## my sympy and python cheat sheet

March 28, 2022   Compiled on March 28, 2022 at 6:37pm

### 1 Installing sympy 1.10.1 on Ubuntu

Installing Python 3.10 and sympy 1.10.1 was very tricky. First Ubuntu 20.04 came with Python 3.8 and it was struggle to make it use Python 3.10 instead. After 2 hrs trying many commands, ﬁnally it seems to be using 3.10 now. Next did the following

>which python
/bin/python
>python --version
Python 3.10.4

Now

python -m pip install sympy

Gives

Defaulting to user installation because normal site-packages is not writeable
Collecting sympy
Using cached sympy-1.10.1-py3-none-any.whl (6.4 MB)
Collecting mpmath>=0.19
Using cached mpmath-1.2.1-py3-none-any.whl (532 kB)
Installing collected packages: mpmath, sympy
Successfully installed mpmath-1.2.1 sympy-1.10.1         

And now

>python
Python 3.10.4 (main, Mar 24 2022, 16:12:56) [GCC 9.4.0] on linux
>>> import sympy
>>> sympy.__version__
'1.10.1'

### 2 How to solve a ﬁrst order ODE?

Solve $$y'(x)=1+2 x$$ for $$y(x)$$

from sympy import *
x   = symbols('x')
y   = Function('y')
ode = Eq(Derivative(y(x),x),1+2*x)
sol = dsolve(ode,y(x))
#    Eq(y(x), C1 + x**2 + x)
checkodesol(ode,sol)
#    (True, 0)
if checkodesol(ode,sol)==True:
print ('verified solution OK')

### 3 How to solve a ﬁrst oder ODE with initial condition?

Solve $$y'(x)=1+2 x$$ for $$y(x)$$ with $$y(0)=3$$

import sympy
x   = sympy.symbols('x')
y   = sympy.Function('y')
ode = sympy.Eq(sympy.Derivative(y(x),x),1+2*x)
sol = sympy.dsolve(ode,y(x),ics={y(0):3})
#    Eq(y(x), x**2 + x + 3)
sympy.checkodesol(ode,sol)
#    (True, 0)

### 4 How to solve a second order ODE?

Solve $$9 y{\left (x \right )} + \frac {d^{2}}{d x^{2}} y{\left (x \right )} = 0$$

from sympy import Function,dsolve,Derivative,Eq
x=sympy.symbols('x')
y=sympy.symbols('y', cls=Function)
ode=Eq(Derivative(y(x), x, x) + 9*y(x),0)
dsolve(ode, y(x))

gives

$y{\left (x \right )} = C_{1} \sin {\left (3 x \right )} + C_{2} \cos {\left (3 x \right )}$

### 5 How to solve and ODE and convert the result to latex string?

Solve $$y'(x)=1+2 x$$ for $$y(x)$$ with $$y(0)=3$$

import sympy
x   = sympy.symbols('x')
y   = sympy.Function('y')
ode = sympy.Eq(sympy.Derivative(y(x),x),1+2*x)
sol = sympy.dsolve(ode,y(x),ics={y(0):3})
#    Eq(y(x), x**2 + x + 3)
sympy.latex(sol)

$y{\left (x \right )} = x^{2} + x + 3$

### 6 How to solve a PDE in sympy?

PDE solving is still limited in sympy. Here is how to solve ﬁrst order pde

Solve $$u_t(x,t)=u_x(x,t)$$

import sympy as sp
x,t   = sp.symbols('x t')
u     = sp.Function('u')
pde   = sp.Eq( sp.diff(u(x,t),t) , sp.diff(u(x,t),x))
sol   = sp.pdsolve(pde)
sp.latex(sol)

$u{\left (x,t \right )} = F{\left (t + x \right )}$

### 7 How to check if something is derivative?

import sympy
x    = sympy.symbols('x')
y    = sympy.Function('y')
expr = sympy.Derivative(y(x),x)
type(expr) is sympy.Derivative
#True

if type(expr) is sympy.Derivative:
print("yes")

#yes

This also works, which seems to be the more prefered way

isinstance(expr,sympy.Derivative)
#True

### 8 How to ﬁnd function name and its arguments in a proc?

Suppose one passes $$y(x)$$ to a function, and the function wants to ﬁnd the name of this function and its argument. Here is an example

def process(the_function):
print("the function argument is ", the_function.args)
print("the function name itself is ", the_function.name)
import sympy
x   = sympy.symbols('x')
y   = sympy.Function('y')
process(y(x))

This prints

the function argument is  x
the function name itself is  y