
5 Mathematical Transforms

Signals  and  Systems  implements  a  variety  of  standard  mathematical  linear  transforms

frequently used in signal processing. While many of these transforms are also implemented in
the standard Mathematica, there are several differences. For instance, the standard routines do
not handle as wide a variety of functions specific to signal processing. Another difference is
that  Signals  and Systems  allows the use  of bilateral,  left-sided,  or  right-sided transforms (in

which  the  range  of  integration  or  summation  runs  from  -Infinity  to  Infinity,

-Infinity  to  0,  or  0  to  Infinity,  respectively),  while  for  Laplace  transforms,

Mathematica implements only the right-sided variant. These modifications improve the utility
of  the  transforms  for  signal  processing  applications.  Other  advantages  of  the  transforms  as

implemented  in  this  application  include  the  ability  to  track  regions  of  convergence  for
Laplace and Z transforms, an option allowing you to specify abstract transform pairs, and the
implementation of some nonseparable multidimensional transforms. 

All  of  the  transforms  in  Signals  and  Systems  perform symbolic  computation,  including  the
discrete  Fourier  transform.  This  allows  transforms  to  be  performed  on  signals  expressed

symbolically, rather than as explicitly specified sequences of data. 

à 5.1 Transforms of Continuous Signals

The Laplace Transform

The  Laplace  transform  is  a  staple  operation  from  the  analysis  of  continuous  systems.  The
transform  and  its  inverse  are  used  primarily  in  transient  analysis.  At  its  core,  Signals  and

Systems uses the standard definition given in many texts. 
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The  region  of  convergence  is  a  strip  in  the  s  plane.  Signals  and  Systems  provides  the
convergence information to the user by placing the result in  a special  data type. The inverse
transform is defined as 

f HtL = -1 8FHsL< =
1
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2 p j

 ®
s- j ¶

s+ j ¶

FHsL es t d  s

(The constant s is appropriately chosen based on convergence of the integrand.) 

The actual algorithm used by the application involves a combination of table lookup and rules
based  on  transform  properties.  You  can  specify  that  the  standard  Mathematica  integration
routines  be  attempted  as  well,  based  on  the  preceding  definition.  For  more  details  on  the

algorithm, see, for instance, Evans (1992). 

LaplaceTransform@expr, t, sD perform a Laplace transform from the variable t to s

LaplaceTransform@
expr, 8t1, t2, …, tn<,8s1, s2, …, sn<D perform a multidimensional Laplace transform from  

ti to  si

LaplaceTransform@t, sD@exprD nonevaluating operator form of the Laplace transform

InverseLaplaceTransform@
expr, s, tD perform an inverse Laplace transform

InverseLaplaceTransform@s

, tD@exprD operator form of the inverse Laplace transform

The Laplace transform and its inverse. 

The  Laplace  transform  uses  the  same  syntax  as  the  standard  Mathematica  function

LaplaceTransform.  It  has  several  extensions,  however.  One  modification  is  a

nonevaluating  operator  form  for  use  in  manipulation  of  systems.  All  of  the  transforms
provided with Signals and Systems have this alternate syntax. 

† First, make the signal processing functions available. 

In[1]:= Needs["SignalProcessing`"]
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† Here is a basic Laplace transform. 

In[2]:= LaplaceTransform[Exp[-Abs[t]], t, s]

Out[2]= LaplaceTransformDataA−
2

cccccccccccccccccc
−1 + s2

,

RegionOfConvergence@−1, 1D, TransformVariables@sDE
Another major difference between the standard Mathematica  version and the version here is

immediately apparent.  Now, LaplaceTransform  returns by default  the special  data type

LaplaceTransformData.  This  data  type  includes  information  on  the  region  of

convergence and the variables involved in the transformation, which is particularly useful in

stability analysis. 

† Here is an example of a two-dimensional transform. This function is nonseparable, 
and represents an impulse of changing magnitude along the line t1 = t2, where t1 
and t2 are greater than zero. 

In[3]:= LaplaceTransform[
    Exp[a t1] *
        DiracDelta[t1 - t2] UnitStep[{t1, t2}],
    {t1, t2}, {s1, s2}
]

Out[3]= LaplaceTransformDataA 1
cccccccccccccccccccccccccccccc
−a + s1 + s2

,

RegionOfConvergence@8Re@aD, Re@aD<, 8∞, ∞<D,
TransformVariables@8s1, s2<DE

Like  the  forward  transform,  the  inverse  transforms  have  rule  bases  that  implement  many

properties of the transform. 

† Here is the inverse transform of a rational function. 

In[4]:= InverseLaplaceTransform[s/(1 + s^2), s, t]

Out[4]= Cos@tD UnitStep@tD
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† The rule base knows that multiplication of the function by an exponential term is 
equivalent to a shift of the inverse transform. 

In[5]:= InverseLaplaceTransform[
    Exp[-a s] s / ( 1 + s^2 ),
    s, t
]

Out[5]= Cos@a − tD UnitStep@−a + tD
options name default value

Justification None additional information to be displayed

about the generation of the transform

SeriesTerms 10 how many terms should be used if a series

expansion is necessary to complete the transform

StandardFormula False whether to try the integral definition directly

SimplifyOutput All whether to attempt simplification of results

TransformDirecg

tion

$TransformDg

irection

direction of the transform in the "time" domain

TransformPairs 8< rules to employ in attempting

to transform unknown functions

Options for LaplaceTransform. 

A  variety  of  options  can  be  employed  to  enhance  the  behavior  of  LaplaceTransform.

The  option  named  TransformDirection  specifies  whether  the  transform  is  to  be

bilateral (TwoSided), right-sided (RightSided), or left-sided (LeftSided). By default,

it is set to $TransformDirection, which is set to TwoSided. By changing the current

value  of  $TransformDirection,  you can  set  this  characteristic  for  all  of  the transform

functions simultaneously. 

† A left-sided transform is equivalent to the bilateral transform of the function 
multiplied by a UnitStep running in the negative direction. 

In[6]:= LaplaceTransform[Exp[-Abs[t]], t, s,
   TransformDirection -> LeftSided]

Out[6]= LaplaceTransformDataA 1
ccccccccccccc
1 − s

,

RegionOfConvergence@−∞, 1D, TransformVariables@sDE

4 5_Transforms.nb

Printed by Mathematica for Students



The Justification  option  can be employed to display the steps involved in performing

the  transform.  It  takes  the  values  All,  Automatic,  or  None,  where  All  provides  all

information  available,  Automatic  provides  only  the  most  useful  information,  and  None

provides no additional information about the procedure. 

† Here is a transform displaying the procedures used in the computation. 

In[7]:= LaplaceTransform[Exp[-Abs[t]], t, s,
   Justification -> All]

L

t

8Æ−Abs@tD<
which becomesH after rewriting the two−sided expression

Æ−Abs@tD
as a left−sided plus a right−sided function:

Æt UnitStep@−tD + Æ−t UnitStep@tD . L
L

t

8Æt UnitStep@−tD + Æ−t UnitStep@tD<
which becomes

L

t

8Æt UnitStep@−tD< + L

t

8Æ−t UnitStep@tD<
which becomes9 L

t

8Æ−t UnitStep@tD<=s→−s and flip ROC +9 L
t

8UnitStep@tD<=s→1+s and shift ROC

which becomes99 L
t

8UnitStep@tD<=s→1+s and shift ROC =s→−s and flip ROC +

TransformA 1
ccccccccccccc
1 + s

, −1, ∞E
which becomes

TransformA 1
ccccccccccccc
1 − s

+
1

ccccccccccccc
1 + s

, −1, 1E
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which becomes

TransformA 1
ccccccccccccc
1 − s

+
1

ccccccccccccc
1 + s

, −1, 1E
which simplifies to

LaplaceTransformDataA−
2

cccccccccccccccccc
−1 + s2

,

RegionOfConvergence@−1, 1D, TransformVariables@sDE
Out[7]= LaplaceTransformDataA−

2
cccccccccccccccccc
−1 + s2

,

RegionOfConvergence@−1, 1D, TransformVariables@sDE
By allowing you to specify your own transform pairs, the TransformPairs option lets you

extend the transform rule bases for unknown functions. These may be functions that have not
been  entered  into  the  rule  base,  or  may be  abstract  transform  pairs  specific  to  a  particular
computation.  The  option  accepts  a  list  of  RuleDelayed  transformations  giving  the  target

function  and  its  transform.  Region  of  convergence  information  can  be  given  by writing  the
rule's  target  in  the  form  of  a  list,  8 func, minconv, maxconv<.  Note  that  the  target  function
must be in the same variable as the entire expression being transformed, while the transform

of the target must be in terms of the transform variable. 

† LaplaceTransform does not know how to handle the Sign function by 
default, but a user-defined rule can be specified to perform the transformation. 
Note that standard properties (e.g., shift, scaling) are handled automatically. 

In[8]:= LaplaceTransform[
   Sign[3 t - 2] + UnitStep[t] Cos[omega t],
   t, s, TransformPairs -> {Sign[t] :> 2/s}
]

Out[8]= LaplaceTransformDataA 2 Æ−2 sê3
cccccccccccccccccccc

s
+

s
ccccccccccccccccccccccccccccc
omega2 + s2

,

RegionOfConvergence@0, ∞D, TransformVariables@sDE
Many  transforms  cannot  be  determined  in  closed  form,  but  for  transforms  of  continuous

functions,  we  can compute  an  approximation  based  on the series  expansion  of the  function.
The SeriesTerms  option specifies the number of terms to use in the expansion. If it is set

to None, the series expansion will not be attempted. 
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† Here, a transform is attempted without performing a series expansion. The attempt 
fails; there are no rules for this function in the rule base. 

In[9]:= LaplaceTransform[Tan[t], t, s,
    SeriesTerms -> None
]

Out[9]= −Incomplete Laplace Transform−

† This tries expanding the function to eight terms before giving up. In this case, the 
series expansion was successful, and an approximation to the transform could be 
returned. 

In[10]:= LaplaceTransform[Tan[t], t, s,
    SeriesTerms -> 8
]

Out[10]= LaplaceTransformDataA−DiracDelta�@sD −

1
cccc
3
DiracDeltaH3L@sD −

2
ccccccc
15

DiracDeltaH5L@sD −
17

cccccccccc
315

DiracDeltaH7L@sD,
RegionOfConvergence@0, 0D, TransformVariables@sDE

The  StandardFormula  option  allows  the  transform  function  to  attempt  to  directly

perform  the  integral  if  the  transform  cannot  be  found  by use  of  the  rule  bases.  It  takes  the
values True or False, indicating whether or not to attempt the integral if necessary. 

† The transform of this function is not known by the transform rule base, although a 
series approximation can be generated. The series representation is not useful to 
us in this example, so we suppress it via the SeriesTerms option. 

In[11]:= LaplaceTransform[
    Sin[x] ContinuousPulse[3, x],
    x, s,
    SeriesTerms -> None
]

Out[11]= −Incomplete Laplace Transform−
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† However, Mathematica can directly integrate this transform. Because the 
StandardFormula option is applied before the SeriesTerms option, we 
don't need to suppress the series expansion. 

In[12]:= LaplaceTransform[
    Sin[x] ContinuousPulse[3, x],
    x, s,
    StandardFormula -> True
]

Out[12]= LaplaceTransformDataA Æ−3 s HÆ3 s − Cos@3D − s Sin@3DL
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

1 + s2
,

RegionOfConvergence@0, ∞D, TransformVariables@sDE
Also  available  is  the  SimplifyOutput  option,  which  indicates  whether  automatic

simplification  will  be  attempted  during  the  computation.  Simplification  of  algebraic
expressions is a computationally intensive task, but it can in some cases significantly improve
the  form  of  output.  Note  that  simplification  is  performed  by  the  SimplifySignal

function, which may not result in a smaller leaf count, but should result in an expression that

is  easier  to  manipulate.  The  SimplifyOutput  option  can  take  the  values  None,

Automatic, or All. If set to All, the simplification will assume that symbols that must be

real-valued  for  the  transform to  complete  are  real-valued  for  simplification  purposes;  this  is
slower  but  less  thorough  than  the  setting  Automatic,  which  does  not  make  that

assumption. If set to None, no simplification will be attempted. 

DecompositionPrecision−>

n

if the transform needs to employ partial fraction

decomposition, it will normally look for exact roots;

in cases of large polynomials, it may be advantageous

to find numeric roots of the specified precision

Option specific to the inverse Laplace transform. 

The  inverse  Laplace  transform has  one  option  not  available  for  the  forward  transform.  The
option  called  DecompositionPrecision  controls  the  behavior  of  partial  fraction

decomposition in the inverse transform. When partial fraction decomposition must be used to
determine  the  transform,  an  exact  technique  is  usually  employed  to  find  the  roots  of  the
denominator.  However,  for  polynomials  of  higher  order,  this  may be  infeasible.  Setting  this
option to a precision less than Infinity allows a purely numeric technique to be employed.

(For quick computation, it  is usually best to set it to MachinePrecision;  in some cases,
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higher precision may be useful.) The resulting transform will not be as precise, but it will still
be  useful.  If  the  strategy  of  partial  fraction  composition  should  not  be  attempted,  set
DecompositionPrecision to None. 

† Here is a transform performed with the (default) exact partial fraction 
decomposition. 

In[13]:= InverseLaplaceTransform[
   (s + 3)/(s^2 + 2 s + 3), s, t,
   DecompositionPrecision -> Infinity
]

Out[13]=
1
cccc
2

ÆI−1−Ç è!!!!!2 M t I1 + Ç è!!!!2 + I1 − Ç è!!!!2 M Æ2 Ç è!!!!!2 tM UnitStep@tD
† The transform can be performed much more quickly by specifying a finite 

precision, but at the cost of returning numeric output. 

In[14]:= InverseLaplaceTransform[
   (s + 3)/(s^2 + 2 s + 3), s, t,
   DecompositionPrecision -> MachinePrecision
]

Out[14]= 1.73205 Æ−1. t Cos@0.955317 − 1.41421 tD UnitStep@tD
† You can disable the attempt at partial fraction decomposition. In this case, other 

rules take over to compute the transform. 

In[15]:= InverseLaplaceTransform[
   (s + 3)/(s^2 + 2 s + 3), s, t,
 DecompositionPrecision -> None
]

Out[15]= Æ−t ICosAè!!!!2 tE + è!!!!2 SinAè!!!!2 tEM UnitStep@tD
The Fourier Transform

The Fourier transform can sometimes be considered a special case of the Laplace transform,
evaluated where the real part of the transform variable s is zero. It is often used for frequency
analysis of signals. Signals and Systems uses the standard definition 

5_Transforms.nb 9

Printed by Mathematica for Students



FHwL =  8 f HtL< = ‡
-¶

+¶

f HtL e- j w t d  t

The inverse transform is defined as 

f HtL = -1 8FHwL< =
1

ÅÅÅÅÅÅÅÅÅÅÅ
2 p

 ‡
-¶

+¶

FHwL e j w t d  w

Note  that  the nonsymmetric  form is  used,  which  parallels  the Laplace transform. The actual

algorithm depends  on  table lookup  and  transformation  rules  that  apply the  properties  of  the
transform.  The  Fourier  transform applies  to continuous  signals.  The discrete  equivalents  are
the discrete-time Fourier transform and the discrete Fourier transform, documented in the next
section. 

FourierTransform@
expr, t, wD perform a Fourier transform from the variable t to w

FourierTransform@
expr,8t1, t2, …, tn<,8w1, w2, …, wn<D

perform a multidimensional Fourier transform from  ti to  wi

FourierTransform@t,

wD@exprD nonevaluating operator form of the Fourier transform

InverseFourierTrang

sform@expr, w, tD perform an inverse Fourier transform

InverseFourierTrang

sform@w, tD@exprD operator form of the inverse Fourier transform

The Fourier transform and its inverse. 
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† Here is a Fourier transform. 

In[16]:= FourierTransform[
    Cos[t] Exp[-t] UnitStep[t],
    t, w
]

Out[16]= FourierTransformDataA 1 + Ç w
ccccccccccccccccccccccccccccccccc
1 + H1 + Ç wL2 , TransformVariables@wDE

† Here is a plot of the transformed result. 

In[17]:= SignalPlot[%, {w, -2, 2}]

-2 -1 1 2

-0.4

-0.2

0.2

0.4

0.6

Signal Plot

Out[17]= h Graphics h

As  with  LaplaceTransform,  a  special  data  type  is  returned,  identifying  the  transform

used  in  the  computation.  FourierTransform  accepts  all  of  the  options  of

LaplaceTransform and attaches the same meaning to them. 

5_Transforms.nb 11

Printed by Mathematica for Students



† Here is a transform using the TransformDirection option. This performs a 
left-sided transform (from -Infinity to 0). 

In[18]:= FourierTransform[
    Exp[t^2],
    t, w,
    TransformDirection -> LeftSided
]

Out[18]= FourierTransformDataAÇ Æ
w2ccccccc4 è!!!!π I1 + ErfA wcccc

2
EM, TransformVariables@wDE

† A rectangular pulse centered on the origin is separable, and easily transformed in 
any number of dimensions. 

In[19]:= FourierTransform[
    ContinuousPulse[{1, 1, 1},
         {t1 + 1/2, t2 + 1/2, t3 + 1/2}],
    {t1, t2, t3},{w1, w2, w3}
]

Out[19]= FourierTransformDataASincA w1
ccccccc
2
E SincA w2

ccccccc
2
E SincA w3ccccccc

2
E,

TransformVariables@8w1, w2, w3<DE
The inverse transform employs all of the same options as the forward transform. It is used in

much the same way as the forward transform, but does not return a special data type. 

† This symbolic inverse Fourier transform demonstrates that the rule base "knows" 
the modulation theorem, which in this case causes the transform of the modulated 
signal to be a pulse of width a centered at zero. 

In[20]:= InverseFourierTransform[
   1/2 (ContinuousPulse[a, w + a/2 - w0] +
     ContinuousPulse[a, w + a/2 + w0]),
   w, t
]

Out[20]=
a Cos@t w0D Sign@aD Sinc@ a tcccccc2 D
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

2 π
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† Here is an inverse transform that cannot be performed in closed form. However, a 
series approximation can be made to give us an inexact result in terms of 
derivatives of Dirac delta functions. 

In[21]:= InverseFourierTransform[
     Tan[w],
     w, t,
     SeriesTerms -> 8
]

Out[21]=
1

ccccccccc
2 π

 J−2 Ç π DiracDelta�@tD +
2
cccc
3

Ç π DiracDeltaH3L@tD −

4
ccccccc
15

Ç π DiracDeltaH5L@tD +
34

cccccccccc
315

Ç π DiracDeltaH7L@tDN
à 5.2 Transforms of Discrete Signals

The Z Transform

The Z transform is essentially the discrete equivalent of the Laplace transform. It produces a
continuous function from a sequence via the following formula 

X HzL =  8x @nD< = ‚
n=-¶

+¶

x@nD z-n

The  region  of  convergence  is  an  annulus  (whose  interior  radius  can  be  zero  and  exterior
radius infinite). The inverse transform is 

x@nD = -1 8X HzL< =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p j

 ®
C

X HzL zn-1 d  z

where  C  is  a  counterclockwise  contour  encircling  the  origin.  As  with  the  continuous
transforms, Signals and Systems primarily uses table lookup and application of the properties
of the transform to perform the computation. 
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ZTransform@expr, n, zD perform a Z transform from the variable n to z

ZTransform@expr,8n1, n2, …, nn<,8z1, z2, …, zn<D perform a multidimensional Z transform from  ni to  zi

ZTransform@n, zD@exprD nonevaluating operator form of the Z transform

InverseZTransform@expr, z, nD perform an inverse Z transform

InverseZTransform@z, nD@
exprD operator form of the inverse Z transform

The Z transform and its inverse. 

The syntax of the discrete transforms is essentially like that of the continuous transforms and

the  transforms  that  come  with  Mathematica.  Like  the  continuous  transforms  provided  with
Signals  and  Systems,  a  nonevaluating  operator  form  of  the  transform  is  provided  for
manipulation of cascaded systems. 

† This is the Z transform of the sum of two exponentials. 

In[22]:= ZTransform[
   ((1/2)^n + (-1/3)^n) DiscreteStep[n],
   n, z
]

Out[22]= ZTransformDataA z − 12 z2
ccccccccccccccccccccccccccc
1 + z − 6 z2

,

RegionOfConvergenceA 1cccc
2
, ∞E, TransformVariables@zDE
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† We can visualize the poles, zeros, and region of convergence of a rational 
transform. 

In[23]:= PoleZeroPlot[%]

-1 -0.5 0 0.5 1
Re z

-1

-0.5

0

0.5

1

m
I

z
Pole−Zero Plot

Out[23]= h Graphics h
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options name default value

Justification None additional information to be displayed

about the generation of the transform

SimplifyOutput True whether to attempt simplification of results

StandardFormula False whether to try to perform the summation directly

TransformDirecg

tion

$TransformDg

irection

direction of the transform in the "time" domain

TransformPairs 8< rules to employ in attempting

to transform unknown functions

Options for ZTransform. 

The  Z  transform  has  most  of  the  options  of  the  Laplace  transform.  The

TransformDirection  option controls whether the transform is left-sided, right-sided, or

bilateral.  The  Justification  option  causes  information  about  the  steps  taken  in  the

transform  to  be  printed  when  set  to  Automatic  or  All.  TransformPairs  allows

user-specified transformation rules to be given to supplement the built-in rule base. If the rule
base  fails  to  compute  the  transform,  the  option  StandardFormula  allows  the  transform

function to attempt to use the defintion given by the summation. SimplifyOutput  allows

additional simplification of the results to be attempted automatically. It can be set to None to

reduce computation time on examples where additional simplification is unlikely to be useful. 

† The TransformPairs option can be used to specify abstract transformations, 
as in the transformation of this system equation, where x[n] is the input signal 
and y[n] is the output signal. Note that Normal is wrapped around the 
transform to extract the equation from the transform data type for easy 
manipulation. 

In[24]:= Normal[ZTransform[
   y[n] == x[n] - (1/4) y[n - 2],
   n, z,
   TransformPairs -> {y[n] :> Y[z], x[n] :> X[z]}
]]

Out[24]= Y@zD m X@zD −
Y@zD
ccccccccccccc
4 z2
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† The system transfer function can be determined by solving the above system for 
Y[z] and dividing by X[z]. 

In[25]:= (Y[z]/.First[Solve[%, Y[z]]])/X[z]

Out[25]=
4 z2

ccccccccccccccccccc
1 + 4 z2

† Taking the inverse transform of the system transfer function gives us the impulse 
response. 

In[26]:= InverseZTransform[%, z, n]

Out[26]= Upsample2,nAJ−
1
cccc
4
Nn DiscreteStep@nDE

† This is the impulse response of the system we are working with. 

In[27]:= DiscreteSignalPlot[%, {n, -5, 15}]

-5 5 10 15
n

-0.2

0.2

0.4

0.6

0.8

1

Discrete Signal Plot

Out[27]= h Graphics h

Without  region  of  convergence  information,  a  Z  transform  is  not  unique.  If  you  wish  to
perform  an  inverse  transform  that  requires  specification  of  the  region  of  convergence,  you
must enter the transform object directly. 
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† Here is a multidimensional separable Z transform. Note the region of convergence. 

In[28]:= ZTransform[
    a^n1 b^n2 DiscreteStep[{n1, n2}],
    {n1, n2}, {z1, z2}
]

Out[28]= ZTransformDataA z1 z2
ccccccccccccccccccccccccccccccccccccccccccHa − z1L Hb − z2L ,

RegionOfConvergence@8Abs@aD, Abs@bD<, 8∞, ∞<D,
TransformVariables@8z1, z2<DE

† Here is an inverse transform where we take the function that results from the 
previous computation, but change the region of convergence. Note how the result 
varies compared to the input to the preceding example. 

In[29]:= InverseZTransform[
    ZTransformData[Normal[%],
        RegionOfConvergence[
           {0, Abs[b]},
           {Abs[a], Infinity}
        ],
        TransformVariables[{z1, z2}]
    ],
    {z1, z2}, {n1, n2}
]

Out[29]= −an1 bn2 DiscreteStep@−1 − n1D DiscreteStep@n2D
SeriesTerms −> n perform a series expansion of the function to be

transformed if no standard transform rules are applicable

DecompositionPrecision−>

n

if partial fractions decomposition is used in the

computation, perform it to the specified precision

Options for inverse Z transform. 

Since  the  inverse  Z  transform  is  transforming  a  continuous  function,  it  accepts  the
SeriesTerms  option.  This  will  attempt  a  series  expansion  of  the  function  to  be

transformed  to  a  specified  number  of  terms  if  no  transform  can  be  found.  Note  that
SeriesTerms  can also be set  to None,  indicating that  the method is not to be attempted.

The inverse Z transform also employs the DecompositionPrecision  option. For exact

decomposition, the option should be set to Infinity. 
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† Here is an inverse Z transform performed by the SeriesTerms option. The 
result is only an approximation to what the actual transform would be. Expand is 
used here to arrange the terms in a more attractive form. 

In[30]:= Expand[InverseZTransform[
    BesselJ[1, z],
    z, n,
    SeriesTerms -> 8
]]

Out[30]= 2n DiscreteDelta@1 + nD − 22+2 n DiscreteDelta@3 + nD +

2−12−n 34+n DiscreteDelta@5 + nD − 2−18−n 35+n DiscreteDelta@7 + nD
The  StandardFormula  option  is  not  available  for  inverse  Z  transforms,  as  standard

integration technology is not able to handle most of the contour integrals from transforms that
cannot be computed by the standard Z transform rule base. 

The Discrete-Time Fourier Transform

The  discrete-time  Fourier  transform  is  related  to  the  Z  transform,  and  can  under  certain
circumstances  be  viewed  as  a  special  case  of  the  Z  transform,  with  convergence  inside  the
unit  circle.  Like  the  Z  transform,  it  accepts  a  discrete  function  as  input  and  returns  a

continuous function. The standard formula is 

X He j wL = D T  8x @nD< = ‚
n=-¶

+¶

x@nD e- j w n

and for the inverse transform 

x@nD = D T
-1  8X He j wL< =

1
ÅÅÅÅÅÅÅÅÅÅÅ
2 p

 ‡
-p

p

X He j wL e j w n d  w

Because of the similarities between this transform and the Z transform, the implementation in

Signals  and  Systems  simply  adds  rules  for  those  cases  where  the  discrete-time  Fourier
transform is different, then call the Z transform with the appropriate variable substitution for
all other cases. 
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DiscreteTimeFourierTransg

form@expr, n, wD perform a discrete-time

Fourier transform from the variable n to w

DiscreteTimeFourierTransg

form@expr,8n1, n2, …, nn<,8w1, w2, …, wn<D
perform a multidimensional

discrete-time Fourier transform from  ni to  wi

DiscreteTimeFourierTransg

form@n, wD@exprD nonevaluating operator form

of the discrete-time Fourier transform

InverseDiscreteTimeFourig

erTransform@expr, w, nD perform an inverse discrete-time Fourier transform

InverseDiscreteTimeFourig

erTransform@w, nD@exprD operator form of the

inverse discrete-time Fourier transform

The discrete-time Fourier transform and its inverse. 

The syntax of the discrete-time Fourier transform is much like that of the Z transform. 

† All the transform functions, including the discrete-time Fourier transform, accept 
symbolic input. 

In[31]:= DiscreteTimeFourierTransform[
    a^n DiscreteStep[n - 4],
    n, w
]

Out[31]= DTFTDataA a4
cccccccccccccccccccccccccccccccccccc
−a Æ3 Ç w + Æ4 Ç w , TransformVariables@wDE

† This is the two-dimensional discrete-time Fourier transform of a particular pattern 
of samples around the origin. 

In[32]:= DiscreteTimeFourierTransform[
    (1/6) DiscreteImpulse[n1 - 1, n2 - 1] +
      (1/6) DiscreteImpulse[n1 + 1, n2 - 1] +
      (1/6) DiscreteImpulse[n1 - 1, n2 + 1] +
      (1/6) DiscreteImpulse[n1 + 1, n2 + 1] +
      (1/3) DiscreteImpulse[n1, n2],
    {n1, n2}, {w1, w2}
]

Out[32]= DTFTDataA 1cccc
3
H1 + 2 Cos@w1D Cos@w2DL, TransformVariables@8w1, w2<DE
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† This is the magnitude of the transform, plotted. Note that to perform mathematical 
computations with a transform result, it must be extracted from the data structure 
that the transform returns. 

In[33]:= SignalPlot3D[Abs[First[%]],
    {w1, -Pi, Pi}, {w2, -Pi, Pi}
]

Signal Plot
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2
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0

2

w2

0

0.25

0.5

0.75

1

-2

0

2
w1

Out[33]= h SurfaceGraphics h

DiscreteTimeFourierTransform  accepts  the  same  options  as  ZTransform,  with

the  same meanings.  Similarly,  the  inverse  transform uses  the  same options  as  the  inverse  Z

transform. 

5_Transforms.nb 21

Printed by Mathematica for Students



† Here is a simple example of an abstract transform pair. Note that the 
TransformPairs option will only be effective if the standard properties of the 
transform can be applied to simplify the input to the point that the user-specified 
transform pair can be applied. 

In[34]:= DiscreteTimeFourierTransform[
   x[n + 3],
n, w, TransformPairs -> {x[n] :> X[w]}
]

Out[34]= DTFTData@Æ3 Ç w X@wD, TransformVariables@wDD
† The inverse transform can also make use of the TransformPairs option. 

In[35]:= InverseDiscreteTimeFourierTransform[%,
   w, n,
   TransformPairs -> {X[w] :> x[n]}
]

Out[35]= x@3 + nD
The Discrete Fourier Transform

Given a finite sequence of length N , the Fourier transform can be represented by N  uniformly

distributed samples of the discrete-time Fourier transform. This is known as a discrete Fourier
transform. 

X @kD = D 8x @nD< = ‚
n=0

N-1

x@nD e
- j 2 p k nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅN

The inverse transform is written as 

x@nD = D
-1 8X  @kD< =

1
ÅÅÅÅÅÅÅÅ
N

 ‚
k=0

N-1

X @kD e
j 2 p k nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅN

Unlike  the  built-in  Mathematica  function  Fourier  which  computes  numeric  discrete

Fourier  transforms,  the  Signals  and  Systems  function  DiscreteFourierTransform

computes symbolic transforms. 
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DiscreteFourierTransform@
expr, N, n, kD perform a discrete Fourier transform from

the variable n to k for a sequence of length N

DiscreteFourierTransform@
expr, 8N1, N2, …, Nn<,8n1, n2, …, nn<,8k1, k2, …, kn<D

perform a multidimensional

discrete Fourier transform from  ni 
to  ki with  Ni samples in each variable

DiscreteFourierTransform@
N, n, kD@exprD nonevaluating operator

form of the discrete Fourier transform

InverseDiscreteFourierTrg

ansform@expr, N, k, nD perform an inverse discrete Fourier transform

InverseDiscreteFourierTrg

ansform@N, k, nD@exprD operator form of the inverse discrete Fourier transform

The discrete Fourier transform and its inverse. 

Because  of  the symbolic  nature  of the  discrete  Fourier  transform as  implemented  in  Signals

and  Systems,  you  can  specify  a  formula  and  the  number  of  samples  N  over  which  the
transform is to be applied. The sequence to be transformed is assumed to run from 0 to N - 1.
The result of the transform is periodic; this is emphasized by use of the Periodic  operator

in the returned data object. 

† Here is a simple transform demonstrating the symbolic aspects of the 
DiscreteFourierTransform function. Here, the sequence has a length of 
10. 

In[36]:= DiscreteFourierTransform[Sin[n], 10, n, k]

Out[36]= DFTDataA
−
1
cccc
2

Ç Periodic10,kA10 Summation ∞

l1=−∞
ADiracDeltaAk + 10 l1 −

5
cccc
π
EE −

10 Summation ∞

l2=−∞
ADiracDeltaAk + 5 J2 l2 +

1
cccc
π
NEEE,

Start@0D, Finish@9D, TransformVariables@kDE
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† An inverse transform is computed in a similar fashion. 

In[37]:= InverseDiscreteFourierTransform[Sin[k], 10, k, n]

Out[37]= −
1

ccccccc
20

Ç HCircularShiftMod@n, 10D in nLA
2 π J−DiscreteDeltaAn −

5
cccc
π
E + DiscreteDeltaAn +

5
cccc
π
ENE

options name default value

DecompositionPg

recision

Infinity precision to be used if partial

fractions decomposition is employed

Justificiation None what degree of information about

the transform process should be displayed

SimplifyOutput All what degree of output

simplification should be attempted

StandardFormula False whether to try the standard summation

formula for computing the transform

TransformPairs 8< user-specified transform pairs to attempt

Options for DiscreteFourierTransform and InverseDiscreteFourierTransform. 

The  DiscreteFourierTransform  and  its  inverse  use  some  of  the  Z  and  inverse  Z

transform  options.  They  take  essentially  the  same  meanings,  but  since  the  selection  of
applicable  options  is  different,  they  are  listed  again  here.  Note  in  particular  that  the
TransformDirection  option  is  not  applicable  to  the  discrete  Fourier  transform,  nor  is

the SeriesTerms option. 
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† When Justification is set to Automatic, not as much additional 
information is generated. This tells us that the transform is computed by way of 
the discrete-time Fourier transform. 

In[38]:= DiscreteFourierTransform[
    DigitalFIRFilter[
        {h[0], h[1], h[2], h[3], h[4]},
        n
    ],
    5, n, w,
    Justification -> Automatic
] H after taking the forward DTFT of

DigitalFIRFilter@8h@0D, h@1D, h@2D, h@3D, h@4D<, nD
with respect to n which yields

h@0D + Æ−Ç w h@1D + Æ−2 Ç w h@2D + Æ−3 Ç w h@3D + Æ−4 Ç w h@4D
and adjusting the result L

Out[38]= DFTDataA
Periodic5,wAh@0D + Æ− 2cccc5 Ç π w h@1D + Æ− 4cccc5 Ç π w h@2D + Æ− 6cccc5 Ç π w h@3D + Æ− 8cccc5 Ç π w h@4DE,
Start@0D, Finish@4D, TransformVariables@wDE

DiscreteFourierTransform@
vectorD the discrete Fourier transform of a numeric vector of data

InverseDiscreteFourierTrg

ansform@vectorD the inverse discrete Fourier

transform of a numeric vector of data

Special syntax for transforming a numeric vector. 

For  convenience,  the  forward  and  inverse  discrete  Fourier  transforms  have  a  syntax  that

allows  a  numeric  vector  to  be  passed directly to  the  transform function,  generating  a  vector
output.  The  behavior  is  similar  to  that  of  the  built-in  function  Fourier,  but  with  the

definition  of  the  discrete  Fourier  transform used  in  Signals  and  Systems.  The  usual  options

are not available with this syntax, and the symbolic techniques are not used. The same degree
of rigor used by the primary algorithm is also not employed, as the output is presented simply
as  a  vector  rather  than  a  periodic  signal.  However,  for  certain  computations  (such  as  filter
design), it is sometimes useful to refer to a vector of data that is implicitly assumed to start at
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0,  with the output  implicitly assumed to be periodic (assumptions  made explicit when using
SampledData objects). The input must be numeric when this syntax is employed. 

† Here is a numeric transform of a vector of data. 

In[39]:= DiscreteFourierTransform[
    Table[2^(-n), {n, 0, 10}]//N
]

Out[39]= 81.99902 + 0. Ç, 1.41675 − 0.661017 Ç, 0.948862 − 0.544695 Ç,

0.76896 − 0.355285 Ç, 0.696525 − 0.198277 Ç, 0.669395 − 0.0637239 Ç,
0.669395 + 0.0637239 Ç, 0.696525 + 0.198277 Ç,

0.76896 + 0.355285 Ç, 0.948862 + 0.544695 Ç, 1.41675 + 0.661017 Ç<
† This inverse transform might represent the impulse response of a sampled ideal 

filter frequency response. 

In[40]:= InverseDiscreteFourierTransform[
    {1, 1, 1, 1, 0, 0, 0, 0}//N
]

Out[40]= 80.5 + 0. Ç, 0.125 + 0.301777 Ç, 0. + 0. Ç, 0.125 + 0.0517767 Ç,

0. + 0. Ç, 0.125 − 0.0517767 Ç, 0. + 0. Ç, 0.125 − 0.301777 Ç<
à 5.3 Information from Transforms

Each  returned  transform  object  contains  a  variety  of  useful  components.  In  addition,  other
functions can extract information such as the stability of a transform from the object. 

Stability

For the Laplace and Z transforms, the stability of the signal or system under consideration can

be derived from the region of convergence of the transform. In the case of the Z transform, the
system is stable only if the unit circle is included in the region of convergence, while for the
Laplace transform, the imaginary axis must be in the region of convergence. 

SignalStability@
transformD return True, False, or the

conditions required for the signal to be stable

Determining stability from a transform object. 
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The  SignalStability  function  examines  the  region  of  convergence  information  in  a

transform data object for the stability criteria described above. If the stability can definitely be
determined, the function returns True or False. If the convergence criteria include abstract

parameters, SignalStability  returns the conditions that those parameters must meet for

the signal to be stable. The conditions are returned in the form of a logical conjunction. 

† Here is a Z transform. 

In[41]:= ZTransform[
    (1/5)^n Exp[n]/20 DiscreteStep[n],
    n, z
]

Out[41]= ZTransformDataA z
ccccccccccccccccccccccccccc
−4 Æ + 20 z

,

RegionOfConvergenceA Æ
cccc
5
, ∞E, TransformVariables@zDE

† From the region of convergence, we conclude that this is stable. 

In[42]:= SignalStability[%]

Out[42]= True

† This multidimensional transform from earlier in the chapter is stable when the 
conditions returned in this example are met. 

In[43]:= SignalStability[
   ZTransform[
       -a^n1 b^n2 DiscreteStep[{-n1 - 1, n2}],
      {n1, n2}, {z1, z2}
  ]
]

Out[43]= 1 < Abs@aD && Abs@bD < 1

Assumptions

Some  transforms  can  only  be  performed  if  certain  conditions  are  met  on  parameters  or

variables involved in the transform. Signals and Systems currently maintains this information
as part of the command history, via the function TransformAssumptions. 
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TransformAssumptions@nD return a logical conjunction of assumptions

made by transforms computed by In@nD
TransformAssumptions@
Out@nDD or

TransformAssumptions@%nD alternate syntax for the

TransformAssumptions command for ease of use

Assumptions made by transforms during a computation. 

During  a  computation,  the  transform  functions  associate  any  required  assumptions  with  a
history mechanism kept in TransformAssumptions  of the current value of $Line. You

can retrieve the assumptions by calling TransformAssumptions  with the input line you

want to find out about. (If a negative value is given, TransformAssumptions  will count

backwards  from  the  current  line.)  If  True  is  returned,  the  assumptions  are  met  by current

criteria placed on parameters, or no assumptions were necessary. Otherwise, the assumptions
will be returned in the form of a logical conjunction. 

† Here is a Laplace transform. 

In[44]:= LaplaceTransform[
    ExpIntegralEi[n t] UnitStep[t],
    t, s
]

Out[44]= LaplaceTransformDataA−
Log@1 − sccccn Dccccccccccccccccccccccccccccc

s
,

RegionOfConvergence@0, ∞D, TransformVariables@sDE
† This retrieves the assumptions made during the previous input. 

In[45]:= TransformAssumptions[-1]

Out[45]= Negative@nD
† This syntax allows a more familiar notation to be used. Note, however, that the %% 

is not actually evaluated; instead, the -2 is retrieved from the Out[-2] which 
%% represents. 

In[46]:= TransformAssumptions[%%]

Out[46]= Negative@nD
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Transform Object Parts

The  forward  transforms  return  a  data  object  that  contains  important  information  about  the

transform,  such as  the region  of convergence.  The most  important  information  (the function
that  results  from  the  transformation)  is  quite  visible  to  the  user,  but,  for  programmatic
manipulation, it  is best to extract the parts of the data object using special functions. This is
because  the  data  type  is  subject  to  change,  as  additional  information  about  the  transform is

retained. 

RegionOfConvergence@objectD extract the bounds on the region of convergence

TransformFunction@objectD extract the function resulting from the transform

TransformRange@objectD extract the starting point and endpoint of the

periodic part of the discrete Fourier transform

TransformVariables@objectD extract the variables

that the transform was performed with

Functions for extracting parts of transform objects. 

As per the  usual  Mathematica  convention  for  converting  data objects,  Normal  can  also be

used to extract the function resulting from the transform. 

† Here is a Laplace transform. 

In[47]:= trans = LaplaceTransform[
    Exp[t] UnitStep[t],
    t, s
]

Out[47]= LaplaceTransformDataA 1
cccccccccccccccc
−1 + s

,

RegionOfConvergence@1, ∞D, TransformVariables@sDE
† This is the function resulting from the transform. 

In[48]:= TransformFunction[trans]

Out[48]=
1

cccccccccccccccc
−1 + s
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Laplace and Z transforms retain information about the region of convergence of the transform
in  the  transform variable.  It  is  not  necessary  that  this  information  be  retained  for  the  other
provided transforms. The upper and lower bounds represent different things for each of these
tranforms.  For  the  Laplace  transform,  the  region  of  convergence  is  a  strip  in  the  complex

plane bounded by constant  real numbers. The upper and lower bounds are these real values.
The  Z transform, on  the other hand,  converges  in  an  annulus  in  the complex plane,  and the
upper  and  lower  bounds  represent  the  absolute  value  of  the  points  on  the  boundary.  In  the
multidimensional  case,  these  take  the  form

RegionOfConvergence@8l1, l2, …<, 8u1, u2, …<D.
† The region of convergence is extracted in a similar fashion. The lower bounds are 

in the first argument, while upper bounds are in the second argument. 

In[49]:= RegionOfConvergence[trans]

Out[49]= RegionOfConvergence@1, ∞D
† Now we extract the variables that the function was transformed to. This is 

necessary to distinguish variables from parameters in the transform object. 

In[50]:= TransformVariables[trans]

Out[50]= s

DFTData@ function, … D data object resulting from a discrete Fourier transform

DTFTData@ function, … D data object resulting

from a discrete-time Fourier transform

FourierTransformData@
function, … D data object resulting from a Fourier transform

LaplaceTransformData@
function, … D data object resulting from a Laplace transform

ZTransformData@ function, …D data object resulting from a Z transform

Data objects resulting from forward transforms. 
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Because the contents of a transform data object are in principle not fixed, it is better to access
the  parts  of  such  an  object  by  the  functions  listed  previously,  not  by  using  Part  and

depending on the components to be in particular locations. 

à 5.4 Solving Differential and Recurrence Equations

Mathematical transforms play a wide variety of roles in signal processing. For instance, they
can be used to solve differential and recurrence equations. As a demonstration of this utility,

Signals  and  Systems  includes  the  functions  LaplaceDSolve  and  ZRSolve.  They  can

solve linear constant coefficient differential and recurrence equations, respectively. 

These  equations  can  also  be  handled  by the  standard  Mathematica  functions  DSolve  and

RSolve. However, the standard functions employ a variety of techniques. If you specifically

want to apply a transform technique, then these supplementary functions provided by Signals
and Systems can be useful. LaplaceDSolve  and ZRSolve  also make use of the bilateral

transforms,  which  allows  a  broader  range  of  solutions  than  the  traditional  right-sided

transforms permit. 

LaplaceDSolve@  a1 y@tD +  a2 
y'@tD + … == f @tD, y@tD, tD solve a linear constant coefficient differential equation

LaplaceDSolve@8equation, y@t0D == v1,

y'@t0D == v2, …<, y@tD, tD solve equation with boundary conditions

ZRSolve@  a1 
y@nD +  a2 y@n − 1D + …

== f @nD, y@nD, nD solve a linear constant coefficient recurrence equation

ZRSolve@8equation, y@0D == c1,

y@1D == c2, …<, y@nD, nD solve equation with initial conditions

The transform-based equation solvers. 

The  syntax  of  these  equation  solvers  mimics  the  standard  DSolve  and  RSolve  notations.

The  main  differences  are  in  the  class  of  equations  that  can  be  solved  and  in  the  allowed

boundary conditions. The equations are limited to linear constant coefficient terms, with only

5_Transforms.nb 31

Printed by Mathematica for Students



the  driving  term  allowed  to  be  dependent  on  the  variable  (that  is,  the  equation  can  be
nonhomogenous). Systems of equations cannot currently be handled. 

If  initial  conditions  are  not  given,  they  are  assumed  to  be  zero  for  ZRSolve.

LaplaceDSolve  assumes that  they are symbolic  constants  C[1],  C[2],  and so on,  with

constant C[n] corresponding to the derivative of order n - 1 of the function at 0. 

† Here is the solution to a second-order difference equation, with an initial point 
specified. 

In[51]:= ZRSolve[
   {y[n-2] + 1/2 y[n-1] + 1/4 y[n] == 0,
    y[1] == 1},
   y[n], n
]

Out[51]= 99y@nD →
2n DiscreteStep@nD Sin@ 2 n πccccccccc3 D
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!3 ==

† Here is a second-order differential equation. Initial values for the function are 
specified. 

In[52]:= LaplaceDSolve[
    {y''[t] + 3/2 y'[t] + 1/2 y[t] ==
                    Exp[a t] UnitStep[t],
     y[0] == 4, y'[0] == 0},
    y[t], t
]

Out[52]= 99y@tD →
1

ccccccccccccccccccccccccccccccc
1 + 3 a + 2 a2

 H2 Æ−tH−1 + 2 Ætê2 + Æt+a t + 2 a H−2 + 5 Ætê2L + a2 H−4 + 8 Ætê2LL UnitStep@tDL==
option name default value

Justification None whether to print information

about the steps taken in the computation

TransformDirecg

tion

RightSided perform the transform over one of the domains

TwoSided, LeftSided, or RightSided

Options for the solving functions. 

The use of the bilateral transform allows both causal and anticausal sequences to be handled
by ZRSolve. The TransformDirection  option can be specified with either solver; it is
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passed along to the corresponding transform function. 

The  Justification  option  is  much  like  that  used  elsewhere.  When  set  to  None,  no

additional  information  is  provided;  when  Automatic,  some  information  about  the  steps

taken is printed; and when All, detailed output is given. 

† Here is a difference equation solved with the Justification option activated. 
More information can be generated by setting the option to All. 

In[53]:= ZRSolve[
   {y[n-2] + 1/2 y[n-1] + 1/4 y[n] == 0,
    y[0] == 1, y[1] == 0},
   y[n], n, Justification -> Automatic
]

Solving for y@nD in the difference equation

augmented by the initial conditions:

y@−2 + nD +
1
cccc
2
y@−1 + nD +

y@nD
ccccccccccccc
4

=

1
cccc
2
DiscreteDelta@−1 + nD +

DiscreteDelta@nD
cccccccccccccccccccccccccccccccccccccccccccccccc

4

After taking the z−transform of both sides and

solving for the z−transform of y@nD:
1 + 2cccczccccccccccccccccccccccccccc

1 + 4cccccz2 + 2ccccz

Inverse transforming this gives y@nD:
Out[53]= 99y@nD →

1
cccc
3
2n J2 è!!!!3 DiscreteStep@−1 + nD SinA 2 n π

ccccccccccccc
3

E +

DiscreteStep@nD J3 CosA 2 n π
ccccccccccccc
3

E − è!!!!3 SinA 2 n π
ccccccccccccc
3

ENN==
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