HOME

UP

PDF letter size

Kamke differential equations. Mathematica and Maple. Earlier version

Nasser M. Abbasi

February 3, 2024

Contents

#1

y(x)1a4x4+a3x3+a2x2+a1x+a0=0

Maple

restart; 
ode1:=diff(y(x),x)-(a4*x^4+a3*x^3+a2*x^2+a1*x+a0)^(-1/2)=0; 
dsolve(%,y(x));

PIC
Mathematica

Remove["Global`*"] 
ode1=y'[x]-1/Sqrt[(a4 x^4+a3 x^3+a2 x^2+a1 x+a0)]==0; 
DSolve[ode1,y,x]

PIC

#2

y(x)+ay(x)=cebx
Maple

restart; 
ode2:=diff(y(x),x)+a*y(x)=c*exp(b*x); 
dsolve(%,y(x));

PIC
Mathematica

Remove["Global`*"] 
ode2=y'[x]+a y[x]-c Exp[b*x]==0 
DSolve[%,y[x],x]// TraditionalForm

PIC

#3

y(x)+ay(x)bsin(cx)=0
Maple

restart; 
ode3:=diff(y(x),x)+a*y(x)-b*sin(c*x)=0: 
dsolve(%,y(x));

PIC
Mathematica

Remove["Global`*"] 
ode3=y'[x]+a y[x]-b Sin[c x]==0; 
DSolve[%,y[x],x]// TraditionalForm

PIC

#4

y(x)+2xy(x)xex2=0

Maple

restart; 
ode4:=diff(y(x),x)+2*x*y(x)-x*exp(-x^2)=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode4=y'[x]+2 x y[x]-x Exp[-x^2]==0; 
DSolve[%,y[x],x]// TraditionalForm

PIC

#5

y(x)+y(x)cos(x)e2x=0

Maple

restart; 
ode5:=diff(y(x),x)+y(x)*cos(x)-exp(2*x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode5=y'[x]+y[x] Cos[x]-Exp[2*x]==0; 
DSolve[%,y[x],x]// TraditionalForm

PIC

#6

y(x)+y(x)cos(x)12sin(2x)=0

Maple

restart; 
ode6:=diff(y(x),x)+y(x)*cos(x)-1/2*sin(2*x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode6=y'[x]+y[x] Cos[x]-1/2 Sin[2 x]==0; 
DSolve[%,y[x],x]// TraditionalForm

PIC

#7

y(x)+y(x)cos(x)esin(x)=0

Maple

restart; 
ode7:=diff(y(x),x)+y(x)*cos(x)-exp(-sin(x))=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode7=y'[x]+y[x] Cos[x]-Exp[-Sin[x]]==0; 
DSolve[%,y[x],x]// TraditionalForm

PIC

#8

y(x)+y(x)tan(x)sin(2x)=0

Maple

restart; 
ode8:=diff(y(x),x)+y(x)*tan(x)-sin(2*x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode8=y'[x]+y[x] Tan[x]-Sin[2 x]==0; 
DSolve[%,y[x],x]// TraditionalForm

PIC

#9

y(x)(sin(ln(x))+cos(ln(x))+a)y(x)=0

Maple

restart; 
ode9:=diff(y(x),x)-(sin(log(x))+cos(log(x))+a)*y(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode9=y'[x]-(Sin[Log[x]]+Cos[Log[x]]+a) y[x]==0; 
DSolve[%,y[x],x]// TraditionalForm

PIC

#10

y(x)+f(x)y(x)f(x)f(x)=0

Maple

restart; 
ode10:=diff(y(x),x)+diff(f(x),x)*y(x)=f(x)*diff(f(x),x); 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode10=y'[x]+f'[x]*y[x]-f[x]*f'[x]==0; 
DSolve[%,y[x],x]// TraditionalForm

PIC

#11

y(x)+f(x)y(x)=g(x)

Maple

restart; 
ode11:=diff(y(x),x)+f(x)*y(x)=g(x); 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode11=y'[x]+f[x] y[x]==g[x]; 
First[DSolve[%,y[x],x]]// TraditionalForm

PIC

#12

y(x)+y(x)2=1

Maple

restart; 
ode12:=diff(y(x),x)+(y(x))^2=1: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode12=y'[x]+y[x]^2==1; 
DSolve[%,y[x],x]// TraditionalForm 
ExpToTrig[%]//FullSimplify// TraditionalForm

PIC

#13

y(x)+y(x)2=ax+b

Maple

restart; 
ode13:=diff(y(x),x)+(y(x))^2=a*x+b: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode13=y'[x]+y[x]^2==a x+b; 
DSolve[%,y[x],x]// TraditionalForm

PIC

#14

y(x)+y(x)2+axm=0

Maple

restart; 
ode14:=diff(y(x),x)+(y(x))^2+a*x^m=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode14=y'[x]+y[x]^2+a x^m==0; 
DSolve[%,y[x],x]// TraditionalForm

PIC

#15

y(x)+y(x)22x2y(x)+x42x1=0

Maple

restart; 
ode15:=diff(y(x),x)+(y(x))^2-2*x^2*y(x)+x^4-2*x-1=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode15 = y'[x] + y[x]^2 - 2 x^2 y[x] + x^4 - 2 x - 1 == 0; 
DSolve[%, y[x], x]// TraditionalForm

PIC

#16

y(x)+y(x)2(xy(x)1)f(x)=0

Maple

restart; 
ode16:=diff(y(x),x)+y(x)^2- (x*y(x)-1)*f(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode16 = y'[x] + y[x]^2 + (x*y[x] - 1)*f[x] == 0; 
DSolve[%, y[x], x]

PIC

#17

y(x)y(x)23y(x)+4=0

Maple

restart; 
ode16:=diff(y(x),x)-y(x)^2- 3*y(x)+4=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode17 = y'[x] - y[x]^2 - 3*y[x] + 4 == 0; 
DSolve[%, y[x], x]// TraditionalForm

PIC

#18

y(x)y(x)2xy(x)x+1=0

Maple

restart; 
ode18:=diff(y(x),x)-y(x)^2- x*y(x)-x+1=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode18 = y'[x] - y[x]^2 - x*y[x] - x + 1 == 0; 
DSolve[%, y[x], x]// TraditionalForm

PIC

#19

y(x)(y(x)+x)2=0

Maple

restart; 
ode19:=diff(y(x),x)-(y(x)+x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode19=y'[x]-(y[x]+x)^2==0; 
DSolve[%,y[x],x]// TraditionalForm

PIC

#20

y(x)y(x)2+(x2+1)y(x)2x=0

Maple

restart; 
ode20:=diff(y(x),x)-y(x)^2+(x^2+1)*y(x)-2*x=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode20=y'[x]-y[x]^2+(x^2+1)*y[x]-2*x==0; 
DSolve[%,y[x],x]// TraditionalForm

PIC

#21

y(x)y(x)2+y(x)sin(x)cos(x)=0

Maple

restart; 
ode21:=diff(y(x),x)-y(x)^2+y(x)*sin(x)-cos(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode21=y'[x]-y[x]^2+y[x]*Sin[x]-Cos[x]==0; 
DSolve[%,y[x],x]// TraditionalForm

PIC

#22

y(x)y(x)2y(x)sin(2x)cos(2x)=0

Maple

restart; 
ode22:=diff(y(x),x)-sin(2*x)*y(x)-y(x)^2=0; 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode22=y'[x]-y[x]^2-y[x]*Sin[2*x]-Cos[2*x]==0 
DSolve[%,y[x],x]

PIC

#23

y(x)+ay(x)2b=0

Maple

restart; 
ode23:=diff(y(x),x)+a*y(x)^2-b=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode23=y'[x]+a*y[x]^2-b==0; 
DSolve[%,y[x],x]// TraditionalForm

PIC

#24

y(x)+ay(x)2bxν=0

Maple

restart; 
ode24:=diff(y(x),x)+a*y(x)^2-b*x^nu=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode24=y'[x]+a*y[x]^2-b*x^nu==0; 
DSolve[%,y[x],x]//TraditionalForm

PIC

#25

y(x)+ay(x)2bx2νcxν1=0

Maple

restart; 
ode25:=diff(y(x),x)+a*y(x)^2-b*x^(2*nu)-c*x^(nu-1)=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode25=y'[x]+a*y[x]^2-b*x^(2*\[Nu])-c*x^(\[Nu]-1)==0 
DSolve[%,y[x],x]// Simplify // TraditionalForm

PIC

#26

y(x)(Ay(x)a)(By(x)b)=0

Maple

restart; 
ode26:=diff(y(x),x)-(A*y(x)-a)*(B*y(x)-b)=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode26=y'[x]-(A*y[x]-a)*(B*y[x]-b)==0; 
DSolve[%,y[x],x]//TraditionalForm

PIC

#27

y(x)+ay(x)(y(x)x)1=0

Maple

restart; 
ode27:=diff(y(x),x)+a*y(x)*(y(x)-x)-1=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode27=y'[x]+a*y[x]*(y[x]-x)-1==0; 
DSolve[%,y[x],x]//TraditionalForm

PIC

#28

y(x)+xy(x)2x3y(x)2x=0

Maple

restart; 
ode28:=diff(y(x),x)+x*y(x)^2-x^3*y(x)-2*x=0; 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode28=y'[x]+x*y[x]^2-x^3*y[x]-2*x==0; 
DSolve[%,y[x],x]//TraditionalForm

PIC

#29

y(x)xy(x)23xy(x)=0

Maple

restart; 
ode29:=diff(y(x),x)-x*y(x)^2-3*x*y(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode29=y'[x]-x*y[x]^2-3*x*y[x]==0; 
DSolve[%,y[x],x]//TraditionalForm

PIC

#30

y(x)+x(1a)y(x)2xa=0

Maple

restart; 
ode30:=diff(y(x),x)+x^(-1-a)*y(x)^2-x^a=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode30=y'[x]+x^(-a-1)*y[x]^2-x^a==0 
DSolve[%,y[x],x]

PIC

#31

y(x)axn(y(x)2+1)=0

Maple

restart; 
ode31:=diff(y(x),x)-a*x^n*(y(x)^2+1)=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode31 = y'[x] - a*x^n*(y[x]^2 + 1) == 0; 
DSolve[%, y[x], x] // TraditionalForm

PIC

#32

y(x)+y(x)2sin(x)2sin(x)cos(x)2=0

Maple

restart; 
ode31:=diff(y(x),x)+y(x)^2*sin(x)-2*sin(x)/cos(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode32=y'[x]+y[x]^2*Sin[x]-2*Sin[x]/Cos[x]^2==0; 
DSolve[%,y[x],x]//TraditionalForm

PIC

#33

y(x)y(x)2f(x)g(x)+g(x)f(x)=0

Maple

restart; 
ode33:=diff(y(x),x)-y(x)^2*diff(f(x),x)/g(x)+diff(g(x),x)/f(x)=0; 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
(ode33=y'[x]-y[x]^2*D[f[x],x]/g[x]+D[g[x],x]/f[x]==0)//TraditionalForm 
DSolve[ode33,y[x],x]//TraditionalForm

PIC

#34

y(x)+f(x)y(x)2+g(x)y(x)=0

Maple

restart; 
ode34:=diff(y(x),x)+f(x)*y(x)^2+g(x)*y(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode34=y'[x]+f[x]*y[x]^2+g[x]*y[x]==0 
DSolve[%,y[x],x]//TraditionalForm

PIC

#35

y(x)+f(x)(y(x)2+2ay(x)+b)=0

Maple

restart; 
ode35:=diff(y(x),x)+f(x)*(y(x)^2+2*a*y(x)+b)=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode35 = y'[x] + f[x]*(y[x]^2 + 2*a*y[x] + b) == 0; 
DSolve[%, y[x], x] // TraditionalForm

PIC

#36

y(x)+y(x)3+axy(x)2=0

Maple

restart; 
ode36:=diff(y(x),x)+y(x)^3+a*x*y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode36 = y'[x] + y[x]^3 + a*x*y[x]^2 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#37

y(x)y(x)3aexy(x)2=0

Maple

restart; 
ode37:=diff(y(x),x)-y(x)^3-a*exp(x)*y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode37 = y'[x] - y[x]^3 - a*Exp[x]*y[x]^2 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#38

y(x)ay(x)3bx32=0

Maple

restart; 
ode38:=diff(y(x),x)-a*y(x)^3-b*x^(3/2)=0: 
dsolve(%,y(x));

Nothing returned

Mathematica

Remove["Global`*"] 
ode38 = y'[x] - a*y[x]^3 - b*x^(3/2) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#39

y(x)a3y(x)3a2y(x)2a1y(x)a0=0

Maple

restart; 
ode39:=diff(y(x),x)-a3*y(x)^3-a2*y(x)^2-a1*y(x)-a0=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode39 = y'[x] - a3*y[x]^3 - a2*y[x]^2 - a1*y[x] - a0 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#40

y(x)+3ay(x)3+6axy(x)2=0

Maple

restart; 
ode40:=diff(y(x),x)+3*a*y(x)^3+6*a*x*y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode40 = y'[x] + 3*a*y[x]^3 + 6*a*x*y[x]^2 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#41

y(x)+axy(x)3+by(x)2=0

Maple

restart; 
ode41:=diff(y(x),x)+a*x*y(x)^3+b*y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode41 = y'[x] + a*x*y[x]^3 + b*y[x]^2 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#42

y(x)x(x+2)y(x)3(x+3)y(x)2=0

Maple

restart; 
ode42:=diff(y(x),x)-x*(x+2)*y(x)^3-(x+3)*y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode42 = y'[x] - x*(x + 2)*y[x]^3 - (x + 3)*y[x]^2 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#43

y(x)+(3ax2+4a2x+b)y(x)3+3xy(x)2=0

Maple

restart; 
ode43:=diff(y(x),x)+(3*a*x^2+4*a^2*x+b)*y(x)^3+3*x*y(x)^2=0: 
dsolve(%,y(x));

PIC
Mathematica

Remove["Global`*"] 
ode43 = y'[x] + (3*a*x^2 + 4*a^2*x + b)*y[x]^3 + 3*x*y[x]^2 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#44

y(x)+2ax3y(x)3+2xy(x)=0

Maple

restart; 
ode44:=diff(y(x),x)+2*a*x^3*y(x)^3+2*x*y(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode44 = y'[x] + 2*a*x^3*y[x]^3 + 2*x*y[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#45

y(x)+2(a2x3b2x)y(x)3+3by(x)2=0

Maple

restart; 
ode45:=diff(y(x),x)+2*(a^2*x^3-b^2*x)*y(x)^3+3*b*y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode45 = y'[x] + 2*(a^2*x^3 - b^2*x)*y[x]^3 + 3*b*y[x]^2 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#46

y(x)xay(x)3+3y(x)2xay(x)x2a+axa1=0

Maple

restart; 
ode46:=diff(y(x),x)-x^a*y(x)^3+3*y(x)^2-x^(-a)*y(x)-x^(-2*a)+a*x^(-a-1)=0: 
dsolve(%,y(x));

PIC Mathematica

Remove["Global`*"] 
ode46=y'[x]-x^a*y[x]^3+3*y[x]^2-x^(-a)*y[x]-x^(-2*a)+a*x^(-a-1)==0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#47

y(x)a(xnx)y(x)3y(x)2=0

Maple

restart; 
ode47:=diff(y(x),x)-a*(x^n-x)*y(x)^3-y(x)^2=0: 
dsolve(%,y(x));

No output

Mathematica

Remove["Global`*"] 
ode47 = y'[x] - a*(x^n - x)*y[x]^3 - y[x]^2 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#48

y(x)(axn+bx)y(x)3cy(x)2=0

Maple

restart; 
ode48:=diff(y(x),x)-(a*x^n+b*x)*y(x)^3-c*y(x)^2=0: 
dsolve(%,y(x));

No output
Mathematica

Remove["Global`*"] 
ode48 = y'[x] - (a*x^n + b*x)*y[x]^3 - c*y[x]^2 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#49

y(x)+aϕ(x)y(x)3+6aϕ(x)y(x)2+(2a+1)y(x)ϕ(x)ϕ(x)+2a+2=0

Maple

restart; 
ode49:=diff(y(x),x)+a*diff(phi(x),x)*y(x)^3+6*a*phi(x)*y(x)^2+(2*a+1)*y(x)*diff(phi(x),x$2)/diff(phi(x),x)+2*a+2=0; 
dsolve(%,y(x));

PIC
Mathematica

Remove["Global`*"] 
ode49 = y'[x] + a*phi'[x]*y[x]^3 + 
   6*a*phi[x]*y[x]^2 + (2*a + 1)*y[x]*phi''[x]/phi'[x] + 2*a + 2 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#50

y(x)f3(x)y(x)3f2(x)y(x)2f1(x)y(x)f0(x)=0
Maple

restart; 
ode50:=diff(y(x),x)-f3(x)*y(x)^3-f2(x)*y(x)^2-f1(x)*y(x)-f0(x)=0; 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode50 = y'[x] - f3[x]*y[x]^3 - f2[x]*y[x]^2 - f1[x]*y[x] - f0[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#51

y(x)(y(x)f(x))(y(x)g(x))(y(x)af(x)+bg(x)a+b)h(x)f(x)(y(x)g(x))f(x)g(x)g(x)(y(x)f(x))g(x)f(x)=0
Maple

restart; 
ode51:=diff(y(x),x)-(y(x)-f(x))*(y(x)-g(x))*(y(x)-(a*f(x)+b*g(x))/(a+b))*h(x)- 
diff(f(x),x)*(y(x)-g(x))/(f(x)-g(x))-diff(g(x),x)*(y(x)-f(x))/(g(x)-f(x))=0; 
dsolve(%,y(x));

PIC
Mathematica

Remove["Global`*"] 
ode51 = D[y[x],x] - (y[x] - f[x])*(y[x] -g[x])*(y[x] - (a*f[x] + b*g[x])/(a + b))*h[x] - 
   D[f[x], x]*(y[x] - g[x])/(f[x] - g[x])-D[g[x], x]*(y[x] - f[x])/(g[x] - f[x]) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#52

y(x)bxn1nay(x)n=0
Maple

restart; 
ode52:=diff(y(x),x)-b*x^(n/(1-n))-a*y(x)^n=0; 
dsolve(%,y(x));

PIC
Mathematica

Remove["Global`*"] 
ode52 = D[y[x], x] - a*y[x]^n - b*x^(n/(1 - n)) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#53

y(x)y(x)f(x)f(x)f(x)g(x)f(x)1n(b+ag(x))ny(x)ng(x)=0
Maple

restart; 
ode53:=diff(y(x),x)-(y(x)*diff(f(x),x))/f(x)-f(x)*diff(g(x),x)- 
f(x)^(1-n)/(b+a*g(x))^n*y(x)^n*diff(g(x),x)=0; 
dsolve(%,y(x));

PIC
Mathematica

Remove["Global`*"] 
ode53 = y'[x] - f[x]^(1 - n)*g'[x]*y[x]^n/(a*g[x] + b)^n - 
   f'[x]*y[x]/f[x] - f[x]*g'[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#54

y(x)anf(x)1ny(x)ng(x)y(x)f(x)f(x)f(x)g(x)=0
Maple

restart; 
ode54:=diff(y(x),x)-a^n*f(x)^(1-n)*diff(g(x),x)*y(x)^n-(diff(f(x),x)*y(x))/f(x)-f(x)*diff(g(x),x)=0: 
dsolve(%,y(x));

PIC
Mathematica

Remove["Global`*"] 
ode54=y'[x]-a^n*f[x]^(1-n)*g'[x]*y[x]^n-f'[x]*y[x]/f[x]-f[x]*g'[x]==0 
DSolve[%,y[x],x]//TraditionalForm

PIC

#55

y(x)f(x)y(x)ng(x)y(x)h(x)=0
Maple

restart; 
ode55:=diff(y(x),x)-f(x)*y(x)^n-g(x)*y(x)-h(x)=0: 
dsolve(%,y(x));

No answer

Mathematica

Remove["Global`*"] 
ode55 = y'[x] - f[x]*y[x]^n - g[x]*y[x] - h[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#56

y(x)f(x)y(x)ag(x)y(x)b=0
Maple

restart; 
ode56:=diff(y(x),x)-f(x)*y(x)^a-g(x)*y(x)^b=0: 
dsolve(%,y(x));

No answer

Mathematica

Remove["Global`*"] 
ode56=y'[x]-f[x]*y[x]^a-g[x]*y[x]^b==0 
DSolve[%,y[x],x]//TraditionalForm

PIC

#57

y(x)|y(x)|=0
Maple

restart; 
ode57:=diff(y(x),x)-sqrt(abs(y(x)))=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode57=y'[x]-Abs[y[x]]^(1/2)==0 
DSolve[%,y[x],x]//TraditionalForm

PIC

#58

y(x)ay(x)12bx=0
Maple

restart; 
ode58:=diff(y(x),x)-a*y(x)^(1/2)-b*x=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode58 = y'[x] - a*y[x]^(1/2) - b*x == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#59

y(x)a(y(x)2+1)12b=0
Maple

restart; 
ode59:=diff(y(x),x)-a*(y(x)^2+1)^(1/2)-b=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode59 = y'[x] - a*(y[x]^2 + 1)^(1/2) - b == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#60

y(x)(y(x)21)12(x21)12=0
Maple

restart; 
ode60:=diff(y(x),x)-(y(x)^2-1)^(1/2)/(x^2-1)^(1/2)=0: 
dsolve(%,y(x)); 

PIC

Mathematica

Remove["Global`*"] 
ode60 = y'[x] - (y[x]^2 - 1)^(1/2)/(x^2 - 1)^(1/2) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#61

y(x)(x21)12(y(x)21)12=0
Maple

restart; 
ode61:=diff(y(x),x)-(x^2-1)^(1/2)/(y(x)^2-1)^(1/2)=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode61 = y'[x] - (x^2 - 1)^(1/2)/(y[x]^2 - 1)^(1/2) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#62

y(x)y(x)x2x2y(x)2x+xy(x)x2y(x)2=0
Maple

restart; 
ode62:=diff(y(x),x)-(y(x)-x^2*(x^2-y(x)^2)^(1/2))/(x+x*y(x)*(x^2-y(x)^2)^(1/2))=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"] 
ode62 = D[y[x],x] - (y[x] - 
       x^2*(x^2 - y[x]^2)^(1/2))/(x*y[x]*(x^2 - y[x]^2)^(1/2) + x)==0; 
DSolve[%, y[x], x] // TraditionalForm

PIC

#63

y(x)1+y(x)2(1+x)3/2|y(x)+1+y(x)|=0
Maple

restart; 
ode63:=diff(y(x),x)-(1+y(x)^2)/((1+x)^(3/2)*abs(y(x)+sqrt(1+y(x))))=0: 
dsolve(%,y(x));

PIC

Mathematica

Remove["Global`*"]; 
ode63 = D[y[x],x]-(y[x]^2 + 1)/(Abs[y[x]+(1+y[x])^(1/2)]*(1+x)^(3/2))==0 
DSolve[%, y[x], x] // TraditionalForm

No answer after 10 minutes wait

#64

y(x)c+by(x)+ay(x)2c+bx+ax2=0
Maple

restart; 
ode64:=diff(y(x),x)-sqrt((c+b*y(x)+a*y(x)^2)/(c+b*x+a*x^2))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode64 =D[y[x], x] - ((a*y[x]^2 + b*y[x] + c)/(a*x^2 + b*x + c))^(1/2)==0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#65

y(x)1+y(x)31+x3=0
Maple

restart; 
ode65:=diff(y(x),x)-sqrt((1+y(x)^3)/(1+x^3))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode65 = D[y[x], x] - ((y[x]^3 + 1)/(x^3 + 1))^(1/2) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#66

y(x)|(1y(x))y(x)(1ay(x))||(1x)x(1ax)|=0
Maple

restart; 
ode66:=diff(y(x),x)-sqrt((abs((1-y(x))*y(x)*(1-a*y(x))))/(abs((1-x)*x*(1-a*x))))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode66=D[y[x],x]-Abs[y[x]*(1-y[x])*(1-a*y[x])]^(1/2)/Abs[x*(1-x)*(1-a*x)]^(1/2)==0 
DSolve[%,y[x],x]//TraditionalForm

No answer after 10 minutes wait. Abort
PIC

#67

y(x)1+y(x)41+x4=0
Maple

restart; 
ode67:=diff(y(x),x)-sqrt((1-y(x)^4)/(1-x^4))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode67 = D[y[x], x] - (1 - y[x]^4)^(1/2)/(1 - x^4)^(1/2) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#68

y(x)1+by(x)2+ay(x)41+bx2+ax4=0
Maple

restart; 
ode68:=diff(y(x),x)-sqrt((1+b*y(x)^2+a*y(x)^4)/(1+b*x^2+a*x^4))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode68 = D[y[x],x]-((a*y[x]^4 + b*y[x]^2 + 1)/(a*x^4 + b*x^2 + 1))^(1/2) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#69

y(x)(a0+a1x+a2x2+a3x3+a4x4)(b0+b1y(x)+b2y(x)2+b3y(x)3+b4y(x)4)=0
Maple

restart; 
ode69:=diff(y(x),x)-sqrt((a0+a1*x+a2*x^2+a3*x^3+a4*x^4)*(b0+b1*y(x)+b2*y(x)^2+b3*y(x)^3+b4*y(x)^4))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode69=D[y[x],x]-((b4*y[x]^4+b3*y[x]^3+b2*y[x]^2+b1*y[x]+b0)* 
       (a4*x^4+a3*x^3+a2*x^2+a1*x+a0))^(1/2)==0 
DSolve[%,y[x],x]//TraditionalForm

PIC

#70

y(x)a0+a1x+a2x2+a3x3+a4x4b0+b1y(x)+b2y(x)2+b3y(x)3+b4y(x)4=0
Maple

restart; 
ode70:=diff(y(x),x)-sqrt((a0+a1*x+a2*x^2+a3*x^3+a4*x^4)/(b0+b1*y(x)+b2*y(x)^2+b3*y(x)^3+b4*y(x)^4))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode70=D[y[x],x]-((a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0)/(b4*y[x]^4 + 
      b3*y[x]^3 + b2*y[x]^2 + b1*y[x] + b0))^(1/2) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#71

y(x)b0+b1y(x)+b2y(x)2+b3y(x)3+b4y(x)4a0+a1x+a2x2+a3x3+a4x4=0
Maple

restart; 
ode71:=diff(y(x),x)-sqrt((b0+b1*y(x)+b2*y(x)^2+b3*y(x)^3+b4*y(x)^4)/(a0+a1*x+a2*x^2+a3*x^3+a4*x^4))=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode71 = D[y[x],x] - ((b4*y[x]^4 + b3*y[x]^3 + b2*y[x]^2 + b1*y[x] + b0)/(a4*x^4 + 
         a3*x^3 + a2*x^2 + a1*x + a0))^(1/2) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#72

y(x)R1(x,a0+a1x+a2x2+a3x3+a4x4)R2(y(x),b0+b1y(x)+b2y(x)2+b3y(x)3+b4y(x)4)=0
Maple

restart; 
ode72:=diff(y(x),x)-R1(x,sqrt(a0+a1*x+a2*x^2+a3*x^3+a4*x^4))* 
R2(y(x),sqrt(b0+b1*y(x)+b2*y(x)^2+b3*y(x)^3+b4*y(x)^4))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode72 = D[y[x], x] -R1[x, (a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0)^(1/2)]* 
    R2[y[x], (b4*y[x]^4 + b3*y[x]^3 + b2*y[x]^2 + b1*y[x] + b0)^(1/2)] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#73

y(x)(a0+a1x+a2x2+a3x3+a4x4a0+a1y(x)+a2y(x)2+a3y(x)3)23=0
Maple

restart; 
ode73:=diff(y(x),x)-((a0+a1*x+a2*x^2+a3*x^3)/(a0+a1*y(x)+a2*y(x)^2+a3*y(x)^3))^(2/3)=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode73=D[y[x],x]-((a3*x^3+a2*x^2+a1*x+a0)/(a3*y[x]^3+a2*y[x]^2+a1*y[x]+a0))^(2/3)==0 
DSolve[%,y[x],x]//TraditionalForm

PIC

#74

y(x)f(x)(y(x)a)(y(x)b)(y(x)g(x))=0
Maple

restart; 
ode74:=diff(y(x),x)-f(x)*sqrt((-a*y(x))*(-b*y(x)))*(y(x)-g(x))=0; 
dsolve(%,y(x));

Not solved
PIC

Mathematica

Clear["Global`*"]; 
ode74 = D[y[x], x]-f[x]*(y[x] - g[x])*((y[x] - a)*(y[x] - b))^(1/2) == 0 
DSolve[%, y[x], x] // TraditionalForm

Not solved
PIC

#75

y(x)+exexy(x)=0
Maple

restart; 
ode75:=diff(y(x),x)+exp(x)-exp(x-y(x))=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode75=D[y[x],x]-Exp[x-y[x]]+Exp[x]==0 
DSolve[%,y[x],x]//TraditionalForm

PIC

#76

y(x)b+acos(y(x))=0
Maple

restart; 
ode76:=diff(y(x),x)+b-a*cos(y(x))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode76 = D[y[x], x] - a*Cos[y[x]] + b == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#77

y(x)cos(bx+ay(x))=0
Maple

restart; 
ode77:=diff(y(x),x)-cos(b*x+a*y(x))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode77 = D[y[x], x] - Cos[a*y[x] + b*x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#78

y(x)+asin(αy(x)+βx)+b=0
Maple

restart; 
ode78:=diff(y(x),x)+a* sin(alpha *y(x)+ beta*x)+b=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode78=D[y[x],x]+a*Sin[\[Alpha] y[x]+\[Beta]*x]+b==0 
DSolve[%,y[x],x]//TraditionalForm

PIC

#79

y(x)+f(x)cos(ay(x))+g(x)sin(ay(x))+h(x)=0
Maple

restart; 
ode79:=diff(y(x),x)+f(x)*cos(a*y(x))+g(x)*sin(a*y(x))+h(x)=0; 
dsolve(%,y(x));

No solution
PIC

Mathematica

Clear["Global`*"]; 
ode79=D[y[x],x]+f[x]*Cos[a*y[x]]+g[x]*Sin[a*y[x]]+h[x]==0 
DSolve[%,y[x],x]//TraditionalForm

No solution
PIC

#80

y(x)+f(x)sin(y(x))+(1f(x))cos(y(x))f(x)1=0
Maple

restart; 
ode80:=diff(y(x),x)+f(x)*sin(y(x))+(1-diff(f(x),x))*cos(y(x))-diff(f(x),x)-1=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode80 = D[y[x], x] + f[x]*Sin[y[x]] + (1 - D[f[x], x])*Cos[y[x]] - 
   D[f[x], x] - 1 == 0 
DSolve[%, y[x], x] // TraditionalForm

No solution
PIC

#81

y(x)+2tan(y(x))tan(x)1=0
Maple

restart; 
ode81:=diff(y(x),x)+2*tan(y(x))*tan(x)-1=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode81 = D[y[x], x] + 2*Tan[y[x]]*Tan[x] - 1 == 0 
DSolve[%, y[x], x] // TraditionalForm

No solution
PIC

#82

y(x)a(1+tan(y(x))2)+tan(y(x))tan(x)=0
Maple

restart; 
ode82:=diff(y(x),x)-a*(1+tan(y(x))^2)+tan(y(x))*tan(x)=0; 
dsolve(%,y(x));

No solution
PIC

Mathematica

Clear["Global`*"]; 
ode82 = D[y[x], x] - a*(1 + Tan[y[x]]^2) + Tan[y[x]]*Tan[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

No solution
PIC

#83

y(x)tan(xy(x))=0
Maple

restart; 
ode83:=diff(y(x),x)-tan(x*y(x))=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode83 = D[y[x], x] - Tan[x*y[x]] == 0 
DSolve[%, y[x], x] // TraditionalForm

No solution
PIC

#84

y(x)f(ax+by(x))=0
Maple

restart; 
ode84:=diff(y(x),x)-f(a*x+b*y(x))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode84 = D[y[x], x] - f[a*x + b*y[x]] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#85

y(x)xa1f(xaa+y(x)bb)y(x)1b=0
Maple

restart; 
ode85:=diff(y(x),x)-x^(a-1)*y(x)^(1-b)*f(x^a/a+y(x)^b/b)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode85 = D[y[x], x] - x^(a - 1)*y[x]^(1 - b)*f[x^a/a + y[x]^b/b] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#86

y(x)y(x)xf(x2+ay(x)2)x+af(x2+ay(x)2)y(x)=0
Maple

restart; 
ode86:=diff(y(x),x)-((-x*f(x^2+a*y(x)^2)+y(x))/(x+a*f(x^2+a*y(x)^2)*y(x)))=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode86 = D[y[x],x]-(y[x]-x*f[x^2 + a*y[x]^2])/(x+a*y[x]*f[x^2+a*y[x]^2])==0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#87

y(x)af(xcy(x))y(x)+cxay(x)bbxf(xcy(x))xay(x)b=0
Maple

restart; 
ode87:=diff(y(x),x)-((a*f(x^c*y(x))*y(x)+c*x^a*y(x)^b)/(b*x*f(x^c*y(x))-x^a*y(x)^b))=0; 
dsolve(%,y(x));

no solution
PIC

Mathematica

Clear["Global`*"]; 
ode87 = D[y[x],x]-(y[x]*a*f[x^c*y[x]]+c*x^a*y[x]^b)/(x*b*f[x^c*y[x]]-x^a*y[x]^b)== 0 
DSolve[%, y[x], x] // TraditionalForm

no solution
PIC

#88

2y(x)bce2ax4ay(x)3y(x)2=0
Maple

restart; 
ode88:=2*diff(y(x),x)-b-c*exp(-2*a*x)-4*a*y(x)-3*y(x)^2=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode88 = 2*D[y[x], x] - 3*y[x]^2 - 4*a*y[x] - b - c*Exp[-2*a*x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#89

xy(x)a2x2=0
Maple

restart; 
ode89:=x*diff(y(x),x)-sqrt(a^2-x^2)=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode89 = x*D[y[x], x] - (a^2 - x^2)^(1/2) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#90

xy(x)xsin(x)+y(x)=0
Maple

restart; 
ode90:=x*diff(y(x),x)+y(x)-x*sin(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode90 = x*D[y[x], x] + y[x] - x*Sin[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#91

xy(x)y(x)xln(x)=0
Maple

restart; 
ode91:=x*diff(y(x),x)-y(x)-x/log(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode91 = x*D[y[x], x] - y[x] - x/Log[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#92

xy(x)y(x)x2sin(x)=0
Maple

restart; 
ode92:=x*diff(y(x),x)-y(x)-x^2*sin(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode92 = x*D[y[x], x] - y[x] - x^2*Sin[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#93

xy(x)y(x)xcos(ln(ln(x)))ln(x)=0
Maple

restart; 
ode93:=x*diff(y(x),x)-y(x)-(x*cos(log(log(x))))/(log(x))=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode93 = x*D[y[x], x] - y[x] - x*Cos[Log[Log[x]]]/Log[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#94

xy(x)+bxn+ay(x)=0
Maple

restart; 
ode94:=x*diff(y(x),x)+b*x^n+a*y(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode94 = x*D[y[x], x] + a*y[x] + b*x^n == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#95

xy(x)+x2+y(x)2=0
Maple

restart; 
ode95:=x*diff(y(x),x)+x^2+y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode95 = x*D[y[x], x] + y[x]^2 + x^2 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#96

xy(x)y(x)2+1=0
Maple

restart; 
ode96:=x*diff(y(x),x)+1-y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode96 = x*D[y[x], x] - y[x]^2 + 1 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#97

xy(x)+bx2y(x)+ay(x)2=0
Maple

restart; 
ode97:=x*diff(y(x),x)+b*x^2-y(x)+a*y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode97 = x*D[y[x], x] + a*y[x]^2 - y[x] + b*x^2 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#98

xy(x)+cx2bby(x)+ay(x)2=0
Maple

restart; 
ode98:=x*diff(y(x),x)+c*x^(2*b)-b*y(x)+a*y(x)^2=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode98 = x*D[y[x], x] + a*y[x]^2 - b*y[x] + c*x^(2*b) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#99

xy(x)cxβby(x)+ay(x)2=0
Maple

restart; 
ode99:=x*diff(y(x),x)-c*x^beta-b*y(x)+a*y(x)^2=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode99 = x*D[y[x], x] + a*y[x]^2 - b*y[x] - c*x^\[Beta] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#100

xy(x)+a+xy(x)2=0
Maple

restart; 
ode100:=x*diff(y(x),x)+a+x*y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode100 = x*D[y[x], x] + x*y[x]^2 + a == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#101

xy(x)y(x)+xy(x)2=0
Maple

restart; 
ode101:=x*diff(y(x),x)-y(x)+x*y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode101 = x*D[y[x], x] + x*y[x]^2 - y[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#102

xy(x)ax3y(x)+xy(x)2=0
Maple

restart; 
ode102:=x*diff(y(x),x)-a*x^3-y(x)+x*y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode102 = x*D[y[x], x] + x*y[x]^2 - y[x] - a*x^3 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#103

xy(x)x3(1+2x2)y(x)+xy(x)2=0
Maple

restart; 
ode103:=x*diff(y(x),x)-x^3-(1+2*x^2)*y(x)+x*y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode103 = x*D[y[x], x] + x*y[x]^2 - (2*x^2 + 1)*y[x] - x^3 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#104

xy(x)+bx+2y(x)+axy(x)2=0
Maple

restart; 
ode104:=x*diff(y(x),x)+b*x+2*y(x)+a*x*y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode104 = x*D[y[x], x] + a*x*y[x]^2 + 2*y[x] + b*x == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#105

xy(x)+d+cx+by(x)+axy(x)2=0
Maple

restart; 
ode105:=x*diff(y(x),x)+d+c*x+b*y(x)+a*x*y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode105 = x*D[y[x], x] + a*x*y[x]^2 + b*y[x] + c*x + d == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#106

xy(x)+xb+12(ab)y(x)+xay(x)2=0
Maple

restart; 
ode106:=x*diff(y(x),x)+x^b+(1/2)*(a-b)*y(x)+x^a*y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode106 = x*D[y[x], x] + x^a*y[x]^2 + 1/2*(a - b)*y[x] + x^b == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#107

xy(x)cxβ+by(x)+axαy(x)2=0
Maple

restart; 
ode107:=x*diff(y(x),x)-c*x^beta+b*y(x)+a*x^alpha*y(x)^2=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode107 = x*D[y[x], x] + a*x^\[Alpha]*y[x]^2 + b*y[x] - c*x^\[Beta] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#108

xy(x)y(x)2ln(x)+y(x)=0
Maple

restart; 
ode108:=x*diff(y(x),x)-y(x)^2*log(x)+y(x)=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode108 = x*D[y[x], x] - y[x]^2*Log[x] + y[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#109

xy(x)y(x)(2y(x)ln(x)1)=0
Maple

restart; 
ode109:=x*diff(y(x),x)-y(x)*(2*log(x)*y(x)-1)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode109 = x*D[y[x], x] - y[x]*(2*y[x]*Log[x] - 1) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#110

xy(x)f(x)(y(x)2x2)=0
Maple

restart; 
ode110:=x*diff(y(x),x)-f(x)*(y(x)^2-x^2)=0: 
dsolve(%,y(x));

did not solve

Mathematica

Clear["Global`*"]; 
ode110 = x*D[y[x], x] + f[x]*(y[x]^2 - x^2) == 0 
DSolve[%, y[x], x] // TraditionalForm

did not solve

#111

xy(x)+y(x)3+3xy(x)2=0
Maple

restart; 
ode111:=x*diff(y(x),x)+y(x)^3+3*x*y(x)^2=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode111 = x*D[y[x], x] + y[x]^3 + 3*x*y[x]^2 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#112

xy(x)y(x)x2+y(x)2=0
Maple

restart; 
ode112:=x*diff(y(x),x)-y(x)-sqrt(x^2+y(x)^2)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode112 = x*D[y[x], x] - (y[x]^2 + x^2)^(1/2) - y[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#113

xy(x)y(x)+ax2+y(x)2=0
Maple

restart; 
ode113:=x*diff(y(x),x)-y(x)+a*sqrt(x^2+y(x)^2): 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode113 = x*D[y[x], x] + a*(y[x]^2 + x^2)^(1/2) - y[x] == 0 
DSolve[%, y[x], x]

PIC

#114

xy(x)y(x)xx2+y(x)2=0
Maple

restart; 
ode114:=x*diff(y(x),x)-x*sqrt(y(x)^2+x^2)-y(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode114 = x*D[y[x], x] - x*(y[x]^2 + x^2)^(1/2) - y[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#115

xy(x)y(x)x(y(x)x)x2+y(x)2=0
Maple

restart; 
ode115:=x*diff(y(x),x)-y(x)-x*(y(x)-x)*sqrt(x^2+y(x)^2)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode115 = x*D[y[x], x] - x*(y[x] - x)*(y[x]^2 + x^2)^(1/2) - y[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#116

xy(x)y(x)x(y(x)24x2)(y(x)2x2)=0
Maple

restart; 
ode116:=x*diff(y(x),x)-y(x)-x*sqrt((y(x)^2-4*x^2)*(y(x)^2-x^2))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode116 = x*D[y[x], x]-x*((y[x]^2 - x^2)*(y[x]^2-4*x^2))^(1/2)-y[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#117

xy(x)xxey(x)xy(x)=0
Maple

restart; 
ode117:=x*diff(y(x),x)-x-x*exp(y(x)/x)-y(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode117 = x*D[y[x], x] - x*Exp[y[x]/x] - y[x] - x == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#118

xy(x)y(x)ln(y(x))=0
Maple

restart; 
ode118:=x*diff(y(x),x)-y(x)*log(y(x))=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode118 = x*D[y[x], x] - y[x]*Log[y[x]] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#119

xy(x)y(x)(ln(xy(x))1)=0
Maple

restart; 
ode119:=x*diff(y(x),x)-y(x)*(log(x*y(x))-1)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode119 = x*D[y[x], x] - y[x]*(Log[x*y[x]] - 1) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#120

xy(x)y(x)(2+xln(x2y(x)))=0
Maple

restart; 
ode120:=x*diff(y(x),x)-y(x)*(2+x*log(x^2/y(x)))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode120 = x*D[y[x], x] - y[x]*(x*Log[x^2/y[x]] + 2) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#121

xy(x)+sin(y(x)x)=0
Maple

restart; 
ode121:=x*diff(y(x),x)+sin(y(x)-x)=0; 
dsolve(%,y(x));

Did not solve
PIC

Mathematica

Clear["Global`*"]; 
ode121 = x*D[y[x], x] + Sin[y[x] - x] == 0 
DSolve[%, y[x], x] // TraditionalForm

Did not solve
PIC

#122

xy(x)+cos(y(x))(sin(y(x))3x2cos(y(x)))=0
Maple

restart; 
ode122:=x*diff(y(x),x)+cos(y(x))*(sin(y(x))-3*x^2*cos(y(x)))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode122 = x*D[y[x], x] + (Sin[y[x]] - 3*x^2*Cos[y[x]])*Cos[y[x]] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#123

xy(x)xsin(y(x)x)y(x)=0
Maple

restart; 
ode123:=x*diff(y(x),x)-y(x)-x*sin(y(x)/x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode123 = x*D[y[x], x] - x*Sin[y[x]/x] - y[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#124

xy(x)+xcos(y(x)x)y(x)+x=0
Maple

restart; 
ode124:=x*diff(y(x),x)+x*cos(y(x)/x)-y(x)+x=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode124 = x*D[y[x], x] + x*Cos[y[x]/x] - y[x] + x == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#125

xy(x)+xtan(y(x)x)y(x)=0
Maple

restart; 
ode125:=x*diff(y(x),x)+x*tan(y(x)/x)-y(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode125 = x*D[y[x], x] + x*Tan[y[x]/x] - y[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#126 xy(x)y(x)f(xy(x))=0
Maple

restart; 
ode126:=x*diff(y(x),x)-y(x)*f(x*y(x))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode126 = x*D[y[x], x] - y[x]*f[x*y[x]] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#127

xy(x)y(x)f(xay(x)b)=0
Maple

restart; 
ode127:=x*diff(y(x),x)-f(x^a*y(x)^b)*y(x)=0; 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode127 = x*D[y[x], x] - y[x]*f[x^a*y[x]^b] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#128

xy(x)f(x)g(xay(x))+ay(x)=0
Maple

restart; 
ode128:=x*diff(y(x),x)-f(x)*g(x^a*y(x))+a*y(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode128 = x*D[y[x], x] + a*y[x] - f[x]*g[x^a*y[x]] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#129

(1+x)y(x)+y(x)(y(x)x)=0
Maple

restart; 
ode129:=(1+x)*diff(y(x),x)+y(x)*(y(x)-x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode129 = (1 + x)*D[y[x], x] + y[x]*(y[x] - x) == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#130

2xy(x)2x3y(x)=0
Maple

restart; 
ode130:=2*x*diff(y(x),x)-2*x^3-y(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode130 = 2*x*D[y[x], x] - y[x] - 2*x^3 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#131

(1+2x)y(x)+24ey(x)=0
Maple

restart; 
ode131:=(1+2*x)*diff(y(x),x)+2-4*exp(-y(x))=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode131 = (2*x + 1)*D[y[x], x] - 4*Exp[-y[x]] + 2 == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#132

3xy(x)y(x)3xlog(x)y(x)4=0
Maple

restart; 
ode132:=3*x*diff(y(x),x)-y(x)-3*x*log(x)*y(x)^4=0: 
dsolve(%,y(x)); 

PIC

Mathematica

Clear["Global`*"]; 
ode132 = 3*x*D[y[x], x] - 3*x*Log[x]*y[x]^4 - y[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#133

x2y(x)+y(x)=x
Maple

restart; 
ode133:=x^2*diff(y(x),x)+y(x)=x: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode133 = x^2*D[y[x], x] + y[x] == x 
DSolve[%, y[x], x] // TraditionalForm

PIC

#134

x2y(x)y(x)=x2e(x1x)
Maple

restart; 
ode134:=x^2*diff(y(x),x)-y(x)=-x^2*exp(x - 1/x): 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode134 = x^2*D[y[x], x] - y[x] == -x^2*Exp[x - 1/x] 
DSolve[%, y[x], x] // TraditionalForm

PIC

#135

x2y(x)(x1)y(x)=0
Maple

restart; 
ode135:=x^2*diff(y(x),x)-(x-1)*y(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode135 = x^2*D[y[x], x] - (-1 + x)*y[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#136

x2y(x)+xy(x)+y(x)2=x2
Maple

restart; 
ode136:=x^2*diff(y(x),x)+x*y(x)+y(x)^2=-x^2: 
dsolve(%,y(x)); 

PIC

Mathematica

Clear["Global`*"]; 
ode136 = x^2*D[y[x], x] + y[x]^2 + x*y[x] == -x^2 
DSolve[%, y[x], x] // TraditionalForm

PIC

#137

x2y(x)xy(x)y(x)2=0
Maple

restart; 
ode137:=x^2*diff(y(x),x)-y(x)^2-x*y(x)=0: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode137 = x^2*D[y[x], x] - y[x]^2 - x*y[x] == 0 
DSolve[%, y[x], x] // TraditionalForm

PIC

#138 x2y(x)xy(x)y(x)2=x2
Maple

restart; 
ode138:=x^2*diff(y(x),x)-y(x)^2-x*y(x)=x^2: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode138 = x^2*D[y[x], x] - y[x]^2 - x*y[x] == x^2 
DSolve[%, y[x], x] // TraditionalForm

PIC

#139 x2(y(x)+y(x)2)=axk+b(b1)
Maple

restart; 
ode139:=x^2*(y(x)^2+diff(y(x),x))=-a*x^k+b*(b-1): 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode139 = x^2*(D[y[x], x] + y[x]^2) == -a*x^k + b*(b - 1) 
DSolve[%, y[x], x] // TraditionalForm

PIC

#140 x2(y(x)+y(x)2)=4xy(x)2
Maple

restart; 
ode140:=x^2*(y(x)^2+diff(y(x),x))=-4*x*y(x)-2: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode140 = x^2*(D[y[x], x] + y[x]^2) == -4*x*y[x] - 2 
DSolve[%, y[x], x] // TraditionalForm

PIC

#141 x2(y(x)+y(x)2)+axy(x)=b
Maple

restart; 
ode141:=x^2*(y(x)^2+diff(y(x),x))+a*x*y(x)=-b: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode141 = x^2*(D[y[x], x] + y[x]^2) + a*x*y[x] == -b 
DSolve[%, y[x], x] // TraditionalForm

PIC

#142 x2(y(x)y(x)2)ax2y(x)=ax2
Maple

restart; 
ode142:=x^2*(-y(x)^2+diff(y(x),x))-a*x^2*y(x)=-2-a*x: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode142 = x^2*(D[y[x], x] - y[x]^2) - a*x^2*y[x] == -a*x - 2 
DSolve[%, y[x], x] // TraditionalForm

PIC

#143 x2(ay(x)2+y(x))=b
Maple

restart; 
ode143:=x^2*(a*y(x)^2+diff(y(x),x))=b: 
dsolve(%,y(x));

PIC

Mathematica

Clear["Global`*"]; 
ode143 = x^2*(D[y[x], x] + a*y[x]^2) == b 
DSolve[%, y[x], x] // TraditionalForm

PIC

#144 x2(ay(x)2+y(x))+c+bxα=0
Maple 17

restart; 
ode144:=x^2*(a*y(x)^2+diff(y(x),x))+b*x^alpha+c=0: 
dsolve(%,y(x));

PIC

Mathematica 9.01

Clear["Global`*"]; 
ode144 = x^2*(D[y[x], x] + a*y[x]^2) + b*x^\[Alpha] + c == 0 
DSolve[%, y[x], x]

PIC

#145 ax2y2(x)+ay3(x)+x2y(x)=0
Maple 17

restart; 
ode145:=-a*x^2*y(x)^2+a*y(x)^3+x^2*diff(y(x),x)=0: 
dsolve(%,y(x));

PIC

Mathematica 9.01

Clear["Global`*"]; 
ode145 = x^2*D[y[x], x] + a*y[x]^3 - a*x^2*y[x]^2 == 0 
DSolve[%, y[x], x]

PIC

#146 x2y(x)+ay(x)2+xy(x)3=0
Maple 17.01

restart; 
ode146:=x^2*diff(y(x),x)+a*y(x)^2+x*y(x)^3=0: 
dsolve(%,y(x));

PIC

Mathematica 9.01

Clear["Global`*"]; 
ode146 = x^2*D[y[x], x] + x*y[x]^3 + a*y[x]^2 == 0 
DSolve[%, y[x], x]

PIC

#147 ax2y(x)3+by(x)2+x2y(x)=0
Maple 17.01

restart; 
ode147:=a*x^2*y(x)^3+b*y(x)^2+x^2 * diff(y(x),x)=0: 
dsolve(%,y(x));

PIC

Mathematica 9.01

Clear["Global`*"]; 
ode147 = x^2*D[y[x], x] + a*x^2*y[x]^3 + b*y[x]^2 == 0; 
DSolve[%, y[x], x]

PIC

#148 (x2+1)y(x)+xy(x)1=0
Maple 17.01

restart; 
ode148:=(x^2+1)* diff(y(x),x)+x*y(x)-1=0: 
dsolve(%,y(x));

PIC

Mathematica 9.01

Clear["Global`*"]; 
ode148 = (x^2 + 1)*D[y[x], x] + x*y[x] - 1 == 0; 
DSolve[%, y[x], x]

PIC

#149 (x2+1)y(x)x(x2+1)+xy(x)=0
Maple 17.01

restart; 
ode149:=(x^2+1)* diff(y(x),x)-x *(x^2+1)+x *y(x)=0: 
dsolve(%,y(x));

PIC

Mathematica 9.01

Clear["Global`*"]; 
ode149 = (x^2 + 1)*D[y[x], x] + x*y[x] - x*(x^2 + 1) == 0; 
DSolve[%, y[x], x]

PIC

#150 (x2+1)y(x)2x2+2xy(x)=0
Maple 17.01

restart; 
ode150:=(x^2+1)* diff(y(x),x)-2* x^2+2* x* y(x)=0: 
dsolve(%,y(x));

PIC

Mathematica 9.01

Clear["Global`*"]; 
ode150 = (x^2 + 1)*D[y[x], x] + 2*x*y[x] - 2*x^2 == 0; 
DSolve[%, y[x], x]

PIC

#151 (x2+1)y(x)+(2xy(x)1)(y(x)2+1)=0
Maple 17.01

restart; 
ode151:=(x^2+1)* diff(y(x),x)+(2* x *y(x)-1)* (y(x)^2+1)=0: 
dsolve(%,y(x));

PIC

Mathematica 9.01

Clear["Global`*"]; 
ode151 = (x^2 + 1)*D[y[x], x] + (y[x]^2 + 1)*(2*x*y[x] - 1) == 0; 
DSolve[%, y[x], x]

PIC

#152 (x2+1)y(x)x(x2+1)cos2(y(x))+xsin(y(x))cos(y(x))=0
Maple 17.01

restart; 
ode152:=(x^2+1)*diff(y(x),x)-x * (x^2+1)* cos(y(x))^2+x* sin(y(x)) *cos(y(x))=0: 
dsolve(%,y(x));

PIC

Mathematica 9.01

Clear["Global`*"]; 
ode152 = (x^2 + 1)*D[y[x], x] + x*Sin[y[x]]*Cos[y[x]] - 
    x*(x^2 + 1)*Cos[y[x]]^2 == 0; 
DSolve[%, y[x], x]

PIC

#153 a+(x21)y(x)xy(x)=0
Maple 17.01

restart; 
ode153:=a+(x^2-1)* diff(y(x),x)-x* y(x)=0: 
dsolve(%,y(x));

PIC

Mathematica 9.01

Clear["Global`*"]; 
ode153 = (x^2 - 1)*D[y[x], x] - x*y[x] + a == 0; 
DSolve[%, y[x], x]

PIC

#154 (x21)y(x)+2xy(x)cos(x)=0
Maple 17.01

restart; 
ode154:=(x^2-1)* diff(y(x),x)+2* x *y(x)-cos(x)=0: 
dsolve(%,y(x));

PIC

Mathematica 9.01

Clear["Global`*"]; 
ode154 = (x^2 - 1)*D[y[x], x] + 2*x*y[x] - Cos[x] == 0; 
DSolve[%, y[x], x]

PIC

#155 (x21)y(x)+y(x)22xy(x)+1=0
Maple 17.01

restart; 
ode155:=(x^2-1)*diff(y(x),x)+y(x)^2-2* x* y(x)+1=0: 
dsolve(%,y(x));

PIC

Mathematica 9.01

Clear["Global`*"]; 
ode155 = (x^2 - 1)*D[y[x], x] + y[x]^2 - 2*x*y[x] + 1 == 0; 
DSolve[%, y[x], x]

PIC