HOME

PDF

my Quantum Mechanics cheat sheet

Nasser M. Abbasi

January 28, 2024   Compiled on January 28, 2024 at 4:49am

Table 1: QM cheat sheet

Position Operator X

Momentum operator P

Hamilitonian operator H

Eigenvalue eigenvector relation

X|x=x|x where x is the eigenvalue (size) of the |x which is the position vector associated with x measured.

P|ϕp=p|ϕp where p is the momentum of the particle.

H|ΨEi=Ei|ΨEi where Ei is the energy level of the particle.

Normalization relation

|xx|dx=1

|ϕpϕp|dp=1

|ΨEiΨEi|dE=1

orthogonality

x|x=δ(xx)

ϕp|ϕp=δ(pp)

ΨEi|ΨEj=δ(EiEj)

Matrix element of operator

x|X|x=xδ(xx). Operator X is diagonal matrix.

x|P|x=iδ(xx)ddx where momentum operator P is expressed in position operator |x basis. Note that operator P is not a diagonal matrix.

x|H|x=?

Function form of the state function |Ψ

N/A ?

P|ϕp=p|ϕpP|xx|ϕpdx=p|xx|ϕpdxx|P|xx|ϕpdx=px|xx|ϕpdxiδ(xx)ddxϕp(x)dx=pδ(xx)ϕp(x)dx=2LL2=1

Ψ|Ψ=Ψ|xx|Ψdx=x|Ψx|Ψdx=Ψ(x)Ψ(x)dx=0L(2LsinnπxL)2dx=2LL2=1

Vector form to function form

x|Ψ=Ψ(x)

x|ϕp=ϕp(x)

x|ΨE=ΨE(x)

Expansion of state vector |Ψ

|Ψ=|xx|Ψdx

|Ψ=|ϕpϕp|Ψdp

|Ψ=|EiEi|Ψdi

State function |Ψ For infinite potential deep well of width x<0<L

todo

todo

todo

Probability of measurement

1.
Probability of measuring x given system is in state |Ψ is |Ψ|Ψ|2. For infinite potential deep well of width x<0<L this becomes

Ψ|Ψ=Ψ|xx|Ψdx=x|Ψx|Ψdx=Ψ(x)Ψ(x)dx=0L(2LsinnπxL)2dx=2LL2=1

2.
Probability of measuring x given system is in state ϕp

|Ψ=|ϕpϕp|Ψdp

|Ψ=|EiEi|Ψdi