Finite difference approximation formulas

Nasser M. Abbasi

 $July\ 2,\ 2015 \qquad \qquad {\small \texttt{Compiled on July 9, 2025 at 3:52am}}$

Contents

- 1 Approximation to first derivative 1
- 2 Approximation to second derivative 2

1 Approximation to first derivative

These formulas below approximate u' at $x = x_j$ where j is the grid point number.

	formula	truncation	Truncation	common name and
		error	error order	common notation
1	$u_j'pprox rac{1}{h}(u_{j+1}-u_j)$	$-u_j''^{\frac{h}{2}}-u_j^{(3)}^{\frac{h^2}{3!}}-\cdots$	O(h)	one point forward D_+
2	$u_j'pproxrac{1}{h}(u_j-u_{j-1})$	$u_{j}^{"h} \frac{h}{2} - u_{j}^{(3)} \frac{h^{2}}{3!} + \cdots$	O(h)	one point backward D_{-}
3	$u_j' pprox rac{1}{2h}(u_{j+1} - u_{j-1})$	$-u_{j}^{(3)} \frac{h^{2}}{6} - u_{j}^{(6)} \frac{h^{5}}{6!} - \cdots$	$O(h^2)$	centered difference, $D_0 =$
4	$u'_j pprox rac{1}{h} (rac{3}{2}u_j - 2u_{j+1} + rac{1}{2}u_{j+2})$	to do	$O(h^2)$	3 points forward different
5	$u_j' \approx \frac{1}{6}(2u_{j+1} + 3u_j - 6u_{j-1} + u_{j-2})$	to do	$O(h^3)$	

For example, to obtain the third formula above, we start from Taylor series and obtain

$$u_{j+1} = u_j + hu'_j + \frac{h^2}{2!}u''_j + \frac{h^3}{3!}u'''_j + \cdots$$

then we write it again for the previous point

$$u_{j-1} = u_j - hu'_j + \frac{h^2}{2!}u''_j - \frac{h^3}{3!}u'''_j \cdots$$

Notice the sign change in the expressions. We now subtract the second formula above from the above resulting in

$$u_{j+1} - u_{j-1} = 2hu'_j + 2\frac{h^3}{3!}u'''_j + \cdots$$

Or

$$u_{j+1} - u_{j-1} = 2hu'_j + 2\frac{h^3}{3!}u'''_j + \cdots$$

$$u_{j+1} - u_{j-1}$$

$$2h = u'_j + h^2\frac{u'''_j}{3!} + \cdots$$

2 Approximation to second derivative

These formulas below approximate u'' at $x = x_j$ where j is the grid point number. For approximation to u'' the accuracy of the approximation formula must be no less than 2.

	formula	truncation	Truncation	common name
		error	error order	
1	$u_j'' \approx \frac{1}{h^2}(U_{j-1} - 2U_j + U_{j+1})$	$-u^{(4)}\frac{h^2}{12}-u^{(6)}\frac{h^4}{360}-\cdots$	$O(h^2)$	3 points centered difference

To obtain the third formula above, we start from Taylor series. This results in

$$u_{j+1} = u_j + hu'_j + \frac{h^2}{2!}u''_j + \frac{h^3}{3!}u'''_j + \frac{h^4}{4!}u'''_j \cdots$$

Then we write it again for the previous point

$$u_{j-1} = u_j - hu'_j + \frac{h^2}{2!}u''_j - \frac{h^3}{3!}u'''_j + \frac{h^4}{4!}u'''_j \cdots$$

Notice the sign change in the expressions. We now add the second formula above from the above resulting in

$$u_{j+1} + u_{j-1} = 2u_j + 2h^2 u_j'' + 2\frac{h^4}{4!} u_j'''' + \cdots$$

$$\underbrace{u_{j-1} - 2u_j + u_{j-1}}_{2h^2} = u_j'' + h^2 \frac{u_j'''}{4!} + \cdots$$