
4 Filter Analysis and Design

Filtering, the ability to selectively suppress or enhance particular parts of a signal, is perhaps

the most important tool for signal processing. Signals and Systems meets this need by
providing representations of rational pole-zero filters in both the continuous (analog) and
discrete (digital) domains. Routines to transform a filter from analog to discrete-time are
provided, as are the most common analog filter prototypes.

While general nonlinear filters or design tools for multidimensional filters are not yet directly

supported by these routines, there are some special routines for designing two-dimensional
decimation systems. They do not yet assist in the design of the filter itself, but they can
produce optimal decimation systems for a given passband specification with rectangular
sampling.

As per usual convention, discrete-time filter design is also referred to as digital filter design in

this chapter and in Signals and Systems in general.

à 4.1 Analog Filter Design

The most common representation for a rational filter is in terms of the poles and zeros of the
system function. Signals and Systems employs this in the AnalogFilter object.

AnalogFilter@8p1, p2, …<,8z1, z2, …<, varD an analog pole-zero filter for poles
pn and zeros zn in the time variable var

Representing analog filters.

The AnalogFilter object is the basic object in this application for representing an analog

filter. Other tools are described later on that allow you to derive an analog filter in terms of

standard design classes (e.g., Bessel filters, elliptic filters, etc.). The filter object acts as a
Signals and Systems operator; to determine the impulse response, you apply the filter to an
impulse, and use the analysis tools to convert the system into a functional or graphical form.

Printed by Mathematica for Students

† First, make the functions available for use.

In[1]:= Needs["SignalProcessing`"]

† Here is a stable analog filter. Remember that the poles of the filter's transfer
function are given first, then the zeros.

In[2]:= filt = AnalogFilter[
 {-.3, -.2 + .7 I, -.2 - .7 I},
 {0, .2, -.2 },
 t
];

† The filter object normally acts in the same fashion as other operators. To
determine the response of the filter to a signal, the filter object should be applied
to the signal and evaluated. Here is the impulse response of our sample filter.

In[3]:= EvaluateOperators[
 filt[DiracDelta[t]]
]

Out[3]= 1. DiracDelta@tD − H0.03 − 1.18161×10−19 ÇL Æ−0.3 t UnitStep@tD −H0.335 + 0.245 ÇL ÆH−0.2−0.7 ÇL t UnitStep@tD −H0.335 − 0.245 ÇL ÆH−0.2+0.7 ÇL t UnitStep@tD
† We can plot the computed response.

In[4]:= MagnitudePhasePlot[
 %, {t, 0, 20}
];

2 4_Filters.nb

Printed by Mathematica for Students

5 10 15 20
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Magnitude Response

5 10 15 20
t

25

50

75

100

125

150

175

Phase Response HdegreesL

† Unlike other operators, certain functions can act solely on the filter object. For
instance, here is a Laplace transform of the object, which returns the system
transfer function with information about the region of convergence.

In[5]:= LaplaceTransform[filt, t, s]

Out[5]= LaplaceTransformDataA H−0.2 + sL s H0.2 + sL
ccHH0.2 − 0.7 ÇL + sL HH0.2 + 0.7 ÇL + sL H0.3 + sL ,

RegionOfConvergence@−0.2, ∞D, TransformVariables@sDE

4_Filters.nb 3

Printed by Mathematica for Students

† A pole-zero plot can be generated from the transform.

In[6]:= PoleZeroPlot[%]

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75
Re s

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

m
I

s

Pole−Zero Plot

Out[6]= h Graphics h

All of the filter objects can be used to represent multidimensional filters. At this point in time,
computations and design procedures based on multidimensional filters are not supported,
however. To represent an n-dimensional pole-zero filter, the lists of poles and zeros become

nän matrices, while the time variable becomes a list of n variables. This may be useful for
custom system rewrite code, or for export to Ptolemy (see Chapter 7.2).

A number of tools are provided for filter design. They first require that you specify the
characteristics of the filter.

4 4_Filters.nb

Printed by Mathematica for Students

FilterSpecification@
band1 , band2 , … D specify a normalized filter with the given bands,

which may be Passband or Stopband objects

Passband@delta,8 freqmin, freqmax<D a passband with a magnitude response from 1-d e l t a
to 1 between the frequencies freqm i n and freqm a x

Stopband@delta,8 freqmin, freqmax<D a passband with a magnitude response from 0 to d e l t a
between the frequencies freqm i n and freqm a x

Objects for specifying the magnitude response of a filter.

The FilterSpecification object represents the magnitude response of a filter that is

being designed. It is given in terms of Passband and Stopband objects. The passbands

and stopbands take as arguments the allowable variation in magnitude and the frequency
range over which the band is defined (in radians/second).

† Here is a specification for a lowpass analog filter. Note in particular that the final
stopband extends to Infinity.

In[7]:= spec = FilterSpecification[
 Passband[0.1, {0, 8000}],
 Stopband[0.18, {12000, Infinity}]
];

4_Filters.nb 5

Printed by Mathematica for Students

† Here is one way to visualize the specification. Note that the Infinity needed to
be transformed to a finite value so that a nice graph could be generated.

In[8]:= graph = Show[Graphics[
 {GrayLevel[0.8],
 Map[If[Head[#] === Stopband,
 Rectangle[{#[[2,1]], 0},
 {#[[2,2]], #[[1]]}
],
 Rectangle[{#[[2,1]], 1 - #[[1]]},
 {#[[2,2]], 1}
]
]&,
 List @@ spec/.Infinity -> 20000]},
 Frame -> True, PlotRange -> All
]]

0 5000 10000 15000 20000
0

0.2

0.4

0.6

0.8

1

Out[8]= h Graphics h

You can specify lowpass, highpass, bandpass, and bandstop filters with the
FilterSpecification object. General multiband filters can be given in principle, but

the current design routines do not handle those cases.

Be aware that the FilterSpecification object has the attribute Orderless. This

means that Mathematica sorts the arguments in canonical (alphanumeric) order. They will not
be arranged by frequency range. Remember this particularly when writing programs based on

the FilterSpecification object.

6 4_Filters.nb

Printed by Mathematica for Students

† This bandpass specification demonstrates the automatic reordering of
FilterSpecification arguments.

In[9]:= FilterSpecification[
 Stopband[0.2, {0, 4000}],
 Passband[0.14, {6000, 8000}],
 Stopband[0.35, {9000, Infinity}]
]

Out[9]= FilterSpecification@Passband@0.14, 86000, 8000<D,
Stopband@0.2, 80, 4000<D, Stopband@0.35, 89000, ∞<DD

The filter specification is passed to a design procedure to create a filter object. Currently, the
only analog design function is DesignAnalogFilter, which is used to create standard

analog filter types. The resulting analog filters may be used as prototypes for digital filter
design.

DesignAnalogFilter@
type, var, specD design a filter of the named type, with a particular

filter specification spec and the time variable var

Designing an analog filter.

DesignAnalogFilter enables automated design of a filter from an input filter

specification and a given filter type. If the filter paramaters are for a type of filter other than
lowpass, the specification will first be transformed to a lowpass type, then the resulting filter

will be inversely processed by transformation of the poles and zeros (see
AnalogFilterTransformation, below).

† Here is a lowpass elliptic filter designed with the specification we entered above.
The result is a third-order filter.

In[10]:= filt = DesignAnalogFilter[
 Elliptic, t, spec
]

Out[10]= H1812.3 + 1.91466× 10−14 ÇL
AnalogFilter@8−4898.74 + 0. Ç, −1543.22 − 8003.53 Ç,

−1543.22 + 8003.53 Ç<, 813400.9 Ç, −13400.9 Ç<, tD

4_Filters.nb 7

Printed by Mathematica for Students

† We can determine the frequency response of our new filter.

In[11]:= fresp = FourierTransform[filt, t, w]

Out[11]= FourierTransformData@HH−3.43844 ×10−6 + 3.25462×1011 ÇL +H0. + 0. ÇL w + H1.91466×10−14 − 1812.3 ÇL w2LêHHH−8003.53 − 1543.22 ÇL + wL HH0. − 4898.74 ÇL + wLHH8003.53 − 1543.22 ÇL + wLL, TransformVariables@wDD
† The equation may be less than completely informative. It is often useful to

visualize the result. We compare the magnitude response here with the graph of
the specification generated earlier. Remember that the frequency is given in
radians per second!

In[12]:= Show[graph,
 First[MagnitudePhasePlot[
 fresp, {w, 0, 20000},
 MagnitudeScale -> Linear,
 DisplayFunction -> Identity
]]
]

0 5000 10000 15000 20000
0

0.2

0.4

0.6

0.8

1

Out[12]= h Graphics h

8 4_Filters.nb

Printed by Mathematica for Students

Bessel Butterworth

ChebyshevI ChebyshevII

Elliptic

Allowed types of filters for analog filter design.

The usual classical analog infinite impulse response filter types are used by
DesignAnalogFilter. Both the Bessel and Butterworth filters have a smooth

magnitude response that decreases monotonically with frequency. (The Bessel type of filter

has a nearly constant group delay throughout the passband, giving it low overshoot in its step

response; but this means that it does not have the linear phase response favored in digital
filter design.) The type I Chebyshev filter (ChebyshevI) is equiripple in the passband,

while the type II, or inverse, Chebysev filter (ChebyshevII) is equiripple in the stopband.

The Elliptic filter is equiripple in both the passband and the stopband.

† Here is a specification for a highpass filter, where the stopband has an attenuation
of at least 10 decibels at 60 hertz, while the passband is at worst 2 decibels down
at 100 hertz.

In[13]:= hispec = FilterSpecification[
 Stopband[10^(-10/20), {0, 2 Pi 60}],
 Passband[1 - 10^(-2/20), {2 Pi 100, Infinity}]
]//N

Out[13]= FilterSpecification@Passband@0.205672, 8628.319, ∞<D,
Stopband@0.316228, 80., 376.991<DD

When numeric computation with complex numbers is performed, rounding errors can cause
small complex values to appear. If you do not expect small values in your output, you may

eliminate them by judicious use of Chop.

† This is a type I Chebyshev filter derived from the specification.

In[14]:= DesignAnalogFilter[ChebyshevI, t, hispec]//Chop

Out[14]= 0.794328

AnalogFilter@8−306.814 − 620.902 Ç, −306.814 + 620.902 Ç<, 80, 0<, tD

4_Filters.nb 9

Printed by Mathematica for Students

† Here is the frequency response of the filter.

In[15]:= FourierTransform[%, t, w]//Chop

Out[15]= FourierTransformDataA 0.794328 w2
ccc
−479654. − 613.628 Ç w + w2

, TransformVariables@wDE
† We can check that the response has the desired characteristics. Here, we verify

that the stopband attenuation is at least 10 decibels.

In[16]:= 20 Log[10, Abs[Normal[%]/.w -> 2 Pi 60]]//N

Out[16]= −11.1854

FilterOrder −> n generate a filter of order n, rather

than letting the order be computed automatically

Option to DesignAnalogFilter.

In some cases, the order of a filter that meets the given specification cannot be determined
automatically by DesignAnalogFilter, or you may wish to design the filter with a

particular order. In these cases, you can explicitly specify an order for the filter by the option

FilterOrder. The order should be a positive integer. (The default value is the setting

Automatic, which tells DesignAnalogFilter to use the standard algorithms for

determining the minimum filter order which meets the specification.)

† Using the lowpass filter specification employed in the first example, we attempt to
design a Bessel filter. The filter order could not be determined automatically, so a
twelfth-order filter was used instead.

In[17]:= DesignAnalogFilter[Bessel, t, spec]

Bessel::order :
Could not determine the order of the Bessel filter to

meet the specifications, so an order 12 will be used.

Out[17]= 2.18027× 1052 AnalogFilter@8−20885.4 − 2195.71 Ç, −20885.4 + 2195.71 Ç, −20237.2 − 6602.28 Ç,

−20237.2 + 6602.28 Ç, −18891.7 − 11058.8 Ç, −18891.7 + 11058.8 Ç,

−16729.2 − 15617.1 Ç, −16729.2 + 15617.1 Ç, −13486.9 − 20378. Ç,
−13486.9 + 20378. Ç, −8459.56 − 25619.7 Ç, −8459.56 + 25619.7 Ç<, 8<, tD

10 4_Filters.nb

Printed by Mathematica for Students

† We can explicitly request that a fifth-order filter be used instead.

In[18]:= DesignAnalogFilter[Bessel, t, spec,
 FilterOrder -> 5
]

Bessel::order :
Could not determine the order of the Bessel filter to

meet the specifications, so an order 12 will be used.

DesignAnalogFilter::order :

The filter order of the analog lowpass prototype, 5, is less than

the minimum filter order, 12, needed to meet the constraints.

Out[18]= 1.13443× 1021

AnalogFilter@8−15058.2, −13841. − 7195.85 Ç, −13841. + 7195.85 Ç,

−9599.11 − 14745.6 Ç, −9599.11 + 14745.6 Ç<, 8<, tD
The Bessel filters are the most likely to have the problem of being unable to automatically
determine the filter order. The algorithm employed involves an iterative search that can be
quite time consuming; it automatically terminates at the twelfth order to reduce unnecessary
computation. High-order Bessel filters can be somewhat unstable numerically, so it is often

ineffective to employ filters above the twelfth order. It is still possible to request a higher
order by way of the FilterOrder option, however.

Since Mathematica is a symbolic system, purely symbolic filter designs are also possible.

4_Filters.nb 11

Printed by Mathematica for Students

† Here is a symbolic design for a lowpass Butterworth filter. The message that is
generated is harmless in this context. Because the exact list of roots cannot be
determined with a symbolic order parameter, Table is called with a symbolic
range. If you substitute a numeric parameter for the symbolic iteration limit, the
Table will be able to evaluate.

In[19]:= DesignAnalogFilter[
 Butterworth,
 t,
 FilterSpecification[
 Passband[pd, {0, wpc}],
 Stopband[sd, {wsc, Infinity}]
],
 FilterOrder -> a
]

Table::iterb :

Iterator 8i1, 1, a< does not have appropriate bounds. More…

Out[19]= 0.5a ikjjJ−1. +
1

cccccccccccccccccccccccccccccccccH1. − 1. pdL2 N−0.5êa
wpc + J−1. +

1
cccccccccc
sd2

N−0.5êa
wscy{zza

AnalogFilterA0.5 ikjjJ−1. +
1

cccccccccccccccccccccccccccccccccH1. − 1. pdL2 N−0.5êa
wpc + J−1. +

1
cccccccccc
sd2

N−0.5êa
wscy{zz

TableAÆÇ I 1cccc2 + −1+2 i1cccccccccccccccccc2 a M π, 8i1, 1, a<E, 8<, tE
Symbolic design can lead to complex expressions, but it allows a more flexible approach to
varying the design of a filter.

AnalogFilterOrder@
type, specD determine the lowest order for a filter of

the given type that meets the filter specification spec

AnalogFilterParameg

ters@specD generate a list of various parameters used

in specifying a filter with the given characteristics

Information derived from a filter specification.

The automated filter order determination can be performed as a separate step. Enter the filter
type and specification in the same fashion as you would when using the filter design function.

12 4_Filters.nb

Printed by Mathematica for Students

† Here we determine what order of a type II Chebyshev filter would be needed to
meet the lowpass filter specification we defined in the first example.

In[20]:= AnalogFilterOrder[ChebyshevII, spec]

Out[20]= 4

A filter specification is often described in terms of several other parameters. Some of these
parameters can be derived from a FilterSpecification object by the

AnalogFilterParameters function. In particular, it returns a list8dp, ds, e, A, Ad b, e, wp ê wc, n<, which consists of the normalized passband ripple dp, the
normalized stopband ripple ds, the percent deviation from a constant passband response e, the
stopband attenuation A (equivalent to 1 ê ds), the stopband attenuation in decibels Ad b, the

ripple control parameter e (found in Chebyshev and elliptic filters), the ratio between the
transition frequencies wp ê wc, and finally the parameter n used in computing filter orders.
These eight values will always be returned in the order listed.

† Here are the filter parameters for the highpass filter defined previously.

In[21]:= AnalogFilterParameters[hispec]

Out[21]= 80.205672, 0.316228, 0.764783, 3.16228, 10., 2.46691, 0.254928, 0.6<
AnalogFilterTransfg

ormation@ filter, ruleD transform the poles and zeros of the given analog

filter by a rule expressed in the Laplace space; used for

converting lowpass filters to highpass, bandpass, etc.

LowpassPrototypeSpg

ecification@specD convert a general highpass, bandpass, or

bandstop filter specification into a lowpass specification

Frequency transformations of an analog filter object.

LowpassPrototypeSpecification takes a filter specification object and converts it

to the design lowpass filter specification. This routine is used internally by
DesignAnalogFilter, so it usually is not necessary to do this by hand.

4_Filters.nb 13

Printed by Mathematica for Students

† Here is the lowpass specification used in the design of the highpass filter defined
earlier.

In[22]:= LowpassPrototypeSpecification[hispec]

Out[22]= FilterSpecification@Passband@0.205672, 80., 0.00159155<D,
Stopband@0.316228, 80.00265258, ∞<DD

The AnalogFilterTransformation function performs arbitrary mappings of the

poles and zeros of a filter object. These mappings are used to convert a lowpass filter to the

requested highpass, bandpass, bandstop, etc. filter by DesignAnalogFilter. However,

an arbitrary mapping can be employed. The first argument is the filter, while the second is
given in the form of a transformation rule. The rule should be a mapping of the state-space

variable to some other expression (any symbol can be used for the state-space variable).

s −> a s lowpass to lowpass

s −> aês lowpass to highpass

s −> a Hs^2 + s0 L lowpass to bandpass

s −> a sêHb s^2 + s0 L lowpass to bandstop

Some common mappings for use with AnalogFilterTransformation.

The parameters involved in the transformation take on different meanings depending on the
design procedure involved.

† Here is a normalized third-order lowpass Butterworth filter. Note that the poles are
the roots of the third-order Butterworth polynomial. We will use this filter to
design a highpass filter.

In[23]:= filt = AnalogFilter[
 GetRootList[(s + 1)(s^2 + s + 1), s],
 {},
 t
]

Out[23]= AnalogFilter@8−1., −0.5 − 0.866025 Ç, −0.5 + 0.866025 Ç<, 8<, tD

14 4_Filters.nb

Printed by Mathematica for Students

† Here is a highpass filter with a -3 decibel passband cutoff at 100 hertz.

In[24]:= AnalogFilterTransformation[
 filt,
 s -> (2 Pi 100)/s
]//N//Chop

Out[24]= 1. AnalogFilter@8−628.319, −314.159 + 544.14 Ç, −314.159 − 544.14 Ç<, 80, 0, 0<, tD
† We can check the resulting frequency response at the cutoff frequency.

In[25]:= 20 Log[10, Abs[
 Normal[FourierTransform[%, t, w]]/.
 w -> 2 Pi 100//N
]]

Out[25]= −3.0103

DCGain@ filterD determine the DC gain of the specified filter object

Finding the DC gain.

The DC gain (gain at constant input) of a filter can be found by the DCGain function. It

accepts an analog or digital filter object as input.

† Here is the DC gain of an elliptic filter designed from the highpass specification
used in previous examples.

In[26]:= DCGain[
 DesignAnalogFilter[
 Elliptic, t, hispec
]
]

Out[26]= 0.143775 + 0. Ç

TappedDelayLine@8t1, t2, …<,
delay, varD a tapped delay line with taps ti

and the given delay in terms of the time variable var

Representing an analog tapped delay line.

4_Filters.nb 15

Printed by Mathematica for Students

The closest thing to a finite impulse response (FIR) filter in the analog domain is the tapped
delay line. Its syntax is similar to the AnalogFilter object. In this case, the first argument

is the list of tap values and the second argument is the delay between the taps.

† Here is a tapped delay line.

In[27]:= dline = TappedDelayLine[
 {1, -0.2, 0.3, -0.4},
 0.5, t
];

† The impulse response can be found in the same fashion as that used for an analog
filter object.

In[28]:= EvaluateOperators[
 dline[DiracDelta[t]]
]

Out[28]= −0.4 DiracDelta@−1.5 + tD + 0.3 DiracDelta@−1. + tD −

0.2 DiracDelta@−0.5 + tD + DiracDelta@tD
† We can plot the impulse response.

In[29]:= SignalPlot[%, {t, 0, 2.5}]

0.5 1 1.5 2 2.5

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Signal Plot

Out[29]= h Graphics h

16 4_Filters.nb

Printed by Mathematica for Students

à 4.2 Digital Filter Design

Signals and Systems naturally provides representations for working with filters in the

discrete-time domain. In particular, general pole-zero filters (usually infinite impulse response
(IIR)) can be manipulated by way of DigitalFilter, while all-zero finite impulse

response (FIR) filters are represented with DigitalFIRFilter.

DigitalFilter@8p1, p2, …<,8z1, z2, …<, varD a digital Hdiscrete-timeL IIR filter with poles
pi and zeros zi in the specified time variable

Representing a digital IIR filter.

The DigitalFilter object takes a list of poles and a list of zeros of the transfer function

to specify a particular digital filter. This notation is particularly useful for design techniques
based on pole-zero placement. The DigitalFilter object is a Signals and Systems

operator. Like AnalogFilter, it is used in operator form to determine the output of a

signal passing through the filter. The filter object can be passed directly to transform
functions to find out about various filter characteristics, such as the transfer function or the
frequency response.

† This is a third-order digital IIR filter.

In[30]:= filt = DigitalFilter[
 {0.2 + 0.3 I, 0.2 - 0.3 I, 0.3},
 {-0.2, 0.2},
 n
];

† The impulse response can be determined by passing a discrete impulse through the
filter, and forcing evaluation of the operator.

In[31]:= EvaluateOperators[
 filt[DiscreteDelta[n]]
]

Out[31]= H−1.34615 + 1.73077 ÇL H0.2 − 0.3 ÇLn DiscreteStep@−1 + nD −H1.34615 + 1.73077 ÇL H0.2 + 0.3 ÇLn DiscreteStep@−1 + nD +H1.66667 − 3.23905× 10−17 ÇL 0.3n DiscreteStep@−1 + nD

4_Filters.nb 17

Printed by Mathematica for Students

† We can plot the impulse response.

In[32]:= DiscreteSignalPlot[%, {n, 0, 10}]

2 4 6 8 10
n

0.2

0.4

0.6

0.8

1

Discrete Signal Plot

Out[32]= h Graphics h

Note that with the current design, care must be taken when using the just described syntax. If

filt contains a gain term, the impulse would not be attached to the filter object itself (since

filt will then be a product of the gain term and the filter object). You can instead use

various manipulation functions to place the impulse; one possibility is

EvaluateOperators[filt/.d:DigitalFilter[___] :>

d[DiscreteDelta[n]]]

Of course, the appropriate filter type and time-domain variable should be used.

18 4_Filters.nb

Printed by Mathematica for Students

† The system transfer function can be determined by taking the Z transform of the
filter object. Here, a pole-zero plot is generated from the transfer function.

In[33]:= PoleZeroPlot[
 ZTransform[filt, n, z]
]

-1 -0.5 0 0.5 1
Re z

-1

-0.5

0

0.5

1

m
I

z

Pole−Zero Plot

Out[33]= h Graphics h

† The frequency response can also be found by transforming the filter.

In[34]:= DiscreteTimeFourierTransform[filt, n, w]

Out[34]= DTFTDataA H−0.2 + ÆÇ wL H0.2 + ÆÇ wL
cccH−0.3 + ÆÇ wL HH−0.2 − 0.3 ÇL + ÆÇ wL HH−0.2 + 0.3 ÇL + ÆÇ wL ,

TransformVariables@wDE

4_Filters.nb 19

Printed by Mathematica for Students

† Here is a plot of the frequency response.

In[35]:= MagnitudePhasePlot[%, {w, 0, Pi}];

0.5 1 1.5 2 2.5 3
w

0.6

0.8

1.2

1.4

1.6

1.8

Magnitude Response

0.5 1 1.5 2 2.5 3
w

-175

-150

-125

-100

-75

-50

-25

Phase Response HdegreesL

20 4_Filters.nb

Printed by Mathematica for Students

ImpulseInvariance@ filter,
Td , t, nD convert the given analog filter in t into

a digital filter in n by the method of impulse

invariance with design sampling period Td

BilinearTransformation@
filter, Td , t, nD convert the given analog filter

in t into a digital filter in n by the bilinear

transform with design sampling period Td

Methods for converting an analog prototype filter into a digital filter.

Classical design techniques for digital IIR filters involve prototyping the filter with an analog
design, then transforming it to a digital filter. The functions ImpulseInvariance and

BilinearTransformation perform the conversion of analog filters to digital filters.

In signal processing applications, design by impulse invariance usually works directly from a

digital specification. In Signals and Systems, however, the design is implemented as a
transformation of an analog filter object. Hence, the design sampling period Td must be input
to the transformation routine. (Note that Td is not necessarily the frequency at which the filter
operates.) When an analog filter is being designed specifically for a digital application, it is

useful to specify the corner frequencies in the normalized digital frequency space (between 0
and p). If this is done, you can set Td to 1 without any problems.

Be aware that this procedure is only appropriate for bandlimited prototypes. Highpass and
bandstop filters, for instance, will show severe aliasing when designed by impulse invariance.

† This is a lowpass Butterworth filter in which the passband ends at -1 decibels and
the stopband begins at 15 decibels attenuation. The frequency ranges are for the
normalized digital frequencies.

In[36]:= anfilt = DesignAnalogFilter[Butterworth, t,
 FilterSpecification[
 Passband[1 - 10^(-1/20), {0, .2 Pi}],
 Stopband[10^(-15/20), {0.3 Pi, Infinity}]
]
]//N

Out[36]= 0.123756 AnalogFilter@8−0.182708 + 0.681875 Ç,

−0.499167 + 0.499167 Ç, −0.681875 + 0.182708 Ç, −0.681875 − 0.182708 Ç,
−0.499167 − 0.499167 Ç, −0.182708 − 0.681875 Ç<, 8<, tD

4_Filters.nb 21

Printed by Mathematica for Students

† Here is a digital filter designed by the method of impulse invariance.

In[37]:= dfilt = ImpulseInvariance[anfilt, 1, t, n]

Out[37]= 0.000644563 DigitalFilter@80.646743 + 0.525006 Ç, 0.646743 − 0.525006 Ç, 0.532966 + 0.290585 Ç,
0.532966 − 0.290585 Ç, 0.497251 + 0.0918764 Ç, 0.497251 − 0.0918764 Ç<,8−14.2203, −1.45371, −0.278486, −0.0282268, 0.<, nD

† The magnitude of the frequency response of the digital filter is easily displayed. In
this case, the analog filter was reasonably bandlimited, so the potential aliasing
effects of impulse invariance are not noticeable.

In[38]:= MagnitudePhasePlot[
 DiscreteTimeFourierTransform[
 dfilt, n, w
],
 {w, 0, Pi},
 PhaseScale -> None,
 MagnitudeScale -> Log,
 Frame -> True, Axes -> False
]

0 0.5 1 1.5 2 2.5 3

-60

-40

-20

0

Magnitude Response HdBL

Out[38]= 8h Graphics h, h Graphics h<
To compensate for aliasing effects, the design procedure based on the bilinear transform is
also available. This transformation maps the entire continuous-time frequency axis to the unit

circle, avoiding the aliasing problem. It will, however, introduce warping of the frequency
response, unlike impulse invariance, which is a linear transformation. To counteract the

22 4_Filters.nb

Printed by Mathematica for Students

distortion, prewarping of the analog frequency specification should be performed by tanHw ê2L
where w is the digital frequency.

† Here is a digital filter derived from the analog filter for which prewarping of the
frequencies was not done.

In[39]:= BilinearTransformation[anfilt, 1, t, n]

Out[39]= 0.00929256 DigitalFilter@80.269169 + 0.731723 Ç, 0.200933 + 0.399866 Ç,
0.175279 + 0.127675 Ç, 0.175279 − 0.127675 Ç, 0.200933 − 0.399866 Ç,

0.269169 − 0.731723 Ç<, 8−1, −1, −1, −1, −1, −1<, nD
† We see that the magnitude response doesn't match our desired output, where the

passband would end at 0.2 p.

In[40]:= MagnitudePhasePlot[
 DiscreteTimeFourierTransform[
 %, n, w
],
 {w, 0, Pi},
 MagnitudeScale -> Linear,
 PhaseScale -> None
]

0.5 1 1.5 2 2.5 3
w

0.2

0.4

0.6

0.8

1

Magnitude Response

Out[40]= 8h Graphics h, h Graphics h<

4_Filters.nb 23

Printed by Mathematica for Students

† Here, we redesign the analog filter with prewarped frequency bands.

In[41]:= DesignAnalogFilter[Butterworth, t,
 FilterSpecification[
 Passband[1 - 10^(-1/20),
 {0, Tan[.2 Pi/2]}],
 Stopband[10^(-15/20),
 {Tan[0.3 Pi/2], Infinity}]
]
]//N

Out[41]= 0.00270961 AnalogFilter@8−0.0966379 + 0.360657 Ç,

−0.26402 + 0.26402 Ç, −0.360657 + 0.0966379 Ç, −0.360657 − 0.0966379 Ç,

−0.26402 − 0.26402 Ç, −0.0966379 − 0.360657 Ç<, 8<, tD
† This is the new digital filter derived from the redesigned analog filter.

In[42]:= bilinfilt =
 BilinearTransformation[%, 1, t, n]

Out[42]= 0.000655303 DigitalFilter@80.645753 + 0.541248 Ç, 0.516109 + 0.316674 Ç,
0.4625 + 0.103871 Ç, 0.4625 − 0.103871 Ç, 0.516109 − 0.316674 Ç,

0.645753 − 0.541248 Ç<, 8−1, −1, −1, −1, −1, −1<, nD

24 4_Filters.nb

Printed by Mathematica for Students

† This output matches what we want. A close check at the corner frequencies will
reveal that the passband is better than the specification, while the stopband design
is almost exactly met.

In[43]:= MagnitudePhasePlot[
 DiscreteTimeFourierTransform[
 bilinfilt, n, w
],
 {w, 0, Pi},
 MagnitudeScale -> Linear,
 PhaseScale -> None
]

0.5 1 1.5 2 2.5 3
w

0.2

0.4

0.6

0.8

1

Magnitude Response

Out[43]= 8h Graphics h, h Graphics h<
The gain term in the bilinear transform can also be set for specific purposes, such as removing

a pole from the transfer function. See the section of this document entitled Interlude–A Quick
Start for more information.

DigitalFIRFilter@8h1, h2, …<, varD a digital FIR filter with taps hi in the discrete-time variable var

Representing a digital FIR filter.

A discrete-time all-zero finite impulse response filter is often designed in terms of its impulse
response, which is equivalent to the sequence of coefficients of its transfer function. The
DigitalFIRFilter object can be used when this is the case.

4_Filters.nb 25

Printed by Mathematica for Students

Perhaps the simplest technique for designing an FIR filter is to sample the ideal frequency
response. The most common expression of the ideal response is for it to be 1 in the passband
and 0 elsewhere. Remembering the symmetry of the discrete-time Fourier transform, we can
write the ideal response as a sum of pulses. The samples can be multiplied by an additional

exponential term to generate a linear phase response.

† This small function will generate the ideal response for a linear phase FIR lowpass
filter, with the normalized cutoff frequency given as the first argument in radians
per second, and the filter length given as the second argument.

In[44]:= idealResponse[cutoff_, length_] :=
 Drop[Table[Exp[-I t (length - 1)/2]
 (ContinuousPulse[2 cutoff, t + cutoff] +
 ContinuousPulse[2 cutoff,
 t - 2 Pi + cutoff]),
 {t, 0, 2 Pi, 2 Pi/length}], -1]//N

We can conveniently use the special vector input form of the
InverseDiscreteFourierTransform function.

† Here is the truncated impulse response of the ideal filter. This is equivalent to the
coefficients of the filter's transfer function.

In[45]:= impresp = InverseDiscreteFourierTransform[
 idealResponse[0.4 Pi, 17]
]//Chop

Out[45]= 8−0.0471433, 0.0220929, 0.0654323, 0.0135446, −0.0781609, −0.0752788,
0.0857227, 0.307908, 0.411765, 0.307908, 0.0857227, −0.0752788,

−0.0781609, 0.0135446, 0.0654323, 0.0220929, −0.0471433<
† An FIR filter object is easily constructed from the impulse response given as a

vector.

In[46]:= dfilt = DigitalFIRFilter[impresp, n];

26 4_Filters.nb

Printed by Mathematica for Students

† We see several familiar phenomena, such as the Gibb's effect from the simple
truncation of the response and the linear phase resulting from the exponential term
in the response.

In[47]:= MagnitudePhasePlot[
 DiscreteTimeFourierTransform[dfilt, n, w],
 {w, 0, Pi}
];

0.5 1 1.5 2 2.5 3
w

0.2

0.4

0.6

0.8

1

Magnitude Response

0.5 1 1.5 2 2.5 3
w

-150

-100

-50

50

100

150

Phase Response HdegreesL

4_Filters.nb 27

Printed by Mathematica for Students

† Note that the response of the filter exactly interpolates the sample points, marked
by the grid lines.

In[48]:= Show[First[%],
 Frame-> True,
 Axes -> False,
 GridLines -> {Range[0, 2 Pi, 2 Pi/17], {0,1}}
]

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Magnitude Response

Out[48]= h Graphics h

28 4_Filters.nb

Printed by Mathematica for Students

† Here is a pole-zero plot of the filter's transfer function.

In[49]:= PoleZeroPlot[ZTransform[
 dfilt, n, z
]]

-2 -1 0 1 2
Re z

-2

-1

0

1

2
m
I

z
Pole−Zero Plot

Out[49]= h Graphics h

The customary way of improving the frequency response of a filter designed by sampling the

ideal response is to window the impulse response. This can be done in a variety of ways, but
given the technique just used for generating the impulse response, the best method is to
sample the windowing function, and multiply the impulse response vector by the sampled
window.

4_Filters.nb 29

Printed by Mathematica for Students

† This samples a discrete Hamming window.

In[50]:= window = N[Table[
 DiscreteWindow[Hamming, 17, n],
 {n, 0, 16}
]];

† The filter object is created by multiplying the window vector and the impulse
response computed above.

In[51]:= dfilt2 = DigitalFIRFilter[impresp window, n];

† Here is the frequency response of the windowed filter.

In[52]:= MagnitudePhasePlot[
 DiscreteTimeFourierTransform[dfilt2, n, w],
 {w, 0, Pi}
];

0.5 1 1.5 2 2.5 3
w

0.2

0.4

0.6

0.8

1
Magnitude Response

30 4_Filters.nb

Printed by Mathematica for Students

0.5 1 1.5 2 2.5 3
w

-150

-100

-50

50

100

150

Phase Response HdegreesL

à 4.3 Design of Two-Dimensional Decimation Systems

In some applications, such as seismic and video signal processing, it is useful to resample a

signal close to its Nyquist rate to reduce the amount of information needed to represent the
signal. The resampling system, also known as a decimation system, is fairly straightforward to
design in one dimension, but becomes much more complex in higher dimensions. Signals and
Systems provides some tools for decimation system design in two dimensions. These are

currently limited to determining the resampling matrices for optimal resampling on a
rectangular grid; determination of the lowpass filter is not yet supported. Also, functions for
examining possible aliasing in two dimensions can assist in the design process.

4_Filters.nb 31

Printed by Mathematica for Students

DesignDecimationSyg

stem2D@polygonD determine the decimation system, specified as a shift

vector, an upsampling matrix, and a downsampling matrix,

that optimally samples the passband specified by polygon

DesignDecimationSyg

stem2D@
polygon, 8n1, n2<D determine the decimation system, returned as a cascade of

operators in the variables n1 , n2 instead of a list of matrices

DownsamplingAliasig

ng@matrix, polygonsD determine the possible aliasing of

passbands specified by a polygon or list of polygons

when downsampling by matrix is performed

Functions for assisting in the design of two-dimensional decimation systems.

A decimation system is defined as a cascade of a phase shifter (which centers the passband
about the origin), an upsampler, a lowpass filter, and a downsampler. The passband is
specified as a two-dimensional polygon in the frequency domain, normalized to the
fundamental frequency tile, using the syntax of the Mathematica Polygon graphics

primitive. The decimator design will be based on circumscribing the convex hull of the
passband with a minimal parallelogram. The parallelogram will be aligned on the grid points
of the fundamental frequency tile, determined by the GridPoints option. A set of

resampling matrices and the shift vector that can be used to map the parallelogram to the

fundamental frequency tile will be returned. Alternately, a cascade of Signals and Systems
operators that perform this computation can be generated.

† Here is a polygon specifying a particular passband.

In[53]:= poly = Polygon[{{-1.95, -1.94},
 {-1.01, -1.64}, {-0.29, -1.05},
 {0.29, -0.47}, {0.99, 0.47},
 {1.54, 1.16}, {1.92, 2.07},
 {1.20, 1.97}, {0.57, 1.66},
 {0.07, 1.16}, {-0.51, 0.66},
 {-1.17, -0.06}, {-1.70, -0.93}}
];

32 4_Filters.nb

Printed by Mathematica for Students

† Here is the decimation system determined to best sample this passband given a
rectangular sampling grid and the current setting for the GridPoints option.

In[54]:= DesignDecimationSystem2D[poly]

Out[54]= 99−
39 π
ccccccccccc
725

,
157 π
cccccccccccccc
5800

=, 88−9009, 1001<, 813750894, −1527877<<,888736, 34925<, 8−13334200, −53307800<<=
† This is the system expressed as operators.

In[55]:= DesignDecimationSystem2D[
 poly, {n1, n2}
]

Out[55]=
ikjjjjDownsample8736 34925

−13334200 −53307800

»» n1

n2

y{zzzzA
DiscreteConvolution8n1,n2<Afilter1@n1, n2D,ikjjjjUpsample−9009 1001

13750894 −1527877

»» n1

n2

y{zzzzAÆÇ H− 39 n1 πcccccccccccccccc725 + 157 n2 πccccccccccccccccccc5800 L x1@n1, n2DEEE
GridPoints −> m,

GridPoints −> 8m1, m2< specify the divisions of the fundamental frequency

tile to be used for the baseband paralellogram

Justification −> All report information about

the decimation system being determined

Options for DesignDecimationSystem2D.

A good deal of useful information can be determined during this design process, such as the
theoretical best and the actual achieved compression ratios, assuming an initial rectangular
sampling grid. Visualization of the design process can also be performed. This information

can be generated in the form of a report by use of the Justification option.

† Here is a report of the design procedure.

In[56]:= DesignDecimationSystem2D[
 poly, Justification -> All
]

The theoretical upper limit on the compression ratio,

computed as the ratio of 4 Pi^2 over the area of the

4_Filters.nb 33

Printed by Mathematica for Students

original polygon, is
16000
cccccccccccccccc
2209

to 1 H7.2431 to 1L.
Packing efficiency by parallelogram is 80.%.

0 π

0

π
−π 0

−π

0

The input−output compression ratio is 5800 to 1001 H5.79421 to 1L.
Out[56]= 99−

39 π
ccccccccccc
725

,
157 π
cccccccccccccc
5800

=, 88−9009, 1001<, 813750894, −1527877<<,888736, 34925<, 8−13334200, −53307800<<=
The GridPoints option specifies the grid superimposed on the fundamental frequency tile.

If given as a single integer n, the tile is sampled by 2 n + 1 points in each dimension; if given

34 4_Filters.nb

Printed by Mathematica for Students

as a pair of integers n1 and n2 the grid has 2 n1 + 1 points on the horizontal axis and 2 n2 + 1

points on the vertical axis.

† Note how the resampling changes when GridPoints is changed from the
default of 100 to 7.

In[57]:= DesignDecimationSystem2D[
 poly, Justification -> All,
 GridPoints -> 7
]

The theoretical upper limit on the compression ratio,

computed as the ratio of 4 Pi^2 over the area of the

original polygon, is
98
ccccccc
15

to 1 H6.53333 to 1L.
Packing efficiency by parallelogram is 79.4%.

0 π

0

π
−π 0

−π

0

The input−output compression ratio is 140 to 27 H5.18519 to 1L.

4_Filters.nb 35

Printed by Mathematica for Students

Out[57]= 99−
4 π
ccccccccc
35

, −
π

ccccccc
70

=, 889, 0<, 8114, 3<<, 886, 28<, 870, 350<<=
The DownsamplingAliasing function analyzes possible aliasing in a downsampling

operation. Downsampling in two dimensions produces images of the original baseband in the
fundamental frequency tile. If these images overlap, aliasing occurs. The

DownsamplingAliasing function accepts the downsampling matrix as the first

argument, and the baseband polygon (or list of polygons) as the second argument. It returns a
list of the image bands produced in the downsampling process. With the default option of
Justification -> All an informative report, including visualization of the possible

aliasing, is generated. You can also supply options controlling the graphics of the
fundamental frequency tile.

† This is an example of quincunx downsampling that creates aliasing.

In[58]:= DownsamplingAliasing[
 {{1, 1}, {2, -1}},
 Polygon[{{-Pi, 0}, {0, Pi}, {Pi,0}, {0,-Pi}}]
]

Analyzing the aliasing for the downsampling matrixJ 1 1

2 −1
N for a baseband whose domain is described by the

polygon with vertices 88−π, 0<, 80, π<, 8π, 0<, 80, −π<<
The downsampling will yield the baseband plus

2 shiftedêskewed copies of the baseband.

The shifting vectors are 980, 0<, 9 2 π
ccccccccc
3

,
2 π
ccccccccc
3

=, 82 π, 0<=
The area of the baseband is

2 π2

which has a numerical value of 19.7392.

Initial analysis: the downsampler
introduces aliasing in the baseband signal.

Band #1 of 3 is free of intra−band aliasing.

36 4_Filters.nb

Printed by Mathematica for Students

0 π

0

π
−π 0

−π

0

Band #1 of 3

Band #2 of 3 is free of intra−band aliasing.

4_Filters.nb 37

Printed by Mathematica for Students

0 π

0

π
−π 0

−π

0

Band #2 of 3

Band #3 of 3 is free of intra−band aliasing.

38 4_Filters.nb

Printed by Mathematica for Students

0 π

0

π
−π 0

−π

0

Band #3 of 3

Tiling of the input frequency domain for the

3 bands with inter−band aliasing shown in black:

4_Filters.nb 39

Printed by Mathematica for Students

0 π

0

π
−π 0

−π

0

Tiling of Input Frequency Domain

The downsampler introduces inter−band aliasing.

Aliasing occurs in 50.% of the frequency domain.

40 4_Filters.nb

Printed by Mathematica for Students

Out[58]= 88Polygon@88−3.14159, 0<, 80, 3.14159<, 80, 0<<D,
Polygon@880, 3.14159<, 83.14159, 0<, 80, 0<<D,
Polygon@883.14159, 0<, 80, −3.14159<, 80, 0<<D,
Polygon@880, −3.14159<, 8−3.14159, 0<, 80, 0<<D<,8Polygon@88−1.0472, 2.0944<, 80, 3.14159<,82.0944, 3.14159<, 82.0944, 2.0944<, 8−1.0472, 2.0944<<D,
Polygon@880, −3.14159<, 82.0944, −1.0472<, 82.0944, −3.14159<<D,
Polygon@883.14159, 3.14159<, 83.14159, 2.0944<,82.0944, 2.0944<, 82.0944, 3.14159<<D,
Polygon@882.0944, −1.0472<, 83.14159, −2.0944<,83.14159, −3.14159<, 82.0944, −3.14159<, 82.0944, −1.0472<<D,
Polygon@88−2.0944, 3.14159<, 8−1.0472, 2.0944<,8−3.14159, 2.0944<, 8−3.14159, 3.14159<<D,
Polygon@88−3.14159, −2.0944<, 8−2.0944, −3.14159<,8−3.14159, −3.14159<, 8−3.14159, −2.0944<<D,
Polygon@883.14159, 0<, 82.0944, −1.0472<, 82.0944, 2.0944<,83.14159, 2.0944<<D, Polygon@88−1.0472, 2.0944<,8−3.14159, 0<, 8−3.14159, 2.0944<, 8−1.0472, 2.0944<<D,
Polygon@882.0944, −1.0472<, 8−1.0472, 2.0944<, 82.0944, 2.0944<<D<,8Polygon@88−3.14159, 0<, 80, 3.14159<, 80, 0<<D,
Polygon@880, 3.14159<, 83.14159, 0<, 80, 0<<D,
Polygon@883.14159, 0<, 80, −3.14159<, 80, 0<<D,
Polygon@880, −3.14159<, 8−3.14159, 0<, 80, 0<<D<<

4_Filters.nb 41

Printed by Mathematica for Students

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

