1.69 problem 69

1.69.1 Solving as exact ode
1.69.2 Maple step by step solution

Internal problem ID [8406]
Internal file name [OUTPUT/7339_Sunday_June_05_2022_10_50_44_PM_90389148/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, linear first order
Problem number: 69.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type

[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

Unable to solve or complete the solution.

\[ \boxed {y^{\prime }-\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}=0} \]

1.69.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form\begin {equation} M\left ( x,y\right ) +N\left ( x,y\right ) \frac {dy}{dx}=0\tag {A} \end {equation} We assume there exists a function \(\phi \left ( x,y\right ) =c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi \) w.r.t. \(x\) gives\[ \frac {d}{dx}\phi \left ( x,y\right ) =0 \] Hence\begin {equation} \frac {\partial \phi }{\partial x}+\frac {\partial \phi }{\partial y}\frac {dy}{dx}=0\tag {B} \end {equation} Comparing (A,B) shows that\begin {align*} \frac {\partial \phi }{\partial x} & =M\\ \frac {\partial \phi }{\partial y} & =N \end {align*}

But since \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) then for the above to be valid, we require that\[ \frac {\partial M}{\partial y}=\frac {\partial N}{\partial x}\] If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi \left ( x,y\right ) \) but at least we know now that we can do that since the condition \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is \[ M(x,y) \mathop {\mathrm {d}x}+ N(x,y) \mathop {\mathrm {d}y}=0 \tag {1A} \] Therefore \begin {align*} \mathop {\mathrm {d}y} &= \left (\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}\right )\mathop {\mathrm {d}x}\\ \left (-\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}\right ) \mathop {\mathrm {d}x} + \mathop {\mathrm {d}y} &= 0 \tag {2A} \end {align*}

Comparing (1A) and (2A) shows that \begin {align*} M(x,y) &= -\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}\\ N(x,y) &= 1 \end {align*}

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied \[ \frac {\partial M}{\partial y} = \frac {\partial N}{\partial x} \] Using result found above gives \begin {align*} \frac {\partial M}{\partial y} &= \frac {\partial }{\partial y} \left (-\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}\right )\\ &= -\frac {\left (4 b_{4} y^{3}+3 b_{3} y^{2}+2 b_{2} y +b_{1} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}{2 \sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}} \end {align*}

And \begin {align*} \frac {\partial N}{\partial x} &= \frac {\partial }{\partial x} \left (1\right )\\ &= 0 \end {align*}

Since \(\frac {\partial M}{\partial y} \neq \frac {\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let \begin {align*} A &= \frac {1}{N} \left (\frac {\partial M}{\partial y} - \frac {\partial N}{\partial x} \right ) \\ &=1\left ( \left ( -\frac {\left (4 b_{4} y^{3}+3 b_{3} y^{2}+2 b_{2} y +b_{1} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}{2 \sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}}\right ) - \left (0 \right ) \right ) \\ &=-\frac {\left (4 b_{4} y^{3}+3 b_{3} y^{2}+2 b_{2} y +b_{1} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}{2 \sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}} \end {align*}

Since \(A\) depends on \(y\), it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let \begin {align*} B &= \frac {1}{M} \left ( \frac {\partial N}{\partial x} - \frac {\partial M}{\partial y} \right ) \\ &=-\frac {1}{\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}}\left ( \left ( 0\right ) - \left (-\frac {\left (4 b_{4} y^{3}+3 b_{3} y^{2}+2 b_{2} y +b_{1} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}{2 \sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}} \right ) \right ) \\ &=\frac {-4 b_{4} y^{3}-3 b_{3} y^{2}-2 b_{2} y -b_{1}}{2 b_{4} y^{4}+2 b_{3} y^{3}+2 b_{2} y^{2}+2 b_{1} y +2 b_{0}} \end {align*}

Since \(B\) does not depend on \(x\), it can be used to obtain an integrating factor. Let the integrating factor be \(\mu \). Then \begin {align*} \mu &= e^{\int B \mathop {\mathrm {d}y}} \\ &= e^{\int \frac {-4 b_{4} y^{3}-3 b_{3} y^{2}-2 b_{2} y -b_{1}}{2 b_{4} y^{4}+2 b_{3} y^{3}+2 b_{2} y^{2}+2 b_{1} y +2 b_{0}}\mathop {\mathrm {d}y} } \end {align*}

The result of integrating gives \begin {align*} \mu &= e^{-\frac {\ln \left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0} \right )}{2} } \\ &= \frac {1}{\sqrt {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0}}} \end {align*}

\(M\) and \(N\) are now multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\overline {M}\) and \(\overline {N}\) so not to confuse them with the original \(M\) and \(N\). \begin {align*} \overline {M} &=\mu M \\ &= \frac {1}{\sqrt {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0}}}\left (-\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}\right ) \\ &= -\frac {\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}}{\sqrt {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0}}} \end {align*}

And \begin {align*} \overline {N} &=\mu N \\ &= \frac {1}{\sqrt {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0}}}\left (1\right ) \\ &= \frac {1}{\sqrt {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0}}} \end {align*}

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is \begin {align*} \overline {M} + \overline {N} \frac { \mathop {\mathrm {d}y}}{\mathop {\mathrm {d}x}} &= 0 \\ \left (-\frac {\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}}{\sqrt {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0}}}\right ) + \left (\frac {1}{\sqrt {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y +b_{0}}}\right ) \frac { \mathop {\mathrm {d}y}}{\mathop {\mathrm {d}x}} &= 0 \end {align*}

The following equations are now set up to solve for the function \(\phi \left (x,y\right )\) \begin {align*} \frac {\partial \phi }{\partial x } &= \overline {M}\tag {1} \\ \frac {\partial \phi }{\partial y } &= \overline {N}\tag {2} \end {align*}

Integrating (1) w.r.t. \(x\) gives

1.69.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime }-\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying homogeneous types: 
differential order: 1; looking for linear symmetries 
trying exact 
<- exact successful`
 

Solution by Maple

Time used: 0.015 (sec). Leaf size: 111

dsolve(diff(y(x),x) - sqrt((b__4*y(x)^4+b__3*y(x)^3+b__2*y(x)^2+b__1*y(x)+b__0)*(a__4*x^4+a__3*x^3+a__2*x^2+a__1*x+a__0))=0,y(x), singsol=all)
 

\[ \int _{}^{y \left (x \right )}\frac {1}{\sqrt {\textit {\_a}^{4} b_{4} +\textit {\_a}^{3} b_{3} +\textit {\_a}^{2} b_{2} +\textit {\_a} b_{1} +b_{0}}}d \textit {\_a} -\frac {\int _{}^{x}\sqrt {\left (b_{4} y \left (x \right )^{4}+b_{3} y \left (x \right )^{3}+b_{2} y \left (x \right )^{2}+b_{1} y \left (x \right )+b_{0} \right ) \left (\textit {\_a}^{4} a_{4} +\textit {\_a}^{3} a_{3} +\textit {\_a}^{2} a_{2} +\textit {\_a} a_{1} +a_{0} \right )}d \textit {\_a}}{\sqrt {b_{4} y \left (x \right )^{4}+b_{3} y \left (x \right )^{3}+b_{2} y \left (x \right )^{2}+b_{1} y \left (x \right )+b_{0}}}+c_{1} = 0 \]

Solution by Mathematica

Time used: 27.368 (sec). Leaf size: 1163

DSolve[y'[x] - Sqrt[(b4*y[x]^4+b3*y[x]^3+b2*y[x]^2+b1*y[x]+b0)*(a4*x^4+a3*x^3+a2*x^2+a1*x+a0)]==0,y[x],x,IncludeSingularSolutions -> True]
 

Too large to display