Table of distributions properties
by Nasser Abbasi, generated using Mathematica 6.0 .1
Table of discrete distributions functions, E (X), Var (X)
Name | X= | pmf P(X=K) | params | E(X) | Var(X) |
Bernulli | Number of wins on this trial | ![]() |
p | p | (1-p) p |
Binomial | Number of wins in n trials Each trial has p chance of winning |
![]() |
p,n | n p | n (1-p) p |
Geometric | Number of trials needed to to obtain a success, Each trial has p chance of success |
![]() |
p | ![]() |
![]() |
Negative Binomial | Number of trials needed to to obtain r successes, Each trial has p chance of success |
![]() |
r,p | ![]() |
![]() |
Hypergeometric | Number of black balls drawn from urn when taking m balls without replacement. urn has total of n balls r black and m white |
![]() |
m,r,n | ![]() |
![]() |
Poisson | Number of events in given period | ![]() |
λ | λ | λ |
Name | X= | pmf P(X=K) | params | E(X) | Var(X) |
Bernulli | Number of wins on this trial | ![]() |
p | p | (1-p) p |
Binomial | Number of wins in n trials Each trial has p chance of winning |
![]() |
p,n | n p | n (1-p) p |
Geometric | Number of trials needed to to obtain a success, Each trial has p chance of success |
![]() |
p | ![]() |
![]() |
Negative Binomial | Number of trials needed to to obtain r successes, Each trial has p chance of success |
![]() |
r,p | ![]() |
![]() |
Hypergeometric | Number of black balls drawn from urn when taking m balls without replacement. urn has total of n balls r black and m white |
![]() |
m,r,n | ![]() |
![]() |
Poisson | Number of events in given period | ![]() |
λ | λ | λ |
Table of continuous distributions functions, E (X), Var (X)
Name | X= | pdf f(x) | params | E(X) | Var(X) |
Normal | ![]() |
μ,σ | μ | ![]() |
|
Exponential | ![]() |
λ | ![]() |
![]() |
|
Gamma | ![]() |
α,β | α β | ![]() |
|
ChiSquare | ![]() |
n | n | 2 n | |
Chi | ![]() |
n | ![]() |
![]() |
|
Uniform | ![]() |
min,max | ![]() |
![]() |
|
Cauchy | ![]() |
a,b | Indeterminate | Indeterminate | |
Beta | ![]() |
α,β | ![]() |
![]() |
|
ExtremeValue | ![]() |
α,β | α+γ β | ![]() |
|
Gumbel | ![]() |
α,β | α-γ β | ![]() |
|
Laplace | ![]() |
μ,β | μ | ![]() |
|
HalfNormal | ![]() |
θ | ![]() |
![]() |
Table of expected value of functions of random variable
Name | Y, Function of random variable X | E(Y) | ![]() |
![]() |
X=Normal | X | μ | ![]() |
![]() |
X=Normal | 2 X | 2 μ | ![]() |
![]() |
X=Normal | ![]() |
![]() |
![]() |
![]() |
X=Normal | ![]() |
![]() |
![]() |
![]() |
X=Normal | ![]() |
![]() |
![]() |
![]() |
X=Poisson | 2 X | 2 λ | ![]() |
![]() |
X=Poisson | ![]() |
![]() |
![]() |
![]() |
X=Poisson | ![]() |
![]() |
![]() |
![]() |
X=Poisson | ![]() |
![]() |
![]() |
![]() |
X=Poisson | ![]() |
![]() |
![]() |
![]() |
X=Poisson | ![]() |
![]() |
![]() |
![]() |
X=Poisson | ![]() |
![]() |
λ | ![]() |
X=Gamma(α,β) | 2 X | 2 α β | ![]() |
![]() |
X=Gamma(α,β) | ![]() |
![]() |
![]() |
![]() |
X=Gamma(α,β) | ![]() |
![]() |
![]() |
![]() |
X=Gamma(α,β) | ![]() |
![]() |
![]() |
![]() |
X=Gamma(α,β) | ![]() |
![]() |
![]() |
![]() |
X=Gamma(α,β) | ![]() |
![]() |
![]() |
![]() |
X=Gamma(α,β) | ![]() |
![]() |
α β | ![]() |
X=ChiSquare(n) | X | n | n (n+2) | ![]() |
X=ChiSquare(1) | X | 1 | 3 | 2 |
X=ChiSquare(1) | 2 X | 2 | 12 | 8 |
X=ChiSquare(2) | X | 2 | 8 | 4 |
X=ChiSquare(2) | 2 X | 4 | 32 | 16 |
X=T(n) | X | ![]() |
![]() |
![]() |
X=StudentTDistribution(1) | X | ExpectedValue[x,StudentTDistribution[1],x] | ![]() |
![]() |
X=StudentTDistribution(1) | 2 X | ExpectedValue[2 x,StudentTDistribution[1],x] | ![]() |
![]() |
X=StudentTDistribution(2) | X | 0 | ![]() |
![]() |
X=StudentTDistribution(2) | 2 X | 0 | ![]() |
![]() |
Some formulas
![]() |
![]() |
![]() |
Var(X)=Cov(X,X) | ![]() |
|
![]() |
Cov(X,Y)=E(XY)-E(X)E(Y) | Cov(a+X,Y)=Cov(X,Y) |
Cov(aX,bY)=ab Cov(X,Y) | Cov(X,Y+Z)=Cov(X,Y)+Cov(X,Z) | ![]() |
![]() |
![]() |
E(X+Y)=E(X)+E(Y) |
![]() |
M'(t=0)=E(X) | ![]() |
![]() |
Theorem B, page 138: Var(Y)=Var(E(Y|X))+E(Var(Y|X)) | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Table of moment generating functions
Distribution | ![]() |
M'(t=0)=E(x) | ![]() |
![]() |
Binomial | ![]() |
n p | ![]() |
![]() |
Geometric | ![]() |
![]() |
![]() |
![]() |
NegativeBinomial | ![]() |
![]() |
![]() |
![]() |
Hypergeometric | ![]() |
![]() |
||
Poisson | ![]() |
λ | ![]() |
![]() |
Normal | ![]() |
μ | ![]() |
![]() |
Exponential | ![]() |
![]() |
![]() |
![]() |
Gamma | ![]() |
α β | ![]() |
![]() |
ChiSquare | ![]() |
n | ![]() |
![]() |
Chi | ![]() |
![]() |
-n | ![]() |
Uniform | ![]() |
![]() |
![]() |
![]() |
Cauchy | ![]() |
a-b | ![]() |
![]() |
Beta | Hypergeometric1F1[α,α+β,t] | ![]() |
![]() |
![]() |
ExtremeValue | ![]() |
α+EulerGamma β | ![]() |
![]() |
Gumbel | ![]() |
α-EulerGamma β | ![]() |
![]() |
Laplace | ![]() |
μ | ![]() |
![]() |
HalfNormal | ![]() |
![]() |
![]() |
![]() |
Created by Wolfram Mathematica 6.0 for Students - Personal Use Only (02 February 2008) | ![]() |