1. HOME
  2. PDF (letter size)

Deriving trig identities

Nasser M. Abbasi

September 8, 2023   Compiled on September 8, 2023 at 6:09pm

Contents

 1 cos(A+B) and sin(A+B)
 2 cos(AB) and sin(AB)
 3 cos(2A) and sin(2A)
 4 cos(x2)
 5 sin(x2)
 6 sin(α)+sin(β)
 7 cos(α)+cos(β)
 8 sin(α)sin(β)
 9 cos(α)cos(β)
 10 cos(A)cos(B)
 11 sin(A)cos(B)
 12 sin(A)sin(B)

To derive trig identities (something useful in the exam), we will use Euler relation as starting point, which is eix=cosx+isinx.

1 cos(A+B) and sin(A+B)

(1)ei(A+B)=cos(A+B)+isin(A+B) But ei(A+B)=eiAeiB thereforeeiAeiB=(cosA+isinA)(cosB+isinB)=cosAcosB+icosAsinB+isinAcosBsinAsinB(2)=(cosAcosBsinAsinB)+i(cosAsinB+sinAcosB)

Now (1) is the same as (2). Hence the real part and the imaginary parts must be the same. Therefore (3)cos(A+B)=cosAcosBsinAsinB(4)sin(A+B)=cosAsinB+sinAcosB

2 cos(AB) and sin(AB)

This can be derived in similar way to the above using ei(AB)=cos(AB)+isin(AB) and so on. But more easily, it can be derived from (3,4) directly by just changing replacing B by B everywhere and then changing sin(B) to sinB and leaving cosB the same since cos(B)=cosB. This is because cos is even and sin is odd, then (3) becomes(3A)cos(AB)=cosAcosB+sinAsinB(4A)sin(AB)=cosAsinB+sinAcosB

So we really just need to find (3) to find the 4 formulas for addition and subtractions of angles.

3 cos(2A) and sin(2A)

These also can be found from (3,4). By replacing B with A resulting incos(A+A)=cosAcosAsinAsinAsin(A+A)=cosAsinA+sinAcosA

Therefore(3C)cos(2A)=cos2Asin2A(4C)sin(2A)=2cosAsinA

Or we could use Euler formula, but the above is simpler. To use Euler formula, we write(5)ei(2A)=cos(2A)+isin(2A) But ei(2A)=eiAeiA thereforeeiAeiA=(cosA+isinA)(cosA+isinA)=cos2A+2icosAsinAsin2A(6)=(cos2Asin2A)+i(2cosAsinA)

Comparing (5,6) shows thatcos(2A)=cos2Asin2Asin(2A)=2cosAsinA

Which is the same as (3C,4C) above.

4 cos(x2)

From the double angle formula (3C)cos(2A)=cos2Asin2A But cos2A+sin2A=1 then sin2A=1cos2A and the above becomescos(2A)=cos2A(1cos2A)=2cos2A1

Hencecos2A=cos(2A)+12 Let A=x2 then the above becomescos2(x2)=cos(x)+12cos(x2)=±cos(x)+12

The sign depends on the quadrant of x2.

5 sin(x2)

From the double angle formula (3C)cos(2A)=cos2Asin2A But cos2A+sin2A=1 then cos2A=1sin2A and the above becomescos(2A)=1sin2Asin2A=12sin2A

Hencesin2A=1cos(2A)2 Let A=x2 then the above becomessin2(x2)=1cos(x)2sin(x2)=±1cos(x)2

The sign depends on the quadrant of x2.

6 sin(α)+sin(β)

This can be found by adding (4) and (4A). Let (7)A+B=αAB=β

Then (4)+(4A) now becomessin(α)+sin(β)=(cosAsinB+sinAcosB)cosAsinB+sinAcosB(8)=2sinAcosB

Now we solve for A,B from (7). Which givesA=α+β2B=αβ2

Substituting the above in (8) givessin(α)+sin(β)=2sin(α+β2)cos(αβ2)

7 cos(α)+cos(β)

This can be found by adding (3) and (3A). Let (7)A+B=αAB=β

Then (3)+(3A) now becomescos(α)+cos(β)=(cosAcosBsinAsinB)+(cosAcosB+sinAsinB)(9)=2cosAcosB

Now we solve for A,B from (7). Which givesA=α+β2B=αβ2

Substituting the above in (9) givescos(α)+cos(β)=2cos(α+β2)cos(αβ2)

8 sin(α)sin(β)

This can be found from (4)-(4A). Let (7)A+B=αAB=β

Then (4)-(4A) now becomessin(α)sin(β)=(cosAsinB+sinAcosB)+cosAsinBsinAcosB(10)=2cosAsinB

Now we solve for A,B from (7). Which gives A=α+β2B=αβ2

Substituting the above in (10) givessin(α)sin(β)=2cos(α+β2)sin(αβ2)

9 cos(α)cos(β)

This can be found from (3)-(3A). Let (7)A+B=αAB=β

Then (3)-(3A) now becomescos(α)cos(β)=(cosAcosBsinAsinB)(cosAcosB+sinAsinB)(11)=2sinAsinB

Now we solve for A,B from (7). Which givesA=α+β2B=αβ2

Substituting the above in (11) givescos(α)cos(β)=2sin(α+β2)sin(αβ2)

10 cos(A)cos(B)

Adding (3)+(3A) givescos(A+B)=cosAcosBsinAsinBcos(AB)=cosAcosB+sinAsinBcos(A+B)+cos(AB)=2cosAcosB

HencecosAcosB=12(cos(A+B)+cos(AB))

11 sin(A)cos(B)

Adding (4)+(4A) givessin(A+B)=cosAsinB+sinAcosBsin(AB)=cosAsinB+sinAcosBsin(A+B)+sin(AB)=2sinAcosB

HencesinAcosB=12(sin(A+B)+sin(AB))

12 sin(A)sin(B)

(3)-(3A) givescos(A+B)=cosAcosBsinAsinBcos(AB)=cosAcosB+sinAsinBcos(A+B)cos(AB)=2sinAsinB

HencesinAsinB=12(cos(AB)cos(A+B))