1.349 problem 350

1.349.1 Maple step by step solution

Internal problem ID [8686]
Internal file name [OUTPUT/7619_Sunday_June_05_2022_11_20_22_PM_71209624/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, linear first order
Problem number: 350.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

unknown

Unable to solve or complete the solution.

\[ \boxed {y^{\prime } \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right )^{2}-\sin \left (y\right )=0} \] Unable to determine ODE type.

1.349.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime } \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right )^{2}-\sin \left (y\right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {\cos \left (x \right ) \sin \left (y\right )^{2}+\sin \left (y\right )}{\cos \left (y\right )} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying inverse_Riccati 
trying an equivalence to an Abel ODE 
differential order: 1; trying a linearization to 2nd order 
--- trying a change of variables {x -> y(x), y(x) -> x} 
differential order: 1; trying a linearization to 2nd order 
trying 1st order ODE linearizable_by_differentiation 
--- Trying Lie symmetry methods, 1st order --- 
`, `-> Computing symmetries using: way = 3 
`, `-> Computing symmetries using: way = 4 
`, `-> Computing symmetries using: way = 5 
trying symmetry patterns for 1st order ODEs 
-> trying a symmetry pattern of the form [F(x)*G(y), 0] 
-> trying a symmetry pattern of the form [0, F(x)*G(y)] 
<- symmetry pattern of the form [0, F(x)*G(y)] successful`
 

Solution by Maple

Time used: 0.437 (sec). Leaf size: 266

dsolve(diff(y(x),x)*cos(y(x))-cos(x)*sin(y(x))^2-sin(y(x)) = 0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= \arctan \left (-\frac {2 \,{\mathrm e}^{x}}{\left (\sin \left (x \right )+\cos \left (x \right )\right ) {\mathrm e}^{x}+2 c_{1}}, \frac {\sqrt {\left (2 \cos \left (x \right ) \sin \left (x \right ) {\mathrm e}^{2 x}+4 c_{1} \sin \left (x \right ) {\mathrm e}^{x}+4 \cos \left (x \right ) c_{1} {\mathrm e}^{x}+4 c_{1}^{2}+{\mathrm e}^{2 x}\right ) \left (2 \cos \left (x \right ) \sin \left (x \right ) {\mathrm e}^{2 x}+4 c_{1} \sin \left (x \right ) {\mathrm e}^{x}+4 \cos \left (x \right ) c_{1} {\mathrm e}^{x}-3 \,{\mathrm e}^{2 x}+4 c_{1}^{2}\right )}}{2 \cos \left (x \right ) \sin \left (x \right ) {\mathrm e}^{2 x}+4 c_{1} \sin \left (x \right ) {\mathrm e}^{x}+4 \cos \left (x \right ) c_{1} {\mathrm e}^{x}+4 c_{1}^{2}+{\mathrm e}^{2 x}}\right ) \\ y \left (x \right ) &= \arctan \left (-\frac {2 \,{\mathrm e}^{x}}{\left (\sin \left (x \right )+\cos \left (x \right )\right ) {\mathrm e}^{x}+2 c_{1}}, -\frac {\sqrt {\left (2 \cos \left (x \right ) \sin \left (x \right ) {\mathrm e}^{2 x}+4 c_{1} \sin \left (x \right ) {\mathrm e}^{x}+4 \cos \left (x \right ) c_{1} {\mathrm e}^{x}+4 c_{1}^{2}+{\mathrm e}^{2 x}\right ) \left (2 \cos \left (x \right ) \sin \left (x \right ) {\mathrm e}^{2 x}+4 c_{1} \sin \left (x \right ) {\mathrm e}^{x}+4 \cos \left (x \right ) c_{1} {\mathrm e}^{x}-3 \,{\mathrm e}^{2 x}+4 c_{1}^{2}\right )}}{2 \cos \left (x \right ) \sin \left (x \right ) {\mathrm e}^{2 x}+4 c_{1} \sin \left (x \right ) {\mathrm e}^{x}+4 \cos \left (x \right ) c_{1} {\mathrm e}^{x}+4 c_{1}^{2}+{\mathrm e}^{2 x}}\right ) \\ \end{align*}

Solution by Mathematica

Time used: 1.958 (sec). Leaf size: 58

DSolve[-Sin[y[x]] - Cos[x]*Sin[y[x]]^2 + Cos[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \csc ^{-1}\left (\frac {1}{2} \left (-\sin (x)-\cos (x)-2 c_1 e^{-x}\right )\right ) \\ y(x)\to -\csc ^{-1}\left (\frac {1}{2} \left (\sin (x)+\cos (x)+2 c_1 e^{-x}\right )\right ) \\ y(x)\to 0 \\ \end{align*}