
4 Filter Analysis and Design

Filtering, the ability to selectively suppress or enhance particular parts of a signal, is perhaps

the  most  important  tool  for  signal  processing.  Signals  and  Systems  meets  this  need  by
providing  representations  of  rational  pole-zero  filters  in  both  the  continuous  (analog)  and
discrete  (digital)  domains.  Routines  to  transform  a  filter  from  analog  to  discrete-time  are
provided, as are the most common analog filter prototypes. 

While general nonlinear filters or design tools for multidimensional filters are not yet directly

supported  by these  routines,  there  are  some  special  routines  for  designing  two-dimensional
decimation  systems.  They  do  not  yet  assist  in  the  design  of  the  filter  itself,  but  they  can
produce  optimal  decimation  systems  for  a  given  passband  specification  with  rectangular
sampling. 

As per usual convention, discrete-time filter design is also referred to as digital filter design in

this chapter and in Signals and Systems in general. 

à 4.1 Analog Filter Design

The most common representation for a rational filter is in terms of the poles and zeros of the
system function. Signals and Systems employs this in the AnalogFilter object. 

AnalogFilter@8p1, p2, …<,8z1, z2, …<, varD an analog pole-zero filter for poles  
pn and zeros  zn in the time variable var

Representing analog filters. 

The AnalogFilter  object is the basic object in this application for representing an analog

filter.  Other tools  are described later  on  that  allow you to derive an  analog filter  in  terms of

standard  design  classes  (e.g.,  Bessel  filters,  elliptic  filters,  etc.).  The  filter  object  acts  as  a
Signals  and  Systems  operator;  to  determine  the  impulse  response,  you  apply the  filter  to  an
impulse, and use the analysis tools to convert the system into a functional or graphical form. 
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† First, make the functions available for use. 

In[1]:= Needs["SignalProcessing`"]

† Here is a stable analog filter. Remember that the poles of the filter's transfer 
function are given first, then the zeros. 

In[2]:= filt = AnalogFilter[
    {-.3, -.2 + .7 I, -.2 - .7 I},
    {0, .2, -.2 },
    t
];

† The filter object normally acts in the same fashion as other operators. To 
determine the response of the filter to a signal, the filter object should be applied 
to the signal and evaluated. Here is the impulse response of our sample filter. 

In[3]:= EvaluateOperators[
    filt[DiracDelta[t]]
]

Out[3]= 1. DiracDelta@tD − H0.03 − 1.18161×10−19 ÇL Æ−0.3 t UnitStep@tD −H0.335 + 0.245 ÇL ÆH−0.2−0.7 ÇL t UnitStep@tD −H0.335 − 0.245 ÇL ÆH−0.2+0.7 ÇL t UnitStep@tD
† We can plot the computed response. 

In[4]:= MagnitudePhasePlot[
 %, {t, 0, 20}
];
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† Unlike other operators, certain functions can act solely on the filter object. For 
instance, here is a Laplace transform of the object, which returns the system 
transfer function with information about the region of convergence. 

In[5]:= LaplaceTransform[filt, t, s]

Out[5]= LaplaceTransformDataA H−0.2 + sL s H0.2 + sL
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccHH0.2 − 0.7 ÇL + sL HH0.2 + 0.7 ÇL + sL H0.3 + sL ,

RegionOfConvergence@−0.2, ∞D, TransformVariables@sDE
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† A pole-zero plot can be generated from the transform. 

In[6]:= PoleZeroPlot[%]
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Out[6]= h Graphics h

All of the filter objects can be used to represent multidimensional filters. At this point in time,
computations  and  design  procedures  based  on  multidimensional  filters  are  not  supported,
however.  To represent  an n-dimensional  pole-zero filter, the lists of  poles  and zeros  become

nän  matrices,  while  the  time  variable  becomes  a  list  of  n  variables.  This  may be  useful  for
custom system rewrite code, or for export to Ptolemy (see Chapter 7.2). 

A  number  of  tools  are  provided  for  filter  design.  They  first  require  that  you  specify  the
characteristics of the filter. 
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FilterSpecification@ 
band1 ,  band2 , … D specify a normalized filter with the given bands,

which may be Passband or Stopband objects

Passband@delta,8 freqmin, freqmax<D a passband with a magnitude response from  1-d  e l t a 
to  1 between the frequencies  freqm i n and  freqm a x

Stopband@delta,8 freqmin, freqmax<D a passband with a magnitude response from  0 to  d  e l t a 
between the frequencies  freqm i n and  freqm a x

Objects for specifying the magnitude response of a filter. 

The  FilterSpecification  object  represents  the magnitude  response  of  a  filter  that  is

being designed.  It  is  given  in  terms of  Passband  and Stopband  objects.  The passbands

and  stopbands  take  as  arguments  the  allowable  variation  in  magnitude  and  the  frequency
range over which the band is defined (in radians/second). 

† Here is a specification for a lowpass analog filter. Note in particular that the final 
stopband extends to Infinity. 

In[7]:= spec = FilterSpecification[
 Passband[0.1, {0, 8000}],
 Stopband[0.18, {12000, Infinity}]
];
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† Here is one way to visualize the specification. Note that the Infinity needed to 
be transformed to a finite value so that a nice graph could be generated. 

In[8]:= graph = Show[Graphics[
    {GrayLevel[0.8],
     Map[If[Head[#] === Stopband,
            Rectangle[{#[[2,1]], 0},
                      {#[[2,2]], #[[1]]}
            ],
            Rectangle[{#[[2,1]], 1 - #[[1]]},
                      {#[[2,2]], 1}
            ]
         ]&,
         List @@ spec/.Infinity -> 20000]},
     Frame -> True, PlotRange -> All
]]
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Out[8]= h Graphics h

You  can  specify  lowpass,  highpass,  bandpass,  and  bandstop  filters  with  the
FilterSpecification  object.  General  multiband  filters  can  be  given  in  principle,  but

the current design routines do not handle those cases. 

Be  aware  that  the  FilterSpecification  object  has  the  attribute  Orderless.  This

means that Mathematica sorts the arguments in canonical (alphanumeric) order. They will not
be arranged by frequency range. Remember this particularly when writing programs based on

the FilterSpecification object. 
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† This bandpass specification demonstrates the automatic reordering of 
FilterSpecification arguments. 

In[9]:= FilterSpecification[
    Stopband[0.2, {0, 4000}],
    Passband[0.14, {6000, 8000}],
    Stopband[0.35, {9000, Infinity}]
]

Out[9]= FilterSpecification@Passband@0.14, 86000, 8000<D,
Stopband@0.2, 80, 4000<D, Stopband@0.35, 89000, ∞<DD

The filter specification is passed to a design procedure to create a filter object. Currently, the
only analog  design  function  is  DesignAnalogFilter,  which  is  used  to  create  standard

analog  filter  types.  The  resulting  analog  filters  may  be  used  as  prototypes  for  digital  filter
design. 

DesignAnalogFilter@
type, var, specD design a filter of the named type, with a particular

filter specification spec and the time variable var

Designing an analog filter. 

DesignAnalogFilter  enables  automated  design  of  a  filter  from  an  input  filter

specification and a given filter type. If the filter paramaters are for a type of filter other than
lowpass, the specification will first be transformed to a lowpass type, then the resulting filter

will  be  inversely  processed  by  transformation  of  the  poles  and  zeros  (see
AnalogFilterTransformation, below). 

† Here is a lowpass elliptic filter designed with the specification we entered above. 
The result is a third-order filter. 

In[10]:= filt = DesignAnalogFilter[
    Elliptic, t, spec
]

Out[10]= H1812.3 + 1.91466× 10−14 ÇL
AnalogFilter@8−4898.74 + 0. Ç, −1543.22 − 8003.53 Ç,

−1543.22 + 8003.53 Ç<, 813400.9 Ç, −13400.9 Ç<, tD
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† We can determine the frequency response of our new filter. 

In[11]:= fresp = FourierTransform[filt, t, w]

Out[11]= FourierTransformData@HH−3.43844 ×10−6 + 3.25462×1011 ÇL +H0. + 0. ÇL w + H1.91466×10−14 − 1812.3 ÇL w2LêHHH−8003.53 − 1543.22 ÇL + wL HH0. − 4898.74 ÇL + wLHH8003.53 − 1543.22 ÇL + wLL, TransformVariables@wDD
† The equation may be less than completely informative. It is often useful to 

visualize the result. We compare the magnitude response here with the graph of 
the specification generated earlier. Remember that the frequency is given in 
radians per second! 

In[12]:= Show[ graph,
    First[MagnitudePhasePlot[
        fresp, {w, 0, 20000},
        MagnitudeScale -> Linear,
        DisplayFunction -> Identity
    ]]
]
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Out[12]= h Graphics h
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Bessel Butterworth

ChebyshevI ChebyshevII

Elliptic

Allowed types of filters for analog filter design.

The  usual  classical  analog  infinite  impulse  response  filter  types  are  used  by
DesignAnalogFilter.  Both  the  Bessel  and  Butterworth  filters  have  a  smooth

magnitude response that decreases monotonically with frequency. (The Bessel type of filter

has a nearly constant group delay throughout the passband, giving it low overshoot in its step

response;  but  this  means  that  it  does  not  have  the  linear  phase  response  favored  in  digital
filter  design.)  The  type  I  Chebyshev  filter  (ChebyshevI)  is  equiripple  in  the  passband,

while the type II, or inverse, Chebysev filter (ChebyshevII) is equiripple in the stopband.

The Elliptic filter is equiripple in both the passband and the stopband. 

† Here is a specification for a highpass filter, where the stopband has an attenuation 
of at least 10 decibels at 60 hertz, while the passband is at worst 2 decibels down 
at 100 hertz. 

In[13]:= hispec = FilterSpecification[
    Stopband[ 10^(-10/20), {0, 2 Pi 60}],
    Passband[ 1 - 10^(-2/20), {2 Pi 100, Infinity}]
]//N

Out[13]= FilterSpecification@Passband@0.205672, 8628.319, ∞<D,
Stopband@0.316228, 80., 376.991<DD

When  numeric computation  with  complex numbers  is  performed,  rounding errors  can  cause
small  complex values  to  appear.  If  you  do  not  expect  small  values  in  your  output,  you may

eliminate them by judicious use of Chop. 

† This is a type I Chebyshev filter derived from the specification. 

In[14]:= DesignAnalogFilter[ChebyshevI, t, hispec]//Chop

Out[14]= 0.794328

AnalogFilter@8−306.814 − 620.902 Ç, −306.814 + 620.902 Ç<, 80, 0<, tD
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† Here is the frequency response of the filter. 

In[15]:= FourierTransform[%, t, w]//Chop

Out[15]= FourierTransformDataA 0.794328 w2
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
−479654. − 613.628 Ç w + w2

, TransformVariables@wDE
† We can check that the response has the desired characteristics. Here, we verify 

that the stopband attenuation is at least 10 decibels. 

In[16]:= 20 Log[10, Abs[Normal[%]/.w -> 2 Pi 60]]//N

Out[16]= −11.1854

FilterOrder −> n generate a filter of order n, rather

than letting the order be computed automatically

Option to DesignAnalogFilter. 

In  some cases,  the  order  of  a  filter  that  meets  the  given  specification  cannot  be  determined
automatically  by  DesignAnalogFilter,  or  you  may  wish  to  design  the  filter  with  a

particular order. In these cases, you can explicitly specify an order for the filter by the option

FilterOrder.  The  order  should  be  a  positive  integer.  (The  default  value  is  the  setting

Automatic,  which  tells  DesignAnalogFilter  to  use  the  standard  algorithms  for

determining the minimum filter order which meets the specification.) 

† Using the lowpass filter specification employed in the first example, we attempt to 
design a Bessel filter. The filter order could not be determined automatically, so a 
twelfth-order filter was used instead. 

In[17]:= DesignAnalogFilter[Bessel, t, spec]

Bessel::order :  
Could not determine the order of the Bessel filter to

meet the specifications, so an order 12 will be used.

Out[17]= 2.18027× 1052 AnalogFilter@8−20885.4 − 2195.71 Ç, −20885.4 + 2195.71 Ç, −20237.2 − 6602.28 Ç,

−20237.2 + 6602.28 Ç, −18891.7 − 11058.8 Ç, −18891.7 + 11058.8 Ç,

−16729.2 − 15617.1 Ç, −16729.2 + 15617.1 Ç, −13486.9 − 20378. Ç,
−13486.9 + 20378. Ç, −8459.56 − 25619.7 Ç, −8459.56 + 25619.7 Ç<, 8<, tD
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† We can explicitly request that a fifth-order filter be used instead. 

In[18]:= DesignAnalogFilter[Bessel, t, spec,
    FilterOrder -> 5
]

Bessel::order :  
Could not determine the order of the Bessel filter to

meet the specifications, so an order 12 will be used.

DesignAnalogFilter::order :  

The filter order of the analog lowpass prototype, 5, is less than

the minimum filter order, 12, needed to meet the constraints.

Out[18]= 1.13443× 1021

AnalogFilter@8−15058.2, −13841. − 7195.85 Ç, −13841. + 7195.85 Ç,

−9599.11 − 14745.6 Ç, −9599.11 + 14745.6 Ç<, 8<, tD
The  Bessel  filters  are  the  most  likely to  have  the  problem of  being  unable  to  automatically
determine  the  filter  order.  The  algorithm employed  involves  an  iterative  search  that  can  be
quite  time consuming;  it  automatically terminates at  the twelfth order to reduce unnecessary
computation.  High-order  Bessel  filters  can  be  somewhat  unstable  numerically,  so  it  is  often

ineffective  to  employ  filters  above  the  twelfth  order.  It  is  still  possible  to  request  a  higher
order by way of the FilterOrder option, however. 

Since Mathematica is a symbolic system, purely symbolic filter designs are also possible. 

4_Filters.nb 11
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† Here is a symbolic design for a lowpass Butterworth filter. The message that is 
generated is harmless in this context. Because the exact list of roots cannot be 
determined with a symbolic order parameter, Table is called with a symbolic 
range. If you substitute a numeric parameter for the symbolic iteration limit, the 
Table will be able to evaluate. 

In[19]:= DesignAnalogFilter[
   Butterworth,
   t,
   FilterSpecification[
       Passband[pd, {0, wpc}],
       Stopband[sd, {wsc, Infinity}]
   ],
   FilterOrder -> a
]

Table::iterb :  

Iterator 8i1, 1, a< does not have appropriate bounds. More…

Out[19]= 0.5a ikjjJ−1. +
1

cccccccccccccccccccccccccccccccccH1. − 1. pdL2 N−0.5êa
wpc + J−1. +

1
cccccccccc
sd2

N−0.5êa
wscy{zza

AnalogFilterA0.5 ikjjJ−1. +
1

cccccccccccccccccccccccccccccccccH1. − 1. pdL2 N−0.5êa
wpc + J−1. +

1
cccccccccc
sd2

N−0.5êa
wscy{zz

TableAÆÇ I 1cccc2 + −1+2 i1cccccccccccccccccc2 a M π, 8i1, 1, a<E, 8<, tE
Symbolic  design  can lead  to  complex expressions,  but  it  allows a more flexible approach to
varying the design of a filter. 

AnalogFilterOrder@
type, specD determine the lowest order for a filter of

the given type that meets the filter specification spec

AnalogFilterParameg

ters@specD generate a list of various parameters used

in specifying a filter with the given characteristics

Information derived from a filter specification. 

The automated filter order determination can be performed as a separate step. Enter the filter
type and specification in the same fashion as you would when using the filter design function. 
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† Here we determine what order of a type II Chebyshev filter would be needed to 
meet the lowpass filter specification we defined in the first example. 

In[20]:= AnalogFilterOrder[ChebyshevII, spec]

Out[20]= 4

A filter  specification  is  often  described  in  terms  of  several  other  parameters.  Some of  these
parameters  can  be  derived  from  a  FilterSpecification  object  by  the

AnalogFilterParameters  function.  In  particular,  it  returns  a  list8dp, ds, e, A, Ad b, e, wp ê wc, n<,  which  consists  of  the  normalized  passband  ripple  dp,  the
normalized stopband ripple ds, the percent deviation from a constant passband response e, the
stopband  attenuation  A  (equivalent  to  1 ê ds),  the  stopband  attenuation  in  decibels  Ad b,  the

ripple  control  parameter  e  (found  in  Chebyshev  and  elliptic  filters),  the  ratio  between  the
transition  frequencies  wp ê wc,  and  finally  the  parameter  n  used  in  computing  filter  orders.
These eight values will always be returned in the order listed. 

† Here are the filter parameters for the highpass filter defined previously. 

In[21]:= AnalogFilterParameters[hispec]

Out[21]= 80.205672, 0.316228, 0.764783, 3.16228, 10., 2.46691, 0.254928, 0.6<
AnalogFilterTransfg

ormation@ filter, ruleD transform the poles and zeros of the given analog

filter by a rule expressed in the Laplace space; used for

converting lowpass filters to highpass, bandpass, etc.

LowpassPrototypeSpg

ecification@specD convert a general highpass, bandpass, or

bandstop filter specification into a lowpass specification

Frequency transformations of an analog filter object. 

LowpassPrototypeSpecification  takes  a  filter  specification  object  and  converts  it

to  the  design  lowpass  filter  specification.  This  routine  is  used  internally  by
DesignAnalogFilter, so it usually is not necessary to do this by hand. 

4_Filters.nb 13
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† Here is the lowpass specification used in the design of the highpass filter defined 
earlier. 

In[22]:= LowpassPrototypeSpecification[hispec]

Out[22]= FilterSpecification@Passband@0.205672, 80., 0.00159155<D,
Stopband@0.316228, 80.00265258, ∞<DD

The  AnalogFilterTransformation  function  performs  arbitrary  mappings  of  the

poles and zeros of a filter object. These mappings are used to convert a lowpass filter to the

requested  highpass,  bandpass,  bandstop,  etc.  filter  by  DesignAnalogFilter.  However,

an  arbitrary mapping  can  be  employed.  The  first  argument  is  the  filter,  while  the  second  is
given  in  the form of a  transformation  rule.  The  rule should  be  a  mapping of  the state-space

variable to some other expression (any symbol can be used for the state-space variable). 

s −> a s lowpass to lowpass

s −> aês lowpass to highpass

s −> a Hs^2 +  s0 L lowpass to bandpass

s −> a sêHb s^2 +  s0 L lowpass to bandstop

Some common mappings for use with AnalogFilterTransformation. 

The  parameters  involved in  the transformation  take on different  meanings  depending on the
design procedure involved. 

† Here is a normalized third-order lowpass Butterworth filter. Note that the poles are 
the roots of the third-order Butterworth polynomial. We will use this filter to 
design a highpass filter. 

In[23]:= filt = AnalogFilter[
    GetRootList[(s + 1)(s^2 + s + 1), s],
    {},
    t
]

Out[23]= AnalogFilter@8−1., −0.5 − 0.866025 Ç, −0.5 + 0.866025 Ç<, 8<, tD
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† Here is a highpass filter with a -3 decibel passband cutoff at 100 hertz. 

In[24]:= AnalogFilterTransformation[
    filt,
    s -> (2 Pi 100)/s
]//N//Chop

Out[24]= 1. AnalogFilter@8−628.319, −314.159 + 544.14 Ç, −314.159 − 544.14 Ç<, 80, 0, 0<, tD
† We can check the resulting frequency response at the cutoff frequency. 

In[25]:= 20 Log[10, Abs[
    Normal[FourierTransform[%, t, w]]/.
        w -> 2 Pi 100//N
]]

Out[25]= −3.0103

DCGain@ filterD determine the DC gain of the specified filter object

Finding the DC gain. 

The  DC  gain  (gain  at  constant  input)  of  a  filter  can  be  found  by the  DCGain  function.  It

accepts an analog or digital filter object as input. 

† Here is the DC gain of an elliptic filter designed from the highpass specification 
used in previous examples. 

In[26]:= DCGain[
   DesignAnalogFilter[
       Elliptic, t, hispec
   ]
]

Out[26]= 0.143775 + 0. Ç

TappedDelayLine@8t1, t2, …<,
delay, varD a tapped delay line with taps  ti 

and the given delay in terms of the time variable var

Representing an analog tapped delay line. 
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The closest thing to a finite impulse response (FIR) filter in the analog domain is the tapped
delay line. Its syntax is similar to the AnalogFilter  object. In this case, the first argument

is the list of tap values and the second argument is the delay between the taps. 

† Here is a tapped delay line. 

In[27]:= dline = TappedDelayLine[
    {1, -0.2, 0.3, -0.4},
    0.5, t
];

† The impulse response can be found in the same fashion as that used for an analog 
filter object. 

In[28]:= EvaluateOperators[
    dline[DiracDelta[t]]
]

Out[28]= −0.4 DiracDelta@−1.5 + tD + 0.3 DiracDelta@−1. + tD −

0.2 DiracDelta@−0.5 + tD + DiracDelta@tD
† We can plot the impulse response. 

In[29]:= SignalPlot[%, {t, 0, 2.5}]
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Out[29]= h Graphics h
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à 4.2 Digital Filter Design

Signals  and  Systems  naturally  provides  representations  for  working  with  filters  in  the

discrete-time domain. In particular, general pole-zero filters (usually infinite impulse response
(IIR))  can  be  manipulated  by  way  of  DigitalFilter,  while  all-zero  finite  impulse

response (FIR) filters are represented with DigitalFIRFilter. 

DigitalFilter@8p1, p2, …<,8z1, z2, …<, varD a digital Hdiscrete-timeL IIR filter with poles  
pi and zeros  zi in the specified time variable

Representing a digital IIR filter. 

The DigitalFilter  object takes a list of poles and a list of zeros of the transfer function

to specify a  particular  digital filter. This  notation is particularly useful for design  techniques
based  on  pole-zero  placement.  The  DigitalFilter  object  is  a  Signals  and  Systems

operator.  Like  AnalogFilter,  it  is  used  in  operator  form  to  determine  the  output  of  a

signal  passing  through  the  filter.  The  filter  object  can  be  passed  directly  to  transform
functions  to  find  out  about  various  filter  characteristics,  such as  the transfer  function  or  the
frequency response. 

† This is a third-order digital IIR filter. 

In[30]:= filt = DigitalFilter[
    {0.2 + 0.3 I, 0.2 - 0.3 I, 0.3},
    {-0.2, 0.2},
    n
];

† The impulse response can be determined by passing a discrete impulse through the 
filter, and forcing evaluation of the operator. 

In[31]:= EvaluateOperators[
    filt[DiscreteDelta[n]]
]

Out[31]= H−1.34615 + 1.73077 ÇL H0.2 − 0.3 ÇLn DiscreteStep@−1 + nD −H1.34615 + 1.73077 ÇL H0.2 + 0.3 ÇLn DiscreteStep@−1 + nD +H1.66667 − 3.23905× 10−17 ÇL 0.3n DiscreteStep@−1 + nD
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† We can plot the impulse response. 

In[32]:= DiscreteSignalPlot[%, {n, 0, 10}]
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Out[32]= h Graphics h

Note that with the current design, care must be taken when using the just described syntax. If

filt contains a gain term, the impulse would not be attached to the filter object itself (since

filt  will  then  be  a  product  of  the  gain  term  and  the  filter  object).  You  can  instead  use

various manipulation functions to place the impulse; one possibility is 

EvaluateOperators[filt/.d:DigitalFilter[___]  :>

d[DiscreteDelta[n]]] 

Of course, the appropriate filter type and time-domain variable should be used. 
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† The system transfer function can be determined by taking the Z transform of the 
filter object. Here, a pole-zero plot is generated from the transfer function. 

In[33]:= PoleZeroPlot[
    ZTransform[filt, n, z]
]
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Out[33]= h Graphics h

† The frequency response can also be found by transforming the filter. 

In[34]:= DiscreteTimeFourierTransform[filt, n, w]

Out[34]= DTFTDataA H−0.2 + ÆÇ wL H0.2 + ÆÇ wL
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccH−0.3 + ÆÇ wL HH−0.2 − 0.3 ÇL + ÆÇ wL HH−0.2 + 0.3 ÇL + ÆÇ wL ,

TransformVariables@wDE

4_Filters.nb 19

Printed by Mathematica for Students



† Here is a plot of the frequency response. 

In[35]:= MagnitudePhasePlot[%, {w, 0, Pi}];
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ImpulseInvariance@ filter,  
Td  , t, nD convert the given analog filter in t into

a digital filter in n by the method of impulse

invariance with design sampling period  Td

BilinearTransformation@
filter,  Td  , t, nD convert the given analog filter

in t into a digital filter in n by the bilinear

transform with design sampling period  Td

Methods for converting an analog prototype filter into a digital filter. 

Classical design techniques for digital IIR filters involve prototyping the filter with an analog
design,  then  transforming  it  to  a  digital  filter.  The  functions  ImpulseInvariance  and

BilinearTransformation perform the conversion of analog filters to digital filters. 

In signal processing applications, design by impulse invariance usually works directly from a

digital  specification.  In  Signals  and  Systems,  however,  the  design  is  implemented  as  a
transformation of an analog filter object. Hence, the design sampling period Td  must be input
to the transformation routine. (Note that Td  is not necessarily the frequency at which the filter
operates.)  When an  analog filter  is  being designed  specifically for  a  digital  application,  it  is

useful to specify the corner frequencies in the normalized digital frequency space (between 0
and p). If this is done, you can set Td to 1 without any problems. 

Be  aware  that  this  procedure  is  only  appropriate  for  bandlimited  prototypes.  Highpass  and
bandstop filters, for instance, will show severe aliasing when designed by impulse invariance. 

† This is a lowpass Butterworth filter in which the passband ends at -1 decibels and 
the stopband begins at 15 decibels attenuation. The frequency ranges are for the 
normalized digital frequencies. 

In[36]:= anfilt = DesignAnalogFilter[Butterworth, t,
    FilterSpecification[
        Passband[1 - 10^(-1/20), {0, .2 Pi}],
        Stopband[10^(-15/20), {0.3 Pi, Infinity}]
    ]
]//N

Out[36]= 0.123756 AnalogFilter@8−0.182708 + 0.681875 Ç,

−0.499167 + 0.499167 Ç, −0.681875 + 0.182708 Ç, −0.681875 − 0.182708 Ç,
−0.499167 − 0.499167 Ç, −0.182708 − 0.681875 Ç<, 8<, tD
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† Here is a digital filter designed by the method of impulse invariance. 

In[37]:= dfilt = ImpulseInvariance[anfilt, 1, t, n]

Out[37]= 0.000644563 DigitalFilter@80.646743 + 0.525006 Ç, 0.646743 − 0.525006 Ç, 0.532966 + 0.290585 Ç,
0.532966 − 0.290585 Ç, 0.497251 + 0.0918764 Ç, 0.497251 − 0.0918764 Ç<,8−14.2203, −1.45371, −0.278486, −0.0282268, 0.<, nD

† The magnitude of the frequency response of the digital filter is easily displayed. In 
this case, the analog filter was reasonably bandlimited, so the potential aliasing 
effects of impulse invariance are not noticeable. 

In[38]:= MagnitudePhasePlot[
    DiscreteTimeFourierTransform[
        dfilt, n, w
    ],
    {w, 0, Pi},
    PhaseScale -> None,
    MagnitudeScale -> Log,
    Frame -> True, Axes -> False
]
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Out[38]= 8h Graphics h, h Graphics h<
To  compensate  for  aliasing  effects,  the  design  procedure  based  on  the  bilinear  transform is
also available. This transformation maps the entire continuous-time frequency axis to the unit

circle,  avoiding  the  aliasing  problem.  It  will,  however,  introduce  warping  of  the  frequency
response,  unlike  impulse  invariance,  which  is  a  linear  transformation.  To  counteract  the
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distortion, prewarping of the analog frequency specification should be performed by tanHw ê2L
where w is the digital frequency. 

† Here is a digital filter derived from the analog filter for which prewarping of the 
frequencies was not done. 

In[39]:= BilinearTransformation[anfilt, 1, t, n]

Out[39]= 0.00929256 DigitalFilter@80.269169 + 0.731723 Ç, 0.200933 + 0.399866 Ç,
0.175279 + 0.127675 Ç, 0.175279 − 0.127675 Ç, 0.200933 − 0.399866 Ç,

0.269169 − 0.731723 Ç<, 8−1, −1, −1, −1, −1, −1<, nD
† We see that the magnitude response doesn't match our desired output, where the 

passband would end at 0.2 p. 

In[40]:= MagnitudePhasePlot[
    DiscreteTimeFourierTransform[
        %, n, w
    ],
    {w, 0, Pi},
    MagnitudeScale -> Linear,
    PhaseScale -> None
]
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Out[40]= 8h Graphics h, h Graphics h<
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† Here, we redesign the analog filter with prewarped frequency bands. 

In[41]:= DesignAnalogFilter[Butterworth, t,
    FilterSpecification[
        Passband[1 - 10^(-1/20),
            {0, Tan[.2 Pi/2]}],
 Stopband[10^(-15/20),
     {Tan[0.3 Pi/2], Infinity}]
 ]
]//N

Out[41]= 0.00270961 AnalogFilter@8−0.0966379 + 0.360657 Ç,

−0.26402 + 0.26402 Ç, −0.360657 + 0.0966379 Ç, −0.360657 − 0.0966379 Ç,

−0.26402 − 0.26402 Ç, −0.0966379 − 0.360657 Ç<, 8<, tD
† This is the new digital filter derived from the redesigned analog filter. 

In[42]:= bilinfilt =
 BilinearTransformation[%, 1, t, n]

Out[42]= 0.000655303 DigitalFilter@80.645753 + 0.541248 Ç, 0.516109 + 0.316674 Ç,
0.4625 + 0.103871 Ç, 0.4625 − 0.103871 Ç, 0.516109 − 0.316674 Ç,

0.645753 − 0.541248 Ç<, 8−1, −1, −1, −1, −1, −1<, nD
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† This output matches what we want. A close check at the corner frequencies will 
reveal that the passband is better than the specification, while the stopband design 
is almost exactly met. 

In[43]:= MagnitudePhasePlot[
    DiscreteTimeFourierTransform[
        bilinfilt, n, w
    ],
    {w, 0, Pi},
    MagnitudeScale -> Linear,
    PhaseScale -> None
]
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Out[43]= 8h Graphics h, h Graphics h<
The gain term in the bilinear transform can also be set for specific purposes, such as removing

a pole from the transfer function. See the section of this document entitled Interlude–A Quick
Start for more information. 

DigitalFIRFilter@8h1, h2, …<, varD a digital FIR filter with taps  hi in the discrete-time variable var

Representing a digital FIR filter. 

A discrete-time all-zero finite impulse response filter is often designed in terms of its impulse
response,  which  is  equivalent  to  the  sequence  of  coefficients  of  its  transfer  function.  The
DigitalFIRFilter object can be used when this is the case. 
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Perhaps  the  simplest  technique  for  designing  an  FIR  filter  is  to  sample  the  ideal  frequency
response. The most common expression of the ideal response is for it to be 1 in the passband
and 0 elsewhere.  Remembering the symmetry of the discrete-time Fourier transform, we can
write  the ideal  response as a  sum of pulses.  The samples can be multiplied by an additional

exponential term to generate a linear phase response. 

† This small function will generate the ideal response for a linear phase FIR lowpass 
filter, with the normalized cutoff frequency given as the first argument in radians 
per second, and the filter length given as the second argument. 

In[44]:= idealResponse[cutoff_, length_] :=
    Drop[Table[ Exp[-I t (length - 1)/2]
        (ContinuousPulse[2 cutoff, t + cutoff] +
            ContinuousPulse[2 cutoff,
                            t - 2 Pi + cutoff]),
    {t, 0, 2 Pi, 2 Pi/length}], -1]//N

We  can  conveniently  use  the  special  vector  input  form  of  the
InverseDiscreteFourierTransform function. 

† Here is the truncated impulse response of the ideal filter. This is equivalent to the 
coefficients of the filter's transfer function. 

In[45]:= impresp = InverseDiscreteFourierTransform[
    idealResponse[0.4 Pi, 17]
]//Chop

Out[45]= 8−0.0471433, 0.0220929, 0.0654323, 0.0135446, −0.0781609, −0.0752788,
0.0857227, 0.307908, 0.411765, 0.307908, 0.0857227, −0.0752788,

−0.0781609, 0.0135446, 0.0654323, 0.0220929, −0.0471433<
† An FIR filter object is easily constructed from the impulse response given as a 

vector. 

In[46]:= dfilt = DigitalFIRFilter[impresp, n];
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† We see several familiar phenomena, such as the Gibb's effect from the simple 
truncation of the response and the linear phase resulting from the exponential term 
in the response. 

In[47]:= MagnitudePhasePlot[
    DiscreteTimeFourierTransform[dfilt, n, w],
    {w, 0, Pi}
];
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† Note that the response of the filter exactly interpolates the sample points, marked 
by the grid lines. 

In[48]:= Show[First[%],
    Frame-> True,
    Axes -> False,
    GridLines -> {Range[0, 2 Pi, 2 Pi/17], {0,1}}
]
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Out[48]= h Graphics h
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† Here is a pole-zero plot of the filter's transfer function. 

In[49]:= PoleZeroPlot[ZTransform[
    dfilt, n, z
]]

-2 -1 0 1 2
Re z

-2

-1

0

1

2
m
I

z
Pole−Zero Plot

Out[49]= h Graphics h

The customary way of improving the frequency response of a filter designed by sampling the

ideal response is to window the impulse response. This can be done in a variety of ways, but
given  the  technique  just  used  for  generating  the  impulse  response,  the  best  method  is  to
sample  the  windowing  function,  and  multiply  the  impulse  response  vector  by  the  sampled
window. 
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† This samples a discrete Hamming window. 

In[50]:= window = N[Table[
    DiscreteWindow[Hamming, 17, n],
    {n, 0, 16}
]];

† The filter object is created by multiplying the window vector and the impulse 
response computed above. 

In[51]:= dfilt2 = DigitalFIRFilter[impresp window, n];

† Here is the frequency response of the windowed filter. 

In[52]:= MagnitudePhasePlot[
    DiscreteTimeFourierTransform[dfilt2, n, w],
    {w, 0, Pi}
];
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à 4.3 Design of Two-Dimensional Decimation Systems

In  some applications,  such as seismic and video signal processing,  it  is useful to resample a

signal  close  to its  Nyquist  rate  to reduce  the  amount  of  information  needed  to represent  the
signal. The resampling system, also known as a decimation system, is fairly straightforward to
design in one dimension, but becomes much more complex in higher dimensions. Signals and
Systems  provides  some  tools  for  decimation  system  design  in  two  dimensions.  These  are

currently  limited  to  determining  the  resampling  matrices  for  optimal  resampling  on  a
rectangular grid;  determination of the lowpass  filter is not yet  supported. Also, functions  for
examining possible aliasing in two dimensions can assist in the design process. 
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DesignDecimationSyg

stem2D@polygonD determine the decimation system, specified as a shift

vector, an upsampling matrix, and a downsampling matrix,

that optimally samples the passband specified by polygon

DesignDecimationSyg

stem2D@
polygon, 8n1, n2<D determine the decimation system, returned as a cascade of

operators in the variables  n1 ,  n2 instead of a list of matrices

DownsamplingAliasig

ng@matrix, polygonsD determine the possible aliasing of

passbands specified by a polygon or list of polygons

when downsampling by matrix is performed

Functions for assisting in the design of two-dimensional decimation systems. 

A decimation  system is  defined  as  a  cascade of a  phase shifter  (which  centers  the passband
about  the  origin),  an  upsampler,  a  lowpass  filter,  and  a  downsampler.  The  passband  is
specified  as  a  two-dimensional  polygon  in  the  frequency  domain,  normalized  to  the
fundamental  frequency  tile,  using  the  syntax  of  the  Mathematica  Polygon  graphics

primitive.  The  decimator  design  will  be  based  on  circumscribing  the  convex  hull  of  the
passband with a minimal parallelogram. The parallelogram will be aligned on the grid points
of  the  fundamental  frequency  tile,  determined  by  the  GridPoints  option.  A  set  of

resampling  matrices  and  the  shift  vector  that  can  be  used  to  map  the  parallelogram  to  the

fundamental  frequency tile  will  be  returned.  Alternately,  a  cascade  of  Signals  and  Systems
operators that perform this computation can be generated. 

† Here is a polygon specifying a particular passband. 

In[53]:= poly = Polygon[{{-1.95, -1.94},
    {-1.01, -1.64}, {-0.29, -1.05},
    {0.29, -0.47}, {0.99, 0.47},
    {1.54, 1.16}, {1.92, 2.07},
    {1.20, 1.97}, {0.57, 1.66},
    {0.07, 1.16}, {-0.51, 0.66},
    {-1.17, -0.06}, {-1.70, -0.93}}
];
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† Here is the decimation system determined to best sample this passband given a 
rectangular sampling grid and the current setting for the GridPoints option. 

In[54]:= DesignDecimationSystem2D[poly]

Out[54]= 99−
39 π
ccccccccccc
725

,
157 π
cccccccccccccc
5800

=, 88−9009, 1001<, 813750894, −1527877<<,888736, 34925<, 8−13334200, −53307800<<=
† This is the system expressed as operators. 

In[55]:= DesignDecimationSystem2D[
    poly, {n1, n2}
]

Out[55]=
ikjjjjDownsample8736 34925

−13334200 −53307800

»» n1

n2

y{zzzzA
DiscreteConvolution8n1,n2<Afilter1@n1, n2D,ikjjjjUpsample−9009 1001

13750894 −1527877

»» n1

n2

y{zzzzAÆÇ H− 39 n1 πcccccccccccccccc725 + 157 n2 πccccccccccccccccccc5800 L x1@n1, n2DEEE
GridPoints −> m,

GridPoints −> 8m1, m2< specify the divisions of the fundamental frequency

tile to be used for the baseband paralellogram

Justification −> All report information about

the decimation system being determined

Options for DesignDecimationSystem2D. 

A good deal of useful information can be determined during this design process, such as the
theoretical  best  and  the  actual  achieved  compression  ratios,  assuming  an  initial  rectangular
sampling  grid.  Visualization  of  the  design  process  can  also  be  performed.  This  information

can be generated in the form of a report by use of the Justification option. 

† Here is a report of the design procedure. 

In[56]:= DesignDecimationSystem2D[
    poly, Justification -> All
]

The theoretical upper limit on the compression ratio,

computed as the ratio of 4 Pi^2 over the area of the
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original polygon, is
16000
cccccccccccccccc
2209

to 1 H7.2431 to 1L.
Packing efficiency by parallelogram is 80.%.

0 π

0

π
−π 0

−π

0

The input−output compression ratio is 5800 to 1001 H5.79421 to 1L.
Out[56]= 99−

39 π
ccccccccccc
725

,
157 π
cccccccccccccc
5800

=, 88−9009, 1001<, 813750894, −1527877<<,888736, 34925<, 8−13334200, −53307800<<=
The GridPoints option specifies the grid superimposed on the fundamental frequency tile.

If given as a single integer n, the tile is sampled by 2 n + 1 points in each dimension; if given
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as a pair of integers n1 and n2 the grid has 2 n1 + 1 points on the horizontal axis and 2 n2 + 1

points on the vertical axis. 

† Note how the resampling changes when GridPoints is changed from the 
default of 100 to 7. 

In[57]:= DesignDecimationSystem2D[
    poly, Justification -> All,
    GridPoints -> 7
]

The theoretical upper limit on the compression ratio,

computed as the ratio of 4 Pi^2 over the area of the

original polygon, is
98
ccccccc
15

to 1 H6.53333 to 1L.
Packing efficiency by parallelogram is 79.4%.

0 π

0

π
−π 0

−π

0

The input−output compression ratio is 140 to 27 H5.18519 to 1L.
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Out[57]= 99−
4 π
ccccccccc
35

, −
π

ccccccc
70

=, 889, 0<, 8114, 3<<, 886, 28<, 870, 350<<=
The  DownsamplingAliasing  function  analyzes  possible  aliasing  in  a  downsampling

operation. Downsampling in two dimensions produces images of the original baseband in the
fundamental  frequency  tile.  If  these  images  overlap,  aliasing  occurs.  The

DownsamplingAliasing  function  accepts  the  downsampling  matrix  as  the  first

argument, and the baseband polygon (or list of polygons) as the second argument. It returns a
list  of  the  image  bands  produced  in  the  downsampling  process.  With  the  default  option  of
Justification  ->  All  an  informative  report,  including  visualization  of  the  possible

aliasing,  is  generated.  You  can  also  supply  options  controlling  the  graphics  of  the
fundamental frequency tile. 

† This is an example of quincunx downsampling that creates aliasing. 

In[58]:= DownsamplingAliasing[
     {{1, 1}, {2, -1}},
     Polygon[{{-Pi, 0}, {0, Pi}, {Pi,0}, {0,-Pi}}]
]

Analyzing the aliasing for the downsampling matrixJ 1 1

2 −1
N for a baseband whose domain is described by the

polygon with vertices 88−π, 0<, 80, π<, 8π, 0<, 80, −π<<
The downsampling will yield the baseband plus

2 shiftedêskewed copies of the baseband.

The shifting vectors are 980, 0<, 9 2 π
ccccccccc
3

,
2 π
ccccccccc
3

=, 82 π, 0<=
The area of the baseband is

2 π2

which has a numerical value of 19.7392.

Initial analysis: the downsampler
introduces aliasing in the baseband signal.

Band #1 of 3 is free of intra−band aliasing.
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0 π

0

π
−π 0

−π

0

Band #1 of 3

Band #2 of 3 is free of intra−band aliasing.
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0 π

0

π
−π 0

−π

0

Band #2 of 3

Band #3 of 3 is free of intra−band aliasing.
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0 π

0

π
−π 0

−π

0

Band #3 of 3

Tiling of the input frequency domain for the

3 bands with inter−band aliasing shown in black:

4_Filters.nb 39

Printed by Mathematica for Students



0 π

0

π
−π 0

−π

0

Tiling of Input Frequency Domain

The downsampler introduces inter−band aliasing.

Aliasing occurs in 50.% of the frequency domain.
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Out[58]= 88Polygon@88−3.14159, 0<, 80, 3.14159<, 80, 0<<D,
Polygon@880, 3.14159<, 83.14159, 0<, 80, 0<<D,
Polygon@883.14159, 0<, 80, −3.14159<, 80, 0<<D,
Polygon@880, −3.14159<, 8−3.14159, 0<, 80, 0<<D<,8Polygon@88−1.0472, 2.0944<, 80, 3.14159<,82.0944, 3.14159<, 82.0944, 2.0944<, 8−1.0472, 2.0944<<D,
Polygon@880, −3.14159<, 82.0944, −1.0472<, 82.0944, −3.14159<<D,
Polygon@883.14159, 3.14159<, 83.14159, 2.0944<,82.0944, 2.0944<, 82.0944, 3.14159<<D,
Polygon@882.0944, −1.0472<, 83.14159, −2.0944<,83.14159, −3.14159<, 82.0944, −3.14159<, 82.0944, −1.0472<<D,
Polygon@88−2.0944, 3.14159<, 8−1.0472, 2.0944<,8−3.14159, 2.0944<, 8−3.14159, 3.14159<<D,
Polygon@88−3.14159, −2.0944<, 8−2.0944, −3.14159<,8−3.14159, −3.14159<, 8−3.14159, −2.0944<<D,
Polygon@883.14159, 0<, 82.0944, −1.0472<, 82.0944, 2.0944<,83.14159, 2.0944<<D, Polygon@88−1.0472, 2.0944<,8−3.14159, 0<, 8−3.14159, 2.0944<, 8−1.0472, 2.0944<<D,
Polygon@882.0944, −1.0472<, 8−1.0472, 2.0944<, 82.0944, 2.0944<<D<,8Polygon@88−3.14159, 0<, 80, 3.14159<, 80, 0<<D,
Polygon@880, 3.14159<, 83.14159, 0<, 80, 0<<D,
Polygon@883.14159, 0<, 80, −3.14159<, 80, 0<<D,
Polygon@880, −3.14159<, 8−3.14159, 0<, 80, 0<<D<<
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