order to get (E) and then we substitute (iii) by (E) using the relation 
u=t′ to get (E2).

At the crux, we wish to reduce (1) to a linear O.D.E of autonomous form, 
that is, one with constant coefficients;

1 0 0 (2 '),z b z b z+ + = 

where the coefficient b0 is a real number, while b1 may either be real or 
purely imaginary.

(2′) can be factorized either through the noncommutative operators of 
the first order-

2 1
' ' ' 0;y

v u vL D r u D ru y
v u v

  = − − − − − =  
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or through the commutative operators of the first order-

2 12

1 1 ' 1 ' 0y
v vL D r D r y

u u uv u uv
  = − − − − =  
  

Where r1, r2 are roots of the characteristic equation; r2+b1r+b0=0.

We remark that (1) can be reduced to (2') by transform KL if and only if 
the following occur.

(i)  (1) admits a certain one-parameter Lie symmetry

(ii) u(x) satisfies   
221 '' 3 ' 21 ( )0 02 4 4

bu u b u A x
u u

 −   − + + =      

(iii) 
3'u'' ( ')

''' 6 6 4 ' 2 ' 00 02
u u

u A u A u
u u

− + + − =

(iv)The multiplier v and the kernel u of the KL transform are related 
through the formulas

1 1

1
2 1 1( ) exp( ( ) ) exp( );

2 2
v x u a x dx b udx

−

= − ∫ ∫
2

1 0 0v'' a ' a ( ) 0.v v b t u v+ + − =

(v)  The resolvent of (2') is given by the function 

 ( )1
1)R( expx u a dx−

= −∫
and it satisfies

(vi) 2''' 3 a '' (4 a ' 2 a ) ' (2 a ' 4 a ) 0.1 0 1 1 0 0 1R R a R a R+ + + + + + =

The one-parameter existence follows from the reducibility of (1) to 
autonomous form (2'), as will soon be discussed. Condition (iii) can be 
obtained from (ii) by calculation, and then (vi) can be obtained from (iii) by 
way of the resolvent function

1 2R( ) : y ( ) ( ).x x y x=

To be substituted in the resolvent function, we have linearly independent 
solutions of (1) given by 

( )
2

1/2 1
1,2 1 0y ( ) exp 1/ 2 ( ) exp ;

4
bx u a x dx b udx−  

= − ± −  
 

∫ ∫
for the case of KL transform to autonomous form (2') .

Focusing now on the general symmetry of (2), we must recall the KL 
substitutions 

 y=vz, t=∫udx, so as to observe that
01

'2
21

1 02

2 2 0

a xa x

b uvv u v v v uy y b u y b u
v u v v vu v

′′ ′ ′′ − + − + + − + − + =  
  

′
′



′
′ ′





              (3).

By applying the second prolongation under the condition b0′= b1′=0, we 
realize that (3) admits the infinitesimal generator 

1
1 'v y
u x vu y

χ ∂ ∂
= +

∂ ∂

which precisely corresponds to the case of reduction to autonomous 
form (2'). Thus, the canonical coordinates for χ1 are made of the pair (t, z), 
where z:=y/v is called an invariant and t=∫ udx. The invariant is obtained by 
integrating the differentials

,
'

dx dy uvudx dy
yvξ φ

= ⇔ =

Resulting in y/v=constant, which is why y/v is an invariant. The other 
canonical coordinate is simply

0

.
1/

x

x

d udx
u
τ

=∫ ∫
Since the pair of canonical coordinates results in the reduction of (1) 

to autonomous form, the Lie symmetry χ1 is the requirement addressed 
in condition (i) above. Involving the autonomous case, equation (3) yet 
again accommodates an eight-parameter Lie symmetry, and so seven other 
independent single-parameter symmetries besides χ1 are mentioned as 
follows:

2 v
y

χ ∂
=

∂
                              3 1 udxχ χ= ∫

4 2 udxχ χ= ∫                         
5 1

y
v

χ χ=
  

2
6 2 7 1 2( ) ( )y yudx udx

v v
χ χ χ χ χ= = +∫ ∫

2
8 1 2.( ) ( )y yudx

v v
χ χ χ= +∫

 The linear space spanned by χ1 to χ8 is a Lie algebra that is stable 
under the Lie bracket structure [.,.] as shown in the table included below 
Table 1. Instability under the Lie bracket or commutator would have 

implied the necessity to include more vector fields, other than{ }8

1i i
χ

= , to 

the infinitesimal generators spanning the Lie algebra accommodated by 
(3).  This is at large, due to the fact that O.D.E's only accommodate finite 
dimensional Lie algebras.  The element in the i'th row and j'th column of the 
table is the vector field [χi, χj].

Note that the characterization of Lie brackets [X, Y] f = X(Y(f)) - Y(X(f))  
for , jiX X Y Y

x xi j
∂ ∂

= =
∂ ∂

and any C∞ function f gives us the formula:

[ ], Y .
i iY Xj jX X Y

x x xj j ii j

 ∂ ∂ ∂ ∑= −∑  ∂ ∂ ∂  

Table 1. [χi, χj] is the ith row, jth column (1 ≤ i, j ≤ 8).

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8

χ1 0 0 χ1 χ2 0 0 2χ3+χ6 χ5

χ2 0 0 0 0 χ1 χ2 χ4 χ3+2χ6

χ3 -χ1 0 0 χ2 -χ5 0 χ7 0

χ4 -χ2 0 -χ2 0 χ3-χ6 χ4 0 χ7

χ5 0 -χ1 χ5 χ6-χ3 0 -χ5 χ8 0

χ6 0 -χ2 0 -χ4 χ5 0 0 χ8

χ7 -2χ3-χ6 -χ4 -χ7 0 -χ8 0 0 0

χ8 -χ5 -χ3-2χ6 0 -χ7 0 -χ8 0 0

The Lie brackets of the infinitesimal symmetries in their initial computed 

forms { }8

1i i
v

=
 are not so readily determined.  Nevertheless, the symmetries 

{ }8

1i i
χ

=  can be obtained as linear combinations of { }8

1i i
v

= from functional 

specifications for the kernel (u) and multiplier (v) stated above.  For instance, 
we have the chiefly required symmetry for conversion to autonomous form 

obtained as: 
1

1 7 1 1.2
v b vχ = +  

Although the KL transform gives more insight into the symmetry 
concept being addressed, all the infinitesimal generators except χ6 (which 
corresponds to the scaling group) depend on the special kernel function 
u, and this is still indirectly tantamount to solving (1) beforehand. For this 
reason, construction of algorithms for computing the kernel has a substantial 
heuristic value in itself. 

Results

It is useful to engage a second point transformation to (1) in discussions 
of its Lie symmetries, which is the reduction to normal form. After the generic 
KL transform, we reduce (2) into normal form by changing the dependent 
variable to z  where 
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1
1( ) exp ( )

2

t

z z b dτ τ
 −

=  
 

∫
and the result of this transform is 

22
1 1

02 0 (2 '')
2 4
b bd z b z

dt
 

+ − − = 
 



where 
2

1 1B0 0 2 4
bb

b= − −


 has previously been identified as a semi-

invariant of (2). Having presented sufficient pertinent information, this 
particular transform is geared towards validating Sophus Lie's theorem on 
linear O.D.E's of the second order, as stated below.

Theorem (Lie's theorem on linear second order O.D.E's) [8]

The O.D.E (1) can be mapped via a point transform into the form 0Y = , 
which implies accommodation of the eight-dimensional Lie algebra sl(3,R).

Now, we can map (1) into the above mentioned form from (2'') by finding 
which value of u solves B0=0.  What we obtain concretely is 

0z =

In (2'') after a double point transformation of (1). The details for 
justification of this transformation are given below.

By setting the semi-invariant of (2) equal to zero, we get the semi-
invariant of (1) to be 

2

0
1 '' 3 ' .
2 4

u uA
u u

 = −  
 

It is clear that the associated homogenous equation A0=0 accommodates 
the scaling group, of which the global form is Pλ(x,u)=(x,eλu), so we obtain a 
canonical coordinate for this one-parameter group to be ( )ln uψ = .Recall 
the condition that u ≠ 0 on the interval I of interest.  If u is negative then 

( )ln uψ = ,and this sign change will not tamper significantly with the result 
of the ensuing computation.  Consider the first case,

2exp( ) ' 'exp( ) u'' ''exp( ) ( ') exp( ),u uψ ψ ψ ψ ψ ψ ψ= → = → = +

and we have the following simplification for the semi-invariant of (1);
2 2

2 2
0

1 3 '' ( ') '( '' ( ') ) ( ')
2 4 2 4 2 4

w wA ψ ψψ ψ ψ= + − = − = −

where ' wψ = . The equation given just above is a Riccati equation, 
so we hereby employ the correspondence between Riccati equations and 
second order linear O.D.E's.  By substituting w with 2 'ζ

ζ
−  , the Riccati 

equation becomes '' 00Aζ ζ+ = .

This linear equation is always solvable for ζ in C2(I), from which we 
recover u by reversing the prior substitutions as shown below.  

2 'w ζ
ζ

= −

2ln( )wdx kζ⇒ = − +∫

2ln( ) kψ ζ⇒ = − +

2exp[ 2 ln( ) ]
keu kζ

ζ
⇒ = − + =

where k is a constant of integration and ζ is a non-trivial solution to 
(1'). This given value of u solves B0=0. 

We should remark that the transform from (1) into its own normal form 
(1') is only a particular case of the (KL) transform with the functions

1 *.
1( ) 1; ( ) exp ( ) ;
2

u x v x a x dx z y ≡ = − = 
 ∫

Therefore, the kernel u of transform KL enables us to restructure the 
Lie symmetries of (1), so as to reduce this O.D.E into various simpler forms.  

We can take u as the auxiliary variable to examine the two most important 
cases; namely b0′= b1′= 0   for reducibility of (1) to autonomous form, and 
B0=0 for reducibility of (1) to the form 0Y = , which corroborates Sophus 
Lie's theorem.

As a further remark, it is noteworthy that an arbitrary O.D.E of the 
second order is linearizable if and only if it accommodates an 8-parameter 
symmetry group, which is the symmetry group of maximal dimension for 
this class of equations.  If it does accommodate such a group, then it can 
be mapped by point transformation(s) to the equation 0Y = . If it does not 
accommodate a symmetry group of dimension 8, then it accommodates 
a 0-, 1-, 2-, or 3-parameter symmetry group. This is another aspect of 
Sophus Lie's categorization of second order ordinary differential equations.  
For example, as we have seen above, the non-linear differential equation 

involved in the semi-invariant of (1), which is given as
21 '' 3 ' 0

2 4
u u
u u

 − = 
 

, is 

linearizable. The Lie algebra of infinitesimal symmetries accommodated by 
this equation is spanned by the eight vector fields listed as follows.  

3
2

1 xu
u

χ ∂
=

∂       
1 1

2 2
2 2xu u

x u
χ

− ∂ ∂
= −

∂ ∂          
1

2
3 u

x
χ

− ∂
=

∂
           4 x

x
χ ∂

=
∂

5 x
χ ∂

=
∂

        6 u
u

χ ∂
=

∂
              

3
2

7 u
u

χ ∂
=

∂
              2

8 2x xu
x u

χ ∂ ∂
= − +

∂ ∂

Conclusion: Point Symmetries of Higher 
Order O.D.E's

It is befitting to pass a few further comments on point symmetries of 
O.D.E's of order three and higher, following the details elucidated on those 
of the second order.  For each given order, there is a maximal dimension 
for admissible symmetry groups [9], such as is eight for equations of the 
second order.  Whenever an O.D.E admits a Lie group of one-parameter 
symmetries of the maximal dimension, then it is linearizable by a point 
transformation.  Moreover, whenever the canonical coordinates from an 
accommodated one-parameter symmetry are employed by change of 
variable(s), the original O.D.E is transformed into another form with order 
one less. For instance, we have already seen as an explicit application of 
the scaling group in transforming the second order equation (1) into a first-
order Riccati equation.

The main challenge that lingers in the midst of an abundance of one-
parameter symmetries is that, whenever a given equation is reduced to 
another form by any one of them, the resulting form usually fails to inherit 
any of the symmetries which were present at first [10]. To simplify further 
using the Lie symmetry technique, one would then have to perform the 
infinitesimal symmetry prolongations again, which may or may not yield any 
vector fields. Not every differential equation admits a Lie symmetry to begin 
with, and computer algebra is encouraged for equations with order three or 
higher due to the rapid growth of the number of computations involved with 
each increment in order (and degree) of the differential equations. These 
signal a number of pronounced limitations involved with the approach of Lie 
groups.  Nevertheless, whenever present, the wieldiness of Lie symmetries 
provides several opportunities for greater in-depth study of differential 
equations at large, as exemplified above.
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Abstract-Computer algebra packages and tools that aid in the computation of Lie symmetries 
of differential equations are reviewed. The methods and algorithms of Lie symmetry analysis are 
briefly outlined. Examples illustrate the use of the symbolic software. 

Keywords-Lie symmetry software, Lie symmetry analysis, Symmetry reduction, Group-invari
ant solutions, Symbolic computations. 

1. INTRODUCTION 

Sophus Lie (1842-1899) pioneered the study of continuous transformation groups that leave 
systems of differential equations invariant. Lie's work [1-3] brought diverse and ad hoc integration 
methods for solving special classes of differential equations under a common conceptual umbrella. 
Indeed, Lie's infinitesimal transformation method provides a widely applicable technique to find 
closed form solutions of ordinary differential equations (ODEs). Standard solution methods for 
first-order or linear ODEs can be characterized in terms of symmetries. Through the group 
classification of ODEs, Lie succeeded in identifying all ODEs that can either be reduced to lower
order ones or be completely integrated via group theoretic techniques. 

Applied to partial differential equations (PDEs), Lie's method [2] leads to group-invariant 
solutions and conservation laws. Exploiting the symmetries of PDEs, new solutions can be 
derived from known ones, and PDEs can be classified into equivalence classes. Furthermore, 
group-invariant solutions obtained via Lie's approach may provide insight into the physical models 
themselves, and explicit solutions can serve as benchmarks in the design, accuracy testing, and 
comparison of numerical algorithms. 

Nowadays, the concept of symmetry plays a key role in the study and development of math
ematics and physics. Indeed, the theory of Lie groups and Lie algebras is applied to diverse 
fields of mathematics including differential geometry, algebraic topology, bifurcation theory, to 
name a few. Lie's original ideas greatly influenced the study of physically important systems of 
differential equations in classical and quantum mechanics, fluid dynamics, elasticity, and many 
other applied areas [4-8]. 

The application of Lie group methods to concrete physical systems involves tedious computa
tions. Even the calculation of the continuous symmetry group of a modest system of differential 
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equations is prone to errors, if done with pencil and paper. Computer algebra systems (CAS) 
such as Mathematica, MACSYMA, Maple, REDUCE, AXIOM and MuPAD are extremely useful 
for such computations. Symbolic packages [9-11], written in the language of these CAS, can find 
the determining equations of the Lie symmetry group. The most sophisticated packages then re
duce these into an equivalent but more suitable system, subsequently solve that system in closed 
form, and go on to calculate the infinitesimal generators that span the Lie algebra of symmetries. 

In Section 2, we discuss methods and algorithms used in the computation of Lie symmetries. 
We address the computation of determining systems, their reduction to standard form, solution 
techniques, and the computation of the size of the symmetry group. In Section 3, we look beyond 
Lie-point symmetries, addressing contact and generalized symmetries, as well as nonclassical or 
conditional symmetries. 

Section 4 is devoted to a review of modern Lie symmetry programs, classified according to the 
underlying CAS. The review focuses on Lie symmetry software for classical Lie-point symmetries, 
contact (or dynamical), generalized (or Lie-Backlund) symmetries, nonclassical (or conditional) 
symmetries. Most of these packages were written in the last decade. Researchers interested 
in details about pioneering work should consult [9,10,12]. In Section 5, two examples illustrate 
results that can be obtained with Lie symmetry software. In Section 6 we draw some conclusions. 

Lack of space forces us to give only a few key references for the Lie symmetry packages. A 
comprehensive survey of the literature devoted to theoretical as well as computational aspects of 
Lie symmetries, with over 300 references, can be found elsewhere [11]. 

2. METHODS AND ALGORITHMS 

2.1. Computing the Determining Equations 

The classical "Lie symmetry group of a system of differential equations" is a local group of point 
transformations, meaning diffeomorphisms on the space of independent and dependent variables, 
which map solutions of the system into other solutions. 

There are three major methods to compute Lie symmetries. The first one uses prolonged vector 
fields, the second utilizes differential forms (wedge products) due to Cartan. The third one uses 
the notion of "formal symmetry." A detailed account of the technical steps of the first method, 
which is used in most of the Lie symmetry packages, together with a brief discussion of the two 
other methods is given in 111]. 

For a system of m differential equations, 

i = 1,2, ... ,m, (1) 

of arbitrary order k, with p independent and q dependent (real) variables, denoted by x = 
(Xl,X2, ••• ,Xp ) E RP, u = (ul,u2 , ... ,uq ) E lRq , the group transformations have the form x = 
Aa(x, u}, u = nG(x, u), where the functions AG and nG are to be determined. 

In the method of prolonged vector fields [2], instead of looking for the Lie group G, one looks 
for its Lie algebra C, realized by vector fields of the form 

(2) 

To determine the coefficients 1'}i(X, u) and <PI (x, u) one constructs the kth prolongation pr(k)a of 
the vector field a, applies it to the system (I), and requests that the resulting expression vanishes 
on the solution set of (1). 

The result is a system of linear homogeneous PDEs for'T/i and <PI, in which x and u are treated 
as independent variables, called the determining or defining equations for the symmetries of the 
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system. Solving these by hand, interactively or automatically with a symbolic package, will give 
the explicit forms of 17i (X, u) and <PI (x, u). 

This sounds straightforward, but the method involves tedious calculations because the length 
and complexity of the expressions increase rapidly with p, q, m, and especially k. The procedure, 
for which the details are in [11,13], consists of two major steps: deriving the determining equa
tions, and solving them explicitly. From the Lie algebra of symmetry generators, one can obtain 
the Lie group of point transformations upon integration of a system of first-order characteristic 
equations. 

2.2. Reducing the Determining Equations 

A detailed review of innovative ways of classifying, subsequently reducing, and finally solving 
overdetermined systems of linear homogeneous PDEs is given in [11]. 

To design a reliable and powerful integration algorithm for a system of determining equations 
the system needs to be brought into a standard form. 

Standard form procedures can be viewed as generalizations to systems of linear PDEs of the 
Gaussian reduction method for matrices or linear systems, except that integrability conditions 
are also added to the system. As defined by Reid [14], a standard form is obtained by repeating 
the following steps: 

(i) write each equation in solved form with respect to its highest order derivative, 
(ii) replace these highest order derivatives throughout the rest of the system, 

(iii) add any new equations arising from integrability conditions. 

Reid and collaborators [14-19], Schwarz [20-22]' and Wolf and Brand [23-27]' partially imple
mented algorithms to reduce systems of PDEs. Their work led to sophisticated symbolic codes 
in MACSYMA, Maple, and REDUCE for that purpose. 

In [21,22], Schwarz describes the algorithm InvolutionSystem, based on the theory of differen
tial equations of Riquier and Janet, to transform a linear system of PDEs into involutive form. 
If all consistent orderings for the terms in the system of PDEs are known, the algorithm Invo
lutionSystem may be applied repeatedly to determine a universal Grabner basis [22]. Schwarz 
designed InvolutionSystem to determine the size of the Lie symmetry group of a given system 
of PDEs without having to integrate the determining equations. We devote Section 2.4 to this 
important topic. 

Reid's algorithm standard_form [14,15] also has its roots in the classical Riquier-Janet Theory. 
The algorithm was first implemented in MACSYMA, and a Maple version became available 
later [19]. It takes as input the system of PDEs and a matrix which specifies a complete ordering 
on the derivatives appearing in the system. It then reduces the system of PDEs to an equivalent 
simplified ordered triangular system with all integrability conditions included and all redundancies 
(differential and algebraic) eliminated. 

In contrast to using the monomials of the Riquier-Janet Theory, Reid's algorithm implements 
an equivalence class approach to the problem of bringing a system of PDEs into a standard form. 
Once that is achieved, one can continue with the automatic determination of a Taylor series 
solution of the system to a specified finite degree. 

Reid and Wittkopf's package [19] facilitates automated interfacing with major symmetry pack
ages such as DIMSYM [28,29]' LIESYMM [30], and SYMMGRP.MAX [12], and also with the 
differential Grabner basis package DIFFGROB2 [31]. A TEX interface between standard_form 
and Hickman's program [32] that uses physical variable notation has been provided by Lisle. 
Full details and examples of the package, which includes other powerful algorithms for symmetry 
analysis of PDEs, are given in [17,19]. 

Reid and McKinnon developed a recursive algorithm called Rsolve_Pdesys [33] that builds 
on Reid's standard_form [14], and finds particular solutions of linear systems of PDEs using 
only ODE solution techniques. Applied to symmetry problems, their algorithm will find all 



118 W. HEREMAN 

polynomial/rational solutions of the determining equations provided the symmetry group is finite 
dimensional. 

Recently, Reid et ai. [34] designed a new algorithm which uses a finite number of differentia
tions and algebraic operations to simplify analytic nonlinear systems of PDEs to what they call 
'a reduced involutive form' (Tif), which includes the integrability conditions of the system and 
satisfies a constant rank condition. Ril combines features of geometric involutive form algorithms 
and the Reid-Wittkopf standard form algorithm. In [34] an algebraic realization of the Til algo
rithm is given for polynomially nonlinear PDE systems. Called grabner.Tit, it uses Buchberger's 
algorithm [35,36] for its nonlinear simplifier in addition to algorithms for constructing the radical 
of a polynomial ideal, and, for example, it drastically simplifies nonlinear systems of determining 
equations arising from nonclassical symmetries. A worked example, involving a coupled cubic 
nonlinear Schrodinger system in 3 + 1 dimensions, is given in [34]. 

In the full computer implementation of "triangulation" algorithms, one can take advantage of a 
"differential" generalization of Buchberger's algorithm for Grobner bases [35,36]. That technique 
reduces systems of nonlinear (and, consequently, also linear) PDEs to standard form. 

The Maple program DIFFGROB [37] and its second version DIFFGROB2 by Mansfield [31], 
are designed to compute the differential Grobner basis (DGB) for polynomially nonlinear PDE 
systems. DIFFGROB2 calculates in a systematic way: elimination ideals, integrability conditions, 
and compatibility conditions of a system of nonlinear PDEs of polynomial type, up to certain 
technical constraints fully explained in [31]. 

FUndamental tools in Mansfield's package are the Kolchin-Ritt algorithm, a differential ana
logue of Buchberger's algorithm with pseudo-reduction instead of reduction (to ensure termi
nation), and the diffgbasis algorithm, which takes into account algebraic as well as differential 
consequences of nonlinear systems. These two algorithms compute the DGB for a wide range of 
systems of PDEs. 

The package DIFFGROB2 has proven to be an effective tool in solving overdetermined systems 
of linear and nonlinear PDEs in the study of classical and nonclassical symmetries [11]. For more 
information about DIFFGROB2 and illustrations of its use, the reader should consult [31,38-43J, 
in particular the manual [31], which contain extra references. 

Wittkopf's algorithm diff.reduce [44] is similar to Mansfield's algorithm in that it attempts 
to reduce polynomially nonlinear systems of PDEs to the form of a DGB. Wittkopf's algorithm 
uses reduction rather than pseudo-reduction, and incorporates strategies for efficient memory 
management. 

The program CRACK by Wolf and Brand [25-27,45] also carries out a Grobner basis analy· 
sis but in slightly modified form. First, the algorithm is enriched by the integration of PDEs 
whenever possible, but in such a way, that the new integrated PDEs are still polynomial in the 
Grobner basis. Selective integration can reduce the complexity and aid in solving the determining 
equations, in particular for systems for which pure Grobner basis methods would be unfeasible. 
Second, for efficiency reasons, only a restricted completion algorithm is used. 

Several other differential-algebraic and geometric approaches and corresponding implementa. 
tions are possible to reduce linear and nonlinear systems of PDEs [11,34]. 

2.3. Solving the Determining Equations 

The most challenging part of Lie symmetry analysis by computer, involves the design of an 
"integrator" for the overdetermined systems of linear homogeneous PDEs. Two other important 
topics tie in with the integration of the determining equations: 

(i) the transformation of the determining equations into standard and passive forms; and 
(ii) the computation of the size of the symmetry group, 

discussed in Sections 2.2 and 2.4, respectively. 
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The design of algorithms and programs to bring the determining equations into standard form 
were a major step forward. Once systems are decoupled or reduced to standard involutive form, 
subsequent integration is more tractable and reliable. One could use separation of variables, 
standard techniques for linear differential equations, and specific heuristic rules as given in [11]. 
The only determining equations left for manual handling should be the "constraint" equations 
or any other equations whose general solutions cannot be written explicitly in closed form. 

In order to be able to make the determination of certain types of Lie generators into a decision 
procedure, one needs an algorithm for solving linear homogeneous ODEs. An important step 
towards this goal is the factorization as applied in SPDE [46,47]. An in-depth review of issues 
related to the implementation of this is given in [48]. 

Despite the innovative efforts of Reid, Schwarz, Wolf, and Brand, and many others, there is 
no general algorithm available to integrate an arbitrary (overdetermined) system of determining 
equations that consists of linear homogeneous PDEs for the "l'S and the </>'s. Most of the computer 
programs use a set of heuristic rules [28,29,46,49-51] for the integration of the determining system. 
We will not repeat these rules here, they can be found in [11]. 

2.4. Computing the Size of the Symmetry Group 

Schwarz [21,22] and Reid [14-16] independently developed algorithms for determining the di
mension of the symmetry algebra from the infinitesimal determining system without having to 
integrate the system explicitly. 

Schwarz's algorithm SYMSIZE [21,22] is available with the computer algebra system REDUCE, 
as part of the package SPDE (see Section 4.1). Schwarz also translated SYMSIZE into the 
language of SCRATCHPAD II, the predecessor of AXIOM. 

The size of the symmetry group can always be determined with SYMSIZE in a finite number 
of steps. SYMSIZE accepts a system of PDEs as input, and allows to compute a priori the 
number of free parameters, if the group is finite, and the number of unspecified functions, if the 
group is infinite. In turn, SYMSIZE allows to test a posteriori if the solution of the determining 
equations is complete. At the heart of SYMSIZE is the procedure InvolutionSystem, which trans
forms the determining system into an involutive system by means of a critical pair/completion 
algorithm. Similar algorithms are applied in computing Grabner bases in polynomial ideal theory 
(see Section 2.2). 

Concurrently, yet independent of Schwarz, Reid [14-16] realized that triangularization algo
rithms may be used to bypass the explicit solution of the determining equations and compute 
the size of the symmetry group and the commutators immediately. Reid developed the program 
SYMCAL [14], written originally in MACSYMA, but now converted by Reid and Wittkopf into 
Maple [19]. 

In [16], a nonheuristic algorithm structure_constant is presented, based on the routines Tay
lor and standard_form, which always determines (in a finite number of steps) the dimension 
and the structure constants of the finite part of the Lie symmetry algebra. The newest Maple 
algorithm [18] computes the dimension and the commutation relations without Taylor expan
sions; hence, it is applicable to infinite-dimensional Lie algebras. An extension of the algorithm 
also classifies differential equations (with variable coefficients) according to the structure of their 
symmetry groups. Furthermore, the approach advocated by Reid applies to the determination 
of symmetries of Lie-contact and Lie-Backlund types, as well as potential symmetries. 

Readers interested in the problem of determining the "size" of the solution space for arbitrary 
involutive systems should also consult a recent paper by Seiler [52]. 

Finally, the tools for reducing systems of linear homogeneous PDEs, available within the pack
age CRACK [25-27,45]' can also greatly assist in the investigation of the size of the symmetry 
group. 
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3. BEYOND LIE-POINT SYMMETRIES 

3.1. Contact and Generalized Symmetries 

For the computation of generalized symmetries or Lie-Backlund symmetries [2J the use of 
symbolic programs is even more appropriate, for the calculations are lengthier and more time 
consuming. In a generalized vector field, which still takes the form of (2), the functions r/ and (PI 
may now depend on a finite number of derivatives of u, Le., 

P a q a 
a= L r/ (x,u(k)) ax. + L CPt (x,u(k)) au!' 

i=l • !=1 

(3) 

If k = 1 the generalized symmetry determines a classical contact symmetry and vice versa, at 
least in the case of one dependent variable. The even simpler case k = 0, with u(O) = u, leads to 
point symmetries. 

3.2. Nonclassical or Conditional Symmetries 

Recently it was shown that the "nonclassical method of group-invariant solutions," originally 
introduced in [53], can determine new solutions of various physically significant nonlinear PDEs. 

In contrast to Lie-point symmetries, the transformations corresponding to nonclassical (or 
conditional) symmetries neither leave the differential equation invariant, nor transform all the 
solutions into other solutions. They merely transform a subset of solutions into other solutions. 
For a well-documented perspective on the computation of nonclassical symmetries we recom
mend [40,54,55J. 

Accounting for "nonclassical symmetries," the program should automatically add the q invari
ant surface conditions [53J 

l = 1, ... ,q, (4) 

and their differential consequences, to the system (1). However, the inclusion of nonclassical 
symmetries, and perhaps other types of symmetries [2], requires solving systems of determining 
equations which are no longer linear, for which new integration algorithms must be designed. 

4. REVIEW OF SYMBOLIC SOFTWARE 

In Table 1, we indicate the scope of the most modern Lie symmetry software packages with key 
references. In [11], the reader can find detailed information about the developers and distributors 
of the various packages. 

4.1. REDUCE Programs 

In the early '80s, Schwarz developed the program SPDE (see references in [46]). The program 
automatically derives and often successfully solves the determining equations for Lie-point sym
metries with minimal intervention by the user. Since 1986 SPDE is distributed together with 
REDUCE for various types of computers, ranging from PCs to CRAYs. The newest and drasti
cally reworked Version 1.0 of SPDE [56] ensures that all infinitesimal symmetry generators with 
algebraic coefficients will be obtained if the equations are nonlinear and of order higher than one. 
Concerning the input, the equations must be algebraic in their arguments. There is no restriction 
on the number of independent and dependent variables, and the equations can have any number 
of constant parameters (no arbitrary functions). The program computes the determining equa
tions, then generates a Gr6bner basis for the determining system in a term ordering specified 
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Table 1. Scope of Lie symmetry programs. 

Developer( s) Non- Solves 
Name System and Refs. 

Point Gen. 
class. Det. E:qs. 

CRACK REDUCE Wolf and Brand [24] - - - Yes 

DELiA Pascal Bocharov et al. [57,58] Yes Yes No Yes 

DIFFGROB2 Maple Mansfield [31] - - - Reduction 

DIMSYM REDUCE Sherring [28,29] Yes Yes No Yes 

LIE REDUCE Eliseev et al. [59J Yes Yes No No 

LIE muMATH Head [49] Yes Yes Yes Yes 

Lie Mathematica Baumann [6O] Yes No Yes Yes 

LieBaecklund Mathematica Baumann [61] No Yes No Interactive 

LIEDF /INFSYM REDUCE Gragert and Kersten [62,63] Yes Yes No Interactive 

LIEPDE REDUCE Wolf and Brand [25] Yes Yes No Yes 

Liesymm Maple Carminati et al. [30] Yes No No Interactive 

MathSym Mathematica Herod [64J Yes No Yes Reduction 

NUSY REDUCE Nucci [65,66J Yes Yes Yes Interactive 

PDELIE MACSYMA Vafeades [67,68] Yes Yes No YE'.8 

SPDE REDUCE Schwarz [46] Yes No No Yes 

SYMCAL Maple/MACSYMA Reid and Wittkopf [19] - - - Reduction 

SYM-DE MACSYMA Steinberg [51J Yes No No Partially 

symgroup.c Mathematica Berube and de Montigny [69] Yes No No No 

SYMMGRP.MAX MACSYMA Champagne et al. [12J Yes No Yes Interactive 

SYMSIZE REDUCE Schwarz - - - Reduction 

by the user. The integration of the reduced system is carried out automatically, the symmetry 
generators and their commutator table can be displayed in UTEJX. 

Based on Cartan's exterior calculus, Gragert [62], and Gragert, Kersten and Martini [70] used 
computer algebra systems to calculate the classical Lie symmetries of differential equations. More 
recently, Gragert [71,72] added a package for more general Lie algebra computations, including 
code for higher-order and super symmetries and super prolongations. Kersten [50,73] further 
perfected the software package for the calculation of the Lie algebra of infinitesimal symmetries 
(including Lie-Backlund symmetries) of exterior differential systems. Readers interested in the 
differential geometrical foundation of Lie symmetry analysis, and related REDUCE algorithms 
should consult [63,74,75]. 

Eliseev, Fedorova and Kornyak [59], wrote code in REDUCE-2 to generate (but not solve) 
the system of determining equations for point and contact symmetries. Their paper discusses 
the algorithm and shows three worked examples. Fedorova and Kornyak [76,77] generalized the 
algorithm to include the case of Lie-Backlund symmetries. 

The interactive REDUCE program NUSY by Nucci [65,66], generates determining equations 
for Lie-point, nonclassical, Lie-Backlund and approximate symmetries and provides interactive 
tools to solve them. 

The package CRACK by Wolf and Brand [25-27,45] solves overdetermined systems of differen
tial equations with polynomial terms. The general purpose package features code for decoupling, 
separating, and simplifying PDEs. Integration of exact PDEs and differential factorization are 
also possible. CRACK has many applications that are facilitated via special tools, some of which 
can aid in the investigation of Lie symmetries of ODEs. However, functions and tools available 
within CRACK allow simplification and integration of linear homogeneous PDEs, beyond those 
derivable via symmetry analysis (for examples see [45]). 
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Upon completion of CRACK, Wolf went on to develop several new REDUCE programs [78J, 
called LIEPDE, APPLYSYM, QUASILINPDE and DETRAFO, which all make use of the tools 
of CRACK. First, LIEPDE [24,78] finds Lie-point and contact symmetries of PDEs by deriving 
and solving a few simple determining equations, before continuing with the computation of the 
more complicated determining equations. This idea, which makes the program highly efficient, 
was used in Wolf's FORMAC program [23,79,80]' and is also implemented in the design of the 
feedback mechanism of SYMMGRP.MAX [12]. This strategy becomes crucial when symmetry 
programs are applied to large systems of PDEs, or in the computation of higher-order symmetries, 
where space and memory limitations come into play. 

The aim of QUASILINPDE [78] is to find the general solutions of quasi-linear PDEs. These 
solutions are then used by APPLYSYM [78], which applies the symmetry to lower the order of 
ODEs, to calculate similarity variables for PDEs, to reduce the number of independent variables 
of a system of PDEs, and to generalize special known solutions of ODEs and PDEs. The program 
APPLYSYM is automatic, but can also be used interactively. 

The program DETRAFO, used by APPLYSYM, performs arbitrary point- and contact trans
formations of ODEs/PDEs, and is applied when the similarity and symmetry variables have been 
found. To our knowledge, APPLYSYM is one of the first symbolic programs that truly applies 
point symmetries that can be calculated with the program LIEPDE. 

In [81,82]' Gerdt introduced the program HSYM for the explicit computation of higher-order 
symmetries for PDEs. If the given system of equations has arbitrary parameters, the necessary 
conditions for the existence of higher order symmetries will lead to a system of algebraic equations 
in the parameters. Via the program ASYS, that algebraic system is reduced to a standard form via 
a Grobner basis algorithm. The focus in Gerdt's work is on the investigation of the integrability 
of polynomial type nonlinear evolution equations, by verifying the existence of higher order 
symmetries and their associated conservation laws. 

Sarlet and Vanden Bonne [83] offer specific procedures to assist in the computation of adjoint 
symmetries of second-order ODEs. Their software constructs determining equations for certain 
classes of adjoint symmetries, which are of the same type as for (generalized) symmetries, and 
relies on other packages such as DIMSYM to solve these. 

The program DIMSYM by Sherring [28,29], in collaboration with Prince, finds various types of 
symmetries, currently, point symmetries, Lie-Backlund, and conditional symmetries. DIMSYM 
can isolate special cases, bring the determining equations in standard form and aid in the solution 
of group classification problems. An attractive feature of DIMSYM is that the integrator for the 
determining equations also works for systems of linear homogeneous differential equations not 
necessarily obtained from symmetry analysis. The overall strategy of the solver is to put the 
system of determining equations into standard form based on the Reid-Wittkopf algorithm (see 
Section 2.2), while solving explicitly all equations in the system that the algorithm is capable of 
solving. 

DIMSYM attempts to determine the generators and checks whether or not the generators are 
correct. It allows to specify the dependence of the symmetry vector field coefficients, which is 
useful for computing Lie-Backlund symmetries. DIMSYM provides a lot of flexibility: ansatze 
can be made, simplification routines can be called separately, manual intervention is possible, 
etc. 

Finally, the program RELIE by Oliveri [84] interactively computes Lie-point symmetries, via 
a collection of (algebraic) procedures which automate the steps that would be taken if the calcu
lation were done by hand. 

4.2. MACSYMA Programs 

The MACSYMA version of the program SYMCON [85,86], originally written in muMATH, 
tries to compute Lie-point and Bessel-Haagen generalized symmetries (of any order) and their 
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conservation laws. Vafeades later produced PDELIE [67,68,87,88], a drastically improved version 
of SYMCON [85,86]. The package PDELIE attempts to produce similarity solutions of ODEs, 
analyze PDEs with a multiplicative or additive scalar parameter, and compute the commuta
tor table and the structure constants of the Lie algebra. Also, the densities of the Noether 
conservation laws of systems of variational and divergence type can be computed. 

PDELIE consists of several subroutines to set up the determining equations, and to compute 
the generators and structure constants of the Lie group. It uses the Reid-Wittkopf standard form 
algorithm and a set of heuristic rules to facilitate the integration, and finds the invariants of the 
symmetry group. Using these invariants, it then reduces the dimension of the given differential 
equation. In cases where the reduced equation is an ODE, it tries to integrate it explicitly, thus 
arriving at special similarity solutions of the original equation. 

Just as PDELIE, the program SYM-DE by Steinberg [51,89,90J was recently added to the out
of-core library of MACSYMA. Steinberg's program computes infinitesimal symmetry operators 
and the explicit form of the infinitesimal transformations for simple systems. In cases where the 
program cannot finish the computation automatically, the user can intervene and, for instance, 
ask for infinitesimal symmetries of polynomial form. The program solves some (or all) of the 
determining equations automatically and, if needed, the user can add extra information. 

The flexibility within SYMMGRP.MAX, the program by Champagne, Hereman and Winter
nitz [9,12], and the possibility of using it interactively, allows to find the symmetry group of 
arbitrarily large and complicated systems of equations on relatively small computers. 

SYMMGRP.MAX allows to follow a path that would be taken in manual calculations. That is, 
obtain in as simple a manner as possible the simplest determining equations, solve them and feed 
the information back to the computer. Partial information can be extracted rapidly. For instance, 
one can derive a subset of the determining equations, such as those that occur as coefficients in 
the highest derivatives in the independent variables. These are usually single-term equations, 
which imply that the coefficients of the vectorfield are independent of some variables or depend 
linearly on some of the other variables. 

When the prolongation can be applied successfully to the complete system, or a subset thereof, 
SYMMGRP.MAX produces a list of determining equations, free of trivial factors, duplication, and 
differential redundancies. A feedback mechanism then facilitates the solution of the determining 
system step by step on the computer. Typically, users will provide information about the 'TJ'S 

and <p's, as it becomes available. In [12], a worked example shows the use of the feedback 
mechanism within SYMMGRP.MAX to solve the determining equations completely. 

Although not designed for that purpose, SYMMGRP.MAX can be easily adapted to nonclassi
cal symmetries [38-40,55]. In [40], Clarkson and Mansfield give a detailed explanation of such an 
adaptation. Currently, Hereman is adapting SYMMGRP.MAX for the calculation of Lie-point 
symmetries of difference-differential equations. 

4.3. Maple Programs 

In [30], Carminati, Devitt, and Fee present LIESYMM for creating the determining equations 
via the Harrison-Estabrook procedure. Within LIESYMM various interactive tools are available 
for integrating the determining equations, and for working with Cartan's differential forms. 

Vu [91] has translated Head's muMATH program LIE [49] into Maple syntax. Vu's program 
Desolv first automatically generates the determining equations for Lie-point symmetries, subse
quently solves them to determine the explicit forms of the coefficients of the vector field, and 
finally computes the generators. The heuristic procedures implemented in Vu's program perform 
polynomial decomposition of PDEs, decoupling of PDEs, integration of simple PDEs and ODEs. 
Vu adopted some of the integration methods from CRACK, the decoupling method from the 
Reid-Wittkopf standard form algorithm, and ideas from Mansfield's DIFFGROB package. 

Hickman [32J wrote a collection of Maple routines that aid in the computation of Lie-point 
symmetries, nonlocal symmetries, and Wahlquist-Estabrook-type prolongations. His tools for 

ItCH 2S.at9-E 
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symmetry analysis include user-friendly procedures to enter names of variables, to create total 
derivatives, to generate and prolong vector fields, and to derive and partially solve determining 
equations. 

Mansfield has developed the package DIRMETH for the computation of symmetries via the 
direct method proposed by Clarkson and Kruskal [92], as part of DIFFGROB2. 

4.4. Mathematica Programs 

Herod [70] developed MathSym for deriving the determining equations corresponding to Lie
point symmetries, including nonclassical (or conditional) symmetries. Upon derivation of the de
termining equations, the program reduces these equations via an algorithm based on the Riquier
Janet method. Herod's doctoral thesis [64] contains the well-documented code of MathSym and 
applications to various equations from fluid dynamics. 

Recently, the packages Lie.m and Baecklund.m have been added by Baumann [60,61] to Math
Source, the Mathematica Program Library. Baumann's program Lie. m [60] follows the structure 
of our MACSYMA program SYMMGRP.MAX [12] very closely. However, the program Lie.m 
can handle transcendental functions in the input equations. The newest version of Lie. m can 
be used to compute point symmetries, contact symmetries and nonclassical symmetries. Lie.m 
brings the determining equations in canonical form via the Riquier-Janet procedure, and goes 
on to solve the determining equations automatically. A set of integration rules, similar to those 
mentioned in [11], is implemented. 

Once the determining equations are solved, the program continues with the computation of 
the vector basis, ideals, and commutator table of the Lie algebra, its structure constants, Casimir 
operators, and its metric tensor. 

Baumann's package Baecklund.m [61] contains functions that attempt to compute generalized 
symmetries for PDEs and ODEs, and invariants of ODEs. When applied to second-order ODEs, 
the program attempts to verify if the computed symmetries are of variational type. If so, the 
program calculates the corresponding invariants (integrals of motion). 

Berube and de Montigny [69] produced Lie symmetry code in Mathematica. Their program 
symmgroup.c computes the determining equations for Lie-point symmetries, closely following the 
structure of SYMMGRP.MAX. The data for the program may consist of PDEs with arbitrary 
functions. Transcendental functions in both dependent and independent variables are also per
mitted. In [69], three well-chosen examples are given to illustrate the capabilities of the program. 

Finally, Coult (Program in Applied Mathematics, University of Colorado, Boulder, CO 80309, 
U.S.A.) developed the Mathematica program symmgroup.m, for the computation of the deter
mining equations corresponding to Lie-point symmetries of a large class of differential equations 
with polynomial terms. 

4.5. SCRATCHPAD and AXIOM Programs 

Schwarz [93] rewrote SPDE [46] for use with Version 1 of SCRATCHPAD II (now superseded 
by AXIOM). 

Seiler and coworkers [94,95] are designing a package that will compute determining equations 
for classical and nonclassical symmetries. Consult [11] for a description of their program JET for 
geometry computations based on the jet bundle formalism. 

4.6. muMATH Programs 

The program LIE by Head [49] is based on Version 4.12 ofmuMATH. Since LIE comes bundled 
with a limited version of muMATH, it is a self-contained stand-alone package that runs on 
IBM compatible PCs. Version 4.4 of Head's program calculates and solves the determining 
equations (for Lie-point symmetries, contact and generalized (Lie Backlund) symmetries, and also 
nonclassical symmetries) automatically for systems of differential equations. LIE also computes 
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the Lie vectors and their commutators. Interventions by the user are possible but rarely needed. 
Due to the limitations of muMATH, the program LIE is bounded by the 256 KB of memory for 
program and workspace. For a program of limited size, LIE is remarkable in its achievements. 

The SYMCON package by Vafeades [85,86] also uses muMATH to compute the determining 
equations for Lie-point symmetries, without solving them. Furthermore, the program verifies 
whether the symmetry group is of variational or divergence type and computes the conservation 
laws associated with the symmetries. Unfortunately, the package cannot handle large systems 
of equations. This limitation motivated Vafeades to rewrite his SYMCON program in MAC
SYMA syntax [67,68,87,88]. The MACSYMA version can handle generalized symmetries and 
their conservation laws. 

Mikhailov and collaborators [96] developed muMATH software to verify the integrability of 
systems of PDEs by testing for the existence of higher symmetries. The program computes 
special symmetries, canonical conservation laws, and carries out conformal transformations to 
bring PDEs into canonical form. 

4.7. Programs for Other Systems 

Kornyak and Fushchich [97,98] developed programs in Turbo C and AMP for the computation 
of Lie-Backlund symmetries. Their programs also classify equations with arbitrary parameters 
and functions with respect to such symmetries, and reduce the determining equations into passive 
form: all integrability conditions are then explicit and, therefore, the resulting system is in 
involution. 

There are also two FORMAC programs for symmetry analysis. The first program, called LB, 
was written in the PL/1 language by Fedorova and Kornyak [76,99]. The successor, called LBF, 
was developed by Fushchich and Kornyak [97], and written in PL/1-FORMAC. Both programs 
create the system of determining equations for Lie-Backlund symmetries and attempt to reduce 
and solve these equations. The program LBF is completely automatic, and both were designed 
for low-memory requirements so that they could run on PCs. 

The PL/1-based FORMAC package CRACKSTAR developed by Wolf [23,79,80] allows to in
vestigate Lie symmetries of systems of PDEs, besides dealing with dynamical symmetries of 
ODEs [100], and the like. A good overview of the capabilities of CRACKSTAR is given in [80]; a 
description of the routines and worked examples can be found in [100]. For efficiency, CRACK
STAR generates and solves first-order determining equations early on, and then continues with 
the higher-order determining equations. 

Gerdt [81,82], Gerdt and Zharkov [101] and Gerdt, Shvachka and Zharkov [102,103] used RE
DUCE and PL/1-FORMAC to investigate the integrability of nonlinear evolution equations. 
Their program FORMINT contains algorithms to calculate Lie-Backlund symmetries and con
served densities, but does not use the jet bundle formalism. 

The calculation of the Lie group by computer was also proposed by Popov [104], who used the 
program SOPHUS for the calculation of conservation laws of evolution equations. 

In [105], Bocharov and Bronstein present SCoLAr, a package written in standard PASCAL that 
finds infinitesimal symmetries and conservation laws of arbitrary systems of differential equations. 

The PC package DELiA, standing for "Differential Equations with Lie Approach," is an out
growth of the SCoLAr project. DELiA, written in Turbo PASCAL by Bocharov and his col
laborators [58], is a stand-alone computer algebra system for investigating differential eqmttions. 
It performs various tasks based on Lie's approach, such as the computation of Lie-point and 
Lie-Backlund symmetries, canonical conserved densities and generalized conservation laws, sim
plification and partial integration of overdetermined systems of differential equations, etc. 

In order to be able to handle large problems, DELiA first generates and solves first-order 
determining equations, and then continues to generate and solve the higher-order determining 
equations. The analyzer/integrator, which is available as a separate tool at the user level, includes 
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a general algorithm for passivization [105], together with a set of integration rules for linear and 
quasi-linear systems of PDEs. The methods are well described in the user guides [57,58]. 

Using the algorithmic language REFAL, Topunov [106] developed a software package for sym
metry analysis that contains subroutines to reduce determining systems in passive form. 

5. EXAMPLES 

5.1. The Dym-Kruskal Equation 

Consider the Dym-Kruskal equation [107], 

Ut - u3uxxx = O. (5) 

Clearly, this is one equation with two independent variables and one dependent variable. The 
assignments of the variables are as follows: 

X f----+ x[l], t f----+ x[2], U f----+ u[l]. (6) 

Then, symmetry software such as SPDE, LIE, PDELIE, DIMSYM, SYM_DE, or SYMM
GRP.MAX, automatically compute the determining equations for the coefficients eta[l] = ",x, 

eta[2] = ",t, and phi[l] = cpu of the vector field 

x O to u O 
a = '" ax + '" at + cp au· (7) 

There are only eight determining equations, 

a eta2 = 0 a eta2 = 0 a etal 02 
phil = 0 

ou[l] , ox[l] , ou[l] = 0, oU[1]2 ' (8) 

02 phil 02 etal = 0, a phil 3 03 phil 
oU[l]ox[l] ox[lJ2 ax [2] - u[l] ox[l]3 = 0, (9) 

3 03 phil a etal 3 03 etal 
3u[1] oU[l]ox[lJ2 + ox[2] - u[l] oX[l]3 = 0, 

a eta2 a etal 
u[l] ax [2] - 3u[1] ox[l] + 3 phil = O. 

(10) 

These determining equations are easily solved explicitly, either automatically with SPDE, LIE, 
DIMSYM, and PDELIE, or with the feedback mechanism within SYM_DE and SYMM
GRP.MAX. The general solution, rewritten in the original variables, is 

",x = kl + k3 X + k5 x2, ",t = k2 - 3k4 t, cpu = (k3 + k4 + 2k5 x) u, (11) 

where kl' ... ,k5 are arbitrary constants. The five infinitesimal generators are 

G l = ax, G2 = at. G3 = xOx + uou, 

G4 = -3t8t + uOu, G5 = x20x + 2xuou· 
(12) 

Clearly, (5) is invariant under translations (G land G2 ) and scaling (G3 and G 4). The flow 
corresponding to each of the infinitesimal generators can be obtained via simple integration. 
As an example, let us compute the flow corresponding to G5 . This requires integration of the 
first-order system 

dx -2 -=x, 
d€ 

x(O) = x, £(0) = t, du 2--
dE = xu, u(O) = u, (13) 

where € is the parameter of the transformation group. One readily obtains 

x(€) = (1 x )' £(€) = t, u(€) = ( U )2' (14) 
- €X 1 - €X 

Therefore, one concludes that for any solution u = f(x, t) of equation (5), the transformed 
solution 
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5.2. The Nonlinear Schrodinger Equation 

As a second example, we take the Nonlinear Schrodinger (NLS) equation [107] 

(16) 

The complex equation can be replaced by a coupled system 

(17) 

for the real and imaginary parts v, w of the complex variable u. 
Now, SYMMGRP.MAX (or, for that matter, any other symmetry program) quickly generates 

the 20 determining equations for the coefficients of the vector field 

(18) 

The first 11 single-term determining equations are similar to (8), and provide information about 
the dependencies of the ry's and the </>'s on x, t, v, and w, and their linearity in the latter two 
dependent variables. The remaining nine determining equations are a bit more complicated, but 
the entire system is readily solved. 

In the original variables, the solution reads 

"IX = kl + 2k4 t + k5 X, 

cpv = k3 W - k4 XW - k5 V, 

"It = k2 + 2k5 t, 

cpw = -k3 V + k4 xv - k5 W, 
(19) 

where kl' ... ,k5 are arbitrary constants. As in the previous examples, the complete symmetry 
algebra is spanned by five symmetry generators: 

G1=ox, G2 =Ot, 

G4 = 2t8x - x(wov - vow), 

G3 = wOv - vow, 

G5 = xOx + 2tot - vOv - wow. 
(20) 

Clearly, (16) is invariant under translations in space and time (G1 and G2 ). Generator G3 
corresponds to adding an arbitrary constant to the phase of u. The Galilean boost is generated 
by G4 . Finally, G5 indicates invariance of the equation under scaling (or dilation). 

Similarity reductions can then be obtained by solving the characteristic equations 

dx dt dv dw 
"Ix "It cpv cpw ' 

(21) 

or equivalently, the invariant surface conditions 

(22) 

The actual reductions can be found in [108], where a quite general class of nonlinear Schrodinger 
equations is treated. All the reductions of the NLS can be obtained from G1 through G5 ; in 
other words, nonclassical symmetries would not lead to new symmetry reductions. To compute 
nonclassical symmetries of (17), it suffices to replace Vt and Wt from (22). If "It i- 0, we set 7Jt = 1 
for simplicity. Thus, 

(23) 

The case "It = 0 has to be considered separately. Since SYMMGRP.MAX allows the user to give 
information about the coefficients in the vector field, the computation can now proceed as in the 
classical case. For worked examples, we refer to [40,55]. 
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6. CONCLUSIONS 

The programs reviewed in this paper are easy to use provided the user has access to and knows 
the basics of the underlying CAS, such as MACSYMA, Maple, Mathematica, and REDUCE. 

Apart from the theoretical study of the underlying mathematics, there is a need for further 
development and implementation of effective algorithms for generating, reducing, simplifying and 
fully solving the determining equations for (classical and nonclassical) Lie-point symmetries and 
generalized or Lie-Backlund symmetries. 

The availability of sophisticated symbolic programs certainly will accelerate the study of sym
metries of physically important systems of differential equations in classical mechanics, fluid 
dynamics, elasticity, and other applied areas. 
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