2.95 problem 671

2.95.1 Maple step by step solution

Internal problem ID [9005]
Internal file name [OUTPUT/7940_Monday_June_06_2022_12_58_39_AM_24144226/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, Additional non-linear first order
Problem number: 671.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[_rational]

Unable to solve or complete the solution.

\[ \boxed {y^{\prime }-\frac {\left (y^{2} x +1\right )^{2}}{y x^{4}}=0} \] Unable to determine ODE type.

2.95.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime } y x^{4}-y^{4} x^{2}-2 y^{2} x -1=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {y^{4} x^{2}+2 y^{2} x +1}{y x^{4}} \end {array} \]

Maple trace Kovacic algorithm successful

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying inverse_Riccati 
trying an equivalence to an Abel ODE 
differential order: 1; trying a linearization to 2nd order 
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -4*y(x)/x^6-2*(x^2-2)*(diff(y(x), x))/x^3, y(x)`   *** Sublevel 2 *** 
   Methods for second order ODEs: 
   --- Trying classification methods --- 
   trying a quadrature 
   checking if the LODE has constant coefficients 
   checking if the LODE is of Euler type 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Trying a Liouvillian solution using Kovacics algorithm 
      A Liouvillian solution exists 
      Group is reducible or imprimitive 
   <- Kovacics algorithm successful 
<- differential order: 1; linearization to 2nd order successful`
 

Solution by Maple

Time used: 0.032 (sec). Leaf size: 197

dsolve(diff(y(x),x) = (x*y(x)^2+1)^2/y(x)/x^4,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= -\frac {\sqrt {2}\, {\mathrm e}^{\frac {\sqrt {2}\, x +1}{x^{2}}} \sqrt {-\left ({\mathrm e}^{\frac {2 \sqrt {2}}{x}}+c_{1} \right ) x \left (\left (2-\sqrt {2}\, x \right ) {\mathrm e}^{\frac {2 \sqrt {2}}{x}}+c_{1} \left (\sqrt {2}\, x +2\right )\right ) {\mathrm e}^{-\frac {2}{x^{2}}} {\mathrm e}^{-\frac {2 \sqrt {2}}{x}}}}{2 x \left ({\mathrm e}^{\frac {2 \sqrt {2}}{x}}+c_{1} \right )} \\ y \left (x \right ) &= \frac {\sqrt {2}\, {\mathrm e}^{\frac {\sqrt {2}\, x +1}{x^{2}}} \sqrt {-\left ({\mathrm e}^{\frac {2 \sqrt {2}}{x}}+c_{1} \right ) x \left (\left (2-\sqrt {2}\, x \right ) {\mathrm e}^{\frac {2 \sqrt {2}}{x}}+c_{1} \left (\sqrt {2}\, x +2\right )\right ) {\mathrm e}^{-\frac {2}{x^{2}}} {\mathrm e}^{-\frac {2 \sqrt {2}}{x}}}}{2 x \left ({\mathrm e}^{\frac {2 \sqrt {2}}{x}}+c_{1} \right )} \\ \end{align*}

Solution by Mathematica

Time used: 14.007 (sec). Leaf size: 206

DSolve[y'[x] == (1 + x*y[x]^2)^2/(x^4*y[x]),y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to -\frac {\sqrt {\frac {-\sqrt {2} x+\left (\sqrt {2} x-2\right ) e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}-2}{x}}}{\sqrt {2} \sqrt {1+e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}}} \\ y(x)\to \frac {\sqrt {\frac {-\sqrt {2} x+\left (\sqrt {2} x-2\right ) e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}-2}{x}}}{\sqrt {2} \sqrt {1+e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}}} \\ y(x)\to -\sqrt {-\frac {1}{x}-\frac {1}{\sqrt {2}}} \\ y(x)\to \sqrt {-\frac {1}{x}-\frac {1}{\sqrt {2}}} \\ \end{align*}