1.265 problem 266

1.265.1 Solving as first order ode lie symmetry calculated ode
1.265.2 Maple step by step solution

Internal problem ID [8602]
Internal file name [OUTPUT/7535_Sunday_June_05_2022_11_03_52_PM_39367346/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, linear first order
Problem number: 266.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

[`x=_G(y,y')`]

Unable to solve or complete the solution.

\[ \boxed {\left (y-x \right ) \sqrt {x^{2}+1}\, y^{\prime }-a \sqrt {\left (1+y^{2}\right )^{3}}=0} \]

1.265.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as \begin {align*} y^{\prime }&=\frac {a \sqrt {\left (y^{2}+1\right )^{3}}}{\left (y -x \right ) \sqrt {x^{2}+1}}\\ y^{\prime }&= \omega \left ( x,y\right ) \end {align*}

The condition of Lie symmetry is the linearized PDE given by \begin {align*} \eta _{x}+\omega \left ( \eta _{y}-\xi _{x}\right ) -\omega ^{2}\xi _{y}-\omega _{x}\xi -\omega _{y}\eta =0\tag {A} \end {align*}

The type of this ode is not in the lookup table. To determine \(\xi ,\eta \) then (A) is solved using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives \begin{align*} \tag{1E} \xi &= x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \\ \tag{2E} \eta &= x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \\ \end{align*} Where the unknown coefficients are \[ \{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\} \] Substituting equations (1E,2E) and \(\omega \) into (A) gives \begin{equation} \tag{5E} 2 x b_{4}+y b_{5}+b_{2}+\frac {a \sqrt {\left (y^{2}+1\right )^{3}}\, \left (-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right )}{\left (y -x \right ) \sqrt {x^{2}+1}}-\frac {a^{2} \left (y^{2}+1\right )^{3} \left (x a_{5}+2 y a_{6}+a_{3}\right )}{\left (y -x \right )^{2} \left (x^{2}+1\right )}-\left (\frac {a \sqrt {\left (y^{2}+1\right )^{3}}}{\left (y -x \right )^{2} \sqrt {x^{2}+1}}-\frac {a \sqrt {\left (y^{2}+1\right )^{3}}\, x}{\left (y -x \right ) \left (x^{2}+1\right )^{{3}/{2}}}\right ) \left (x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right )-\left (\frac {3 a \left (y^{2}+1\right )^{2} y}{\sqrt {\left (y^{2}+1\right )^{3}}\, \left (y -x \right ) \sqrt {x^{2}+1}}-\frac {a \sqrt {\left (y^{2}+1\right )^{3}}}{\left (y -x \right )^{2} \sqrt {x^{2}+1}}\right ) \left (x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right ) = 0 \end{equation} Putting the above in normal form gives \[ \text {Expression too large to display} \] Setting the numerator to zero gives \begin{equation} \tag{6E} \text {Expression too large to display} \end{equation} Simplifying the above gives \begin{equation} \tag{6E} \text {Expression too large to display} \end{equation} Since the PDE has radicals, simplifying gives \[ \text {Expression too large to display} \] Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them. \[ \left \{x, y, \sqrt {\left (y^{2}+1\right )^{3}}, \sqrt {x^{2}+1}\right \} \] The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them \[ \left \{x = v_{1}, y = v_{2}, \sqrt {\left (y^{2}+1\right )^{3}} = v_{3}, \sqrt {x^{2}+1} = v_{4}\right \} \] The above PDE (6E) now becomes \begin{equation} \tag{7E} \text {Expression too large to display} \end{equation} Collecting the above on the terms \(v_i\) introduced, and these are \[ \{v_{1}, v_{2}, v_{3}, v_{4}\} \] Equation (7E) now becomes \begin{equation} \tag{8E} \text {Expression too large to display} \end{equation} Setting each coefficients in (8E) to zero gives the following equations to solve \begin {align*} b_{2}&=0\\ b_{5}&=0\\ a a_{3}&=0\\ a a_{6}&=0\\ -4 b_{2}&=0\\ -2 b_{2}&=0\\ 2 b_{2}&=0\\ 2 b_{4}&=0\\ 4 b_{4}&=0\\ -3 a a_{2}&=0\\ -2 a a_{6}&=0\\ 3 a b_{2}&=0\\ 6 a b_{2}&=0\\ 3 a b_{4}&=0\\ 6 a b_{4}&=0\\ -3 a^{2} a_{3}&=0\\ -a^{2} a_{3}&=0\\ -3 a^{2} a_{5}&=0\\ -a^{2} a_{5}&=0\\ -6 a^{2} a_{6}&=0\\ -2 a^{2} a_{6}&=0\\ -4 b_{4}+b_{5}&=0\\ 2 b_{4}-2 b_{5}&=0\\ 2 b_{5}-8 b_{4}&=0\\ -a a_{1}+a b_{1}&=0\\ -3 a a_{2}-3 a a_{3}&=0\\ -3 a a_{2}+a a_{3}&=0\\ -6 a a_{3}+6 a b_{2}&=0\\ -3 a^{2} a_{3}+b_{2}&=0\\ -3 a^{2} a_{3}+2 b_{2}&=0\\ -a^{2} a_{3}+b_{2}&=0\\ -2 a a_{3}-a b_{3}&=0\\ -a a_{5}-3 a a_{6}&=0\\ -a a_{5}-a a_{6}&=0\\ -a^{2} a_{5}+2 b_{4}&=0\\ -6 a^{2} a_{6}+b_{5}&=0\\ -6 a^{2} a_{6}+2 b_{5}&=0\\ a b_{2}-a b_{3}&=0\\ -3 a b_{4}+3 a b_{5}&=0\\ -2 a b_{4}+2 a b_{5}&=0\\ a b_{4}-a b_{5}&=0\\ -3 a a_{2}-9 a a_{3}+3 a b_{2}&=0\\ -3 a a_{2}-3 a a_{3}+3 a b_{3}&=0\\ -a a_{2}-3 a a_{3}-2 a b_{3}&=0\\ -a a_{2}-a a_{3}-a b_{3}&=0\\ -a a_{2}-a a_{3}+2 a b_{3}&=0\\ -3 a a_{2}-3 a b_{2}+3 a b_{3}&=0\\ -a a_{2}-2 a b_{2}+2 a b_{3}&=0\\ -a a_{2}+a b_{2}-a b_{3}&=0\\ -a a_{2}+2 a b_{2}-2 a b_{3}&=0\\ -6 a a_{3}+12 a b_{2}+3 a b_{3}&=0\\ -2 a a_{3}+6 a b_{2}+2 a b_{3}&=0\\ 3 a a_{3}-3 a b_{2}+3 a b_{3}&=0\\ 3 a a_{3}-2 a b_{2}+2 a b_{3}&=0\\ -3 a^{2} a_{5}+2 b_{4}-2 b_{5}&=0\\ -3 a^{2} a_{5}+4 b_{4}-4 b_{5}&=0\\ -2 a^{2} a_{6}-4 b_{4}+b_{5}&=0\\ 3 a a_{1}-6 a a_{4}+3 a a_{6}+3 a b_{1}&=0\\ -6 a a_{1}+3 a a_{4}-2 a a_{6}+3 a b_{6}&=0\\ -3 a a_{1}-a a_{5}-a a_{6}+3 a b_{6}&=0\\ -3 a a_{2}-9 a a_{3}+6 a b_{2}+6 a b_{3}&=0\\ -3 a a_{2}+3 a a_{3}-6 a b_{2}+6 a b_{3}&=0\\ -a a_{2}-3 a a_{3}+3 a b_{2}+4 a b_{3}&=0\\ -a a_{2}+3 a a_{3}-4 a b_{2}+4 a b_{3}&=0\\ -3 a a_{4}-3 a a_{5}+3 a b_{1}+6 a b_{4}&=0\\ -a a_{4}-a a_{5}-a b_{5}+a b_{6}&=0\\ -9 a a_{1}+3 a a_{4}-a a_{5}-3 a a_{6}+6 a b_{6}&=0\\ a a_{1}-2 a a_{4}+3 a a_{6}-a b_{5}+a b_{6}&=0\\ -3 a a_{1}+a a_{4}+2 a b_{1}+a b_{4}-a b_{5}&=0\\ -2 a a_{1}+a a_{4}+a b_{1}+2 a b_{4}-2 a b_{5}&=0\\ a a_{1}-2 a a_{4}+3 a b_{1}+2 a b_{5}-2 a b_{6}&=0\\ -3 a a_{1}-3 a a_{5}-3 a a_{6}-3 a b_{1}+6 a b_{6}&=0\\ -a a_{1}-3 a a_{5}-3 a a_{6}-2 a b_{1}+3 a b_{6}&=0\\ 3 a a_{1}-9 a a_{4}-3 a a_{5}+3 a a_{6}+6 a b_{1}+3 a b_{4}&=0\\ a a_{1}-3 a a_{4}-a a_{5}+3 a a_{6}-2 a b_{5}+2 a b_{6}&=0\\ 3 a a_{1}-6 a a_{4}+a a_{6}+6 a b_{1}+3 a b_{5}-3 a b_{6}&=0\\ -3 a a_{4}-3 a a_{5}+6 a b_{1}+12 a b_{4}+3 a b_{5}-3 a b_{6}&=0\\ -a a_{4}-a a_{5}+3 a b_{1}+6 a b_{4}+2 a b_{5}-2 a b_{6}&=0\\ a a_{1}-3 a a_{4}-a a_{5}+6 a b_{1}+3 a b_{4}+4 a b_{5}-4 a b_{6}&=0\\ -6 a a_{1}+3 a a_{4}-6 a a_{6}-3 a b_{1}-6 a b_{4}+6 a b_{5}+6 a b_{6}&=0\\ -2 a a_{1}+a a_{4}-6 a a_{6}-2 a b_{1}-4 a b_{4}+4 a b_{5}+3 a b_{6}&=0\\ -9 a a_{1}+3 a a_{4}-3 a a_{5}-9 a a_{6}-6 a b_{1}-3 a b_{4}+3 a b_{5}+12 a b_{6}&=0\\ -3 a a_{1}+a a_{4}-3 a a_{5}-9 a a_{6}-4 a b_{1}-2 a b_{4}+2 a b_{5}+6 a b_{6}&=0\\ 3 a a_{1}-9 a a_{4}-3 a a_{5}+a a_{6}+12 a b_{1}+6 a b_{4}+6 a b_{5}-6 a b_{6}&=0 \end {align*}

Solving the above equations for the unknowns gives \begin {align*} a_{1}&=b_{6}\\ a_{2}&=0\\ a_{3}&=0\\ a_{4}&=b_{6}\\ a_{5}&=0\\ a_{6}&=0\\ b_{1}&=b_{6}\\ b_{2}&=0\\ b_{3}&=0\\ b_{4}&=0\\ b_{5}&=0\\ b_{6}&=b_{6} \end {align*}

Substituting the above solution in the anstaz (1E,2E) (using \(1\) as arbitrary value for any unknown in the RHS) gives \begin{align*} \xi &= x^{2}+1 \\ \eta &= y^{2}+1 \\ \end{align*} The next step is to determine the canonical coordinates \(R,S\). The canonical coordinates map \(\left ( x,y\right ) \to \left ( R,S \right )\) where \(\left ( R,S \right )\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is \begin {align*} \frac {d x}{\xi } &= \frac {d y}{\eta } = dS \tag {1} \end {align*}

The above comes from the requirements that \(\left ( \xi \frac {\partial }{\partial x} + \eta \frac {\partial }{\partial y}\right ) S(x,y) = 1\). Starting with the first pair of ode’s in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Unable to determine \(R\). Terminating

1.265.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (y-x \right ) \sqrt {x^{2}+1}\, y^{\prime }-a \sqrt {\left (1+y^{2}\right )^{3}}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {a \sqrt {\left (1+y^{2}\right )^{3}}}{\left (y-x \right ) \sqrt {x^{2}+1}} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying inverse_Riccati 
trying an equivalence to an Abel ODE 
differential order: 1; trying a linearization to 2nd order 
--- trying a change of variables {x -> y(x), y(x) -> x} 
differential order: 1; trying a linearization to 2nd order 
trying 1st order ODE linearizable_by_differentiation 
--- Trying Lie symmetry methods, 1st order --- 
`, `-> Computing symmetries using: way = 3`[x^2+1, y^2+1]
 

Solution by Maple

Time used: 0.234 (sec). Leaf size: 187

dsolve((y(x)-x)*sqrt(x^2+1)*diff(y(x),x)-a*sqrt((y(x)^2+1)^3)=0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= \frac {-x +\sqrt {-a^{2} \left (x^{2}+1\right )^{2} \left (a^{2}-1\right )}}{a^{2} x^{2}+a^{2}-1} \\ y \left (x \right ) &= \frac {-x -\sqrt {-a^{2} \left (x^{2}+1\right )^{2} \left (a^{2}-1\right )}}{a^{2} x^{2}+a^{2}-1} \\ \frac {\sqrt {2}\, \sqrt {\frac {a^{2}}{1+\cos \left (2 \arctan \left (x \right )-2 \arctan \left (y \left (x \right )\right )\right )}}\, \cos \left (\arctan \left (x \right )-\arctan \left (y \left (x \right )\right )\right ) \arctan \left (\frac {\cos \left (\arctan \left (x \right )-\arctan \left (y \left (x \right )\right )\right )}{\sqrt {a^{2}-1}}\right )+\arctan \left (\frac {\sqrt {a^{2}-1}\, \tan \left (\arctan \left (x \right )-\arctan \left (y \left (x \right )\right )\right )}{a}\right ) a -\sqrt {a^{2}-1}\, \left (c_{1} -\arctan \left (y \left (x \right )\right )\right )}{\sqrt {a^{2}-1}} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 2.935 (sec). Leaf size: 69

DSolve[(y[x]-x)*Sqrt[x^2+1]*y'[x]-a*Sqrt[(y[x]^2+1)^3]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ \text {Solve}\left [\left \{\frac {2 a \arctan \left (\frac {1-a \tan \left (\frac {K[1]}{2}\right )}{\sqrt {a^2-1}}\right )}{\sqrt {a^2-1}}+K[1]+\arctan (x)=c_1,y(x)=\frac {\tan (K[1])+x}{1-x \tan (K[1])}\right \},\{K[1],y(x)\}\right ] \]