home

PDF (letter size)

Finding roots of unity using Euler and De Moivreś

Nasser M. Abbasi

June 14,2006   Compiled on January 30, 2024 at 4:57am

To find the roots of f(x)=xn1 Solving for x from0=xn1xn=1(1)x=11n

Now 11n is evaluated. Since 1=ei(2π) Substituting (2) in the RHS of (1) gives x=(ei2π)1n(3)=(cos2π+isin2π)1n

Using De Moivre’s formula (cosα+isinα)1n=cos(αn+k2πn)+isin(αn+k2πn)       k=0,1,n1 Therefore (3) is rewritten asx=cos(2πn+k2πn)+isin(2πn+k2πn)       k=0,1,n1 The above gives the roots of f(x)=xn1. The following examples illustrate the use of the above.

  1. Solve f(x)=x21. Here n=2, therefore k=0,1. For k=0 x=cos(2π2)+isin(2π2)=1

    And for k=1x=cos(2π2+2π2)+isin(2π2+2π2)=1

    Hence the two roots are {1,1}

  2. Solve f(x)=x31. Here n=3, hence for k=0x=cos(2π3)+isin(2π3)=12+i32

    And for k=1 x=cos(2π3+2π3)+isin(2π3+2π3)=cos(4π3)+isin(4π3)=12i32

    And for k=2x=cos(2π3+22π3)+isin(2π3+22π3)=cos(6π3)+isin(6π3)=1

    Therefore the roots are {1, 12+i32,12i32}

Here is another example. Let us solve x(8)13=0x=(8)13=(8)1n

Where n=3. But 8=8(1)=8e2πi. Hence the above becomesx=(8e2πi)1n=81ne2πin(1)=81n(cos2π+isin2π)1n

But by De Moivre’s formula (cos2π+isin2π)1n=cos(2πn+k2πn)+isin(2πn+k2πn)k=0n1 Computing the above gives(cos2π+isin2π)1n={12+i32,12i32,1} Hence from (1)x=813{12+i32,12i32,1}={813(12+i32),813(12i32),813}={11.732i,1+1.73i,2}