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1.1 Chapter 1. section 5. Problems at page 19

Table 1.1: Lookup table for all problems in current section

ID problem ODE

18531 2 x2y′′ − x2y′2

2y + 4xy′ + 4y = 0

18532 3 y′ + cy = a

18533 4 y′′ + y′

x
+ k2y = 0

18534 5 cos (x) y′ + sin (x) y′′ + ny sin (x) = 0

18535 6 y′ =
√

1−y2 arcsin(y)
x

18536 16 (a) v′′ =
( 1
v
+ v′4

)1/3
18537 16 (b) v′ + u2v = sin (u)

18538 17 (a)
√
y′ + y = (y′′ + 2x)1/4

18539 18 v′ + 2v
u
= 3

1.2 Chapter IV. Methods of solution: First order
equations. section 24. Problems at page 62

Table 1.2: Lookup table for all problems in current section

ID problem ODE

18540 4 (a) sin (x) cos (y)2 + cos (x)2 y′ = 0

18541 4 (b) y′ +
√

1−y2

−x2+1 = 0

18542 4 (c) y − xy′ = b(1 + x2y′)

18543 5 x′ = k(A− nx) (M −mx)

18544 6 y′ = 1 + 1
x
− 1

y2+2 −
1

x(y2+2)
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1.3 Chapter IV. Methods of solution: First order
equations. section 29. Problems at page 81

Table 1.3: Lookup table for all problems in current section

ID problem ODE

18545 1 y2 = x(y − x) y′

18546 2 2x2y + y3 − x3y′ = 0

18547 3 2ax+ by + (2cy + bx+ e) y′ = g

18548 4 sec (x)2 tan (y) y′ + sec (y)2 tan (x) = 0

18549 5 x+ y′y = my

18550 6 2x
y3

+
(

1
y2

− 3x2

y4

)
y′ = 0

18551 8
(
T + 1√

t2−T 2

)
T ′ = T

t
√
t2−T 2 − t

1.4 Chapter IV. Methods of solution: First order
equations. section 31. Problems at page 85

Table 1.4: Lookup table for all problems in current section

ID problem ODE

18552 1 y′ + xy = x

18553 2 y′ + y
x
= sin (x)

18554 3 y′ + y
x
= sin(x)

y3

18555 4 p′ = p+a t3−2pt2
t(−t2+1)

18556 5 (T ln (t)− 1)T = tT ′

18557 6 y′ + y cos (x) = sin(2x)
2

Continued on next page
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Table 1.4 Lookup table
Continued from previous page

ID problem ODE

18558 7 y − cos (x) y′ = y2 cos (x) (− sin (x) + 1)

1.5 Chapter IV. Methods of solution: First order
equations. section 32. Problems at page 89

Table 1.5: Lookup table for all problems in current section

ID problem ODE

18559 2 xy′2 − y + 2y′ = 0

18560 3 2y′3 + y′2 − y = 0

18561 4 y′ = ez−y′

18562 5
√
t2 + T = T ′

18563 7 (x2 − 1) y′2 = 1

18564 8 y′ = (x+ y)2

1.6 Chapter IV. Methods of solution: First order
equations. section 33. Problems at page 91

Table 1.6: Lookup table for all problems in current section

ID problem ODE

18565 1 θ′′ = −p2θ

18566 2 (eq 39) sec (θ)2 = ms′

k

18567 3 (eq 41) y′′ = m
√

y′2+1
k

18568 4 (eq 50) φ′′ = 4πnc√
v20+

2e(φ−V0)
m

Continued on next page
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Table 1.6 Lookup table
Continued from previous page

ID problem ODE

18569 8 (eq 68) y′ = x(ay2 + b)

18570 8 (eq 69) n′ = (n2 + 1)x

18571 9 (a) v′ + 2v
u
= 3v

18572 9 (b)
√
−u2 + 1 v′ = 2u

√
1− v2

18573 9 (c)
√
1 + v′ = eu

2

18574 9 (d) y′

x
= y sin (x2 − 1)− 2y√

x

18575 9 (e) y′ = 1 + 2y
x−y

18576 10 (a) v′ + 2vu = 2u

18577 10 (b) 1 + v2 + (u2 + 1) vv′ = 0

18578 10 (c) u ln (u) v′ + sin (v)2 = 1

1.7 Chapter V. Singular solutions. section 36.
Problems at page 99

Table 1.7: Lookup table for all problems in current section

ID problem ODE

18579 1 (eq 98) 4yy′3 − 2x2y′2 + 4xyy′ + x3 = 16y2

1.8 Chapter VII. Linear equations of order higher
than the first. section 56. Problems at page 163
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Table 1.8: Lookup table for all problems in current section

ID problem ODE

18580 1 (eq
100)

θ′′ − p2θ = 0

18581 2 y′′ + y = 0

18582 3 y′′ + 12y = 7y′

18583 4 r′′ − a2r = 0

18584 5 y′′′′ − a4y = 0

18585 6 v′′ − 6v′ + 13v = e−2u

18586 7 y′′ + 4y′ − y = sin (t)

18587 8 y′′ + 3y = sin (x) + sin(3x)
3

18588 10 5x′ + x = sin (3t)

18589 11 x′′′′ − 6x′′′ + 11x′′ − 6x′ = e−3t

18590 14 x4y′′′′ + x3y′′′ − 20x2y′′ + 20xy′ = 17x6

18591 15 t4x′′′′ − 2t3x′′′ − 20t2x′′ + 12x′t+ 16x = cos (3 ln (t))

1.9 Chapter VII. Linear equations of order higher
than the first. section 63. Problems at page 196

Table 1.9: Lookup table for all problems in current section

ID problem ODE

18592 1 y′′′ − y′′ − y′ + y = 0

18593 2 y′′′′ − 3y′′′ + 3y′′ − y′ = e2x

18594 3 y′′′ − y′′ + y′ − y = cos (x)

18595 8 x2y′′ + 3xy′ + y = 1
x
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2.1.1 Problem 2

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 13
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 14
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 14

Internal problem ID [18531]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter 1. section 5. Problems at page 19
Problem number : 2
Date solved : Tuesday, January 28, 2025 at 08:28:41 PM
CAS classification :
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

Solve

x2y′′ − x2y′2

2y + 4xy′ + 4y = 0

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, diff(diff(diff(y(x), x), x), x)+12*(x^2*(diff(diff(y(x), x), x))+3*x*(diff(y(x), x))+2*y(x))/x^3,

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- 2nd order ODE linearizable_by_differentiation successful`� �
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Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 20� �
dsolve(x^2*diff(diff(y(x),x),x)-1/2*x^2/y(x)*diff(y(x),x)^2+4*x*diff(y(x),x)+4*y(x) = 0,y(x),singsol=all)� �

y(x) =
(
c2x+ c1

2

)2
c2x4

Mathematica DSolve solution

Solving time : 0.245 (sec)
Leaf size : 19� �
DSolve[{x^2*D[y[x],{x,2}]-x^2/(2*y[x])*D[y[x],x]^2+4*x*D[y[x],x]+4*y[x]==0,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → c2(x+ 2c1)2
x4
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2.1.2 Problem 3

Solved as first order autonomous ode . . . . . . . . . . . . . . . 15
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 17
Solved using Lie symmetry for first order ode . . . . . . . . . . 20
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 24
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 25
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 25

Internal problem ID [18532]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter 1. section 5. Problems at page 19
Problem number : 3
Date solved : Tuesday, January 28, 2025 at 11:54:24 AM
CAS classification : [_quadrature]

Solve

y′ + cy = a

Solved as first order autonomous ode

Time used: 0.164 (sec)

Integrating gives ∫ 1
−cy + a

dy = dx

− ln (−cy + a)
c

= x+ c1

Singular solutions are found by solving

−cy + a = 0

for y. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

y = a

c
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The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

y = a/c

Figure 2.1: Phase line diagram
Solving for y gives

y = a

c

y = −e−c1c−xc − a

c

Summary of solutions found

y = a

c

y = −e−c1c−xc − a

c
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Solved as first order Exact ode

Time used: 0.109 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (−cy + a) dx
(cy − a) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = cy − a

N(x, y) = 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(cy − a)

= c

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((c)− (0))
= c

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
cdx

The result of integrating gives

µ = exc

= exc

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= exc(cy − a)
= −(−cy + a) exc
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And

N = µN

= exc(1)
= exc

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(−(−cy + a) exc) + (exc) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives ∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫
exc dy

(3)φ = excy + f(x)

Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= c excy + f ′(x)

But equation (1) says that ∂φ
∂x

= −(−cy + a) exc. Therefore equation (4) becomes

(5)−(−cy + a) exc = c excy + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = −exca
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Integrating the above w.r.t x gives∫
f ′(x) dx =

∫
(−exca) dx

f(x) = −exca
c

+ c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = excy − exca
c

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = excy − exca
c

Solving for y gives

y = (exca+ c1c) e−xc

c

Summary of solutions found

y = (exca+ c1c) e−xc

c

Solved using Lie symmetry for first order ode

Time used: 0.279 (sec)

Writing the ode as

y′ = −cy + a

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + (−cy + a) (b3 − a2)− (−cy + a)2 a3 + c(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−c2y2a3 + 2acya3 − a2a3 + cxb2 + cya2 − aa2 + ab3 + cb1 + b2 = 0

Setting the numerator to zero gives

(6E)−c2y2a3 + 2acya3 − a2a3 + cxb2 + cya2 − aa2 + ab3 + cb1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−c2a3v
2
2 + 2aca3v2 − a2a3 + ca2v2 + cb2v1 − aa2 + ab3 + cb1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)cb2v1 − c2a3v
2
2 + (2aca3 + ca2) v2 − a2a3 − aa2 + ab3 + cb1 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

cb2 = 0
−c2a3 = 0

2aca3 + ca2 = 0
−a2a3 − aa2 + ab3 + cb1 + b2 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0

b1 = −ab3
c

b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0

η = −−cy + a

c

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

−−cy+a
c

dy

Which results in

S = ln (−cy + a)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −cy + a

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 0

Sy = − c

−cy + a

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −c (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −c

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.
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Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
−c dR

S(R) = −cR + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (−cy + a) = −xc+ c2

Which gives

y = −e−xc+c2 − a

c

Summary of solutions found

y = −e−xc+c2 − a

c

Maple step by step solution

Let’s solve
y′ + cy = a

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = −cy + a

• Separate variables
y′

−cy+a
= 1

• Integrate both sides with respect to x∫
y′

−cy+a
dx =

∫
1dx+ C1

• Evaluate integral
− ln(−cy+a)

c
= x+ C1

• Solve for y
y = − e−C1c−xc−a

c
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 18� �
dsolve(diff(y(x),x)+c*y(x) = a,y(x),singsol=all)� �

y(x) = e−cxc1c+ a

c

Mathematica DSolve solution

Solving time : 0.044 (sec)
Leaf size : 29� �
DSolve[{D[y[x],x]+c*y[x]==a,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → a

c
+ c1e

−cx

y(x) → a

c
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2.1.3 Problem 4

Solved as second order Bessel ode . . . . . . . . . . . . . . . . . 26
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Internal problem ID [18533]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter 1. section 5. Problems at page 19
Problem number : 4
Date solved : Tuesday, January 28, 2025 at 11:54:25 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + y′

x
+ k2y = 0

Solved as second order Bessel ode

Time used: 0.056 (sec)

Writing the ode as

x2y′′ + xy′ + k2x2y = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 0
β = k

n = 0
γ = 1

Substituting all the above into (4) gives the solution as

y = c1 BesselJ (0, kx) + c2 BesselY (0, kx)

Will add steps showing solving for IC soon.

Summary of solutions found

y = c1 BesselJ (0, kx) + c2 BesselY (0, kx)

Solved as second order ode adjoint method

Time used: 0.618 (sec)

In normal form the ode

y′′ + y′

x
+ k2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = r(x) (2)

Where

p(x) = 1
x

q(x) = k2

r(x) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ −

(
ξ(x)
x

)′

+
(
k2ξ(x)

)
= 0

ξ(x) k2x2 + ξ′′(x)x2 − ξ′(x)x+ ξ(x)
x2 = 0
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Which is solved for ξ(x). Writing the ode as

ξ′′x2 − ξ′x+
(
k2x2 + 1

)
ξ = 0 (1)

Bessel ode has the form

ξ′′x2 + ξ′x+
(
−n2 + x2) ξ = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

ξ′′x2 + (1− 2α)xξ′ +
(
β2γ2x2γ − n2γ2 + α2) ξ = 0 (3)

With the standard solution

ξ = xα(c3 BesselJ (n, β xγ) + c4 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1
β = k

n = 0
γ = 1

Substituting all the above into (4) gives the solution as

ξ = c3xBesselJ (0, kx) + c4xBesselY (0, kx)

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(x) y′ − yξ′(x) + ξ(x) p(x) y =
∫

ξ(x) r(x) dx

y′ + y

(
p(x)− ξ′(x)

ξ (x)

)
=
∫
ξ(x) r(x) dx

ξ (x)

Or

y′ + y

(
1
x
− c3 BesselJ (0, kx)− c3xBesselJ (1, kx) k + c4 BesselY (0, kx)− c4xBesselY (1, kx) k

c3xBesselJ (0, kx) + c4xBesselY (0, kx)

)
= 0

Which is now a first order ode. This is now solved for y. In canonical form a linear first
order is

y′ + q(x)y = p(x)
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Comparing the above to the given ode shows that

q(x) = k(BesselJ (1, kx) c3 + BesselY (1, kx) c4)
c3 BesselJ (0, kx) + c4 BesselY (0, kx)

p(x) = 0

The integrating factor µ is

µ = e
∫
q dx

= e
∫ k(BesselJ(1,kx)c3+BesselY(1,kx)c4)

c3 BesselJ(0,kx)+c4 BesselY(0,kx) dx

= 1
c3 BesselJ (0, kx) + c4 BesselY (0, kx)

The ode becomes
d
dxµy = 0

d
dx

(
y

c3 BesselJ (0, kx) + c4 BesselY (0, kx)

)
= 0

Integrating gives

y

c3 BesselJ (0, kx) + c4 BesselY (0, kx) =
∫

0 dx+ c5

= c5

Dividing throughout by the integrating factor 1
c3 BesselJ(0,kx)+c4 BesselY(0,kx) gives the final

solution
y = (c3 BesselJ (0, kx) + c4 BesselY (0, kx)) c5

Hence, the solution found using Lagrange adjoint equation method is

y = (c3 BesselJ (0, kx) + c4 BesselY (0, kx)) c5

The constants can be merged to give

y = c3 BesselJ (0, kx) + c4 BesselY (0, kx)

Will add steps showing solving for IC soon.

Summary of solutions found

y = c3 BesselJ (0, kx) + c4 BesselY (0, kx)
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Maple step by step solution

Let’s solve
y′′ + y′

x
+ k2y = 0

• Highest derivative means the order of the ODE is 2
y′′

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = k2]

◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
k2yx+ y′′x+ y′ = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r
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◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r + a1(1 + r)2 xr +

(
∞∑
k=1

(
ak+1(k + r + 1)2 + k2ak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + k2ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 + k2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − k2ak

(k+2)2

• Recursion relation for r = 0
ak+2 = − k2ak

(k+2)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = − k2ak

(k+2)2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
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-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 19� �
dsolve(diff(diff(y(x),x),x)+1/x*diff(y(x),x)+k^2*y(x) = 0,y(x),singsol=all)� �

y(x) = c1 BesselJ (0, kx) + c2 BesselY (0, kx)

Mathematica DSolve solution

Solving time : 0.018 (sec)
Leaf size : 22� �
DSolve[{D[y[x],{x,2}]+1/x*D[y[x],x]+k^2*y[x]==0,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → c1 BesselJ(0, kx) + c2 BesselY(0, kx)



chapter 2. book solved problems 33

2.1.4 Problem 5

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 33
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 34
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 34

Internal problem ID [18534]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter 1. section 5. Problems at page 19
Problem number : 5
Date solved : Tuesday, January 28, 2025 at 08:28:42 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

cos (x) y′ + sin (x) y′′ + ny sin (x) = 0

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
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<- Legendre successful
<- special function solution successful
Change of variables used:

[x = arccos(t)]
Linear ODE actually solved:

(-n*t^2+n)*u(t)+(2*t^3-2*t)*diff(u(t),t)+(t^4-2*t^2+1)*diff(diff(u(t),t),t) = 0
<- change of variables successful`� �
Maple dsolve solution

Solving time : 0.048 (sec)
Leaf size : 37� �
dsolve(cos(x)*diff(y(x),x)+sin(x)*diff(diff(y(x),x),x)+n*y(x)*sin(x) = 0,y(x),singsol=all)� �
y(x) = c1 LegendreP

(√
4n+ 1
2 − 1

2 , cos (x)
)
+ c2 LegendreQ

(√
4n+ 1
2 − 1

2 , cos (x)
)

Mathematica DSolve solution

Solving time : 0.112 (sec)
Leaf size : 48� �
DSolve[{D[Sin[x]*D[y[x],x],x]+n*y[x]*Sin[x]==0,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → c1 LegendreP
(
1
2

(√
4n+ 1− 1

)
, cos(x)

)
+ c2 LegendreQ

(
1
2

(√
4n+ 1− 1

)
, cos(x)

)
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2.1.5 Problem 6

Solved as first order separable ode . . . . . . . . . . . . . . . . 35
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 37
Solved as first order isobaric ode . . . . . . . . . . . . . . . . . 41
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 43
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 44
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 44

Internal problem ID [18535]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter 1. section 5. Problems at page 19
Problem number : 6
Date solved : Tuesday, January 28, 2025 at 11:54:28 AM
CAS classification : [_separable]

Solve

y′ =
√
1− y2 arcsin (y)

x

Solved as first order separable ode

Time used: 2.078 (sec)

The ode

(2.1)y′ =
√
1− y2 arcsin (y)

x

is separable as it can be written as

y′ =
√
1− y2 arcsin (y)

x
= f(x)g(y)

Where

f(x) = 1
x

g(y) =
√
−y2 + 1 arcsin (y)
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Integrating gives ∫ 1
g(y) dy =

∫
f(x) dx∫ 1√

−y2 + 1 arcsin (y)
dy =

∫ 1
x
dx

ln (arcsin (y)) = ln (x) + c1

We now need to find the singular solutions, these are found by finding for what values
g(y) is zero, since we had to divide by this above. Solving g(y) = 0 or

√
−y2 + 1 arcsin (y) = 0

for y gives

y = −1
y = 0
y = 1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (arcsin (y)) = ln (x) + c1

y = −1
y = 0
y = 1

Summary of solutions found

ln (arcsin (y)) = ln (x) + c1

y = −1
y = 0
y = 1
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Solved as first order Exact ode

Time used: 0.573 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(√

−y2 + 1 arcsin (y)
x

)
dx(

−
√
−y2 + 1 arcsin (y)

x

)
dx+dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −
√
−y2 + 1 arcsin (y)

x
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−
√
−y2 + 1 arcsin (y)

x

)

=
−1 + arcsin(y)y√

−y2+1

x

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

arcsin (y) y
x
√
−y2 + 1

− 1
x

)
− (0)

)

=
−1 + arcsin(y)y√

−y2+1

x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − x√

−y2 + 1 arcsin (y)

(
(0)−

(
arcsin (y) y
x
√
−y2 + 1

− 1
x

))
= − arcsin (y) y +

√
−y2 + 1

arcsin (y) (y2 − 1)
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Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e

∫ − arcsin(y)y+
√

−y2+1

arcsin(y)
(
y2−1

) dy

The result of integrating gives

µ = e− ln(arcsin(y))− ln(y−1)
2 − ln(y+1)

2

= 1
arcsin (y)

√
y − 1

√
y + 1

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
arcsin (y)

√
y − 1

√
y + 1

(
−
√
−y2 + 1 arcsin (y)

x

)
= −

√
−y2 + 1

x
√
y − 1

√
y + 1

And

N = µN

= 1
arcsin (y)

√
y − 1

√
y + 1

(1)

= 1
arcsin (y)

√
y − 1

√
y + 1

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−
√
−y2 + 1

x
√
y − 1

√
y + 1

)
+
(

1
arcsin (y)

√
y − 1

√
y + 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)



chapter 2. book solved problems 40

Integrating (2) w.r.t. y gives∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫ 1
arcsin (y)

√
y − 1

√
y + 1

dy

(3)φ =
∫ 1

arcsin (y)
√
y − 1

√
y + 1

dy + f(x)

Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 0 + f ′(x)

But equation (1) says that ∂φ
∂x

= −
√

−y2+1
x
√
y−1

√
y+1 . Therefore equation (4) becomes

(5)−
√
−y2 + 1

x
√
y − 1

√
y + 1

= 0 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = −
√
−y2 + 1

x
√
y − 1

√
y + 1

Integrating the above w.r.t x gives

∫
f ′(x) dx =

∫ (
−

√
−y2 + 1

x
√
y − 1

√
y + 1

)
dx

f(x) = −
√
−y2 + 1 ln (x)√
y − 1

√
y + 1

+ c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ =
∫ 1

arcsin (y)
√
y − 1

√
y + 1

dy −
√
−y2 + 1 ln (x)√
y − 1

√
y + 1

+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 =
∫ 1

arcsin (y)
√
y − 1

√
y + 1

dy −
√
−y2 + 1 ln (x)√
y − 1

√
y + 1

Summary of solutions found

∫ y 1
arcsin (_a)

√
_a− 1

√
_a+ 1

d_a−
√
1− y2 ln (x)√
y − 1

√
y + 1

= c1

Solved as first order isobaric ode

Time used: 2.315 (sec)

Solving for y′ gives

(1)y′ =
√
1− y2 arcsin (y)

x

Each of the above ode’s is now solved An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) =

√
1− y2 arcsin (y)

x
(2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 0

Since the ode is isobaric of order m = 0, then the substitution

y = uxm

= u

Converts the ODE to a separable in u(x). Performing this substitution gives

u′(x) =

√
1− u (x)2 arcsin (u(x))

x

The ode

(2.2)u′(x) =

√
1− u (x)2 arcsin (u(x))

x
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is separable as it can be written as

u′(x) =

√
1− u (x)2 arcsin (u(x))

x
= f(x)g(u)

Where

f(x) = 1
x

g(u) =
√
−u2 + 1 arcsin (u)

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1√

−u2 + 1 arcsin (u)
du =

∫ 1
x
dx

ln (arcsin (u(x))) = ln (x) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

√
−u2 + 1 arcsin (u) = 0

for u(x) gives

u(x) = −1
u(x) = 0
u(x) = 1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (arcsin (u(x))) = ln (x) + c1

u(x) = −1

u(x) = 0

u(x) = 1
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Converting ln (arcsin (u(x))) = ln (x) + c1 back to y gives

ln (arcsin (y)) = ln (x) + c1

Converting u(x) = −1 back to y gives

y = −1

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = 1 back to y gives

y = 1

Summary of solutions found

ln (arcsin (y)) = ln (x) + c1

y = −1
y = 0
y = 1

Maple step by step solution

Let’s solve

y′ =
√

1−y2 arcsin(y)
x

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative

y′ =
√

1−y2 arcsin(y)
x

• Separate variables
y′√

1−y2 arcsin(y)
= 1

x

• Integrate both sides with respect to x∫
y′√

1−y2 arcsin(y)
dx =

∫ 1
x
dx+ C1

• Evaluate integral
ln (arcsin (y)) = ln (x) + C1
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• Solve for y
y = sin

(
x eC1)

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 8� �
dsolve(diff(y(x),x) = 1/x*(1-y(x)^2)^(1/2)*arcsin(y(x)),y(x),singsol=all)� �

y(x) = sin (c1x)

Mathematica DSolve solution

Solving time : 0.333 (sec)
Leaf size : 27� �
DSolve[{D[y[x],x]==1/x*Sqrt[1-y[x]^2]*ArcSin[y[x]],{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → sin (ec1x)
y(x) → −1
y(x) → 0
y(x) → 1
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2.1.6 Problem 16 (a)

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 45
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 47
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 47

Internal problem ID [18536]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter 1. section 5. Problems at page 19
Problem number : 16 (a)
Date solved : Tuesday, January 28, 2025 at 11:54:36 AM
CAS classification : [[_2nd_order, _missing_x]]

Solve

v′′ =
(
1
v
+ v′

4
)1/3

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, _b(_a)*(diff(_b(_a), _a))-((_b(_a)^4*_a+1)/_a)^(1/3) = 0, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
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Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type

-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^2
trying 2nd order, integrating factors of the form mu(x,y)/(y)^n, only the singular cases
trying differential order: 2; exact nonlinear
trying 2nd order, integrating factor of the form mu(x,y)
-> trying 2nd order, the S-function method

-> trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for the S-function
-> trying 2nd order, the S-function method
-> trying 2nd order, No Point Symmetries Class V
-> trying 2nd order, No Point Symmetries Class V
-> trying 2nd order, No Point Symmetries Class V

trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 5
`, `-> Computing symmetries using: way = formal

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
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<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.082 (sec)
Leaf size : maple_leaf_size� �
dsolve(diff(diff(v(u),u),u) = (1/v(u)+diff(v(u),u)^4)^(1/3),v(u),singsol=all)� �

No solution found

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0� �
DSolve[{D[v[u],{u,2}]==(1/v[u]+D[v[u],u]^4)^(1/3),{}},v[u],u,IncludeSingularSolutions->True]� �
Not solved
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2.1.7 Problem 16 (b)

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 48
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 50
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 54
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 55
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 55

Internal problem ID [18537]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter 1. section 5. Problems at page 19
Problem number : 16 (b)
Date solved : Tuesday, January 28, 2025 at 11:54:40 AM
CAS classification : [_linear]

Solve

v′ + u2v = sin (u)

Solved as first order linear ode

Time used: 0.374 (sec)

In canonical form a linear first order is

v′ + q(u)v = p(u)

Comparing the above to the given ode shows that

q(u) = u2

p(u) = sin (u)

The integrating factor µ is

µ = e
∫
q du

= e
∫
u2du

= eu3
3
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The ode becomes
d
du(µv) = µp

d
du(µv) = (µ) (sin (u))

d
du

(
v eu3

3

)
=
(
eu3

3

)
(sin (u))

d
(
v eu3

3

)
=
(
sin (u) eu3

3

)
du

Integrating gives

v eu3
3 =

∫
sin (u) eu3

3 du

=
∫

sin (u) eu3
3 du+ c1

Dividing throughout by the integrating factor eu3
3 gives the final solution

v = e−u3
3

(∫
sin (u) eu3

3 du+ c1

)

–3

–2

–1

0

1

2

3

v(u)

–4 –2 0 2 4

u

Figure 2.2: Slope field plot
v′ + u2v = sin (u)

Summary of solutions found

v = e−u3
3

(∫
sin (u) eu3

3 du+ c1

)
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Solved as first order Exact ode

Time used: 0.127 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(u, v) du+N(u, v) dv = 0 (1A)

Therefore

dv =
(
−u2v + sin (u)

)
du(

u2v − sin (u)
)
du+dv = 0 (2A)

Comparing (1A) and (2A) shows that

M(u, v) = u2v − sin (u)
N(u, v) = 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂v
= ∂N

∂u

Using result found above gives

∂M

∂v
= ∂

∂v

(
u2v − sin (u)

)
= u2

And
∂N

∂u
= ∂

∂u
(1)

= 0

Since ∂M
∂v

6= ∂N
∂u

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂v
− ∂N

∂u

)
= 1
((
u2)− (0)

)
= u2

Since A does not depend on v, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A du

= e
∫
u2 du

The result of integrating gives

µ = e
u3
3

= eu3
3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= eu3
3
(
u2v − sin (u)

)
=
(
u2v − sin (u)

)
eu3

3
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And

N = µN

= eu3
3 (1)

= eu3
3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dv
du = 0((

u2v − sin (u)
)
eu3

3

)
+
(
eu3

3

) dv
du = 0

The following equations are now set up to solve for the function φ(u, v)

∂φ

∂u
= M (1)

∂φ

∂v
= N (2)

Integrating (2) w.r.t. v gives ∫
∂φ

∂v
dv =

∫
N dv∫

∂φ

∂v
dv =

∫
eu3

3 dv

(3)φ = v eu3
3 + f(u)

Where f(u) is used for the constant of integration since φ is a function of both u and
v. Taking derivative of equation (3) w.r.t u gives

(4)∂φ

∂u
= v u2eu3

3 + f ′(u)

But equation (1) says that ∂φ
∂u

= (u2v − sin (u)) eu3
3 . Therefore equation (4) becomes

(5)
(
u2v − sin (u)

)
eu3

3 = v u2eu3
3 + f ′(u)

Solving equation (5) for f ′(u) gives

f ′(u) = − sin (u) eu3
3
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Integrating the above w.r.t u gives∫
f ′(u) du =

∫ (
− sin (u) eu3

3

)
du

f(u) =
∫ u

0
− sin (τ) e τ3

3 dτ + c1

Where c1 is constant of integration. Substituting result found above for f(u) into
equation (3) gives φ

φ = v eu3
3 +

∫ u

0
− sin (τ) e τ3

3 dτ + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = v eu3
3 +

∫ u

0
− sin (τ) e τ3

3 dτ

Solving for v gives

v = −
(∫ u

0
− sin (τ) e τ3

3 dτ − c1

)
e−u3

3

–3

–2

–1

0

1

2

3

v(u)

–4 –2 0 2 4

u

Figure 2.3: Slope field plot
v′ + u2v = sin (u)

Summary of solutions found

v = −
(∫ u

0
− sin (τ) e τ3

3 dτ − c1

)
e−u3

3
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Maple step by step solution

Let’s solve
v′ + u2v = sin (u)

• Highest derivative means the order of the ODE is 1
v′

• Solve for the highest derivative
v′ = −u2v + sin (u)

• Group terms with v on the lhs of the ODE and the rest on the rhs of the ODE
v′ + u2v = sin (u)

• The ODE is linear; multiply by an integrating factor µ(u)
µ(u) (v′ + u2v) = µ(u) sin (u)

• Assume the lhs of the ODE is the total derivative d
du
(vµ(u))

µ(u) (v′ + u2v) = v′µ(u) + vµ′(u)
• Isolate µ′(u)

µ′(u) = µ(u)u2

• Solve to find the integrating factor

µ(u) = eu3
3

• Integrate both sides with respect to u∫ (
d
du
(vµ(u))

)
du =

∫
µ(u) sin (u) du+ C1

• Evaluate the integral on the lhs
vµ(u) =

∫
µ(u) sin (u) du+ C1

• Solve for v
v =

∫
µ(u) sin(u)du+C1

µ(u)

• Substitute µ(u) = eu3
3

v =
∫
sin(u)e

u3
3 du+C1

e
u3
3

• Simplify

v = e−u3
3

(∫
sin (u) eu3

3 du+ C1
)
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 24� �
dsolve(diff(v(u),u)+u^2*v(u) = sin(u),v(u),singsol=all)� �

v =
(∫

sin (u) eu3
3 du+ c1

)
e−u3

3

Mathematica DSolve solution

Solving time : 0.058 (sec)
Leaf size : 39� �
DSolve[{D[v[u],u]+u^2*v[u]==Sin[u],{}},v[u],u,IncludeSingularSolutions->True]� �

v(u) → e−
u3
3

(∫ u

1
e

K[1]3
3 sin(K[1])dK[1] + c1

)
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2.1.8 Problem 17 (a)

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 56
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 57
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 58

Internal problem ID [18538]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter 1. section 5. Problems at page 19
Problem number : 17 (a)
Date solved : Tuesday, January 28, 2025 at 11:54:42 AM
CAS classification : [NONE]

Solve √
y′ + y = (y′′ + 2x)1/4

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^2

--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y)

trying 2nd order, integrating factors of the form mu(x,y)/(y)^n, only the singular cases
trying symmetries linear in x and y(x)
trying differential order: 2; exact nonlinear
trying 2nd order, integrating factor of the form mu(y)
trying 2nd order, integrating factor of the form mu(x,y)
trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case
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trying 2nd order, integrating factor of the form mu(y,y)
trying differential order: 2; mu polynomial in y
trying 2nd order, integrating factor of the form mu(x,y)
differential order: 2; looking for linear symmetries
-> trying 2nd order, the S-function method

-> trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for the S-function
-> trying 2nd order, the S-function method
-> trying 2nd order, No Point Symmetries Class V

--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, No Point Symmetries Class V

-> trying 2nd order, No Point Symmetries Class V
--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, No Point Symmetries Class V

-> trying 2nd order, No Point Symmetries Class V
--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, No Point Symmetries Class V

trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^

--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating factor of the form G(x,y)/(1+H(x,y)*

solving 2nd order ODE of high degree, Lie methods
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 5`� �
Maple dsolve solution

Solving time : 0.069 (sec)
Leaf size : maple_leaf_size� �
dsolve((diff(y(x),x)+y(x))^(1/2) = (diff(diff(y(x),x),x)+2*x)^(1/4),y(x),singsol=all)� �

No solution found
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Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0� �
DSolve[{Sqrt[D[y[x],x]+y[x]]== (D[y[x],{x,2}]+2*x)^(1/4),{}},y[x],x,IncludeSingularSolutions->True]� �
Not solved
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2.1.9 Problem 18

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 59
Solved as first order homogeneous class A ode . . . . . . . . . . 61
Solved as first order homogeneous class D2 ode . . . . . . . . . 63
Solved as first order homogeneous class Maple C ode . . . . . . 65
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 69
Solved as first order isobaric ode . . . . . . . . . . . . . . . . . 73
Solved using Lie symmetry for first order ode . . . . . . . . . . 76
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 81
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 82
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 82

Internal problem ID [18539]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter 1. section 5. Problems at page 19
Problem number : 18
Date solved : Tuesday, January 28, 2025 at 11:54:42 AM
CAS classification : [_linear]

Solve

v′ + 2v
u

= 3

Solved as first order linear ode

Time used: 0.039 (sec)

In canonical form a linear first order is

v′ + q(u)v = p(u)

Comparing the above to the given ode shows that

q(u) = 2
u

p(u) = 3
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The integrating factor µ is

µ = e
∫
q du

= e
∫ 2

u
du

= u2

The ode becomes
d
du(µv) = µp

d
du(µv) = (µ) (3)

d
du
(
v u2) = (u2) (3)

d
(
v u2) = (3u2) du

Integrating gives

v u2 =
∫

3u2 du

= u3 + c1

Dividing throughout by the integrating factor u2 gives the final solution

v = u3 + c1
u2
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0

1

2

3

v(u)

–4 –2 0 2 4

u

Figure 2.4: Slope field plot
v′ + 2v

u
= 3
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Summary of solutions found

v = u3 + c1
u2

Solved as first order homogeneous class A ode

Time used: 0.237 (sec)

In canonical form, the ODE is

v′ = F (u, v)

= −−3u+ 2v
u

(1)

An ode of the form v′ = M(u,v)
N(u,v) is called homogeneous if the functions M(u, v) and

N(u, v) are both homogeneous functions and of the same order. Recall that a function
f(u, v) is homogeneous of order n if

f(tnu, tnv) = tnf(u, v)

In this case, it can be seen that both M = 3u− 2v and N = u are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = v

u
, or v = uu.

Hence
dv
du = du

duu+ u

Applying the transformation v = uu to the above ODE in (1) gives

du
duu+ u = 3− 2u

du
du = 3− 3u(u)

u

Or
u′(u)− 3− 3u(u)

u
= 0

Or
u′(u)u+ 3u(u)− 3 = 0

Which is now solved as separable in u(u).

The ode

(2.3)u′(u) = −3(u(u)− 1)
u
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is separable as it can be written as

u′(u) = −3(u(u)− 1)
u

= f(u)g(u)

Where

f(u) = 1
u

g(u) = −3u+ 3

Integrating gives ∫ 1
g(u) du =

∫
f(u) du∫ 1

−3u+ 3 du =
∫ 1

u
du

− ln (u(u)− 1)
3 = ln (u) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

−3u+ 3 = 0

for u(u) gives

u(u) = 1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

− ln (u(u)− 1)
3 = ln (u) + c1

u(u) = 1

Solving for u(u) gives
u(u) = 1

u(u) = u3 + e−3c1

u3
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Converting u(u) = 1 back to v gives

v = u

Converting u(u) = u3+e−3c1
u3 back to v gives

v = u3 + e−3c1

u2
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Figure 2.5: Slope field plot
v′ + 2v

u
= 3

Summary of solutions found
v = u

v = u3 + e−3c1

u2

Solved as first order homogeneous class D2 ode

Time used: 0.117 (sec)

Applying change of variables v = u(u)u, then the ode becomes

u′(u)u+ 3u(u) = 3

Which is now solved The ode

(2.4)u′(u) = −3(u(u)− 1)
u
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is separable as it can be written as

u′(u) = −3(u(u)− 1)
u

= f(u)g(u)

Where

f(u) = 1
u

g(u) = −3u+ 3

Integrating gives ∫ 1
g(u) du =

∫
f(u) du∫ 1

−3u+ 3 du =
∫ 1

u
du

− ln (u(u)− 1)
3 = ln (u) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

−3u+ 3 = 0

for u(u) gives

u(u) = 1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

− ln (u(u)− 1)
3 = ln (u) + c1

u(u) = 1

Solving for u(u) gives
u(u) = 1

u(u) = u3 + e−3c1

u3
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Converting u(u) = 1 back to v gives

v = u

Converting u(u) = u3+e−3c1
u3 back to v gives

v = u3 + e−3c1

u2
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Figure 2.6: Slope field plot
v′ + 2v

u
= 3

Summary of solutions found
v = u

v = u3 + e−3c1

u2

Solved as first order homogeneous class Maple C ode

Time used: 0.235 (sec)

Let Y = v − y0 and X = u− x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −−3x0 − 3X + 2Y (X) + 2y0

x0 +X

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 0
y0 = 0
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Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −−3X + 2Y (X)

X

In canonical form, the ODE is

Y ′ = F (X,Y )

= −−3X + 2Y
X

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 3X− 2Y and N = X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives
du
dXX + u = 3− 2u

du
dX = 3− 3u(X)

X

Or
d

dX
u(X)− 3− 3u(X)

X
= 0

Or (
d

dX
u(X)

)
X + 3u(X)− 3 = 0

Which is now solved as separable in u(X).

The ode

(2.5)d

dX
u(X) = −3(u(X)− 1)

X

is separable as it can be written as
d

dX
u(X) = −3(u(X)− 1)

X
= f(X)g(u)
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Where

f(X) = 1
X

g(u) = −3u+ 3

Integrating gives ∫ 1
g(u) du =

∫
f(X) dX∫ 1

−3u+ 3 du =
∫ 1

X
dX

− ln (u(X)− 1)
3 = ln (X) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

−3u+ 3 = 0

for u(X) gives

u(X) = 1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

− ln (u(X)− 1)
3 = ln (X) + c1

u(X) = 1

Solving for u(X) gives
u(X) = 1

u(X) = X3 + e−3c1

X3

Converting u(X) = 1 back to Y (X) gives

Y (X) = X
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Converting u(X) = X3+e−3c1
X3 back to Y (X) gives

Y (X) = X3 + e−3c1

X2

Using the solution for Y (X)

Y (X) = X (A)

And replacing back terms in the above solution using

Y = v + y0

X = u+ x0

Or

Y = v

X = u

Then the solution in v becomes using EQ (A)

v = u

Using the solution for Y (X)

Y (X) = X3 + e−3c1

X2 (A)

And replacing back terms in the above solution using

Y = v + y0

X = u+ x0

Or

Y = v

X = u

Then the solution in v becomes using EQ (A)

v = u3 + e−3c1

u2
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Figure 2.7: Slope field plot
v′ + 2v

u
= 3

Solved as first order Exact ode

Time used: 0.148 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(u, v) du+N(u, v) dv = 0 (1A)
Therefore

dv =
(
3− 2v

u

)
du(

2v
u

− 3
)
du+dv = 0 (2A)

Comparing (1A) and (2A) shows that

M(u, v) = 2v
u

− 3

N(u, v) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂v
= ∂N

∂u

Using result found above gives
∂M

∂v
= ∂

∂v

(
2v
u

− 3
)

= 2
u

And
∂N

∂u
= ∂

∂u
(1)

= 0

Since ∂M
∂v

6= ∂N
∂u

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂v
− ∂N

∂u

)
= 1
((

2
u

)
− (0)

)
= 2

u
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Since A does not depend on v, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A du

= e
∫ 2

u
du

The result of integrating gives

µ = e2 ln(u)

= u2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= u2
(
2v
u

− 3
)

= −3u2 + 2uv

And

N = µN

= u2(1)
= u2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dv
du = 0(

−3u2 + 2uv
)
+
(
u2) dv

du = 0

The following equations are now set up to solve for the function φ(u, v)
∂φ

∂u
= M (1)

∂φ

∂v
= N (2)

Integrating (2) w.r.t. v gives ∫
∂φ

∂v
dv =

∫
N dv∫

∂φ

∂v
dv =

∫
u2 dv

(3)φ = v u2 + f(u)
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Where f(u) is used for the constant of integration since φ is a function of both u and
v. Taking derivative of equation (3) w.r.t u gives

(4)∂φ

∂u
= 2uv + f ′(u)

But equation (1) says that ∂φ
∂u

= −3u2 + 2uv. Therefore equation (4) becomes

(5)−3u2 + 2uv = 2uv + f ′(u)

Solving equation (5) for f ′(u) gives

f ′(u) = −3u2

Integrating the above w.r.t u gives∫
f ′(u) du =

∫ (
−3u2) du

f(u) = −u3 + c1

Where c1 is constant of integration. Substituting result found above for f(u) into
equation (3) gives φ

φ = −u3 + v u2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −u3 + v u2

Solving for v gives

v = u3 + c1
u2
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Figure 2.8: Slope field plot
v′ + 2v

u
= 3

Summary of solutions found

v = u3 + c1
u2

Solved as first order isobaric ode

Time used: 0.101 (sec)

Solving for v′ gives

(1)v′ = −−3u+ 2v
u

Each of the above ode’s is now solved An ode v′ = f(u, v) is isobaric if

f(tu, tmv) = tm−1f(u, v) (1)

Where here
f(u, v) = −−3u+ 2v

u
(2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 1

Since the ode is isobaric of order m = 1, then the substitution

v = uum

= uu
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Converts the ODE to a separable in u(u). Performing this substitution gives

u(u) + uu′(u) = −−3u+ 2uu(u)
u

The ode

(2.6)u′(u) = −3(u(u)− 1)
u

is separable as it can be written as

u′(u) = −3(u(u)− 1)
u

= f(u)g(u)

Where

f(u) = 1
u

g(u) = −3u+ 3

Integrating gives ∫ 1
g(u) du =

∫
f(u) du∫ 1

−3u+ 3 du =
∫ 1

u
du

− ln (u(u)− 1)
3 = ln (u) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

−3u+ 3 = 0

for u(u) gives

u(u) = 1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.
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Therefore the solutions found are

− ln (u(u)− 1)
3 = ln (u) + c1

u(u) = 1

Solving for u(u) gives
u(u) = 1

u(u) = u3 + e−3c1

u3

Converting u(u) = 1 back to v gives
v

u
= 1

Converting u(u) = u3+e−3c1
u3 back to v gives

v

u
= u3 + e−3c1

u3

Solving for v gives
v = u

v = u3 + e−3c1

u2
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Figure 2.9: Slope field plot
v′ + 2v

u
= 3
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Summary of solutions found
v = u

v = u3 + e−3c1

u2

Solved using Lie symmetry for first order ode

Time used: 0.477 (sec)

Writing the ode as

v′ = −−3u+ 2v
u

v′ = ω(u, v)

The condition of Lie symmetry is the linearized PDE given by

ηu + ω(ηv − ξu)− ω2ξv − ωuξ − ωvη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = ua2 + va3 + a1

(2E)η = ub2 + vb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
(−3u+ 2v) (b3 − a2)

u
− (−3u+ 2v)2 a3

u2

−
(
3
u
+ −3u+ 2v

u2

)
(ua2 + va3 + a1) +

2ub2 + 2vb3 + 2b1
u

= 0

Putting the above in normal form gives

−3u2a2 + 9u2a3 − 3b2u2 − 3u2b3 − 12uva3 + 6v2a3 − 2ub1 + 2va1
u2 = 0
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Setting the numerator to zero gives

(6E)−3u2a2 − 9u2a3 + 3b2u2 + 3u2b3 + 12uva3 − 6v2a3 + 2ub1 − 2va1 = 0

Looking at the above PDE shows the following are all the terms with {u, v} in them.

{u, v}

The following substitution is now made to be able to collect on all terms with {u, v}
in them

{u = v1, v = v2}

The above PDE (6E) now becomes

(7E)−3a2v21 − 9a3v21 + 12a3v1v2 − 6a3v22 + 3b2v21 + 3b3v21 − 2a1v2 + 2b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−3a2 − 9a3 + 3b2 + 3b3) v21 + 12a3v1v2 + 2b1v1 − 6a3v22 − 2a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
−6a3 = 0
12a3 = 0
2b1 = 0

−3a2 − 9a3 + 3b2 + 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b2 + b3

a3 = 0
b1 = 0
b2 = b2

b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = u

η = u

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(u, v) ξ

= u−
(
−−3u+ 2v

u

)
(u)

= −2u+ 2v
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (u, v) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

du

ξ
= dv

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂u

+ η ∂
∂v

)
S(u, v) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = u

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2u+ 2vdy

Which results in

S = ln (−u+ v)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Su + ω(u, v)Sv

Ru + ω(u, v)Rv
(2)
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Where in the above Ru, Rv, Su, Sv are all partial derivatives and ω(u, v) is the right
hand side of the original ode given by

ω(u, v) = −−3u+ 2v
u

Evaluating all the partial derivatives gives

Ru = 1
Rv = 0

Su = 1
2u− 2v

Sv = − 1
2u− 2v

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

u
(2A)

We now need to express the RHS as function of R only. This is done by solving for u, v
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
− 1
R

dR

S(R) = − ln (R) + c2

To complete the solution, we just need to transform the above back to u, v coordinates.
This results in

ln (−u+ v)
2 = − ln (u) + c2

Which gives

v = u3 + e2c2
u2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in u, v coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dv
du

= −−3u+2v
u

dS
dR

= − 1
R
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Figure 2.10: Slope field plot
v′ + 2v

u
= 3

Summary of solutions found

v = u3 + e2c2
u2
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Maple step by step solution

Let’s solve
v′ + 2v

u
= 3

• Highest derivative means the order of the ODE is 1
v′

• Solve for the highest derivative
v′ = 3− 2v

u

• Group terms with v on the lhs of the ODE and the rest on the rhs of the ODE
v′ + 2v

u
= 3

• The ODE is linear; multiply by an integrating factor µ(u)
µ(u)

(
v′ + 2v

u

)
= 3µ(u)

• Assume the lhs of the ODE is the total derivative d
du
(vµ(u))

µ(u)
(
v′ + 2v

u

)
= v′µ(u) + vµ′(u)

• Isolate µ′(u)
µ′(u) = 2µ(u)

u

• Solve to find the integrating factor
µ(u) = u2

• Integrate both sides with respect to u∫ (
d
du
(vµ(u))

)
du =

∫
3µ(u) du+ C1

• Evaluate the integral on the lhs
vµ(u) =

∫
3µ(u) du+ C1

• Solve for v
v =

∫
3µ(u)du+C1

µ(u)

• Substitute µ(u) = u2

v =
∫
3u2du+C1

u2

• Evaluate the integrals on the rhs
v = u3+C1

u2
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.000 (sec)
Leaf size : 11� �
dsolve(diff(v(u),u)+2*v(u)/u = 3,v(u),singsol=all)� �

v = u+ c1
u2

Mathematica DSolve solution

Solving time : 0.023 (sec)
Leaf size : 13� �
DSolve[{D[v[u],u]+2*v[u]/u==3,{}},v[u],u,IncludeSingularSolutions->True]� �

v(u) → u+ c1
u2
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2.2 Chapter IV. Methods of solution: First order
equations. section 24. Problems at page 62

2.2.1 Problem 4 (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.2.2 Problem 4 (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.2.3 Problem 4 (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.2.4 Problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.2.5 Problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
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2.2.1 Problem 4 (a)

Solved as first order separable ode . . . . . . . . . . . . . . . . 84
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 86
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 87
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 87

Internal problem ID [18540]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 24. Problems at
page 62
Problem number : 4 (a)
Date solved : Tuesday, January 28, 2025 at 11:54:45 AM
CAS classification : [_separable]

Solve

sin (x) cos (y)2 + cos (x)2 y′ = 0

Solved as first order separable ode

Time used: 0.207 (sec)

The ode

(2.7)y′ = −sin (x) cos (y)2

cos (x)2

is separable as it can be written as

y′ = −sin (x) cos (y)2

cos (x)2

= f(x)g(y)

Where

f(x) = − sin (x)
cos (x)2

g(y) = cos (y)2
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Integrating gives ∫ 1
g(y) dy =

∫
f(x) dx∫ 1

cos (y)2
dy =

∫
− sin (x)
cos (x)2

dx

tan (y) = − sec (x) + c1

We now need to find the singular solutions, these are found by finding for what values
g(y) is zero, since we had to divide by this above. Solving g(y) = 0 or

cos (y)2 = 0

for y gives

y = π

2

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

tan (y) = − sec (x) + c1

y = π

2

Solving for y gives

y = π

2
y = arctan (− sec (x) + c1)
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Figure 2.11: Slope field plot
sin (x) cos (y)2 + cos (x)2 y′ = 0

Summary of solutions found

y = π

2
y = arctan (− sec (x) + c1)

Maple step by step solution

Let’s solve
sin (x) cos (y)2 + cos (x)2 y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative

y′ = − sin(x) cos(y)2

cos(x)2

• Separate variables
y′

cos(y)2 = − sin(x)
cos(x)2

• Integrate both sides with respect to x∫
y′

cos(y)2dx =
∫
− sin(x)

cos(x)2dx+ C1

• Evaluate integral
tan (y) = − 1

cos(x) + C1
• Solve for y
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y = arctan
(

C1 cos(x)−1
cos(x)

)
Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 11� �
dsolve(sin(x)*cos(y(x))^2+cos(x)^2*diff(y(x),x) = 0,y(x),singsol=all)� �

y(x) = − arctan (sec (x) + c1)

Mathematica DSolve solution

Solving time : 1.507 (sec)
Leaf size : 31� �
DSolve[{Sin[x]*Cos[y[x]]^2+ Cos[x]^2*D[y[x],x]==0,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → arctan(− sec(x) + c1)
y(x) → −π

2
y(x) → π

2
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2.2.2 Problem 4 (b)

Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 88
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 93
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 94
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 94

Internal problem ID [18541]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 24. Problems at
page 62
Problem number : 4 (b)
Date solved : Tuesday, January 28, 2025 at 11:54:49 AM
CAS classification : [[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

Solve

y′ +
√

1− y2

−x2 + 1 = 0

Solved as first order Exact ode

Time used: 22.789 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−
√

−y2 + 1
−x2 + 1

)
dx(√

−y2 + 1
−x2 + 1

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) =
√

−y2 + 1
−x2 + 1

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(√
−y2 + 1
−x2 + 1

)
= y√

y2−1
x2−1 (x2 − 1)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)

= 1

− y√
−y2+1
−x2+1 (−x2 + 1)

− (0)


= y√

y2−1
x2−1 (x2 − 1)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)

= 1√
y2−1
x2−1

(0)−

− y√
−y2+1
−x2+1 (−x2 + 1)


= − y

y2 − 1
Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− y

y2−1 dy

The result of integrating gives

µ = e−
ln(y−1)

2 − ln(y+1)
2

= 1√
y − 1

√
y + 1

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1√
y − 1

√
y + 1

(√
−y2 + 1
−x2 + 1

)

=

√
y2−1
x2−1√

y − 1
√
y + 1
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And

N = µN

= 1√
y − 1

√
y + 1

(1)

= 1√
y − 1

√
y + 1

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

√
y2−1
x2−1√

y − 1
√
y + 1

+
(

1√
y − 1

√
y + 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫ 1√
y − 1

√
y + 1

dy

(3)φ =
√
y2 − 1 ln

(
y +

√
y2 − 1

)
√
y − 1

√
y + 1

+ f(x)

Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 0 + f ′(x)

But equation (1) says that ∂φ
∂x

=

√
y2−1
x2−1√

y−1
√
y+1 . Therefore equation (4) becomes

(5)

√
y2−1
x2−1√

y − 1
√
y + 1

= 0 + f ′(x)
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Solving equation (5) for f ′(x) gives

f ′(x) =

√
y2−1
x2−1√

y − 1
√
y + 1

Integrating the above w.r.t x gives

∫
f ′(x) dx =

∫ 
√

y2−1
x2−1√

y − 1
√
y + 1

 dx

f(x) =

√
y2−1
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
√
y − 1

√
y + 1

+ c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ =
√
y2 − 1 ln

(
y +

√
y2 − 1

)
√
y − 1

√
y + 1

+

√
y2−1
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
√
y − 1

√
y + 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 =
√
y2 − 1 ln

(
y +

√
y2 − 1

)
√
y − 1

√
y + 1

+

√
y2−1
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
√
y − 1

√
y + 1
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Figure 2.12: Slope field plot
y′ +

√
1−y2

−x2+1 = 0

Summary of solutions found

√
−1 + y2 ln

(
y +

√
−1 + y2

)
√
y − 1

√
y + 1

+

√
−1+y2

x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
√
y − 1

√
y + 1

= c1

Maple step by step solution

Let’s solve

y′ +
√

1−y2

−x2+1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative

y′ = −
√

1−y2

−x2+1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 84� �
dsolve(diff(y(x),x)+((1-y(x)^2)/(-x^2+1))^(1/2) = 0,y(x),singsol=all)� �√

−1+y(x)2
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)√
y (x)− 1

√
y (x) + 1

+

√
−1 + y (x)2 ln

(
y(x) +

√
−1 + y (x)2

)
√

y (x)− 1
√

y (x) + 1
+ c1 = 0

Mathematica DSolve solution

Solving time : 0.367 (sec)
Leaf size : 39� �
DSolve[{D[y[x],x]+Sqrt[ (1-y[x]^2)/(1-x^2)]==0,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → − cosh

2arctanh

 1√
x−1
x+1

− c1


y(x) → −1
y(x) → 1
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2.2.3 Problem 4 (c)

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 95
Solved as first order separable ode . . . . . . . . . . . . . . . . 96
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 98
Solved using Lie symmetry for first order ode . . . . . . . . . . 101
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 106
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 106
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 107

Internal problem ID [18542]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 24. Problems at
page 62
Problem number : 4 (c)
Date solved : Tuesday, January 28, 2025 at 11:55:15 AM
CAS classification : [_separable]

Solve

y − xy′ = b
(
1 + x2y′

)
Solved as first order linear ode

Time used: 0.059 (sec)

In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = − 1
x (bx+ 1)

p(x) = − b

x (bx+ 1)
The integrating factor µ is

µ = e
∫
q dx

= e
∫
− 1

x(bx+1)dx

= bx+ 1
x
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The ode becomes
d
dx(µy) = µp

d
dx(µy) = (µ)

(
− b

x (bx+ 1)

)
d
dx

(
y(bx+ 1)

x

)
=
(
bx+ 1

x

)(
− b

x (bx+ 1)

)
d
(
y(bx+ 1)

x

)
=
(
− b

x2

)
dx

Integrating gives

y(bx+ 1)
x

=
∫

− b

x2 dx

= b

x
+ c1

Dividing throughout by the integrating factor bx+1
x

gives the final solution

y = c1x+ b

bx+ 1

Summary of solutions found

y = c1x+ b

bx+ 1

Solved as first order separable ode

Time used: 0.150 (sec)

The ode

(2.8)y′ = y − b

x (bx+ 1)

is separable as it can be written as

y′ = y − b

x (bx+ 1)
= f(x)g(y)
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Where

f(x) = 1
x (bx+ 1)

g(y) = y − b

Integrating gives ∫ 1
g(y) dy =

∫
f(x) dx∫ 1

y − b
dy =

∫ 1
x (bx+ 1) dx

ln (−y + b) = ln
(

x

bx+ 1

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(y) is zero, since we had to divide by this above. Solving g(y) = 0 or

y − b = 0

for y gives

y = b

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (−y + b) = ln
(

x

bx+ 1

)
+ c1

y = b

Solving for y gives
y = b

y = −−b2x+ ec1x− b

bx+ 1

Summary of solutions found

y = b

y = −−b2x+ ec1x− b

bx+ 1
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Solved as first order Exact ode

Time used: 0.167 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−b x2 − x

)
dy = (−y + b) dx

(y − b) dx+
(
−b x2 − x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − b

N(x, y) = −b x2 − x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y − b)

= 1

And
∂N

∂x
= ∂

∂x

(
−b x2 − x

)
= −2bx− 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x (bx+ 1)((1)− (−2bx− 1))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2 (y − b)

= y − b

x2
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And

N = µN

= 1
x2

(
−b x2 − x

)
= −bx− 1

x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

y − b

x2

)
+
(
−bx− 1

x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫
−bx− 1

x
dy

(3)φ = −y(bx+ 1)
x

+ f(x)

Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= y(bx+ 1)

x2 − yb

x
+ f ′(x)

= y

x2 + f ′(x)

But equation (1) says that ∂φ
∂x

= y−b
x2 . Therefore equation (4) becomes

(5)y − b

x2 = y

x2 + f ′(x)
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Solving equation (5) for f ′(x) gives

f ′(x) = − b

x2

Integrating the above w.r.t x gives

∫
f ′(x) dx =

∫ (
− b

x2

)
dx

f(x) = b

x
+ c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = −y(bx+ 1)
x

+ b

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −y(bx+ 1)
x

+ b

x

Solving for y gives

y = −c1x− b

bx+ 1

Summary of solutions found

y = −c1x− b

bx+ 1

Solved using Lie symmetry for first order ode

Time used: 0.390 (sec)

Writing the ode as

y′ = y − b

x (bx+ 1)
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(y − b) (b3 − a2)

x (bx+ 1) − (y − b)2 a3
x2 (bx+ 1)2

−
(
− y − b

x2 (bx+ 1) −
(y − b) b

x (bx+ 1)2
)
(xa2 + ya3 + a1)−

xb2 + yb3 + b1
x (bx+ 1) = 0

Putting the above in normal form gives

b2x4b2 − b2x2a2 − b2x2b3 − 2b2xya3 + b x3b2 + b x2ya2 + 2bx y2a3 − 2b2xa1 − b x2b1 + 2bxya1 − b2a3 − bxb3 + bya3 − ba1 − xb1 + ya1

x2 (bx+ 1)2
= 0

Setting the numerator to zero gives

(6E)b2x4b2 − b2x2a2 − b2x2b3 − 2b2xya3 + b x3b2 + b x2ya2 + 2bx y2a3
− 2b2xa1 − b x2b1 + 2bxya1 − b2a3 − bxb3 + bya3 − ba1 − xb1 + ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)b2b2v
4
1 − b2a2v

2
1 − 2b2a3v1v2 − b2b3v

2
1 + ba2v

2
1v2 + 2ba3v1v22 + bb2v

3
1 − 2b2a1v1

+ 2ba1v1v2 − bb1v
2
1 − b2a3 + ba3v2 − bb3v1 − ba1 + a1v2 − b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2b2v
4
1 + bb2v

3
1 + ba2v

2
1v2 +

(
−b2a2 − b2b3 − bb1

)
v21 + 2ba3v1v22

+
(
−2b2a3+2ba1

)
v1v2+

(
−2b2a1−bb3−b1

)
v1+(ba3+a1) v2−b2a3−ba1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

ba2 = 0
bb2 = 0
b2b2 = 0
2ba3 = 0

ba3 + a1 = 0
−2b2a3 + 2ba1 = 0
−b2a3 − ba1 = 0

−2b2a1 − bb3 − b1 = 0
−b2a2 − b2b3 − bb1 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
b1 = −bb3

b2 = 0
b3 = b3



chapter 2. book solved problems 104

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = y − b

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y − b
dy

Which results in

S = ln (y − b)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y − b

x (bx+ 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 0

Sy =
1

y − b

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x (bx+ 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (Rb+ 1)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫ 1
R (Rb+ 1) dR

S(R) = ln (R)− ln (Rb+ 1) + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (y − b) = ln (x)− ln (bx+ 1) + c2

Which gives

y = b2x+ x ec2 + b

bx+ 1

Summary of solutions found

y = b2x+ x ec2 + b

bx+ 1
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Maple step by step solution

Let’s solve
y − y′x = b(1 + y′x2)

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = −y+b

−b x2−x

• Separate variables
y′

−y+b
= 1

−b x2−x

• Integrate both sides with respect to x∫
y′

−y+b
dx =

∫ 1
−b x2−x

dx+ C1
• Evaluate integral

− ln (−y + b) = ln (bx+ 1)− ln (x) + C1
• Solve for y

y = eC1 b2x+eC1 b−x
eC1 (bx+1)

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 17� �
dsolve(y(x)-x*diff(y(x),x) = b*(1+x^2*diff(y(x),x)),y(x),singsol=all)� �

y(x) = c1x+ b

bx+ 1
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Mathematica DSolve solution

Solving time : 0.043 (sec)
Leaf size : 24� �
DSolve[{y[x]-x*D[y[x],x]==b*(1+x^2*D[y[x],x]),{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → b+ c1x

bx+ 1
y(x) → b
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2.2.4 Problem 5

Solved as first order autonomous ode . . . . . . . . . . . . . . . 108
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 110
Solved using Lie symmetry for first order ode . . . . . . . . . . 114
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 118
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 119
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 119

Internal problem ID [18543]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 24. Problems at
page 62
Problem number : 5
Date solved : Tuesday, January 28, 2025 at 11:55:16 AM
CAS classification : [_quadrature]

Solve

x′ = k(A− nx) (M −mx)

Solved as first order autonomous ode

Time used: 0.647 (sec)

Integrating gives ∫ 1
k (−nx+ A) (−mx+M)dx = dt

ln (−nx+ A)− ln (−mx+M)
k (Am−Mn) = t+ c1

Singular solutions are found by solving

k(−nx+ A) (−mx+M) = 0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

x = A

n

x = M

m
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The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

y = M/m

y = A/n

Figure 2.13: Phase line diagram
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Solving for x gives

x = A

n

x = M

m

x = A e−Ac1km−Akmt+Mc1kn+Mknt −M

e−Ac1km−Akmt+Mc1kn+Mkntn−m

Summary of solutions found

x = A

n

x = M

m

x = A e−Ac1km−Akmt+Mc1kn+Mknt −M

e−Ac1km−Akmt+Mc1kn+Mkntn−m

Solved as first order Exact ode

Time used: 0.437 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)
Therefore

dx = (k(−nx+ A) (−mx+M)) dt
(−k(−nx+ A) (−mx+M)) dt+dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = −k(−nx+ A) (−mx+M)
N(t, x) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives
∂M

∂x
= ∂

∂x
(−k(−nx+ A) (−mx+M))

= ((−2nx+ A)m+Mn) k

And
∂N

∂t
= ∂

∂t
(1)

= 0

Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1((kn(−mx+M) + k(−nx+ A)m)− (0))
= ((−2nx+ A)m+Mn) k
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Since A depends on x, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂t
− ∂M

∂x

)
= − 1

k (−nx+ A) (−mx+M)((0)− (kn(−mx+M) + k(−nx+ A)m))

= (−2nx+ A)m+Mn

(−nx+ A) (−mx+M)
Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dx

= e
∫ (−2nx+A)m+Mn

(−nx+A)(−mx+M) dx

The result of integrating gives

µ = e− ln((−nx+A)(−mx+M))

= 1
(−nx+ A) (−mx+M)

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
(−nx+ A) (−mx+M)(−k(−nx+ A) (−mx+M))

= −k

And

N = µN

= 1
(−nx+ A) (−mx+M)(1)

= 1
(−nx+ A) (−mx+M)

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dx
dt = 0

(−k) +
(

1
(−nx+ A) (−mx+M)

)
dx
dt = 0
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The following equations are now set up to solve for the function φ(t, x)
∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives ∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
−k dt

(3)φ = −kt+ f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 0 + f ′(x)

But equation (2) says that ∂φ
∂x

= 1
(−nx+A)(−mx+M) . Therefore equation (4) becomes

(5)1
(−nx+ A) (−mx+M) = 0 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 1
(−nx+ A) (−mx+M)

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫ ( 1
(−nx+ A) (−mx+M)

)
dx

f(x) = ln (−nx+ A)
Am−Mn

− ln (−mx+M)
Am−Mn

+ c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = −kt+ ln (−nx+ A)
Am−Mn

− ln (−mx+M)
Am−Mn

+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −kt+ ln (−nx+ A)
Am−Mn

− ln (−mx+M)
Am−Mn

Solving for x gives

x = A e−Akmt+Mknt−c1mA+c1nM −M

e−Akmt+Mknt−c1mA+c1nMn−m

Summary of solutions found

x = A e−Akmt+Mknt−c1mA+c1nM −M

e−Akmt+Mknt−c1mA+c1nMn−m

Solved using Lie symmetry for first order ode

Time used: 1.179 (sec)

Writing the ode as

x′ = k(−nx+ A) (−mx+M)
x′ = ω(t, x)

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = ta2 + xa3 + a1

(2E)η = tb2 + xb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + k(−nx+ A) (−mx+M) (b3 − a2)− k2(−nx+ A)2 (−mx+M)2 a3
− (−kn(−mx+M)− k(−nx+ A)m) (tb2 + xb3 + b1) = 0
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Putting the above in normal form gives

−k2m2n2x4a3 + 2Ak2m2nx3a3 + 2M k2mn2x3a3 − A2k2m2x2a3
− 4AM k2mnx2a3 −M2k2n2x2a3 + 2A2M k2mxa3 + 2AM2k2nxa3
− A2M2k2a3 − 2kmntxb2 − kmnx2a2 − kmnx2b3 + Akmtb2 + Akmxa2
+Mkntb2+Mknxa2−2kmnxb1−AMka2+AMkb3+Akmb1+Mknb1+ b2 = 0

Setting the numerator to zero gives

(6E)
−k2m2n2x4a3 + 2Ak2m2nx3a3 + 2M k2mn2x3a3 − A2k2m2x2a3
− 4AM k2mnx2a3 −M2k2n2x2a3 + 2A2M k2mxa3
+ 2AM2k2nxa3 − A2M2k2a3 − 2kmntxb2 − kmnx2a2
− kmnx2b3 + Akmtb2 + Akmxa2 +Mkntb2 +Mknxa2
− 2kmnxb1 − AMka2 + AMkb3 + Akmb1 +Mknb1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {t, x} in them.

{t, x}

The following substitution is now made to be able to collect on all terms with {t, x} in
them

{t = v1, x = v2}

The above PDE (6E) now becomes

(7E)
−k2m2n2a3v

4
2 + 2Ak2m2na3v

3
2 + 2M k2mn2a3v

3
2 − A2k2m2a3v

2
2

− 4AM k2mna3v
2
2 −M2k2n2a3v

2
2 + 2A2M k2ma3v2

+ 2AM2k2na3v2 − A2M2k2a3 − kmna2v
2
2 − 2kmnb2v1v2

− kmnb3v
2
2 + Akma2v2 + Akmb2v1 +Mkna2v2 +Mknb2v1

− 2kmnb1v2 − AMka2 + AMkb3 + Akmb1 +Mknb1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

−2kmnb2v1v2 + (Akmb2 +Mknb2) v1
− k2m2n2a3v

4
2 +

(
2Ak2m2na3 + 2M k2mn2a3

)
v32

+
(
−A2k2m2a3 − 4AM k2mna3 −M2k2n2a3 − kmna2 − kmnb3

)
v22

+
(
2A2M k2ma3 + 2AM2k2na3 + Akma2 +Mkna2 − 2kmnb1

)
v2

− A2M2k2a3 − AMka2 + AMkb3 + Akmb1 +Mknb1 + b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−2kmnb2 = 0
−k2m2n2a3 = 0

2Ak2m2na3 + 2M k2mn2a3 = 0
Akmb2 +Mknb2 = 0

2A2M k2ma3 + 2AM2k2na3 + Akma2 +Mkna2 − 2kmnb1 = 0
−A2k2m2a3 − 4AM k2mna3 −M2k2n2a3 − kmna2 − kmnb3 = 0

−A2M2k2a3 − AMka2 + AMkb3 + Akmb1 +Mknb1 + b2 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 0

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(t, x) ξ
= 0− (k(−nx+ A) (−mx+M)) (1)
= −x2kmn+ Axkm+Mxkn− AMk

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt

ξ
= dx

η
= dS (1)



chapter 2. book solved problems 117

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2kmn+ Axkm+Mxkn− AMk
dy

Which results in

S = − ln (−nx+ A)
k (Am−Mn) +

ln (−mx+M)
k (Am−Mn)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)

Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) = k(−nx+ A) (−mx+M)

Evaluating all the partial derivatives gives

Rt = 1
Rx = 0
St = 0

Sx = − 1
k (−nx+ A) (−mx+M)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
−1 dR

S(R) = −R + c2

To complete the solution, we just need to transform the above back to t, x coordinates.
This results in

− ln (A− nx) + ln (M −mx)
k (Am−Mn) = −t+ c2

Which gives

x = A eAc2km−Akmt−Mc2kn+Mknt −M

eAc2km−Akmt−Mc2kn+Mkntn−m

Summary of solutions found

x = A eAc2km−Akmt−Mc2kn+Mknt −M

eAc2km−Akmt−Mc2kn+Mkntn−m

Maple step by step solution

Let’s solve
x′ = k(A− nx) (M −mx)

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative
x′ = k(A− nx) (M −mx)

• Separate variables
x′

(A−nx)(M−mx) = k

• Integrate both sides with respect to t∫
x′

(A−nx)(M−mx)dt =
∫
kdt+ C1

• Evaluate integral
− ln(M−mx)

Am−Mn
+ ln(A−nx)

Am−Mn
= tk + C1
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• Solve for x
x = A e−Akmt+Mknt−AC1m+C1Mn−M

e−Akmt+Mknt−AC1m+C1Mnn−m

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 47� �
dsolve(diff(x(t),t) = k*(A-n*x(t))*(M-m*x(t)),x(t),singsol=all)� �

x = −A e−k(c1+t)(Am−Mn) +M

−e−k(c1+t)(Am−Mn)n+m

Mathematica DSolve solution

Solving time : 2.839 (sec)
Leaf size : 82� �
DSolve[{D[x[t],t]==k*(A-n*x[t])*(M-m*x[t]),{}},x[t],t,IncludeSingularSolutions->True]� �

x(t) → AeMn(kt+c1) −MeAm(kt+c1)

neMn(kt+c1) −meAm(kt+c1)

x(t) → M

m

x(t) → A

n
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2.2.5 Problem 6

Solved as first order separable ode . . . . . . . . . . . . . . . . 120
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 122
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 127
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 127
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 128

Internal problem ID [18544]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 24. Problems at
page 62
Problem number : 6
Date solved : Tuesday, January 28, 2025 at 11:55:19 AM
CAS classification : [_separable]

Solve

y′ = 1 + 1
x
− 1

y2 + 2 − 1
x (y2 + 2)

Solved as first order separable ode

Time used: 0.176 (sec)

The ode

(2.9)y′ = y2x+ y2 + x+ 1
x (y2 + 2)

is separable as it can be written as

y′ = y2x+ y2 + x+ 1
x (y2 + 2)

= f(x)g(y)

Where

f(x) = x+ 1
x

g(y) = y2 + 1
y2 + 2



chapter 2. book solved problems 121

Integrating gives ∫ 1
g(y) dy =

∫
f(x) dx

∫
y2 + 2
y2 + 1 dy =

∫
x+ 1
x

dx

y + arctan (y) = x+ ln (x) + c1

We now need to find the singular solutions, these are found by finding for what values
g(y) is zero, since we had to divide by this above. Solving g(y) = 0 or

y2 + 1
y2 + 2 = 0

for y gives

y = −i

y = i

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

y + arctan (y) = x+ ln (x) + c1

y = −i

y = i
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Figure 2.14: Slope field plot
y′ = 1 + 1

x
− 1

y2+2 −
1

x(y2+2)

Summary of solutions found

y + arctan (y) = x+ ln (x) + c1

y = −i

y = i

Solved as first order Exact ode

Time used: 0.162 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
1 + 1

x
− 1

y2 + 2 − 1
x (y2 + 2)

)
dx(

−1− 1
x
+ 1

y2 + 2 + 1
x (y2 + 2)

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1− 1
x
+ 1

y2 + 2 + 1
x (y2 + 2)

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1− 1

x
+ 1

y2 + 2 + 1
x (y2 + 2)

)
= − 2y(x+ 1)

x (y2 + 2)2

And

∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

− 2y
(y2 + 2)2

− 2y
x (y2 + 2)2

)
− (0)

)
= − 2y(x+ 1)

x (y2 + 2)2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − x(y2 + 2)

(y2 + 1) (x+ 1)

(
(0)−

(
− 2y
(y2 + 2)2

− 2y
x (y2 + 2)2

))
= − 2y

(y2 + 2) (y2 + 1)

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e

∫
− 2y(

y2+2
)(

y2+1
) dy

The result of integrating gives

µ = e− ln
(
y2+1

)
+ln

(
y2+2

)

= y2 + 2
y2 + 1

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= y2 + 2
y2 + 1

(
−1− 1

x
+ 1

y2 + 2 + 1
x (y2 + 2)

)
= −x− 1

x
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And

N = µN

= y2 + 2
y2 + 1(1)

= y2 + 2
y2 + 1

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−x− 1
x

)
+
(
y2 + 2
y2 + 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x− 1

x
dx

(3)φ = −x− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y2+2
y2+1 . Therefore equation (4) becomes

(5)y2 + 2
y2 + 1 = 0 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = y2 + 2
y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y2 + 2
y2 + 1

)
dy

f(y) = y + arctan (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x− ln (x) + y + arctan (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −x− ln (x) + y + arctan (y)
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0
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3

y(x)
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x

Figure 2.15: Slope field plot
y′ = 1 + 1

x
− 1

y2+2 −
1

x(y2+2)

Summary of solutions found

−x− ln (x) + y + arctan (y) = c1
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Maple step by step solution

Let’s solve
y′ = 1 + 1

x
− 1

y2+2 −
1

x(y2+2)

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = 1 + 1

x
− 1

y2+2 −
1

x(y2+2)

• Separate variables
y′
(
y2+2

)
y2+1 = x+1

x

• Integrate both sides with respect to x∫ y′
(
y2+2

)
y2+1 dx =

∫
x+1
x
dx+ C1

• Evaluate integral
y + arctan (y) = x+ ln (x) + C1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 18� �
dsolve(diff(y(x),x) = 1+1/x-1/(y(x)^2+2)-1/x/(y(x)^2+2),y(x),singsol=all)� �

y(x) = tan (RootOf (ln (x) + x− tan (_Z)− _Z+ c1))
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Mathematica DSolve solution

Solving time : 0.304 (sec)
Leaf size : 19� �
DSolve[{D[y[x],x]==1+1/x-1/(y[x]^2+2)-1/(x*(y[x]^2+2)),{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → InverseFunction[arctan(#1) + #1&][x+ log(x) + c1]
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Solve

y2 = x(y − x) y′

Solved as first order homogeneous class A ode

Time used: 0.279 (sec)

In canonical form, the ODE is

y′ = F (x, y)

= y2

x (y − x) (1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)
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In this case, it can be seen that both M = −y2 and N = x(−y + x) are both homoge-
neous and of the same order n = 2. Therefore this is a homogeneous ode. Since this
ode is homogeneous, it is converted to separable ODE using the substitution u = y

x
, or

y = ux. Hence
dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u2

u− 1
du
dx =

u(x)2
u(x)−1 − u(x)

x

Or

u′(x)−
u(x)2
u(x)−1 − u(x)

x
= 0

Or
u′(x)xu(x)− u′(x)x− u(x) = 0

Or
x(u(x)− 1)u′(x)− u(x) = 0

Which is now solved as separable in u(x).

The ode

(2.10)u′(x) = u(x)
x (u (x)− 1)

is separable as it can be written as

u′(x) = u(x)
x (u (x)− 1)

= f(x)g(u)

Where

f(x) = 1
x

g(u) = u

u− 1
Integrating gives ∫ 1

g(u) du =
∫

f(x) dx∫
u− 1
u

du =
∫ 1

x
dx
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u(x) + ln
(

1
u (x)

)
= ln (x) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u

u− 1 = 0

for u(x) gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

u(x) + ln
(

1
u (x)

)
= ln (x) + c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = −LambertW
(
−e−c1

x

)

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = −LambertW
(
− e−c1

x

)
back to y gives

y = −xLambertW
(
−e−c1

x

)



chapter 2. book solved problems 133

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.16: Slope field plot
y2 = x(y − x) y′

Summary of solutions found

y = 0

y = −xLambertW
(
−e−c1

x

)

Solved as first order homogeneous class D2 ode

Time used: 0.158 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u(x)2 x2 = x(u(x)x− x) (u′(x)x+ u(x))

Which is now solved The ode

(2.11)u′(x) = u(x)
(u (x)− 1)x

is separable as it can be written as

u′(x) = u(x)
(u (x)− 1)x

= f(x)g(u)
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Where

f(x) = 1
x

g(u) = u

u− 1

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫

u− 1
u

du =
∫ 1

x
dx

u(x) + ln
(

1
u (x)

)
= ln (x) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u

u− 1 = 0

for u(x) gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

u(x) + ln
(

1
u (x)

)
= ln (x) + c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = −LambertW
(
−e−c1

x

)
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Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = −LambertW
(
− e−c1

x

)
back to y gives

y = −xLambertW
(
−e−c1

x

)
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Figure 2.17: Slope field plot
y2 = x(y − x) y′

Summary of solutions found

y = 0

y = −xLambertW
(
−e−c1

x

)

Solved as first order homogeneous class Maple C ode

Time used: 0.364 (sec)

Let Y = y − y0 and X = x− x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = (Y (X) + y0)2

(x0 +X) (Y (X) + y0 − x0 −X)
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Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 0
y0 = 0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = Y (X)2

−X2 +XY (X)

In canonical form, the ODE is

Y ′ = F (X,Y )

= Y 2

X (Y −X) (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −Y 2 and N = X(X − Y ) are both
homogeneous and of the same order n = 2. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u2

u− 1
du
dX =

u(X)2
u(X)−1 − u(X)

X

Or
d

dX
u(X)−

u(X)2
u(X)−1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)−

(
d

dX
u(X)

)
X − u(X) = 0
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Or
X(u(X)− 1)

(
d

dX
u(X)

)
− u(X) = 0

Which is now solved as separable in u(X).

The ode

(2.12)d

dX
u(X) = u(X)

X (u (X)− 1)

is separable as it can be written as

d

dX
u(X) = u(X)

X (u (X)− 1)
= f(X)g(u)

Where

f(X) = 1
X

g(u) = u

u− 1

Integrating gives ∫ 1
g(u) du =

∫
f(X) dX∫

u− 1
u

du =
∫ 1

X
dX

u(X) + ln
(

1
u (X)

)
= ln (X) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u

u− 1 = 0

for u(X) gives

u(X) = 0
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Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

u(X) + ln
(

1
u (X)

)
= ln (X) + c1

u(X) = 0

Solving for u(X) gives
u(X) = 0

u(X) = −LambertW
(
−e−c1

X

)

Converting u(X) = 0 back to Y (X) gives

Y (X) = 0

Converting u(X) = −LambertW
(
− e−c1

X

)
back to Y (X) gives

Y (X) = −X LambertW
(
−e−c1

X

)
Using the solution for Y (X)

Y (X) = 0 (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

y = 0
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Using the solution for Y (X)

Y (X) = −X LambertW
(
−e−c1

X

)
(A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

y = −xLambertW
(
−e−c1

x

)
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Figure 2.18: Slope field plot
y2 = x(y − x) y′
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Solved as first order Exact ode

Time used: 0.211 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−x(y − x)) dy =
(
−y2

)
dx(

y2
)
dx+(−x(y − x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2

N(x, y) = −x(y − x)
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y2
)

= 2y

And
∂N

∂x
= ∂

∂x
(−x(y − x))

= −y + 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2y

is an integrating factor.
Therefore by multiplying M = y2 and N = −x(y − x) by this integrating factor the
ode becomes exact. The new M,N are

M = y

x2

N = −y − x

xy

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y − x

xy

)
dy =

(
− y

x2

)
dx( y

x2

)
dx+

(
−y − x

xy

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

x2

N(x, y) = −y − x

xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

( y

x2

)
= 1

x2

And

∂N

∂x
= ∂

∂x

(
−y − x

xy

)
= 1

x2
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y

x2 dx

(3)φ = −y

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −y−x
xy

. Therefore equation (4) becomes

(5)−y − x

xy
= −1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −y

x
+ ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −y

x
+ ln (y)

Solving for y gives

y = e−LambertW
(
− ec1

x

)
+c1
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Figure 2.19: Slope field plot
y2 = x(y − x) y′

Summary of solutions found

y = e−LambertW
(
− ec1

x

)
+c1
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Solved as first order isobaric ode

Time used: 0.115 (sec)

Solving for y′ gives

(1)y′ = y2

x (y − x)

Each of the above ode’s is now solved An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = y2

x (y − x) (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 1

Since the ode is isobaric of order m = 1, then the substitution

y = uxm

= ux

Converts the ODE to a separable in u(x). Performing this substitution gives

u(x) + xu′(x) = xu(x)2

xu (x)− x

The ode

(2.13)u′(x) = u(x)
(u (x)− 1)x

is separable as it can be written as

u′(x) = u(x)
(u (x)− 1)x

= f(x)g(u)

Where

f(x) = 1
x

g(u) = u

u− 1
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫

u− 1
u

du =
∫ 1

x
dx

u(x) + ln
(

1
u (x)

)
= ln (x) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u

u− 1 = 0

for u(x) gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

u(x) + ln
(

1
u (x)

)
= ln (x) + c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = −LambertW
(
−e−c1

x

)

Converting u(x) = 0 back to y gives

y

x
= 0
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Converting u(x) = −LambertW
(
− e−c1

x

)
back to y gives

y

x
= −LambertW

(
−e−c1

x

)
Solving for y gives

y = 0

y = −xLambertW
(
−e−c1

x

)
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Figure 2.20: Slope field plot
y2 = x(y − x) y′

Summary of solutions found

y = 0

y = −xLambertW
(
−e−c1

x

)
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Solved using Lie symmetry for first order ode

Time used: 0.474 (sec)

Writing the ode as

y′ = y2

x (y − x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+
y2(b3 − a2)
x (y − x) − y4a3

x2 (y − x)2
−
(
− y2

x2 (y − x) +
y2

x (y − x)2
)
(xa2+ya3+a1)

−
(

2y
x (y − x) −

y2

x (y − x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x4b2 − x2y2a2 + x2y2b3 − 2x y3a3 + 2x2yb1 − 2x y2a1 − x y2b1 + y3a1

x2 (−y + x)2
= 0

Setting the numerator to zero gives

(6E)x4b2 − x2y2a2 + x2y2b3 − 2x y3a3 + 2x2yb1 − 2x y2a1 − x y2b1 + y3a1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1v

2
2 − 2a3v1v32 + b2v

4
1 + b3v

2
1v

2
2 − 2a1v1v22 + a1v

3
2 + 2b1v21v2 − b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
4
1 + (b3 − a2) v21v22 + 2b1v21v2 − 2a3v1v32 + (−2a1 − b1) v1v22 + a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b2 = 0

−2a3 = 0
2b1 = 0

−2a1 − b1 = 0
b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

y2

x (y − x)

)
(x)

= yx

−y + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

yx
−y+x

dy

Which results in

S = −y

x
+ ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2

x (y − x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

x2

Sy =
−y + x

yx

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
0 dR + c2

S(R) = c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (y)x− y

x
= c2

Which gives

y = e−LambertW
(
− ec2

x

)
+c2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2

x(y−x)
dS
dR

= 0

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = ln (y)x− y

x

–4

–2

0

2

4

S(R)

–4 –2 2 4

R

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.21: Slope field plot
y2 = x(y − x) y′

Summary of solutions found

y = e−LambertW
(
− ec2

x

)
+c2
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Solved as first order ode of type dAlembert

Time used: 15.526 (sec)

Let p = y′ the ode becomes

y2 = x(y − x) p

Solving for y from the above results in

(1)y =
(
p

2 +
√
p2 − 4p
2

)
x

(2)y =
(
p

2 −
√
p2 − 4p
2

)
x

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved.

Solving ode 1A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p

2 +
√
p (p− 4)

2
g = 0

Hence (2) becomes

(2A)p

2 −
√

p (p− 4)
2 =

(
x

2 + xp

2
√
p2 − 4p

− x√
p2 − 4p

)
p′(x)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p

2 −
√
p (p− 4)

2 = 0
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Solving the above for p results in

p1 = 0

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

(3)p′(x) =
p(x)
2 −

√
p(x)(p(x)−4)

2
x
2 +

xp(x)

2
√

p(x)2−4p(x)
− x√

p(x)2−4p(x)

This ODE is now solved for p(x). No inversion is needed.

The ode

(2.14)p′(x) =

(
p(x)−

√
p (x) (p (x)− 4)

)√
p (x) (p (x)− 4)

x
(√

p (x) (p (x)− 4) + p (x)− 2
)

is separable as it can be written as

p′(x) =

(
p(x)−

√
p (x) (p (x)− 4)

)√
p (x) (p (x)− 4)

x
(√

p (x) (p (x)− 4) + p (x)− 2
)

= f(x)g(p)

Where

f(x) = 1
x

g(p) =

(
p−

√
p (p− 4)

)√
p (p− 4)√

p (p− 4) + p− 2

Integrating gives ∫ 1
g(p) dp =

∫
f(x) dx

∫ √
p (p− 4) + p− 2(

p−
√

p (p− 4)
)√

p (p− 4)
dp =

∫ 1
x
dx
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ln

 1√√
p (x) (p (x)− 4) + p (x)− 2

√
p (x)

+
√
p (x) (p (x)− 4)

2 + p(x)
2 = ln (x)+ c1

We now need to find the singular solutions, these are found by finding for what values
g(p) is zero, since we had to divide by this above. Solving g(p) = 0 or

(
p−

√
p (p− 4)

)√
p (p− 4)√

p (p− 4) + p− 2
= 0

for p(x) gives

p(x) = 0
p(x) = 4

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln

 1√√
p (x) (p (x)− 4) + p (x)− 2

√
p (x)

+
√

p (x) (p (x)− 4)
2 + p(x)

2 = ln (x)+ c1

p(x) = 0

p(x) = 4

Solving for p(x) gives

p(x) = 0

p(x) = 4

p(x) = −
LambertW

(
−

√
2 e−c1
2x

)2
LambertW

(
−

√
2 e−c1
2x

)
+ 1

p(x) = −
LambertW

(√
2 e−c1
2x

)2
LambertW

(√
2 e−c1
2x

)
+ 1
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Substituing the above solution for p in (2A) gives

y = 0
y = 2x

y =
x

(√
LambertW

(
−

√
2 e−c1
2x

)2(
LambertW

(
−

√
2 e−c1
2x

)
+2
)2

(
LambertW

(
−

√
2 e−c1
2x

)
+1
)2 LambertW

(
−

√
2 e−c1
2x

)
− LambertW

(
−

√
2 e−c1
2x

)2
+

√
LambertW

(
−

√
2 e−c1
2x

)2(
LambertW

(
−

√
2 e−c1
2x

)
+2
)2

(
LambertW

(
−

√
2 e−c1
2x

)
+1
)2

)
2 LambertW

(
−

√
2 e−c1
2x

)
+ 2

y =
x

(√
LambertW

(√
2 e−c1
2x

)2(
LambertW

(√
2 e−c1
2x

)
+2
)2

(
LambertW

(√
2 e−c1
2x

)
+1
)2 LambertW

(√
2 e−c1
2x

)
− LambertW

(√
2 e−c1
2x

)2
+

√
LambertW

(√
2 e−c1
2x

)2(
LambertW

(√
2 e−c1
2x

)
+2
)2

(
LambertW

(√
2 e−c1
2x

)
+1
)2

)
2 LambertW

(√
2 e−c1
2x

)
+ 2

Solving ode 2A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p

2 −
√

p (p− 4)
2

g = 0

Hence (2) becomes

(2A)p

2 +
√
p (p− 4)

2 =
(
x

2 − xp

2
√
p2 − 4p

+ x√
p2 − 4p

)
p′(x)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p

2 +
√

p (p− 4)
2 = 0

Solving the above for p results in

p1 = 0
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Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

(3)p′(x) =
p(x)
2 +

√
p(x)(p(x)−4)

2
x
2 −

xp(x)

2
√

p(x)2−4p(x)
+ x√

p(x)2−4p(x)

This ODE is now solved for p(x). No inversion is needed.

The ode

(2.15)p′(x) = −

(√
p (x) (p (x)− 4) + p(x)

)√
p (x) (p (x)− 4)

x
(
−
√
p (x) (p (x)− 4) + p (x)− 2

)
is separable as it can be written as

p′(x) = −

(√
p (x) (p (x)− 4) + p(x)

)√
p (x) (p (x)− 4)

x
(
−
√
p (x) (p (x)− 4) + p (x)− 2

)
= f(x)g(p)

Where

f(x) = −1
x

g(p) =

(
p+

√
p (p− 4)

)√
p (p− 4)

−
√
p (p− 4) + p− 2

Integrating gives ∫ 1
g(p) dp =

∫
f(x) dx

∫ −
√

p (p− 4) + p− 2(
p+

√
p (p− 4)

)√
p (p− 4)

dp =
∫

−1
x
dx

ln

 √
p (x)√√

p (x) (p (x)− 4) + p (x)− 2

+
√

p (x) (p (x)− 4)
2 − p(x)

2 = ln
(
1
x

)
+ c2
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We now need to find the singular solutions, these are found by finding for what values
g(p) is zero, since we had to divide by this above. Solving g(p) = 0 or(

p+
√

p (p− 4)
)√

p (p− 4)

−
√

p (p− 4) + p− 2
= 0

for p(x) gives

p(x) = 0
p(x) = 4

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln

 √
p (x)√√

p (x) (p (x)− 4) + p (x)− 2

+
√

p (x) (p (x)− 4)
2 − p(x)

2 = ln
(
1
x

)
+ c2

p(x) = 0

p(x) = 4

Substituing the above solution for p in (2A) gives

y = x



(
RootOf

(
_Z2x2 − 2_Z2e

2c2_Z+2_Z+4
_Z + 4_Zx2 + 4x2

)
+ 2
)2

4RootOf
(
_Z2x2 − 2_Z2e

2c2_Z+2_Z+4
_Z + 4_Zx2 + 4x2

) −

√
2

√√√√√√√√√√√
RootOf

_Z2
x2−2_Z2

e
2c2_Z+2_Z+4

_Z +4_Zx2+4x2

+2

2



RootOf

_Z2
x2−2_Z2

e
2c2_Z+2_Z+4

_Z +4_Z x2+4x2

+2


2

2RootOf

_Z2
x2−2_Z2

e
2c2_Z+2_Z+4

_Z +4_Z x2+4x2


−4


RootOf

_Z2
x2−2_Z2

e
2c2_Z+2_Z+4

_Z +4_Zx2+4x2


4


y = 0

y = 2x
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The solution
y = 2x

was found not to satisfy the ode or the IC. Hence it is removed.

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.22: Slope field plot
y2 = x(y − x) y′

Summary of solutions found

y = 0
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y = x



(
RootOf

(
_Z2x2 − 2_Z2e

2c2_Z+2_Z+4
_Z + 4_Zx2 + 4x2

)
+ 2
)2

4RootOf
(
_Z2x2 − 2_Z2e

2c2_Z+2_Z+4
_Z + 4_Zx2 + 4x2

)

−

√
2

√√√√√√√√√√√
RootOf

_Z2
x2−2_Z2

e
2c2_Z+2_Z+4

_Z +4_Zx2+4x2

+2

2



RootOf

_Z2
x2−2_Z2

e
2c2_Z+2_Z+4

_Z +4_Z x2+4x2

+2


2

2RootOf

_Z2
x2−2_Z2

e
2c2_Z+2_Z+4

_Z +4_Z x2+4x2


−4


RootOf

_Z2
x2−2_Z2

e
2c2_Z+2_Z+4

_Z +4_Zx2+4x2


4


y

=
x

(√
LambertW

(
−

√
2 e−c1
2x

)2(
LambertW

(
−

√
2 e−c1
2x

)
+2
)2

(
LambertW

(
−

√
2 e−c1
2x

)
+1
)2 LambertW

(
−

√
2 e−c1
2x

)
− LambertW

(
−

√
2 e−c1
2x

)2
+

√
LambertW

(
−

√
2 e−c1
2x

)2(
LambertW

(
−

√
2 e−c1
2x

)
+2
)2

(
LambertW

(
−

√
2 e−c1
2x

)
+1
)2

)
2 LambertW

(
−

√
2 e−c1
2x

)
+ 2

y

=
x

(√
LambertW

(√
2 e−c1
2x

)2(
LambertW

(√
2 e−c1
2x

)
+2
)2

(
LambertW

(√
2 e−c1
2x

)
+1
)2 LambertW

(√
2 e−c1
2x

)
− LambertW

(√
2 e−c1
2x

)2
+

√
LambertW

(√
2 e−c1
2x

)2(
LambertW

(√
2 e−c1
2x

)
+2
)2

(
LambertW

(√
2 e−c1
2x

)
+1
)2

)
2 LambertW

(√
2 e−c1
2x

)
+ 2
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Maple step by step solution

Let’s solve
y2 = x(y − x) y′

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = y2

x(y−x)

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.016 (sec)
Leaf size : 17� �
dsolve(y(x)^2 = x*(-x+y(x))*diff(y(x),x),y(x),singsol=all)� �

y(x) = −xLambertW
(
−e−c1

x

)
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Mathematica DSolve solution

Solving time : 2.01 (sec)
Leaf size : 25� �
DSolve[{y[x]^2==x*(y[x]-x)*D[y[x],x],{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → −xW

(
−e−c1

x

)
y(x) → 0
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2.3.2 Problem 2

Solved as first order homogeneous class A ode . . . . . . . . . . 163
Solved as first order homogeneous class D2 ode . . . . . . . . . 167
Solved as first order homogeneous class Maple C ode . . . . . . 170
Solved as first order Bernoulli ode . . . . . . . . . . . . . . . . . 176
Solved as first order isobaric ode . . . . . . . . . . . . . . . . . 179
Solved using Lie symmetry for first order ode . . . . . . . . . . 182
Solved as first order ode of type dAlembert . . . . . . . . . . . 188
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 200
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 201
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 201

Internal problem ID [18546]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 29. Problems at
page 81
Problem number : 2
Date solved : Tuesday, January 28, 2025 at 11:55:39 AM
CAS classification : [[_homogeneous, ‘class A‘], _rational, _Bernoulli]

Solve

2x2y + y3 − x3y′ = 0

Solved as first order homogeneous class A ode

Time used: 0.467 (sec)

In canonical form, the ODE is

y′ = F (x, y)

= y(2x2 + y2)
x3 (1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)
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In this case, it can be seen that both M = y(2x2 + y2) and N = x3 are both homoge-
neous and of the same order n = 3. Therefore this is a homogeneous ode. Since this
ode is homogeneous, it is converted to separable ODE using the substitution u = y

x
, or

y = ux. Hence
dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u3 + 2u

du
dx = u(x)3 + u(x)

x

Or
u′(x)− u(x)3 + u(x)

x
= 0

Or
−u(x)3 + u′(x)x− u(x) = 0

Which is now solved as separable in u(x).

The ode

(2.16)u′(x) =
u(x)

(
u(x)2 + 1

)
x

is separable as it can be written as

u′(x) =
u(x)

(
u(x)2 + 1

)
x

= f(x)g(u)

Where

f(x) = 1
x

g(u) = u
(
u2 + 1

)
Integrating gives ∫ 1

g(u) du =
∫

f(x) dx∫ 1
u (u2 + 1) du =

∫ 1
x
dx
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ln

 u(x)√
u (x)2 + 1

 = ln (x) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u
(
u2 + 1

)
= 0

for u(x) gives

u(x) = 0
u(x) = −i

u(x) = i

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln

 u(x)√
u (x)2 + 1

 = ln (x) + c1

u(x) = 0

u(x) = −i

u(x) = i

Solving for u(x) gives
u(x) = 0

u(x) = −i

u(x) = i

u(x) = ec1x√
1− x2e2c1

u(x) = − ec1x√
1− x2e2c1
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Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = −i back to y gives

y = −ix

Converting u(x) = i back to y gives

y = ix

Converting u(x) = ec1x√
1−x2e2c1

back to y gives

y = x2ec1√
1− x2e2c1

Converting u(x) = − ec1x√
1−x2e2c1

back to y gives

y = − x2ec1√
1− x2e2c1

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.23: Slope field plot
2x2y + y3 − x3y′ = 0
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Summary of solutions found
y = 0
y = −ix

y = ix

y = x2ec1√
1− x2e2c1

y = − x2ec1√
1− x2e2c1

Solved as first order homogeneous class D2 ode

Time used: 0.142 (sec)

Applying change of variables y = u(x)x, then the ode becomes

2x3u(x) + u(x)3 x3 − x3(u′(x)x+ u(x)) = 0

Which is now solved The ode

(2.17)u′(x) =
u(x)

(
u(x)2 + 1

)
x

is separable as it can be written as

u′(x) =
u(x)

(
u(x)2 + 1

)
x

= f(x)g(u)

Where

f(x) = 1
x

g(u) = u
(
u2 + 1

)
Integrating gives ∫ 1

g(u) du =
∫

f(x) dx∫ 1
u (u2 + 1) du =

∫ 1
x
dx
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ln

 u(x)√
u (x)2 + 1

 = ln (x) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u
(
u2 + 1

)
= 0

for u(x) gives

u(x) = 0
u(x) = −i

u(x) = i

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln

 u(x)√
u (x)2 + 1

 = ln (x) + c1

u(x) = 0

u(x) = −i

u(x) = i

Solving for u(x) gives
u(x) = 0

u(x) = −i

u(x) = i

u(x) = ec1x√
1− x2e2c1

u(x) = − ec1x√
1− x2e2c1
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Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = −i back to y gives

y = −ix

Converting u(x) = i back to y gives

y = ix

Converting u(x) = ec1x√
1−x2e2c1

back to y gives

y = x2ec1√
1− x2e2c1

Converting u(x) = − ec1x√
1−x2e2c1

back to y gives

y = − x2ec1√
1− x2e2c1
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Figure 2.24: Slope field plot
2x2y + y3 − x3y′ = 0
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Summary of solutions found
y = 0
y = −ix

y = ix

y = x2ec1√
1− x2e2c1

y = − x2ec1√
1− x2e2c1

Solved as first order homogeneous class Maple C ode

Time used: 0.546 (sec)

Let Y = y − y0 and X = x− x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) =

(Y (X) + y0)
(
(Y (X) + y0)2 + 2(x0 +X)2

)
(x0 +X)3

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 0
y0 = 0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 2Y (X)X2 + Y (X)3

X3

In canonical form, the ODE is

Y ′ = F (X,Y )

= Y (2X2 + Y 2)
X3 (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )
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In this case, it can be seen that both M = Y (2X2 + Y 2) and N = X3 are both
homogeneous and of the same order n = 3. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u3 + 2u

du
dX = u(X)3 + u(X)

X

Or
d

dX
u(X)− u(X)3 + u(X)

X
= 0

Or
−u(X)3 +

(
d

dX
u(X)

)
X − u(X) = 0

Which is now solved as separable in u(X).

The ode

(2.18)d

dX
u(X) =

u(X)
(
u(X)2 + 1

)
X

is separable as it can be written as

d

dX
u(X) =

u(X)
(
u(X)2 + 1

)
X

= f(X)g(u)

Where

f(X) = 1
X

g(u) = u
(
u2 + 1

)
Integrating gives ∫ 1

g(u) du =
∫

f(X) dX∫ 1
u (u2 + 1) du =

∫ 1
X

dX
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ln

 u(X)√
u (X)2 + 1

 = ln (X) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u
(
u2 + 1

)
= 0

for u(X) gives

u(X) = 0
u(X) = −i

u(X) = i

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln

 u(X)√
u (X)2 + 1

 = ln (X) + c1

u(X) = 0

u(X) = −i

u(X) = i

Solving for u(X) gives
u(X) = 0

u(X) = −i

u(X) = i

u(X) = ec1X√
1−X2e2c1

u(X) = − ec1X√
1−X2e2c1
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Converting u(X) = 0 back to Y (X) gives

Y (X) = 0

Converting u(X) = −i back to Y (X) gives

Y (X) = −iX

Converting u(X) = i back to Y (X) gives

Y (X) = iX

Converting u(X) = ec1X√
1−X2e2c1

back to Y (X) gives

Y (X) = X2ec1√
1−X2e2c1

Converting u(X) = − ec1X√
1−X2e2c1

back to Y (X) gives

Y (X) = − X2ec1√
1−X2e2c1

Using the solution for Y (X)

Y (X) = 0 (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

y = 0

Using the solution for Y (X)

Y (X) = −iX (A)
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And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

y = −ix

Using the solution for Y (X)

Y (X) = iX (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

y = ix

Using the solution for Y (X)

Y (X) = X2ec1√
1−X2e2c1

(A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x
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Then the solution in y becomes using EQ (A)

y = x2ec1√
1− x2e2c1

Using the solution for Y (X)

Y (X) = − X2ec1√
1−X2e2c1

(A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

y = − x2ec1√
1− x2e2c1
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Figure 2.25: Slope field plot
2x2y + y3 − x3y′ = 0
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Solved as first order Bernoulli ode

Time used: 0.179 (sec)

In canonical form, the ODE is

y′ = F (x, y)

= y(2x2 + y2)
x3

This is a Bernoulli ODE.
y′ =

(
2
x

)
y +

(
1
x3

)
y3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

Comparing this to (1) shows that

f0 =
2
x

f1 =
1
x3

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution v = y1−n in equation (3) which generates a new
ODE in v(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
2
x

f1(x) =
1
x3

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= 2
x y2

+ 1
x3 (4)
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Let

v = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

v′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−v′(x)
2 = 2v(x)

x
+ 1

x3

v′ = −4v
x

− 2
x3 (7)

The above now is a linear ODE in v(x) which is now solved.

In canonical form a linear first order is

v′(x) + q(x)v(x) = p(x)

Comparing the above to the given ode shows that

q(x) = 4
x

p(x) = − 2
x3

The integrating factor µ is

µ = e
∫
q dx

= e
∫ 4

x
dx

= x4

The ode becomes
d
dx(µv) = µp

d
dx(µv) = (µ)

(
− 2
x3

)
d
dx
(
v x4) = (x4)(− 2

x3

)
d
(
v x4) = (−2x) dx
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Integrating gives

v x4 =
∫

−2x dx

= −x2 + c1

Dividing throughout by the integrating factor x4 gives the final solution

v(x) = −x2 + c1
x4

The substitution v = y1−n is now used to convert the above solution back to y which
results in

1
y2

= −x2 + c1
x4

Solving for y gives

y = x2
√
−x2 + c1

y = − x2
√
−x2 + c1
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Figure 2.26: Slope field plot
2x2y + y3 − x3y′ = 0
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Summary of solutions found

y = x2
√
−x2 + c1

y = − x2
√
−x2 + c1

Solved as first order isobaric ode

Time used: 0.234 (sec)

Solving for y′ gives

(1)y′ = y(y2 + 2x2)
x3

Each of the above ode’s is now solved An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = y(y2 + 2x2)

x3 (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 1

Since the ode is isobaric of order m = 1, then the substitution

y = uxm

= ux

Converts the ODE to a separable in u(x). Performing this substitution gives

u(x) + xu′(x) =
u(x)

(
x2u(x)2 + 2x2)

x2

The ode

(2.19)u′(x) =
u(x)

(
u(x)2 + 1

)
x

is separable as it can be written as

u′(x) =
u(x)

(
u(x)2 + 1

)
x

= f(x)g(u)
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Where

f(x) = 1
x

g(u) = u
(
u2 + 1

)
Integrating gives ∫ 1

g(u) du =
∫

f(x) dx∫ 1
u (u2 + 1) du =

∫ 1
x
dx

ln

 u(x)√
u (x)2 + 1

 = ln (x) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u
(
u2 + 1

)
= 0

for u(x) gives

u(x) = 0
u(x) = −i

u(x) = i

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln

 u(x)√
u (x)2 + 1

 = ln (x) + c1

u(x) = 0

u(x) = −i

u(x) = i
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Solving for u(x) gives
u(x) = 0

u(x) = −i

u(x) = i

u(x) = ec1x√
1− x2e2c1

u(x) = − ec1x√
1− x2e2c1

Converting u(x) = 0 back to y gives
y

x
= 0

Converting u(x) = −i back to y gives
y

x
= −i

Converting u(x) = i back to y gives
y

x
= i

Converting u(x) = ec1x√
1−x2e2c1

back to y gives

y

x
= ec1x√

1− x2e2c1

Converting u(x) = − ec1x√
1−x2e2c1

back to y gives

y

x
= − ec1x√

1− x2e2c1

Solving for y gives
y = 0
y = −ix

y = ix

y = x2ec1√
1− x2e2c1

y = − x2ec1√
1− x2e2c1
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Figure 2.27: Slope field plot
2x2y + y3 − x3y′ = 0

Summary of solutions found
y = 0
y = −ix

y = ix

y = x2ec1√
1− x2e2c1

y = − x2ec1√
1− x2e2c1

Solved using Lie symmetry for first order ode

Time used: 0.923 (sec)

Writing the ode as

y′ = y(2x2 + y2)
x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

y(2x2 + y2) (b3 − a2)
x3 − y2(2x2 + y2)2 a3

x6

−
(
4y
x2 − 3y(2x2 + y2)

x4

)
(xa2 + ya3 + a1)

−
(
2x2 + y2

x3 + 2y2
x3

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−b2x
6 + 2x4y2a3 + 3x4y2b2 − 2x3y3a2 + 2x3y3b3 + x2y4a3 + y6a3 + 2x5b1 − 2x4ya1 + 3x3y2b1 − 3x2y3a1

x6

= 0

Setting the numerator to zero gives

(6E)−b2x
6 − 2x4y2a3 − 3x4y2b2 + 2x3y3a2 − 2x3y3b3 − x2y4a3

− y6a3 − 2x5b1 + 2x4ya1 − 3x3y2b1 + 3x2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)2a2v31v32 − 2a3v41v22 − a3v
2
1v

4
2 − a3v

6
2 − b2v

6
1 − 3b2v41v22

− 2b3v31v32 + 2a1v41v2 + 3a1v21v32 − 2b1v51 − 3b1v31v22 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−b2v
6
1 − 2b1v51 + (−2a3 − 3b2) v41v22 + 2a1v41v2

+ (2a2 − 2b3) v31v32 − 3b1v31v22 − a3v
2
1v

4
2 + 3a1v21v32 − a3v

6
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
3a1 = 0
−a3 = 0
−3b1 = 0
−2b1 = 0
−b2 = 0

2a2 − 2b3 = 0
−2a3 − 3b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y(2x2 + y2)

x3

)
(x)

= −x2y − y3

x2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2y−y3

x2

dy

Which results in

S = ln (x2 + y2)
2 − ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(2x2 + y2)
x3
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x

x2 + y2

Sy = − x2

y (x2 + y2)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
− 1
R

dR

S(R) = − ln (R) + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (x2 + y2)
2 − ln (y) = − ln (x) + c2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
2x2+y2

)
x3

dS
dR

= − 1
R

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = ln (x2 + y2)
2 − ln (y)

–4

–2

0

2

4

S(R)

–4 –2 2 4

R

Solving for y gives

y = x2
√
e2c2 − x2

y = − x2
√
e2c2 − x2
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Figure 2.28: Slope field plot
2x2y + y3 − x3y′ = 0
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Summary of solutions found

y = x2
√
e2c2 − x2

y = − x2
√
e2c2 − x2

Solved as first order ode of type dAlembert

Time used: 84.512 (sec)

Let p = y′ the ode becomes

−x3p+ 2x2y + y3 = 0

Solving for y from the above results in

(1)y =
((

108p+ 12
√
81p2 + 96

)1/3
6 − 4(

108p+ 12
√
81p2 + 96

)1/3
)
x

(2)

y =

−
(
108p+ 12

√
81p2 + 96

)1/3
12 + 2(

108p+ 12
√
81p2 + 96

)1/3

+
i
√
3
((

108p+12
√

81p2+96
)1/3

6 + 4(
108p+12

√
81p2+96

)1/3
)

2

x

(3)

y =

−
(
108p+ 12

√
81p2 + 96

)1/3
12 + 2(

108p+ 12
√
81p2 + 96

)1/3

−
i
√
3
((

108p+12
√

81p2+96
)1/3

6 + 4(
108p+12

√
81p2+96

)1/3
)

2

x
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This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved.

Solving ode 1A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f =
(
108p+ 12

√
81p2 + 96

)2/3 − 24
6
(
108p+ 12

√
81p2 + 96

)1/3
g = 0

Hence (2) becomes

(2A)p

−
(
108p+ 12

√
81p2 + 96

)2/3 − 24
6
(
108p+ 12

√
81p2 + 96

)1/3 =
(

6x(
108p+ 12

√
81p2 + 96

)2/3+ 54xp(
108p+ 12

√
81p2 + 96

)2/3√81p2 + 96
+ 144x(

108p+ 12
√
81p2 + 96

)4/3+ 1296xp(
108p+ 12

√
81p2 + 96

)4/3√81p2 + 96

)
p′(x)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p−
(
108p+ 12

√
81p2 + 96

)2/3 − 24
6
(
108p+ 12

√
81p2 + 96

)1/3 = 0

Solving the above for p results in

p1 = 0

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = 0
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The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

(3)p′(x)

=

p(x)−

(
108p(x)+12

√
81p(x)2+96

)2/3
−24

6
(
108p(x)+12

√
81p(x)2+96

)1/3

6x(
108p(x)+12

√
81p(x)2+96

)2/3 + 54xp(x)(
108p(x)+12

√
81p(x)2+96

)2/3√
81p(x)2+96

+ 144x(
108p(x)+12

√
81p(x)2+96

)4/3 + 1296xp(x)(
108p(x)+12

√
81p(x)2+96

)4/3√
81p(x)2+96

This ODE is now solved for p(x). No inversion is needed.

The ode

(2.20)p′(x) =

−

√
81p (x)2 + 96

((
108p(x) + 12

√
81p (x)2 + 96

)2/3

− 6p(x)
(
108p(x) + 12

√
81p (x)2 + 96

)1/3

− 24
)

3
((

108p (x) + 12
√

81p (x)2 + 96
)2/3

+ 24
)
x

is separable as it can be written as

p′(x) = −

√
81p (x)2 + 96

((
108p(x) + 12

√
81p (x)2 + 96

)2/3

− 6p(x)
(
108p(x) + 12

√
81p (x)2 + 96

)1/3

− 24
)

3
((

108p (x) + 12
√
81p (x)2 + 96

)2/3

+ 24
)
x

= f(x)g(p)

Where

f(x) = − 1
3x

g(p) =

√
81p2 + 96

((
108p+ 12

√
81p2 + 96

)2/3 − 6p
(
108p+ 12

√
81p2 + 96

)1/3 − 24
)

(
108p+ 12

√
81p2 + 96

)2/3 + 24

Integrating gives∫ 1
g(p) dp =

∫
f(x) dx

∫ (
108p+ 12

√
81p2 + 96

)2/3 + 24
√
81p2 + 96

((
108p+ 12

√
81p2 + 96

)2/3 − 6p
(
108p+ 12

√
81p2 + 96

)1/3 − 24
) dp=

∫
− 1
3x dx



chapter 2. book solved problems 191

∫ p(x) (
108τ + 12

√
81τ 2 + 96

)2/3 + 24
√
81τ 2 + 96

((
108τ + 12

√
81τ 2 + 96

)2/3 − 6τ
(
108τ + 12

√
81τ 2 + 96

)1/3 − 24
)dτ = ln

(
1

x1/3

)
+c1

We now need to find the singular solutions, these are found by finding for what values
g(p) is zero, since we had to divide by this above. Solving g(p) = 0 or

√
81p2 + 96

((
108p+ 12

√
81p2 + 96

)2/3 − 6p
(
108p+ 12

√
81p2 + 96

)1/3 − 24
)

(
108p+ 12

√
81p2 + 96

)2/3 + 24
= 0

for p(x) gives

p(x) = 0

p(x) = −4i
√
6

9

p(x) = 4i
√
6

9

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

∫ p(x) (
108τ + 12

√
81τ 2 + 96

)2/3 + 24
√
81τ 2 + 96

((
108τ + 12

√
81τ 2 + 96

)2/3 − 6τ
(
108τ + 12

√
81τ 2 + 96

)1/3 − 24
)dτ = ln

(
1

x1/3

)
+c1

p(x) = 0

p(x) = −4i
√
6

9

p(x) = 4i
√
6

9
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Substituing the above solution for p in (2A) gives

y =

x


108RootOf

(
−3
(∫ _Z −

(
108τ+12

√
81τ2+96

)2/3
+24

√
81τ2+96

(
−
(
108τ+12

√
81τ2+96

)2/3
+6τ

(
108τ+12

√
81τ2+96

)1/3
+24

)dτ
)

− ln (x) + 3c1

)
+ 12

√√√√81RootOf
(
−3
(∫ _Z−

(
108τ+12

√
81τ2+96

)2/3
+24

√
81τ2+96

(
−
(
108τ+12

√
81τ2+96

)2/3
+6τ

(
108τ+12

√
81τ2+96

)1/3
+24

)dτ
)

− ln (x) + 3c1

)2

+ 96

2/3

− 24


6

108RootOf
(
−3
(∫ _Z −

(
108τ+12

√
81τ2+96

)2/3
+24

√
81τ2+96

(
−
(
108τ+12

√
81τ2+96

)2/3
+6τ

(
108τ+12

√
81τ2+96

)1/3
+24

)dτ
)

− ln (x) + 3c1

)
+ 12

√√√√81RootOf
(
−3
(∫ _Z −

(
108τ+12

√
81τ2+96

)2/3
+24

√
81τ2+96

(
−
(
108τ+12

√
81τ2+96

)2/3
+6τ

(
108τ+12

√
81τ2+96

)1/3
+24

)dτ
)

− ln (x) + 3c1

)2

+ 96

1/3

y = 0

y = −i
√
6x
3

y = i
√
6x
3

Solving ode 2A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f =
(
i
√
3− 1

) (
108p+ 12

√
81p2 + 96

)2/3 + 24i
√
3 + 24

12
(
108p+ 12

√
81p2 + 96

)1/3
g = 0

Hence (2) becomes

(2A)p

−
(
i
√
3− 1

) (
108p+ 12

√
81p2 + 96

)2/3 + 24i
√
3 + 24

12
(
108p+ 12

√
81p2 + 96

)1/3 =
(

3ix
√
3(

108p+ 12
√
81p2 + 96

)2/3+ 27ix
√
3 p(

108p+ 12
√
81p2 + 96

)2/3√81p2 + 96
− 3x(

108p+ 12
√
81p2 + 96

)2/3− 27xp(
108p+ 12

√
81p2 + 96

)2/3√81p2 + 96
− 72ix

√
3(

108p+ 12
√
81p2 + 96

)4/3− 648ix
√
3 p(

108p+ 12
√
81p2 + 96

)4/3√81p2 + 96
− 72x(

108p+ 12
√
81p2 + 96

)4/3− 648xp(
108p+ 12

√
81p2 + 96

)4/3√81p2 + 96

)
p′(x)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p−
(
i
√
3− 1

) (
108p+ 12

√
81p2 + 96

)2/3 + 24i
√
3 + 24

12
(
108p+ 12

√
81p2 + 96

)1/3 = 0
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Solving the above for p results in

p1 =
i
(
3i
√
3− 3 + 3

√
30 + 30i

√
3
)√

3 + 21i
√
3 + 27− 3

√
30 + 30i

√
3

12
√
3i
√
3− 3 + 3

√
30 + 30i

√
3

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

(3)p′(x)

=

p(x)−
(
i
√
3−1

)(
108p(x)+12

√
81p(x)2+96

)2/3
+24i

√
3+24

12
(
108p(x)+12

√
81p(x)2+96

)1/3

3ix
√
3(

108p(x)+12
√

81p(x)2+96
)2/3 + 27ix

√
3 p(x)(

108p(x)+12
√

81p(x)2+96
)2/3√

81p(x)2+96
− 3x(

108p(x)+12
√

81p(x)2+96
)2/3 − 27xp(x)(

108p(x)+12
√

81p(x)2+96
)2/3√

81p(x)2+96
− 72ix

√
3(

108p(x)+12
√

81p(x)2+96
)4/3 − 648ix

√
3 p(x)(

108p(x)+12
√

81p(x)2+96
)4/3√

81p(x)2+96
− 72x(

108p(x)+12
√

81p(x)2+96
)4/3 − 648xp(x)(

108p(x)+12
√

81p(x)2+96
)4/3√

81p(x)2+96

This ODE is now solved for p(x). No inversion is needed.

The ode

(2.21)p′(x) =

−

√
81p (x)2 + 96

(
√
3
(
108p(x) + 12

√
81p (x)2 + 96

)2/3

+ 24
√
3 + 12ip(x)

(
108p(x) + 12

√
81p (x)2 + 96

)1/3

+ i

(
108p(x) + 12

√
81p (x)2 + 96

)2/3

− 24i
)

3
(
√
3
(
108p (x) + 12

√
81p (x)2 + 96

)2/3

− 24
√
3 + i

(
108p (x) + 12

√
81p (x)2 + 96

)2/3

+ 24i
)
x

is separable as it can be written as

p′(x) = −

√
81p (x)2 + 96

(
√
3
(
108p(x) + 12

√
81p (x)2 + 96

)2/3

+ 24
√
3 + 12ip(x)

(
108p(x) + 12

√
81p (x)2 + 96

)1/3

+ i

(
108p(x) + 12

√
81p (x)2 + 96

)2/3

− 24i
)

3
(
√
3
(
108p (x) + 12

√
81p (x)2 + 96

)2/3

− 24
√
3 + i

(
108p (x) + 12

√
81p (x)2 + 96

)2/3

+ 24i
)
x

= f(x)g(p)

Where

f(x) = − 1
3x

g(p) =

√
81p2 + 96

((
108p+ 12

√
81p2 + 96

)2/3√3 + 24
√
3 + 12ip

(
108p+ 12

√
81p2 + 96

)1/3 + i
(
108p+ 12

√
81p2 + 96

)2/3 − 24i
)

(
108p+ 12

√
81p2 + 96

)2/3√3− 24
√
3 + i

(
108p+ 12

√
81p2 + 96

)2/3 + 24i
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Integrating gives∫ 1
g(p) dp =

∫
f(x) dx

∫ (
108p+ 12

√
81p2 + 96

)2/3√3− 24
√
3 + i

(
108p+ 12

√
81p2 + 96

)2/3 + 24i
√
81p2 + 96

((
108p+ 12

√
81p2 + 96

)2/3√3 + 24
√
3 + 12ip

(
108p+ 12

√
81p2 + 96

)1/3 + i
(
108p+ 12

√
81p2 + 96

)2/3 − 24i
) dp=

∫
− 1
3x dx

∫ p(x) (
108τ + 12

√
81τ 2 + 96

)2/3√3− 24
√
3 + i

(
108τ + 12

√
81τ 2 + 96

)2/3 + 24i
√
81τ 2 + 96

((
108τ + 12

√
81τ 2 + 96

)2/3√3 + 24
√
3 + 12iτ

(
108τ + 12

√
81τ 2 + 96

)1/3 + i
(
108τ + 12

√
81τ 2 + 96

)2/3 − 24i
)dτ = ln

(
1

x1/3

)
+c2

We now need to find the singular solutions, these are found by finding for what values
g(p) is zero, since we had to divide by this above. Solving g(p) = 0 or

√
81p2 + 96

((
108p+ 12

√
81p2 + 96

)2/3√3 + 24
√
3 + 12ip

(
108p+ 12

√
81p2 + 96

)1/3 + i
(
108p+ 12

√
81p2 + 96

)2/3 − 24i
)

(
108p+ 12

√
81p2 + 96

)2/3√3− 24
√
3 + i

(
108p+ 12

√
81p2 + 96

)2/3 + 24i
=0

for p(x) gives

p(x) = −4i
√
6

9

p(x) = 4i
√
6

9

p(x) =
i
(
3i
√
3− 3 + 3

√
30 + 30i

√
3
)√

3 + 21i
√
3 + 27− 3

√
30 + 30i

√
3

12
√

3i
√
3− 3 + 3

√
30 + 30i

√
3

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

∫ p(x) (
108τ + 12

√
81τ 2 + 96

)2/3√3− 24
√
3 + i

(
108τ + 12

√
81τ 2 + 96

)2/3 + 24i
√
81τ 2 + 96

((
108τ + 12

√
81τ 2 + 96

)2/3√3 + 24
√
3 + 12iτ

(
108τ + 12

√
81τ 2 + 96

)1/3 + i
(
108τ + 12

√
81τ 2 + 96

)2/3 − 24i
)dτ = ln

(
1

x1/3

)
+c2

p(x) = −4i
√
6

9
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p(x) = 4i
√
6

9

p(x) =
i
(
3i
√
3− 3 + 3

√
30 + 30i

√
3
)√

3 + 21i
√
3 + 27− 3

√
30 + 30i

√
3

12
√

3i
√
3− 3 + 3

√
30 + 30i

√
3

Substituing the above solution for p in (2A) gives

y =

x

(i√3− 1
)108RootOf

(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3+i

(
108τ+12

√
81τ2+96

)2/3
+24i

√
81τ2+96

((
108τ+12

√
81τ2+96

)2/3√
3+24

√
3+12iτ

(
108τ+12

√
81τ2+96

)1/3
+i
(
108τ+12

√
81τ2+96

)2/3
−24i

)dτ
)

− ln (x) + 3c2

)
+ 12

√√√√81RootOf
(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3+i

(
108τ+12

√
81τ2+96

)2/3
+24i

√
81τ2+96

((
108τ+12

√
81τ2+96

)2/3√
3+24

√
3+12iτ

(
108τ+12

√
81τ2+96

)1/3
+i
(
108τ+12

√
81τ2+96

)2/3
−24i

)dτ
)

− ln (x) + 3c2

)2

+ 96

2/3

+ 24i
√
3 + 24


12

108RootOf
(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3+i

(
108τ+12

√
81τ2+96

)2/3
+24i

√
81τ2+96

((
108τ+12

√
81τ2+96

)2/3√
3+24

√
3+12iτ

(
108τ+12

√
81τ2+96

)1/3
+i
(
108τ+12

√
81τ2+96

)2/3
−24i

)dτ
)

− ln (x) + 3c2

)
+ 12

√√√√81RootOf
(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3+i

(
108τ+12

√
81τ2+96

)2/3
+24i

√
81τ2+96

((
108τ+12

√
81τ2+96

)2/3√
3+24

√
3+12iτ

(
108τ+12

√
81τ2+96

)1/3
+i
(
108τ+12

√
81τ2+96

)2/3
−24i

)dτ
)

− ln (x) + 3c2

)2

+ 96

1/3

y = 2i
√
3
√
2x

3

y = i
√
6x
3

y = ix

Solving ode 3A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −
(
1 + i

√
3
) (

108p+ 12
√
81p2 + 96

)2/3 + 24i
√
3− 24

12
(
108p+ 12

√
81p2 + 96

)1/3
g = 0

Hence (2) becomes

(2A)p

+
(
1 + i

√
3
) (

108p+ 12
√
81p2 + 96

)2/3 + 24i
√
3− 24

12
(
108p+ 12

√
81p2 + 96

)1/3 =
(
− 3ix

√
3(

108p+ 12
√
81p2 + 96

)2/3− 27ix
√
3 p(

108p+ 12
√
81p2 + 96

)2/3√81p2 + 96
+ 72ix

√
3(

108p+ 12
√
81p2 + 96

)4/3+ 648ix
√
3 p(

108p+ 12
√
81p2 + 96

)4/3√81p2 + 96
− 3x(

108p+ 12
√
81p2 + 96

)2/3− 27xp(
108p+ 12

√
81p2 + 96

)2/3√81p2 + 96
− 72x(

108p+ 12
√
81p2 + 96

)4/3− 648xp(
108p+ 12

√
81p2 + 96

)4/3√81p2 + 96

)
p′(x)
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The singular solution is found by setting dp
dx

= 0 in the above which gives

p+
(
1 + i

√
3
) (

108p+ 12
√
81p2 + 96

)2/3 + 24i
√
3− 24

12
(
108p+ 12

√
81p2 + 96

)1/3 = 0

Solving the above for p results in

p1 = −
i
(
−3i

√
3− 3 + 3

√
30− 30i

√
3
)√

3 + 21i
√
3− 27 + 3

√
30− 30i

√
3

12
√

−3i
√
3− 3 + 3

√
30− 30i

√
3

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = −ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

(3)p′(x)

=

p(x) +
(
1+i

√
3
)(

108p(x)+12
√

81p(x)2+96
)2/3

+24i
√
3−24

12
(
108p(x)+12

√
81p(x)2+96

)1/3

− 3ix
√
3(

108p(x)+12
√

81p(x)2+96
)2/3 − 27ix

√
3 p(x)(

108p(x)+12
√

81p(x)2+96
)2/3√

81p(x)2+96
+ 72ix

√
3(

108p(x)+12
√

81p(x)2+96
)4/3 + 648ix

√
3 p(x)(

108p(x)+12
√

81p(x)2+96
)4/3√

81p(x)2+96
− 3x(

108p(x)+12
√

81p(x)2+96
)2/3 − 27xp(x)(

108p(x)+12
√

81p(x)2+96
)2/3√

81p(x)2+96
− 72x(

108p(x)+12
√

81p(x)2+96
)4/3 − 648xp(x)(

108p(x)+12
√

81p(x)2+96
)4/3√

81p(x)2+96

This ODE is now solved for p(x). No inversion is needed.

The ode

(2.22)p′(x) =

−

(
√
3
(
108p(x) + 12

√
81p (x)2 + 96

)2/3

+ 24
√
3− 12ip(x)

(
108p(x) + 12

√
81p (x)2 + 96

)1/3

− i

(
108p(x) + 12

√
81p (x)2 + 96

)2/3

+ 24i
)√

81p (x)2 + 96

3x
(
√
3
(
108p (x) + 12

√
81p (x)2 + 96

)2/3

− 24
√
3− i

(
108p (x) + 12

√
81p (x)2 + 96

)2/3

− 24i
)

is separable as it can be written as

p′(x) = −

(
√
3
(
108p(x) + 12

√
81p (x)2 + 96

)2/3

+ 24
√
3− 12ip(x)

(
108p(x) + 12

√
81p (x)2 + 96

)1/3

− i

(
108p(x) + 12

√
81p (x)2 + 96

)2/3

+ 24i
)√

81p (x)2 + 96

3x
(
√
3
(
108p (x) + 12

√
81p (x)2 + 96

)2/3

− 24
√
3− i

(
108p (x) + 12

√
81p (x)2 + 96

)2/3

− 24i
)

= f(x)g(p)
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Where

f(x) = − 1
3x

g(p) =

((
108p+ 12

√
81p2 + 96

)2/3√3 + 24
√
3− 12ip

(
108p+ 12

√
81p2 + 96

)1/3 − i
(
108p+ 12

√
81p2 + 96

)2/3 + 24i
)√

81p2 + 96(
108p+ 12

√
81p2 + 96

)2/3√3− 24
√
3− i

(
108p+ 12

√
81p2 + 96

)2/3 − 24i

Integrating gives∫ 1
g(p) dp =

∫
f(x) dx

∫ (
108p+ 12

√
81p2 + 96

)2/3√3− 24
√
3− i

(
108p+ 12

√
81p2 + 96

)2/3 − 24i((
108p+ 12

√
81p2 + 96

)2/3√3 + 24
√
3− 12ip

(
108p+ 12

√
81p2 + 96

)1/3 − i
(
108p+ 12

√
81p2 + 96

)2/3 + 24i
)√

81p2 + 96
dp=

∫
− 1
3x dx

∫ p(x) (
108τ + 12

√
81τ 2 + 96

)2/3√3− 24
√
3− i

(
108τ + 12

√
81τ 2 + 96

)2/3 − 24i((
108τ + 12

√
81τ 2 + 96

)2/3√3 + 24
√
3− 12iτ

(
108τ + 12

√
81τ 2 + 96

)1/3 − i
(
108τ + 12

√
81τ 2 + 96

)2/3 + 24i
)√

81τ 2 + 96
dτ = ln

(
1

x1/3

)
+c3

We now need to find the singular solutions, these are found by finding for what values
g(p) is zero, since we had to divide by this above. Solving g(p) = 0 or

((
108p+ 12

√
81p2 + 96

)2/3√3 + 24
√
3− 12ip

(
108p+ 12

√
81p2 + 96

)1/3 − i
(
108p+ 12

√
81p2 + 96

)2/3 + 24i
)√

81p2 + 96(
108p+ 12

√
81p2 + 96

)2/3√3− 24
√
3− i

(
108p+ 12

√
81p2 + 96

)2/3 − 24i
=0

for p(x) gives

p(x) = −4i
√
6

9

p(x) = 4i
√
6

9

p(x) = −
i
(
−3i

√
3− 3 + 3

√
30− 30i

√
3
)√

3 + 21i
√
3− 27 + 3

√
30− 30i

√
3

12
√

−3i
√
3− 3 + 3

√
30− 30i

√
3

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.
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Therefore the solutions found are

∫ p(x) (
108τ + 12

√
81τ 2 + 96

)2/3√3− 24
√
3− i

(
108τ + 12

√
81τ 2 + 96

)2/3 − 24i((
108τ + 12

√
81τ 2 + 96

)2/3√3 + 24
√
3− 12iτ

(
108τ + 12

√
81τ 2 + 96

)1/3 − i
(
108τ + 12

√
81τ 2 + 96

)2/3 + 24i
)√

81τ 2 + 96
dτ = ln

(
1

x1/3

)
+c3

p(x) = −4i
√
6

9

p(x) = 4i
√
6

9

p(x) = −
i
(
−3i

√
3− 3 + 3

√
30− 30i

√
3
)√

3 + 21i
√
3− 27 + 3

√
30− 30i

√
3

12
√

−3i
√
3− 3 + 3

√
30− 30i

√
3

Substituing the above solution for p in (2A) gives

y = −

x

(1 + i
√
3
)108RootOf

(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3−i

(
108τ+12

√
81τ2+96

)2/3
−24i((

108τ+12
√
81τ2+96

)2/3√
3+24

√
3−12iτ

(
108τ+12

√
81τ2+96

)1/3
−i
(
108τ+12

√
81τ2+96

)2/3
+24i

)√
81τ2+96

dτ

)
− ln (x) + 3c3

)
+ 12

√√√√81RootOf
(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3−i

(
108τ+12

√
81τ2+96

)2/3
−24i((

108τ+12
√
81τ2+96

)2/3√
3+24

√
3−12iτ

(
108τ+12

√
81τ2+96

)1/3
−i
(
108τ+12

√
81τ2+96

)2/3
+24i

)√
81τ2+96

dτ

)
− ln (x) + 3c3

)2

+ 96

2/3

+ 24i
√
3− 24


12

108RootOf
(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3−i

(
108τ+12

√
81τ2+96

)2/3
−24i((

108τ+12
√
81τ2+96

)2/3√
3+24

√
3−12iτ

(
108τ+12

√
81τ2+96

)1/3
−i
(
108τ+12

√
81τ2+96

)2/3
+24i

)√
81τ2+96

dτ

)
− ln (x) + 3c3

)
+ 12

√√√√81RootOf
(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3−i

(
108τ+12

√
81τ2+96

)2/3
−24i((

108τ+12
√
81τ2+96

)2/3√
3+24

√
3−12iτ

(
108τ+12

√
81τ2+96

)1/3
−i
(
108τ+12

√
81τ2+96

)2/3
+24i

)√
81τ2+96

dτ

)
− ln (x) + 3c3

)2

+ 96

1/3

y = −i
√
3
√
2x

3

y = −2i
√
6x
3

y = −ix

The solution

y = −2i
√
6x
3

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = −i
√
6x
3
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was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = i
√
6x
3

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = −i
√
3
√
2x

3

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = 2i
√
3
√
2x

3

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y =

−

x

(1 + i
√
3
)108RootOf

(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3−i

(
108τ+12

√
81τ2+96

)2/3
−24i((

108τ+12
√
81τ2+96

)2/3√
3+24

√
3−12iτ

(
108τ+12

√
81τ2+96

)1/3
−i
(
108τ+12

√
81τ2+96

)2/3
+24i

)√
81τ2+96

dτ

)
− ln (x) + 3c3

)
+ 12

√√√√81RootOf
(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3−i

(
108τ+12

√
81τ2+96

)2/3
−24i((

108τ+12
√
81τ2+96

)2/3√
3+24

√
3−12iτ

(
108τ+12

√
81τ2+96

)1/3
−i
(
108τ+12

√
81τ2+96

)2/3
+24i

)√
81τ2+96

dτ

)
− ln (x) + 3c3

)2

+ 96

2/3

+ 24i
√
3− 24


12

108RootOf
(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3−i

(
108τ+12

√
81τ2+96

)2/3
−24i((

108τ+12
√
81τ2+96

)2/3√
3+24

√
3−12iτ

(
108τ+12

√
81τ2+96

)1/3
−i
(
108τ+12

√
81τ2+96

)2/3
+24i

)√
81τ2+96

dτ

)
− ln (x) + 3c3

)
+ 12

√√√√81RootOf
(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3−i

(
108τ+12

√
81τ2+96

)2/3
−24i((

108τ+12
√
81τ2+96

)2/3√
3+24

√
3−12iτ

(
108τ+12

√
81τ2+96

)1/3
−i
(
108τ+12

√
81τ2+96

)2/3
+24i

)√
81τ2+96

dτ

)
− ln (x) + 3c3

)2

+ 96

1/3

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y

=

x

(i√3− 1
)108RootOf

(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3+i

(
108τ+12

√
81τ2+96

)2/3
+24i

√
81τ2+96

((
108τ+12

√
81τ2+96

)2/3√
3+24

√
3+12iτ

(
108τ+12

√
81τ2+96

)1/3
+i
(
108τ+12

√
81τ2+96

)2/3
−24i

)dτ
)

− ln (x) + 3c2

)
+ 12

√√√√81RootOf
(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3+i

(
108τ+12

√
81τ2+96

)2/3
+24i

√
81τ2+96

((
108τ+12

√
81τ2+96

)2/3√
3+24

√
3+12iτ

(
108τ+12

√
81τ2+96

)1/3
+i
(
108τ+12

√
81τ2+96

)2/3
−24i

)dτ
)

− ln (x) + 3c2

)2

+ 96

2/3

+ 24i
√
3 + 24


12

108RootOf
(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3+i

(
108τ+12

√
81τ2+96

)2/3
+24i

√
81τ2+96

((
108τ+12

√
81τ2+96

)2/3√
3+24

√
3+12iτ

(
108τ+12

√
81τ2+96

)1/3
+i
(
108τ+12

√
81τ2+96

)2/3
−24i

)dτ
)

− ln (x) + 3c2

)
+ 12

√√√√81RootOf
(
−3
(∫ _Z

(
108τ+12

√
81τ2+96

)2/3√
3−24

√
3+i

(
108τ+12

√
81τ2+96

)2/3
+24i

√
81τ2+96

((
108τ+12

√
81τ2+96

)2/3√
3+24

√
3+12iτ

(
108τ+12

√
81τ2+96

)1/3
+i
(
108τ+12

√
81τ2+96

)2/3
−24i

)dτ
)

− ln (x) + 3c2

)2

+ 96

1/3

was found not to satisfy the ode or the IC. Hence it is removed.
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Figure 2.29: Slope field plot
2x2y + y3 − x3y′ = 0

Summary of solutions found

y = 0
y = −ix

y = ix

y

=

x


108RootOf

(
−3
(∫ _Z −

(
108τ+12

√
81τ2+96

)2/3
+24

√
81τ2+96

(
−
(
108τ+12

√
81τ2+96

)2/3
+6τ

(
108τ+12

√
81τ2+96

)1/3
+24

)dτ
)

− ln (x) + 3c1

)
+ 12

√√√√81RootOf
(
−3
(∫ _Z −

(
108τ+12

√
81τ2+96

)2/3
+24

√
81τ2+96

(
−
(
108τ+12

√
81τ2+96

)2/3
+6τ

(
108τ+12

√
81τ2+96

)1/3
+24

)dτ
)

− ln (x) + 3c1

)2

+ 96

2/3

− 24


6

108RootOf
(
−3
(∫ _Z−

(
108τ+12

√
81τ2+96

)2/3
+24

√
81τ2+96

(
−
(
108τ+12

√
81τ2+96

)2/3
+6τ

(
108τ+12

√
81τ2+96

)1/3
+24

)dτ
)

− ln (x) + 3c1

)
+ 12

√√√√81RootOf
(
−3
(∫ _Z −

(
108τ+12

√
81τ2+96

)2/3
+24

√
81τ2+96

(
−
(
108τ+12

√
81τ2+96

)2/3
+6τ

(
108τ+12

√
81τ2+96

)1/3
+24

)dτ
)

− ln (x) + 3c1

)2

+ 96

1/3

Maple step by step solution

Let’s solve
2x2y + y3 − x3y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = −−y3−2x2y

x3
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 34� �
dsolve(2*x^2*y(x)+y(x)^3-x^3*diff(y(x),x) = 0,y(x),singsol=all)� �

y(x) = x2
√
−x2 + c1

y(x) = − x2
√
−x2 + c1

Mathematica DSolve solution

Solving time : 0.173 (sec)
Leaf size : 47� �
DSolve[{2*x^2*y[x]+y[x]^3-x^3*D[y[x],x]==0,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → − x2
√
−x2 + c1

y(x) → x2
√
−x2 + c1

y(x) → 0
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2.3.3 Problem 3

Solved as first order polynomial type ode . . . . . . . . . . . . . 202
Solved as first order homogeneous class Maple C ode . . . . . . 208
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 214
Solved using Lie symmetry for first order ode . . . . . . . . . . 217
Solved as first order ode of type dAlembert . . . . . . . . . . . 221
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 225
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 226
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 227

Internal problem ID [18547]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 29. Problems at
page 81
Problem number : 3
Date solved : Tuesday, January 28, 2025 at 11:57:08 AM
CAS classification :
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

Solve

2ax+ by + (2cy + bx+ e) y′ = g

Solved as first order polynomial type ode

Time used: 0.962 (sec)

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two
lines. Writing the ODE in the form

y′ = a1x+ b1y + c1
a2x+ b2y + c3

Where a1 = −2a, b1 = −b, c1 = g, a2 = b, b2 = 2c, c2 = e. There are now two possible
solution methods. The first case is when the two lines a1x+ b1y + c1,a2x+ b2y + c3 are
not parallel and the second case is if they are parallel. If they are not parallel, then
the transformation X = x− x0, Y = y − y0 converts the ODE to a homogeneous ODE.
The values x0, y0 have to be determined. If they are parallel then a transformation
U(x) = a1x+ b1y converts the given ODE in y to a separable ODE in U(x). The first
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case is when a1
b1

6= a2
b2

and the second case when a1
b1

= a2
b2
. From the above we see that

a1
b1

6= a2
b2
. Hence this is case one where lines are not parallel. Using the transformation

X = x− x0

Y = y − y0

Where the constants x0, y0 are obtained by solving the following two linear algebraic
equations

a1x0 + b1y0 + c1 = 0
a2x0 + b2y0 + c2 = 0

Substituting the values for a1, b1, c1, a2, b2, c2 gives

−2ax0 − by0 + g = 0
bx0 + 2cy0 + e = 0

Solving for x0, y0 from the above gives

x0 =
be+ 2cg
4ac− b2

y0 = −2ae+ bg

4ac− b2

Therefore the transformation becomes

X = x− |be+ 2cg
4ac− b2

|

Y = y + |2ae+ bg

4ac− b2
|

Using this transformation in 2ax+ by + (2cy + bx+ e) y′ = g result in

dY

dX
= −2Xa− Y b

Xb+ 2Y c

This is now a homogeneous ODE which will now be solved for Y (X). In canonical form,
the ODE is

Y ′ = F (X,Y )

= −2Xa+ Y b

Xb+ 2Y c
(1)
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An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −2Xa− Y b and N = Xb + 2Y c are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −bu− 2a

2cu+ b

du
dX =

−bu(X)−2a
2cu(X)+b

− u(X)
X

Or
d

dX
u(X)−

−bu(X)−2a
2cu(X)+b

− u(X)
X

= 0

Or

2
(

d

dX
u(X)

)
u(X)Xc+

(
d

dX
u(X)

)
Xb+ 2u(X)2 c+ 2bu(X) + 2a = 0

Or
X(2cu(X) + b)

(
d

dX
u(X)

)
+ 2u(X)2 c+ 2bu(X) + 2a = 0

Which is now solved as separable in u(X).

The ode

(2.23)d

dX
u(X) = −

2
(
u(X)2 c+ bu(X) + a

)
X (2cu (X) + b)

is separable as it can be written as

d

dX
u(X) = −

2
(
u(X)2 c+ bu(X) + a

)
X (2cu (X) + b)

= f(X)g(u)
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Where

f(X) = − 2
X

g(u) = u2c+ bu+ a

2cu+ b

Integrating gives ∫ 1
g(u) du =

∫
f(X) dX∫ 2cu+ b

u2c+ bu+ a
du =

∫
− 2
X

dX

ln
(
u(X)2 c+ bu(X) + a

)
= ln

(
1
X2

)
+ c2

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u2c+ bu+ a

2cu+ b
= 0

for u(X) gives

u(X) = −b+
√
−4ac+ b2

2c

u(X) = −b+
√
−4ac+ b2

2c

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(
u(X)2 c+ bu(X) + a

)
= ln

(
1
X2

)
+ c2

u(X) = −b+
√
−4ac+ b2

2c

u(X) = −b+
√
−4ac+ b2

2c
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Solving for u(X) gives

u(X) = −b+
√
−4ac+ b2

2c

u(X) = −b+
√
−4ac+ b2

2c

u(X) = −Xb+
√
−4X2ac+X2b2 + 4 ec2c

2cX

u(X) = −Xb+
√
−4X2ac+X2b2 + 4 ec2c

2cX

Converting u(X) = −b+
√
−4ac+b2

2c back to Y (X) gives

Y (X) =
X
(
−b+

√
−4ac+ b2

)
2c

Converting u(X) = − b+
√
−4ac+b2

2c back to Y (X) gives

Y (X) = −
X
(
b+

√
−4ac+ b2

)
2c

Converting u(X) = −Xb+
√
−4X2ac+X2b2+4 ec2c

2cX back to Y (X) gives

Y (X) = −Xb+
√
−4X2ac+X2b2 + 4 ec2c

2c

Converting u(X) = −Xb+
√
−4X2ac+X2b2+4 ec2c

2cX back to Y (X) gives

Y (X) = −Xb+
√
−4X2ac+X2b2 + 4 ec2c

2c
The solution is

Y (X) = −Xb+
√
−4X2ac+X2b2 + 4 ec2c

2c
Replacing Y = y − y0, X = x− x0 gives

y + 2ae+ bg

4ac− b2
=

−
(
x− be+2cg

4ac−b2

)
b+

√
−4
(
x− be+2cg

4ac−b2

)2
ac+

(
x− be+2cg

4ac−b2

)2
b2 + 4 ec2c

2c

Or

y =
−
(
x− be+2cg

4ac−b2

)
b+

√
−4
(
x− be+2cg

4ac−b2

)2
ac+

(
x− be+2cg

4ac−b2

)2
b2 + 4 ec2c

2c − 2ae+ bg

4ac− b2
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Which simplifies to

y =
−bx− e+

√
(16c2a−4c b2)ec2−16

((
ax− g

2
)
c− b(bx+e)

4

)2
4ac−b2

2c
The solution is

Y (X) = −Xb+
√
−4X2ac+X2b2 + 4 ec2c

2c
Replacing Y = y − y0, X = x− x0 gives

y + 2ae+ bg

4ac− b2
= −

(
x− be+2cg

4ac−b2

)
b+

√
−4
(
x− be+2cg

4ac−b2

)2
ac+

(
x− be+2cg

4ac−b2

)2
b2 + 4 ec2c

2c
Or

y = −

(
x− be+2cg

4ac−b2

)
b+

√
−4
(
x− be+2cg

4ac−b2

)2
ac+

(
x− be+2cg

4ac−b2

)2
b2 + 4 ec2c

2c − 2ae+ bg

4ac− b2

Which simplifies to

y =
−bx− e− 2

√
(4c2a−c b2)ec2−4

((
ax− g

2
)
c− b(bx+e)

4

)2
4ac−b2

2c
The solution is

Y (X) =
X
(
−b+

√
−4ac+ b2

)
2c

Replacing Y = y − y0, X = x− x0 gives

y + 2ae+ bg

4ac− b2
=
(
x− be+2cg

4ac−b2

) (
−b+

√
−4ac+ b2

)
2c

Or

y =
(
x− be+2cg

4ac−b2

) (
−b+

√
−4ac+ b2

)
2c − 2ae+ bg

4ac− b2

The solution is
Y (X) = −

X
(
b+

√
−4ac+ b2

)
2c

Replacing Y = y − y0, X = x− x0 gives

y + 2ae+ bg

4ac− b2
= −

(
x− be+2cg

4ac−b2

) (
b+

√
−4ac+ b2

)
2c

Or

y = −
(
x− be+2cg

4ac−b2

) (
b+

√
−4ac+ b2

)
2c − 2ae+ bg

4ac− b2
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Summary of solutions found

y =
−bx− e− 2

√
(4c2a−c b2)ec2−4

((
ax− g

2
)
c− b(bx+e)

4

)2
4ac−b2

2c

y =
−bx− e+

√
(16c2a−4c b2)ec2−16

((
ax− g

2
)
c− b(bx+e)

4

)2
4ac−b2

2c

y =
(
x− be+2cg

4ac−b2

) (
−b+

√
−4ac+ b2

)
2c − 2ae+ bg

4ac− b2

y = −
(
x− be+2cg

4ac−b2

) (
b+

√
−4ac+ b2

)
2c − 2ae+ bg

4ac− b2

Solved as first order homogeneous class Maple C ode

Time used: 0.613 (sec)

Let Y = y − y0 and X = x− x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − b(Y (X) + y0) + 2a(x0 +X)− g

2c (Y (X) + y0) + b (x0 +X) + e

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 =
be+ 2cg
4ac− b2

y0 =
−2ae− bg

4ac− b2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −

2aX + bY (X) + 2a(be+2cg)
4ac−b2

+ b(−2ae−bg)
4ac−b2

− g

bX + 2cY (X) + b(be+2cg)
4ac−b2

+ 2c(−2ae−bg)
4ac−b2

+ e

In canonical form, the ODE is

Y ′ = F (X,Y )

= −2aX + bY

bX + 2cY (1)



chapter 2. book solved problems 209

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −2aX − bY and N = bX + 2cY are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −bu− 2a

2cu+ b

du
dX =

−bu(X)−2a
2cu(X)+b

− u(X)
X

Or
d

dX
u(X)−

−bu(X)−2a
2cu(X)+b

− u(X)
X

= 0

Or

2
(

d

dX
u(X)

)
u(X)Xc+

(
d

dX
u(X)

)
Xb+ 2u(X)2 c+ 2bu(X) + 2a = 0

Or
X(2cu(X) + b)

(
d

dX
u(X)

)
+ 2u(X)2 c+ 2bu(X) + 2a = 0

Which is now solved as separable in u(X).

The ode

(2.24)d

dX
u(X) = −

2
(
u(X)2 c+ bu(X) + a

)
X (2cu (X) + b)

is separable as it can be written as

d

dX
u(X) = −

2
(
u(X)2 c+ bu(X) + a

)
X (2cu (X) + b)

= f(X)g(u)
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Where

f(X) = − 2
X

g(u) = u2c+ bu+ a

2cu+ b

Integrating gives ∫ 1
g(u) du =

∫
f(X) dX∫ 2cu+ b

u2c+ bu+ a
du =

∫
− 2
X

dX

ln
(
u(X)2 c+ bu(X) + a

)
= ln

(
1
X2

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u2c+ bu+ a

2cu+ b
= 0

for u(X) gives

u(X) = −b+
√
−4ac+ b2

2c

u(X) = −b+
√
−4ac+ b2

2c

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(
u(X)2 c+ bu(X) + a

)
= ln

(
1
X2

)
+ c1

u(X) = −b+
√
−4ac+ b2

2c

u(X) = −b+
√
−4ac+ b2

2c
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Solving for u(X) gives

u(X) = −b+
√
−4ac+ b2

2c

u(X) = −b+
√
−4ac+ b2

2c

u(X) = −bX +
√
−4X2ac+ b2X2 + 4 ec1c

2cX

u(X) = −bX +
√
−4X2ac+ b2X2 + 4 ec1c

2cX

Converting u(X) = −b+
√
−4ac+b2

2c back to Y (X) gives

Y (X) =
X
(
−b+

√
−4ac+ b2

)
2c

Converting u(X) = − b+
√
−4ac+b2

2c back to Y (X) gives

Y (X) = −
X
(
b+

√
−4ac+ b2

)
2c

Converting u(X) = −bX+
√
−4X2ac+b2X2+4 ec1c

2cX back to Y (X) gives

Y (X) = −bX +
√
−4X2ac+ b2X2 + 4 ec1c

2c

Converting u(X) = − bX+
√
−4X2ac+b2X2+4 ec1c

2cX back to Y (X) gives

Y (X) = −bX +
√
−4X2ac+ b2X2 + 4 ec1c

2c

Using the solution for Y (X)

Y (X) = −bX +
√
−4X2ac+ b2X2 + 4 ec1c

2c (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = y + −2ae− bg

4ac− b2

X = x+ be+ 2cg
4ac− b2

Then the solution in y becomes using EQ (A)

y − −2ae− bg

4ac− b2
=

−
(
x− be+2cg

4ac−b2

)
b+

√
−4
(
x− be+2cg

4ac−b2

)2
ac+

(
x− be+2cg

4ac−b2

)2
b2 + 4 ec1c

2c

Using the solution for Y (X)

Y (X) = −bX +
√
−4X2ac+ b2X2 + 4 ec1c

2c (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + −2ae− bg

4ac− b2

X = x+ be+ 2cg
4ac− b2

Then the solution in y becomes using EQ (A)

y − −2ae− bg

4ac− b2
= −

(
x− be+2cg

4ac−b2

)
b+

√
−4
(
x− be+2cg

4ac−b2

)2
ac+

(
x− be+2cg

4ac−b2

)2
b2 + 4 ec1c

2c

Using the solution for Y (X)

Y (X) =
X
(
−b+

√
−4ac+ b2

)
2c (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = y + −2ae− bg

4ac− b2

X = x+ be+ 2cg
4ac− b2

Then the solution in y becomes using EQ (A)

y − −2ae− bg

4ac− b2
=
(
x− be+2cg

4ac−b2

) (
−b+

√
−4ac+ b2

)
2c

Using the solution for Y (X)

Y (X) = −
X
(
b+

√
−4ac+ b2

)
2c (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + −2ae− bg

4ac− b2

X = x+ be+ 2cg
4ac− b2

Then the solution in y becomes using EQ (A)

y − −2ae− bg

4ac− b2
= −

(
x− be+2cg

4ac−b2

) (
b+

√
−4ac+ b2

)
2c

Solving for y gives

y =
−bx+

√
−4
(
x− be+2cg

4ac−b2

)2
ac+

(
x− be+2cg

4ac−b2

)2
b2 + 4 ec1c− e

2c

y = −
bx+

√
−4
(
x− be+2cg

4ac−b2

)2
ac+

(
x− be+2cg

4ac−b2

)2
b2 + 4 ec1c+ e

2c
y

= 4
√
−4ac+ b2 acx−

√
−4ac+ b2 b2x− 4bcxa+ b3x−

√
−4ac+ b2 be− 2

√
−4ac+ b2 cg − 4ace+ b2e

2c (4ac− b2)
y =

−4
√
−4ac+ b2 acx−

√
−4ac+ b2 b2x+ 4bcxa− b3x−

√
−4ac+ b2 be− 2

√
−4ac+ b2 cg + 4ace− b2e

2c (4ac− b2)
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Solved as first order Exact ode

Time used: 0.309 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(bx+ 2cy + e) dy = (−2ax− by + g) dx
(2ax+ by − g) dx+(bx+ 2cy + e) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2ax+ by − g

N(x, y) = bx+ 2cy + e
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(2ax+ by − g)

= b

And
∂N

∂x
= ∂

∂x
(bx+ 2cy + e)

= b

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2ax+ by − g dx

(3)φ = x(ax+ by − g) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= bx+ f ′(y)

But equation (2) says that ∂φ
∂y

= bx+ 2cy + e. Therefore equation (4) becomes

(5)bx+ 2cy + e = bx+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 2cy + e

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(2cy + e) dy

f(y) = y2c+ ey + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x(ax+ by − g) + y2c+ ey + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = x(ax+ by − g) + y2c+ ey

Solving for y gives

y = −bx− e+
√
−4ac x2 + b2x2 + 2bex+ 4cgx+ 4c1c+ e2

2c

y = −bx+
√
−4ac x2 + b2x2 + 2bex+ 4cgx+ 4c1c+ e2 + e

2c

Summary of solutions found

y = −bx− e+
√
−4ac x2 + b2x2 + 2bex+ 4cgx+ 4c1c+ e2

2c

y = −bx+
√
−4ac x2 + b2x2 + 2bex+ 4cgx+ 4c1c+ e2 + e

2c
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Solved using Lie symmetry for first order ode

Time used: 0.621 (sec)

Writing the ode as

y′ = −2ax+ by − g

bx+ 2cy + e

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(2ax+ by − g) (b3 − a2)

bx+ 2cy + e
− (2ax+ by − g)2 a3

(bx+ 2cy + e)2

−
(
− 2a
bx+ 2cy + e

+ (2ax+ by − g) b
(bx+ 2cy + e)2

)
(xa2 + ya3 + a1)

−
(
− b

bx+ 2cy + e
+ 2(2ax+ by − g) c

(bx+ 2cy + e)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−4a2x2a3 − 2ab x2a2 + 2ab x2b3 + 4abxya3 + 4ac x2b2 − 8acxya2 + 8acxyb3 − 4ac y2a3 − 2b2x2b2 + 2b2y2a3 − 4bcxyb2 − 2bc y2a2 + 2bc y2b3 − 4c2y2b2 + 4acxb1 − 4acya1 − 4aexa2 + 2aexb3 − 2aeya3 − 4agxa3 − b2xb1 + b2ya1 − 3bexb2 − beya2 − bgxb3 − 3bgya3 − 4ceyb2 − 2cgxb2 + 2cgya2 − 4cgyb3 − 2aea1 − beb1 − bga1 − 2cgb1 − e2b2 + ega2 − egb3 + g2a3

(bx+ 2cy + e)2
= 0
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Setting the numerator to zero gives

(6E)
−4a2x2a3+2ab x2a2−2ab x2b3−4abxya3−4ac x2b2+8acxya2−8acxyb3
+ 4ac y2a3 + 2b2x2b2 − 2b2y2a3 + 4bcxyb2 + 2bc y2a2 − 2bc y2b3 + 4c2y2b2
− 4acxb1 + 4acya1 + 4aexa2 − 2aexb3 + 2aeya3 + 4agxa3 + b2xb1
− b2ya1 + 3bexb2 + beya2 + bgxb3 + 3bgya3 + 4ceyb2 + 2cgxb2 − 2cgya2
+ 4cgyb3 + 2aea1 + beb1 + bga1 + 2cgb1 + e2b2 − ega2 + egb3 − g2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−4a2a3v21 + 2aba2v21 − 4aba3v1v2 − 2abb3v21 + 8aca2v1v2 + 4aca3v22
−4acb2v21−8acb3v1v2−2b2a3v22+2b2b2v21+2bca2v22+4bcb2v1v2−2bcb3v22
+ 4c2b2v22 + 4aca1v2 − 4acb1v1 + 4aea2v1 + 2aea3v2 − 2aeb3v1 + 4aga3v1
−b2a1v2+b2b1v1+bea2v2+3beb2v1+3bga3v2+bgb3v1+4ceb2v2−2cga2v2
+2cgb2v1+4cgb3v2+2aea1+beb1+bga1+2cgb1+e2b2−ega2+egb3−g2a3
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

(
−4a2a3 + 2aba2 − 2abb3 − 4acb2 + 2b2b2

)
v21

+ (−4aba3 + 8aca2 − 8acb3 + 4bcb2) v1v2
+
(
−4acb1 + 4aea2 − 2aeb3 + 4aga3 + b2b1 + 3beb2 + bgb3 + 2cgb2

)
v1

+
(
4aca3 − 2b2a3 + 2bca2 − 2bcb3 + 4c2b2

)
v22

+
(
4aca1 + 2aea3 − b2a1 + bea2 + 3bga3 + 4ceb2 − 2cga2 + 4cgb3

)
v2

+ 2aea1 + beb1 + bga1 + 2cgb1 + e2b2 − ega2 + egb3 − g2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−4aba3 + 8aca2 − 8acb3 + 4bcb2 = 0
4aca3 − 2b2a3 + 2bca2 − 2bcb3 + 4c2b2 = 0

−4a2a3 + 2aba2 − 2abb3 − 4acb2 + 2b2b2 = 0
4aca1 + 2aea3 − b2a1 + bea2 + 3bga3 + 4ceb2 − 2cga2 + 4cgb3 = 0

−4acb1 + 4aea2 − 2aeb3 + 4aga3 + b2b1 + 3beb2 + bgb3 + 2cgb2 = 0
2aea1 + beb1 + bga1 + 2cgb1 + e2b2 − ega2 + egb3 − g2a3 = 0

Solving the above equations for the unknowns gives

a1 =
2acea3 − b2ea3 − bceb3 − bcga3 − 2c2gb3

c (4ac− b2)

a2 =
ba3 + cb3

c
a3 = a3

b1 =
abea3 + 2aceb3 + 2acga3 + bcgb3

c (4ac− b2)
b2 = −aa3

c
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4acx− b2x− be− 2cg
4ac− b2

η = 4acy − b2y + 2ae+ bg

4ac− b2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 4acy − b2y + 2ae+ bg

4ac− b2
−
(
−2ax+ by − g

bx+ 2cy + e

)(
4acx− b2x− be− 2cg

4ac− b2

)
= 8a2c x2 − 2a b2x2 + 8abcxy + 8a c2y2 − 2b3xy − 2b2c y2 + 8acey − 8acgx− 2b2ey + 2b2gx+ 2a e2 + 2beg + 2c g2

4bcxa+ 8a c2y − b3x− 2b2cy + 4ace− b2e

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

8a2c x2−2a b2x2+8abcxy+8a c2y2−2b3xy−2b2c y2+8acey−8acgx−2b2ey+2b2gx+2a e2+2beg+2c g2
4bcxa+8a c2y−b3x−2b2cy+4ace−b2e

dy

Which results in

S = ln (4a2c x2 − a b2x2 + 4abcxy + 4a c2y2 − b3xy − b2c y2 + 4acey − 4acgx− b2ey + b2gx+ a e2 + beg + c g2)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2ax+ by − g

bx+ 2cy + e

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = (2ax+ by − g) (4ac− b2)
8a2c x2 + (−2b2x2 + 8cxyb+ 8c2y2 + (8ey − 8gx) c+ 2e2) a− 2 (by − g) (b2x+ (cy + e) b+ cg)

Sy =
(bx+ 2cy + e) (4ac− b2)

8a2c x2 + (−2b2x2 + 8cxyb+ 8c2y2 + (8ey − 8gx) c+ 2e2) a− 2 (by − g) (b2x+ (cy + e) b+ cg)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
0 dR + c2

S(R) = c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln
(
4a2c x2 +

(
−b2x2 + 4ybcx− 4cgx+ 4

(
cy + e

2

)2)
a− (by − g) (b2x+ (cy + e) b+ cg)

)
2 = c2

Summary of solutions found

ln
(
4a2c x2 +

(
−b2x2 + 4ybcx− 4cgx+ 4

(
cy + e

2

)2)
a− (by − g) (b2x+ (cy + e) b+ cg)

)
2= c2

Solved as first order ode of type dAlembert

Time used: 0.868 (sec)

Let p = y′ the ode becomes

2ax+ by + (bx+ 2cy + e) p = g

Solving for y from the above results in

(1)y = −(bp+ 2a)x
2cp+ b

− ep− g

2cp+ b
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This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −bp− 2a
2cp+ b

g = −ep+ g

2cp+ b

Hence (2) becomes

(2A)p− −bp− 2a
2cp+ b

=
(
− xb

2cp+ b
+ 2xcbp

(2cp+ b)2
+ 4xca

(2cp+ b)2
− e

2cp+ b
+ 2cep

(2cp+ b)2

− 2cg
(2cp+ b)2

)
p′(x)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− −bp− 2a
2cp+ b

= 0

Solving the above for p results in

p1 =
−b+

√
−4ac+ b2

2c

p2 = −b+
√
−4ac+ b2

2c
Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = −bx
√
−4ac+ b2 − 4acx+ b2x− e

√
−4ac+ b2 + be+ 2cg

2c
√
−4ac+ b2

y = −bx
√
−4ac+ b2 + 4acx− b2x− e

√
−4ac+ b2 − be− 2cg

2
√
−4ac+ b2 c
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The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

(3)p′(x) =
p(x)− −bp(x)−2a

2cp(x)+b

− xb
2cp(x)+b

+ 2xcbp(x)
(2cp(x)+b)2 +

4xca
(2cp(x)+b)2 −

e
2cp(x)+b

+ 2cep(x)
(2cp(x)+b)2 −

2cg
(2cp(x)+b)2

This ODE is now solved for p(x). No inversion is needed.

The ode

(2.25)p′(x) =
2(2cp(x) + b)

(
p(x)2 c+ bp(x) + a

)
4acx− b2x− be− 2cg

is separable as it can be written as

p′(x) =
2(2cp(x) + b)

(
p(x)2 c+ bp(x) + a

)
4acx− b2x− be− 2cg

= f(x)g(p)

Where

f(x) = 2
4acx− b2x− be− 2cg

g(p) = (2cp+ b)
(
c p2 + bp+ a

)
Integrating gives ∫ 1

g(p) dp =
∫

f(x) dx∫ 1
(2cp+ b) (c p2 + bp+ a) dp =

∫ 2
4acx− b2x− be− 2cg dx

ln
(

(2cp(x)+b)2

p(x)2c+bp(x)+a

)
4ac− b2

= 2 ln ((4ac− b2)x− be− 2cg)
4ac− b2

+ c1

We now need to find the singular solutions, these are found by finding for what values
g(p) is zero, since we had to divide by this above. Solving g(p) = 0 or

(2cp+ b)
(
c p2 + bp+ a

)
= 0
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for p(x) gives

p(x) = − b

2c

p(x) = −b+
√
−4ac+ b2

2c

p(x) = −b+
√
−4ac+ b2

2c

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(

(2cp(x)+b)2

p(x)2c+bp(x)+a

)
4ac− b2

= 2 ln ((4ac− b2)x− be− 2cg)
4ac− b2

+ c1

p(x) = − b

2c

p(x) = −b+
√
−4ac+ b2

2c

p(x) = −b+
√
−4ac+ b2

2c

Substituing the above solution for p in (2A) gives

Expression too large to display

y =
√
−4ac+ b2

(
bx
√
−4ac+ b2 + 4acx− b2x+ e

√
−4ac+ b2 − be− 2cg

)
2c (4ac− b2)

y = −
√
−4ac+ b2

(
−bx

√
−4ac+ b2 + 4acx− b2x− e

√
−4ac+ b2 − be− 2cg

)
2c (4ac− b2)

Summary of solutions found

y = −bx
√
−4ac+ b2 − 4acx+ b2x− e

√
−4ac+ b2 + be+ 2cg

2c
√
−4ac+ b2

y = −bx
√
−4ac+ b2 + 4acx− b2x− e

√
−4ac+ b2 − be− 2cg

2
√
−4ac+ b2 c
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y = −
√
−4ac+ b2

(
−bx

√
−4ac+ b2 + 4acx− b2x− e

√
−4ac+ b2 − be− 2cg

)
2c (4ac− b2)

y =
√
−4ac+ b2

(
bx
√
−4ac+ b2 + 4acx− b2x+ e

√
−4ac+ b2 − be− 2cg

)
2c (4ac− b2)

Expression too large to display

Maple step by step solution

Let’s solve
2ax+ by + (2cy + bx+ e) y′ = g

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
b = b

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = C1 ,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(2ax+ by − g) dx+ _F1(y)

• Evaluate integral
F (x, y) = a x2 + bxy − gx+ _F1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
bx+ 2cy + e = bx+ d

dy
_F1(y)

• Isolate for d
dy
_F1(y)

d
dy
_F1(y) = 2cy + e

• Solve for _F1(y)
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_F1(y) = y2c+ ey

• Substitute _F1(y) into equation for F (x, y)
F (x, y) = a x2 + bxy + y2c+ ey − gx

• Substitute F (x, y) into the solution of the ODE
a x2 + bxy + y2c+ ey − gx = C1

• Solve for y{
y = −bx−e+

√
−4ac x2+b2x2+2bex+4cgx+4C1c+e2

2c , y = − bx+
√

−4ac x2+b2x2+2bex+4cgx+4C1c+e2+e
2c

}
Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.105 (sec)
Leaf size : 90� �
dsolve(2*a*x+b*y(x)+(2*c*y(x)+b*x+e)*diff(y(x),x) = g,y(x),singsol=all)� �
y(x)

=
−
√
−64

(
ac− b2

4

) ((
ax− g

2

)
c− b(bx+e)

4

)2
c21 + 4c+ (−4abcx+ b3x− 4ace+ b2e) c1

8
(
ac− b2

4

)
cc1
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Mathematica DSolve solution

Solving time : 17.046 (sec)
Leaf size : 132� �
DSolve[{(2*a*x+b*y[x])+(2*c*y[x]+b*x+e)*D[y[x],x]==g,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → −

√
4cx(g−ax)+b2x2+2bex+4c2c1+e2

c√
1
c

+ bx+ e

2c

y(x) → −
−
√

4cx(g−ax)+b2x2+2bex+4c2c1+e2
c√
1
c

+ bx+ e

2c
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2.3.4 Problem 4

Solved as first order separable ode . . . . . . . . . . . . . . . . 228
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 230
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 231
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 231

Internal problem ID [18548]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 29. Problems at
page 81
Problem number : 4
Date solved : Tuesday, January 28, 2025 at 11:57:12 AM
CAS classification : [_separable]

Solve

sec (x)2 tan (y) y′ + sec (y)2 tan (x) = 0

Solved as first order separable ode

Time used: 0.231 (sec)

The ode

(2.26)y′ = −sec (y)2 tan (x)
sec (x)2 tan (y)

is separable as it can be written as

y′ = −sec (y)2 tan (x)
sec (x)2 tan (y)

= f(x)g(y)

Where

f(x) = − tan (x)
sec (x)2

g(y) = sec (y)2

tan (y)
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Integrating gives ∫ 1
g(y) dy =

∫
f(x) dx∫ tan (y)

sec (y)2
dy =

∫
− tan (x)
sec (x)2

dx

−cos (y)2

2 = cos (x)2

2 + c1

Solving for y gives

y = π − arccos
(√

− cos (x)2 − 2c1
)

y = arccos
(√

− cos (x)2 − 2c1
)

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.30: Slope field plot
sec (x)2 tan (y) y′ + sec (y)2 tan (x) = 0

Summary of solutions found

y = π − arccos
(√

− cos (x)2 − 2c1
)

y = arccos
(√

− cos (x)2 − 2c1
)
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Maple step by step solution

Let’s solve
sec (x)2 tan (y) y′ + sec (y)2 tan (x) = 0

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative

y′ = − sec(y)2 tan(x)
sec(x)2 tan(y)

• Separate variables
y′ tan(y)
sec(y)2 = − tan(x)

sec(x)2

• Integrate both sides with respect to x∫ y′ tan(y)
sec(y)2 dx =

∫
− tan(x)

sec(x)2dx+ C1

• Evaluate integral
− 1

2 sec(y)2 = 1
2 sec(x)2 + C1

• Solve for y{
y = π − arcsec

(
1√

− cos(x)2−2C1

)
, y = arcsec

(
1√

− cos(x)2−2C1

)}

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 41� �
dsolve(sec(x)^2*tan(y(x))*diff(y(x),x)+sec(y(x))^2*tan(x) = 0,y(x),singsol=all)� �

y(x) = arcsec
(

2√
−2 cos (2x) + 8c1

)

y(x) = π

2 + arccsc
(

2√
−2 cos (2x) + 8c1

)

Mathematica DSolve solution

Solving time : 0.504 (sec)
Leaf size : 41� �
DSolve[{Sec[x]^2*Tan[y[x]]*D[y[x],x]+Sec[y[x]]^2*Tan[x]==0,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → −1
2 arccos(− cos(2x)− 2c1)

y(x) → 1
2 arccos(− cos(2x)− 2c1)
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2.3.5 Problem 5

Solved as first order homogeneous class A ode . . . . . . . . . . 232
Solved as first order homogeneous class D2 ode . . . . . . . . . 235
Solved as first order homogeneous class Maple C ode . . . . . . 237
Solved as first order isobaric ode . . . . . . . . . . . . . . . . . 241
Solved using Lie symmetry for first order ode . . . . . . . . . . 244
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 248
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 249
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 249

Internal problem ID [18549]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 29. Problems at
page 81
Problem number : 5
Date solved : Tuesday, January 28, 2025 at 11:57:50 AM
CAS classification :
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

Solve

x+ yy′ = my

Solved as first order homogeneous class A ode

Time used: 0.557 (sec)

In canonical form, the ODE is

y′ = F (x, y)

= my − x

y
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)
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In this case, it can be seen that both M = my − x and N = y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = m− 1

u

du
dx =

m− 1
u(x) − u(x)
x

Or

u′(x)−
m− 1

u(x) − u(x)
x

= 0

Or
u′(x)u(x)x+ u(x)2 −mu(x) + 1 = 0

Which is now solved as separable in u(x).

The ode

(2.27)u′(x) = −u(x)2 −mu(x) + 1
u (x)x

is separable as it can be written as

u′(x) = −u(x)2 −mu(x) + 1
u (x)x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = −mu+ u2 + 1
u

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫

u

−mu+ u2 + 1 du =
∫

−1
x
dx
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ln
(
u(x)2 −mu(x) + 1

)
2 +

m arctanh
(

m−2u(x)√
m2−4

)
√
m2 − 4

= ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

−mu+ u2 + 1
u

= 0

for u(x) gives

u(x) = m

2 −
√
m2 − 4
2

u(x) = m

2 +
√
m2 − 4
2

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(
u(x)2 −mu(x) + 1

)
2 +

m arctanh
(

m−2u(x)√
m2−4

)
√
m2 − 4

= ln
(
1
x

)
+ c1

u(x) = m

2 −
√
m2 − 4
2

u(x) = m

2 +
√
m2 − 4
2

Converting
ln
(
u(x)2−mu(x)+1

)
2 +

m arctanh
(

m−2u(x)√
m2−4

)
√
m2−4 = ln

( 1
x

)
+ c1 back to y gives

arctanh
(

mx−2y
x
√

(m−2)(m+2)

)
m√

(m− 2) (m+ 2)
+

ln
(

−myx+y2+x2

x2

)
2 = ln

(
1
x

)
+ c1

Converting u(x) = m
2 −

√
m2−4
2 back to y gives

y = x

(
m

2 −
√
m2 − 4
2

)
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Converting u(x) = m
2 +

√
m2−4
2 back to y gives

y = x

(
m

2 +
√
m2 − 4
2

)

Summary of solutions found

arctanh
(

mx−2y
x
√

(m−2)(m+2)

)
m√

(m− 2) (m+ 2)
+

ln
(

−myx+y2+x2

x2

)
2 = ln

(
1
x

)
+ c1

y = x

(
m

2 −
√
m2 − 4
2

)

y = x

(
m

2 +
√
m2 − 4
2

)

Solved as first order homogeneous class D2 ode

Time used: 0.274 (sec)

Applying change of variables y = u(x)x, then the ode becomes

x+ u(x)x(u′(x)x+ u(x)) = mu(x)x

Which is now solved The ode

(2.28)u′(x) = −u(x)2 −mu(x) + 1
u (x)x

is separable as it can be written as

u′(x) = −u(x)2 −mu(x) + 1
u (x)x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = −mu+ u2 + 1
u
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫

u

−mu+ u2 + 1 du =
∫

−1
x
dx

ln
(
u(x)2 −mu(x) + 1

)
2 +

m arctanh
(

m−2u(x)√
m2−4

)
√
m2 − 4

= ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

−mu+ u2 + 1
u

= 0

for u(x) gives

u(x) = m

2 −
√
m2 − 4
2

u(x) = m

2 +
√
m2 − 4
2

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(
u(x)2 −mu(x) + 1

)
2 +

m arctanh
(

m−2u(x)√
m2−4

)
√
m2 − 4

= ln
(
1
x

)
+ c1

u(x) = m

2 −
√
m2 − 4
2

u(x) = m

2 +
√
m2 − 4
2

Converting
ln
(
u(x)2−mu(x)+1

)
2 +

m arctanh
(

m−2u(x)√
m2−4

)
√
m2−4 = ln

( 1
x

)
+ c1 back to y gives

ln
(

y2

x2 − my
x

+ 1
)

2 +
m arctanh

(
m− 2y

x√
m2−4

)
√
m2 − 4

= ln
(
1
x

)
+ c1
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Converting u(x) = m
2 −

√
m2−4
2 back to y gives

y = x

(
m

2 −
√
m2 − 4
2

)

Converting u(x) = m
2 +

√
m2−4
2 back to y gives

y = x

(
m

2 +
√
m2 − 4
2

)

Summary of solutions found

ln
(

y2

x2 − my
x

+ 1
)

2 +
m arctanh

(
m− 2y

x√
m2−4

)
√
m2 − 4

= ln
(
1
x

)
+ c1

y = x

(
m

2 −
√
m2 − 4
2

)

y = x

(
m

2 +
√
m2 − 4
2

)

Solved as first order homogeneous class Maple C ode

Time used: 0.563 (sec)

Let Y = y − y0 and X = x− x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = m(Y (X) + y0)− x0 −X

Y (X) + y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 0
y0 = 0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = mY (X)−X

Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= mY −X

Y
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = mY −X and N = Y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = m− 1

u

du
dX =

m− 1
u(X) − u(X)

X

Or
d

dX
u(X)−

m− 1
u(X) − u(X)

X
= 0

Or (
d

dX
u(X)

)
u(X)X + u(X)2 −mu(X) + 1 = 0

Which is now solved as separable in u(X).

The ode

(2.29)d

dX
u(X) = −u(X)2 −mu(X) + 1

u (X)X

is separable as it can be written as

d

dX
u(X) = −u(X)2 −mu(X) + 1

u (X)X
= f(X)g(u)
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Where

f(X) = − 1
X

g(u) = −mu+ u2 + 1
u

Integrating gives ∫ 1
g(u) du =

∫
f(X) dX∫

u

−mu+ u2 + 1 du =
∫

− 1
X

dX

ln
(
u(X)2 −mu(X) + 1

)
2 +

m arctanh
(

m−2u(X)√
m2−4

)
√
m2 − 4

= ln
(

1
X

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

−mu+ u2 + 1
u

= 0

for u(X) gives

u(X) = m

2 −
√
m2 − 4
2

u(X) = m

2 +
√
m2 − 4
2

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(
u(X)2 −mu(X) + 1

)
2 +

m arctanh
(

m−2u(X)√
m2−4

)
√
m2 − 4

= ln
(

1
X

)
+ c1

u(X) = m

2 −
√
m2 − 4
2

u(X) = m

2 +
√
m2 − 4
2
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Converting
ln
(
u(X)2−mu(X)+1

)
2 +

m arctanh
(

m−2u(X)√
m2−4

)
√
m2−4 = ln

( 1
X

)
+ c1 back to Y (X) gives

arctanh
(

mX−2Y (X)
X
√

(m−2)(m+2)

)
m√

(m− 2) (m+ 2)
+

ln
(

−mY (X)X+Y (X)2+X2

X2

)
2 = ln

(
1
X

)
+ c1

Converting u(X) = m
2 −

√
m2−4
2 back to Y (X) gives

Y (X) = X

(
m

2 −
√
m2 − 4
2

)

Converting u(X) = m
2 +

√
m2−4
2 back to Y (X) gives

Y (X) = X

(
m

2 +
√
m2 − 4
2

)

Using the solution for Y (X)

arctanh
(

mX−2Y (X)
X
√

(m−2)(m+2)

)
m√

(m− 2) (m+ 2)
+

ln
(

−mY (X)X+Y (X)2+X2

X2

)
2 = ln

(
1
X

)
+ c1 (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

arctanh
(

mx−2y
x
√

(m−2)(m+2)

)
m√

(m− 2) (m+ 2)
+

ln
(

−myx+y2+x2

x2

)
2 = ln

(
1
x

)
+ c1

Using the solution for Y (X)

Y (X) = X

(
m

2 −
√
m2 − 4
2

)
(A)
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And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

y = x

(
m

2 −
√
m2 − 4
2

)

Using the solution for Y (X)

Y (X) = X

(
m

2 +
√
m2 − 4
2

)
(A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

y = x

(
m

2 +
√
m2 − 4
2

)

Solved as first order isobaric ode

Time used: 0.246 (sec)

Solving for y′ gives

(1)y′ = my − x

y
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Each of the above ode’s is now solved An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = my − x

y
(2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 1

Since the ode is isobaric of order m = 1, then the substitution

y = uxm

= ux

Converts the ODE to a separable in u(x). Performing this substitution gives

u(x) + xu′(x) = mxu(x)− x

xu (x)

The ode

(2.30)u′(x) = −u(x)2 − u(x)m+ 1
u (x)x

is separable as it can be written as

u′(x) = −u(x)2 − u(x)m+ 1
u (x)x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = −um+ u2 + 1
u

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫

u

−um+ u2 + 1 du =
∫

−1
x
dx
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ln
(
u(x)2 − u(x)m+ 1

)
2 +

m arctanh
(

m−2u(x)√
m2−4

)
√
m2 − 4

= ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

−um+ u2 + 1
u

= 0

for u(x) gives

u(x) = m

2 −
√
m2 − 4
2

u(x) = m

2 +
√
m2 − 4
2

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(
u(x)2 − u(x)m+ 1

)
2 +

m arctanh
(

m−2u(x)√
m2−4

)
√
m2 − 4

= ln
(
1
x

)
+ c1

u(x) = m

2 −
√
m2 − 4
2

u(x) = m

2 +
√
m2 − 4
2

Converting
ln
(
u(x)2−u(x)m+1

)
2 +

m arctanh
(

m−2u(x)√
m2−4

)
√
m2−4 = ln

( 1
x

)
+ c1 back to y gives

ln
(

y2

x2 − my
x

+ 1
)

2 +
m arctanh

(
m− 2y

x√
m2−4

)
√
m2 − 4

= ln
(
1
x

)
+ c1

Converting u(x) = m
2 −

√
m2−4
2 back to y gives

y

x
= m

2 −
√
m2 − 4
2
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Converting u(x) = m
2 +

√
m2−4
2 back to y gives

y

x
= m

2 +
√
m2 − 4
2

Solving for y gives

ln
(

y2

x2 − my
x

+ 1
)

2 +
m arctanh

(
m− 2y

x√
m2−4

)
√
m2 − 4

= ln
(
1
x

)
+ c1

y = −
x
(
−m+

√
m2 − 4

)
2

y =
x
(
m+

√
m2 − 4

)
2

Summary of solutions found

ln
(

y2

x2 − my
x

+ 1
)

2 +
m arctanh

(
m− 2y

x√
m2−4

)
√
m2 − 4

= ln
(
1
x

)
+ c1

y = −
x
(
−m+

√
m2 − 4

)
2

y =
x
(
m+

√
m2 − 4

)
2

Solved using Lie symmetry for first order ode

Time used: 7.026 (sec)

Writing the ode as

y′ = my − x

y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(my − x) (b3 − a2)

y
− (my − x)2 a3

y2
+ xa2 + ya3 + a1

y

−
(
m

y
− my − x

y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−m2y2a3 − 2mxya3 +my2a2 −my2b3 + x2a3 + x2b2 − 2xya2 + 2xyb3 − y2a3 − b2y
2 + xb1 − ya1

y2

= 0

Setting the numerator to zero gives

(6E)−m2y2a3 + 2mxya3 −my2a2 +my2b3 − x2a3 − x2b2
+ 2xya2 − 2xyb3 + y2a3 + b2y

2 − xb1 + ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−m2a3v
2
2 −ma2v

2
2 + 2ma3v1v2 +mb3v

2
2 + 2a2v1v2 − a3v

2
1

+ a3v
2
2 − b2v

2
1 + b2v

2
2 − 2b3v1v2 + a1v2 − b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)(−a3 − b2) v21 + (2ma3 + 2a2 − 2b3) v1v2 − b1v1
+
(
−m2a3 −ma2 +mb3 + a3 + b2

)
v22 + a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−b1 = 0

−a3 − b2 = 0
2ma3 + 2a2 − 2b3 = 0

−m2a3 −ma2 +mb3 + a3 + b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = mb2 + b3

a3 = −b2

b1 = 0
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
my − x

y

)
(x)

= −myx+ x2 + y2

y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−myx+x2+y2

y

dy

Which results in

S = ln (−myx+ x2 + y2)
2 −

mx arctanh
(

−mx+2y√
m2x2−4x2

)
√
m2x2 − 4x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = my − x

y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = my − x

myx− x2 − y2

Sy = − y

myx− x2 − y2



chapter 2. book solved problems 248

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
0 dR + c2

S(R) = c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (−myx+ y2 + x2)
2 +

m arctanh
(

mx−2y
x
√
m2−4

)
√
m2 − 4

= c2

Summary of solutions found

ln (−myx+ y2 + x2)
2 +

m arctanh
(

mx−2y
x
√
m2−4

)
√
m2 − 4

= c2

Maple step by step solution

Let’s solve
x+ yy′ = my

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = my−x

y
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.085 (sec)
Leaf size : 57� �
dsolve(x+diff(y(x),x)*y(x) = m*y(x),y(x),singsol=all)� �
y(x) =RootOf

_Z2−e
RootOf

4 e_Zcosh
(√

m2−4
(
2c1+_Z+2 ln(x)

)
2m

)2

+m2−4

x2


+1−_Zm

x

Mathematica DSolve solution

Solving time : 0.092 (sec)
Leaf size : 72� �
DSolve[{x+y[x]*D[y[x],x]==m*y[x],{}},y[x],x,IncludeSingularSolutions->True]� �

Solve

m arctan
(

2y(x)
x

−m√
4−m2

)
√
4−m2

+ 1
2 log

(
−my(x)

x
+ y(x)2

x2 + 1
)

= − log(x) + c1, y(x)
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2.3.6 Problem 6
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Solved as first order homogeneous class Maple C ode . . . . . . 256
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 260
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Internal problem ID [18550]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 29. Problems at
page 81
Problem number : 6
Date solved : Tuesday, January 28, 2025 at 11:57:59 AM
CAS classification :
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

Solve
2x
y3

+
(

1
y2

− 3x2

y4

)
y′ = 0

Solved as first order homogeneous class A ode

Time used: 0.458 (sec)

In canonical form, the ODE is

y′ = F (x, y)

= − 2yx
−3x2 + y2

(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)
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In this case, it can be seen that both M = 2yx and N = 3x2−y2 are both homogeneous
and of the same order n = 2. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives
du
dxx+ u = − 2u

u2 − 3
du
dx =

− 2u(x)
u(x)2−3 − u(x)

x

Or

u′(x)−
− 2u(x)

u(x)2−3 − u(x)
x

= 0

Or
u′(x)u(x)2 x+ u(x)3 − 3u′(x)x− u(x) = 0

Or
x
(
u(x)2 − 3

)
u′(x) + u(x)3 − u(x) = 0

Which is now solved as separable in u(x).

The ode

(2.31)u′(x) = −
u(x)

(
u(x)2 − 1

)
x
(
u (x)2 − 3

)
is separable as it can be written as

u′(x) = −
u(x)

(
u(x)2 − 1

)
x
(
u (x)2 − 3

)
= f(x)g(u)

Where

f(x) = −1
x

g(u) = u(u2 − 1)
u2 − 3

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx

∫
u2 − 3

u (u2 − 1) du =
∫

−1
x
dx
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− ln
(
(u(x)− 1) (u(x) + 1)

u (x)3
)

= ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u(u2 − 1)
u2 − 3 = 0

for u(x) gives

u(x) = −1
u(x) = 0
u(x) = 1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

− ln
(
(u(x)− 1) (u(x) + 1)

u (x)3
)

= ln
(
1
x

)
+ c1

u(x) = −1

u(x) = 0

u(x) = 1

Converting − ln
(

(u(x)−1)(u(x)+1)
u(x)3

)
= ln

( 1
x

)
+ c1 back to y gives

− ln
(
−x(−y + x) (y + x)

y3

)
= ln

(
1
x

)
+ c1

Converting u(x) = −1 back to y gives

y = −x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = 1 back to y gives

y = x
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Figure 2.31: Slope field plot
2x
y3

+
(

1
y2

− 3x2

y4

)
y′ = 0

Summary of solutions found

− ln
(
−x(−y + x) (y + x)

y3

)
= ln

(
1
x

)
+ c1

y = 0
y = x

y = −x

Solved as first order homogeneous class D2 ode

Time used: 0.221 (sec)

Applying change of variables y = u(x)x, then the ode becomes
2

x2u (x)3
+
(

1
u (x)2 x2

− 3
x2u (x)4

)
(u′(x)x+ u(x)) = 0

Which is now solved The ode

(2.32)u′(x) = −
u(x)

(
u(x)2 − 1

)
x
(
u (x)2 − 3

)
is separable as it can be written as

u′(x) = −
u(x)

(
u(x)2 − 1

)
x
(
u (x)2 − 3

)
= f(x)g(u)
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Where

f(x) = −1
x

g(u) = u(u2 − 1)
u2 − 3

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx

∫
u2 − 3

u (u2 − 1) du =
∫

−1
x
dx

− ln
(
(u(x)− 1) (u(x) + 1)

u (x)3
)

= ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u(u2 − 1)
u2 − 3 = 0

for u(x) gives

u(x) = −1
u(x) = 0
u(x) = 1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

− ln
(
(u(x)− 1) (u(x) + 1)

u (x)3
)

= ln
(
1
x

)
+ c1

u(x) = −1

u(x) = 0

u(x) = 1
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Converting − ln
(

(u(x)−1)(u(x)+1)
u(x)3

)
= ln

( 1
x

)
+ c1 back to y gives

− ln
((

y
x
− 1
)
x3( y

x
+ 1
)

y3

)
= ln

(
1
x

)
+ c1

Converting u(x) = −1 back to y gives

y = −x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = 1 back to y gives

y = x
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Figure 2.32: Slope field plot
2x
y3

+
(

1
y2

− 3x2

y4

)
y′ = 0

Summary of solutions found

− ln
((

y
x
− 1
)
x3( y

x
+ 1
)

y3

)
= ln

(
1
x

)
+ c1

y = 0
y = x

y = −x
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Solved as first order homogeneous class Maple C ode

Time used: 0.523 (sec)

Let Y = y − y0 and X = x− x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − 2(Y (X) + y0) (x0 +X)

(Y (X) + y0)2 − 3 (x0 +X)2

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 0
y0 = 0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − 2Y (X)X

−3X2 + Y (X)2

In canonical form, the ODE is

Y ′ = F (X,Y )

= − 2Y X

−3X2 + Y 2 (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 2Y X and N = 3X2 − Y 2 are both
homogeneous and of the same order n = 2. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = − 2u

u2 − 3
du
dX =

− 2u(X)
u(X)2−3 − u(X)

X
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Or
d

dX
u(X)−

− 2u(X)
u(X)2−3 − u(X)

X
= 0

Or (
d

dX
u(X)

)
u(X)2X + u(X)3 − 3

(
d

dX
u(X)

)
X − u(X) = 0

Or
X
(
u(X)2 − 3

)( d

dX
u(X)

)
+ u(X)3 − u(X) = 0

Which is now solved as separable in u(X).

The ode

(2.33)d

dX
u(X) = −

u(X)
(
u(X)2 − 1

)
X
(
u (X)2 − 3

)
is separable as it can be written as

d

dX
u(X) = −

u(X)
(
u(X)2 − 1

)
X
(
u (X)2 − 3

)
= f(X)g(u)

Where

f(X) = − 1
X

g(u) = u(u2 − 1)
u2 − 3

Integrating gives ∫ 1
g(u) du =

∫
f(X) dX

∫
u2 − 3

u (u2 − 1) du =
∫

− 1
X

dX

− ln
(
(u(X)− 1) (u(X) + 1)

u (X)3
)

= ln
(

1
X

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u(u2 − 1)
u2 − 3 = 0
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for u(X) gives

u(X) = −1
u(X) = 0
u(X) = 1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

− ln
(
(u(X)− 1) (u(X) + 1)

u (X)3
)

= ln
(

1
X

)
+ c1

u(X) = −1

u(X) = 0

u(X) = 1

Converting − ln
(

(u(X)−1)(u(X)+1)
u(X)3

)
= ln

( 1
X

)
+ c1 back to Y (X) gives

− ln
(
−X(−Y (X) +X) (Y (X) +X)

Y (X)3
)

= ln
(

1
X

)
+ c1

Converting u(X) = −1 back to Y (X) gives

Y (X) = −X

Converting u(X) = 0 back to Y (X) gives

Y (X) = 0

Converting u(X) = 1 back to Y (X) gives

Y (X) = X

Using the solution for Y (X)

− ln
(
−X(−Y (X) +X) (Y (X) +X)

Y (X)3
)

= ln
(

1
X

)
+ c1 (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

− ln
(
−x(−y + x) (y + x)

y3

)
= ln

(
1
x

)
+ c1

Using the solution for Y (X)

Y (X) = 0 (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

y = 0

Using the solution for Y (X)

Y (X) = X (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

y = x
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Using the solution for Y (X)

Y (X) = −X (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

y = −x

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.33: Slope field plot
2x
y3

+
(

1
y2

− 3x2

y4

)
y′ = 0

Solved as first order Exact ode

Time used: 0.112 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)
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We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y2

− 3x2

y4

)
dy =

(
−2x
y3

)
dx(

2x
y3

)
dx+

(
1
y2

− 3x2

y4

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x
y3

N(x, y) = 1
y2

− 3x2

y4

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
2x
y3

)
= −6x

y4

And

∂N

∂x
= ∂

∂x

(
1
y2

− 3x2

y4

)
= −6x

y4

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2x
y3

dx

(3)φ = x2

y3
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −3x2

y4
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2

− 3x2

y4
. Therefore equation (4) becomes

(5)1
y2

− 3x2

y4
= −3x2

y4
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
y2

)
dy

f(y) = −1
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2

y3
− 1

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 =
x2

y3
− 1

y

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.34: Slope field plot
2x
y3

+
(

1
y2

− 3x2

y4

)
y′ = 0
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Summary of solutions found

x2

y3
− 1

y
= c1

Solved as first order isobaric ode

Time used: 0.197 (sec)

Solving for y′ gives

(1)y′ = − 2yx
y2 − 3x2

Each of the above ode’s is now solved An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = − 2yx

y2 − 3x2 (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 1

Since the ode is isobaric of order m = 1, then the substitution

y = uxm

= ux

Converts the ODE to a separable in u(x). Performing this substitution gives

u(x) + xu′(x) = − 2x2u(x)
x2u (x)2 − 3x2

The ode

(2.34)u′(x) = −
u(x)

(
u(x)2 − 1

)(
u (x)2 − 3

)
x

is separable as it can be written as

u′(x) = −
u(x)

(
u(x)2 − 1

)(
u (x)2 − 3

)
x

= f(x)g(u)
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Where

f(x) = −1
x

g(u) = u(u2 − 1)
u2 − 3

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx

∫
u2 − 3

u (u2 − 1) du =
∫

−1
x
dx

− ln
(
(u(x)− 1) (u(x) + 1)

u (x)3
)

= ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u(u2 − 1)
u2 − 3 = 0

for u(x) gives

u(x) = −1
u(x) = 0
u(x) = 1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

− ln
(
(u(x)− 1) (u(x) + 1)

u (x)3
)

= ln
(
1
x

)
+ c1

u(x) = −1

u(x) = 0

u(x) = 1
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Converting − ln
(

(u(x)−1)(u(x)+1)
u(x)3

)
= ln

( 1
x

)
+ c1 back to y gives

− ln
((

y
x
− 1
)
x3( y

x
+ 1
)

y3

)
= ln

(
1
x

)
+ c1

Converting u(x) = −1 back to y gives
y

x
= −1

Converting u(x) = 0 back to y gives
y

x
= 0

Converting u(x) = 1 back to y gives
y

x
= 1

Solving for y gives

− ln
((

y
x
− 1
)
x3( y

x
+ 1
)

y3

)
= ln

(
1
x

)
+ c1

y = 0
y = x

y = −x

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.35: Slope field plot
2x
y3

+
(

1
y2

− 3x2

y4

)
y′ = 0



chapter 2. book solved problems 267

Summary of solutions found

− ln
((

y
x
− 1
)
x3( y

x
+ 1
)

y3

)
= ln

(
1
x

)
+ c1

y = 0
y = x

y = −x

Solved using Lie symmetry for first order ode

Time used: 0.821 (sec)

Writing the ode as

y′ = − 2yx
−3x2 + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
2yx(b3 − a2)
−3x2 + y2

− 4y2x2a3

(−3x2 + y2)2

−
(
− 2y
−3x2 + y2

− 12y x2

(−3x2 + y2)2
)
(xa2 + ya3 + a1)

−
(
− 2x
−3x2 + y2

+ 4y2x
(−3x2 + y2)2

)
(xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

3x4b2 + 2y2x2a3 − 8x2y2b2 + 4x y3a2 − 4x y3b3 + 2y4a3 + y4b2 − 6x3b1 + 6x2ya1 − 2x y2b1 + 2y3a1
(3x2 − y2)2

= 0

Setting the numerator to zero gives

(6E)3x4b2 + 2y2x2a3 − 8x2y2b2 + 4x y3a2 − 4x y3b3 + 2y4a3
+ y4b2 − 6x3b1 + 6x2ya1 − 2x y2b1 + 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a2v1v32 + 2a3v21v22 + 2a3v42 + 3b2v41 − 8b2v21v22 + b2v
4
2

− 4b3v1v32 + 6a1v21v2 + 2a1v32 − 6b1v31 − 2b1v1v22 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)3b2v41 − 6b1v31 + (2a3 − 8b2) v21v22 + 6a1v21v2
+ (4a2 − 4b3) v1v32 − 2b1v1v22 + (2a3 + b2) v42 + 2a1v32 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
6a1 = 0

−6b1 = 0
−2b1 = 0
3b2 = 0

4a2 − 4b3 = 0
2a3 − 8b2 = 0
2a3 + b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− 2yx
−3x2 + y2

)
(x)

= y x2 − y3

3x2 − y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y x2−y3

3x2−y2

dy

Which results in

S = 3 ln (y)− ln (y − x)− ln (x+ y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2yx
−3x2 + y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2x
x2 − y2

Sy =
3
y
+ 1

x− y
− 1

x+ y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
0 dR + c2

S(R) = c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

3 ln (y)− ln (y − x)− ln (y + x) = c2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2yx
−3x2+y2

dS
dR

= 0

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = 3 ln (y)− ln (y − x)− ln (x+ y)

–4

–2

0

2

4

S(R)

–4 –2 2 4

R
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Figure 2.36: Slope field plot
2x
y3

+
(

1
y2

− 3x2

y4

)
y′ = 0

Summary of solutions found

3 ln (y)− ln (y − x)− ln (y + x) = c2

Maple step by step solution

Let’s solve
2x
y3

+
(

1
y2

− 3x2

y4

)
y′ = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−6x

y4
= −6x

y4

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = C1 ,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
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• Solve for F (x, y) by integratingM(x, y) with respect to x
F (x, y) =

∫ 2x
y3
dx+ _F1(y)

• Evaluate integral
F (x, y) = x2

y3
+ _F1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
1
y2

− 3x2

y4
= −3x2

y4
+ d

dy
_F1(y)

• Isolate for d
dy
_F1(y)

d
dy
_F1(y) = 1

y2

• Solve for _F1(y)
_F1(y) = − 1

y

• Substitute _F1(y) into equation for F (x, y)
F (x, y) = x2

y3
− 1

y

• Substitute F (x, y) into the solution of the ODE
x2

y3
− 1

y
= C1

• Solve for yy =
(
12

√
3x
√

27x2C12−4C1+108x2C12−8
)1/3

6C1 + 2
3C1

(
12

√
3x
√

27x2C12−4C1+108x2C12−8
)1/3 − 1

3C1 , y = −
(
12

√
3x
√

27x2C12−4C1+108x2C12−8
)1/3

12C1 − 1
3C1

(
12

√
3x
√

27x2C12−4C1+108x2C12−8
)1/3 − 1

3C1 −
I
√
3

(
12

√
3 x

√
27x2C12−4C1+108x2C12−8

)1/3
6C1 − 2

3C1
(
12

√
3 x

√
27x2C12−4C1+108x2C12−8

)1/3


2 , y = −
(
12

√
3x
√

27x2C12−4C1+108x2C12−8
)1/3

12C1 − 1
3C1

(
12

√
3x
√

27x2C12−4C1+108x2C12−8
)1/3 − 1

3C1 +
I
√
3

(
12

√
3 x

√
27x2C12−4C1+108x2C12−8

)1/3
6C1 − 2

3C1
(
12

√
3 x

√
27x2C12−4C1+108x2C12−8

)1/3


2


Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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Maple dsolve solution

Solving time : 0.013 (sec)
Leaf size : 313� �
dsolve(2*x/y(x)^3+(1/y(x)^2-3*x^2/y(x)^4)*diff(y(x),x) = 0,y(x),singsol=all)� �

y(x) =

1 +

(
12

√
3x
√

27x2c21−4 c1−108x2c21+8
)1/3

2 + 2(
12

√
3x
√

27x2c21−4 c1−108x2c21+8
)1/3

3c1
y(x) =

−

(
1 + i

√
3
) (

12
√
3x
√

27x2c21 − 4 c1 − 108x2c21 + 8
)2/3

− 4i
√
3− 4

(
12
√
3x
√

27x2c21 − 4 c1 − 108x2c21 + 8
)1/3

+ 4

12
(
12
√
3x
√
27x2c21 − 4 c1 − 108x2c21 + 8

)1/3
c1

y(x)

=

(
i
√
3− 1

) (
12
√
3x
√

27x2c21 − 4 c1 − 108x2c21 + 8
)2/3

− 4i
√
3 + 4

(
12
√
3x
√

27x2c21 − 4 c1 − 108x2c21 + 8
)1/3

− 4

12
(
12
√
3x
√

27x2c21 − 4 c1 − 108x2c21 + 8
)1/3

c1
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Mathematica DSolve solution

Solving time : 60.18 (sec)
Leaf size : 458� �
DSolve[{2*x/y[x]^3+(1/y[x]^2-3*x^2/y[x]^4)*D[y[x],x]==0,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → 1
3

 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

3
√
2

+
3
√
2e2c1

3
√
27ec1x2 + 3

√
81e2c1x4 − 12e4c1x2 − 2e3c1

− ec1


y(x) →

i
(√

3 + i
) 3
√
27ec1x2 + 3

√
81e2c1x4 − 12e4c1x2 − 2e3c1

6 3
√
2

−
i
(√

3− i
)
e2c1

3 22/3 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

− ec1

3

y(x) → −
i
(√

3− i
) 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

6 3
√
2

+
i
(√

3 + i
)
e2c1

3 22/3 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

− ec1

3
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2.3.7 Problem 8

Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 276
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 279
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 281
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 281

Internal problem ID [18551]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 29. Problems at
page 81
Problem number : 8
Date solved : Tuesday, January 28, 2025 at 11:58:04 AM
CAS classification : [_exact]

Solve (
T + 1√

t2 − T 2

)
T ′ = T

t
√
t2 − T 2

− t

Solved as first order Exact ode

Time used: 0.459 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, T ) dt+N(t, T ) dT = 0 (1A)

Therefore (
T + 1√

−T 2 + t2

)
dT =

(
T

t
√
−T 2 + t2

− t

)
dt(

− T

t
√
−T 2 + t2

+ t

)
dt+

(
T + 1√

−T 2 + t2

)
dT = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, T ) = − T

t
√
−T 2 + t2

+ t

N(t, T ) = T + 1√
−T 2 + t2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂T
= ∂N

∂t

Using result found above gives

∂M

∂T
= ∂

∂T

(
− T

t
√
−T 2 + t2

+ t

)
= − t

(−T 2 + t2)3/2

And
∂N

∂t
= ∂

∂t

(
T + 1√

−T 2 + t2

)
= − t

(−T 2 + t2)3/2
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Since ∂M
∂T

= ∂N
∂t
, then the ODE is exact The following equations are now set up to solve

for the function φ(t, T )
∂φ

∂t
= M (1)

∂φ

∂T
= N (2)

Integrating (1) w.r.t. t gives∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
− T

t
√
−T 2 + t2

+ t dt

(3)φ =
t2
√
−T 2 + 2T ln

(√
−T 2

√
−T 2+t2−T 2

t

)
+ 2T ln (2)

2
√
−T 2

+ f(T )

Where f(T ) is used for the constant of integration since φ is a function of both t and
T . Taking derivative of equation (3) w.r.t T gives

(4)
∂φ

∂T
=

− t2T√
−T 2 + 2 ln

(√
−T 2

√
−T 2+t2−T 2

t

)
+

2T
(
−

√
−T2+t2 T√

−T2 −
√

−T2 T√
−T2+t2

−2T
)

√
−T 2

√
−T 2+t2−T 2 + 2 ln (2)

2
√
−T 2

+

(
t2
√
−T 2 + 2T ln

(√
−T 2

√
−T 2+t2−T 2

t

)
+ 2T ln (2)

)
T

2 (−T 2)3/2
+ f ′(T )

= 2
√
−T 2

√
−T 2 + t2 − 2T 2 + t2√

−T 2 + t2
(√

−T 2
√
−T 2 + t2 − T 2

) + f ′(T )

But equation (2) says that ∂φ
∂T

= T + 1√
−T 2+t2

. Therefore equation (4) becomes

(5)T + 1√
−T 2 + t2

= 2
√
−T 2

√
−T 2 + t2 − 2T 2 + t2√

−T 2 + t2
(√

−T 2
√
−T 2 + t2 − T 2

) + f ′(T )

Solving equation (5) for f ′(T ) gives

f ′(T ) = −
√
−T 2 + t2 T 3 +

√
−T 2 T 3 −

√
−T 2 T t2 +

√
−T 2

√
−T 2 + t2 − T 2 + t2√

−T 2 + t2
(√

−T 2
√
−T 2 + t2 − T 2

)
=
(
T 3 +

√
−T 2

)√
−T 2 + t2 + (T − t) (T + t)

(√
−T 2 T − 1

)
√
−T 2 + t2

(
T 2 −

√
−T 2

√
−T 2 + t2

)
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Integrating the above w.r.t T results in

∫
f ′(T ) dT =

∫ ((
T 3 +

√
−T 2

)√
−T 2 + t2 + (T − t) (T + t)

(√
−T 2 T − 1

)
√
−T 2 + t2

(
T 2 −

√
−T 2

√
−T 2 + t2

) )
dT

f(T ) =
√
−T 2 ln (T )

T
+ T 2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(T ) into
equation (3) gives φ

φ =
t2
√
−T 2 + 2T ln

(√
−T 2

√
−T 2+t2−T 2

t

)
+ 2T ln (2)

2
√
−T 2

+
√
−T 2 ln (T )

T
+ T 2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 =
t2
√
−T 2 + 2T ln

(√
−T 2

√
−T 2+t2−T 2

t

)
+ 2T ln (2)

2
√
−T 2

+
√
−T 2 ln (T )

T
+ T 2

2

Summary of solutions found

t2
√
−T 2 + 2T ln

(√
−T 2

√
t2−T 2−T 2

t

)
+ 2T ln (2)

2
√
−T 2

+
√
−T 2 ln (T )

T
+ T 2

2 = c1

Maple step by step solution

Let’s solve(
T + 1√

t2−T 2

)
T ′ = T

t
√
t2−T 2 − t

• Highest derivative means the order of the ODE is 1
T ′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(t, T ) = 0
◦ Compute derivative of lhs

F ′(t, T ) +
(

∂
∂T

F (t, T )
)
T ′ = 0
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◦ Evaluate derivatives
− 1

t
√
−T 2+t2

− T 2

t(−T 2+t2)3/2
= − t

(−T 2+t2)3/2

◦ Simplify
− t

(−T 2+t2)3/2
= − t

(−T 2+t2)3/2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (t, T ) = C1 ,M(t, T ) = F ′(t, T ) , N(t, T ) = ∂
∂T

F (t, T )
]

• Solve for F (t, T ) by integratingM(t, T ) with respect to t

F (t, T ) =
∫ (

− T
t
√
−T 2+t2

+ t
)
dt+ _F1(T )

• Evaluate integral

F (t, T ) = t2

2 +
T ln

(
−2T2+2

√
−T2

√
−T2+t2

t

)
√
−T 2 + _F1(T )

• Take derivative of F (t, T ) with respect to T
N(t, T ) = ∂

∂T
F (t, T )

• Compute derivative

T + 1√
−T 2+t2

=
ln
(

−2T2+2
√

−T2
√

−T2+t2
t

)
√
−T 2 +

T 2 ln
(

−2T2+2
√

−T2
√

−T2+t2
t

)
(−T 2)3/2

+
T

(
−4T− 2

√
−T2+t2 T√

−T2 − 2
√

−T2 T√
−T2+t2

)
√
−T 2

(
−2T 2+2

√
−T 2

√
−T 2+t2

) + d
dT
_F1(T )

• Isolate for d
dT
_F1(T )

d
dT
_F1(T ) = T + 1√

−T 2+t2
−

ln
(

−2T2+2
√

−T2
√

−T2+t2
t

)
√
−T 2 −

T 2 ln
(

−2T2+2
√

−T2
√

−T2+t2
t

)
(−T 2)3/2

−
T

(
−4T− 2

√
−T2+t2 T√

−T2 − 2
√

−T2 T√
−T2+t2

)
√
−T 2

(
−2T 2+2

√
−T 2

√
−T 2+t2

)
• Solve for _F1(T )

_F1(T ) =
(
−T 2)3/2T 4+T 6√−T 2−2

√
−T 2 T 4t2+2arctan

(
T√

−T2+t2

)(
−T 2)3/2t2+2arctan

(
T√

−T2+t2

)√
−T 2 T 2t2+4 ln(T )t2T 3+2T

√
−T 2+t2

(
−T 2)3/2+2

√
−T 2

√
−T 2+t2 T 3

4(−T 2)3/2t2

• Substitute _F1(T ) into equation for F (t, T )

F (t, T ) = t2

2 +
T ln

(
−2T2+2

√
−T2

√
−T2+t2

t

)
√
−T 2 +

(
−T 2)3/2T 4+T 6√−T 2−2

√
−T 2 T 4t2+2arctan

(
T√

−T2+t2

)(
−T 2)3/2t2+2arctan

(
T√

−T2+t2

)√
−T 2 T 2t2+4 ln(T )t2T 3+2T

√
−T 2+t2

(
−T 2)3/2+2

√
−T 2

√
−T 2+t2 T 3

4(−T 2)3/2t2

• Substitute F (t, T ) into the solution of the ODE

t2

2 +
T ln

(
−2T2+2

√
−T2

√
−T2+t2

t

)
√
−T 2 +

(
−T 2)3/2T 4+T 6√−T 2−2

√
−T 2 T 4t2+2arctan

(
T√

−T2+t2

)(
−T 2)3/2t2+2arctan

(
T√

−T2+t2

)√
−T 2 T 2t2+4 ln(T )t2T 3+2T

√
−T 2+t2

(
−T 2)3/2+2

√
−T 2

√
−T 2+t2 T 3

4(−T 2)3/2t2
= C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 79� �
dsolve((T(t)+1/(t^2-T(t)^2)^(1/2))*diff(T(t),t) = T(t)/t/(t^2-T(t)^2)^(1/2)-t,T(t),singsol=all)� �(

t2

2 + T 2

2 + c1
)√

−T 2 + T
(
ln
(√

−T 2
√
t2−T 2−T 2

t

)
+ ln (2)− ln (T )

)
√
−T 2

= 0

Mathematica DSolve solution

Solving time : 1.592 (sec)
Leaf size : 44� �
DSolve[{(T[t]+1/Sqrt[t^2-T[t]^2])*D[T[t],t]== T[t]/(t*Sqrt[t^2-T[t]^2])-t,{}},T[t],t,IncludeSingularSolutions->True]� �

Solve
[
− arctan

(√
t2 − T (t)2
T (t)

)
+ t2

2 + T (t)2
2 = c1, T (t)

]
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2.4 Chapter IV. Methods of solution: First order
equations. section 31. Problems at page 85

2.4.1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
2.4.2 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
2.4.3 Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
2.4.4 Problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
2.4.5 Problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
2.4.6 Problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
2.4.7 Problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
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2.4.1 Problem 1

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 283
Solved as first order separable ode . . . . . . . . . . . . . . . . 284
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 286
Solved using Lie symmetry for first order ode . . . . . . . . . . 290
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 295
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 296
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 296

Internal problem ID [18552]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 31. Problems at
page 85
Problem number : 1
Date solved : Tuesday, January 28, 2025 at 11:58:07 AM
CAS classification : [_separable]

Solve

y′ + xy = x

Solved as first order linear ode

Time used: 0.234 (sec)

In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = x

p(x) = x

The integrating factor µ is
µ = e

∫
xdx

Therefore the solution is

y =
(∫

x e
∫
xdxdx+ c1

)
e−
∫
xdx
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–3
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Figure 2.37: Slope field plot
y′ + xy = x

Summary of solutions found

y =
(∫

x e
∫
xdxdx+ c1

)
e−
∫
xdx

Solved as first order separable ode

Time used: 0.100 (sec)

The ode
(2.35)y′ = −xy + x

is separable as it can be written as

y′ = −xy + x

= f(x)g(y)

Where

f(x) = x

g(y) = −y + 1

Integrating gives ∫ 1
g(y) dy =

∫
f(x) dx∫ 1

−y + 1 dy =
∫

x dx
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− ln (y − 1) = x2

2 + c1

We now need to find the singular solutions, these are found by finding for what values
g(y) is zero, since we had to divide by this above. Solving g(y) = 0 or

−y + 1 = 0

for y gives

y = 1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

− ln (y − 1) = x2

2 + c1

y = 1

Solving for y gives
y = 1

y = e−x2
2 −c1 + 1

–3
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–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.38: Slope field plot
y′ + xy = x



chapter 2. book solved problems 286

Summary of solutions found
y = 1

y = e−x2
2 −c1 + 1

Solved as first order Exact ode

Time used: 0.107 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (−xy + x) dx
(xy − x) dx+dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = xy − x

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(xy − x)

= x

And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((x)− (0))
= x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
xdx

The result of integrating gives

µ = e
x2
2

= ex2
2
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex2
2 (xy − x)

= x(y − 1) ex2
2

And

N = µN

= ex2
2 (1)

= ex2
2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x(y − 1) ex2
2

)
+
(
ex2

2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives ∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫
ex2

2 dy

(3)φ = ex2
2 y + f(x)

Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= x ex2

2 y + f ′(x)
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But equation (1) says that ∂φ
∂x

= x(y − 1) ex2
2 . Therefore equation (4) becomes

(5)x(y − 1) ex2
2 = x ex2

2 y + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = −x ex2
2

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫ (
−x ex2

2

)
dx

f(x) = −ex2
2 + c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = ex2
2 y − ex2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = ex2
2 y − ex2

2

Solving for y gives

y =
(
ex2

2 + c1
)
e−x2

2
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Figure 2.39: Slope field plot
y′ + xy = x

Summary of solutions found

y =
(
ex2

2 + c1
)
e−x2

2

Solved using Lie symmetry for first order ode

Time used: 0.354 (sec)

Writing the ode as

y′ = −xy + x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + (−xy + x) (b3 − a2)− (−xy + x)2 a3
− (−y + 1) (xa2 + ya3 + a1) + x(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x2y2a3 + 2x2ya3 − x2a3 + x2b2 + 2xya2 + y2a3
− 2xa2 + xb1 + xb3 + ya1 − ya3 − a1 + b2 = 0

Setting the numerator to zero gives

(6E)−x2y2a3 + 2x2ya3 − x2a3 + x2b2 + 2xya2 + y2a3
− 2xa2 + xb1 + xb3 + ya1 − ya3 − a1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a3v
2
1v

2
2 + 2a3v21v2 + 2a2v1v2 − a3v

2
1 + a3v

2
2 + b2v

2
1

+ a1v2 − 2a2v1 − a3v2 + b1v1 + b3v1 − a1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−a3v
2
1v

2
2 + 2a3v21v2 + (−a3 + b2) v21 + 2a2v1v2

+ (−2a2 + b1 + b3) v1 + a3v
2
2 + (a1 − a3) v2 − a1 + b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
2a2 = 0
−a3 = 0
2a3 = 0

−a1 + b2 = 0
a1 − a3 = 0

−a3 + b2 = 0
−2a2 + b1 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
b1 = −b3

b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = y − 1

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

y − 1dy

Which results in

S = ln (y − 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy + x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 0

Sy =
1

y − 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.
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Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
−RdR

S(R) = −R2

2 + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (y − 1) = −x2

2 + c2

Which gives

y = e−x2
2 +c2 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −xy + x dS
dR

= −R

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = ln (y − 1)

–4

–2

0

2

4

S(R)

–4 –2 2 4

R
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Figure 2.40: Slope field plot
y′ + xy = x

Summary of solutions found

y = e−x2
2 +c2 + 1

Maple step by step solution

Let’s solve
y′ + xy = x

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = −xy + x

• Separate variables
y′

y−1 = −x

• Integrate both sides with respect to x∫
y′

y−1dx =
∫
−xdx+ C1

• Evaluate integral
ln (y − 1) = −x2

2 + C1
• Solve for y

y = e−x2
2 +C1 + 1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 14� �
dsolve(diff(y(x),x)+x*y(x) = x,y(x),singsol=all)� �

y(x) = 1 + e−x2
2 c1

Mathematica DSolve solution

Solving time : 0.062 (sec)
Leaf size : 24� �
DSolve[{D[y[x],x]+x*y[x]==x,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → 1 + c1e
−x2

2

y(x) → 1
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2.4.2 Problem 2

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 297
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 299
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 302
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 303
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 303

Internal problem ID [18553]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 31. Problems at
page 85
Problem number : 2
Date solved : Tuesday, January 28, 2025 at 11:58:10 AM
CAS classification : [_linear]

Solve

y′ + y

x
= sin (x)

Solved as first order linear ode

Time used: 0.071 (sec)

In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = 1
x

p(x) = sin (x)

The integrating factor µ is

µ = e
∫
q dx

= e
∫ 1

x
dx

= x
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The ode becomes
d
dx(µy) = µp

d
dx(µy) = (µ) (sin (x))

d
dx(yx) = (x) (sin (x))

d(yx) = (sin (x)x) dx

Integrating gives

yx =
∫

sin (x)x dx

= sin (x)− cos (x)x+ c1

Dividing throughout by the integrating factor x gives the final solution

y = sin (x)− cos (x)x+ c1
x

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.41: Slope field plot
y′ + y

x
= sin (x)

Summary of solutions found

y = sin (x)− cos (x)x+ c1
x
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Solved as first order Exact ode

Time used: 0.125 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (sin (x)x− y) dx
(− sin (x)x+ y) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x)x+ y

N(x, y) = x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− sin (x)x+ y)

= 1

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives ∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫
x dy

(3)φ = yx+ f(x)

Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= y + f ′(x)

But equation (1) says that ∂φ
∂x

= − sin (x)x+ y. Therefore equation (4) becomes

(5)− sin (x)x+ y = y + f ′(x)
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Solving equation (5) for f ′(x) gives

f ′(x) = − sin (x)x

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫
(− sin (x)x) dx

f(x) = cos (x)x− sin (x) + c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = yx+ cos (x)x− sin (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = yx+ cos (x)x− sin (x)

Solving for y gives

y = −cos (x)x− sin (x)− c1
x
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0
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Figure 2.42: Slope field plot
y′ + y

x
= sin (x)
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Summary of solutions found

y = −cos (x)x− sin (x)− c1
x

Maple step by step solution

Let’s solve
y′ + y

x
= sin (x)

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = − y

x
+ sin (x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x
= sin (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + y

x

)
= µ(x) sin (x)

• Assume the lhs of the ODE is the total derivative d
dx
(yµ(x))

µ(x)
(
y′ + y

x

)
= y′µ(x) + yµ′(x)

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(yµ(x))

)
dx =

∫
µ(x) sin (x) dx+ C1

• Evaluate the integral on the lhs
yµ(x) =

∫
µ(x) sin (x) dx+ C1

• Solve for y
y =

∫
µ(x) sin(x)dx+C1

µ(x)

• Substitute µ(x) = x

y =
∫
sin(x)xdx+C1

x

• Evaluate the integrals on the rhs
y = sin(x)−cos(x)x+C1

x
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 17� �
dsolve(diff(y(x),x)+y(x)/x = sin(x),y(x),singsol=all)� �

y(x) = sin (x)− x cos (x) + c1
x

Mathematica DSolve solution

Solving time : 0.03 (sec)
Leaf size : 19� �
DSolve[{D[y[x],x]+y[x]/x==Sin[x],{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → sin(x)− x cos(x) + c1
x
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2.4.3 Problem 3

Solved as first order Bernoulli ode . . . . . . . . . . . . . . . . . 304
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 307
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 312
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 312
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 313

Internal problem ID [18554]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 31. Problems at
page 85
Problem number : 3
Date solved : Tuesday, January 28, 2025 at 11:58:11 AM
CAS classification : [_Bernoulli]

Solve

y′ + y

x
= sin (x)

y3

Solved as first order Bernoulli ode

Time used: 0.569 (sec)

In canonical form, the ODE is

y′ = F (x, y)

= −y4 + sin (x)x
x y3

This is a Bernoulli ODE.

y′ =
(
−1
x

)
y + (sin (x)) 1

y3
(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

Comparing this to (1) shows that

f0 = −1
x

f1 = sin (x)
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The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution v = y1−n in equation (3) which generates a new
ODE in v(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) = sin (x)
n = −3

Dividing both sides of ODE (1) by yn = 1
y3

gives

y′y3 = −y4

x
+ sin (x) (4)

Let

v = y1−n

= y4 (5)

Taking derivative of equation (5) w.r.t x gives

v′ = 4y3y′ (6)

Substituting equations (5) and (6) into equation (4) gives

v′(x)
4 = −v(x)

x
+ sin (x)

v′ = −4v
x

+ 4 sin (x) (7)

The above now is a linear ODE in v(x) which is now solved.

In canonical form a linear first order is

v′(x) + q(x)v(x) = p(x)

Comparing the above to the given ode shows that

q(x) = 4
x

p(x) = 4 sin (x)
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The integrating factor µ is

µ = e
∫
q dx

= e
∫ 4

x
dx

= x4

The ode becomes
d
dx(µv) = µp

d
dx(µv) = (µ) (4 sin (x))

d
dx
(
v x4) = (x4) (4 sin (x))

d
(
v x4) = (4 sin (x)x4) dx

Integrating gives

v x4 =
∫

4 sin (x)x4 dx

= −4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 cos (x)− 96 sin (x)x+ c1

Dividing throughout by the integrating factor x4 gives the final solution

v(x) = 4(−x4 + 12x2 − 24) cos (x) + 16(x3 − 6x) sin (x) + c1
x4

The substitution v = y1−n is now used to convert the above solution back to y which
results in

y4 = 4(−x4 + 12x2 − 24) cos (x) + 16(x3 − 6x) sin (x) + c1
x4

Solving for y gives

y = (−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 cos (x)− 96 sin (x)x+ c1)1/4

x

y = −i(−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 cos (x)− 96 sin (x)x+ c1)1/4

x

y = i(−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 cos (x)− 96 sin (x)x+ c1)1/4

x

y = −(−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 cos (x)− 96 sin (x)x+ c1)1/4

x
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Figure 2.43: Slope field plot
y′ + y

x
= sin(x)

y3

Summary of solutions found

y = (−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 cos (x)− 96 sin (x)x+ c1)1/4

x

y = −i(−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 cos (x)− 96 sin (x)x+ c1)1/4

x

y = i(−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 cos (x)− 96 sin (x)x+ c1)1/4

x

y = −(−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 cos (x)− 96 sin (x)x+ c1)1/4

x

Solved as first order Exact ode

Time used: 0.532 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x y3

)
dy =

(
−y4 + sin (x)x

)
dx(

y4 − sin (x)x
)
dx+

(
x y3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y4 − sin (x)x
N(x, y) = x y3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y4 − sin (x)x

)
= 4y3
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And
∂N

∂x
= ∂

∂x

(
x y3

)
= y3

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x y3
((
4y3
)
−
(
y3
))

= 3
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 3

x
dx

The result of integrating gives

µ = e3 ln(x)

= x3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x3(y4 − sin (x)x
)

=
(
y4 − sin (x)x

)
x3

And

N = µN

= x3(x y3)
= x4y3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

y4 − sin (x)x
)
x3)+ (x4y3

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
y4 − sin (x)x

)
x3 dx

(3)φ =
(
x4 − 12x2 + 24

)
cos (x) + 4

(
−x3 + 6x

)
sin (x) + y4x4

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x4y3 + f ′(y)

But equation (2) says that ∂φ
∂y

= x4y3. Therefore equation (4) becomes

(5)x4y3 = x4y3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(
x4 − 12x2 + 24

)
cos (x) + 4

(
−x3 + 6x

)
sin (x) + y4x4

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 =
(
x4 − 12x2 + 24

)
cos (x) + 4

(
−x3 + 6x

)
sin (x) + y4x4

4
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Solving for y gives

y = (−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 sin (x)x− 96 cos (x) + 4c1)1/4

x

y = −i(−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 sin (x)x− 96 cos (x) + 4c1)1/4

x

y = i(−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 sin (x)x− 96 cos (x) + 4c1)1/4

x

y = −(−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 sin (x)x− 96 cos (x) + 4c1)1/4

x

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.44: Slope field plot
y′ + y

x
= sin(x)

y3

Summary of solutions found

y = (−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 sin (x)x− 96 cos (x) + 4c1)1/4

x

y = −i(−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 sin (x)x− 96 cos (x) + 4c1)1/4

x

y = i(−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 sin (x)x− 96 cos (x) + 4c1)1/4

x

y = −(−4 cos (x)x4 + 16 sin (x)x3 + 48 cos (x)x2 − 96 sin (x)x− 96 cos (x) + 4c1)1/4

x
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Maple step by step solution

Let’s solve
y′ + y

x
= sin(x)

y3

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = − y

x
+ sin(x)

y3

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
Maple dsolve solution

Solving time : 0.027 (sec)
Leaf size : 156� �
dsolve(diff(y(x),x)+y(x)/x = sin(x)/y(x)^3,y(x),singsol=all)� �

y(x) = (4(−x4 + 12x2 − 24) cos (x) + 16(x3 − 6x) sin (x) + c1)1/4

x

y(x) = −(4(−x4 + 12x2 − 24) cos (x) + 16(x3 − 6x) sin (x) + c1)1/4

x

y(x) = −i(4(−x4 + 12x2 − 24) cos (x) + 16(x3 − 6x) sin (x) + c1)1/4

x

y(x) = i(4(−x4 + 12x2 − 24) cos (x) + 16(x3 − 6x) sin (x) + c1)1/4

x



chapter 2. book solved problems 313

Mathematica DSolve solution

Solving time : 0.476 (sec)
Leaf size : 114� �
DSolve[{D[y[x],x]+y[x]/x==Sin[x]/y[x]^2,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) →
3
√

9 (x2 − 2) sin(x)− 3x (x2 − 6) cos(x) + c1
x

y(x) → −
3
√
−1 3
√

9 (x2 − 2) sin(x)− 3x (x2 − 6) cos(x) + c1
x

y(x) → (−1)2/3 3
√

9 (x2 − 2) sin(x)− 3x (x2 − 6) cos(x) + c1
x
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2.4.4 Problem 4

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 314
Solved as first order homogeneous class D2 ode . . . . . . . . . 316
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 317
Solved using Lie symmetry for first order ode . . . . . . . . . . 321
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 326
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 327
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 327

Internal problem ID [18555]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 31. Problems at
page 85
Problem number : 4
Date solved : Tuesday, January 28, 2025 at 11:58:45 AM
CAS classification : [_linear]

Solve

p′ = p+ a t3 − 2pt2
t (−t2 + 1)

Solved as first order linear ode

Time used: 0.115 (sec)

In canonical form a linear first order is

p′ + q(t)p = p(t)

Comparing the above to the given ode shows that

q(t) = −2t2 − 1
t3 − t

p(t) = − a t2

t2 − 1
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The integrating factor µ is

µ = e
∫
q dt

= e
∫
− 2t2−1

t3−t
dt

= 1√
t− 1

√
t+ 1 t

The ode becomes
d
dt(µp) = µp

d
dt(µp) = (µ)

(
− a t2

t2 − 1

)
d
dt

(
p√

t− 1
√
t+ 1 t

)
=
(

1√
t− 1

√
t+ 1 t

)(
− a t2

t2 − 1

)
d
(

p√
t− 1

√
t+ 1 t

)
=
(
− at

(t2 − 1)
√
t− 1

√
t+ 1

)
dt

Integrating gives

p√
t− 1

√
t+ 1 t

=
∫

− at

(t2 − 1)
√
t− 1

√
t+ 1

dt

=
√
t− 1

√
t+ 1 a

t2 − 1 + c1

Dividing throughout by the integrating factor 1√
t−1

√
t+1 t gives the final solution

p =
(√

t− 1
√
t+ 1 a+ c1(t2 − 1)

)√
t− 1

√
t+ 1 t

t2 − 1

Summary of solutions found

p =
(√

t− 1
√
t+ 1 a+ c1(t2 − 1)

)√
t− 1

√
t+ 1 t

t2 − 1
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Solved as first order homogeneous class D2 ode

Time used: 0.119 (sec)

Applying change of variables p = u(t) t, then the ode becomes

u′(t) t+ u(t) = u(t) t+ a t3 − 2u(t) t3
t (−t2 + 1)

Which is now solved The ode

(2.36)u′(t) = t(u(t)− a)
t2 − 1

is separable as it can be written as

u′(t) = t(u(t)− a)
t2 − 1

= f(t)g(u)

Where

f(t) = t

t2 − 1
g(u) = u− a

Integrating gives ∫ 1
g(u) du =

∫
f(t) dt∫ 1

u− a
du =

∫
t

t2 − 1 dt

ln (−u(t) + a) = ln
(√

t2 − 1
)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u− a = 0

for u(t) gives

u(t) = a
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Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (−u(t) + a) = ln
(√

t2 − 1
)
+ c1

u(t) = a

Solving for u(t) gives
u(t) = a

u(t) = −ec1
√
t2 − 1 + a

Converting u(t) = a back to p gives

p = at

Converting u(t) = −ec1
√
t2 − 1 + a back to p gives

p =
(
−ec1

√
t2 − 1 + a

)
t

Summary of solutions found

p = at

p =
(
−ec1

√
t2 − 1 + a

)
t

Solved as first order Exact ode

Time used: 0.125 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, p) dt+N(t, p) dp = 0 (1A)

Therefore

dp =
(
a t3 − 2p t2 + p

t (−t2 + 1)

)
dt(

−a t3 − 2p t2 + p

t (−t2 + 1)

)
dt+dp = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, p) = −a t3 − 2p t2 + p

t (−t2 + 1)
N(t, p) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂p
= ∂N

∂t

Using result found above gives

∂M

∂p
= ∂

∂p

(
−a t3 − 2p t2 + p

t (−t2 + 1)

)
= −2t2 + 1

t3 − t
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And
∂N

∂t
= ∂

∂t
(1)

= 0

Since ∂M
∂p

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂p
− ∂N

∂t

)
= 1
((

− −2t2 + 1
t (−t2 + 1)

)
− (0)

)
= −2t2 + 1

t3 − t

Since A does not depend on p, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adt

= e
∫ −2t2+1

t3−t
dt

The result of integrating gives

µ = e−
ln(t−1)

2 − ln(t+1)
2 −ln(t)

= 1√
t− 1

√
t+ 1 t

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
t− 1

√
t+ 1 t

(
−a t3 − 2p t2 + p

t (−t2 + 1)

)
= a t3 − 2p t2 + p

t2 (t2 − 1)
√
t− 1

√
t+ 1

And

N = µN

= 1√
t− 1

√
t+ 1 t

(1)

= 1√
t− 1

√
t+ 1 t
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dp
dt = 0(

a t3 − 2p t2 + p

t2 (t2 − 1)
√
t− 1

√
t+ 1

)
+
(

1√
t− 1

√
t+ 1 t

)
dp
dt = 0

The following equations are now set up to solve for the function φ(t, p)

∂φ

∂t
= M (1)

∂φ

∂p
= N (2)

Integrating (2) w.r.t. p gives∫
∂φ

∂p
dp =

∫
N dp∫

∂φ

∂p
dp =

∫ 1√
t− 1

√
t+ 1 t

dp

(3)φ = p√
t− 1

√
t+ 1 t

+ f(t)

Where f(t) is used for the constant of integration since φ is a function of both t and p.
Taking derivative of equation (3) w.r.t t gives

(4)∂φ

∂t
= − p

2 (t− 1)3/2
√
t+ 1 t

− p

2
√
t− 1 (t+ 1)3/2 t

− p√
t− 1

√
t+ 1 t2

+ f ′(t)

= −
2
(
t2 − 1

2

)
p

(t− 1)3/2 (t+ 1)3/2 t2
+ f ′(t)

But equation (1) says that ∂φ
∂t

= a t3−2p t2+p
t2(t2−1)

√
t−1

√
t+1 . Therefore equation (4) becomes

(5)a t3 − 2p t2 + p

t2 (t2 − 1)
√
t− 1

√
t+ 1

= −
2
(
t2 − 1

2

)
p

(t− 1)3/2 (t+ 1)3/2 t2
+ f ′(t)

Solving equation (5) for f ′(t) gives

f ′(t) = at

(t− 1)3/2 (t+ 1)3/2
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Integrating the above w.r.t t gives

∫
f ′(t) dt =

∫ (
at

(t− 1)3/2 (t+ 1)3/2

)
dt

f(t) = − a√
t− 1

√
t+ 1

+ c1

Where c1 is constant of integration. Substituting result found above for f(t) into
equation (3) gives φ

φ = p√
t− 1

√
t+ 1 t

− a√
t− 1

√
t+ 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 =
p√

t− 1
√
t+ 1 t

− a√
t− 1

√
t+ 1

Solving for p gives
p = c1

√
t− 1

√
t+ 1 t+ at

Summary of solutions found

p = c1
√
t− 1

√
t+ 1 t+ at

Solved using Lie symmetry for first order ode

Time used: 0.415 (sec)

Writing the ode as

p′ = −a t3 + 2p t2 − p

t (t2 − 1)
p′ = ω(t, p)

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηp − ξt)− ω2ξp − ωtξ − ωpη = 0 (A)
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To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = pa3 + ta2 + a1

(2E)η = pb3 + tb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−a t3 + 2p t2 − p) (b3 − a2)

t (t2 − 1) − (−a t3 + 2p t2 − p)2 a3
t2 (t2 − 1)2

−
(
−3a t2 + 4pt
t (t2 − 1) − −a t3 + 2p t2 − p

t2 (t2 − 1) − 2(−a t3 + 2p t2 − p)
(t2 − 1)2

)
(pa3

+ ta2 + a1)−
(2t2 − 1) (pb3 + tb2 + b1)

t (t2 − 1) = 0

Putting the above in normal form gives

−a2t6a3 − 4ap t5a3 − a t6a2 + a t6b3 + 2p2t4a3 + t6b2 + 4ap t3a3 + 3a t4a2 − a t4b3 − 2p t4a1 + 2t5b1 + 2a t3a1 − 3p2t2a3 − 2p t3a2 − t4b2 + p t2a1 − 3t3b1 − pa1 + tb1

t2 (t2 − 1)2
= 0

Setting the numerator to zero gives

(6E)−a2t6a3+4ap t5a3+a t6a2−a t6b3−2p2t4a3−t6b2−4ap t3a3−3a t4a2+a t4b3
+2p t4a1−2t5b1−2a t3a1+3p2t2a3+2p t3a2+ t4b2−p t2a1+3t3b1+pa1− tb1
= 0

Looking at the above PDE shows the following are all the terms with {p, t} in them.

{p, t}

The following substitution is now made to be able to collect on all terms with {p, t} in
them

{p = v1, t = v2}
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The above PDE (6E) now becomes

(7E)−a2a3v
6
2 + aa2v

6
2 + 4aa3v1v52 − ab3v

6
2 − 2a3v21v42 − b2v

6
2

− 3aa2v42 − 4aa3v1v32 + ab3v
4
2 + 2a1v1v42 − 2b1v52 − 2aa1v32

+ 2a2v1v32 + 3a3v21v22 + b2v
4
2 − a1v1v

2
2 + 3b1v32 + a1v1 − b1v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−2a3v21v42 + 3a3v21v22 + 4aa3v1v52 + 2a1v1v42 + (−4aa3 + 2a2) v1v32
− a1v1v

2
2 + a1v1 +

(
−a2a3 + aa2 − ab3 − b2

)
v62 − 2b1v52

+ (−3aa2 + ab3 + b2) v42 + (−2aa1 + 3b1) v32 − b1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−a1 = 0
2a1 = 0

−2a3 = 0
3a3 = 0

−2b1 = 0
−b1 = 0
4aa3 = 0

−2aa1 + 3b1 = 0
−4aa3 + 2a2 = 0

−3aa2 + ab3 + b2 = 0
−a2a3 + aa2 − ab3 − b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
b1 = 0
b2 = −ab3

b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = −at+ p

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂p

)
S(t, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

−at+ p
dy

Which results in

S = ln (−at+ p)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, p)Sp

Rt + ω(t, p)Rp
(2)

Where in the above Rt, Rp, St, Sp are all partial derivatives and ω(t, p) is the right hand
side of the original ode given by

ω(t, p) = −a t3 + 2p t2 − p

t (t2 − 1)
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Evaluating all the partial derivatives gives

Rt = 1
Rp = 0

St =
a

at− p

Sp =
1

−at+ p

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2t2 − 1

t3 − t
(2A)

We now need to express the RHS as function of R only. This is done by solving for t, p
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R2 − 1

R3 −R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫ 2R2 − 1
R (R2 − 1) dR

S(R) = ln (R− 1)
2 + ln (R + 1)

2 + ln (R) + c2

To complete the solution, we just need to transform the above back to t, p coordinates.
This results in

ln (−at+ p) = ln (t− 1)
2 + ln (t+ 1)

2 + ln (t) + c2

Which gives

p = t
(
e−

ln(t−1)
2 − ln(t+1)

2 −c2a+ 1
)
eln
(√

t−1
)
+ln

(√
t+1

)
+c2

Summary of solutions found

p = t
(
e−

ln(t−1)
2 − ln(t+1)

2 −c2a+ 1
)
eln
(√

t−1
)
+ln

(√
t+1

)
+c2
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Maple step by step solution

Let’s solve
p′ = p+a t3−2pt2

t(−t2+1)

• Highest derivative means the order of the ODE is 1
p′

• Solve for the highest derivative
p′ = p+a t3−2pt2

t(−t2+1)

• Collect w.r.t. p and simplify

p′ =
(
2t2−1

)
p

t(t2−1) − a t2

t2−1

• Group terms with p on the lhs of the ODE and the rest on the rhs of the ODE

p′ −
(
2t2−1

)
p

t(t2−1) = − a t2

t2−1

• The ODE is linear; multiply by an integrating factor µ(t)

µ(t)
(
p′ −

(
2t2−1

)
p

t(t2−1)

)
= −µ(t)a t2

t2−1

• Assume the lhs of the ODE is the total derivative d
dt
(pµ(t))

µ(t)
(
p′ −

(
2t2−1

)
p

t(t2−1)

)
= p′µ(t) + pµ′(t)

• Isolate µ′(t)

µ′(t) = −µ(t)
(
2t2−1

)
t(t2−1)

• Solve to find the integrating factor
µ(t) = 1

t
√
t+1

√
t−1

• Integrate both sides with respect to t∫ (
d
dt
(pµ(t))

)
dt =

∫
−µ(t)a t2

t2−1 dt+ C1
• Evaluate the integral on the lhs

pµ(t) =
∫
−µ(t)a t2

t2−1 dt+ C1
• Solve for p

p =
∫
−µ(t)a t2

t2−1 dt+C1
µ(t)

• Substitute µ(t) = 1
t
√
t+1

√
t−1

p = t
√
t+ 1

√
t− 1

(∫
− at

(t2−1)
√
t+1

√
t−1dt+ C1

)
• Evaluate the integrals on the rhs

p = t
√
t+ 1

√
t− 1

(√
t−1

√
t+1 a

t2−1 + C1
)
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• Simplify

p = t
(√

t−1
√
t+1 a+C1

(
t2−1

))√
t−1

√
t+1

t2−1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 20� �
dsolve(diff(p(t),t) = (p(t)+a*t^3-2*p(t)*t^2)/t/(-t^2+1),p(t),singsol=all)� �

p = t
(√

t+ 1
√
t− 1 c1 + a

)
Mathematica DSolve solution

Solving time : 0.048 (sec)
Leaf size : 23� �
DSolve[{D[p[t],t]==(p[t]+a*t^3-2*p[t]*t^2 )/(t*(1-t^2)),{}},p[t],t,IncludeSingularSolutions->True]� �

p(t) → t
(
a+ c1

√
1− t2

)
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2.4.5 Problem 5

Solved as first order Bernoulli ode . . . . . . . . . . . . . . . . . 328
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 331
Solved using Lie symmetry for first order ode . . . . . . . . . . 336
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 342
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 343
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 343

Internal problem ID [18556]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 31. Problems at
page 85
Problem number : 5
Date solved : Tuesday, January 28, 2025 at 11:58:47 AM
CAS classification : [_Bernoulli]

Solve

(T ln (t)− 1)T = tT ′

Solved as first order Bernoulli ode

Time used: 0.110 (sec)

In canonical form, the ODE is

T ′ = F (t, T )

= (T ln (t)− 1)T
t

This is a Bernoulli ODE.

T ′ =
(
−1
t

)
T +

(
ln (t)
t

)
T 2 (1)

The standard Bernoulli ODE has the form

T ′ = f0(t)T + f1(t)T n (2)

Comparing this to (1) shows that

f0 = −1
t

f1 =
ln (t)
t
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The first step is to divide the above equation by T n which gives

T ′

T n
= f0(t)T 1−n + f1(t) (3)

The next step is use the substitution v = T 1−n in equation (3) which generates a new
ODE in v(t) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution T (t) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(t) = −1
t

f1(t) =
ln (t)
t

n = 2

Dividing both sides of ODE (1) by T n = T 2 gives

T ′ 1
T 2 = − 1

tT
+ ln (t)

t
(4)

Let

v = T 1−n

= 1
T

(5)

Taking derivative of equation (5) w.r.t t gives

v′ = − 1
T 2T

′ (6)

Substituting equations (5) and (6) into equation (4) gives

−v′(t) = −v(t)
t

+ ln (t)
t

v′ = v

t
− ln (t)

t
(7)

The above now is a linear ODE in v(t) which is now solved.

In canonical form a linear first order is

v′(t) + q(t)v(t) = p(t)



chapter 2. book solved problems 330

Comparing the above to the given ode shows that

q(t) = −1
t

p(t) = − ln (t)
t

The integrating factor µ is

µ = e
∫
q dt

= e
∫
− 1

t
dt

= 1
t

The ode becomes
d
dt(µv) = µp

d
dt(µv) = (µ)

(
− ln (t)

t

)
d
dt

(v
t

)
=
(
1
t

)(
− ln (t)

t

)
d
(v
t

)
=
(
− ln (t)

t2

)
dt

Integrating gives

v

t
=
∫

− ln (t)
t2

dt

= ln (t)
t

+ 1
t
+ c1

Dividing throughout by the integrating factor 1
t
gives the final solution

v(t) = c1t+ ln (t) + 1

The substitution v = T 1−n is now used to convert the above solution back to T which
results in

1
T

= c1t+ ln (t) + 1

Solving for T gives

T = 1
c1t+ ln (t) + 1
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Figure 2.45: Slope field plot
(T ln (t)− 1)T = tT ′

Summary of solutions found

T = 1
c1t+ ln (t) + 1

Solved as first order Exact ode

Time used: 0.125 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, T ) dt+N(t, T ) dT = 0 (1A)
Therefore

(−t) dT = (−(T ln (t)− 1)T ) dt
((T ln (t)− 1)T ) dt+(−t) dT = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, T ) = (T ln (t)− 1)T
N(t, T ) = −t

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂T
= ∂N

∂t
Using result found above gives

∂M

∂T
= ∂

∂T
((T ln (t)− 1)T )

= −1 + 2T ln (t)

And
∂N

∂t
= ∂

∂t
(−t)

= −1

Since ∂M
∂T

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂T
− ∂N

∂t

)
= −1

t
((−1 + 2T ln (t))− (−1))

= −2T ln (t)
t
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Since A depends on T , it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂t
− ∂M

∂T

)
= 1

(T ln (t)− 1)T ((−1)− (−1 + 2T ln (t)))

= − 2 ln (t)
T ln (t)− 1

Since B depends on t, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂t

− ∂M
∂T

xM − yN

R is now checked to see if it is a function of only t = tT . Therefore

R =
∂N
∂t

− ∂M
∂T

xM − yN

= (−1)− (−1 + 2T ln (t))
t ((T ln (t)− 1)T )− T (−t)

= − 2
tT

Replacing all powers of terms tT by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt

The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with tT giving

µ = 1
T 2t2
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Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
T 2t2

((T ln (t)− 1)T )

= T ln (t)− 1
T t2

And

N = µN

= 1
T 2t2

(−t)

= − 1
t T 2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dT
dt = 0(

T ln (t)− 1
T t2

)
+
(
− 1
t T 2

)
dT
dt = 0

The following equations are now set up to solve for the function φ(t, T )
∂φ

∂t
= M (1)

∂φ

∂T
= N (2)

Integrating (1) w.r.t. t gives∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
T ln (t)− 1

T t2
dt

(3)φ = −T ln (t)− T + 1
Tt

+ f(T )

Where f(T ) is used for the constant of integration since φ is a function of both t and
T . Taking derivative of equation (3) w.r.t T gives

(4)∂φ

∂T
= − ln (t)− 1

Tt
− −T ln (t)− T + 1

T 2t
+ f ′(T )

= − 1
t T 2 + f ′(T )



chapter 2. book solved problems 335

But equation (2) says that ∂φ
∂T

= − 1
t T 2 . Therefore equation (4) becomes

(5)− 1
t T 2 = − 1

t T 2 + f ′(T )

Solving equation (5) for f ′(T ) gives

f ′(T ) = 0

Therefore
f(T ) = c1

Where c1 is constant of integration. Substituting this result for f(T ) into equation (3)
gives φ

φ = −T ln (t)− T + 1
Tt

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 =
−T ln (t)− T + 1

Tt

Solving for T gives

T = 1
c1t+ ln (t) + 1
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Figure 2.46: Slope field plot
(T ln (t)− 1)T = tT ′
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Summary of solutions found

T = 1
c1t+ ln (t) + 1

Solved using Lie symmetry for first order ode

Time used: 1.017 (sec)

Writing the ode as

T ′ = (T ln (t)− 1)T
t

T ′ = ω(t, T )

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηT − ξt)− ω2ξT − ωtξ − ωTη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 2 to use as anstaz gives

(1E)ξ = T 2a6 + Tta5 + t2a4 + Ta3 + ta2 + a1

(2E)η = T 2b6 + Ttb5 + t2b4 + Tb3 + tb2 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

Tb5 + 2tb4 + b2 +
(T ln (t)− 1)T (−Ta5 + 2Tb6 − 2ta4 + tb5 − a2 + b3)

t

− (T ln (t)− 1)2 T 2(2Ta6 + ta5 + a3)
t2

−
(
T 2

t2
− (T ln (t)− 1)T

t2

)(
T 2a6 + Tta5 + t2a4 + Ta3 + ta2 + a1

)
−
(
T ln (t)

t
+ T ln (t)− 1

t

)(
T 2b6 + Ttb5 + t2b4 + Tb3 + tb2 + b1

)
= 0

Putting the above in normal form gives

−−Tb5t
2 + T 3ta5 + T 2t2a4 + T 2ta5 + T 2tb6 − T t2a4 + 2 ln (t)2 T 5a6 − 5 ln (t)T 4a6 + ln (t)2 T 4ta5 − 2 ln (t)T 3ta5 + ln (t)T 2t2a4 + ln (t)T 2t2b5 + 2 ln (t)T t3b4 + 2T 2a3 + T 2ta2 + ln (t)2 T 4a3 − 3 ln (t)T 3a3 − ln (t)T 2a1 + ln (t)T 2tb3 + 2 ln (t)T t2b2 + 2 ln (t)Ttb1 − 3t3b4 + T 4a6 + 3T 3a6 − 2b2t2 + T 3a3 + T 2a1 + Ta1 − tb1

t2
= 0
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Setting the numerator to zero gives

(6E)

Tb5t
2 − T 3ta5 − T 2t2a4 − T 2ta5 − T 2tb6 + T t2a4 − 2 ln (t)2 T 5a6

+ 5 ln (t)T 4a6 − ln (t)2 T 4ta5 + 2 ln (t)T 3ta5 − ln (t)T 2t2a4
− ln (t)T 2t2b5 − 2 ln (t)T t3b4 − 2T 2a3 − T 2ta2 − ln (t)2 T 4a3
+ 3 ln (t)T 3a3 + ln (t)T 2a1 − ln (t)T 2tb3 − 2 ln (t)T t2b2 − 2 ln (t)Ttb1
+ 3t3b4 − T 4a6 − 3T 3a6 + 2b2t2 − T 3a3 − T 2a1 − Ta1 + tb1 = 0

Looking at the above PDE shows the following are all the terms with {T, t} in them.

{T, t, ln (t)}

The following substitution is now made to be able to collect on all terms with {T, t} in
them

{T = v1, t = v2, ln (t) = v3}

The above PDE (6E) now becomes

(7E)
−v23v

4
1v2a5 − 2v23v51a6 − v23v

4
1a3 − v3v

2
1v

2
2a4 + 2v3v31v2a5 + 5v3v41a6

− 2v3v1v32b4 − v3v
2
1v

2
2b5 + 3v3v31a3 − v21v

2
2a4 − v31v2a5 − v41a6 − 2v3v1v22b2

− v3v
2
1v2b3+ v3v

2
1a1− v21v2a2− v31a3+ v1v

2
2a4− v21v2a5− 3v31a6− 2v3v1v2b1

+ 3v32b4 + v1b5v
2
2 − v21v2b6 − v21a1 − 2v21a3 + 2b2v22 − v1a1 + v2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)
−2v23v51a6 − v23v

4
1v2a5 − v23v

4
1a3 + 5v3v41a6 − v41a6 + 2v3v31v2a5 − v31v2a5

+ 3v3v31a3 + (−a3 − 3a6) v31 + (−a4 − b5) v21v22v3 − v21v
2
2a4 − v3v

2
1v2b3

+ (−a2 − a5 − b6) v21v2 + v3v
2
1a1 + (−a1 − 2a3) v21 − 2v3v1v32b4 − 2v3v1v22b2

+ (a4 + b5) v1v22 − 2v3v1v2b1 − v1a1 + 3v32b4 + 2b2v22 + v2b1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−a1 = 0
−a3 = 0
3a3 = 0
−a4 = 0
−a5 = 0
2a5 = 0

−2a6 = 0
−a6 = 0
5a6 = 0

−2b1 = 0
−2b2 = 0
2b2 = 0
−b3 = 0
−2b4 = 0
3b4 = 0

−a1 − 2a3 = 0
−a3 − 3a6 = 0
−a4 − b5 = 0
a4 + b5 = 0

−a2 − a5 − b6 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −b6

a3 = 0
a4 = 0
a5 = 0
a6 = 0
b1 = 0
b2 = 0
b3 = 0
b4 = 0
b5 = 0
b6 = b6

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −t

η = T 2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(t, T ) ξ

= T 2 −
(
(T ln (t)− 1)T

t

)
(−t)

= T 2 ln (t) + T 2 − T

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, T ) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt

ξ
= dT

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂T

)
S(t, T ) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

T 2 ln (t) + T 2 − T
dy

Which results in

S = ln (T ln (t) + T − 1)− ln (T )

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, T )ST

Rt + ω(t, T )RT
(2)

Where in the above Rt, RT , St, ST are all partial derivatives and ω(t, T ) is the right
hand side of the original ode given by

ω(t, T ) = (T ln (t)− 1)T
t

Evaluating all the partial derivatives gives

Rt = 1
RT = 0

St =
T

t (T ln (t) + T − 1)

ST = 1
T (T ln (t) + T − 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

t
(2A)

We now need to express the RHS as function of R only. This is done by solving for t, T
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫ 1
R

dR

S(R) = ln (R) + c2

To complete the solution, we just need to transform the above back to t, T coordinates.
This results in

ln (T ln (t) + T − 1)− ln (T ) = ln (t) + c2

Which gives

T = 1
1− ec2t+ ln (t)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, T coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dT
dt

= (T ln(t)−1)T
t

dS
dR

= 1
R

–4

–2

0

2

4

T(t)

–4 –2 2 4

t

R = t

S = ln (T ln (t) + T − 1)− ln (T )

–4

–2

0

2

4

S(R)

–4 –2 2 4

R
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Figure 2.47: Slope field plot
(T ln (t)− 1)T = tT ′

Summary of solutions found

T = 1
1− ec2t+ ln (t)

Maple step by step solution

Let’s solve
(T ln (t)− 1)T = tT ′

• Highest derivative means the order of the ODE is 1
T ′

• Solve for the highest derivative
T ′ = (T ln(t)−1)T

t

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 13� �
dsolve((T(t)*ln(t)-1)*T(t) = diff(T(t),t)*t,T(t),singsol=all)� �

T = 1
1 + c1t+ ln (t)

Mathematica DSolve solution

Solving time : 0.136 (sec)
Leaf size : 20� �
DSolve[{(T[t]*Log[t]-1)*T[t]==t*D[T[t],t],{}},T[t],t,IncludeSingularSolutions->True]� �

T (t) → 1
log(t) + c1t+ 1

T (t) → 0
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2.4.6 Problem 6

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 344
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 346
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 350
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 351
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 351

Internal problem ID [18557]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 31. Problems at
page 85
Problem number : 6
Date solved : Tuesday, January 28, 2025 at 11:58:49 AM
CAS classification : [_linear]

Solve

y′ + y cos (x) = sin (2x)
2

Solved as first order linear ode

Time used: 0.128 (sec)

In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = cos (x)

p(x) = sin (2x)
2

The integrating factor µ is

µ = e
∫
q dx

= e
∫
cos(x)dx

= esin(x)
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The ode becomes
d
dx(µy) = µp

d
dx(µy) = (µ)

(
sin (2x)

2

)
d
dx
(
y esin(x)

)
=
(
esin(x)

)(sin (2x)
2

)

d
(
y esin(x)

)
=
(
sin (2x) esin(x)

2

)
dx

Integrating gives

y esin(x) =
∫ sin (2x) esin(x)

2 dx

= sin (x) esin(x) − esin(x) + c1

Dividing throughout by the integrating factor esin(x) gives the final solution

y = sin (x) + e− sin(x)c1 − 1

–3
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–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.48: Slope field plot
y′ + y cos (x) = sin(2x)

2

Summary of solutions found

y = sin (x) + e− sin(x)c1 − 1
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Solved as first order Exact ode

Time used: 0.177 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−y cos (x) + sin (2x)

2

)
dx(

y cos (x)− sin (2x)
2

)
dx+dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = y cos (x)− sin (2x)
2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y cos (x)− sin (2x)

2

)
= cos (x)

And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((cos (x))− (0))
= cos (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
cos(x) dx

The result of integrating gives

µ = esin(x)

= esin(x)
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= esin(x)
(
y cos (x)− sin (2x)

2

)
= cos (x) (− sin (x) + y) esin(x)

And

N = µN

= esin(x)(1)
= esin(x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

cos (x) (− sin (x) + y) esin(x)
)
+
(
esin(x)

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives ∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫
esin(x) dy

(3)φ = y esin(x) + f(x)

Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= esin(x) cos (x) y + f ′(x)
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But equation (1) says that ∂φ
∂x

= cos (x) (− sin (x) + y) esin(x). Therefore equation (4)
becomes

(5)cos (x) (− sin (x) + y) esin(x) = esin(x) cos (x) y + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = − cos (x) esin(x) sin (x)

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫ (
− cos (x) esin(x) sin (x)

)
dx

f(x) = − sin (x) esin(x) + esin(x) + c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = y esin(x) − sin (x) esin(x) + esin(x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = y esin(x) − sin (x) esin(x) + esin(x)

Solving for y gives
y = e− sin(x)(sin (x) esin(x) − esin(x) + c1

)

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.49: Slope field plot
y′ + y cos (x) = sin(2x)

2
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Summary of solutions found

y = e− sin(x)(sin (x) esin(x) − esin(x) + c1
)

Maple step by step solution

Let’s solve
y′ + y cos (x) = sin(2x)

2

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = −y cos (x) + sin(2x)

2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y cos (x) = sin(2x)

2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + y cos (x)) = µ(x) sin(2x)

2

• Assume the lhs of the ODE is the total derivative d
dx
(yµ(x))

µ(x) (y′ + y cos (x)) = y′µ(x) + yµ′(x)
• Isolate µ′(x)

µ′(x) = µ(x) cos (x)
• Solve to find the integrating factor

µ(x) = esin(x)

• Integrate both sides with respect to x∫ (
d
dx
(yµ(x))

)
dx =

∫ µ(x) sin(2x)
2 dx+ C1

• Evaluate the integral on the lhs
yµ(x) =

∫ µ(x) sin(2x)
2 dx+ C1

• Solve for y

y =
∫ µ(x) sin(2x)

2 dx+C1
µ(x)

• Substitute µ(x) = esin(x)

y =
∫ sin(2x)esin(x)

2 dx+C1
esin(x)

• Evaluate the integrals on the rhs

y = sin(x)esin(x)−esin(x)+C1
esin(x)

• Simplify
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y = sin (x) + e− sin(x)C1 − 1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 15� �
dsolve(diff(y(x),x)+y(x)*cos(x) = 1/2*sin(2*x),y(x),singsol=all)� �

y(x) = sin (x)− 1 + e− sin(x)c1

Mathematica DSolve solution

Solving time : 0.052 (sec)
Leaf size : 18� �
DSolve[{D[y[x],x]+y[x]*Cos[x]==1/2*Sin[2*x],{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → sin(x) + c1e
− sin(x) − 1
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2.4.7 Problem 7

Solved as first order Bernoulli ode . . . . . . . . . . . . . . . . . 352
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 355
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 356
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 356

Internal problem ID [18558]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 31. Problems at
page 85
Problem number : 7
Date solved : Tuesday, January 28, 2025 at 11:58:52 AM
CAS classification : [_Bernoulli]

Solve

y − cos (x) y′ = y2 cos (x) (1− sin (x))

Solved as first order Bernoulli ode

Time used: 0.239 (sec)

In canonical form, the ODE is

y′ = F (x, y)

= y(cos (x) sin (x) y − cos (x) y + 1)
cos (x)

This is a Bernoulli ODE.

y′ =
(

1
cos (x)

)
y +

(
cos (x) sin (x)− cos (x)

cos (x)

)
y2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

Comparing this to (1) shows that

f0 =
1

cos (x)

f1 =
cos (x) sin (x)− cos (x)

cos (x)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution v = y1−n in equation (3) which generates a new
ODE in v(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1

cos (x)

f1(x) =
cos (x) sin (x)− cos (x)

cos (x)
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 1
cos (x) y + cos (x) sin (x)− cos (x)

cos (x) (4)

Let

v = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

v′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−v′(x) = v(x)
cos (x) +

cos (x) sin (x)− cos (x)
cos (x)

v′ = − v

cos (x) −
cos (x) sin (x)− cos (x)

cos (x) (7)

The above now is a linear ODE in v(x) which is now solved.

In canonical form a linear first order is

v′(x) + q(x)v(x) = p(x)
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Comparing the above to the given ode shows that

q(x) = sec (x)
p(x) = 1− sin (x)

The integrating factor µ is

µ = e
∫
q dx

= e
∫
sec(x)dx

= sec (x) + tan (x)

The ode becomes
d
dx(µv) = µp

d
dx(µv) = (µ) (1− sin (x))

d
dx(v(sec (x) + tan (x))) = (sec (x) + tan (x)) (1− sin (x))

d(v(sec (x) + tan (x))) = ((1− sin (x)) (sec (x) + tan (x))) dx

Integrating gives

v(sec (x) + tan (x)) =
∫

(1− sin (x)) (sec (x) + tan (x)) dx

= sin (x) + c1

Dividing throughout by the integrating factor sec (x) + tan (x) gives the final solution

v(x) = (sin (x) + c1) (cos (x)− sin (x) + 1)
cos (x) + sin (x) + 1

The substitution v = y1−n is now used to convert the above solution back to y which
results in

1
y
= (sin (x) + c1) (cos (x)− sin (x) + 1)

cos (x) + sin (x) + 1

Solving for y gives

y = cos (x) + sin (x) + 1
cos (x) sin (x) + cos (x) c1 − sin (x)2 − c1 sin (x) + sin (x) + c1
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Figure 2.50: Slope field plot
y − cos (x) y′ = y2 cos (x) (1− sin (x))

Summary of solutions found

y = cos (x) + sin (x) + 1
cos (x) sin (x) + cos (x) c1 − sin (x)2 − c1 sin (x) + sin (x) + c1

Maple step by step solution

Let’s solve
y − cos (x) y′ = y2 cos (x) (1− sin (x))

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = −−y+y2 cos(x)(1−sin(x))

cos(x)

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 27� �
dsolve(y(x)-cos(x)*diff(y(x),x) = y(x)^2*cos(x)*(1-sin(x)),y(x),singsol=all)� �

y(x) = cos (x) + sin (x) + 1
(c1 + sin (x)) (− sin (x) + cos (x) + 1)

Mathematica DSolve solution

Solving time : 0.419 (sec)
Leaf size : 41� �
DSolve[{y[x]-Cos[x]*D[y[x],x]==y[x]^2*Cos[x]*(1-Sin[x]),{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → e2arctanh
(
tan
(
x
2
))

cos(x)e2arctanh
(
tan
(
x
2
))
+ c1

y(x) → 0
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2.5 Chapter IV. Methods of solution: First order
equations. section 32. Problems at page 89

2.5.1 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
2.5.2 Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
2.5.3 Problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
2.5.4 Problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
2.5.5 Problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
2.5.6 Problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
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2.5.1 Problem 2

Solved as first order ode of type dAlembert . . . . . . . . . . . 358
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 360
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 361
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 361

Internal problem ID [18559]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 32. Problems at
page 89
Problem number : 2
Date solved : Tuesday, January 28, 2025 at 11:58:57 AM
CAS classification : [_rational, _dAlembert]

Solve

xy′
2 − y + 2y′ = 0

Solved as first order ode of type dAlembert

Time used: 0.112 (sec)

Let p = y′ the ode becomes

x p2 + 2p− y = 0

Solving for y from the above results in

(1)y = x p2 + 2p

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p2

g = 2p

Hence (2) becomes
(2A)−p2 + p = (2xp+ 2) p′(x)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p2 + p = 0

Solving the above for p results in

p1 = 0
p2 = 1

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = 0
y = x+ 2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

(3)p′(x) = −p(x)2 + p(x)
2p (x)x+ 2

Inverting the above ode gives
d

dp
x(p) = 2x(p) p+ 2

−p2 + p
(4)

This ODE is now solved for x(p). The integrating factor is

µ = e
∫ 2

p−1dp

µ = (p− 1)2

µ = (p− 1)2 (5)

Integrating gives

x(p) = 1
µ

(∫
µ

(
− 2
p (p− 1)

)
dp+ c1

)
= 1

µ

(
−2p+ 2 ln (p) + c1

(p− 1)2
+ c1

)
= −2p+ 2 ln (p) + c1

(p− 1)2
(5)
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Now we need to eliminate p between the above solution and (1A). The first method is
to solve for p from Eq. (1A) and substitute the result into Eq. (5). The Second method
is to solve for p from Eq. (5) and substitute the result into (1A).

Eliminating p from the following two equations

x = −2p+ 2 ln (p) + c1

(p− 1)2

y = x p2 + 2p

results in
p = eRootOf

(
−x e2_Z+2x e_Z−2 e_Z+c1+2_Z−x

)

Substituting the above into Eq (1A) and simplifying gives

y = x e2RootOf
(
−x e2_Z+2x e_Z−2 e_Z+c1+2_Z−x

)
+ 2 eRootOf

(
−x e2_Z+2x e_Z−2 e_Z+c1+2_Z−x

)

Summary of solutions found

y = 0
y = x+ 2

y = x e2RootOf
(
−x e2_Z+2x e_Z−2 e_Z+c1+2_Z−x

)
+ 2 eRootOf

(
−x e2_Z+2x e_Z−2 e_Z+c1+2_Z−x

)

Maple step by step solution

Let’s solve
xy′2 − y + 2y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative[
y′ = −1+

√
xy+1

x
, y′ = −1+

√
xy+1
x

]
• Solve the equation y′ = −1+

√
xy+1

x

• Solve the equation y′ = −1+
√
xy+1
x

• Set of solutions
{workingODE ,workingODE}
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Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
Maple dsolve solution

Solving time : 0.017 (sec)
Leaf size : 65� �
dsolve(x*diff(y(x),x)^2-y(x)+2*diff(y(x),x) = 0,y(x),singsol=all)� �

y(x) = 2x eRootOf
(
−e2_Zx+2x e_Z−2 e_Z+c1+2_Z−x

)
+ 2RootOf

(
−e2_Zx+ 2x e_Z − 2 e_Z + c1 + 2_Z− x

)
+ c1 − x

Mathematica DSolve solution

Solving time : 12.594 (sec)
Leaf size : 50� �
DSolve[{x*D[y[x],x]^2-y[x]+2*D[y[x],x]==0,{}},y[x],x,IncludeSingularSolutions->True]� �
Solve

[{
x = 2 log(K[1])− 2K[1]

(K[1]− 1)2 + c1
(K[1]− 1)2 , y(x) = xK[1]2+2K[1]

}
, {y(x), K[1]}

]
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2.5.2 Problem 3

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 364
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 367
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 367

Internal problem ID [18560]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 32. Problems at
page 89
Problem number : 3
Date solved : Tuesday, January 28, 2025 at 11:58:59 AM
CAS classification : [_quadrature]

Solve

2y′3 + y′
2 − y = 0

Solving for the derivative gives these ODE’s to solve

(1)y′ =
(
−1 + 54y + 6

√
−3y + 81y2

)1/3
6 + 1

6
(
−1 + 54y + 6

√
−3y + 81y2

)1/3 − 1
6

(2)
y′ = −

(
−1 + 54y + 6

√
−3y + 81y2

)1/3
12 − 1

12
(
−1 + 54y + 6

√
−3y + 81y2

)1/3
− 1

6 +
i
√
3
((

−1+54y+6
√

−3y+81y2
)1/3

6 − 1
6
(
−1+54y+6

√
−3y+81y2

)1/3
)

2

(3)
y′ = −

(
−1 + 54y + 6

√
−3y + 81y2

)1/3
12 − 1

12
(
−1 + 54y + 6

√
−3y + 81y2

)1/3
− 1

6 −
i
√
3
((

−1+54y+6
√

−3y+81y2
)1/3

6 − 1
6
(
−1+54y+6

√
−3y+81y2

)1/3
)

2

Now each of the above is solved separately.
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Solving Eq. (1)

Unable to integrate (or intergal too complicated), and since no initial conditions are
given, then the result can be written as∫ y 6

(
−1 + 54τ + 6

√
81τ 2 − 3τ

)1/3(
−1 + 54τ + 6

√
81τ 2 − 3τ

)2/3 − (−1 + 54τ + 6
√
81τ 2 − 3τ

)1/3 + 1
dτ = x+ c1

We now need to find the singular solutions, these are found by finding for what values

(
(
−1+54y+6

√
81y2−3y

)1/3
6 + 1

6
(
−1+54y+6

√
81y2−3y

)1/3 − 1
6) is zero. These give

y = RootOf
(
−
(
−1 + 54_Z+ 6

√
3
√
27_Z2 − _Z

)2/3
+
(
−1 + 54_Z+ 6

√
3
√

27_Z2 − _Z
)1/3

− 1
)

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf
(
−
(
−1 + 54_Z+ 6

√
3
√

27_Z2 − _Z
)2/3

+
(
−1 + 54_Z+ 6

√
3
√

27_Z2 − _Z
)1/3

− 1
)

will not be used

Solving Eq. (2)

Unable to integrate (or intergal too complicated), and since no initial conditions are
given, then the result can be written as∫ y 12

(
−1 + 54τ + 6

√
81τ 2 − 3τ

)1/3
i
√
3
(
−1 + 54τ + 6

√
81τ 2 − 3τ

)2/3 − i
√
3−

(
−1 + 54τ + 6

√
81τ 2 − 3τ

)2/3 − 2
(
−1 + 54τ + 6

√
81τ 2 − 3τ

)1/3 − 1
dτ = x+c2

We now need to find the singular solutions, these are found by finding for what values

(−
(
−1+54y+6

√
81y2−3y

)1/3
12 − 1

12
(
−1+54y+6

√
81y2−3y

)1/3−1
6+

i
√
3


(
−1+54y+6

√
81y2−3y

)1/3

6 − 1

6
(
−1+54y+6

√
81y2−3y

)1/3


2 )

is zero. These give

y = RootOf
(
i
√
3
(
−1 + 54_Z+ 6

√
3
√

27_Z2 − _Z
)2/3

− i
√
3

−
(
−1 + 54_Z+ 6

√
3
√

27_Z2 − _Z
)2/3

− 2
(
−1 + 54_Z+ 6

√
3
√

27_Z2 − _Z
)1/3

− 1
)
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Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf
(
i
√
3
(
−1 + 54_Z+ 6

√
3
√

27_Z2 − _Z
)2/3

− i
√
3−

(
−1 + 54_Z+ 6

√
3
√

27_Z2 − _Z
)2/3

− 2
(
−1 + 54_Z+ 6

√
3
√
27_Z2 − _Z

)1/3
− 1
)

will not be used

Solving Eq. (3)

Unable to integrate (or intergal too complicated), and since no initial conditions are
given, then the result can be written as∫ y

−
12
(
−1 + 54τ + 6

√
81τ 2 − 3τ

)1/3
i
√
3
(
−1 + 54τ + 6

√
81τ 2 − 3τ

)2/3 + (−1 + 54τ + 6
√
81τ 2 − 3τ

)2/3 − i
√
3 + 2

(
−1 + 54τ + 6

√
81τ 2 − 3τ

)1/3 + 1
dτ = x+c3

We now need to find the singular solutions, these are found by finding for what values

(−
(
−1+54y+6

√
81y2−3y

)1/3
12 − 1

12
(
−1+54y+6

√
81y2−3y

)1/3−1
6−

i
√
3


(
−1+54y+6

√
81y2−3y

)1/3

6 − 1

6
(
−1+54y+6

√
81y2−3y

)1/3


2 )

is zero. These give

y = RootOf
(
i
√
3
(
−1 + 54_Z+ 6

√
3
√

27_Z2 − _Z
)2/3

+
(
−1 + 54_Z+ 6

√
3
√

27_Z2 − _Z
)2/3

− i
√
3

+ 2
(
−1 + 54_Z+ 6

√
3
√
27_Z2 − _Z

)1/3
+ 1
)

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf
(
i
√
3
(
−1 + 54_Z+ 6

√
3
√

27_Z2 − _Z
)2/3

+
(
−1 + 54_Z+ 6

√
3
√
27_Z2 − _Z

)2/3
− i

√
3 + 2

(
−1 + 54_Z+ 6

√
3
√

27_Z2 − _Z
)1/3

+ 1
)

will not be used

Maple step by step solution

Let’s solve
2y′3 + y′2 − y = 0

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
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y′ =
(
−1+54y+6

√
−3y+81y2

)1/3
6 + 1

6
(
−1+54y+6

√
−3y+81y2

)1/3 − 1
6 , y

′ = −
(
−1+54y+6

√
−3y+81y2

)1/3
12 − 1

12
(
−1+54y+6

√
−3y+81y2

)1/3 − 1
6 −

I
√
3


(
−1+54y+6

√
−3y+81y2

)1/3

6 − 1

6
(
−1+54y+6

√
−3y+81y2

)1/3


2 , y′ = −

(
−1+54y+6

√
−3y+81y2

)1/3
12 − 1

12
(
−1+54y+6

√
−3y+81y2

)1/3 − 1
6 +

I
√
3


(
−1+54y+6

√
−3y+81y2

)1/3

6 − 1

6
(
−1+54y+6

√
−3y+81y2

)1/3


2


� Solve the equation y′ =

(
−1+54y+6

√
−3y+81y2

)1/3
6 + 1

6
(
−1+54y+6

√
−3y+81y2

)1/3 − 1
6

◦ Separate variables
y′(

−1+54y+6
√

−3y+81y2
)1/3

6 + 1

6
(
−1+54y+6

√
−3y+81y2

)1/3−
1
6

= 1

◦ Integrate both sides with respect to x∫
y′(

−1+54y+6
√

−3y+81y2
)1/3

6 + 1

6
(
−1+54y+6

√
−3y+81y2

)1/3−
1
6

dx =
∫
1dx+ _C1

◦ Cannot compute integral∫
y′(

−1+54y+6
√

−3y+81y2
)1/3

6 + 1

6
(
−1+54y+6

√
−3y+81y2

)1/3−
1
6

dx = x+ _C1

� Solve the equation y′ = −
(
−1+54y+6

√
−3y+81y2

)1/3
12 − 1

12
(
−1+54y+6

√
−3y+81y2

)1/3 − 1
6 −

I
√
3


(
−1+54y+6

√
−3y+81y2

)1/3

6 − 1

6
(
−1+54y+6

√
−3y+81y2

)1/3


2

◦ Separate variables
y′

−

(
−1+54y+6

√
−3y+81y2

)1/3

12 − 1

12
(
−1+54y+6

√
−3y+81y2

)1/3−
1
6−

I
√
3


(
−1+54y+6

√
−3y+81y2

)1/3

6 − 1

6
(
−1+54y+6

√
−3y+81y2

)1/3


2

= 1

◦ Integrate both sides with respect to x∫
y′

−

(
−1+54y+6

√
−3y+81y2

)1/3

12 − 1

12
(
−1+54y+6

√
−3y+81y2

)1/3−
1
6−

I
√
3


(
−1+54y+6

√
−3y+81y2

)1/3

6 − 1

6
(
−1+54y+6

√
−3y+81y2

)1/3


2

dx =
∫
1dx+ _C1

◦ Cannot compute integral∫
y′

−

(
−1+54y+6

√
−3y+81y2

)1/3

12 − 1

12
(
−1+54y+6

√
−3y+81y2

)1/3−
1
6−

I
√
3


(
−1+54y+6

√
−3y+81y2

)1/3

6 − 1

6
(
−1+54y+6

√
−3y+81y2

)1/3


2

dx = x+ _C1
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� Solve the equation y′ = −
(
−1+54y+6

√
−3y+81y2

)1/3
12 − 1

12
(
−1+54y+6

√
−3y+81y2

)1/3 − 1
6 +

I
√
3


(
−1+54y+6

√
−3y+81y2

)1/3

6 − 1

6
(
−1+54y+6

√
−3y+81y2

)1/3


2

◦ Separate variables
y′

−

(
−1+54y+6

√
−3y+81y2

)1/3

12 − 1

12
(
−1+54y+6

√
−3y+81y2

)1/3−
1
6+

I
√
3


(
−1+54y+6

√
−3y+81y2

)1/3

6 − 1

6
(
−1+54y+6

√
−3y+81y2

)1/3


2

= 1

◦ Integrate both sides with respect to x∫
y′

−

(
−1+54y+6

√
−3y+81y2

)1/3

12 − 1

12
(
−1+54y+6

√
−3y+81y2

)1/3−
1
6+

I
√
3


(
−1+54y+6

√
−3y+81y2

)1/3

6 − 1

6
(
−1+54y+6

√
−3y+81y2

)1/3


2

dx =
∫
1dx+ _C1

◦ Cannot compute integral∫
y′

−

(
−1+54y+6

√
−3y+81y2

)1/3

12 − 1

12
(
−1+54y+6

√
−3y+81y2

)1/3−
1
6+

I
√
3


(
−1+54y+6

√
−3y+81y2

)1/3

6 − 1

6
(
−1+54y+6

√
−3y+81y2

)1/3


2

dx = x+ _C1

• Set of solutions
∫

y′(
−1+54y+6

√
−3y+81y2

)1/3

6 + 1

6
(
−1+54y+6

√
−3y+81y2

)1/3−
1
6

dx = x+ C1 ,
∫

y′

−

(
−1+54y+6

√
−3y+81y2

)1/3

12 − 1

12
(
−1+54y+6

√
−3y+81y2

)1/3−
1
6−

I
√
3


(
−1+54y+6

√
−3y+81y2

)1/3

6 − 1

6
(
−1+54y+6

√
−3y+81y2

)1/3


2

dx = x+ C1 ,
∫

y′

−

(
−1+54y+6

√
−3y+81y2

)1/3

12 − 1

12
(
−1+54y+6

√
−3y+81y2

)1/3−
1
6+

I
√

3


(
−1+54y+6

√
−3y+81y2

)1/3

6 − 1

6
(
−1+54y+6

√
−3y+81y2

)1/3


2

dx = x+ C1


Maple trace� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
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<- differential order: 1; missing x successful`� �
Maple dsolve solution

Solving time : 0.019 (sec)
Leaf size : 385� �
dsolve(2*diff(y(x),x)^3+diff(y(x),x)^2-y(x) = 0,y(x),singsol=all)� �
y(x) = 0

−6
√
3
(∫ y(x) (

18
√
27_a2 − _a+ (54_a− 1)

√
3
)1/3

32/3 −
√
3
(
18
√
27_a2 − _a+ (54_a− 1)

√
3
)1/3 + 31/3

(
18
√
27_a2 − _a+ (54_a− 1)

√
3
)2/3d_a

)
+x−c1 =0

−72
(∫ y(x)

(
18
√

27_a2−_a+(54_a−1)
√
3
)1/3(

i35/6+31/3−2 31/6
(
18
√

27_a2−_a+(54_a−1)
√
3
)1/3)(

31/3+31/6
(
18
√

27_a2−_a+(54_a−1)
√
3
)1/3)d_a

)
+ (−c1 + x)

√
3 + 3ix− 3ic1

√
3 + 3i

=0

72
(∫ y(x)

(
18
√

27_a2−_a+(54_a−1)
√
3
)1/3(

−i35/6+31/3−2 31/6
(
18
√

27_a2−_a+(54_a−1)
√
3
)1/3)(

31/3+31/6
(
18
√

27_a2−_a+(54_a−1)
√
3
)1/3)d_a

)
+ (−x+ c1)

√
3 + 3ix− 3ic1

−
√
3 + 3i

=0

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0� �
DSolve[{2*D[y[x],x]^3+D[y[x],x]^2-y[x]==0,{}},y[x],x,IncludeSingularSolutions->True]� �
Timed out
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2.5.3 Problem 4

Solved as first order quadrature ode . . . . . . . . . . . . . . . 368
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 369
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 370
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 370

Internal problem ID [18561]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 32. Problems at
page 89
Problem number : 4
Date solved : Tuesday, January 28, 2025 at 12:00:07 PM
CAS classification : [_quadrature]

Solve

y′ = ez−y′

Solved as first order quadrature ode

Time used: 0.081 (sec)

Since the ode has the form y′ = f(z), then we only need to integrate f(z).∫
dy =

∫
LambertW (ez) dz

y = LambertW (ez) + LambertW (ez)2

2 + c1
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–3

–2

–1

0

1

2

3

y(z)

–4 –2 0 2 4

z

Figure 2.51: Slope field plot
y′ = ez−y′

Summary of solutions found

y = LambertW (ez) + LambertW (ez)2

2 + c1

Maple step by step solution

Let’s solve
y′ = ez−y′

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = LambertW (ez)

• Integrate both sides with respect to z∫
y′dz =

∫
LambertW (ez) dz + C1

• Evaluate integral

y = LambertW (ez)2
2 + LambertW (ez) + C1

• Solve for y

y = LambertW (ez)2
2 + LambertW (ez) + C1
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Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 16� �
dsolve(diff(y(z),z) = exp(z-diff(y(z),z)),y(z),singsol=all)� �

y = LambertW (ez)2

2 + LambertW (ez) + c1

Mathematica DSolve solution

Solving time : 0.023 (sec)
Leaf size : 22� �
DSolve[{D[y[z],z]==Exp[z-D[y[z],z]],{}},y[z],z,IncludeSingularSolutions->True]� �

y(z) → 1
2W (ez)2 +W (ez) + c1
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2.5.4 Problem 5

Solved as first order isobaric ode . . . . . . . . . . . . . . . . . 371
Solved using Lie symmetry for first order ode . . . . . . . . . . 374
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 379
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 379
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 380

Internal problem ID [18562]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 32. Problems at
page 89
Problem number : 5
Date solved : Tuesday, January 28, 2025 at 12:00:08 PM
CAS classification : [[_homogeneous, ‘class G‘]]

Solve
√
t2 + T = T ′

Solved as first order isobaric ode

Time used: 1.718 (sec)

Solving for T ′ gives

(1)T ′ =
√
t2 + T

Each of the above ode’s is now solved An ode T ′ = f(t, T ) is isobaric if

f(tt, tmT ) = tm−1f(t, T ) (1)

Where here
f(t, T ) =

√
t2 + T (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 2

Since the ode is isobaric of order m = 2, then the substitution

T = utm

= u t2
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Converts the ODE to a separable in u(t). Performing this substitution gives

2tu(t) + t2u′(t) =
√

t2 + t2u (t)

The ode

(2.37)u′(t) =
√

1 + u (t)− 2u(t)
t

is separable as it can be written as

u′(t) =
√
1 + u (t)− 2u(t)

t
= f(t)g(u)

Where

f(t) = 1
t

g(u) =
√
u+ 1− 2u

Integrating gives ∫ 1
g(u) du =

∫
f(t) dt∫ 1√

u+ 1− 2u
du =

∫ 1
t
dt

−
ln
(
2u(t)−

√
1 + u (t)

)
2 +

√
17 arctanh

((
4
√

1+u(t)−1
)√

17
17

)
17 = ln (t) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

√
u+ 1− 2u = 0

for u(t) gives

u(t) = 1
8 +

√
17
8
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Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

−
ln
(
2u(t)−

√
1 + u (t)

)
2 +

√
17 arctanh

((
4
√

1+u(t)−1
)√

17
17

)
17 = ln (t) + c1

u(t) = 1
8 +

√
17
8

Converting −
ln
(
2u(t)−

√
1+u(t)

)
2 +

√
17 arctanh

((
4
√

1+u(t)−1
)√

17
17

)
17 = ln (t) + c1 back to T gives

−
ln
(

2T
t2

−
√

1 + T
t2

)
2 +

√
17 arctanh

((
4
√

1+ T
t2−1

)√
17

17

)
17 = ln (t) + c1

Converting u(t) = 1
8 +

√
17
8 back to T gives

T

t2
= 1

8 +
√
17
8

Solving for T gives

−
ln
(

2T
t2

−
√

1 + T
t2

)
2 +

√
17 arctanh

((
4
√

1+ T
t2−1

)√
17

17

)
17 = ln (t) + c1

T =
(
1 +

√
17
)
t2

8

Summary of solutions found

−
ln
(

2T
t2

−
√

1 + T
t2

)
2 +

√
17 arctanh

((
4
√

1+ T
t2−1

)√
17

17

)
17 = ln (t) + c1

T =
(
1 +

√
17
)
t2

8
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Solved using Lie symmetry for first order ode

Time used: 1.231 (sec)

Writing the ode as

T ′ =
√
t2 + T

T ′ = ω(t, T )

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηT − ξt)− ω2ξT − ωtξ − ωTη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = Ta3 + ta2 + a1

(2E)η = Tb3 + tb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
√
t2 + T (b3 − a2)−

(
t2 + T

)
a3 −

t(Ta3 + ta2 + a1)√
t2 + T

− Tb3 + tb2 + b1

2
√
t2 + T

= 0

Putting the above in normal form gives

−2
√
t2 + T t2a3 + 2

√
t2 + T Ta3 + 2Tta3 + 4t2a2 − 2t2b3 − 2b2

√
t2 + T + 2Ta2 − Tb3 + 2ta1 + tb2 + b1

2
√
t2 + T

= 0

Setting the numerator to zero gives

(6E)−2
√
t2 + T t2a3 − 2

√
t2 + T Ta3 − 2Tta3 − 4t2a2 + 2t2b3

+ 2b2
√
t2 + T − 2Ta2 + Tb3 − 2ta1 − tb2 − b1 = 0
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Simplifying the above gives

(6E)−2
√
t2 + T t2a3 − 2

(
t2 + T

)
a2 + 2

(
t2 + T

)
b3 − 2

√
t2 + T Ta3

− 2Tta3 − 2t2a2 + 2b2
√
t2 + T − Tb3 − 2ta1 − tb2 − b1 = 0

Since the PDE has radicals, simplifying gives

−2
√
t2 + T t2a3 − 2

√
t2 + T Ta3 − 2Tta3 − 4t2a2 + 2t2b3

+ 2b2
√
t2 + T − 2Ta2 + Tb3 − 2ta1 − tb2 − b1 = 0

Looking at the above PDE shows the following are all the terms with {T, t} in them.{
T, t,

√
t2 + T

}
The following substitution is now made to be able to collect on all terms with {T, t} in
them {

T = v1, t = v2,
√
t2 + T = v3

}
The above PDE (6E) now becomes

(7E)−2v3v22a3 − 4v22a2 − 2v1v2a3 − 2v3v1a3 + 2v22b3
− 2v2a1 − 2v1a2 − v2b2 + 2b2v3 + v1b3 − b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−2v1v2a3 − 2v3v1a3 + (−2a2 + b3) v1 − 2v3v22a3
+ (−4a2 + 2b3) v22 + (−2a1 − b2) v2 + 2b2v3 − b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a3 = 0
−b1 = 0
2b2 = 0

−2a1 − b2 = 0
−4a2 + 2b3 = 0
−2a2 + b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = t

η = 2T

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(t, T ) ξ

= 2T −
(√

t2 + T
)
(t)

= −
√
t2 + T t+ 2T

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, T ) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt

ξ
= dT

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂T

)
S(t, T ) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√
t2 + T t+ 2T

dy
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Which results in

S = −
ln
(√

t2 + T t+ 2T
)

4 −

√
17 arctanh

((
4
√
t2+T+t

)√
17

17t

)
34 +

ln
(
−
√
t2 + T t+ 2T

)
4 −

√
17 arctanh

((
−t+4

√
t2+T

)√
17

17t

)
34 + ln (−t4 − T t2 + 4T 2)

4 −

√
17 arctanh

( (
−t2+8T

)√
17

17t2

)
34

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, T )ST

Rt + ω(t, T )RT
(2)

Where in the above Rt, RT , St, ST are all partial derivatives and ω(t, T ) is the right
hand side of the original ode given by

ω(t, T ) =
√
t2 + T

Evaluating all the partial derivatives gives

Rt = 1
RT = 0

St =
t6 + 2T t4 − 3T 2t2 − 4T 3(√

t2 + T t− 2T
)2 (√

t2 + T t+ 2T
)√

t2 + T

ST =
(
t+ 2

√
t2 + T

)
T + t3

(−t4 − T t2 + 4T 2)
√
t2 + T

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for t, T
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
0 dR + c2

S(R) = c2
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To complete the solution, we just need to transform the above back to t, T coordinates.
This results in

−
ln
(√

t2 + T t+ 2T
)

4 −

√
17 arctanh

((
4
√
t2+T+t

)√
17

17t

)
34 +

ln
(
−
√
t2 + T t+ 2T

)
4 +

√
17 arctanh

((
t−4

√
t2+T

)√
17

17t

)
34 + ln (−t4 − Tt2 + 4T 2)

4 −

√
17 arctanh

( (
−t2+8T

)√
17

17t2

)
34 = c2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, T coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dT
dt

=
√
t2 + T dS

dR
= 0

–4

–2

0

2

4

T(t)

–4 –2 2 4

t

R = t

S = −
ln
(√

t2 + T t+ 2T
)

4 −

√
17 arctanh

((
4
√
t2+T+t

)√
17

17t

)
34 +

ln
(
−
√
t2 + T t+ 2T

)
4 +

√
17 arctanh

((
t−4

√
t2+T

)√
17

17t

)
34 + ln (−t4 − T t2 + 4T 2)

4 −

√
17 arctanh

( (
−t2+8T

)√
17

17t2

)
34

–4

–2

0

2

4

S(R)

–4 –2 2 4

R

Summary of solutions found

−
ln
(√

t2 + T t+ 2T
)

4 −

√
17 arctanh

((
4
√
t2+T+t

)√
17

17t

)
34

+
ln
(
−
√
t2 + T t+ 2T

)
4 +

√
17 arctanh

((
t−4

√
t2+T

)√
17

17t

)
34

+ ln (−t4 − Tt2 + 4T 2)
4 −

√
17 arctanh

( (
−t2+8T

)√
17

17t2

)
34 = c2
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Maple step by step solution

Let’s solve
√
t2 + T = T ′

• Highest derivative means the order of the ODE is 1
T ′

• Solve for the highest derivative
T ′ =

√
t2 + T

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 136� �
dsolve((t^2+T(t))^(1/2) = diff(T(t),t),T(t),singsol=all)� �

17 ln
(
−t4 − t2T + 4T 2)+ 17 ln

(
−
√
t2 + T t+ 2T

)
− 17 ln

(√
t2 + T t+ 2T

)
+
(
2 arctanh

(
(t2 − 8T )

√
17

17t2

)
+ 2 arctanh

((
t− 4

√
t2 + T

)√
17

17t

)

− 2 arctanh
((

4
√
t2 + T + t

)√
17

17t

))
√
17− c1 = 0
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Mathematica DSolve solution

Solving time : 0.277 (sec)
Leaf size : 135� �
DSolve[{Sqrt[t^2+T[t]]==D[T[t],t],{}},T[t],t,IncludeSingularSolutions->True]� �
Solve

[
1
34

(
−34 log

(√
t2 + T (t)− t

)
−
(√

17− 17
)
log
(
2
(√

17− 4
)
t
√
t2 + T (t)− 2

(√
17− 4

)
t2 −

(√
17− 3

)
T (t)

)
+
(
17+

√
17
)
log
(
2
(
4+

√
17
)
t
√

t2 + T (t)−2
(
4+

√
17
)
t2−

(
3+

√
17
)
T (t)

))
= c1, T (t)

]
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2.5.5 Problem 7

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 382
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 383
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 383

Internal problem ID [18563]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 32. Problems at
page 89
Problem number : 7
Date solved : Tuesday, January 28, 2025 at 12:00:12 PM
CAS classification : [_quadrature]

Solve (
x2 − 1

)
y′

2 = 1

Solving for the derivative gives these ODE’s to solve

(1)y′ = 1√
x2 − 1

(2)y′ = − 1√
x2 − 1

Now each of the above is solved separately.

Solving Eq. (1)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫ 1√
x2 − 1

dx

y = ln
(
x+

√
x2 − 1

)
+ c1

Solving Eq. (2)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
− 1√

x2 − 1
dx

y = − ln
(
x+

√
x2 − 1

)
+ c2
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Maple step by step solution

Let’s solve
(x2 − 1) y′2 = 1

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative[
y′ = 1√

x2−1 , y
′ = − 1√

x2−1

]
� Solve the equation y′ = 1√

x2−1

◦ Integrate both sides with respect to x∫
y′dx =

∫ 1√
x2−1dx+ _C1

◦ Evaluate integral
y = ln

(
x+

√
x2 − 1

)
+ _C1

◦ Solve for y
y = ln

(
x+

√
x2 − 1

)
+ _C1

� Solve the equation y′ = − 1√
x2−1

◦ Integrate both sides with respect to x∫
y′dx =

∫
− 1√

x2−1dx+ _C1
◦ Evaluate integral

y = − ln
(
x+

√
x2 − 1

)
+ _C1

◦ Solve for y
y = − ln

(
x+

√
x2 − 1

)
+ _C1

• Set of solutions{
y = − ln

(
x+

√
x2 − 1

)
+ C1 , y = ln

(
x+

√
x2 − 1

)
+ C1

}
Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`



chapter 2. book solved problems 383

� �
Maple dsolve solution

Solving time : 0.016 (sec)
Leaf size : 33� �
dsolve((x^2-1)*diff(y(x),x)^2 = 1,y(x),singsol=all)� �

y(x) = ln
(
x+

√
x2 − 1

)
+ c1

y(x) = − ln
(
x+

√
x2 − 1

)
+ c1

Mathematica DSolve solution

Solving time : 0.004 (sec)
Leaf size : 41� �
DSolve[{(x^2-1)*D[y[x],x]^2==1,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → − log
(√

x2 − 1 + x
)
+ c1

y(x) → log
(√

x2 − 1 + x
)
+ c1
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2.5.6 Problem 8

Solved as first order homogeneous class C ode . . . . . . . . . . 384
Solved using Lie symmetry for first order ode . . . . . . . . . . 385
Solved as first order ode of type Riccati . . . . . . . . . . . . . 391
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 395
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 395
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 396

Internal problem ID [18564]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 32. Problems at
page 89
Problem number : 8
Date solved : Tuesday, January 28, 2025 at 12:00:12 PM
CAS classification : [[_homogeneous, ‘class C‘], _Riccati]

Solve

y′ = (x+ y)2

Solved as first order homogeneous class C ode

Time used: 0.079 (sec)

Let

z = x+ y (1)

Then

z′(x) = 1 + y′

Therefore

y′ = z′(x)− 1

Hence the given ode can now be written as

z′(x)− 1 = z2
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This is separable first order ode. Integrating∫
dx =

∫ 1
z2 + 1dz

x+ c1 = arctan (z)

Replacing z back by its value from (1) then the above gives the solution as Solving for
y gives

y = −x+ tan (x+ c1)

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.52: Slope field plot
y′ = (x+ y)2

Summary of solutions found

y = −x+ tan (x+ c1)

Solved using Lie symmetry for first order ode

Time used: 0.515 (sec)

Writing the ode as

y′ = (x+ y)2

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + (x+ y)2 (b3 − a2)− (x+ y)4 a3
− (2x+ 2y) (xa2 + ya3 + a1)− (2x+ 2y) (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4a3 − 4x3ya3 − 6x2y2a3 − 4x y3a3 − y4a3 − 3x2a2 − 2x2b2 + x2b3 − 4xya2
− 2xya3 − 2xyb2 − y2a2 − 2y2a3 − y2b3 − 2xa1 − 2xb1 − 2ya1 − 2yb1 + b2 = 0

Setting the numerator to zero gives

(6E)−x4a3 − 4x3ya3 − 6x2y2a3 − 4x y3a3 − y4a3 − 3x2a2 − 2x2b2 + x2b3 − 4xya2
− 2xya3 − 2xyb2 − y2a2 − 2y2a3 − y2b3 − 2xa1 − 2xb1 − 2ya1 − 2yb1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)−a3v
4
1−4a3v31v2−6a3v21v22−4a3v1v32−a3v

4
2−3a2v21−4a2v1v2−a2v

2
2−2a3v1v2

−2a3v22−2b2v21−2b2v1v2+b3v
2
1−b3v

2
2−2a1v1−2a1v2−2b1v1−2b1v2+b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−a3v
4
1 − 4a3v31v2 − 6a3v21v22 + (−3a2 − 2b2 + b3) v21

− 4a3v1v32 + (−4a2 − 2a3 − 2b2) v1v2 + (−2a1 − 2b1) v1
− a3v

4
2 + (−a2 − 2a3 − b3) v22 + (−2a1 − 2b1) v2 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−6a3 = 0
−4a3 = 0
−a3 = 0

−2a1 − 2b1 = 0
−4a2 − 2a3 − 2b2 = 0
−3a2 − 2b2 + b3 = 0
−a2 − 2a3 − b3 = 0

Solving the above equations for the unknowns gives

a1 = −b1

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −1
η = 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= 1−

(
(x+ y)2

)
(−1)

= x2 + 2xy + y2 + 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2 + 2xy + y2 + 1dy

Which results in

S = arctan (x+ y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (x+ y)2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
1 + (x+ y)2

Sy =
1

1 + (x+ y)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
1 dR

S(R) = R + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

arctan (x+ y) = x+ c2

Which gives

y = −x+ tan (x+ c2)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (x+ y)2 dS
dR

= 1

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = arctan (x+ y)

–4

–2

0

2

4

S(R)

–4 –2 2 4

R

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.53: Slope field plot
y′ = (x+ y)2

Summary of solutions found

y = −x+ tan (x+ c2)
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Solved as first order ode of type Riccati

Time used: 0.548 (sec)

In canonical form the ODE is

y′ = F (x, y)
= (x+ y)2

This is a Riccati ODE. Comparing the ODE to solve

y′ = x2 + 2xy + y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x2, f1(x) = 2x and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 2x
f 2
2 f0 = x2

Substituting the above terms back in equation (2) gives

u′′(x)− 2xu′(x) + x2u(x) = 0

In normal form the given ode is written as

d2u

dx2 + p(x)
(
du

dx

)
+ q(x)u = 0 (2)
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Where

p(x) = −2x
q(x) = x2

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= x2 − (−2x)′

2 − (−2x)2

4

= x2 − (−2)
2 − (4x2)

4
= x2 − (−1)− x2

= 1

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

u = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
∫ p(x)

2 dx

= e−
∫ −2x

2

= ex2
2 (5)

Hence (3) becomes

u = v(x) ex2
2 (4)

Applying this change of variable to the original ode results in

ex2
2

(
d2

dx2v(x) + v(x)
)

= 0

Which is now solved for v(x).

The above ode can be simplified to

d2

dx2v(x) + v(x) = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2exλ + exλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

v(x) = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
v(x) = e0(c1 cos (x) + c2 sin (x))
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Or
v(x) = c1 cos (x) + c2 sin (x)

Will add steps showing solving for IC soon.

Now that v(x) is known, then

u = v(x) z(x)
= (c1 cos (x) + c2 sin (x)) (z(x)) (7)

But from (5)

z(x) = ex2
2

Hence (7) becomes

u = (c1 cos (x) + c2 sin (x)) e
x2
2

Will add steps showing solving for IC soon.

Taking derivative gives

u′(x) = (−c1 sin (x) + c2 cos (x)) e
x2
2 + (c1 cos (x) + c2 sin (x))x e

x2
2

Doing change of constants, the solution becomes

y = −

(
(−c3 sin (x) + cos (x)) ex2

2 + (c3 cos (x) + sin (x))x ex2
2

)
e−x2

2

c3 cos (x) + sin (x)
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0
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3

y(x)

–4 –2 0 2 4

x

Figure 2.54: Slope field plot
y′ = (x+ y)2
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Summary of solutions found

y = −

(
(−c3 sin (x) + cos (x)) ex2

2 + (c3 cos (x) + sin (x))x ex2
2

)
e−x2

2

c3 cos (x) + sin (x)

Maple step by step solution

Let’s solve
y′ = (x+ y)2

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = (x+ y)2

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 16� �
dsolve(diff(y(x),x) = (x+y(x))^2,y(x),singsol=all)� �

y(x) = −x− tan (−x+ c1)
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Mathematica DSolve solution

Solving time : 0.509 (sec)
Leaf size : 14� �
DSolve[{D[y[x],x]==(x+y[x])^2,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → −x+ tan(x+ c1)
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2.6 Chapter IV. Methods of solution: First order
equations. section 33. Problems at page 91

2.6.1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
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2.6.1 Problem 1

Solved as second order linear constant coeff ode . . . . . . . . . 398
Solved as second order can be made integrable . . . . . . . . . . 400
Solved as second order ode using Kovacic algorithm . . . . . . . 402
Solved as second order ode adjoint method . . . . . . . . . . . . 405
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 408
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 409
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 409

Internal problem ID [18565]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at
page 91
Problem number : 1
Date solved : Tuesday, January 28, 2025 at 12:00:14 PM
CAS classification : [[_2nd_order, _missing_x]]

Solve

θ′′ = −p2θ

Solved as second order linear constant coeff ode

Time used: 0.086 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Aθ′′(t) +Bθ′(t) + Cθ(t) = 0

Where in the above A = 1, B = 0, C = p2. Let the solution be θ = eλt. Substituting
this into the ODE gives

λ2etλ + p2etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + p2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = 0, C = p2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (p2)

= ±
√
−p2

Hence

λ1 = +
√

−p2

λ2 = −
√

−p2

Which simplifies to
λ1 = ip

λ2 = −ip

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = p. Therefore the final solution, when using Euler relation, can
be written as

θ = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes
θ = e0(c1 cos (pt) + c2 sin (pt))

Or
θ = c1 cos (pt) + c2 sin (pt)

Will add steps showing solving for IC soon.

Summary of solutions found

θ = c1 cos (pt) + c2 sin (pt)
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Solved as second order can be made integrable

Time used: 0.877 (sec)

Multiplying the ode by θ′ gives

θ′θ′′ + p2θ′θ = 0

Integrating the above w.r.t t gives∫ (
θ′θ′′ + p2θ′θ

)
dt = 0

θ′2

2 + p2θ2

2 = c1

Which is now solved for θ. Solving for the derivative gives these ODE’s to solve

(1)θ′ =
√
−p2θ2 + 2c1

(2)θ′ = −
√
−p2θ2 + 2c1

Now each of the above is solved separately.

Solving Eq. (1)

Integrating gives ∫ 1√
−p2θ2 + 2c1

dθ = dt

arctan
(

pθ√
−p2θ2+2c1

)
p

= t+ c2

Singular solutions are found by solving√
−p2θ2 + 2c1 = 0

for θ. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

θ =
√
2√c1
p

θ = −
√
2√c1
p
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Solving for θ gives

θ =
√
2√c1
p

θ =
tan (c2p+ pt)

√
2
√

c1
tan(c2p+pt)2+1

p

θ = −
√
2√c1
p

Solving Eq. (2)

Integrating gives ∫
− 1√

−p2θ2 + 2c1
dθ = dt

−
arctan

(
pθ√

−p2θ2+2c1

)
p

= t+ c3

Singular solutions are found by solving

−
√
−p2θ2 + 2c1 = 0

for θ. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

θ =
√
2√c1
p

θ = −
√
2√c1
p

Solving for θ gives

θ =
√
2√c1
p

θ = −
√
2√c1
p

θ = −
tan (c3p+ pt)

√
2
√

c1
tan(c3p+pt)2+1

p

Will add steps showing solving for IC soon.
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The solution

θ =
√
2√c1
p

was found not to satisfy the ode or the IC. Hence it is removed. The solution

θ = −
√
2√c1
p

was found not to satisfy the ode or the IC. Hence it is removed.

Summary of solutions found

θ =
tan (c2p+ pt)

√
2
√

c1
tan(c2p+pt)2+1

p

θ = −
tan (c3p+ pt)

√
2
√

c1
tan(c3p+pt)2+1

p

Solved as second order ode using Kovacic algorithm

Time used: 0.063 (sec)

Writing the ode as

θ′′ + p2θ = 0 (1)
Aθ′′ +Bθ′ + Cθ = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = p2

Applying the Liouville transformation on the dependent variable gives

z(t) = θe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −p2

1 (6)

Comparing the above to (5) shows that

s = −p2

t = 1

Therefore eq. (4) becomes

z′′(t) =
(
−p2

)
z(t) (7)

Equation (7) is now solved. After finding z(t) then θ is found using the inverse trans-
formation

θ = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.31: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −p2 is not a function of t, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = e
√

−p2 t

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in θ is found from

θ1 = z1e
∫
− 1

2
B
A

dt

Since B = 0 then the above reduces to

θ1 = z1

= e
√

−p2 t

Which simplifies to

θ1 = e
√

−p2 t

The second solution θ2 to the original ode is found using reduction of order

θ2 = θ1

∫
e
∫
−B

A
dt

θ21
dt

Since B = 0 then the above becomes

θ2 = θ1

∫ 1
θ21

dt

= e
√

−p2 t

∫ 1
e2
√

−p2 t
dt

= e
√

−p2 t

(√
−p2 e−2

√
−p2 t

2p2

)
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Therefore the solution is

θ = c1θ1 + c2θ2

= c1
(
e
√

−p2 t
)
+ c2

(
e
√

−p2 t

(√
−p2 e−2

√
−p2 t

2p2

))

Will add steps showing solving for IC soon.

Summary of solutions found

θ = c1 e
√

−p2 t + c2 e−
√

−p2 t
√
−p2

2p2

Solved as second order ode adjoint method

Time used: 0.599 (sec)

In normal form the ode

θ′′ = −p2θ (1)

Becomes

θ′′ + p(t) θ′ + q(t) θ = r(t) (2)

Where

p(t) = 0
q(t) = p2

r(t) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (0)′ +

(
p2ξ(t)

)
= 0

ξ′′(t) + p2ξ(t) = 0

Which is solved for ξ(t). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(t) +Bξ′(t) + Cξ(t) = 0
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Where in the above A = 1, B = 0, C = p2. Let the solution be ξ = eλt. Substituting
this into the ODE gives

λ2etλ + p2etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + p2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = p2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (p2)

= ±
√
−p2

Hence

λ1 = +
√

−p2

λ2 = −
√

−p2

Which simplifies to
λ1 = ip

λ2 = −ip

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = p. Therefore the final solution, when using Euler relation, can
be written as

ξ = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes
ξ = e0(c1 cos (pt) + c2 sin (pt))

Or
ξ = c1 cos (pt) + c2 sin (pt)
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Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(t) θ′ − θξ′(t) + ξ(t) p(t) θ =
∫

ξ(t) r(t) dt

θ′ + θ

(
p(t)− ξ′(t)

ξ (t)

)
=
∫
ξ(t) r(t) dt
ξ (t)

Or

θ′ − θ(−c1p sin (pt) + c2p cos (pt))
c1 cos (pt) + c2 sin (pt)

= 0

Which is now a first order ode. This is now solved for θ. In canonical form a linear first
order is

θ′ + q(t)θ = p(t)

Comparing the above to the given ode shows that

q(t) = p(sin (pt) c1 − cos (pt) c2)
c1 cos (pt) + c2 sin (pt)

p(t) = 0

The integrating factor µ is

µ = e
∫
q dt

= e
∫ p(sin(pt)c1−cos(pt)c2)

c1 cos(pt)+c2 sin(pt) dt

= 1
c1 cos (pt) + c2 sin (pt)

The ode becomes

d
dtµθ = 0

d
dt

(
θ

c1 cos (pt) + c2 sin (pt)

)
= 0

Integrating gives

θ

c1 cos (pt) + c2 sin (pt)
=
∫

0 dt+ c3

= c3
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Dividing throughout by the integrating factor 1
c1 cos(pt)+c2 sin(pt) gives the final solution

θ = (c1 cos (pt) + c2 sin (pt)) c3

Hence, the solution found using Lagrange adjoint equation method is

θ = (c1 cos (pt) + c2 sin (pt)) c3

The constants can be merged to give

θ = c1 cos (pt) + c2 sin (pt)

Will add steps showing solving for IC soon.

Summary of solutions found

θ = c1 cos (pt) + c2 sin (pt)

Maple step by step solution

Let’s solve
θ′′ = −p2θ

• Highest derivative means the order of the ODE is 2
θ′′

• Group terms with θ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
θ′′ + p2θ = 0

• Characteristic polynomial of ODE
p2 + r2 = 0

• Use quadratic formula to solve for r

r =
0±
(√

−4p2
)

2

• Roots of the characteristic polynomial
r =

(√
−p2,−

√
−p2

)
• 1st solution of the ODE

θ1(t) = et
√

−p2

• 2nd solution of the ODE
θ2(t) = e−t

√
−p2

• General solution of the ODE
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θ = C1θ1(t) + C2θ2(t)
• Substitute in solutions

θ = C1 et
√

−p2 + C2 e−t
√

−p2

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 17� �
dsolve(diff(diff(theta(t),t),t) = -p^2*theta(t),theta(t),singsol=all)� �

θ = c1 sin (pt) + c2 cos (pt)

Mathematica DSolve solution

Solving time : 0.013 (sec)
Leaf size : 20� �
DSolve[{D[theta[t],{t,2}]==-p^2*theta[t],{}},theta[t],t,IncludeSingularSolutions->True]� �

θ(t) → c1 cos(pt) + c2 sin(pt)
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2.6.2 Problem 2 (eq 39)

Solved as first order quadrature ode . . . . . . . . . . . . . . . 410
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 411
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 413
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 414
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 414

Internal problem ID [18566]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at
page 91
Problem number : 2 (eq 39)
Date solved : Tuesday, January 28, 2025 at 12:00:16 PM
CAS classification : [_quadrature]

Solve

sec (θ)2 = ms′

k

Solved as first order quadrature ode

Time used: 0.106 (sec)

Since the ode has the form s′ = f(θ), then we only need to integrate f(θ).∫
ds =

∫ sec (θ)2 k
m

dθ

s = k tan (θ)
m

+ c1

Summary of solutions found

s = k tan (θ)
m

+ c1
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Solved as first order Exact ode

Time used: 0.063 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(θ, s) dθ+N(θ, s) ds = 0 (1A)
Therefore (

−m

k

)
ds =

(
− sec (θ)2

)
dθ(

sec (θ)2
)
dθ+

(
−m

k

)
ds = 0 (2A)

Comparing (1A) and (2A) shows that

M(θ, s) = sec (θ)2

N(θ, s) = −m

k
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂s
= ∂N

∂θ

Using result found above gives

∂M

∂s
= ∂

∂s

(
sec (θ)2

)
= 0

And
∂N

∂θ
= ∂

∂θ

(
−m

k

)
= 0

Since ∂M
∂s

= ∂N
∂θ

, then the ODE is exact The following equations are now set up to solve
for the function φ(θ, s)

∂φ

∂θ
= M (1)

∂φ

∂s
= N (2)

Integrating (1) w.r.t. θ gives ∫
∂φ

∂θ
dθ =

∫
M dθ∫

∂φ

∂θ
dθ =

∫
sec (θ)2 dθ

(3)φ = tan (θ) + f(s)

Where f(s) is used for the constant of integration since φ is a function of both θ and s.
Taking derivative of equation (3) w.r.t s gives

(4)∂φ

∂s
= 0 + f ′(s)

But equation (2) says that ∂φ
∂s

= −m
k
. Therefore equation (4) becomes

(5)−m

k
= 0 + f ′(s)
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Solving equation (5) for f ′(s) gives

f ′(s) = −m

k

Integrating the above w.r.t s gives∫
f ′(s) ds =

∫ (
−m

k

)
ds

f(s) = −ms

k
+ c1

Where c1 is constant of integration. Substituting result found above for f(s) into
equation (3) gives φ

φ = tan (θ)− ms

k
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = tan (θ)− ms

k

Solving for s gives

s = (−c1 + tan (θ)) k
m

Summary of solutions found

s = (−c1 + tan (θ)) k
m

Maple step by step solution

Let’s solve
sec (θ)2 = ms′

k

• Highest derivative means the order of the ODE is 1
s′

• Separate variables
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s′ = sec(θ)2k
m

• Integrate both sides with respect to θ∫
s′dθ =

∫ sec(θ)2k
m

dθ + C1
• Evaluate integral

s = k tan(θ)
m

+ C1
• Solve for s

s = k tan(θ)+C1m
m

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
Maple dsolve solution

Solving time : 0.000 (sec)
Leaf size : 13� �
dsolve(sec(theta)^2 = m/k*diff(s(theta),theta),s(theta),singsol=all)� �

s(θ) = k tan (θ)
m

+ c1

Mathematica DSolve solution

Solving time : 0.01 (sec)
Leaf size : 15� �
DSolve[{Sec[theta]^2==m/k*D[s[theta],theta],{}},s[theta],theta,IncludeSingularSolutions->True]� �

s(θ) → k tan(θ)
m

+ c1
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2.6.3 Problem 3 (eq 41)

Solved as second order missing x ode . . . . . . . . . . . . . . . 415
Solved as second order missing y ode . . . . . . . . . . . . . . . 419
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 422
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 423
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 424

Internal problem ID [18567]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at
page 91
Problem number : 3 (eq 41)
Date solved : Tuesday, January 28, 2025 at 12:00:17 PM
CAS classification : [[_2nd_order, _missing_x]]

Solve

y′′ = m
√

1 + y′2

k

Solved as second order missing x ode

Time used: 8.183 (sec)

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p

Then

y′′ = dp

dx

= dp

dy

dy

dx

= p
dp

dy

Hence the ode becomes

p(y)
(

d

dy
p(y)

)
=

m
√
1 + p (y)2

k
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Which is now solved as first order ode for p(y).

Integrating gives ∫
pk

m
√
p2 + 1

dp = dy

√
p2 + 1 k
m

= y + c1

Singular solutions are found by solving

m
√
p2 + 1
pk

= 0

for p. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

p = −i

p = i

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is √

1 + y′2 k

m
= y + c1

Solving for the derivative gives these ODE’s to solve

(1)y′ =
√

c21m
2 + 2yc1m2 + y2m2 − k2

k

(2)y′ = −
√

c21m
2 + 2yc1m2 + y2m2 − k2

k

Now each of the above is solved separately.

Solving Eq. (1)

Integrating gives ∫
k√

c21m
2 + 2c1m2y +m2y2 − k2

dy = dx

k ln
(

c1 m2+m2y√
m2 +

√
c21m

2 + 2c1m2y +m2y2 − k2
)

√
m2

= x+ c2
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Singular solutions are found by solving√
c21m

2 + 2c1m2y +m2y2 − k2

k
= 0

for y. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

y = −c1m− k

m

y = −c1m+ k

m

Solving Eq. (2)

Integrating gives ∫
− k√

c21m
2 + 2c1m2y +m2y2 − k2

dy = dx

−
k ln

(
c1 m2+m2y√

m2 +
√
c21m

2 + 2c1m2y +m2y2 − k2
)

√
m2

= x+ c3

Singular solutions are found by solving

−
√

c21m
2 + 2c1m2y +m2y2 − k2

k
= 0

for y. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

y = −c1m− k

m

y = −c1m+ k

m

For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = −i

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
−i dx

y = −ix+ c4
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For solution (3) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = i

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
i dx

y = ix+ c5

Will add steps showing solving for IC soon.

Solving for y from the above solution(s) gives (after possible removing of solutions that
do not verify)

y = −c1m− k

m

y = −c1m+ k

m

y =

(
−2c1m2e

√
m2 (x+c2)

k +
√
m2 k2 + e

2
√

m2 (x+c2)
k

√
m2
)
e−

√
m2 (x+c2)

k

2m2

y =

(
−2c1m2e−

√
m2 (x+c3)

k +
√
m2 k2 + e−

2
√

m2 (x+c3)
k

√
m2
)
e

√
m2 (x+c3)

k

2m2

y = −ix+ c4

y = ix+ c5

The solution

y = −c1m− k

m

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = −c1m+ k

m

was found not to satisfy the ode or the IC. Hence it is removed.
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Summary of solutions found

y =

(
−2c1m2e

√
m2 (x+c2)

k +
√
m2 k2 + e

2
√

m2 (x+c2)
k

√
m2
)
e−

√
m2 (x+c2)

k

2m2

y =

(
−2c1m2e−

√
m2 (x+c3)

k +
√
m2 k2 + e−

2
√

m2 (x+c3)
k

√
m2
)
e

√
m2 (x+c3)

k

2m2

y = −ix+ c4

y = ix+ c5

Solved as second order missing y ode

Time used: 0.327 (sec)

This is second order ode with missing dependent variable y. Let

u(x) = y′

Then

u′(x) = y′′

Hence the ode becomes

u′(x)−
m
√
1 + u (x)2

k
= 0

Which is now solved for u(x) as first order ode.

Integrating gives ∫
k

m
√
u2 + 1

du = dx

k arcsinh (u)
m

= x+ c1

Singular solutions are found by solving

m
√
u2 + 1
k

= 0
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for u(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

u(x) = −i

u(x) = i

Solving for u(x) gives
u(x) = −i

u(x) = i

u(x) = sinh
(
m(x+ c1)

k

)
In summary, these are the solution found for u(x)

u(x) = −i

u(x) = i

u(x) = sinh
(
m(x+ c1)

k

)

For solution u(x) = −i, since u = y′ then we now have a new first order ode to solve
which is

y′ = −i

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
−i dx

y = −ix+ c2

For solution u(x) = i, since u = y′ then we now have a new first order ode to solve
which is

y′ = i

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
i dx

y = ix+ c3
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For solution u(x) = sinh
(

m(x+c1)
k

)
, since u = y′ then we now have a new first order

ode to solve which is

y′ = sinh
(
m(x+ c1)

k

)
Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫

dy =
∫

sinh
(
m(x+ c1)

k

)
dx

y =
k cosh

(
mx
k

+ c1m
k

)
m

+ c4

y =
k cosh

(
m(x+c1)

k

)
m

+ c4

In summary, these are the solution found for (y)

y = −ix+ c2

y = ix+ c3

y =
k cosh

(
m(x+c1)

k

)
m

+ c4

Will add steps showing solving for IC soon.

Summary of solutions found

y = −ix+ c2

y = ix+ c3

y =
k cosh

(
m(x+c1)

k

)
m

+ c4
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Maple step by step solution

Let’s solve

y′′ = m
√

1+y′2

k

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE

u′(x) = m
√

1+u(x)2

k

• Solve for the highest derivative

u′(x) = m
√

1+u(x)2

k

• Separate variables
u′(x)√
1+u(x)2

= m
k

• Integrate both sides with respect to x∫ u′(x)√
1+u(x)2

dx =
∫

m
k
dx+ C1

• Evaluate integral
arcsinh(u(x)) = mx

k
+ C1

• Solve for u(x)
u(x) = sinh

(C1k+xm
k

)
• Solve 1st ODE for u(x)

u(x) = sinh
(C1k+xm

k

)
• Make substitution u = y′

y′ = sinh
(C1k+xm

k

)
• Integrate both sides to solve for y∫

y′dx =
∫
sinh

(C1k+xm
k

)
dx+ C2

• Compute integrals

y = k cosh
(
mx
k

+C1
)

m
+ C2
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, diff(diff(diff(y(x), x), x), x)-m^2*(diff(y(x), x))/k^2, y(x)` *** Sublevel 2 ***

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful

trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = m*(_b(_a)^2+1)^(1/2)/k, _b(_a), HINT = [[1, 0]]` *** Sublevel 2 ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, 0]� �
Maple dsolve solution

Solving time : 0.284 (sec)
Leaf size : 36� �
dsolve(diff(diff(y(x),x),x) = m/k*(diff(y(x),x)^2+1)^(1/2),y(x),singsol=all)� �

y(x) = −ix+ c1
y(x) = ix+ c1

y(x) =
k cosh

(
m(x+c1)

k

)
m

+ c2
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Mathematica DSolve solution

Solving time : 0.357 (sec)
Leaf size : 23� �
DSolve[{D[y[x],{x,2}]==m/k*Sqrt[1+D[y[x],x]^2],{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) →
k cosh

(
mx
k

+ c1
)

m
+ c2
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2.6.4 Problem 4 (eq 50)

Solved as second order missing x ode . . . . . . . . . . . . . . . 425
Solved as second order can be made integrable . . . . . . . . . . 428
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 429
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 432
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 433

Internal problem ID [18568]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at
page 91
Problem number : 4 (eq 50)
Date solved : Tuesday, January 28, 2025 at 12:00:26 PM
CAS classification :
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

Solve

φ′′ = 4πnc√
v20 +

2e(φ−V0)
m

Solved as second order missing x ode

Time used: 3.440 (sec)

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable φ an independent variable.
Using

φ′ = p

Then

φ′′ = dp

dx

= dp

dφ

dφ

dx

= p
dp

dφ
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Hence the ode becomes

p(φ)
(

d

dφ
p(φ)

)
= 4πnc√

v20 +
2e(φ−V0)

m

Which is now solved as first order ode for p(φ).

The ode

(2.38)p′ = 4πnc

p
√
−−v20m+2eV0−2eφ

m

is separable as it can be written as

p′ = 4πnc

p
√

−−v20m+2eV0−2eφ
m

= f(φ)g(p)

Where

f(φ) = 4πnc√
−−v20m+2eV0−2eφ

m

g(p) = 1
p

Integrating gives ∫ 1
g(p) dp =

∫
f(φ) dφ∫

p dp =
∫ 4πnc√

−−v20m+2eV0−2eφ
m

dφ

p2

2 =
4
√

(−2V0+2φ)e+v20m

m
πncm

e
+ c1

Solving for p gives

p =

√
2

√
e

(
4
√
−−v20m+2eV0−2eφ

m
πncm+ c1e

)
e

p = −

√
2

√
e

(
4
√
−−v20m+2eV0−2eφ

m
πncm+ c1e

)
e
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For solution (1) found earlier, since p = φ′ then we now have a new first order ode to
solve which is

φ′ =

√
2

√
e

(
4
√

−−v20m−2eφ+2eV0
m

πncm+ c1e

)
e

Integrating gives ∫
e
√
2

2

√
e

(
4
√
−−v20m+2eV0−2eφ

m
πncm+ c1e

)dφ = dx

√
2
√
4ecmnπ

√
(−2V0+2φ)e+v20m

m
+ c1 e2

(
2
√

(−2V0+2φ)e+v20m

m
πncm− c1e

)
24e n2mc2π2 = x+ c2

For solution (2) found earlier, since p = φ′ then we now have a new first order ode to
solve which is

φ′ = −

√
2

√
e

(
4
√
−−v20m−2eφ+2eV0

m
πncm+ c1e

)
e

Integrating gives ∫
− e

√
2

2

√
e

(
4
√
−−v20m+2eV0−2eφ

m
πncm+ c1e

)dφ = dx

−

(√
(−2V0+2φ)e+v20m

m
πncm− c1e

2

)√
2
√
4ecmnπ

√
(−2V0+2φ)e+v20m

m
+ c1 e2

12e n2mc2π2 = x+ c3

Will add steps showing solving for IC soon.

Summary of solutions found

√
2
√

4ecmnπ
√

(−2V0+2φ)e+v20m

m
+ c1 e2

(
2
√

(−2V0+2φ)e+v20m

m
πncm− c1e

)
24e n2mc2π2 = x+ c2

−

(√
(−2V0+2φ)e+v20m

m
πncm− c1e

2

)√
2
√

4ecmnπ
√

(−2V0+2φ)e+v20m

m
+ c1 e2

12e n2mc2π2 = x+ c3
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Solved as second order can be made integrable

Time used: 3.571 (sec)

Multiplying the ode by φ′ gives

φ′φ′′ − 4φ′πnc√
v20m+2eφ−2eV0

m

= 0

Integrating the above w.r.t x gives

∫ φ′φ′′ − 4φ′πnc√
v20m+2eφ−2eV0

m

 dx = 0

φ′2

2 −
4πnc

√
2eφ
m

+ v20m−2eV0
m

m

e
= c1

Which is now solved for φ. Solving for the derivative gives these ODE’s to solve

(1)φ′ =

√
2

√
e

(
4
√

v20m+2eφ−2eV0
m

πncm+ c1e

)
e

(2)φ′ = −

√
2

√
e

(
4
√

v20m+2eφ−2eV0
m

πncm+ c1e

)
e

Now each of the above is solved separately.

Solving Eq. (1)

Integrating gives ∫
e
√
2

2

√
e

(
4
√

v20m−2eV0+2eφ
m

πncm+ c1e

)dφ = dx

√
2
√
4ecmnπ

√
(−2V0+2φ)e+v20m

m
+ c1 e2

(
2
√

(−2V0+2φ)e+v20m

m
πncm− c1e

)
24e n2mc2π2 = x+ c2

Solving Eq. (2)
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Integrating gives ∫
− e

√
2

2

√
e

(
4
√

v20m−2eV0+2eφ
m

πncm+ c1e

)dφ = dx

−

(√
(−2V0+2φ)e+v20m

m
πncm− c1e

2

)√
2
√
4ecmnπ

√
(−2V0+2φ)e+v20m

m
+ c1 e2

12e n2mc2π2 = x+ c3

Will add steps showing solving for IC soon.

Summary of solutions found

√
2
√

4ecmnπ
√

(−2V0+2φ)e+v20m

m
+ c1 e2

(
2
√

(−2V0+2φ)e+v20m

m
πncm− c1e

)
24e n2mc2π2 = x+ c2

−

(√
(−2V0+2φ)e+v20m

m
πncm− c1e

2

)√
2
√

4ecmnπ
√

(−2V0+2φ)e+v20m

m
+ c1 e2

12e n2mc2π2 = x+ c3

Maple step by step solution

Let’s solve
φ′′ = 4πnc√

v20+
2e(φ−V0)

m

• Highest derivative means the order of the ODE is 2
φ′′

• Define new dependent variable u
u(x) = φ′

• Compute φ′′

u′(x) = φ′′

• Use chain rule on the lhs

φ′
(

d
dφ
u(φ)

)
= φ′′

• Substitute in the definition of u

u(φ)
(

d
dφ
u(φ)

)
= φ′′

• Make substitutions φ′ = u(φ) , φ′′ = u(φ)
(

d
dφ
u(φ)

)
to reduce order of ODE
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u(φ)
(

d
dφ
u(φ)

)
= 4πnc√

v20+
2e(φ−V0)

m

• Integrate both sides with respect to φ∫
u(φ)

(
d
dφ
u(φ)

)
dφ =

∫ 4πnc√
v20+

2e(φ−V0)
m

dφ+ C1

• Evaluate integral
u(φ)2

2 = −4
(
−v20m+2eV0−2eφ

)
πnc

e

√
−

−v20m+2eV0−2eφ
m

+ C1

• Solve for u(φ)u(φ) =

√√√√−2e

√
−

−v20m+2eV0−2eφ
m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m+2eV0−2eφ
m

)

e

√
−

−v20m+2eV0−2eφ
m

, u(φ) = −

√√√√−2e

√
−

−v20m+2eV0−2eφ
m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m+2eV0−2eφ
m

)

e

√
−

−v20m+2eV0−2eφ
m


• Solve 1st ODE for u(φ)

u(φ) =

√√√√−2e

√
−

−v20m+2eV0−2eφ
m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m+2eV0−2eφ
m

)

e

√
−

−v20m+2eV0−2eφ
m

• Revert to original variables with substitution u(φ) = φ′, φ = φ

φ′ =

√√√√−2e

√
−

−v20m−2eφ+2eV0
m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m−2eφ+2eV0
m

)

e

√
−

−v20m−2eφ+2eV0
m

• Solve for the highest derivative

φ′ =

√√√√−2e

√
−

−v20m−2eφ+2eV0
m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m−2eφ+2eV0
m

)

e

√
−

−v20m−2eφ+2eV0
m

• Separate variables

φ′

√
−

−v20m−2eφ+2eV0
m√√√√−2e

√
−

−v20m−2eφ+2eV0
m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m−2eφ+2eV0
m

) = 1
e

• Integrate both sides with respect to x∫ φ′

√
−

−v20m−2eφ+2eV0
m√√√√−2e

√
−

−v20m−2eφ+2eV0
m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m−2eφ+2eV0
m

)dx =
∫ 1

e
dx+ C2

• Evaluate integral
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−

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m−2eφ+2eV0
m

)√√√√(
−v20m−2eφ+2eV0

)4

√
−

−v20m−2eφ+2eV0
m πncm+C1e


m

(
2

√
−

−v20m−2eφ+2eV0
m

πncm−C1e
)

12

√√√√−2e

√
−

−v20m−2eφ+2eV0
m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m−2eφ+2eV0
m

)
e

√√√√√−
−v20m−2eφ+2eV0

m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m−2eφ+2eV0
m

)
mπ2n2c2

= x
e
+ C2

• Solve for φ

φ =
−v20m

2n2c2+2eV0n2mc2+

(
e
(
576π4C22c4e2m2n4+1152π4C2 c4em2n4x+576π4c4m2n4x2+24

√
2 c2mn2√288C24π4c4e4m2n4+1152C23π4c4e3m2n4x+1728C22π4c4e2m2n4x2+1152C2 π4c4em2n4x3+288π4c4m2n4x4−C13C22e4−2C13C2 e3x−C13e2x2 π2−C13e2

))1/3
4π + C12e2

4π
(
e
(
576π4C22c4e2m2n4+1152π4C2 c4em2n4x+576π4c4m2n4x2+24

√
2 c2mn2

√
288C24π4c4e4m2n4+1152C23π4c4e3m2n4x+1728C22π4c4e2m2n4x2+1152C2 π4c4em2n4x3+288π4c4m2n4x4−C13C22e4−2C13C2 e3x−C13e2x2 π2−C13e2

))1/3+C1e
4π

2

2c2emn2

• Solve 2nd ODE for u(φ)

u(φ) = −

√√√√−2e

√
−

−v20m+2eV0−2eφ
m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m+2eV0−2eφ
m

)

e

√
−

−v20m+2eV0−2eφ
m

• Revert to original variables with substitution u(φ) = φ′, φ = φ

φ′ = −

√√√√−2e

√
−

−v20m−2eφ+2eV0
m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m−2eφ+2eV0
m

)

e

√
−

−v20m−2eφ+2eV0
m

• Solve for the highest derivative

φ′ = −

√√√√−2e

√
−

−v20m−2eφ+2eV0
m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m−2eφ+2eV0
m

)

e

√
−

−v20m−2eφ+2eV0
m

• Separate variables

φ′

√
−

−v20m−2eφ+2eV0
m√√√√−2e

√
−

−v20m−2eφ+2eV0
m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m−2eφ+2eV0
m

) = −1
e

• Integrate both sides with respect to x∫ φ′

√
−

−v20m−2eφ+2eV0
m√√√√−2e

√
−

−v20m−2eφ+2eV0
m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m−2eφ+2eV0
m

)dx =
∫
−1

e
dx+ C2

• Evaluate integral

−

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m−2eφ+2eV0
m

)√√√√(
−v20m−2eφ+2eV0

)4

√
−

−v20m−2eφ+2eV0
m πncm+C1e


m

(
2

√
−

−v20m−2eφ+2eV0
m

πncm−C1e
)

12

√√√√−2e

√
−

−v20m−2eφ+2eV0
m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m−2eφ+2eV0
m

)
e

√√√√√−
−v20m−2eφ+2eV0

m

(
−4πncmv20+8V0πnce−8φπnce−C1e

√
−

−v20m−2eφ+2eV0
m

)
mπ2n2c2

= −x
e
+ C2

• Solve for φ
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φ =
−v20m

2n2c2+2eV0n2mc2+

(
e
(
576π4C22c4e2m2n4−1152π4C2 c4em2n4x+576π4c4m2n4x2+24

√
2 c2mn2√288C24π4c4e4m2n4−1152C23π4c4e3m2n4x+1728C22π4c4e2m2n4x2−1152C2 π4c4em2n4x3+288π4c4m2n4x4−C13C22e4+2C13C2 e3x−C13e2x2 π2−C13e2

))1/3
4π + C12e2

4π
(
e
(
576π4C22c4e2m2n4−1152π4C2 c4em2n4x+576π4c4m2n4x2+24

√
2 c2mn2

√
288C24π4c4e4m2n4−1152C23π4c4e3m2n4x+1728C22π4c4e2m2n4x2−1152C2 π4c4em2n4x3+288π4c4m2n4x4−C13C22e4+2C13C2 e3x−C13e2x2 π2−C13e2

))1/3+C1e
4π

2

2e c2mn2

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, _b(_a)*(diff(_b(_a), _a))-4*Pi*n*c/(-(-m*v__0^2+2*V__0*e-2*_a*e)/m)^(1/2) = 0, _b(_a), HINT = [[-(

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[-2/3*(-m*v__0^2+2*V__0*e-2*_a*e)/e, 1/3*_b]� �
Maple dsolve solution

Solving time : 0.073 (sec)
Leaf size : 210� �
dsolve(diff(diff(phi(x),x),x) = 4*Pi*n*c/(v__0^2+2*e/m*(phi(x)-V__0))^(1/2),phi(x),singsol=all)� �

e


∫ φ(x)

√
(−2V0+2_a)e+v20m

m

4

√
e

(
c1

√
(2V0−2_a)e−v20m

16 +
(
(_a− V0) e+ v20m

2

)
πcn

)√
(−2V0+2_a)e+v20m

m

d_a


− x− c2 = 0

−e


∫ φ(x)

√
(−2V0+2_a)e+v20m

m

4

√
e

(
c1

√
(2V0−2_a)e−v20m

16 +
(
(_a− V0) e+ v20m

2

)
πcn

)√
(−2V0+2_a)e+v20m

m

d_a


− x− c2 = 0
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Mathematica DSolve solution

Solving time : 79.952 (sec)
Leaf size : 2754� �
DSolve[{D[phi[x],{x,2}]==4*Pi*n*c/Sqrt[v0^2+2*e/m*(phi[x]-V0)],{}},phi[x],x,IncludeSingularSolutions->True]� �
Too large to display
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2.6.5 Problem 8 (eq 68)

Solved as first order separable ode . . . . . . . . . . . . . . . . 434
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 436
Solved using Lie symmetry for first order ode . . . . . . . . . . 440
Solved as first order ode of type Riccati . . . . . . . . . . . . . 445
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 449
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 450
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 450

Internal problem ID [18569]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at
page 91
Problem number : 8 (eq 68)
Date solved : Tuesday, January 28, 2025 at 12:00:34 PM
CAS classification : [_separable]

Solve

y′ = x
(
ay2 + b

)
Solved as first order separable ode

Time used: 0.266 (sec)

The ode
(2.39)y′ = x

(
ay2 + b

)
is separable as it can be written as

y′ = x
(
ay2 + b

)
= f(x)g(y)

Where

f(x) = x

g(y) = a y2 + b
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Integrating gives ∫ 1
g(y) dy =

∫
f(x) dx∫ 1

a y2 + b
dy =

∫
x dx

arctan
(

ay√
ba

)
√
ba

= x2

2 + c1

We now need to find the singular solutions, these are found by finding for what values
g(y) is zero, since we had to divide by this above. Solving g(y) = 0 or

a y2 + b = 0

for y gives

y =
√
−ba

a

y = −
√
−ba

a

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

arctan
(

ay√
ba

)
√
ba

= x2

2 + c1

y =
√
−ba

a

y = −
√
−ba

a
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Solving for y gives

y =
√
−ba

a

y =
tan

(
x2√ba

2 + c1
√
ba
)√

ba

a

y = −
√
−ba

a

Summary of solutions found

y =
√
−ba

a

y =
tan

(
x2√ba

2 + c1
√
ba
)√

ba

a

y = −
√
−ba

a

Solved as first order Exact ode

Time used: 0.163 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy =
(
x
(
a y2 + b

))
dx(

−x
(
a y2 + b

))
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x
(
a y2 + b

)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x
(
a y2 + b

))
= −2xay

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−2xay)− (0))
= −2xay
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

x (a y2 + b)((0)− (−2xay))

= − 2ay
a y2 + b

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2ay

a y2+b
dy

The result of integrating gives

µ = e− ln
(
a y2+b

)
= 1

a y2 + b

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
a y2 + b

(
−x
(
a y2 + b

))
= −x

And

N = µN

= 1
a y2 + b

(1)

= 1
a y2 + b

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(−x) +
(

1
a y2 + b

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
a y2+b

. Therefore equation (4) becomes

(5)1
a y2 + b

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
a y2 + b

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
a y2 + b

)
dy

f(y) =
arctan

(
ay√
ba

)
√
ba

+ c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 +
arctan

(
ay√
ba

)
√
ba

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −x2

2 +
arctan

(
ay√
ba

)
√
ba

Solving for y gives

y =
tan

(
x2√ba

2 + c1
√
ba
)√

ba

a

Summary of solutions found

y =
tan

(
x2√ba

2 + c1
√
ba
)√

ba

a

Solved using Lie symmetry for first order ode

Time used: 0.726 (sec)

Writing the ode as

y′ = x
(
a y2 + b

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 2 to use as anstaz gives

(1E)ξ = x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
2xb4 + yb5 + b2 + x

(
a y2 + b

)
(−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

− x2(a y2 + b
)2 (xa5 + 2ya6 + a3)

−
(
a y2 + b

) (
x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1

)
− 2xay

(
x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1

)
= 0

Putting the above in normal form gives

−a2x3y4a5 − 2a2x2y5a6 − a2x2y4a3 − 2ab x3y2a5 − 4ab x2y3a6 − 2ab x2y2a3
− 2a x3yb4 − 3a x2y2a4 − a x2y2b5 − 2ax y3a5 − a y4a6 − b2x3a5 − 2b2x2ya6
− 2a x2yb2 − 2ax y2a2 − ax y2b3 − a y3a3 − b2x2a3 − 2axyb1 − a y2a1 − 3b x2a4
+b x2b5−2bxya5+2bxyb6−b y2a6−2bxa2+bxb3−bya3−ba1+2xb4+yb5+b2 = 0

Setting the numerator to zero gives

(6E)
−a2x3y4a5 − 2a2x2y5a6 − a2x2y4a3 − 2ab x3y2a5 − 4ab x2y3a6
− 2ab x2y2a3 − 2a x3yb4 − 3a x2y2a4 − a x2y2b5 − 2ax y3a5 − a y4a6
− b2x3a5 − 2b2x2ya6 − 2a x2yb2 − 2ax y2a2 − ax y2b3 − a y3a3
− b2x2a3 − 2axyb1 − a y2a1 − 3b x2a4 + b x2b5 − 2bxya5 + 2bxyb6
− b y2a6 − 2bxa2 + bxb3 − bya3 − ba1 + 2xb4 + yb5 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−a2a5v

3
1v

4
2 − 2a2a6v21v52 − a2a3v

2
1v

4
2 − 2aba5v31v22 − 4aba6v21v32

− 2aba3v21v22 − 3aa4v21v22 − 2aa5v1v32 − aa6v
4
2 − 2ab4v31v2 − ab5v

2
1v

2
2

− b2a5v
3
1 − 2b2a6v21v2 − 2aa2v1v22 − aa3v

3
2 − 2ab2v21v2 − ab3v1v

2
2

− b2a3v
2
1 − aa1v

2
2 − 2ab1v1v2 − 3ba4v21 − 2ba5v1v2 − ba6v

2
2 + bb5v

2
1

+ 2bb6v1v2 − 2ba2v1 − ba3v2 + bb3v1 − ba1 + 2b4v1 + b5v2 + b2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

−a2a5v
3
1v

4
2 − 2aba5v31v22 − 2ab4v31v2 − b2a5v

3
1 − 2a2a6v21v52 − a2a3v

2
1v

4
2

− 4aba6v21v32 + (−2aba3 − 3aa4 − ab5) v21v22 +
(
−2b2a6 − 2ab2

)
v21v2

+
(
−b2a3 − 3ba4 + bb5

)
v21 − 2aa5v1v32 + (−2aa2 − ab3) v1v22

+ (−2ab1 − 2ba5 + 2bb6) v1v2 + (−2ba2 + bb3 + 2b4) v1 − aa6v
4
2

− aa3v
3
2 + (−aa1 − ba6) v22 + (−ba3 + b5) v2 − ba1 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−aa3 = 0
−2aa5 = 0
−aa6 = 0
−2ab4 = 0
−a2a3 = 0
−a2a5 = 0
−2a2a6 = 0
−b2a5 = 0

−2aba5 = 0
−4aba6 = 0

−2aa2 − ab3 = 0
−ba1 + b2 = 0
−ba3 + b5 = 0

−aa1 − ba6 = 0
−2b2a6 − 2ab2 = 0

−2ba2 + bb3 + 2b4 = 0
−b2a3 − 3ba4 + bb5 = 0

−2aba3 − 3aa4 − ab5 = 0
−2ab1 − 2ba5 + 2bb6 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = 0
a5 = 0
a6 = 0
b1 = b1

b2 = 0
b3 = 0
b4 = 0
b5 = 0

b6 =
ab1
b

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0

η = a y2 + b

b

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

a y2+b
b

dy
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Which results in

S =
b arctan

(
ay√
ba

)
√
ba

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x
(
a y2 + b

)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 0

Sy =
b

a y2 + b

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= bx (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= bR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
bR dR

S(R) = bR2

2 + c2
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To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

√
b arctan

(√
a y√
b

)
√
a

= b x2

2 + c2

Which gives

y =

√
b tan

(√
a
(
b x2+2c2

)
2
√
b

)
√
a

Summary of solutions found

y =

√
b tan

(√
a
(
b x2+2c2

)
2
√
b

)
√
a

Solved as first order ode of type Riccati

Time used: 1.102 (sec)

In canonical form the ODE is

y′ = F (x, y)
= x

(
a y2 + b

)
This is a Riccati ODE. Comparing the ODE to solve

y′ = xa y2 + bx

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = bx, f1(x) = 0 and f2(x) = ax. Let

y = −u′

f2u

= −u′

uax
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)
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But

f ′
2 = a

f1f2 = 0
f 2
2 f0 = a2x3b

Substituting the above terms back in equation (2) gives

axu′′(x)− au′(x) + a2x3bu(x) = 0

In normal form the ode

ax

(
d2u

dx2

)
− a

(
du

dx

)
+ a2x3bu = 0 (1)

Becomes

d2u

dx2 + p(x)
(
du

dx

)
+ q(x)u = 0 (2)

Where

p(x) = −1
x

q(x) = b x2a

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
u(τ) + p1

(
d

dτ
u(τ)

)
+ q1u(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
d2

dx2 τ(x) + p(x)
(

d
dx
τ(x)

)(
d
dx
τ (x)

)2 (4)

q1(τ) =
q(x)(

d
dx
τ (x)

)2 (5)

Let p1 = 0. Eq (4) simplifies to

d2

dx2 τ(x) + p(x)
(

d

dx
τ(x)

)
= 0
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This ode is solved resulting in

τ =
∫

e−
∫
p(x)dxdx

=
∫

e−
∫
− 1

x
dxdx

=
∫

eln(x) dx

=
∫

xdx

= x2

2 (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)(

d
dx
τ (x)

)2
= b x2a

x2

= ba (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
u(τ) + q1u(τ) = 0

d2

dτ 2
u(τ) + bau(τ) = 0

The above ode is now solved for u(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Au′′(τ) +Bu′(τ) + Cu(τ) = 0

Where in the above A = 1, B = 0, C = ba. Let the solution be u(τ) = eλτ . Substituting
this into the ODE gives

λ2eτλ + ba eτλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

ba+ λ2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = 0, C = ba into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (ba)

= ±
√
−ba

Hence

λ1 = +
√
−ba

λ2 = −
√
−ba

Which simplifies to

λ1 =

(
(−1 + i)

√
signum (ba) + 1 + i

)√
ba

2

λ2 = −

(
(−1 + i)

√
signum (ba) + 1 + i

)√
ba

2

The roots are complex but they are not conjugate of each others. Hence simplification
using Euler relation is not possible here. Therefore the final solution is

u(τ) = c1e
λ1τ + c2e

λ2τ

= c1e
τ
(
(−1+i)

√
signum(ba)+1+i

)√
ba

2 + c2e
−

τ
(
(−1+i)

√
signum(ba)+1+i

)√
ba

2

Will add steps showing solving for IC soon.

The above solution is now transformed back to u using (6) which results in

u = c1 e
x2

(
(−1+i)

√
signum(ba)+1+i

)√
ba

4 + c2 e−
x2

(
(−1+i)

√
signum(ba)+1+i

)√
ba

4

Will add steps showing solving for IC soon.

Taking derivative gives

u′(x) =
c1x
(
(−1 + i)

√
signum (ba) + 1 + i

)√
ba e

x2
(
(−1+i)

√
signum(ba)+1+i

)√
ba

4

2

−
c2x
(
(−1 + i)

√
signum (ba) + 1 + i

)√
ba e−

x2
(
(−1+i)

√
signum(ba)+1+i

)√
ba

4

2
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Doing change of constants, the solution becomes

y =

−
c3x
(
(−1+i)

√
signum(ba)+1+i

)√
ba e

x2
(
(−1+i)

√
signum(ba)+1+i

)√
ba

4

2 −
x
(
(−1+i)

√
signum(ba)+1+i

)√
ba e−

x2
(
(−1+i)

√
signum(ba)+1+i

)√
ba

4

2

ax

(
c3 e

x2
(
(−1+i)

√
signum(ba)+1+i

)√
ba

4 + e−
x2

(
(−1+i)

√
signum(ba)+1+i

)√
ba

4

)

Summary of solutions found

y =

−
c3x
(
(−1+i)

√
signum(ba)+1+i

)√
ba e

x2
(
(−1+i)

√
signum(ba)+1+i

)√
ba

4

2 −
x
(
(−1+i)

√
signum(ba)+1+i

)√
ba e−

x2
(
(−1+i)

√
signum(ba)+1+i

)√
ba

4

2

ax

(
c3 e

x2
(
(−1+i)

√
signum(ba)+1+i

)√
ba

4 + e−
x2

(
(−1+i)

√
signum(ba)+1+i

)√
ba

4

)

Maple step by step solution

Let’s solve
y′ = x(ay2 + b)

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = x(ay2 + b)

• Separate variables
y′

ay2+b
= x

• Integrate both sides with respect to x∫
y′

ay2+b
dx =

∫
xdx+ C1

• Evaluate integral
arctan

(
ay√
ba

)
√
ba

= x2

2 + C1
• Solve for y

y =
tan
(

x2
√
ba

2 +C1
√
ba
)√

ba

a
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 28� �
dsolve(diff(y(x),x) = x*(a*y(x)^2+b),y(x),singsol=all)� �

y(x) =
tan

(√
ba
(
x2+2c1

)
2

)√
ba

a

Mathematica DSolve solution

Solving time : 8.114 (sec)
Leaf size : 75� �
DSolve[{D[y[x],x]==x*(a*y[x]^2+b),{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) →

√
b tan

(
1
2
√
a
√
b(x2 + 2c1)

)
√
a

y(x) → − i
√
b√
a

y(x) → i
√
b√
a
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2.6.6 Problem 8 (eq 69)

Solved as first order separable ode . . . . . . . . . . . . . . . . 451
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 453
Solved using Lie symmetry for first order ode . . . . . . . . . . 457
Solved as first order ode of type Riccati . . . . . . . . . . . . . 463
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 467
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 468
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 468

Internal problem ID [18570]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at
page 91
Problem number : 8 (eq 69)
Date solved : Tuesday, January 28, 2025 at 12:00:36 PM
CAS classification : [_separable]

Solve

n′ =
(
n2 + 1

)
x

Solved as first order separable ode

Time used: 0.150 (sec)

The ode
(2.40)n′ =

(
n2 + 1

)
x

is separable as it can be written as

n′ =
(
n2 + 1

)
x

= f(x)g(n)

Where

f(x) = x

g(n) = n2 + 1
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Integrating gives ∫ 1
g(n) dn =

∫
f(x) dx∫ 1

n2 + 1 dn =
∫

x dx

arctan (n) = x2

2 + c1

We now need to find the singular solutions, these are found by finding for what values
g(n) is zero, since we had to divide by this above. Solving g(n) = 0 or

n2 + 1 = 0

for n gives

n = −i

n = i

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

arctan (n) = x2

2 + c1

n = −i

n = i

Solving for n gives
n = −i

n = i

n = tan
(
x2

2 + c1

)
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–3
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n(x)

–4 –2 0 2 4

x

Figure 2.55: Slope field plot
n′ = (n2 + 1)x

Summary of solutions found
n = −i

n = i

n = tan
(
x2

2 + c1

)
Solved as first order Exact ode

Time used: 0.101 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, n) dx+N(x, n) dn = 0 (1A)
Therefore

dn =
((
n2 + 1

)
x
)
dx(

−
(
n2 + 1

)
x
)
dx+dn = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, n) = −
(
n2 + 1

)
x

N(x, n) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂n
= ∂N

∂x

Using result found above gives
∂M

∂n
= ∂

∂n

(
−
(
n2 + 1

)
x
)

= −2nx

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂n

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂n
− ∂N

∂x

)
= 1((−2nx)− (0))
= −2nx
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Since A depends on n, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂n

)
= − 1

(n2 + 1)x((0)− (−2nx))

= − 2n
n2 + 1

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dn

= e
∫
− 2n

n2+1 dn

The result of integrating gives

µ = e− ln
(
n2+1

)
= 1

n2 + 1
M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
n2 + 1

(
−
(
n2 + 1

)
x
)

= −x

And

N = µN

= 1
n2 + 1(1)

= 1
n2 + 1

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dn
dx = 0

(−x) +
(

1
n2 + 1

)
dn
dx = 0
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The following equations are now set up to solve for the function φ(x, n)

∂φ

∂x
= M (1)

∂φ

∂n
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(n)

Where f(n) is used for the constant of integration since φ is a function of both x and
n. Taking derivative of equation (3) w.r.t n gives

(4)∂φ

∂n
= 0 + f ′(n)

But equation (2) says that ∂φ
∂n

= 1
n2+1 . Therefore equation (4) becomes

(5)1
n2 + 1 = 0 + f ′(n)

Solving equation (5) for f ′(n) gives

f ′(n) = 1
n2 + 1

Integrating the above w.r.t n gives∫
f ′(n) dn =

∫ ( 1
n2 + 1

)
dn

f(n) = arctan (n) + c1

Where c1 is constant of integration. Substituting result found above for f(n) into
equation (3) gives φ

φ = −x2

2 + arctan (n) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −x2

2 + arctan (n)

Solving for n gives

n = tan
(
x2

2 + c1

)

–3

–2

–1

0

1

2

3

n(x)

–4 –2 0 2 4

x

Figure 2.56: Slope field plot
n′ = (n2 + 1)x

Summary of solutions found

n = tan
(
x2

2 + c1

)
Solved using Lie symmetry for first order ode

Time used: 0.611 (sec)

Writing the ode as

n′ =
(
n2 + 1

)
x

n′ = ω(x, n)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηn − ξx)− ω2ξn − ωxξ − ωnη = 0 (A)
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To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 2 to use as anstaz gives

(1E)ξ = n2a6 + nxa5 + x2a4 + na3 + xa2 + a1

(2E)η = n2b6 + nxb5 + x2b4 + nb3 + xb2 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
nb5 + 2xb4 + b2 +

(
n2 + 1

)
x(−na5 + 2nb6 − 2xa4 + xb5 − a2 + b3)

−
(
n2 + 1

)2
x2(2na6 + xa5 + a3)

−
(
n2 + 1

) (
n2a6 + nxa5 + x2a4 + na3 + xa2 + a1

)
− 2nx

(
n2b6 + nxb5 + x2b4 + nb3 + xb2 + b1

)
= 0

Putting the above in normal form gives

−2n5x2a6 − n4x3a5 − n4x2a3 − 4n3x2a6 − 2n2x3a5 − n4a6 − 2n3xa5
− 2n2x2a3 − 3n2x2a4 − n2x2b5 − 2nx3b4 − n3a3 − 2n2xa2 − n2xb3
− 2nx2a6 − 2nx2b2 − x3a5 − n2a1 − n2a6 − 2nxa5 − 2nxb1 + 2nxb6
− x2a3 − 3x2a4 + x2b5 − na3 + nb5 − 2xa2 + xb3 + 2xb4 − a1 + b2 = 0

Setting the numerator to zero gives

(6E)
−2n5x2a6 − n4x3a5 − n4x2a3 − 4n3x2a6 − 2n2x3a5 − n4a6 − 2n3xa5
− 2n2x2a3 − 3n2x2a4 − n2x2b5 − 2nx3b4 − n3a3 − 2n2xa2 − n2xb3
− 2nx2a6 − 2nx2b2 − x3a5 − n2a1 − n2a6 − 2nxa5 − 2nxb1 + 2nxb6
− x2a3 − 3x2a4 + x2b5 − na3 + nb5 − 2xa2 + xb3 + 2xb4 − a1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {n, x} in them.

{n, x}

The following substitution is now made to be able to collect on all terms with {n, x}
in them

{n = v1, x = v2}
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The above PDE (6E) now becomes

(7E)
−a5v

4
1v

3
2 − 2a6v51v22 − a3v

4
1v

2
2 − 2a5v21v32 − 4a6v31v22 − 2a3v21v22 − 3a4v21v22

− 2a5v31v2 − a6v
4
1 − 2b4v1v32 − b5v

2
1v

2
2 − 2a2v21v2 − a3v

3
1 − a5v

3
2 − 2a6v1v22

− 2b2v1v22 − b3v
2
1v2 − a1v

2
1 − a3v

2
2 − 3a4v22 − 2a5v1v2 − a6v

2
1 − 2b1v1v2

+ b5v
2
2 + 2b6v1v2 − 2a2v2 − a3v1 + b3v2 + 2b4v2 + b5v1 − a1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
−2a6v51v22 − a5v

4
1v

3
2 − a3v

4
1v

2
2 − a6v

4
1 − 4a6v31v22 − 2a5v31v2 − a3v

3
1

− 2a5v21v32 + (−2a3 − 3a4 − b5) v21v22 + (−2a2 − b3) v21v2 + (−a1 − a6) v21
− 2b4v1v32 + (−2a6 − 2b2) v1v22 + (−2a5 − 2b1 + 2b6) v1v2 + (−a3 + b5) v1
− a5v

3
2 + (−a3 − 3a4 + b5) v22 + (−2a2 + b3 + 2b4) v2 − a1 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a3 = 0
−2a5 = 0
−a5 = 0
−4a6 = 0
−2a6 = 0
−a6 = 0
−2b4 = 0

−a1 − a6 = 0
−a1 + b2 = 0

−2a2 − b3 = 0
−a3 + b5 = 0

−2a6 − 2b2 = 0
−2a2 + b3 + 2b4 = 0
−2a3 − 3a4 − b5 = 0
−a3 − 3a4 + b5 = 0

−2a5 − 2b1 + 2b6 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = 0
a5 = 0
a6 = 0
b1 = b6

b2 = 0
b3 = 0
b4 = 0
b5 = 0
b6 = b6

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0

η = n2 + 1

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, n) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dn

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂n

)
S(x, n) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

n2 + 1dy
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Which results in

S = arctan (n)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, n)Sn

Rx + ω(x, n)Rn
(2)

Where in the above Rx, Rn, Sx, Sn are all partial derivatives and ω(x, n) is the right
hand side of the original ode given by

ω(x, n) =
(
n2 + 1

)
x

Evaluating all the partial derivatives gives

Rx = 1
Rn = 0
Sx = 0

Sn = 1
n2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, n
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
RdR

S(R) = R2

2 + c2
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To complete the solution, we just need to transform the above back to x, n coordinates.
This results in

arctan (n) = x2

2 + c2

Which gives

n = tan
(
x2

2 + c2

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, n coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dn
dx

= (n2 + 1)x dS
dR

= R

–4

–2

0

2

4

n(x)

–4 –2 2 4

x

R = x

S = arctan (n)

–4

–2

0

2

4

S(R)

–4 –2 2 4

R

–3

–2

–1

0

1

2

3

n(x)

–4 –2 0 2 4

x

Figure 2.57: Slope field plot
n′ = (n2 + 1)x
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Summary of solutions found

n = tan
(
x2

2 + c2

)

Solved as first order ode of type Riccati

Time used: 0.425 (sec)

In canonical form the ODE is

n′ = F (x, n)
=
(
n2 + 1

)
x

This is a Riccati ODE. Comparing the ODE to solve

n′ = n2x+ x

With Riccati ODE standard form

n′ = f0(x) + f1(x)n+ f2(x)n2

Shows that f0(x) = x, f1(x) = 0 and f2(x) = x. Let

n = −u′

f2u

= −u′

ux
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 1

f1f2 = 0
f 2
2 f0 = x3

Substituting the above terms back in equation (2) gives

xu′′(x)− u′(x) + x3u(x) = 0
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In normal form the ode

x

(
d2u

dx2

)
− du

dx
+ x3u = 0 (1)

Becomes

d2u

dx2 + p(x)
(
du

dx

)
+ q(x)u = 0 (2)

Where

p(x) = −1
x

q(x) = x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
u(τ) + p1

(
d

dτ
u(τ)

)
+ q1u(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
d2

dx2 τ(x) + p(x)
(

d
dx
τ(x)

)(
d
dx
τ (x)

)2 (4)

q1(τ) =
q(x)(

d
dx
τ (x)

)2 (5)

Let p1 = 0. Eq (4) simplifies to

d2

dx2 τ(x) + p(x)
(

d

dx
τ(x)

)
= 0

This ode is solved resulting in

τ =
∫

e−
∫
p(x)dxdx

=
∫

e−
∫
− 1

x
dxdx

=
∫

eln(x) dx

=
∫

xdx

= x2

2 (6)
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Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)(

d
dx
τ (x)

)2
= x2

x2

= 1 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
u(τ) + q1u(τ) = 0

d2

dτ 2
u(τ) + u(τ) = 0

The above ode is now solved for u(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Au′′(τ) +Bu′(τ) + Cu(τ) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be u(τ) = eλτ . Substituting
this into the ODE gives

λ2eτλ + eτλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i
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Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

u(τ) = eατ (c1 cos(βτ) + c2 sin(βτ))

Which becomes
u(τ) = e0(c1 cos (τ) + c2 sin (τ))

Or
u(τ) = c1 cos (τ) + c2 sin (τ)

Will add steps showing solving for IC soon.

The above solution is now transformed back to u using (6) which results in

u = c1 cos
(
x2

2

)
+ c2 sin

(
x2

2

)

Will add steps showing solving for IC soon.

Taking derivative gives

u′(x) = −c1x sin
(
x2

2

)
+ c2x cos

(
x2

2

)

Doing change of constants, the solution becomes

n = −
−c3x sin

(
x2

2

)
+ x cos

(
x2

2

)
x
(
c3 cos

(
x2

2

)
+ sin

(
x2

2

))
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Figure 2.58: Slope field plot
n′ = (n2 + 1)x

Summary of solutions found

n = −
−c3x sin

(
x2

2

)
+ x cos

(
x2

2

)
x
(
c3 cos

(
x2

2

)
+ sin

(
x2

2

))
Maple step by step solution

Let’s solve
n′ = (n2 + 1)x

• Highest derivative means the order of the ODE is 1
n′

• Solve for the highest derivative
n′ = (n2 + 1)x

• Separate variables
n′

n2+1 = x

• Integrate both sides with respect to x∫
n′

n2+1dx =
∫
xdx+ C1

• Evaluate integral
arctan (n) = x2

2 + C1
• Solve for n
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n = tan
(

x2

2 + C1
)

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 12� �
dsolve(diff(n(x),x) = (n(x)^2+1)*x,n(x),singsol=all)� �

n(x) = tan
(
x2

2 + c1

)

Mathematica DSolve solution

Solving time : 0.191 (sec)
Leaf size : 30� �
DSolve[{D[n[x],x]==(n[x]^2+1)*x,{}},n[x],x,IncludeSingularSolutions->True]� �

n(x) → tan
(
x2

2 + c1

)
n(x) → −i
n(x) → i
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2.6.7 Problem 9 (a)

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 469
Solved as first order separable ode . . . . . . . . . . . . . . . . 471
Solved as first order homogeneous class D2 ode . . . . . . . . . 473
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 475
Solved using Lie symmetry for first order ode . . . . . . . . . . 479
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 484
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 485
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 485

Internal problem ID [18571]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at
page 91
Problem number : 9 (a)
Date solved : Tuesday, January 28, 2025 at 12:00:39 PM
CAS classification : [_separable]

Solve

v′ + 2v
u

= 3v

Solved as first order linear ode

Time used: 0.054 (sec)

In canonical form a linear first order is

v′ + q(u)v = p(u)

Comparing the above to the given ode shows that

q(u) = −3u− 2
u

p(u) = 0

The integrating factor µ is

µ = e
∫
q du

= e
∫
− 3u−2

u
du

= u2e−3u
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The ode becomes

d
duµv = 0

d
du
(
v u2e−3u) = 0

Integrating gives

v u2e−3u =
∫

0 du+ c1

= c1

Dividing throughout by the integrating factor u2e−3u gives the final solution

v = e3uc1
u2
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0

1

2

3

v(u)
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u

Figure 2.59: Slope field plot
v′ + 2v

u
= 3v

Summary of solutions found

v = e3uc1
u2
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Solved as first order separable ode

Time used: 0.098 (sec)

The ode

(2.41)v′ = v(3u− 2)
u

is separable as it can be written as

v′ = v(3u− 2)
u

= f(u)g(v)

Where

f(u) = 3u− 2
u

g(v) = v

Integrating gives ∫ 1
g(v) dv =

∫
f(u) du∫ 1

v
dv =

∫ 3u− 2
u

du

ln (v) = 3u+ ln
(

1
u2

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(v) is zero, since we had to divide by this above. Solving g(v) = 0 or

v = 0

for v gives

v = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.
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Therefore the solutions found are

ln (v) = 3u+ ln
(

1
u2

)
+ c1

v = 0

Solving for v gives
v = 0

v = e3u+c1

u2
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Figure 2.60: Slope field plot
v′ + 2v

u
= 3v

Summary of solutions found
v = 0

v = e3u+c1

u2
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Solved as first order homogeneous class D2 ode

Time used: 0.091 (sec)

Applying change of variables v = u(u)u, then the ode becomes

u′(u)u+ 3u(u) = 3u(u)u

Which is now solved The ode

(2.42)u′(u) = 3u(u) (u− 1)
u

is separable as it can be written as

u′(u) = 3u(u) (u− 1)
u

= f(u)g(u)

Where

f(u) = 3u− 3
u

g(u) = u

Integrating gives ∫ 1
g(u) du =

∫
f(u) du∫ 1

u
du =

∫ 3u− 3
u

du

ln (u(u)) = 3u+ ln
(

1
u3

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u = 0

for u(u) gives

u(u) = 0
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Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(u)) = 3u+ ln
(

1
u3

)
+ c1

u(u) = 0

Solving for u(u) gives
u(u) = 0

u(u) = e3u+c1

u3

Converting u(u) = 0 back to v gives

v = 0

Converting u(u) = e3u+c1
u3 back to v gives

v = e3u+c1

u2
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Figure 2.61: Slope field plot
v′ + 2v

u
= 3v
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Summary of solutions found
v = 0

v = e3u+c1

u2

Solved as first order Exact ode

Time used: 0.145 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(u, v) du+N(u, v) dv = 0 (1A)
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Therefore

dv =
(
3v − 2v

u

)
du(

2v
u

− 3v
)
du+dv = 0 (2A)

Comparing (1A) and (2A) shows that

M(u, v) = 2v
u

− 3v

N(u, v) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂v
= ∂N

∂u

Using result found above gives

∂M

∂v
= ∂

∂v

(
2v
u

− 3v
)

= 2
u
− 3

And
∂N

∂u
= ∂

∂u
(1)

= 0

Since ∂M
∂v

6= ∂N
∂u

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂v
− ∂N

∂u

)
= 1
((

2
u
− 3
)
− (0)

)
= 2

u
− 3

Since A does not depend on v, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adu

= e
∫ 2

u
−3 du
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The result of integrating gives

µ = e−3u+2 ln(u)

= u2e−3u

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= u2e−3u
(
2v
u

− 3v
)

= −v(3u− 2)u e−3u

And

N = µN

= u2e−3u(1)
= u2e−3u

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dv
du = 0(

−v(3u− 2)u e−3u)+ (u2e−3u) dv
du = 0

The following equations are now set up to solve for the function φ(u, v)

∂φ

∂u
= M (1)

∂φ

∂v
= N (2)

Integrating (2) w.r.t. v gives ∫
∂φ

∂v
dv =

∫
N dv∫

∂φ

∂v
dv =

∫
u2e−3u dv

(3)φ = v u2e−3u + f(u)
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Where f(u) is used for the constant of integration since φ is a function of both u and
v. Taking derivative of equation (3) w.r.t u gives

(4)∂φ

∂u
= 2vu e−3u − 3v u2e−3u + f ′(u)

= −v(3u− 2)u e−3u + f ′(u)

But equation (1) says that ∂φ
∂u

= −v(3u− 2)u e−3u. Therefore equation (4) becomes

(5)−v(3u− 2)u e−3u = −v(3u− 2)u e−3u + f ′(u)

Solving equation (5) for f ′(u) gives

f ′(u) = 0

Therefore
f(u) = c1

Where c1 is constant of integration. Substituting this result for f(u) into equation (3)
gives φ

φ = v u2e−3u + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = v u2e−3u

Solving for v gives

v = e3uc1
u2
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Figure 2.62: Slope field plot
v′ + 2v

u
= 3v

Summary of solutions found

v = e3uc1
u2

Solved using Lie symmetry for first order ode

Time used: 0.432 (sec)

Writing the ode as

v′ = v(3u− 2)
u

v′ = ω(u, v)

The condition of Lie symmetry is the linearized PDE given by

ηu + ω(ηv − ξu)− ω2ξv − ωuξ − ωvη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = ua2 + va3 + a1

(2E)η = ub2 + vb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
v(3u− 2) (b3 − a2)

u
− v2(3u− 2)2 a3

u2

−
(
3v
u

− v(3u− 2)
u2

)
(ua2 + va3 + a1)−

(3u− 2) (ub2 + vb3 + b1)
u

= 0

Putting the above in normal form gives

−9u2v2a3 + 3u3b2 + 3u2va2 − 12u v2a3 + 3u2b1 − 3b2u2 + 6v2a3 − 2ub1 + 2va1
u2 = 0

Setting the numerator to zero gives

(6E)−9u2v2a3 − 3u3b2 − 3u2va2 +12u v2a3 − 3u2b1 +3b2u2 − 6v2a3 +2ub1 − 2va1 = 0

Looking at the above PDE shows the following are all the terms with {u, v} in them.

{u, v}

The following substitution is now made to be able to collect on all terms with {u, v}
in them

{u = v1, v = v2}

The above PDE (6E) now becomes

(7E)−9a3v21v22−3a2v21v2+12a3v1v22−3b2v31−6a3v22−3b1v21+3b2v21−2a1v2+2b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

−3b2v31 − 9a3v21v22 − 3a2v21v2 + (−3b1 + 3b2) v21 + 12a3v1v22 + 2b1v1 − 6a3v22 − 2a1v2 = 0
(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
−3a2 = 0
−9a3 = 0
−6a3 = 0
12a3 = 0
2b1 = 0

−3b2 = 0
−3b1 + 3b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = v

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (u, v) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

du

ξ
= dv

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂u

+ η ∂
∂v

)
S(u, v) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = u
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S is found from

S =
∫ 1

η
dy

=
∫ 1

v
dy

Which results in

S = ln (v)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Su + ω(u, v)Sv

Ru + ω(u, v)Rv
(2)

Where in the above Ru, Rv, Su, Sv are all partial derivatives and ω(u, v) is the right
hand side of the original ode given by

ω(u, v) = v(3u− 2)
u

Evaluating all the partial derivatives gives

Ru = 1
Rv = 0
Su = 0

Sv =
1
v

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3u− 2

u
(2A)

We now need to express the RHS as function of R only. This is done by solving for u, v
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3R− 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.
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Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫ 3R− 2
R

dR

S(R) = 3R− 2 ln (R) + c2

To complete the solution, we just need to transform the above back to u, v coordinates.
This results in

ln (v) = 3u− 2 ln (u) + c2

Which gives

v = e3u+c2

u2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in u, v coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dv
du

= v(3u−2)
u

dS
dR

= 3R−2
R

–4

–2

0

2

4

v(u)

–4 –2 2 4

u

R = u

S = ln (v)

–4

–2

0

2

4

S(R)

–4 –2 2 4

R



chapter 2. book solved problems 484

–3

–2

–1

0

1

2

3

v(u)

–4 –2 0 2 4

u

Figure 2.63: Slope field plot
v′ + 2v

u
= 3v

Summary of solutions found

v = e3u+c2

u2

Maple step by step solution

Let’s solve
v′ + 2v

u
= 3v

• Highest derivative means the order of the ODE is 1
v′

• Solve for the highest derivative
v′ = 3v − 2v

u

• Separate variables
v′

v
= 3u−2

u

• Integrate both sides with respect to u∫
v′

v
du =

∫ 3u−2
u

du+ C1
• Evaluate integral

ln (v) = 3u− 2 ln (u) + C1
• Solve for v

v = e3u+C1

u2
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 13� �
dsolve(diff(v(u),u)+2*v(u)/u = 3*v(u),v(u),singsol=all)� �

v = c1e3u
u2

Mathematica DSolve solution

Solving time : 0.026 (sec)
Leaf size : 21� �
DSolve[{D[v[u],u]+2*v[u]/u==3*v[u],{}},v[u],u,IncludeSingularSolutions->True]� �

v(u) → c1e
3u

u2

v(u) → 0
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2.6.8 Problem 9 (b)

Solved as first order separable ode . . . . . . . . . . . . . . . . 486
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 488
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 488
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 489

Internal problem ID [18572]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at
page 91
Problem number : 9 (b)
Date solved : Tuesday, January 28, 2025 at 12:00:41 PM
CAS classification : [_separable]

Solve
√
−u2 + 1 v′ = 2u

√
1− v2

Solved as first order separable ode

Time used: 0.127 (sec)

The ode

(2.43)v′ = 2u
√
1− v2√

−u2 + 1

is separable as it can be written as

v′ = 2u
√
1− v2√

−u2 + 1
= f(u)g(v)

Where

f(u) = 2u√
−u2 + 1

g(v) =
√
−v2 + 1
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Integrating gives ∫ 1
g(v) dv =

∫
f(u) du∫ 1√

−v2 + 1
dv =

∫ 2u√
−u2 + 1

du

arcsin (v) = −2
√
−u2 + 1 + c1

We now need to find the singular solutions, these are found by finding for what values
g(v) is zero, since we had to divide by this above. Solving g(v) = 0 or

√
−v2 + 1 = 0

for v gives

v = −1
v = 1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

arcsin (v) = −2
√
−u2 + 1 + c1

v = −1
v = 1

Solving for v gives
v = −1
v = 1

v = sin
(
−2

√
−u2 + 1 + c1

)
Summary of solutions found

v = −1
v = 1

v = sin
(
−2

√
−u2 + 1 + c1

)



chapter 2. book solved problems 488

Maple step by step solution

Let’s solve
√
−u2 + 1 v′ = 2u

√
1− v2

• Highest derivative means the order of the ODE is 1
v′

• Solve for the highest derivative
v′ = 2u

√
1−v2√

−u2+1

• Separate variables
v′√
1−v2

= 2u√
−u2+1

• Integrate both sides with respect to u∫
v′√
1−v2

du =
∫ 2u√

−u2+1du+ C1
• Evaluate integral

arcsin (v) = 2(u−1)(u+1)√
−u2+1 + C1

• Solve for v

v = sin
(

C1
√
−u2+1+2u2−2√

−u2+1

)
Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 32� �
dsolve((-u^2+1)^(1/2)*diff(v(u),u) = 2*u*(1-v(u)^2)^(1/2),v(u),singsol=all)� �

v = sin
(
2c1

√
−u2 + 1 + 2u2 − 2√

−u2 + 1

)
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Mathematica DSolve solution

Solving time : 0.257 (sec)
Leaf size : 44� �
DSolve[{Sqrt[1-u^2]*D[v[u],u]==2*u*Sqrt[1-v[u]^2],{}},v[u],u,IncludeSingularSolutions->True]� �

v(u) → − sin
(
2
√
1− u2 − c1

)
v(u) → −1
v(u) → 1
v(u) → Interval[{−1, 1}]
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2.6.9 Problem 9 (c)

Solved as first order quadrature ode . . . . . . . . . . . . . . . 490
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 491
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 492
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 492

Internal problem ID [18573]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at
page 91
Problem number : 9 (c)
Date solved : Tuesday, January 28, 2025 at 12:00:43 PM
CAS classification : [_quadrature]

Solve
√
1 + v′ = eu

2

Solved as first order quadrature ode

Time used: 0.075 (sec)

Since the ode has the form v′ = f(u), then we only need to integrate f(u).∫
dv =

∫ e2u
4 − 1 du

v = −u+ e2u
8 + c1
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–3

–2

–1

0

1

2

3

v(u)

–4 –2 0 2 4

u

Figure 2.64: Slope field plot√
1 + v′ = eu

2

Summary of solutions found

v = −u+ e2u
8 + c1

Maple step by step solution

Let’s solve
√
1 + v′ = eu

2

• Highest derivative means the order of the ODE is 1
v′

• Solve for the highest derivative

v′ = (eu)2
4 − 1

• Integrate both sides with respect to u∫
v′du =

∫ ( (eu)2
4 − 1

)
du+ C1

• Evaluate integral

v = −u+ (eu)2
8 + C1

• Solve for v
v = −u+ (eu)2

8 + C1
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Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 17� �
dsolve((1+diff(v(u),u))^(1/2) = 1/2*exp(u),v(u),singsol=all)� �

v = e2u
8 − ln (eu) + c1

Mathematica DSolve solution

Solving time : 0.015 (sec)
Leaf size : 20� �
DSolve[{Sqrt[1+D[v[u],u]]==Exp[u]/2,{}},v[u],u,IncludeSingularSolutions->True]� �

v(u) → −u+ e2u

8 + c1
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2.6.10 Problem 9 (d)

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 493
Solved as first order separable ode . . . . . . . . . . . . . . . . 494
Solved as first order homogeneous class D2 ode . . . . . . . . . 495
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 497
Solved using Lie symmetry for first order ode . . . . . . . . . . 501
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 506
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 507
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 507

Internal problem ID [18574]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at
page 91
Problem number : 9 (d)
Date solved : Tuesday, January 28, 2025 at 12:00:44 PM
CAS classification : [_separable]

Solve
y′

x
= y sin

(
x2 − 1

)
− 2y√

x

Solved as first order linear ode

Time used: 0.189 (sec)

In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = −
(
sin
(
x2 − 1

)√
x− 2

)√
x

p(x) = 0

The integrating factor µ is

µ = e
∫
q dx

= e
∫
−
(
sin
(
x2−1

)√
x−2

)√
xdx

= e
cos

(
x2−1

)
2 + 4x3/2

3
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The ode becomes
d
dxµy = 0

d
dx

(
y e

cos
(
x2−1

)
2 + 4x3/2

3

)
= 0

Integrating gives

y e
cos

(
x2−1

)
2 + 4x3/2

3 =
∫

0 dx+ c1

= c1

Dividing throughout by the integrating factor e
cos

(
x2−1

)
2 + 4x3/2

3 gives the final solution

y = e−
cos

(
x2−1

)
2 − 4x3/2

3 c1

Summary of solutions found

y = e−
cos

(
x2−1

)
2 − 4x3/2

3 c1

Solved as first order separable ode

Time used: 0.162 (sec)

The ode
(2.44)y′ = y

(
sin
(
x2 − 1

)√
x− 2

)√
x

is separable as it can be written as

y′ = y
(
sin
(
x2 − 1

)√
x− 2

)√
x

= f(x)g(y)

Where

f(x) =
(
sin
(
x2 − 1

)√
x− 2

)√
x

g(y) = y

Integrating gives ∫ 1
g(y) dy =

∫
f(x) dx∫ 1

y
dy =

∫ (
sin
(
x2 − 1

)√
x− 2

)√
x dx
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ln (y) = −cos (x2 − 1)
2 − 4x3/2

3 + c1

We now need to find the singular solutions, these are found by finding for what values
g(y) is zero, since we had to divide by this above. Solving g(y) = 0 or

y = 0

for y gives

y = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (y) = −cos (x2 − 1)
2 − 4x3/2

3 + c1

y = 0

Solving for y gives
y = 0

y = e−
cos

(
x2−1

)
2 − 4x3/2

3 +c1

Summary of solutions found

y = 0

y = e−
cos

(
x2−1

)
2 − 4x3/2

3 +c1

Solved as first order homogeneous class D2 ode

Time used: 0.242 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u′(x)x+ u(x)
x

= u(x)x sin
(
x2 − 1

)
− 2u(x)

√
x

Which is now solved The ode

(2.45)u′(x) = −
u(x)

(
− sin (x2 − 1)x2 + 2x3/2 + 1

)
x
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is separable as it can be written as

u′(x) = −
u(x)

(
− sin (x2 − 1)x2 + 2x3/2 + 1

)
x

= f(x)g(u)

Where

f(x) = −− sin (x2 − 1)x2 + 2x3/2 + 1
x

g(u) = u

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx

∫ 1
u
du =

∫
−− sin (x2 − 1)x2 + 2x3/2 + 1

x
dx

ln (u(x)) = −cos (x2 − 1)
2 + ln

(
1
x

)
− 4x3/2

3 + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u = 0

for u(x) gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = −cos (x2 − 1)
2 + ln

(
1
x

)
− 4x3/2

3 + c1

u(x) = 0
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Solving for u(x) gives
u(x) = 0

u(x) = e−
cos

(
x2−1

)
2 − 4x3/2

3 +c1

x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = e−
cos

(
x2−1

)
2 − 4x3/2

3 +c1

x
back to y gives

y = e−
cos

(
x2−1

)
2 − 4x3/2

3 +c1

Summary of solutions found

y = 0

y = e−
cos

(
x2−1

)
2 − 4x3/2

3 +c1

Solved as first order Exact ode

Time used: 0.268 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
x

)
dy =

(
y sin

(
x2 − 1

)
− 2y√

x

)
dx(

−y sin
(
x2 − 1

)
+ 2y√

x

)
dx+

(
1
x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y sin
(
x2 − 1

)
+ 2y√

x

N(x, y) = 1
x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y sin

(
x2 − 1

)
+ 2y√

x

)
= − sin

(
x2 − 1

)
+ 2√

x

And

∂N

∂x
= ∂

∂x

(
1
x

)
= − 1

x2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= x

((
− sin

(
x2 − 1

)
+ 2√

x

)
−
(
− 1
x2

))
= x

(
− sin

(
x2 − 1

)
+ 2√

x
+ 1

x2

)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
x
(
− sin

(
x2−1

)
+ 2√

x
+ 1

x2

)
dx

The result of integrating gives

µ = e
cos

(
x2−1

)
2 +ln(x)+ 4x3/2

3

= x e
cos

(
x2−1

)
2 + 4x3/2

3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x e
cos

(
x2−1

)
2 + 4x3/2

3

(
−y sin

(
x2 − 1

)
+ 2y√

x

)
=
(
− sin

(
x2 − 1

)√
x+ 2

)√
x y e

cos
(
x2−1

)
2 + 4x3/2

3

And

N = µN

= x e
cos

(
x2−1

)
2 + 4x3/2

3

(
1
x

)
= e

cos
(
x2−1

)
2 + 4x3/2

3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

− sin
(
x2 − 1

)√
x+ 2

)√
x y e

cos
(
x2−1

)
2 + 4x3/2

3

)
+
(
e

cos
(
x2−1

)
2 + 4x3/2

3

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives∫
∂φ

∂y
dy =

∫
N dy

∫
∂φ

∂y
dy =

∫
e

cos
(
x2−1

)
2 + 4x3/2

3 dy

(3)φ = y e
cos

(
x2−1

)
2 + 4x3/2

3 + f(x)

Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= y
(
− sin

(
x2 − 1

)
x+ 2

√
x
)
e

cos
(
x2−1

)
2 + 4x3/2

3 + f ′(x)

But equation (1) says that ∂φ
∂x

=
(
− sin (x2 − 1)

√
x+ 2

)√
x y e

cos
(
x2−1

)
2 + 4x3/2

3 . Therefore
equation (4) becomes

(5)
(
− sin

(
x2 − 1

)√
x

+ 2
)√

x y e
cos

(
x2−1

)
2 + 4x3/2

3 = y
(
− sin

(
x2 − 1

)
x+ 2

√
x
)
e

cos
(
x2−1

)
2 + 4x3/2

3 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 0

Therefore
f(x) = c1

Where c1 is constant of integration. Substituting this result for f(x) into equation (3)
gives φ

φ = y e
cos

(
x2−1

)
2 + 4x3/2

3 + c1



chapter 2. book solved problems 501

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = y e
cos

(
x2−1

)
2 + 4x3/2

3

Solving for y gives

y = e−
cos

(
x2−1

)
2 − 4x3/2

3 c1

Summary of solutions found

y = e−
cos

(
x2−1

)
2 − 4x3/2

3 c1

Solved using Lie symmetry for first order ode

Time used: 0.579 (sec)

Writing the ode as

y′ = y
(
sin
(
x2 − 1

)√
x− 2

)√
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 + y

(
sin
(
x2 − 1

)√
x− 2

)√
x (b3 − a2)− y2

(
sin
(
x2 − 1

)√
x− 2

)2
xa3

−

(
y

(
2x3/2 cos

(
x2 − 1

)
+ sin (x2 − 1)

2
√
x

)√
x

+
y
(
sin (x2 − 1)

√
x− 2

)
2
√
x

)
(xa2 + ya3 + a1)

−
(
sin
(
x2 − 1

)√
x− 2

)√
x (xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

−sin (x2 − 1)2 x5/2y2a3 + 2x7/2 cos (x2 − 1) ya2 + 2x5/2 cos (x2 − 1) y2a3 + 2x5/2 cos (x2 − 1) ya1 − 4 sin (x2 − 1)x2y2a3 + sin (x2 − 1)x5/2b2 + 2 sin (x2 − 1)x3/2ya2 + sin (x2 − 1)x3/2b1 + sin (x2 − 1)
√
x y2a3 + 4y2x3/2a3 + sin (x2 − 1)

√
x ya1 − 2x2b2 − 3xya2 − 2xb1 − y2a3 − b2

√
x− ya1√

x
=0

Setting the numerator to zero gives

(6E)− sin
(
x2 − 1

)2
x5/2y2a3 − 2x7/2 cos

(
x2 − 1

)
ya2

−2x5/2 cos
(
x2−1

)
y2a3−2x5/2 cos

(
x2−1

)
ya1−sin

(
x2−1

)
x5/2b2−2 sin

(
x2−1

)
x3/2ya2+4 sin

(
x2−1

)
x2y2a3−4y2x3/2a3−sin

(
x2−1

)
x3/2b1−sin

(
x2−1

)√
x y2a3−sin

(
x2−1

)√
x ya1+2x2b2+3xya2+y2a3+b2

√
x+2xb1+ya1 =0

Simplifying the above gives

(6E)−4y2x3/2a3+2x2b2+3xya2+y2a3+b2
√
x+2xb1+ya1−

x5/2y2a3
2 +x5/2y2a3 cos (2x2 − 2)

2
−2x7/2 cos

(
x2−1

)
ya2−2x5/2 cos

(
x2−1

)
y2a3−2x5/2 cos

(
x2−1

)
ya1−sin

(
x2−1

)
x5/2b2−2 sin

(
x2−1

)
x3/2ya2+4 sin

(
x2−1

)
x2y2a3−sin

(
x2−1

)
x3/2b1−sin

(
x2−1

)√
x y2a3−sin

(
x2−1

)√
x ya1 =0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x, x3/2, x5/2, x7/2, cos

(
x2 − 1

)
, cos

(
2x2 − 2

)
, sin

(
x2 − 1

)}
The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x= v1, y= v2,

√
x= v3, x

3/2 = v4, x
5/2 = v5, x

7/2 = v6, cos
(
x2−1

)
= v7, cos

(
2x2−2

)
= v8, sin

(
x2−1

)
= v9

}
The above PDE (6E) now becomes

(7E)
−4v22v4a3 + 2v21b2 + 3v1v2a2 + v22a3 + b2v3 + 2v1b1 + v2a1 −

1
2v5v

2
2a3

+ 1
2v5v

2
2a3v8 − 2v6v7v2a2 − 2v5v7v22a3 − 2v5v7v2a1 − v9v5b2

− 2v9v4v2a2 + 4v9v21v22a3 − v9v4b1 − v9v3v
2
2a3 − v9v3v2a1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5, v6, v7, v8, v9}
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Equation (7E) now becomes

(8E)
−4v22v4a3 + 2v21b2 + 3v1v2a2 + v22a3 + b2v3 + 2v1b1 + v2a1 −

1
2v5v

2
2a3

+ 1
2v5v

2
2a3v8 − 2v6v7v2a2 − 2v5v7v22a3 − 2v5v7v2a1 − v9v5b2

− 2v9v4v2a2 + 4v9v21v22a3 − v9v4b1 − v9v3v
2
2a3 − v9v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0
b2 = 0

−2a1 = 0
−a1 = 0
−2a2 = 0
3a2 = 0

−4a3 = 0
−2a3 = 0
−a3 = 0
4a3 = 0

−a3
2 = 0
a3
2 = 0

−b1 = 0
2b1 = 0
−b2 = 0
2b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y
dy

Which results in

S = ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y
(
sin
(
x2 − 1

)√
x− 2

)√
x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 0

Sy =
1
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=
(
sin
(
x2 − 1

)√
x− 2

)√
x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=
(
sin
(
R2 − 1

)√
R− 2

)√
R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫ (
sin
(
R2 − 1

)√
R− 2

)√
RdR

S(R) = −cos (R2 − 1)
2 − 4R3/2

3 + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (y) = −cos (x2 − 1)
2 − 4x3/2

3 + c2

Which gives

y = e−
cos

(
x2−1

)
2 − 4x3/2

3 +c2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
sin (x2 − 1)

√
x− 2

)√
x dS

dR
=
(
sin (R2 − 1)

√
R− 2

)√
R

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = ln (y)

–4

–2

0

2

4

S(R)

–4 –2 2 4

R

Summary of solutions found

y = e−
cos

(
x2−1

)
2 − 4x3/2

3 +c2

Maple step by step solution

Let’s solve
y′

x
= y sin (x2 − 1)− 2y√

x

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative

y′ =
(
y sin (x2 − 1)− 2y√

x

)
x

• Separate variables
y′

y
=
(
−2 +

√
x sin ((x− 1) (1 + x))

)√
x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ (
−2 +

√
x sin ((x− 1) (1 + x))

)√
xdx+ C1

• Evaluate integral
ln (y) = − cos((x−1)(1+x))

2 − 4x3/2

3 + C1
• Solve for y
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y = e−
cos((x−1)(1+x))

2 − 4x3/2
3 +C1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.000 (sec)
Leaf size : 21� �
dsolve(1/x*diff(y(x),x) = y(x)*sin(x^2-1)-2*y(x)/x^(1/2),y(x),singsol=all)� �

y(x) = c1e−
cos

(
x2−1

)
2 − 4x3/2

3

Mathematica DSolve solution

Solving time : 0.102 (sec)
Leaf size : 37� �
DSolve[{1/x*D[y[x],x]==y[x]*Sin[x^2-1]-2*y[x]/Sqrt[x],{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → c1e
1
6
(
−8x3/2−3 cos

(
1−x2))

y(x) → 0
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2.6.11 Problem 9 (e)

Solved as first order polynomial type ode . . . . . . . . . . . . . 508
Solved as first order homogeneous class A ode . . . . . . . . . . 513
Solved as first order homogeneous class D2 ode . . . . . . . . . 516
Solved as first order homogeneous class Maple C ode . . . . . . 518
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 522
Solved as first order isobaric ode . . . . . . . . . . . . . . . . . 527
Solved using Lie symmetry for first order ode . . . . . . . . . . 530
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 535
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 536
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 536

Internal problem ID [18575]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at
page 91
Problem number : 9 (e)
Date solved : Tuesday, January 28, 2025 at 12:00:46 PM
CAS classification :
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

Solve

y′ = 1 + 2y
x− y

Solved as first order polynomial type ode

Time used: 0.480 (sec)

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two
lines. Writing the ODE in the form

y′ = a1x+ b1y + c1
a2x+ b2y + c3

Where a1 = 1, b1 = 1, c1 = 0, a2 = 1, b2 = −1, c2 = 0. There are now two possible
solution methods. The first case is when the two lines a1x+ b1y + c1,a2x+ b2y + c3 are
not parallel and the second case is if they are parallel. If they are not parallel, then
the transformation X = x− x0, Y = y − y0 converts the ODE to a homogeneous ODE.
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The values x0, y0 have to be determined. If they are parallel then a transformation
U(x) = a1x+ b1y converts the given ODE in y to a separable ODE in U(x). The first
case is when a1

b1
6= a2

b2
and the second case when a1

b1
= a2

b2
. From the above we see that

a1
b1

6= a2
b2
. Hence this is case one where lines are not parallel. Using the transformation

X = x− x0

Y = y − y0

Where the constants x0, y0 are obtained by solving the following two linear algebraic
equations

a1x0 + b1y0 + c1 = 0
a2x0 + b2y0 + c2 = 0

Substituting the values for a1, b1, c1, a2, b2, c2 gives

x0 + y0 = 0
x0 − y0 = 0

Solving for x0, y0 from the above gives

x0 = 0
y0 = 0

Therefore the transformation becomes

X = x− 0
Y = y − 0

Using this transformation in y′ = 1 + 2y
x−y

result in

dY

dX
= X + Y

X − Y

This is now a homogeneous ODE which will now be solved for Y (X). In canonical form,
the ODE is

Y ′ = F (X,Y )

= − X + Y

−X + Y
(1)
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An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = X+Y and N = X−Y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives
du
dXX + u = −u− 1

u− 1
du
dX =

−u(X)−1
u(X)−1 − u(X)

X

Or
d

dX
u(X)−

−u(X)−1
u(X)−1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)−

(
d

dX
u(X)

)
X + u(X)2 + 1 = 0

Or
X(u(X)− 1)

(
d

dX
u(X)

)
+ u(X)2 + 1 = 0

Which is now solved as separable in u(X).

The ode

(2.46)d

dX
u(X) = − u(X)2 + 1

X (u (X)− 1)

is separable as it can be written as

d

dX
u(X) = − u(X)2 + 1

X (u (X)− 1)
= f(X)g(u)

Where

f(X) = − 1
X

g(u) = u2 + 1
u− 1
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Integrating gives ∫ 1
g(u) du =

∫
f(X) dX∫

u− 1
u2 + 1 du =

∫
− 1
X

dX

ln
(
u(X)2 + 1

)
2 − arctan (u(X)) = ln

(
1
X

)
+ c2

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u2 + 1
u− 1 = 0

for u(X) gives

u(X) = −i

u(X) = i

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(
u(X)2 + 1

)
2 − arctan (u(X)) = ln

(
1
X

)
+ c2

u(X) = −i

u(X) = i

Converting
ln
(
u(X)2+1

)
2 − arctan (u(X)) = ln

( 1
X

)
+ c2 back to Y (X) gives

ln
(

Y (X)2+X2

X2

)
2 − arctan

(
Y (X)
X

)
= ln

(
1
X

)
+ c2

Converting u(X) = −i back to Y (X) gives

Y (X) = −iX
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Converting u(X) = i back to Y (X) gives

Y (X) = iX

The solution is implicit
ln
(

Y (X)2+X2

X2

)
2 − arctan

(
Y (X)
X

)
= ln

( 1
X

)
+ c2. Replacing Y =

y − y0, X = x− x0 gives

ln
(

x2+y2

x2

)
2 − arctan

(y
x

)
= ln

(
1
x

)
+ c2

The solution is
Y (X) = −iX

Replacing Y = y − y0, X = x− x0 gives

y = −ix

The solution is
Y (X) = iX

Replacing Y = y − y0, X = x− x0 gives

y = ix

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.65: Slope field plot
y′ = 1 + 2y

x−y
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Summary of solutions found

ln
(

x2+y2

x2

)
2 − arctan

(y
x

)
= ln

(
1
x

)
+ c2

y = −ix

y = ix

Solved as first order homogeneous class A ode

Time used: 0.279 (sec)

In canonical form, the ODE is

y′ = F (x, y)

= − x+ y

−x+ y
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = x+ y and N = x− y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = −u− 1

u− 1
du
dx =

−u(x)−1
u(x)−1 − u(x)

x

Or

u′(x)−
−u(x)−1
u(x)−1 − u(x)

x
= 0

Or
u′(x)xu(x)− u′(x)x+ u(x)2 + 1 = 0
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Or
x(u(x)− 1)u′(x) + u(x)2 + 1 = 0

Which is now solved as separable in u(x).

The ode

(2.47)u′(x) = − u(x)2 + 1
x (u (x)− 1)

is separable as it can be written as

u′(x) = − u(x)2 + 1
x (u (x)− 1)

= f(x)g(u)

Where

f(x) = −1
x

g(u) = u2 + 1
u− 1

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫

u− 1
u2 + 1 du =

∫
−1
x
dx

ln
(
u(x)2 + 1

)
2 − arctan (u(x)) = ln

(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u2 + 1
u− 1 = 0

for u(x) gives

u(x) = −i

u(x) = i
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Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(
u(x)2 + 1

)
2 − arctan (u(x)) = ln

(
1
x

)
+ c1

u(x) = −i

u(x) = i

Converting
ln
(
u(x)2+1

)
2 − arctan (u(x)) = ln

( 1
x

)
+ c1 back to y gives

ln
(

x2+y2

x2

)
2 − arctan

(y
x

)
= ln

(
1
x

)
+ c1

Converting u(x) = −i back to y gives

y = −ix

Converting u(x) = i back to y gives

y = ix

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.66: Slope field plot
y′ = 1 + 2y

x−y
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Summary of solutions found

ln
(

x2+y2

x2

)
2 − arctan

(y
x

)
= ln

(
1
x

)
+ c1

y = −ix

y = ix

Solved as first order homogeneous class D2 ode

Time used: 0.114 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u′(x)x+ u(x) = 1 + 2u(x)x
x− u (x)x

Which is now solved The ode

(2.48)u′(x) = − u(x)2 + 1
(u (x)− 1)x

is separable as it can be written as

u′(x) = − u(x)2 + 1
(u (x)− 1)x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = u2 + 1
u− 1

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫

u− 1
u2 + 1 du =

∫
−1
x
dx

ln
(
u(x)2 + 1

)
2 − arctan (u(x)) = ln

(
1
x

)
+ c1
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We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u2 + 1
u− 1 = 0

for u(x) gives

u(x) = −i

u(x) = i

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(
u(x)2 + 1

)
2 − arctan (u(x)) = ln

(
1
x

)
+ c1

u(x) = −i

u(x) = i

Converting
ln
(
u(x)2+1

)
2 − arctan (u(x)) = ln

( 1
x

)
+ c1 back to y gives

ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
= ln

(
1
x

)
+ c1

Converting u(x) = −i back to y gives

y = −ix

Converting u(x) = i back to y gives

y = ix
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–3

–2
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0
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y(x)
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x

Figure 2.67: Slope field plot
y′ = 1 + 2y

x−y

Summary of solutions found

ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
= ln

(
1
x

)
+ c1

y = −ix

y = ix

Solved as first order homogeneous class Maple C ode

Time used: 0.384 (sec)

Let Y = y − y0 and X = x− x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − x0 +X + Y (X) + y0

−x0 −X + Y (X) + y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 0
y0 = 0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − X + Y (X)

−X + Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= − X + Y

−X + Y
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = X+Y and N = X−Y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives
du
dXX + u = −u− 1

u− 1
du
dX =

−u(X)−1
u(X)−1 − u(X)

X

Or
d

dX
u(X)−

−u(X)−1
u(X)−1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)−

(
d

dX
u(X)

)
X + u(X)2 + 1 = 0

Or
X(u(X)− 1)

(
d

dX
u(X)

)
+ u(X)2 + 1 = 0

Which is now solved as separable in u(X).

The ode

(2.49)d

dX
u(X) = − u(X)2 + 1

X (u (X)− 1)

is separable as it can be written as

d

dX
u(X) = − u(X)2 + 1

X (u (X)− 1)
= f(X)g(u)
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Where

f(X) = − 1
X

g(u) = u2 + 1
u− 1

Integrating gives ∫ 1
g(u) du =

∫
f(X) dX∫

u− 1
u2 + 1 du =

∫
− 1
X

dX

ln
(
u(X)2 + 1

)
2 − arctan (u(X)) = ln

(
1
X

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u2 + 1
u− 1 = 0

for u(X) gives

u(X) = −i

u(X) = i

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(
u(X)2 + 1

)
2 − arctan (u(X)) = ln

(
1
X

)
+ c1

u(X) = −i

u(X) = i

Converting
ln
(
u(X)2+1

)
2 − arctan (u(X)) = ln

( 1
X

)
+ c1 back to Y (X) gives

ln
(

Y (X)2+X2

X2

)
2 − arctan

(
Y (X)
X

)
= ln

(
1
X

)
+ c1
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Converting u(X) = −i back to Y (X) gives

Y (X) = −iX

Converting u(X) = i back to Y (X) gives

Y (X) = iX

Using the solution for Y (X)

ln
(

Y (X)2+X2

X2

)
2 − arctan

(
Y (X)
X

)
= ln

(
1
X

)
+ c1 (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

ln
(

x2+y2

x2

)
2 − arctan

(y
x

)
= ln

(
1
x

)
+ c1

Using the solution for Y (X)

Y (X) = −iX (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

y = −ix
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Using the solution for Y (X)

Y (X) = iX (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x

Then the solution in y becomes using EQ (A)

y = ix
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Figure 2.68: Slope field plot
y′ = 1 + 2y

x−y

Solved as first order Exact ode

Time used: 0.200 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)
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We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−x+ y) dy = (−x− y) dx
(x+ y) dx+(−x+ y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x+ y

N(x, y) = −x+ y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y
(x+ y)

= 1

And
∂N

∂x
= ∂

∂x
(−x+ y)

= −1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2+y2

is an integrating factor.
Therefore by multiplying M = x + y and N = −x + y by this integrating factor the
ode becomes exact. The new M,N are

M = x+ y

x2 + y2

N = −x+ y

x2 + y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−x+ y

x2 + y2

)
dy =

(
− x+ y

x2 + y2

)
dx(

x+ y

x2 + y2

)
dx+

(
−x+ y

x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x+ y

x2 + y2

N(x, y) = −x+ y

x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x+ y

x2 + y2

)
= x2 − 2xy − y2

(x2 + y2)2

And
∂N

∂x
= ∂

∂x

(
−x+ y

x2 + y2

)
= x2 − 2xy − y2

(x2 + y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x+ y

x2 + y2
dx

(3)φ = ln (x2 + y2)
2 + arctan

(
x

y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x2 + y2
− x

y2
(

x2

y2
+ 1
) + f ′(y)

= −x+ y

x2 + y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −x+y
x2+y2

. Therefore equation (4) becomes

(5)−x+ y

x2 + y2
= −x+ y

x2 + y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (x2 + y2)
2 + arctan

(
x

y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 =
ln (x2 + y2)

2 + arctan
(
x

y

)
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Figure 2.69: Slope field plot
y′ = 1 + 2y

x−y

Summary of solutions found

ln (x2 + y2)
2 + arctan

(
x

y

)
= c1

Solved as first order isobaric ode

Time used: 0.187 (sec)

Solving for y′ gives

(1)y′ = − x+ y

−x+ y

Each of the above ode’s is now solved An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = − x+ y

−x+ y
(2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 1

Since the ode is isobaric of order m = 1, then the substitution

y = uxm

= ux
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Converts the ODE to a separable in u(x). Performing this substitution gives

u(x) + xu′(x) = − x+ xu(x)
−x+ xu (x)

The ode

(2.50)u′(x) = − u(x)2 + 1
(u (x)− 1)x

is separable as it can be written as

u′(x) = − u(x)2 + 1
(u (x)− 1)x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = u2 + 1
u− 1

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫

u− 1
u2 + 1 du =

∫
−1
x
dx

ln
(
u(x)2 + 1

)
2 − arctan (u(x)) = ln

(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

u2 + 1
u− 1 = 0

for u(x) gives

u(x) = −i

u(x) = i
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Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(
u(x)2 + 1

)
2 − arctan (u(x)) = ln

(
1
x

)
+ c1

u(x) = −i

u(x) = i

Converting
ln
(
u(x)2+1

)
2 − arctan (u(x)) = ln

( 1
x

)
+ c1 back to y gives

ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
= ln

(
1
x

)
+ c1

Converting u(x) = −i back to y gives

y

x
= −i

Converting u(x) = i back to y gives

y

x
= i

Solving for y gives

ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
= ln

(
1
x

)
+ c1

y = −ix

y = ix
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Figure 2.70: Slope field plot
y′ = 1 + 2y

x−y

Summary of solutions found

ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
= ln

(
1
x

)
+ c1

y = −ix

y = ix

Solved using Lie symmetry for first order ode

Time used: 0.503 (sec)

Writing the ode as

y′ = − x+ y

−x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(x+ y) (b3 − a2)

−x+ y
− (x+ y)2 a3

(−x+ y)2

−
(
− 1
−x+ y

− x+ y

(−x+ y)2
)
(xa2 + ya3 + a1)

−
(
− 1
−x+ y

+ x+ y

(−x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x2a2 + x2a3 + x2b2 − x2b3 − 2xya2 + 2xya3 + 2xyb2 + 2xyb3 − y2a2 − y2a3 − y2b2 + y2b3 + 2xb1 − 2ya1
(x− y)2

= 0

Setting the numerator to zero gives

(6E)−x2a2 − x2a3 − x2b2 + x2b3 + 2xya2 − 2xya3 − 2xyb2
− 2xyb3 + y2a2 + y2a3 + y2b2 − y2b3 − 2xb1 + 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1 + 2a2v1v2 + a2v

2
2 − a3v

2
1 − 2a3v1v2 + a3v

2
2 − b2v

2
1

− 2b2v1v2 + b2v
2
2 + b3v

2
1 − 2b3v1v2 − b3v

2
2 + 2a1v2 − 2b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 − b2 + b3) v21 + (2a2 − 2a3 − 2b2 − 2b3) v1v2
− 2b1v1 + (a2 + a3 + b2 − b3) v22 + 2a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−2b1 = 0

−a2 − a3 − b2 + b3 = 0
a2 + a3 + b2 − b3 = 0

2a2 − 2a3 − 2b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = −b2

b1 = 0
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− x+ y

−x+ y

)
(x)

= −x2 − y2

x− y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2−y2

x−y

dy

Which results in

S = ln (x2 + y2)
2 − arctan

(y
x

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x+ y

−x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x+ y

x2 + y2

Sy =
−x+ y

x2 + y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
0 dR + c2

S(R) = c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (x2 + y2)
2 − arctan

(y
x

)
= c2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − x+y
−x+y

dS
dR

= 0

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = ln (x2 + y2)
2 − arctan

(y
x

)
–4

–2

0

2

4

S(R)

–4 –2 2 4

R
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Figure 2.71: Slope field plot
y′ = 1 + 2y

x−y

Summary of solutions found

ln (x2 + y2)
2 − arctan

(y
x

)
= c2

Maple step by step solution

Let’s solve
y′ = 1 + 2y

x−y

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = 1 + 2y

x−y

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
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trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 24� �
dsolve(diff(y(x),x) = 1+2*y(x)/(x-y(x)),y(x),singsol=all)� �

y(x) = tan
(
RootOf

(
−2_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x) + 2c1

))
x

Mathematica DSolve solution

Solving time : 0.032 (sec)
Leaf size : 36� �
DSolve[{D[y[x],x]==1+2*y[x]/(x-y[x]),{}},y[x],x,IncludeSingularSolutions->True]� �

Solve
[
1
2 log

(
y(x)2
x2 + 1

)
− arctan

(
y(x)
x

)
= − log(x) + c1, y(x)

]
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2.6.12 Problem 10 (a)

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 537
Solved as first order separable ode . . . . . . . . . . . . . . . . 539
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 540
Solved using Lie symmetry for first order ode . . . . . . . . . . 544
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 549
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 550
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 550

Internal problem ID [18576]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at
page 91
Problem number : 10 (a)
Date solved : Tuesday, January 28, 2025 at 12:00:50 PM
CAS classification : [_separable]

Solve

v′ + 2uv = 2u

Solved as first order linear ode

Time used: 0.071 (sec)

In canonical form a linear first order is

v′ + q(u)v = p(u)

Comparing the above to the given ode shows that

q(u) = 2u
p(u) = 2u

The integrating factor µ is

µ = e
∫
q du

= e
∫
2udu

= eu2
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The ode becomes
d
du(µv) = µp

d
du(µv) = (µ) (2u)

d
du

(
v eu2

)
=
(
eu2
)
(2u)

d
(
v eu2

)
=
(
2u eu2

)
du

Integrating gives

v eu2 =
∫

2u eu2
du

= eu2 + c1

Dividing throughout by the integrating factor eu2 gives the final solution

v = 1 + c1 e−u2

–3

–2

–1

0

1

2

3

v(u)

–4 –2 0 2 4

u

Figure 2.72: Slope field plot
v′ + 2uv = 2u

Summary of solutions found

v = 1 + c1 e−u2
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Solved as first order separable ode

Time used: 0.096 (sec)

The ode
(2.51)v′ = −2uv + 2u

is separable as it can be written as

v′ = −2uv + 2u
= f(u)g(v)

Where

f(u) = u

g(v) = −2v + 2

Integrating gives ∫ 1
g(v) dv =

∫
f(u) du∫ 1

−2v + 2 dv =
∫

u du

− ln (v − 1)
2 = u2

2 + c1

We now need to find the singular solutions, these are found by finding for what values
g(v) is zero, since we had to divide by this above. Solving g(v) = 0 or

−2v + 2 = 0

for v gives

v = 1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

− ln (v − 1)
2 = u2

2 + c1

v = 1
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Solving for v gives
v = 1

v = e−u2−2c1 + 1
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Figure 2.73: Slope field plot
v′ + 2uv = 2u

Summary of solutions found
v = 1

v = e−u2−2c1 + 1

Solved as first order Exact ode

Time used: 0.149 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(u, v) du+N(u, v) dv = 0 (1A)

Therefore

dv = (−2uv + 2u) du
(2uv − 2u) du+dv = 0 (2A)

Comparing (1A) and (2A) shows that

M(u, v) = 2uv − 2u
N(u, v) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂v
= ∂N

∂u

Using result found above gives
∂M

∂v
= ∂

∂v
(2uv − 2u)

= 2u

And
∂N

∂u
= ∂

∂u
(1)

= 0
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Since ∂M
∂v

6= ∂N
∂u

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂v
− ∂N

∂u

)
= 1((2u)− (0))
= 2u

Since A does not depend on v, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adu

= e
∫
2udu

The result of integrating gives

µ = eu
2

= eu2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= eu2(2uv − 2u)
= 2u(v − 1) eu2

And

N = µN

= eu2(1)
= eu2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dv
du = 0(

2u(v − 1) eu2
)
+
(
eu2
) dv
du = 0

The following equations are now set up to solve for the function φ(u, v)
∂φ

∂u
= M (1)

∂φ

∂v
= N (2)
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Integrating (2) w.r.t. v gives ∫
∂φ

∂v
dv =

∫
N dv∫

∂φ

∂v
dv =

∫
eu2 dv

(3)φ = v eu2 + f(u)

Where f(u) is used for the constant of integration since φ is a function of both u and
v. Taking derivative of equation (3) w.r.t u gives

(4)∂φ

∂u
= 2vu eu2 + f ′(u)

But equation (1) says that ∂φ
∂u

= 2u(v − 1) eu2 . Therefore equation (4) becomes

(5)2u(v − 1) eu2 = 2vu eu2 + f ′(u)

Solving equation (5) for f ′(u) gives

f ′(u) = −2u eu2

Integrating the above w.r.t u gives∫
f ′(u) du =

∫ (
−2u eu2

)
du

f(u) = −eu2 + c1

Where c1 is constant of integration. Substituting result found above for f(u) into
equation (3) gives φ

φ = v eu2 − eu2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = v eu2 − eu2
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Solving for v gives

v = e−u2
(
eu2 + c1

)
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u

Figure 2.74: Slope field plot
v′ + 2uv = 2u

Summary of solutions found

v = e−u2
(
eu2 + c1

)
Solved using Lie symmetry for first order ode

Time used: 0.431 (sec)

Writing the ode as

v′ = −2uv + 2u
v′ = ω(u, v)

The condition of Lie symmetry is the linearized PDE given by

ηu + ω(ηv − ξu)− ω2ξv − ωuξ − ωvη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = ua2 + va3 + a1

(2E)η = ub2 + vb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + (−2uv + 2u) (b3 − a2)− (−2uv + 2u)2 a3
− (−2v + 2) (ua2 + va3 + a1) + 2u(ub2 + vb3 + b1) = 0

Putting the above in normal form gives

−4u2v2a3 + 8u2va3 − 4u2a3 + 2u2b2 + 4uva2 + 2v2a3
− 4ua2 + 2ub1 + 2ub3 + 2va1 − 2va3 − 2a1 + b2 = 0

Setting the numerator to zero gives

(6E)−4u2v2a3 + 8u2va3 − 4u2a3 + 2u2b2 + 4uva2 + 2v2a3
− 4ua2 + 2ub1 + 2ub3 + 2va1 − 2va3 − 2a1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {u, v} in them.

{u, v}

The following substitution is now made to be able to collect on all terms with {u, v}
in them

{u = v1, v = v2}

The above PDE (6E) now becomes

(7E)−4a3v21v22 + 8a3v21v2 + 4a2v1v2 − 4a3v21 + 2a3v22 + 2b2v21
+ 2a1v2 − 4a2v1 − 2a3v2 + 2b1v1 + 2b3v1 − 2a1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)−4a3v21v22 + 8a3v21v2 + (−4a3 + 2b2) v21 + 4a2v1v2
+ (−4a2 + 2b1 + 2b3) v1 + 2a3v22 + (2a1 − 2a3) v2 − 2a1 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a2 = 0
−4a3 = 0
2a3 = 0
8a3 = 0

−2a1 + b2 = 0
2a1 − 2a3 = 0

−4a3 + 2b2 = 0
−4a2 + 2b1 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
b1 = −b3

b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = v − 1

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (u, v) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

du

ξ
= dv

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂u

+ η ∂
∂v

)
S(u, v) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = u

S is found from

S =
∫ 1

η
dy

=
∫ 1

v − 1dy

Which results in

S = ln (v − 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Su + ω(u, v)Sv

Ru + ω(u, v)Rv
(2)

Where in the above Ru, Rv, Su, Sv are all partial derivatives and ω(u, v) is the right
hand side of the original ode given by

ω(u, v) = −2uv + 2u

Evaluating all the partial derivatives gives

Ru = 1
Rv = 0
Su = 0

Sv =
1

v − 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2u (2A)

We now need to express the RHS as function of R only. This is done by solving for u, v
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −2R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
−2RdR

S(R) = −R2 + c2

To complete the solution, we just need to transform the above back to u, v coordinates.
This results in

ln (v − 1) = −u2 + c2

Which gives

v = e−u2+c2 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in u, v coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dv
du

= −2uv + 2u dS
dR

= −2R

–4

–2

0

2

4

v(u)

–4 –2 2 4

u

R = u

S = ln (v − 1)

–4

–2

0

2

4

S(R)

–4 –2 2 4

R
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u

Figure 2.75: Slope field plot
v′ + 2uv = 2u

Summary of solutions found

v = e−u2+c2 + 1

Maple step by step solution

Let’s solve
v′ + 2vu = 2u

• Highest derivative means the order of the ODE is 1
v′

• Solve for the highest derivative
v′ = −2vu+ 2u

• Separate variables
v′

v−1 = −2u
• Integrate both sides with respect to u∫

v′

v−1du =
∫
−2udu+ C1

• Evaluate integral
ln (v − 1) = −u2 + C1

• Solve for v
v = e−u2+C1 + 1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 14� �
dsolve(diff(v(u),u)+2*v(u)*u = 2*u,v(u),singsol=all)� �

v = 1 + e−u2
c1

Mathematica DSolve solution

Solving time : 0.05 (sec)
Leaf size : 22� �
DSolve[{D[v[u],u]+2*u*v[u]==2*u,{}},v[u],u,IncludeSingularSolutions->True]� �

v(u) → 1 + c1e
−u2

v(u) → 1
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2.6.13 Problem 10 (b)

Solved as first order separable ode . . . . . . . . . . . . . . . . 551
Solved as first order Bernoulli ode . . . . . . . . . . . . . . . . . 553
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 556
Solved using Lie symmetry for first order ode . . . . . . . . . . 560
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 567
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 568
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 568

Internal problem ID [18577]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at
page 91
Problem number : 10 (b)
Date solved : Tuesday, January 28, 2025 at 12:00:52 PM
CAS classification : [_separable]

Solve

1 + v2 +
(
u2 + 1

)
vv′ = 0

Solved as first order separable ode

Time used: 0.237 (sec)

The ode

(2.52)v′ = − v2 + 1
(u2 + 1) v

is separable as it can be written as

v′ = − v2 + 1
(u2 + 1) v

= f(u)g(v)

Where

f(u) = − 1
u2 + 1

g(v) = v2 + 1
v
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Integrating gives ∫ 1
g(v) dv =

∫
f(u) du∫

v

v2 + 1 dv =
∫

− 1
u2 + 1 du

ln (v2 + 1)
2 = − arctan (u) + c1

We now need to find the singular solutions, these are found by finding for what values
g(v) is zero, since we had to divide by this above. Solving g(v) = 0 or

v2 + 1
v

= 0

for v gives

v = −i

v = i

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (v2 + 1)
2 = − arctan (u) + c1

v = −i

v = i

Solving for v gives
v = −i

v = i

v =
√
−1 + e−2 arctan(u)+2c1

v = −
√

−1 + e−2 arctan(u)+2c1
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Figure 2.76: Slope field plot
1 + v2 + (u2 + 1) vv′ = 0

Summary of solutions found

v = −i

v = i

v =
√
−1 + e−2 arctan(u)+2c1

v = −
√

−1 + e−2 arctan(u)+2c1

Solved as first order Bernoulli ode

Time used: 0.191 (sec)

In canonical form, the ODE is

v′ = F (u, v)

= − v2 + 1
(u2 + 1) v

This is a Bernoulli ODE.

v′ =
(
− 1
u2 + 1

)
v +

(
− 1
u2 + 1

)
1
v

(1)

The standard Bernoulli ODE has the form

v′ = f0(u)v + f1(u)vn (2)
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Comparing this to (1) shows that

f0 = − 1
u2 + 1

f1 = − 1
u2 + 1

The first step is to divide the above equation by vn which gives

v′

vn
= f0(u)v1−n + f1(u) (3)

The next step is use the substitution v = v1−n in equation (3) which generates a new
ODE in v(u) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution v(u) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(u) = − 1
u2 + 1

f1(u) = − 1
u2 + 1

n = −1

Dividing both sides of ODE (1) by vn = 1
v
gives

v′v = − v2

u2 + 1 − 1
u2 + 1 (4)

Let

v = v1−n

= v2 (5)

Taking derivative of equation (5) w.r.t u gives

v′ = 2vv′ (6)

Substituting equations (5) and (6) into equation (4) gives

v′(u)
2 = − v(u)

u2 + 1 − 1
u2 + 1

v′ = − 2v
u2 + 1 − 2

u2 + 1 (7)

The above now is a linear ODE in v(u) which is now solved.
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In canonical form a linear first order is

v′(u) + q(u)v(u) = p(u)

Comparing the above to the given ode shows that

q(u) = 2
u2 + 1

p(u) = − 2
u2 + 1

The integrating factor µ is

µ = e
∫
q du

= e
∫ 2

u2+1du

= e2 arctan(u)

The ode becomes
d
du(µv) = µp

d
du(µv) = (µ)

(
− 2
u2 + 1

)
d
du
(
v e2 arctan(u)

)
=
(
e2 arctan(u)

)(
− 2
u2 + 1

)

d
(
v e2 arctan(u)

)
=
(
−2 e2 arctan(u)

u2 + 1

)
du

Integrating gives

v e2 arctan(u) =
∫

−2 e2 arctan(u)
u2 + 1 du

= −e2 arctan(u) + c1

Dividing throughout by the integrating factor e2 arctan(u) gives the final solution

v(u) = −1 + c1 e−2 arctan(u)

The substitution v = v1−n is now used to convert the above solution back to v which
results in

v2 = −1 + c1 e−2 arctan(u)



chapter 2. book solved problems 556

Solving for v gives

v =
√
−1 + c1 e−2 arctan(u)

v = −
√
−1 + c1 e−2 arctan(u)
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0
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v(u)
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u

Figure 2.77: Slope field plot
1 + v2 + (u2 + 1) vv′ = 0

Summary of solutions found

v =
√
−1 + c1 e−2 arctan(u)

v = −
√
−1 + c1 e−2 arctan(u)

Solved as first order Exact ode

Time used: 0.262 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(u, v) du+N(u, v) dv = 0 (1A)

Therefore ((
u2 + 1

)
v
)
dv =

(
−v2 − 1

)
du(

v2 + 1
)
du+

((
u2 + 1

)
v
)
dv = 0 (2A)

Comparing (1A) and (2A) shows that

M(u, v) = v2 + 1
N(u, v) =

(
u2 + 1

)
v

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂v
= ∂N

∂u

Using result found above gives
∂M

∂v
= ∂

∂v

(
v2 + 1

)
= 2v

And
∂N

∂u
= ∂

∂u

((
u2 + 1

)
v
)

= 2uv
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Since ∂M
∂v

6= ∂N
∂u

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂v
− ∂N

∂u

)
= 1

(u2 + 1) v ((2v)− (2uv))

= −2u+ 2
u2 + 1

Since A does not depend on v, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A du

= e
∫ −2u+2

u2+1 du

The result of integrating gives

µ = e− ln
(
u2+1

)
+2arctan(u)

= e2 arctan(u)
u2 + 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e2 arctan(u)
u2 + 1

(
v2 + 1

)
= (v2 + 1) e2 arctan(u)

u2 + 1
And

N = µN

= e2 arctan(u)
u2 + 1

((
u2 + 1

)
v
)

= v e2 arctan(u)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dv
du = 0(

(v2 + 1) e2 arctan(u)
u2 + 1

)
+
(
v e2 arctan(u)

) dv
du = 0
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The following equations are now set up to solve for the function φ(u, v)

∂φ

∂u
= M (1)

∂φ

∂v
= N (2)

Integrating (1) w.r.t. u gives∫
∂φ

∂u
du =

∫
M du

∫
∂φ

∂u
du =

∫ (v2 + 1) e2 arctan(u)
u2 + 1 du

(3)φ = (v2 + 1) e2 arctan(u)
2 + f(v)

Where f(v) is used for the constant of integration since φ is a function of both u and
v. Taking derivative of equation (3) w.r.t v gives

(4)∂φ

∂v
= v e2 arctan(u) + f ′(v)

But equation (2) says that ∂φ
∂v

= v e2 arctan(u). Therefore equation (4) becomes

(5)v e2 arctan(u) = v e2 arctan(u) + f ′(v)

Solving equation (5) for f ′(v) gives

f ′(v) = 0

Therefore
f(v) = c1

Where c1 is constant of integration. Substituting this result for f(v) into equation (3)
gives φ

φ = (v2 + 1) e2 arctan(u)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 =
(v2 + 1) e2 arctan(u)

2
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Solving for v gives

v = e−2 arctan(u)
√
−e2 arctan(u) (e2 arctan(u) − 2c1)

v = −e−2 arctan(u)
√

−e2 arctan(u) (e2 arctan(u) − 2c1)
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Figure 2.78: Slope field plot
1 + v2 + (u2 + 1) vv′ = 0

Summary of solutions found

v = e−2 arctan(u)
√
−e2 arctan(u) (e2 arctan(u) − 2c1)

v = −e−2 arctan(u)
√

−e2 arctan(u) (e2 arctan(u) − 2c1)

Solved using Lie symmetry for first order ode

Time used: 0.920 (sec)

Writing the ode as

v′ = − v2 + 1
(u2 + 1) v

v′ = ω(u, v)

The condition of Lie symmetry is the linearized PDE given by

ηu + ω(ηv − ξu)− ω2ξv − ωuξ − ωvη = 0 (A)
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To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 2 to use as anstaz gives

(1E)ξ = u2a4 + uva5 + v2a6 + ua2 + va3 + a1

(2E)η = u2b4 + uvb5 + v2b6 + ub2 + vb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2ub4 + vb5 + b2 −
(v2 + 1) (−2ua4 + ub5 − va5 + 2vb6 − a2 + b3)

(u2 + 1) v

− (v2 + 1)2 (ua5 + 2va6 + a3)
(u2 + 1)2 v2

− 2(v2 + 1)u(u2a4 + uva5 + v2a6 + ua2 + va3 + a1)
(u2 + 1)2 v

−
(
− 2
u2 + 1 + v2 + 1

(u2 + 1) v2

)(
u2b4 + uvb5 + v2b6 + ub2 + vb3 + b1

)
= 0

Putting the above in normal form gives

2u5v2b4 + u4v3b5 + u4v2b2 + u4v2b4 − u2v4a5 − u2v4b6 − 2u v5a6 + u3v2b2 + 4u3v2b4 − u2v3a2 + 2u2v3b5 − 2u v4a3 − u v4a5 − 2v5a6 − u4b4 − 2u3vb5 − u2v2a5 + u2v2b1 + 2u2v2b2 + u2v2b4 − 3u2v2b6 − 2u v3a1 + 2u v3a4 − 2u v3a6 − v4a3 + v4a5 − v4b6 − u3b2 − u2va2 − 2u2vb3 − 2u v2a3 − 2u v2a5 + u v2b2 + 2ub4v2 + v3a2 − 4v3a6 + v3b5 − u2b1 − u2b4 − 2uva1 + 2uva4 − 2uvb5 − 2v2a3 + v2a5 + v2b1 + b2v
2 − 3v2b6 − ua5 − ub2 + va2 − 2va6 − 2vb3 − a3 − b1

(u2 + 1)2 v2
= 0

Setting the numerator to zero gives

(6E)

2u5v2b4 + u4v3b5 + u4v2b2 + u4v2b4 − u2v4a5 − u2v4b6 − 2u v5a6
+ u3v2b2 + 4u3v2b4 − u2v3a2 + 2u2v3b5 − 2u v4a3 − u v4a5 − 2v5a6
− u4b4 − 2u3vb5 − u2v2a5 + u2v2b1 + 2u2v2b2 + u2v2b4 − 3u2v2b6
− 2u v3a1 + 2u v3a4 − 2u v3a6 − v4a3 + v4a5 − v4b6 − u3b2 − u2va2
− 2u2vb3 − 2u v2a3 − 2u v2a5 + u v2b2 + 2ub4v2 + v3a2 − 4v3a6
+ v3b5 − u2b1 − u2b4 − 2uva1 + 2uva4 − 2uvb5 − 2v2a3 + v2a5 + v2b1
+ b2v

2 − 3v2b6 − ua5 − ub2 + va2 − 2va6 − 2vb3 − a3 − b1 = 0
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Looking at the above PDE shows the following are all the terms with {u, v} in them.

{u, v}

The following substitution is now made to be able to collect on all terms with {u, v}
in them

{u = v1, v = v2}

The above PDE (6E) now becomes

(7E)

2b4v51v22 + b5v
4
1v

3
2 − a5v

2
1v

4
2 − 2a6v1v52 + b2v

4
1v

2
2 + b4v

4
1v

2
2 − b6v

2
1v

4
2

− a2v
2
1v

3
2 − 2a3v1v42 − a5v1v

4
2 − 2a6v52 + b2v

3
1v

2
2 + 4b4v31v22 + 2b5v21v32

− 2a1v1v32 − a3v
4
2 + 2a4v1v32 − a5v

2
1v

2
2 + a5v

4
2 − 2a6v1v32 + b1v

2
1v

2
2

+ 2b2v21v22 − b4v
4
1 + b4v

2
1v

2
2 − 2b5v31v2 − 3b6v21v22 − b6v

4
2 − a2v

2
1v2 + a2v

3
2

− 2a3v1v22 − 2a5v1v22 − 4a6v32 − b2v
3
1 + b2v1v

2
2 − 2b3v21v2 + 2b4v1v22

+ b5v
3
2 − 2a1v1v2 − 2a3v22 + 2a4v1v2 + a5v

2
2 − b1v

2
1 + b1v

2
2 + b2v

2
2 − b4v

2
1

− 2b5v1v2 − 3b6v22 + a2v2 − a5v1 − 2a6v2 − b2v1 − 2b3v2 − a3 − b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

(b2 + b4) v41v22 + (b2 + 4b4) v31v22 + (−a5 − b6) v21v42 + (−a2 + 2b5) v21v32
+(−a5+ b1+2b2+ b4− 3b6) v21v22 +(−a2− 2b3) v21v2+(−2a3−a5) v1v42
+ (−2a1 + 2a4 − 2a6) v1v32 + (−2a3 − 2a5 + b2 + 2b4) v1v22
+ (−2a1 + 2a4 − 2b5) v1v2 − 2a6v52 − b4v

4
1 − b2v

3
1 + (−b1 − b4) v21

+ (−a5 − b2) v1 + (−a3 + a5 − b6) v42 + (a2 − 4a6 + b5) v32
+ (−2a3 + a5 + b1 + b2 − 3b6) v22 + (a2 − 2a6 − 2b3) v2
− 2b5v31v2 + 2b4v51v22 + b5v

4
1v

3
2 − 2a6v1v52 − a3 − b1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b5 = 0
−2a6 = 0
−b2 = 0
−b4 = 0
2b4 = 0

−2b5 = 0
−a2 − 2b3 = 0
−a2 + 2b5 = 0
−2a3 − a5 = 0
−a3 − b1 = 0
−a5 − b2 = 0
−a5 − b6 = 0
−b1 − b4 = 0
b2 + b4 = 0
b2 + 4b4 = 0

−2a1 + 2a4 − 2a6 = 0
−2a1 + 2a4 − 2b5 = 0

a2 − 4a6 + b5 = 0
a2 − 2a6 − 2b3 = 0
−a3 + a5 − b6 = 0

−2a3 − 2a5 + b2 + 2b4 = 0
−2a3 + a5 + b1 + b2 − 3b6 = 0
−a5 + b1 + 2b2 + b4 − 3b6 = 0
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Solving the above equations for the unknowns gives

a1 = a4

a2 = 0
a3 = 0
a4 = a4

a5 = 0
a6 = 0
b1 = 0
b2 = 0
b3 = 0
b4 = 0
b5 = 0
b6 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = u2 + 1
η = 0

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(u, v) ξ

= 0−
(
− v2 + 1
(u2 + 1) v

)(
u2 + 1

)
= v2 + 1

v
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (u, v) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

du

ξ
= dv

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂u

+ η ∂
∂v

)
S(u, v) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = u

S is found from

S =
∫ 1

η
dy

=
∫ 1

v2+1
v

dy

Which results in

S = ln (v2 + 1)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Su + ω(u, v)Sv

Ru + ω(u, v)Rv
(2)

Where in the above Ru, Rv, Su, Sv are all partial derivatives and ω(u, v) is the right
hand side of the original ode given by

ω(u, v) = − v2 + 1
(u2 + 1) v

Evaluating all the partial derivatives gives

Ru = 1
Rv = 0
Su = 0

Sv =
v

v2 + 1
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

u2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for u, v
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
− 1
R2 + 1 dR

S(R) = − arctan (R) + c2

To complete the solution, we just need to transform the above back to u, v coordinates.
This results in

ln (v2 + 1)
2 = − arctan (u) + c2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in u, v coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dv
du

= − v2+1
(u2+1)v

dS
dR

= − 1
R2+1

–4

–2

0

2

4

v(u)

–4 –2 2 4

u

R = u

S = ln (v2 + 1)
2

–4

–2

0

2

4

S(R)

–4 –2 2 4

R

Solving for v gives

v =
√
−1 + e−2 arctan(u)+2c2

v = −
√

−1 + e−2 arctan(u)+2c2
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–3

–2

–1

0

1

2

3

v(u)

–4 –2 0 2 4

u

Figure 2.79: Slope field plot
1 + v2 + (u2 + 1) vv′ = 0

Summary of solutions found

v =
√
−1 + e−2 arctan(u)+2c2

v = −
√

−1 + e−2 arctan(u)+2c2

Maple step by step solution

Let’s solve
1 + v2 + (u2 + 1) vv′ = 0

• Highest derivative means the order of the ODE is 1
v′

• Solve for the highest derivative
v′ = −v2−1

(u2+1)v

• Separate variables
v′v

−v2−1 = 1
u2+1

• Integrate both sides with respect to u∫
v′v

−v2−1du =
∫ 1

u2+1du+ C1
• Evaluate integral

− ln
(
v2+1

)
2 = arctan (u) + C1

• Solve for v
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{
v =

√
−1 + e−2 arctan(u)−2C1 , v = −

√
−1 + e−2 arctan(u)−2C1

}
Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 31� �
dsolve(1+v(u)^2+(u^2+1)*v(u)*diff(v(u),u) = 0,v(u),singsol=all)� �

v =
√
e−2 arctan(u)c1 − 1

v = −
√

e−2 arctan(u)c1 − 1

Mathematica DSolve solution

Solving time : 2.538 (sec)
Leaf size : 59� �
DSolve[{(1+v[u]^2)+(1+u^2)*v[u]*D[v[u],u]==0,{}},v[u],u,IncludeSingularSolutions->True]� �

v(u) → −
√
−1 + e−2 arctan(u)+2c1

v(u) →
√

−1 + e−2 arctan(u)+2c1

v(u) → −i
v(u) → i
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2.6.14 Problem 10 (c)

Solved as first order separable ode . . . . . . . . . . . . . . . . 569
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 571
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 572
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 572

Internal problem ID [18578]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at
page 91
Problem number : 10 (c)
Date solved : Tuesday, January 28, 2025 at 12:00:55 PM
CAS classification : [_separable]

Solve

u ln (u) v′ + sin (v)2 = 1

Solved as first order separable ode

Time used: 0.183 (sec)

The ode

(2.53)v′ = −sin (v)2 − 1
ln (u)u

is separable as it can be written as

v′ = −sin (v)2 − 1
ln (u)u

= f(u)g(v)

Where

f(u) = 1
ln (u)u

g(v) = − sin (v)2 + 1
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Integrating gives ∫ 1
g(v) dv =

∫
f(u) du∫ 1

− sin (v)2 + 1
dv =

∫ 1
ln (u)u du

tan (v) = ln (ln (u)) + c1

We now need to find the singular solutions, these are found by finding for what values
g(v) is zero, since we had to divide by this above. Solving g(v) = 0 or

− sin (v)2 + 1 = 0

for v gives

v = −π

2
v = π

2

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

tan (v) = ln (ln (u)) + c1

v = −π

2

v = π

2

Solving for v gives

v = −π

2

v = π

2
v = arctan (ln (ln (u)) + c1)
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–3

–2

–1

0

1

2

3

v(u)

–4 –2 0 2 4

u

Figure 2.80: Slope field plot
u ln (u) v′ + sin (v)2 = 1

Summary of solutions found

v = −π

2

v = π

2
v = arctan (ln (ln (u)) + c1)

Maple step by step solution

Let’s solve
u ln (u) v′ + sin (v)2 = 1

• Highest derivative means the order of the ODE is 1
v′

• Solve for the highest derivative

v′ = − sin(v)2+1
u ln(u)

• Separate variables
v′

− sin(v)2+1 = 1
ln(u)u

• Integrate both sides with respect to u∫
v′

− sin(v)2+1du =
∫ 1

ln(u)udu+ C1

• Evaluate integral
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tan (v) = ln (ln (u)) + C1
• Solve for v

v = arctan (ln (ln (u)) + C1 )

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 10� �
dsolve(u*ln(u)*diff(v(u),u)+sin(v(u))^2 = 1,v(u),singsol=all)� �

v = arctan (ln (ln (u)) + c1)

Mathematica DSolve solution

Solving time : 0.359 (sec)
Leaf size : 52� �
DSolve[{u*Log[u]*D[v[u],u]+Sin[v[u]]==0,{}},v[u],u,IncludeSingularSolutions->True]� �

v(u) → − arccos(− tanh(− log(log(u)) + c1))
v(u) → arccos(− tanh(− log(log(u)) + c1))
v(u) → 0
v(u) → −π
v(u) → π
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2.7 Chapter V. Singular solutions. section 36.
Problems at page 99

2.7.1 Problem 1 (eq 98) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
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2.7.1 Problem 1 (eq 98)

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 591
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 591
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 592

Internal problem ID [18579]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter V. Singular solutions. section 36. Problems at page 99
Problem number : 1 (eq 98)
Date solved : Tuesday, January 28, 2025 at 12:00:58 PM
CAS classification : [[_1st_order, _with_linear_symmetries]]

Solve

4yy′3 − 2x2y′
2 + 4xyy′ + x3 = 16y2

Solving for the derivative gives these ODE’s to solve

y′ =
(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3
6y

− x(−x3 + 12y2)
6y
(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3 + x2

6y
(1)

(2)y′ = −
(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3
12y

+ x(−x3 + 12y2)
12y

(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3 + x2

6y

+
i
√
3
((

x6−45x3y2+432y4+3
√
3
√

−2x9+91y2x6−1376y4x3+6912y6 y
)1/3

6y + x
(
−x3+12y2

)
6y
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376y4x3+6912y6 y
)1/3
)

2
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(3)y′ = −
(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3
12y

+ x(−x3 + 12y2)
12y

(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3 + x2

6y

−
i
√
3
((

x6−45x3y2+432y4+3
√
3
√

−2x9+91y2x6−1376y4x3+6912y6 y
)1/3

6y + x
(
−x3+12y2

)
6y
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376y4x3+6912y6 y
)1/3
)

2

Now each of the above is solved separately.

Solving Eq. (1)

Solving for y′ gives

(1)y′ =

−
−x4 + 12y2x− x2(x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3 − (x6 − 45x3y2 + 432y4 + 3
√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)2/3
6y
(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3
Each of the above ode’s is now solved An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here

f(x, y) = −
−x4 + 12y2x− x2(x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3 − (x6 − 45x3y2 + 432y4 + 3
√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)2/3
6y
(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3
(2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 3
2

Since the ode is isobaric of order m = 3
2 , then the substitution

y = uxm

= ux3/2

Converts the ODE to a separable in u(x). Performing this substitution gives

3
√
xu(x)
2 +x3/2u′(x) = −

−x4 + 12x4u(x)2 − x2
(
x6 − 45x6u(x)2 + 432x6u(x)4 + 3

√
3
√

−2x9 + 91x9u (x)2 − 1376x9u (x)4 + 6912x9u (x)6 x3/2u(x)
)1/3

−
(
x6 − 45x6u(x)2 + 432x6u(x)4 + 3

√
3
√
−2x9 + 91x9u (x)2 − 1376x9u (x)4 + 6912x9u (x)6 x3/2u(x)

)2/3

6x3/2u (x)
(
x6 − 45x6u (x)2 + 432x6u (x)4 + 3

√
3
√

−2x9 + 91x9u (x)2 − 1376x9u (x)4 + 6912x9u (x)6 x3/2u (x)
)1/3
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The ode

(2.54)u′(x) =

−

(
12u(x)2 32/3 + 931/3

(√
3
(
432

√
3u(x)4 − 45

√
3u(x)2 + 9u(x)

√(
27u (x)2 − 2

)
(4u (x)− 1)2 (4u (x) + 1)2 +

√
3
))1/3

u(x)2 − 32/3 − 31/3
(√

3
(
432

√
3u(x)4 − 45

√
3u(x)2 + 9u(x)

√(
27u (x)2 − 2

)
(4u (x)− 1)2 (4u (x) + 1)2 +

√
3
))1/3

−
(√

3
(
432

√
3u(x)4 − 45

√
3u(x)2 + 9u(x)

√(
27u (x)2 − 2

)
(4u (x)− 1)2 (4u (x) + 1)2 +

√
3
))2/3

)
32/3

18
(√

3
(
432

√
3u (x)4 − 45

√
3u (x)2 + 9u (x)

√(
27u (x)2 − 2

)
(4u (x)− 1)2 (4u (x) + 1)2 +

√
3
))1/3

u (x)x

is separable as it can be written as

u′(x) = −

(
12u(x)2 32/3 + 931/3

(√
3
(
432

√
3u(x)4 − 45

√
3u(x)2 + 9u(x)

√(
27u (x)2 − 2

)
(4u (x)− 1)2 (4u (x) + 1)2 +

√
3
))1/3

u(x)2 − 32/3 − 31/3
(√

3
(
432

√
3u(x)4 − 45

√
3u(x)2 + 9u(x)

√(
27u (x)2 − 2

)
(4u (x)− 1)2 (4u (x) + 1)2 +

√
3
))1/3

−
(√

3
(
432

√
3u(x)4 − 45

√
3u(x)2 + 9u(x)

√(
27u (x)2 − 2

)
(4u (x)− 1)2 (4u (x) + 1)2 +

√
3
))2/3

)
32/3

18
(√

3
(
432

√
3u (x)4 − 45

√
3u (x)2 + 9u (x)

√(
27u (x)2 − 2

)
(4u (x)− 1)2 (4u (x) + 1)2 +

√
3
))1/3

u (x)x

= f(x)g(u)

Where

f(x) = −32/3
18x

g(u) =
12u232/3 + 931/3

(√
3
(
432

√
3u4 − 45

√
3u2 + 9u

√
(27u2 − 2) (4u− 1)2 (4u+ 1)2 +

√
3
))1/3

u2 − 32/3 − 31/3
(√

3
(
432

√
3u4 − 45

√
3u2 + 9u

√
(27u2 − 2) (4u− 1)2 (4u+ 1)2 +

√
3
))1/3

−
(√

3
(
432

√
3u4 − 45

√
3u2 + 9u

√
(27u2 − 2) (4u− 1)2 (4u+ 1)2 +

√
3
))2/3

(√
3
(
432

√
3u4 − 45

√
3u2 + 9u

√
(27u2 − 2) (4u− 1)2 (4u+ 1)2 +

√
3
))1/3

u

Integrating gives∫ 1
g(u) du =

∫
f(x) dx

∫ (√
3
(
432

√
3u4 − 45

√
3u2 + 9u

√
(27u2 − 2) (4u− 1)2 (4u+ 1)2 +

√
3
))1/3

u

12u232/3 + 931/3
(√

3
(
432

√
3u4 − 45

√
3u2 + 9u

√
(27u2 − 2) (4u− 1)2 (4u+ 1)2 +

√
3
))1/3

u2 − 32/3 − 31/3
(√

3
(
432

√
3u4 − 45

√
3u2 + 9u

√
(27u2 − 2) (4u− 1)2 (4u+ 1)2 +

√
3
))1/3

−
(√

3
(
432

√
3u4 − 45

√
3u2 + 9u

√
(27u2 − 2) (4u− 1)2 (4u+ 1)2 +

√
3
))2/3 du=

∫
−32/3
18x dx

∫ u(x)

(√
3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))1/3

τ

12τ 232/3 + 931/3
(√

3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))1/3

τ 2 − 32/3 − 31/3
(√

3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))1/3

−
(√

3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))2/3dτ =32/3 ln

(
1

x1/18

)
+c1
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We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

12u232/3 + 931/3
(√

3
(
432

√
3u4 − 45

√
3u2 + 9u

√
(27u2 − 2) (4u− 1)2 (4u+ 1)2 +

√
3
))1/3

u2 − 32/3 − 31/3
(√

3
(
432

√
3u4 − 45

√
3u2 + 9u

√
(27u2 − 2) (4u− 1)2 (4u+ 1)2 +

√
3
))1/3

−
(√

3
(
432

√
3u4 − 45

√
3u2 + 9u

√
(27u2 − 2) (4u− 1)2 (4u+ 1)2 +

√
3
))2/3

(√
3
(
432

√
3u4 − 45

√
3u2 + 9u

√
(27u2 − 2) (4u− 1)2 (4u+ 1)2 +

√
3
))1/3

u

=0

for u(x) gives

u(x) = 1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

∫ u(x)

(√
3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))1/3

τ

12τ 232/3 + 931/3
(√

3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))1/3

τ 2 − 32/3 − 31/3
(√

3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))1/3

−
(√

3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))2/3dτ =32/3 ln

(
1

x1/18

)
+c1

u(x) = 1

Converting
∫ u(x)

(√
3
(
432

√
3 τ4−45

√
3 τ2+9τ

√
(27τ2−2)(4τ−1)2(4τ+1)2+

√
3
))1/3

τ

12τ232/3+931/3
(√

3
(
432

√
3 τ4−45

√
3 τ2+9τ

√
(27τ2−2)(4τ−1)2(4τ+1)2+

√
3
))1/3

τ2−32/3−31/3
(√

3
(
432

√
3 τ4−45

√
3 τ2+9τ

√
(27τ2−2)(4τ−1)2(4τ+1)2+

√
3
))1/3

−
(√

3
(
432

√
3 τ4−45

√
3 τ2+9τ

√
(27τ2−2)(4τ−1)2(4τ+1)2+

√
3
))2/3dτ =

−32/3 ln(x)
18 + c1 back to y gives

∫ y

x3/2

(√
3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))1/3

τ

12τ 232/3 + 931/3
(√

3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))1/3

τ 2 − 32/3 − 31/3
(√

3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))1/3

−
(√

3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))2/3dτ = −32/3 ln (x)

18 + c1

Converting u(x) = 1 back to y gives

y

x3/2 = 1
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Solving for y gives

∫ y

x3/2

(√
3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))1/3

τ

12τ 232/3 + 931/3
(√

3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))1/3

τ 2 − 32/3 − 31/3
(√

3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))1/3

−
(√

3
(
432

√
3 τ 4 − 45

√
3 τ 2 + 9τ

√
(27τ 2 − 2) (4τ − 1)2 (4τ + 1)2 +

√
3
))2/3dτ =

−32/3 ln (x)
18 + c1

y = x3/2

We now need to find the singular solutions, these are found by finding for what values

(
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376y4x3+6912y6 y
)1/3

6y − x
(
−x3+12y2

)
6y
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376y4x3+6912y6 y
)1/3+

x2

6y ) is zero. These give

y = RootOf
(
−x4 − x2

(
x6 − 45x3_Z2 + 432_Z4

+ 3
√
3
√

−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z
)1/3

+ 12_Z2x

−
(
x6−45x3_Z2+432_Z4+3

√
3
√

−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z
)2/3)

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf
(
−x4 − x2

(
x6 − 45x3_Z2 + 432_Z4 + 3

√
3
√

−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z
)1/3

+ 12_Z2x−
(
x6 − 45x3_Z2 + 432_Z4 + 3

√
3
√
−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z

)2/3)
will not be used

Solving Eq. (2)

Writing the ode as

y′ =
−i

√
3x4 + 12i

√
3 y2x+ i

√
3
(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)2/3 − x4 + 12x y2 + 2x2(x6 − 45x3y2 + 432y4 + 3
√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3 − (x6 − 45x3y2 + 432y4 + 3
√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)2/3
12y

(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
− (2x3 − 27y2) (x3 − 16y2)2,

(
x6 − 45x3y2 + 432y4

+3
√
3
√

− (2x3 − 27y2) (x3 − 16y2)2 y
)1/3

,

(
x6−45x3y2+432y4+3

√
3
√

− (2x3 − 27y2) (x3 − 16y2)2 y
)2/3

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x = v1, y = v2,

√
− (2x3 − 27y2) (x3 − 16y2)2 = v3,

(
x6 − 45x3y2 + 432y4

+3
√
3
√

− (2x3 − 27y2) (x3 − 16y2)2 y
)1/3

= v4,

(
x6−45x3y2+432y4+3

√
3
√
− (2x3 − 27y2) (x3 − 16y2)2 y

)2/3

= v5

}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
−20736a1 = 0

−48a1 = 0
2160a1 = 0

−7344a3 = 0
−12a3 = 0
588a3 = 0

20736a3 = 0
−1080b1 = 0

24b1 = 0
10368b1 = 0
−936b2 = 0

24b2 = 0
3888b2 = 0
62208b2 = 0

−995328
√
3 a1 = 0

−13104
√
3 a1 = 0

288
√
3 a1 = 0

198144
√
3 a1 = 0

−446976
√
3 a3 = 0

−3564
√
3 a3 = 0

72
√
3 a3 = 0

62640
√
3 a3 = 0

995328
√
3 a3 = 0

−99072
√
3 b1 = 0

−144
√
3 b1 = 0

6552
√
3 b1 = 0

497664
√
3 b1 = 0

−96768
√
3 b2 = 0

−59760
√
3 b2 = 0

−144
√
3 b2 = 0

5688
√
3 b2 = 0

2985984
√
3 b2 = 0

−31104a2 + 20736b3 = 0
−72a2 + 48b3 = 0

3240a2 − 2160b3 = 0
−2985984

√
3 a1 − 8957952ia1 = 0

−173376
√
3 a1 − 520128ia1 = 0

−24768
√
3 a1 + 74304ia1 = 0

−180
√
3 a1 − 540ia1 = 0

−108
√
3 a1 + 324ia1 = 0

3276
√
3 a1 − 9828ia1 = 0

9396
√
3 a1 + 28188ia1 = 0

1292544
√
3 a1 + 3877632ia1 = 0

−1492992
√
3 a2 + 995328

√
3 b3 = 0

−19656
√
3 a2 + 13104

√
3 b3 = 0

432
√
3 a2 − 288

√
3 b3 = 0

297216
√
3 a2 − 198144

√
3 b3 = 0

−10568448
√
3 a3 − 31705344ia3 = 0

−96240
√
3 a3 − 288720ia3 = 0

−13236
√
3 a3 + 39708ia3 = 0

−48
√
3 a3 − 144ia3 = 0

−24
√
3 a3 + 72ia3 = 0

984
√
3 a3 − 2952ia3 = 0

3372
√
3 a3 + 10116ia3 = 0

58176
√
3 a3 − 174528ia3 = 0

1405440
√
3 a3 + 4216320ia3 = 0

32845824
√
3 a3 + 98537472ia3 = 0

−580608
√
3 b1 − 1741824ib1 = 0

−4884
√
3 b1 − 14652ib1 = 0

−1092
√
3 b1 + 3276ib1 = 0

48
√
3 b1 − 144ib1 = 0

96
√
3 b1 + 288ib1 = 0

82944
√
3 b1 − 248832ib1 = 0

85968
√
3 b1 + 257904ib1 = 0

995328
√
3 b1 + 2985984ib1 = 0

−580608
√
3 b2 − 1741824ib2 = 0

−4884
√
3 b2 − 14652ib2 = 0

−1092
√
3 b2 + 3276ib2 = 0

48
√
3 b2 − 144ib2 = 0

96
√
3 b2 + 288ib2 = 0

82944
√
3 b2 − 248832ib2 = 0

85968
√
3 b2 + 257904ib2 = 0

995328
√
3 b2 + 2985984ib2 = 0

−152064i
√
3 a3 − 152064a3 = 0

−62208i
√
3 a1 − 62208a1 = 0

−9936i
√
3 b1 − 9936b1 = 0

−9936i
√
3 b2 − 9936b2 = 0

−1728i
√
3 b1 + 1728b1 = 0

−1728i
√
3 b2 + 1728b2 = 0

−1476i
√
3 a1 − 1476a1 = 0

−1476i
√
3 a3 + 1476a3 = 0

−492i
√
3 a3 − 492a3 = 0

−180i
√
3 b1 + 180b1 = 0

−180i
√
3 b2 + 180b2 = 0

−24i
√
3 a1 + 24a1 = 0

−12i
√
3 b1 − 12b1 = 0

−12i
√
3 b2 − 12b2 = 0

−6i
√
3 a3 + 6a3 = 0

6i
√
3 a3 + 6a3 = 0

12i
√
3 b1 − 12b1 = 0

12i
√
3 b2 − 12b2 = 0

24i
√
3 a1 + 24a1 = 0

204i
√
3 a3 − 204a3 = 0

540i
√
3 a1 − 540a1 = 0

756i
√
3 b1 + 756b1 = 0

756i
√
3 b2 + 756b2 = 0

13104i
√
3 a3 + 13104a3 = 0

20736i
√
3 a1 + 20736a1 = 0

20736i
√
3 b1 + 20736b1 = 0

20736i
√
3 b2 + 20736b2 = 0

684288i
√
3 a3 + 684288a3 = 0

−5971968
√
3 a2 + 3981312

√
3 b3 − 17915904ia2 + 11943936ib3 = 0

−262224
√
3 a2 + 174816

√
3 b3 − 786672ia2 + 524448ib3 = 0

−74304
√
3 a2 + 49536

√
3 b3 + 222912ia2 − 148608ib3 = 0

−252
√
3 a2 + 168

√
3 b3 − 756ia2 + 504ib3 = 0

−180
√
3 a2 + 120

√
3 b3 + 540ia2 − 360ib3 = 0

6552
√
3 a2 − 4368

√
3 b3 − 19656ia2 + 13104ib3 = 0

13536
√
3 a2 − 9024

√
3 b3 + 40608ia2 − 27072ib3 = 0

248832
√
3 a2 − 165888

√
3 b3 − 746496ia2 + 497664ib3 = 0

2135808
√
3 a2 − 1423872

√
3 b3 + 6407424ia2 − 4271616ib3 = 0

−124416i
√
3 a2 + 82944i

√
3 b3 − 124416a2 + 82944b3 = 0

−5184i
√
3 a2 + 3456i

√
3 b3 + 5184a2 − 3456b3 = 0

−2160i
√
3 a2 + 1440i

√
3 b3 − 2160a2 + 1440b3 = 0

−36i
√
3 a2 + 24i

√
3 b3 + 36a2 − 24b3 = 0

36i
√
3 a2 − 24i

√
3 b3 + 36a2 − 24b3 = 0

1080i
√
3 a2 − 720i

√
3 b3 − 1080a2 + 720b3 = 0

32400i
√
3 a2 − 21600i

√
3 b3 + 32400a2 − 21600b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
2b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y
2x
3

= 3y
2x

This is easily solved to give

y = c1 x
3/2

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x3/2
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And S is found from

dS = dx

ξ

= dx
2x
3

Integrating gives

S =
∫

dx

T

= 3 ln (x)
2

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
−i

√
3x4 + 12i

√
3 y2x+ i

√
3
(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)2/3 − x4 + 12x y2 + 2x2(x6 − 45x3y2 + 432y4 + 3
√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3 − (x6 − 45x3y2 + 432y4 + 3
√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)2/3
12y

(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3
Evaluating all the partial derivatives gives

Rx = − 3y
2x5/2

Ry =
1

x3/2

Sx = 3
2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

18x3/2
(
x6 − 45x3y2 + 432y4 + 3

√
3
√

−2
(
x3 − 27y2

2

)
(x3 − 16y2)2 y

)1/3

y

(
−i

√
3x+ x

)(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2
(
x3 − 27y2

2

)
(x3 − 16y2)2 y

)2/3

+ (−2x3 + 18y2)
(
x6 − 45x3y2 + 432y4 + 3

√
3
√

−2
(
x3 − 27y2

2

)
(x3 − 16y2)2 y

)1/3

+ x2 (x3 − 12y2)
(
1 + i

√
3
)

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

18R
(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3(
i
√
3− 1

) (
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)2/3 + (−18R2 + 2)
(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3 + 12
(
1 + i

√
3
) (

R2 − 1
12

)
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫ 18R
(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3
i
(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)2/3√3 + 12i
√
3R2 − 18

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3
R2 −

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)2/3 − i
√
3 + 12R2 + 2

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3 − 1
dR

S(R) =
∫ 18R

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3
i
(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)2/3√3 + 12i
√
3R2 − 18

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3
R2 −

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)2/3 − i
√
3 + 12R2 + 2

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3 − 1
dR + c3

S(R) =
∫ 18R

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3
i
(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)2/3√3 + 12i
√
3R2 − 18

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3
R2 −

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)2/3 − i
√
3 + 12R2 + 2

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3 − 1
dR + c3

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

3 ln (x)
2 =

∫ y

x3/2 18_a
(
(48_a3 − 3_a)

√
3
√
27_a2 − 2 + 432_a4 − 45_a2 + 1

)1/3
i
(
(48_a3 − 3_a)

√
3
√
27_a2 − 2 + 432_a4 − 45_a2 + 1

)2/3√3 + 12i
√
3_a2 − 18

(
(48_a3 − 3_a)

√
3
√
27_a2 − 2 + 432_a4 − 45_a2 + 1

)1/3_a2 − ((48_a3 − 3_a)
√
3
√
27_a2 − 2 + 432_a4 − 45_a2 + 1

)2/3 − i
√
3 + 12_a2 + 2

(
(48_a3 − 3_a)

√
3
√
27_a2 − 2 + 432_a4 − 45_a2 + 1

)1/3 − 1
d_a+ c3

We now need to find the singular solutions, these are found by finding for what values

(−
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376y4x3+6912y6 y
)1/3

12y + x
(
−x3+12y2

)
12y
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376y4x3+6912y6 y
)1/3+

x2

6y+
i
√
3


(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376y4x3+6912y6 y

)1/3

6y +
x
(
−x3+12y2

)
6y

(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376y4x3+6912y6 y

)1/3


2 )

is zero. These give

y = RootOf
(
−i

√
3x4 + 12i

√
3_Z2x+ i

√
3
(
x6 − 45x3_Z2 + 432_Z4

+ 3
√
3
√
−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z

)2/3
− x4 + 12_Z2x

+2x2
(
x6−45x3_Z2+432_Z4+3

√
3
√

−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z
)1/3

−
(
x6−45x3_Z2+432_Z4+3

√
3
√

−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z
)2/3)
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Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf
(
−i

√
3x4 + 12i

√
3_Z2x+ i

√
3
(
x6 − 45x3_Z2 + 432_Z4 + 3

√
3
√
−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z

)2/3
− x4 + 12_Z2x+ 2x2

(
x6 − 45x3_Z2 + 432_Z4 + 3

√
3
√
−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z

)1/3
−
(
x6 − 45x3_Z2 + 432_Z4 + 3

√
3
√
−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z

)2/3)
will not be used

Solving Eq. (3)

Writing the ode as

y′ = −
−i

√
3x4 + 12i

√
3 y2x+ i

√
3
(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)2/3 + x4 − 12x y2 − 2x2(x6 − 45x3y2 + 432y4 + 3
√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3 + (x6 − 45x3y2 + 432y4 + 3
√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)2/3
12y

(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
− (2x3 − 27y2) (x3 − 16y2)2,

(
x6 − 45x3y2 + 432y4

+3
√
3
√

− (2x3 − 27y2) (x3 − 16y2)2 y
)1/3

,

(
x6−45x3y2+432y4+3

√
3
√

− (2x3 − 27y2) (x3 − 16y2)2 y
)2/3

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x = v1, y = v2,

√
− (2x3 − 27y2) (x3 − 16y2)2 = v3,

(
x6 − 45x3y2 + 432y4

+3
√
3
√

− (2x3 − 27y2) (x3 − 16y2)2 y
)1/3

= v4,

(
x6−45x3y2+432y4+3

√
3
√
− (2x3 − 27y2) (x3 − 16y2)2 y

)2/3

= v5

}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
−20736a1 = 0

−48a1 = 0
2160a1 = 0

−7344a3 = 0
−12a3 = 0
588a3 = 0

20736a3 = 0
−1080b1 = 0

24b1 = 0
10368b1 = 0
−936b2 = 0

24b2 = 0
3888b2 = 0
62208b2 = 0

−995328
√
3 a1 = 0

−13104
√
3 a1 = 0

288
√
3 a1 = 0

198144
√
3 a1 = 0

−446976
√
3 a3 = 0

−3564
√
3 a3 = 0

72
√
3 a3 = 0

62640
√
3 a3 = 0

995328
√
3 a3 = 0

−99072
√
3 b1 = 0

−144
√
3 b1 = 0

6552
√
3 b1 = 0

497664
√
3 b1 = 0

−96768
√
3 b2 = 0

−59760
√
3 b2 = 0

−144
√
3 b2 = 0

5688
√
3 b2 = 0

2985984
√
3 b2 = 0

−31104a2 + 20736b3 = 0
−72a2 + 48b3 = 0

3240a2 − 2160b3 = 0
−2985984

√
3 a1 + 8957952ia1 = 0

−173376
√
3 a1 + 520128ia1 = 0

−24768
√
3 a1 − 74304ia1 = 0

−180
√
3 a1 + 540ia1 = 0

−108
√
3 a1 − 324ia1 = 0

3276
√
3 a1 + 9828ia1 = 0

9396
√
3 a1 − 28188ia1 = 0

1292544
√
3 a1 − 3877632ia1 = 0

−1492992
√
3 a2 + 995328

√
3 b3 = 0

−19656
√
3 a2 + 13104

√
3 b3 = 0

432
√
3 a2 − 288

√
3 b3 = 0

297216
√
3 a2 − 198144

√
3 b3 = 0

−10568448
√
3 a3 + 31705344ia3 = 0

−96240
√
3 a3 + 288720ia3 = 0

−13236
√
3 a3 − 39708ia3 = 0

−48
√
3 a3 + 144ia3 = 0

−24
√
3 a3 − 72ia3 = 0

984
√
3 a3 + 2952ia3 = 0

3372
√
3 a3 − 10116ia3 = 0

58176
√
3 a3 + 174528ia3 = 0

1405440
√
3 a3 − 4216320ia3 = 0

32845824
√
3 a3 − 98537472ia3 = 0

−580608
√
3 b1 + 1741824ib1 = 0

−4884
√
3 b1 + 14652ib1 = 0

−1092
√
3 b1 − 3276ib1 = 0

48
√
3 b1 + 144ib1 = 0

96
√
3 b1 − 288ib1 = 0

82944
√
3 b1 + 248832ib1 = 0

85968
√
3 b1 − 257904ib1 = 0

995328
√
3 b1 − 2985984ib1 = 0

−580608
√
3 b2 + 1741824ib2 = 0

−4884
√
3 b2 + 14652ib2 = 0

−1092
√
3 b2 − 3276ib2 = 0

48
√
3 b2 + 144ib2 = 0

96
√
3 b2 − 288ib2 = 0

82944
√
3 b2 + 248832ib2 = 0

85968
√
3 b2 − 257904ib2 = 0

995328
√
3 b2 − 2985984ib2 = 0

−684288i
√
3 a3 + 684288a3 = 0

−20736i
√
3 a1 + 20736a1 = 0

−20736i
√
3 b1 + 20736b1 = 0

−20736i
√
3 b2 + 20736b2 = 0

−13104i
√
3 a3 + 13104a3 = 0

−756i
√
3 b1 + 756b1 = 0

−756i
√
3 b2 + 756b2 = 0

−540i
√
3 a1 − 540a1 = 0

−204i
√
3 a3 − 204a3 = 0

−24i
√
3 a1 + 24a1 = 0

−12i
√
3 b1 − 12b1 = 0

−12i
√
3 b2 − 12b2 = 0

−6i
√
3 a3 + 6a3 = 0

6i
√
3 a3 + 6a3 = 0

12i
√
3 b1 − 12b1 = 0

12i
√
3 b2 − 12b2 = 0

24i
√
3 a1 + 24a1 = 0

180i
√
3 b1 + 180b1 = 0

180i
√
3 b2 + 180b2 = 0

492i
√
3 a3 − 492a3 = 0

1476i
√
3 a1 − 1476a1 = 0

1476i
√
3 a3 + 1476a3 = 0

1728i
√
3 b1 + 1728b1 = 0

1728i
√
3 b2 + 1728b2 = 0

9936i
√
3 b1 − 9936b1 = 0

9936i
√
3 b2 − 9936b2 = 0

62208i
√
3 a1 − 62208a1 = 0

152064i
√
3 a3 − 152064a3 = 0

−5971968
√
3 a2 + 3981312

√
3 b3 + 17915904ia2 − 11943936ib3 = 0

−262224
√
3 a2 + 174816

√
3 b3 + 786672ia2 − 524448ib3 = 0

−74304
√
3 a2 + 49536

√
3 b3 − 222912ia2 + 148608ib3 = 0

−252
√
3 a2 + 168

√
3 b3 + 756ia2 − 504ib3 = 0

−180
√
3 a2 + 120

√
3 b3 − 540ia2 + 360ib3 = 0

6552
√
3 a2 − 4368

√
3 b3 + 19656ia2 − 13104ib3 = 0

13536
√
3 a2 − 9024

√
3 b3 − 40608ia2 + 27072ib3 = 0

248832
√
3 a2 − 165888

√
3 b3 + 746496ia2 − 497664ib3 = 0

2135808
√
3 a2 − 1423872

√
3 b3 − 6407424ia2 + 4271616ib3 = 0

−32400i
√
3 a2 + 21600i

√
3 b3 + 32400a2 − 21600b3 = 0

−1080i
√
3 a2 + 720i

√
3 b3 − 1080a2 + 720b3 = 0

−36i
√
3 a2 + 24i

√
3 b3 + 36a2 − 24b3 = 0

36i
√
3 a2 − 24i

√
3 b3 + 36a2 − 24b3 = 0

2160i
√
3 a2 − 1440i

√
3 b3 − 2160a2 + 1440b3 = 0

5184i
√
3 a2 − 3456i

√
3 b3 + 5184a2 − 3456b3 = 0

124416i
√
3 a2 − 82944i

√
3 b3 − 124416a2 + 82944b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
2b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y
2x
3

= 3y
2x

This is easily solved to give

y = c1 x
3/2

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x3/2
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And S is found from

dS = dx

ξ

= dx
2x
3

Integrating gives

S =
∫

dx

T

= 3 ln (x)
2

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
−i

√
3x4 + 12i

√
3 y2x+ i

√
3
(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)2/3 + x4 − 12x y2 − 2x2(x6 − 45x3y2 + 432y4 + 3
√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3 + (x6 − 45x3y2 + 432y4 + 3
√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)2/3
12y

(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2x9 + 91y2x6 − 1376y4x3 + 6912y6 y

)1/3
Evaluating all the partial derivatives gives

Rx = − 3y
2x5/2

Ry =
1

x3/2

Sx = 3
2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

18x3/2
(
x6 − 45x3y2 + 432y4 + 3

√
3
√

−2
(
x3 − 27y2

2

)
(x3 − 16y2)2 y

)1/3

y

x
(
−i

√
3− 1

)(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2
(
x3 − 27y2

2

)
(x3 − 16y2)2 y

)2/3

+ 2 (x3 − 9y2)
(
x6 − 45x3y2 + 432y4 + 3

√
3
√
−2
(
x3 − 27y2

2

)
(x3 − 16y2)2 y

)1/3

+ x2
(
i
√
3− 1

)
(x3 − 12y2)

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −

18R
(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3(
1 + i

√
3
) (

(48R3 − 3R)
√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)2/3 + (18R2 − 2)
(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3 + 12
(
R2 − 1

12

) (
i
√
3− 1

)
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
−

18R
(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3
i
(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)2/3√3 + 12i
√
3R2 + 18

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3
R2 +

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)2/3 − i
√
3− 12R2 − 2

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3 + 1
dR

S(R) =
∫

−
18R

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3
i
(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)2/3√3 + 12i
√
3R2 + 18

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3
R2 +

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)2/3 − i
√
3− 12R2 − 2

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3 + 1
dR + c5

S(R) =
∫

−
18R

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3
i
(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)2/3√3 + 12i
√
3R2 + 18

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3
R2 +

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)2/3 − i
√
3− 12R2 − 2

(
(48R3 − 3R)

√
3
√
27R2 − 2 + 432R4 − 45R2 + 1

)1/3 + 1
dR + c5

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

3 ln (x)
2 =

∫ y

x3/2 −
18_a

(
(48_a3 − 3_a)

√
3
√
27_a2 − 2 + 432_a4 − 45_a2 + 1

)1/3
i
(
(48_a3 − 3_a)

√
3
√
27_a2 − 2 + 432_a4 − 45_a2 + 1

)2/3√3 + 12i
√
3_a2 + 18

(
(48_a3 − 3_a)

√
3
√
27_a2 − 2 + 432_a4 − 45_a2 + 1

)1/3_a2 + ((48_a3 − 3_a)
√
3
√
27_a2 − 2 + 432_a4 − 45_a2 + 1

)2/3 − i
√
3− 12_a2 − 2

(
(48_a3 − 3_a)

√
3
√
27_a2 − 2 + 432_a4 − 45_a2 + 1

)1/3 + 1
d_a+ c5

We now need to find the singular solutions, these are found by finding for what values

(−
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376y4x3+6912y6 y
)1/3

12y + x
(
−x3+12y2

)
12y
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376y4x3+6912y6 y
)1/3+

x2

6y−
i
√
3


(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376y4x3+6912y6 y

)1/3

6y +
x
(
−x3+12y2

)
6y

(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376y4x3+6912y6 y

)1/3


2 )

is zero. These give

y = RootOf
(
−i

√
3x4 + 12i

√
3_Z2x+ i

√
3
(
x6 − 45x3_Z2 + 432_Z4

+ 3
√
3
√

−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z
)2/3

+ x4

−2x2
(
x6−45x3_Z2+432_Z4+3

√
3
√

−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z
)1/3

− 12_Z2x

+
(
x6−45x3_Z2+432_Z4+3

√
3
√
−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z

)2/3)
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Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf
(
−i

√
3x4 + 12i

√
3_Z2x+ i

√
3
(
x6 − 45x3_Z2 + 432_Z4 + 3

√
3
√
−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z

)2/3
+ x4 − 2x2

(
x6 − 45x3_Z2 + 432_Z4 + 3

√
3
√

−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z
)1/3

− 12_Z2x+
(
x6 − 45x3_Z2 + 432_Z4 + 3

√
3
√
−2x9 + 91_Z2x6 − 1376_Z4x3 + 6912_Z6_Z

)2/3)
will not be used

Maple step by step solution

Let’s solve
4yy′3 − 2y′2x2 + 4xyy′ + x3 = 16y2

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivativey′ =
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y
)1/3

6y − x
(
−x3+12y2

)
6y
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y
)1/3 + x2

6y , y
′ = −

(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y
)1/3

12y + x
(
−x3+12y2

)
12y
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y
)1/3 + x2

6y −
I
√
3


(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y

)1/3

6y +
x
(
−x3+12y2

)
6y

(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y

)1/3


2 , y′ = −

(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y
)1/3

12y + x
(
−x3+12y2

)
12y
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y
)1/3 + x2

6y +
I
√
3


(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y

)1/3

6y +
x
(
−x3+12y2

)
6y

(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y

)1/3


2


• Solve the equation y′ =

(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y
)1/3

6y − x
(
−x3+12y2

)
6y
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y
)1/3 + x2

6y

• Solve the equation y′ = −
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y
)1/3

12y + x
(
−x3+12y2

)
12y
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y
)1/3 + x2

6y −
I
√
3


(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y

)1/3

6y +
x
(
−x3+12y2

)
6y

(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y

)1/3


2

• Solve the equation y′ = −
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y
)1/3

12y + x
(
−x3+12y2

)
12y
(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y
)1/3 + x2

6y +
I
√
3


(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y

)1/3

6y +
x
(
−x3+12y2

)
6y

(
x6−45x3y2+432y4+3

√
3
√

−2x9+91y2x6−1376x3y4+6912y6 y

)1/3


2

• Set of solutions
{workingODE ,workingODE ,workingODE}

Maple dsolve solution

Solving time : 299.037 (sec)
Leaf size : maple_leaf_size� �
dsolve(4*y(x)*diff(y(x),x)^3-2*x^2*diff(y(x),x)^2+4*x*diff(y(x),x)*y(x)+x^3 = 16*y(x)^2,y(x),singsol=all)� �

No solution found
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Mathematica DSolve solution

Solving time : 50.04 (sec)
Leaf size : 49162� �
DSolve[{4*y[x]*D[y[x],x]^3-2*x^2*D[y[x],x]^2+4*x*y[x]*D[y[x],x]+x^3==16*y[x]^2,{}},y[x],x,IncludeSingularSolutions->True]� �
Too large to display
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2.8.1 Problem 1 (eq 100)

Solved as second order linear constant coeff ode . . . . . . . . . 594
Solved as second order can be made integrable . . . . . . . . . . 595
Solved as second order ode using Kovacic algorithm . . . . . . . 598
Solved as second order ode adjoint method . . . . . . . . . . . . 601
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 604
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 605
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 605

Internal problem ID [18580]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 56. Problems
at page 163
Problem number : 1 (eq 100)
Date solved : Tuesday, January 28, 2025 at 12:02:49 PM
CAS classification : [[_2nd_order, _missing_x]]

Solve

θ′′ − p2θ = 0

Solved as second order linear constant coeff ode

Time used: 0.076 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Aθ′′(x) +Bθ′(x) + Cθ(x) = 0

Where in the above A = 1, B = 0, C = −p2. Let the solution be θ = eλx. Substituting
this into the ODE gives

λ2exλ − p2exλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − p2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = 0, C = −p2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (−p2)

= ±
√

p2

Hence
λ1 = +

√
p2

λ2 = −
√

p2

Which simplifies to
λ1 = p

λ2 = −p

Since roots are real and distinct, then the solution is

θ = c1e
λ1x + c2e

λ2x

θ = c1e
(p)x + c2e

(−p)x

Or
θ = c1 exp + c2 e−xp

Will add steps showing solving for IC soon.

Summary of solutions found

θ = c1 exp + c2 e−xp

Solved as second order can be made integrable

Time used: 2.370 (sec)

Multiplying the ode by θ′ gives

θ′θ′′ − p2θ′θ = 0

Integrating the above w.r.t x gives∫ (
θ′θ′′ − p2θ′θ

)
dx = 0

θ′2

2 − p2θ2

2 = c1
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Which is now solved for θ. Solving for the derivative gives these ODE’s to solve

(1)θ′ =
√

p2θ2 + 2c1

(2)θ′ = −
√

p2θ2 + 2c1

Now each of the above is solved separately.

Solving Eq. (1)

Integrating gives ∫ 1√
p2θ2 + 2c1

dθ = dx

ln
(

p2θ√
p2

+
√
p2θ2 + 2c1

)
√
p2

= x+ c2

Singular solutions are found by solving√
p2θ2 + 2c1 = 0

for θ. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

θ =
√
−2c1
p

θ = −
√
−2c1
p

Solving for θ gives

θ =
√
−2c1
p

θ = −
√
−2c1
p

θ = −

√
p2
(
−e2c2

√
p2+2x

√
p2 + 2c1

)
e−c2

√
p2−x

√
p2

2p2

Solving Eq. (2)
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Integrating gives ∫
− 1√

p2θ2 + 2c1
dθ = dx

−
ln
(

p2θ√
p2

+
√
p2θ2 + 2c1

)
√
p2

= x+ c3

Singular solutions are found by solving

−
√

p2θ2 + 2c1 = 0

for θ. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

θ =
√
−2c1
p

θ = −
√
−2c1
p

Solving for θ gives

θ =
√
−2c1
p

θ = −
√
−2c1
p

θ = −

√
p2
(
−e−2c3

√
p2−2x

√
p2 + 2c1

)
ec3
√

p2+x
√

p2

2p2

Will add steps showing solving for IC soon.

The solution

θ =
√
−2c1
p

was found not to satisfy the ode or the IC. Hence it is removed. The solution

θ = −
√
−2c1
p

was found not to satisfy the ode or the IC. Hence it is removed.
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Summary of solutions found

θ = −

√
p2
(
−e2c2

√
p2+2x

√
p2 + 2c1

)
e−c2

√
p2−x

√
p2

2p2

θ = −

√
p2
(
−e−2c3

√
p2−2x

√
p2 + 2c1

)
ec3
√

p2+x
√

p2

2p2

Solved as second order ode using Kovacic algorithm

Time used: 0.056 (sec)

Writing the ode as

θ′′ − p2θ = 0 (1)
Aθ′′ +Bθ′ + Cθ = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = −p2

Applying the Liouville transformation on the dependent variable gives

z(x) = θe
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = p2

1 (6)
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Comparing the above to (5) shows that

s = p2

t = 1

Therefore eq. (4) becomes

z′′(x) =
(
p2
)
z(x) (7)

Equation (7) is now solved. After finding z(x) then θ is found using the inverse trans-
formation

θ = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.47: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = p2 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = ex
√

p2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in θ is found from

θ1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

θ1 = z1

= ex
√

p2

Which simplifies to

θ1 = ex
√

p2

The second solution θ2 to the original ode is found using reduction of order

θ2 = θ1

∫
e
∫
−B

A
dx

θ21
dx

Since B = 0 then the above becomes

θ2 = θ1

∫ 1
θ21

dx

= ex
√

p2
∫ 1

e2x
√

p2
dx

= ex
√

p2

(
−
√
p2 e−2x

√
p2

2p2

)

Therefore the solution is

θ = c1θ1 + c2θ2

= c1
(
ex
√

p2
)
+ c2

(
ex
√

p2

(
−
√
p2 e−2x

√
p2

2p2

))
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Will add steps showing solving for IC soon.

Summary of solutions found

θ = c1 ex
√

p2 − c2 csgn (p) e−x csgn(p)p

2p

Solved as second order ode adjoint method

Time used: 0.453 (sec)

In normal form the ode

θ′′ − p2θ = 0 (1)

Becomes

θ′′ + p(x) θ′ + q(x) θ = r(x) (2)

Where

p(x) = 0
q(x) = −p2

r(x) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (0)′ +

(
−p2ξ(x)

)
= 0

ξ′′(x)− p2ξ(x) = 0

Which is solved for ξ(x). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(x) +Bξ′(x) + Cξ(x) = 0

Where in the above A = 1, B = 0, C = −p2. Let the solution be ξ = eλx. Substituting
this into the ODE gives

λ2exλ − p2exλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − p2 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −p2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (−p2)

= ±
√

p2

Hence
λ1 = +

√
p2

λ2 = −
√

p2

Which simplifies to
λ1 = p

λ2 = −p

Since roots are real and distinct, then the solution is

ξ = c1e
λ1x + c2e

λ2x

ξ = c1e
(p)x + c2e

(−p)x

Or
ξ = c1 exp + c2 e−xp

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(x) θ′ − θξ′(x) + ξ(x) p(x) θ =
∫

ξ(x) r(x) dx

θ′ + θ

(
p(x)− ξ′(x)

ξ (x)

)
=
∫
ξ(x) r(x) dx

ξ (x)

Or

θ′ − θ(c1p exp − c2p e−xp)
c1 exp + c2 e−xp

= 0
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Which is now a first order ode. This is now solved for θ. In canonical form a linear first
order is

θ′ + q(x)θ = p(x)

Comparing the above to the given ode shows that

q(x) = −p(c1 e2xp − c2)
c1 e2xp + c2

p(x) = 0

The integrating factor µ is

µ = e
∫
q dx

= e
∫
−

p
(
c1 e2xp−c2

)
c1 e2xp+c2

dx

=
√
e2xp

c1 e2xp + c2

The ode becomes
d
dxµθ = 0

d
dx

(
θ
√
e2xp

c1 e2xp + c2

)
= 0

Integrating gives

θ
√
e2xp

c1 e2xp + c2
=
∫

0 dx+ c3

= c3

Dividing throughout by the integrating factor
√
e2xp

c1 e2xp+c2
gives the final solution

θ = (c1 e2xp + c2) c3√
e2xp

Hence, the solution found using Lagrange adjoint equation method is

θ = (c1 e2xp + c2) c3√
e2xp

The constants can be merged to give

θ = c1 e2xp + c2√
e2xp
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Will add steps showing solving for IC soon.

Summary of solutions found

θ = c1 e2xp + c2√
e2xp

Maple step by step solution

Let’s solve
θ′′ − p2θ = 0

• Highest derivative means the order of the ODE is 2
θ′′

• Characteristic polynomial of ODE
−p2 + r2 = 0

• Factor the characteristic polynomial
−(p− r) (p+ r) = 0

• Roots of the characteristic polynomial
r = (p,−p)

• 1st solution of the ODE
θ1(x) = exp

• 2nd solution of the ODE
θ2(x) = e−xp

• General solution of the ODE
θ = C1θ1(x) + C2θ2(x)

• Substitute in solutions
θ = C1 exp + C2 e−xp

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 18� �
dsolve(diff(diff(theta(x),x),x)-p^2*theta(x) = 0,theta(x),singsol=all)� �

θ(x) = c1e−px + c2epx

Mathematica DSolve solution

Solving time : 0.013 (sec)
Leaf size : 23� �
DSolve[{D[theta[x],{x,2}]-p^2*theta[x]==0,{}},theta[x],x,IncludeSingularSolutions->True]� �

θ(x) → c1e
px + c2e

−px
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Solved as second order ode using Kovacic algorithm . . . . . . . 611
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Internal problem ID [18581]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 56. Problems
at page 163
Problem number : 2
Date solved : Tuesday, January 28, 2025 at 12:02:52 PM
CAS classification : [[_2nd_order, _missing_x]]

Solve

y′′ + y = 0

Solved as second order linear constant coeff ode

Time used: 0.064 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2exλ + exλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (x) + c2 sin (x))

Or
y = c1 cos (x) + c2 sin (x)

Will add steps showing solving for IC soon.

Summary of solutions found

y = c1 cos (x) + c2 sin (x)
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Figure 2.81: Slope field plot
y′′ + y = 0

Solved as second order can be made integrable

Time used: 0.776 (sec)

Multiplying the ode by y′ gives
y′y′′ + y′y = 0

Integrating the above w.r.t x gives∫
(y′y′′ + y′y) dx = 0

y′2

2 + y2

2 = c1

Which is now solved for y. Solving for the derivative gives these ODE’s to solve

(1)y′ =
√

−y2 + 2c1

(2)y′ = −
√

−y2 + 2c1

Now each of the above is solved separately.

Solving Eq. (1)

Integrating gives ∫ 1√
−y2 + 2c1

dy = dx

arctan
(

y√
−y2 + 2c1

)
= x+ c2
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Singular solutions are found by solving√
−y2 + 2c1 = 0

for y. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

y =
√
2√c1

y = −
√
2√c1

Solving for y gives

y =
√
2√c1

y = tan (x+ c2)
√
2
√

c1

tan (x+ c2)2 + 1

y = −
√
2√c1

Solving Eq. (2)

Integrating gives ∫
− 1√

−y2 + 2c1
dy = dx

− arctan
(

y√
−y2 + 2c1

)
= x+ c3

Singular solutions are found by solving

−
√

−y2 + 2c1 = 0

for y. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

y =
√
2√c1

y = −
√
2√c1

Solving for y gives

y =
√
2√c1

y = −
√
2√c1

y = − tan (x+ c3)
√
2
√

c1

tan (x+ c3)2 + 1
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Will add steps showing solving for IC soon.

The solution
y =

√
2√c1

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = −
√
2√c1

was found not to satisfy the ode or the IC. Hence it is removed.

Summary of solutions found

y = tan (x+ c2)
√
2
√

c1

tan (x+ c2)2 + 1

y = − tan (x+ c3)
√
2
√

c1

tan (x+ c3)2 + 1
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Figure 2.82: Slope field plot
y′′ + y = 0
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Solved as second order ode using Kovacic algorithm

Time used: 0.086 (sec)

Writing the ode as

y′′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.49: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to
y1 = z1

= cos (x)
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Which simplifies to
y1 = cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (x)
∫ 1

cos (x)2
dx

= cos (x) (tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x)) + c2(cos (x) (tan (x)))

Will add steps showing solving for IC soon.

Summary of solutions found

y = c1 cos (x) + c2 sin (x)
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Figure 2.83: Slope field plot
y′′ + y = 0
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Solved as second order ode adjoint method

Time used: 0.569 (sec)

In normal form the ode

y′′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = r(x) (2)

Where

p(x) = 0
q(x) = 1
r(x) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (0)′ + (ξ(x)) = 0

ξ′′(x) + ξ(x) = 0

Which is solved for ξ(x). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(x) +Bξ′(x) + Cξ(x) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be ξ = eλx. Substituting this
into the ODE gives

λ2exλ + exλ = 0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i
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Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

ξ = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
ξ = e0(c1 cos (x) + c2 sin (x))

Or
ξ = c1 cos (x) + c2 sin (x)

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(x) y′ − yξ′(x) + ξ(x) p(x) y =
∫

ξ(x) r(x) dx

y′ + y

(
p(x)− ξ′(x)

ξ (x)

)
=
∫
ξ(x) r(x) dx

ξ (x)

Or

y′ − y(−c1 sin (x) + c2 cos (x))
c1 cos (x) + c2 sin (x)

= 0

Which is now a first order ode. This is now solved for y. In canonical form a linear first
order is

y′ + q(x)y = p(x)
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Comparing the above to the given ode shows that

q(x) = −−c1 sin (x) + c2 cos (x)
c1 cos (x) + c2 sin (x)

p(x) = 0

The integrating factor µ is

µ = e
∫
q dx

= e
∫
−−c1 sin(x)+c2 cos(x)

c1 cos(x)+c2 sin(x) dx

= 1
c1 cos (x) + c2 sin (x)

The ode becomes
d
dxµy = 0

d
dx

(
y

c1 cos (x) + c2 sin (x)

)
= 0

Integrating gives

y

c1 cos (x) + c2 sin (x)
=
∫

0 dx+ c3

= c3

Dividing throughout by the integrating factor 1
c1 cos(x)+c2 sin(x) gives the final solution

y = (c1 cos (x) + c2 sin (x)) c3

Hence, the solution found using Lagrange adjoint equation method is

y = (c1 cos (x) + c2 sin (x)) c3

The constants can be merged to give

y = c1 cos (x) + c2 sin (x)

Will add steps showing solving for IC soon.

Summary of solutions found

y = c1 cos (x) + c2 sin (x)
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Figure 2.84: Slope field plot
y′′ + y = 0

Maple step by step solution

Let’s solve
y′′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−I, I)

• 1st solution of the ODE
y1(x) = cos (x)

• 2nd solution of the ODE
y2(x) = sin (x)

• General solution of the ODE
y = C1y1(x) + C2y2(x)

• Substitute in solutions
y = C1 cos (x) + C2 sin (x)
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 13� �
dsolve(diff(diff(y(x),x),x)+y(x) = 0,y(x),singsol=all)� �

y(x) = c1 sin (x) + c2 cos (x)

Mathematica DSolve solution

Solving time : 0.01 (sec)
Leaf size : 16� �
DSolve[{D[y[x],{x,2}]+y[x]==0,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → c1 cos(x) + c2 sin(x)
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2.8.3 Problem 3

Solved as second order linear constant coeff ode . . . . . . . . . 619
Solved as second order ode using Kovacic algorithm . . . . . . . 621
Solved as second order ode adjoint method . . . . . . . . . . . . 624
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 627
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 628
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 629

Internal problem ID [18582]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 56. Problems
at page 163
Problem number : 3
Date solved : Tuesday, January 28, 2025 at 12:02:55 PM
CAS classification : [[_2nd_order, _missing_x]]

Solve

y′′ + 12y = 7y′

Solved as second order linear constant coeff ode

Time used: 0.037 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −7, C = 12. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2exλ − 7λ exλ + 12 exλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 7λ+ 12 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC



chapter 2. book solved problems 620

Substituting A = 1, B = −7, C = 12 into the above gives

λ1,2 =
7

(2) (1) ±
1

(2) (1)
√
−72 − (4) (1) (12)

= 7
2 ± 1

2

Hence

λ1 =
7
2 + 1

2

λ2 =
7
2 − 1

2

Which simplifies to
λ1 = 4
λ2 = 3

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(4)x + c2e

(3)x

Or
y = c1 e4x + c2 e3x

Will add steps showing solving for IC soon.

Summary of solutions found

y = c1 e4x + c2 e3x
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Figure 2.85: Slope field plot
y′′ + 12y = 7y′

Solved as second order ode using Kovacic algorithm

Time used: 0.051 (sec)

Writing the ode as

y′′ + 12y − 7y′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −7 (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.51: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−7
1 dx

= z1e
7x
2

= z1
(
e 7x

2

)
Which simplifies to

y1 = e3x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−7

1 dx

(y1)2
dx

= y1

∫
e7x

(y1)2
dx

= y1
(
e7xe−6x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e3x
)
+ c2

(
e3x
(
e7xe−6x))
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Will add steps showing solving for IC soon.

Summary of solutions found

y = c1 e3x + c2 e4x
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Figure 2.86: Slope field plot
y′′ + 12y = 7y′

Solved as second order ode adjoint method

Time used: 0.439 (sec)

In normal form the ode

y′′ + 12y = 7y′ (1)

Becomes

y′′ + p(x) y′ + q(x) y = r(x) (2)

Where

p(x) = −7
q(x) = 12
r(x) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (−7ξ(x))′ + (12ξ(x)) = 0
ξ′′(x) + 7ξ′(x) + 12ξ(x) = 0
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Which is solved for ξ(x). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(x) +Bξ′(x) + Cξ(x) = 0

Where in the above A = 1, B = 7, C = 12. Let the solution be ξ = eλx. Substituting
this into the ODE gives

λ2exλ + 7λ exλ + 12 exλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 7λ+ 12 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 7, C = 12 into the above gives

λ1,2 =
−7

(2) (1) ±
1

(2) (1)
√

72 − (4) (1) (12)

= −7
2 ± 1

2
Hence

λ1 = −7
2 + 1

2

λ2 = −7
2 − 1

2

Which simplifies to
λ1 = −3
λ2 = −4

Since roots are real and distinct, then the solution is

ξ = c1e
λ1x + c2e

λ2x

ξ = c1e
(−3)x + c2e

(−4)x

Or
ξ = c1 e−3x + c2 e−4x
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Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(x) y′ − yξ′(x) + ξ(x) p(x) y =
∫

ξ(x) r(x) dx

y′ + y

(
p(x)− ξ′(x)

ξ (x)

)
=
∫
ξ(x) r(x) dx

ξ (x)

Or

y′ + y

(
−7− −3c1 e−3x − 4c2 e−4x

c1 e−3x + c2 e−4x

)
= 0

Which is now a first order ode. This is now solved for y. In canonical form a linear first
order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = −3 e−xc2 + 4c1
e−xc2 + c1

p(x) = 0

The integrating factor µ is

µ = e
∫
q dx

= e
∫
− 3 e−xc2+4c1

e−xc2+c1
dx

= e−4x

e−xc2 + c1

The ode becomes

d
dxµy = 0

d
dx

(
y e−4x

e−xc2 + c1

)
= 0

Integrating gives

y e−4x

e−xc2 + c1
=
∫

0 dx+ c3

= c3
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Dividing throughout by the integrating factor e−4x

e−xc2+c1
gives the final solution

y = (c1 ex + c2) e3xc3

Hence, the solution found using Lagrange adjoint equation method is

y = (c1 ex + c2) e3xc3

The constants can be merged to give

y = (c1 ex + c2) e3x

Will add steps showing solving for IC soon.

Summary of solutions found

y = (c1 ex + c2) e3x
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Figure 2.87: Slope field plot
y′′ + 12y = 7y′

Maple step by step solution

Let’s solve
y′′ + 12y = 7y′

• Highest derivative means the order of the ODE is 2
y′′
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• Isolate 2nd derivative
y′′ = −12y + 7y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 12y − 7y′ = 0

• Characteristic polynomial of ODE
r2 − 7r + 12 = 0

• Factor the characteristic polynomial
(r − 3) (r − 4) = 0

• Roots of the characteristic polynomial
r = (3, 4)

• 1st solution of the ODE
y1(x) = e3x

• 2nd solution of the ODE
y2(x) = e4x

• General solution of the ODE
y = C1y1(x) + C2y2(x)

• Substitute in solutions
y = C1 e3x + C2 e4x

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 17� �
dsolve(diff(diff(y(x),x),x)+12*y(x) = 7*diff(y(x),x),y(x),singsol=all)� �

y(x) = c1e4x + e3xc2
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Mathematica DSolve solution

Solving time : 0.013 (sec)
Leaf size : 20� �
DSolve[{D[y[x],{x,2}]+12*y[x]==7*D[y[x],x],{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → e3x(c2ex + c1)
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2.8.4 Problem 4

Solved as second order linear constant coeff ode . . . . . . . . . 630
Solved as second order can be made integrable . . . . . . . . . . 631
Solved as second order ode using Kovacic algorithm . . . . . . . 634
Solved as second order ode adjoint method . . . . . . . . . . . . 637
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 640
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 641
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 641

Internal problem ID [18583]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 56. Problems
at page 163
Problem number : 4
Date solved : Tuesday, January 28, 2025 at 12:02:56 PM
CAS classification : [[_2nd_order, _missing_x]]

Solve

r′′ − a2r = 0

Solved as second order linear constant coeff ode

Time used: 0.074 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ar′′(φ) +Br′(φ) + Cr(φ) = 0

Where in the above A = 1, B = 0, C = −a2. Let the solution be r = eλφ. Substituting
this into the ODE gives

λ2eφλ − a2eφλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλφ gives

−a2 + λ2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = 0, C = −a2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−a2)

= ±
√
a2

Hence
λ1 = +

√
a2

λ2 = −
√
a2

Which simplifies to
λ1 = a

λ2 = −a

Since roots are real and distinct, then the solution is

r = c1e
λ1φ + c2e

λ2φ

r = c1e
(a)φ + c2e

(−a)φ

Or
r = c1 eφa + c2 e−φa

Will add steps showing solving for IC soon.

Summary of solutions found

r = c1 eφa + c2 e−φa

Solved as second order can be made integrable

Time used: 2.390 (sec)

Multiplying the ode by r′ gives

r′r′′ − a2r′r = 0

Integrating the above w.r.t φ gives∫ (
r′r′′ − a2r′r

)
dφ = 0

r′2

2 − a2r2

2 = c1
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Which is now solved for r. Solving for the derivative gives these ODE’s to solve

(1)r′ =
√
a2r2 + 2c1

(2)r′ = −
√

a2r2 + 2c1

Now each of the above is solved separately.

Solving Eq. (1)

Integrating gives ∫ 1√
a2r2 + 2c1

dr = dφ

ln
(

a2r√
a2

+
√
a2r2 + 2c1

)
√
a2

= φ+ c2

Singular solutions are found by solving√
a2r2 + 2c1 = 0

for r. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

r =
√
−2c1
a

r = −
√
−2c1
a

Solving for r gives

r =
√
−2c1
a

r = −
√
−2c1
a

r = −

√
a2
(
−e2c2

√
a2+2φ

√
a2 + 2c1

)
e−c2

√
a2−φ

√
a2

2a2

Solving Eq. (2)
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Integrating gives ∫
− 1√

a2r2 + 2c1
dr = dφ

−
ln
(

a2r√
a2

+
√
a2r2 + 2c1

)
√
a2

= φ+ c3

Singular solutions are found by solving

−
√
a2r2 + 2c1 = 0

for r. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

r =
√
−2c1
a

r = −
√
−2c1
a

Solving for r gives

r =
√
−2c1
a

r = −
√
−2c1
a

r = −

√
a2
(
−e−2c3

√
a2−2φ

√
a2 + 2c1

)
ec3

√
a2+φ

√
a2

2a2

Will add steps showing solving for IC soon.

The solution

r =
√
−2c1
a

was found not to satisfy the ode or the IC. Hence it is removed. The solution

r = −
√
−2c1
a

was found not to satisfy the ode or the IC. Hence it is removed.
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Summary of solutions found

r = −

√
a2
(
−e2c2

√
a2+2φ

√
a2 + 2c1

)
e−c2

√
a2−φ

√
a2

2a2

r = −

√
a2
(
−e−2c3

√
a2−2φ

√
a2 + 2c1

)
ec3

√
a2+φ

√
a2

2a2

Solved as second order ode using Kovacic algorithm

Time used: 0.052 (sec)

Writing the ode as

r′′ − a2r = 0 (1)
Ar′′ +Br′ + Cr = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = −a2

Applying the Liouville transformation on the dependent variable gives

z(φ) = re
∫

B
2A dφ

Then (2) becomes

z′′(φ) = rz(φ) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = a2

1 (6)
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Comparing the above to (5) shows that

s = a2

t = 1

Therefore eq. (4) becomes

z′′(φ) =
(
a2
)
z(φ) (7)

Equation (7) is now solved. After finding z(φ) then r is found using the inverse trans-
formation

r = z(φ) e−
∫

B
2A dφ

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.53: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = a2 is not a function of φ, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(φ) = eφ
√
a2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in r is found from

r1 = z1e
∫
− 1

2
B
A

dφ

Since B = 0 then the above reduces to

r1 = z1

= eφ
√
a2

Which simplifies to

r1 = eφ
√
a2

The second solution r2 to the original ode is found using reduction of order

r2 = r1

∫
e
∫
−B

A
dφ

r21
dφ

Since B = 0 then the above becomes

r2 = r1

∫ 1
r21

dφ

= eφ
√
a2
∫ 1

e2φ
√
a2

dφ

= eφ
√
a2

(
−
√
a2 e−2φ

√
a2

2a2

)

Therefore the solution is

r = c1r1 + c2r2

= c1
(
eφ

√
a2
)
+ c2

(
eφ

√
a2

(
−
√
a2 e−2φ

√
a2

2a2

))
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Will add steps showing solving for IC soon.

Summary of solutions found

r = c1 eφ
√
a2 − c2 csgn (a) e−φ csgn(a)a

2a

Solved as second order ode adjoint method

Time used: 0.457 (sec)

In normal form the ode

r′′ − a2r = 0 (1)

Becomes

r′′ + p(φ) r′ + q(φ) r = r(φ) (2)

Where

p(φ) = 0
q(φ) = −a2

r(φ) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (0)′ +

(
−a2ξ(φ)

)
= 0

ξ′′(φ)− a2ξ(φ) = 0

Which is solved for ξ(φ). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(φ) +Bξ′(φ) + Cξ(φ) = 0

Where in the above A = 1, B = 0, C = −a2. Let the solution be ξ = eλφ. Substituting
this into the ODE gives

λ2eφλ − a2eφλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλφ gives

−a2 + λ2 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −a2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−a2)

= ±
√
a2

Hence
λ1 = +

√
a2

λ2 = −
√
a2

Which simplifies to
λ1 = a

λ2 = −a

Since roots are real and distinct, then the solution is

ξ = c1e
λ1φ + c2e

λ2φ

ξ = c1e
(a)φ + c2e

(−a)φ

Or
ξ = c1 eφa + c2 e−φa

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(φ) r′ − rξ′(φ) + ξ(φ) p(φ) r =
∫

ξ(φ) r(φ) dφ

r′ + r

(
p(φ)− ξ′(φ)

ξ (φ)

)
=
∫
ξ(φ) r(φ) dφ

ξ (φ)

Or

r′ −
r
(
c1a eφa − c2a e−φa

)
c1 eφa + c2 e−φa

= 0
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Which is now a first order ode. This is now solved for r. In canonical form a linear first
order is

r′ + q(φ)r = p(φ)

Comparing the above to the given ode shows that

q(φ) = −
a
(
c1 e2φa − c2

)
c1 e2φa + c2

p(φ) = 0

The integrating factor µ is

µ = e
∫
q dφ

= e
∫
−

a
(
c1 e2φa−c2

)
c1 e2φa+c2

dφ

=
√
e2φa

c1 e2φa + c2

The ode becomes
d
dφµr = 0

d
dφ

(
r
√
e2φa

c1 e2φa + c2

)
= 0

Integrating gives

r
√
e2φa

c1 e2φa + c2
=
∫

0 dφ+ c3

= c3

Dividing throughout by the integrating factor
√
e2φa

c1 e2φa+c2
gives the final solution

r =
(
c1 e2φa + c2

)
c3√

e2φa

Hence, the solution found using Lagrange adjoint equation method is

r =
(
c1 e2φa + c2

)
c3√

e2φa

The constants can be merged to give

r = c1 e2φa + c2√
e2φa
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Will add steps showing solving for IC soon.

Summary of solutions found

r = c1 e2φa + c2√
e2φa

Maple step by step solution

Let’s solve
r′′ − a2r = 0

• Highest derivative means the order of the ODE is 2
r′′

• Characteristic polynomial of ODE
−a2 + s2 = 0

• Factor the characteristic polynomial
−(a− s) (a+ s) = 0

• Roots of the characteristic polynomial
s = (a,−a)

• 1st solution of the ODE
r1(φ) = eφa

• 2nd solution of the ODE
r2(φ) = e−φa

• General solution of the ODE
r = C1 r1(φ) + C2 r2(φ)

• Substitute in solutions
r = C1 eφa + C2 e−φa

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 18� �
dsolve(diff(diff(r(phi),phi),phi)-a^2*r(phi) = 0,r(phi),singsol=all)� �

r = c1e−aφ + c2eaφ

Mathematica DSolve solution

Solving time : 0.013 (sec)
Leaf size : 23� �
DSolve[{D[r[phi],{phi,2}]-a^2*r[phi]==0,{}},r[phi],phi,IncludeSingularSolutions->True]� �

r(φ) → c1e
aφ + c2e

−aφ
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2.8.5 Problem 5

Solved as higher order constant coeff ode . . . . . . . . . . . . . 642
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 643
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 643
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 643

Internal problem ID [18584]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 56. Problems
at page 163
Problem number : 5
Date solved : Tuesday, January 28, 2025 at 12:03:00 PM
CAS classification : [[_high_order, _missing_x]]

Solve

y′′′′ − a4y = 0

Solved as higher order constant coeff ode

Time used: 0.037 (sec)

The characteristic equation is
−a4 + λ4 = 0

The roots of the above equation are

λ1 = a

λ2 = −a

λ3 = ia

λ4 = −ia

Therefore the homogeneous solution is

yh(x) = eaxc1 + e−axc2 + eiaxc3 + e−iaxc4
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The fundamental set of solutions for the homogeneous solution are the following

y1 = eax

y2 = e−ax

y3 = eiax

y4 = e−iax

Maple step by step solution

Maple trace� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 30� �
dsolve(diff(diff(diff(diff(y(x),x),x),x),x)-a^4*y(x) = 0,y(x),singsol=all)� �

y(x) = c1e−ax + c2eax + c3 sin (ax) + c4 cos (ax)

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 53� �
DSolve[{D[y[x],{x,4}]-a^2*y[x]==0,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → c2e
−
√
ax + c4e

√
ax + c1 cos

(√
ax
)
+ c3 sin

(√
ax
)
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2.8.6 Problem 6

Solved as second order linear constant coeff ode . . . . . . . . . 644
Solved as second order ode using Kovacic algorithm . . . . . . . 647
Solved as second order ode adjoint method . . . . . . . . . . . . 652
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 656
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 658
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 658

Internal problem ID [18585]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 56. Problems
at page 163
Problem number : 6
Date solved : Tuesday, January 28, 2025 at 12:03:00 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

v′′ − 6v′ + 13v = e−2u

Solved as second order linear constant coeff ode

Time used: 0.105 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is

Av′′(u) +Bv′(u) + Cv(u) = f(u)

Where A = 1, B = −6, C = 13, f(u) = e−2u. Let the solution be

v = vh + vp

Where vh is the solution to the homogeneous ODE Av′′(u)+Bv′(u)+Cv(u) = 0, and vp
is a particular solution to the non-homogeneous ODE Av′′(u)+Bv′(u)+Cv(u) = f(u).
vh is the solution to

v′′ − 6v′ + 13v = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(u) +Bv′(u) + Cv(u) = 0
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Where in the above A = 1, B = −6, C = 13. Let the solution be v = eλu. Substituting
this into the ODE gives

λ2euλ − 6λ euλ + 13 euλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλu gives

λ2 − 6λ+ 13 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −6, C = 13 into the above gives

λ1,2 =
6

(2) (1) ±
1

(2) (1)
√
−62 − (4) (1) (13)

= 3± 2i

Hence

λ1 = 3 + 2i
λ2 = 3− 2i

Which simplifies to
λ1 = 3 + 2i
λ2 = 3− 2i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 3 and β = 2. Therefore the final solution, when using Euler relation, can
be written as

v = eαu(c1 cos(βu) + c2 sin(βu))

Which becomes
v = e3u(c1 cos (2u) + c2 sin (2u))

Therefore the homogeneous solution vh is

vh = e3u(c1 cos (2u) + c2 sin (2u))
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e−2u

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−2u}]

While the set of the basis functions for the homogeneous solution found earlier is

{e3u cos (2u) , e3u sin (2u)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

vp = A1e−2u

The unknowns {A1} are found by substituting the above trial solution vp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

29A1e−2u = e−2u

Solving for the unknowns by comparing coefficients results in[
A1 =

1
29

]
Substituting the above back in the above trial solution vp, gives the particular solution

vp =
e−2u

29

Therefore the general solution is

v = vh + vp

=
(
e3u(c1 cos (2u) + c2 sin (2u))

)
+
(
e−2u

29

)

Will add steps showing solving for IC soon.
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Summary of solutions found

v = e−2u

29 + e3u(c1 cos (2u) + c2 sin (2u))

–6

–4

–2

0

2

4

6

v’(u)

–6 –4 –2 0 2 4 6

v(u)

Figure 2.88: Slope field plot
v′′ − 6v′ + 13v = e−2u

Solved as second order ode using Kovacic algorithm

Time used: 0.165 (sec)

Writing the ode as

v′′ − 6v′ + 13v = 0 (1)
Av′′ +Bv′ + Cv = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −6 (3)
C = 13

Applying the Liouville transformation on the dependent variable gives

z(u) = ve
∫

B
2A du

Then (2) becomes

z′′(u) = rz(u) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1

Therefore eq. (4) becomes

z′′(u) = −4z(u) (7)

Equation (7) is now solved. After finding z(u) then v is found using the inverse trans-
formation

v = z(u) e−
∫

B
2A du

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.55: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −4 is not a function of u, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(u) = cos (2u)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in v is found from

v1 = z1e
∫
− 1

2
B
A

du

= z1e
−
∫ 1

2
−6
1 du

= z1e
3u

= z1
(
e3u
)

Which simplifies to
v1 = e3u cos (2u)

The second solution v2 to the original ode is found using reduction of order

v2 = v1

∫
e
∫
−B

A
du

v21
du

Substituting gives

v2 = v1

∫
e
∫
−−6

1 du

(v1)2
du

= v1

∫
e6u

(v1)2
du

= v1

(
tan (2u)

2

)
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Therefore the solution is

v = c1v1 + c2v2

= c1
(
e3u cos (2u)

)
+ c2

(
e3u cos (2u)

(
tan (2u)

2

))

This is second order nonhomogeneous ODE. Let the solution be

v = vh + vp

Where vh is the solution to the homogeneous ODE Av′′(u)+Bv′(u)+Cv(u) = 0, and vp
is a particular solution to the nonhomogeneous ODE Av′′(u) +Bv′(u) +Cv(u) = f(u).
vh is the solution to

v′′ − 6v′ + 13v = 0

The homogeneous solution is found using the Kovacic algorithm which results in

vh = c1 e3u cos (2u) +
c2 e3u sin (2u)

2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e−2u

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−2u}]

While the set of the basis functions for the homogeneous solution found earlier is{
e3u cos (2u) , e

3u sin (2u)
2

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

vp = A1e−2u
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The unknowns {A1} are found by substituting the above trial solution vp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

29A1e−2u = e−2u

Solving for the unknowns by comparing coefficients results in[
A1 =

1
29

]
Substituting the above back in the above trial solution vp, gives the particular solution

vp =
e−2u

29

Therefore the general solution is

v = vh + vp

=
(
c1 e3u cos (2u) +

c2 e3u sin (2u)
2

)
+
(
e−2u

29

)

Will add steps showing solving for IC soon.

Summary of solutions found

v = c1 e3u cos (2u) +
c2 e3u sin (2u)

2 + e−2u

29

–6

–4

–2

0

2

4

6

v’(u)

–6 –4 –2 0 2 4 6

v(u)

Figure 2.89: Slope field plot
v′′ − 6v′ + 13v = e−2u
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Solved as second order ode adjoint method

Time used: 11.036 (sec)

In normal form the ode

v′′ − 6v′ + 13v = e−2u (1)

Becomes

v′′ + p(u) v′ + q(u) v = r(u) (2)

Where

p(u) = −6
q(u) = 13
r(u) = e−2u

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (−6ξ(u))′ + (13ξ(u)) = 0
ξ′′(u) + 6ξ′(u) + 13ξ(u) = 0

Which is solved for ξ(u). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(u) +Bξ′(u) + Cξ(u) = 0

Where in the above A = 1, B = 6, C = 13. Let the solution be ξ = eλu. Substituting
this into the ODE gives

λ2euλ + 6λ euλ + 13 euλ = 0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by eλu gives

λ2 + 6λ+ 13 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 6, C = 13 into the above gives

λ1,2 =
−6

(2) (1) ±
1

(2) (1)
√

62 − (4) (1) (13)

= −3± 2i
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Hence

λ1 = −3 + 2i
λ2 = −3− 2i

Which simplifies to
λ1 = −3 + 2i
λ2 = −3− 2i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −3 and β = 2. Therefore the final solution, when using Euler relation, can
be written as

ξ = eαu(c1 cos(βu) + c2 sin(βu))

Which becomes
ξ = e−3u(c1 cos (2u) + c2 sin (2u))

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(u) v′ − vξ′(u) + ξ(u) p(u) v =
∫

ξ(u) r(u) du

v′ + v

(
p(u)− ξ′(u)

ξ (u)

)
=
∫
ξ(u) r(u) du

ξ (u)

Or

v′ + v

(
−6− (−3 e−3u(c1 cos (2u) + c2 sin (2u)) + e−3u(−2c1 sin (2u) + 2c2 cos (2u))) e3u

c1 cos (2u) + c2 sin (2u)

)
=

e3u
(
2c1
(

(−5 cos(u)+2 sin(u))e−5u cos(u)
29 − 2 e−5u

145

)
+ e−5uc1

5 + c2 e−5u(−5 sin(2u)−2 cos(2u))
29

)
c1 cos (2u) + c2 sin (2u)

Which is now a first order ode. This is now solved for v. In canonical form a linear first
order is

v′ + q(u)v = p(u)
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Comparing the above to the given ode shows that

q(u) = −
(3c1 + 2c2) cos (2u)− 2

(
c1 − 3c2

2

)
sin (2u)

c1 cos (2u) + c2 sin (2u)

p(u) = −
5
((

c1 + 2c2
5

)
cos (2u)−

2
(
c1− 5c2

2

)
sin(2u)

5

)
e−2u

29c1 cos (2u) + 29c2 sin (2u)

The integrating factor µ is

µ = e
∫
q du

= e
∫
−

(3c1+2c2) cos(2u)−2
(
c1−

3c2
2

)
sin(2u)

c1 cos(2u)+c2 sin(2u) du

= e
ln

(
tan(2u)2+1

)
2 −ln(c1+c2 tan(2u))−3u

The ode becomes

d
du(µv) = µp

d
du(µv) = (µ)

−
5
((

c1 + 2c2
5

)
cos (2u)−

2
(
c1− 5c2

2

)
sin(2u)

5

)
e−2u

29c1 cos (2u) + 29c2 sin (2u)


d
du

(
v e

ln
(
tan(2u)2+1

)
2 −ln(c1+c2 tan(2u))−3u

)

=
(
e

ln
(
tan(2u)2+1

)
2 −ln(c1+c2 tan(2u))−3u

)−
5
((

c1 + 2c2
5

)
cos (2u)−

2
(
c1− 5c2

2

)
sin(2u)

5

)
e−2u

29c1 cos (2u) + 29c2 sin (2u)


d
(
v e

ln
(
tan(2u)2+1

)
2 −ln(c1+c2 tan(2u))−3u

)

=

−
5
((

c1 + 2c2
5

)
cos (2u)−

2
(
c1− 5c2

2

)
sin(2u)

5

)
e−2ue

ln
(
tan(2u)2+1

)
2 −ln(c1+c2 tan(2u))−3u

29c1 cos (2u) + 29c2 sin (2u)

 du
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Integrating gives

v e
ln

(
tan(2u)2+1

)
2 −ln(c1+c2 tan(2u))−3u =

∫
−
5
((

c1 + 2c2
5

)
cos (2u)−

2
(
c1− 5c2

2

)
sin(2u)

5

)
e−2ue

ln
(
tan(2u)2+1

)
2 −ln(c1+c2 tan(2u))−3u

29c1 cos (2u) + 29c2 sin (2u)
du

=
∫

−
5
((

c1 + 2c2
5

)
cos (2u)−

2
(
c1− 5c2

2

)
sin(2u)

5

)
e−2ue

ln
(
tan(2u)2+1

)
2 −ln(c1+c2 tan(2u))−3u

29c1 cos (2u) + 29c2 sin (2u)
du+ c3

Dividing throughout by the integrating factor e
ln

(
tan(2u)2+1

)
2 −ln(c1+c2 tan(2u))−3u gives the

final solution

v = (c1 + c2 tan (2u)) e
ln
(

1√
tan(2u)2+1

)
+3u

∫ −
5
((

c1 + 2c2
5

)
cos (2u)−

2
(
c1− 5c2

2

)
sin(2u)

5

)
e−2ue

ln
(
tan(2u)2+1

)
2 −ln(c1+c2 tan(2u))−3u

29c1 cos (2u) + 29c2 sin (2u)
du+ c3


Hence, the solution found using Lagrange adjoint equation method is

v = (c1 + c2 tan (2u)) e
ln
(

1√
tan(2u)2+1

)
+3u

∫

−
5
((

c1 + 2c2
5

)
cos (2u)−

2
(
c1− 5c2

2

)
sin(2u)

5

)
e−2ue

ln
(
tan(2u)2+1

)
2 −ln(c1+c2 tan(2u))−3u

29c1 cos (2u) + 29c2 sin (2u)
du

+ c3


The constants can be merged to give

v = (c1 + c2 tan (2u)) e
ln
(

1√
tan(2u)2+1

)
+3u

∫

−
5
((

c1 + 2c2
5

)
cos (2u)−

2
(
c1− 5c2

2

)
sin(2u)

5

)
e−2ue

ln
(
tan(2u)2+1

)
2 −ln(c1+c2 tan(2u))−3u

29c1 cos (2u) + 29c2 sin (2u)
du

+ 1
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Will add steps showing solving for IC soon.

Summary of solutions found

v = (c1 + c2 tan (2u)) e
ln
(

1√
tan(2u)2+1

)
+3u

∫

−
5
((

c1 + 2c2
5

)
cos (2u)−

2
(
c1− 5c2

2

)
sin(2u)

5

)
e−2ue

ln
(
tan(2u)2+1

)
2 −ln(c1+c2 tan(2u))−3u

29c1 cos (2u) + 29c2 sin (2u)
du

+ 1
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Figure 2.90: Slope field plot
v′′ − 6v′ + 13v = e−2u

Maple step by step solution

Let’s solve
v′′ − 6v′ + 13v = e−2u

• Highest derivative means the order of the ODE is 2
v′′

• Characteristic polynomial of homogeneous ODE
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r2 − 6r + 13 = 0
• Use quadratic formula to solve for r

r = 6±
(√

−16
)

2

• Roots of the characteristic polynomial
r = (3− 2 I, 3 + 2 I)

• 1st solution of the homogeneous ODE
v1(u) = e3u cos (2u)

• 2nd solution of the homogeneous ODE
v2(u) = e3u sin (2u)

• General solution of the ODE
v = C1v1(u) + C2v2(u) + vp(u)

• Substitute in solutions of the homogeneous ODE
v = C1 e3u cos (2u) + C2 e3u sin (2u) + vp(u)

� Find a particular solution vp(u) of the ODE
◦ Use variation of parameters to find vp here f(u) is the forcing function[

vp(u) = −v1(u)
(∫ v2(u)f(u)

W (v1(u),v2(u))du
)
+ v2(u)

(∫ v1(u)f(u)
W (v1(u),v2(u))du

)
, f(u) = e−2u

]
◦ Wronskian of solutions of the homogeneous equation

W (v1(u) , v2(u)) =
[

e3u cos (2u) e3u sin (2u)
3 e3u cos (2u)− 2 e3u sin (2u) 3 e3u sin (2u) + 2 e3u cos (2u)

]
◦ Compute Wronskian

W (v1(u) , v2(u)) = 2 e6u

◦ Substitute functions into equation for vp(u)

vp(u) = e3u
(
− cos(2u)

(∫
sin(2u)e−5udu

)
+sin(2u)

(∫
cos(2u)e−5udu

))
2

◦ Compute integrals
vp(u) = e−2u

29

• Substitute particular solution into general solution to ODE
v = C2 e3u sin (2u) + C1 e3u cos (2u) + e−2u

29
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 33� �
dsolve(diff(diff(v(u),u),u)-6*diff(v(u),u)+13*v(u) = exp(-2*u),v(u),singsol=all)� �

v = (c1 cos (2u) + c2 sin (2u)) e−2ue5u + e−2u

29

Mathematica DSolve solution

Solving time : 0.109 (sec)
Leaf size : 39� �
DSolve[{D[v[u],{u,2}]-6*D[v[u],u]+13*v[u]==Exp[-2*u],{}},v[u],u,IncludeSingularSolutions->True]� �

v(u) → e−2u

29 + c2e
3u cos(2u) + c1e

3u sin(2u)
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2.8.7 Problem 7

Solved as second order linear constant coeff ode . . . . . . . . . 659
Solved as second order ode using Kovacic algorithm . . . . . . . 662
Solved as second order ode adjoint method . . . . . . . . . . . . 667
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 671
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 673
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 673

Internal problem ID [18586]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 56. Problems
at page 163
Problem number : 7
Date solved : Tuesday, January 28, 2025 at 12:03:12 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

Solve

y′′ + 4y′ − y = sin (t)

Solved as second order linear constant coeff ode

Time used: 0.131 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(t) +By′(t) + Cy(t) = f(t)

Where A = 1, B = 4, C = −1, f(t) = sin (t). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(t)+By′(t)+Cy(t) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(t) +By′(t) + Cy(t) = f(t).
yh is the solution to

y′′ + 4y′ − y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(t) +By′(t) + Cy(t) = 0
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Where in the above A = 1, B = 4, C = −1. Let the solution be y = eλt. Substituting
this into the ODE gives

λ2etλ + 4λ etλ − etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 4λ− 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 4, C = −1 into the above gives

λ1,2 =
−4

(2) (1) ±
1

(2) (1)
√
42 − (4) (1) (−1)

= −2±
√
5

Hence
λ1 = −2 +

√
5

λ2 = −2−
√
5

Which simplifies to

λ1 = −2 +
√
5

λ2 = −2−
√
5

Since roots are real and distinct, then the solution is

y = c1e
λ1t + c2e

λ2t

y = c1e

(
−2+

√
5
)
t + c2e

(
−2−

√
5
)
t

Or

y = c1 et
(
−2+

√
5
)
+ c2 et

(
−2−

√
5
)

Therefore the homogeneous solution yh is

yh = c1 et
(
−2+

√
5
)
+ c2 et

(
−2−

√
5
)
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (t) , sin (t)}]

While the set of the basis functions for the homogeneous solution found earlier is{
et
(
−2−

√
5
)
, et

(
−2+

√
5
)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (t) + A2 sin (t)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−2A1 cos (t)− 2A2 sin (t)− 4A1 sin (t) + 4A2 cos (t) = sin (t)

Solving for the unknowns by comparing coefficients results in[
A1 = −1

5 , A2 = − 1
10

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −cos (t)
5 − sin (t)

10

Therefore the general solution is

y = yh + yp

=
(
c1 et

(
−2+

√
5
)
+ c2 et

(
−2−

√
5
))

+
(
−cos (t)

5 − sin (t)
10

)

Will add steps showing solving for IC soon.
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Summary of solutions found

y = −cos (t)
5 − sin (t)

10 + c1 et
(
−2+

√
5
)
+ c2 et

(
−2−

√
5
)
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Figure 2.91: Slope field plot
y′′ + 4y′ − y = sin (t)

Solved as second order ode using Kovacic algorithm

Time used: 0.135 (sec)

Writing the ode as

y′′ + 4y′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4 (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5
1 (6)

Comparing the above to (5) shows that

s = 5
t = 1

Therefore eq. (4) becomes

z′′(t) = 5z(t) (7)

Equation (7) is now solved. After finding z(t) then y is found using the inverse trans-
formation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.57: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 5 is not a function of t, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(t) = e−
√
5 t

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
4
1 dt

= z1e
−2t

= z1
(
e−2t)

Which simplifies to

y1 = e−t
(
2+

√
5
)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− 4

1 dt

(y1)2
dt

= y1

∫
e−4t

(y1)2
dt

= y1

√
5 e−4te2t

(
2+

√
5
)

10
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−t

(
2+

√
5
))

+ c2

e−t
(
2+

√
5
)√

5 e−4te2t
(
2+

√
5
)

10



This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(t)+By′(t)+Cy(t) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(t) + By′(t) + Cy(t) = f(t).
yh is the solution to

y′′ + 4y′ − y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 e−t
(
2+

√
5
)
+ c2

√
5 et

(
−2+

√
5
)

10

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (t) , sin (t)}]

While the set of the basis functions for the homogeneous solution found earlier is
√
5 et

(
−2+

√
5
)

10 , e−t
(
2+

√
5
)

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (t) + A2 sin (t)
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The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−2A1 cos (t)− 2A2 sin (t)− 4A1 sin (t) + 4A2 cos (t) = sin (t)

Solving for the unknowns by comparing coefficients results in[
A1 = −1

5 , A2 = − 1
10

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −cos (t)
5 − sin (t)

10

Therefore the general solution is

y = yh + yp

=

c1 e−t
(
2+

√
5
)
+ c2

√
5 et

(
−2+

√
5
)

10

+
(
−cos (t)

5 − sin (t)
10

)

Will add steps showing solving for IC soon.

Summary of solutions found

y = c1 e−t
(
2+

√
5
)
+ c2

√
5 et

(
−2+

√
5
)

10 − cos (t)
5 − sin (t)

10
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Figure 2.92: Slope field plot
y′′ + 4y′ − y = sin (t)

Solved as second order ode adjoint method

Time used: 1.406 (sec)

In normal form the ode

y′′ + 4y′ − y = sin (t) (1)

Becomes

y′′ + p(t) y′ + q(t) y = r(t) (2)

Where

p(t) = 4
q(t) = −1
r(t) = sin (t)

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (4ξ(t))′ + (−ξ(t)) = 0
ξ′′(t)− 4ξ′(t)− ξ(t) = 0

Which is solved for ξ(t). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(t) +Bξ′(t) + Cξ(t) = 0
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Where in the above A = 1, B = −4, C = −1. Let the solution be ξ = eλt. Substituting
this into the ODE gives

λ2etλ − 4λ etλ − etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 − 4λ− 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −4, C = −1 into the above gives

λ1,2 =
4

(2) (1) ±
1

(2) (1)
√

−42 − (4) (1) (−1)

= 2±
√
5

Hence
λ1 = 2 +

√
5

λ2 = 2−
√
5

Which simplifies to

λ1 = 2 +
√
5

λ2 = 2−
√
5

Since roots are real and distinct, then the solution is

ξ = c1e
λ1t + c2e

λ2t

ξ = c1e

(
2+

√
5
)
t + c2e

(
2−

√
5
)
t

Or

ξ = c1 et
(
2+

√
5
)
+ c2 et

(
2−

√
5
)

Will add steps showing solving for IC soon.
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The original ode now reduces to first order ode

ξ(t) y′ − yξ′(t) + ξ(t) p(t) y =
∫

ξ(t) r(t) dt

y′ + y

(
p(t)− ξ′(t)

ξ (t)

)
=
∫
ξ(t) r(t) dt
ξ (t)

Or

y′ + y

4−
c1
(
2 +

√
5
)
et
(
2+

√
5
)
+ c2

(
2−

√
5
)
et
(
2−

√
5
)

c1 et
(
2+

√
5
)
+ c2 et

(
2−

√
5
)

 =
c1

(
− et

(
2+

√
5
)
cos(t)(

2+
√
5
)2

+1
+
(
2+

√
5
)
et

(
2+

√
5
)
sin(t)(

2+
√
5
)2

+1

)
+ c2

(
− et

(
2−

√
5
)
cos(t)(

2−
√
5
)2

+1
+
(
2−

√
5
)
et

(
2−

√
5
)
sin(t)(

2−
√
5
)2

+1

)
c1 et

(
2+

√
5
)
+ c2 et

(
2−

√
5
)

Which is now a first order ode. This is now solved for y. In canonical form a linear first
order is

y′ + q(t)y = p(t)

Comparing the above to the given ode shows that

q(t) = −
−c2

(
2 +

√
5
)
e−t

(
−2+

√
5
)
+ c1 et

(
2+

√
5
)(
−2 +

√
5
)

c1 et
(
2+

√
5
)
+ c2 e−t

(
−2+

√
5
)

p(t) =
−2
((

cos (t) + sin(t)
2

)√
5 + 5 cos(t)

2

)
c2 e−t

(
−2+

√
5
)
+ 2c1

((
cos (t) + sin(t)

2

)√
5− 5 cos(t)

2

)
et
(
2+

√
5
)

10c1 et
(
2+

√
5
)
+ 10c2 e−t

(
−2+

√
5
)

The integrating factor µ is

µ = e
∫
q dt

= e
∫
−

−c2
(
2+

√
5
)
e
−t

(
−2+

√
5
)
+c1 e

t
(
2+

√
5
)(

−2+
√

5
)

c1 e
t
(
2+

√
5
)
+c2 e

−t
(
−2+

√
5
) dt

= et
(
2+

√
5
)

e2
√
5 tc1 + c2

The ode becomes

d
dt(µy) = µp

d
dt(µy)

= (µ)

−2
((

cos (t) + sin(t)
2

)√
5 + 5 cos(t)

2

)
c2 e−t

(
−2+

√
5
)
+ 2c1

((
cos (t) + sin(t)

2

)√
5− 5 cos(t)

2

)
et
(
2+

√
5
)

10c1 et
(
2+

√
5
)
+ 10c2 e−t

(
−2+

√
5
)
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d
dt

 y et
(
2+

√
5
)

e2
√
5 tc1 + c2


=

 et
(
2+

√
5
)

e2
√
5 tc1 + c2


−2

((
cos (t) + sin(t)

2

)√
5 + 5 cos(t)

2

)
c2 e−t

(
−2+

√
5
)
+ 2c1

((
cos (t) + sin(t)

2

)√
5− 5 cos(t)

2

)
et
(
2+

√
5
)

10c1 et
(
2+

√
5
)
+ 10c2 e−t

(
−2+

√
5
)


d

 y et
(
2+

√
5
)

e2
√
5 tc1 + c2



=


(
−2
((

cos (t) + sin(t)
2

)√
5 + 5 cos(t)

2

)
c2 e−t

(
−2+

√
5
)
+ 2c1

((
cos (t) + sin(t)

2

)√
5− 5 cos(t)

2

)
et
(
2+

√
5
))

et
(
2+

√
5
)

(
10c1 et

(
2+

√
5
)
+ 10c2 e−t

(
−2+

√
5
))(

e2
√
5 tc1 + c2

)
 dt

Integrating gives

y et
(
2+

√
5
)

e2
√
5 tc1 + c2

=
∫ (

−2
((

cos (t) + sin(t)
2

)√
5 + 5 cos(t)

2

)
c2 e−t

(
−2+

√
5
)
+ 2c1

((
cos (t) + sin(t)

2

)√
5− 5 cos(t)

2

)
et
(
2+

√
5
))

et
(
2+

√
5
)

(
10c1 et

(
2+

√
5
)
+ 10c2 e−t

(
−2+

√
5
))(

e2
√
5 tc1 + c2

) dt

=
(
i
√
5− 2

√
5
)√

5 et
(√

5+2+i
)

100 e2
√
5 tc1 + 100c2

−
(
i
√
5 + 2

√
5
)√

5 et
(√

5+2−i
)

100
(
e2

√
5 tc1 + c2

) + c3

Dividing throughout by the integrating factor et
(
2+

√
5
)

e2
√
5 tc1+c2

gives the final solution

y = −

(
(2 + i) et

(√
5+2−i

)
+ (2− i) et

(√
5+2+i

)
− 20 e2

√
5 tc1c3 − 20c2c3

)
e−t

(
2+

√
5
)

20
Hence, the solution found using Lagrange adjoint equation method is

y = −

(
(2 + i) et

(√
5+2−i

)
+ (2− i) et

(√
5+2+i

)
− 20 e2

√
5 tc1c3 − 20c2c3

)
e−t

(
2+

√
5
)

20

The constants can be merged to give

y = −

(
(2 + i) et

(√
5+2−i

)
+ (2− i) et

(√
5+2+i

)
− 20 e2

√
5 tc1 − 20c2

)
e−t

(
2+

√
5
)

20
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Will add steps showing solving for IC soon.

Summary of solutions found

y = −

(
(2 + i) et

(√
5+2−i

)
+ (2− i) et

(√
5+2+i

)
− 20 e2

√
5 tc1 − 20c2

)
e−t

(
2+

√
5
)

20

–6

–4

–2

0

2

4

6

y’(t)

–6 –4 –2 0 2 4 6

y(t)

Figure 2.93: Slope field plot
y′′ + 4y′ − y = sin (t)

Maple step by step solution

Let’s solve
y′′ + 4y′ − y = sin (t)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 4r − 1 = 0

• Use quadratic formula to solve for r

r =
(−4)±

(√
20
)

2

• Roots of the characteristic polynomial
r =

(
−2−

√
5,−2 +

√
5
)

• 1st solution of the homogeneous ODE
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y1(t) = et
(
−2−

√
5
)

• 2nd solution of the homogeneous ODE

y2(t) = et
(
−2+

√
5
)

• General solution of the ODE
y = C1y1(t) + C2y2(t) + yp(t)

• Substitute in solutions of the homogeneous ODE

y = C1 et
(
−2−

√
5
)
+ et

(
−2+

√
5
)
C2 + yp(t)

� Find a particular solution yp(t) of the ODE
◦ Use variation of parameters to find yp here f(t) is the forcing function[

yp(t) = −y1(t)
(∫ y2(t)f(t)

W (y1(t),y2(t))dt
)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = sin (t)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 et
(
−2−

√
5
)

et
(
−2+

√
5
)

(
−2−

√
5
)
et
(
−2−

√
5
) (

−2 +
√
5
)
et
(
−2+

√
5
)


◦ Compute Wronskian
W (y1(t) , y2(t)) = 2

√
5 e−4t

◦ Substitute functions into equation for yp(t)

yp(t) = −
√
5
(
e−t

(
2+

√
5
)(∫

sin(t)et
(
2+

√
5
)
dt

)
−et

(
−2+

√
5
)(∫

sin(t)e−t
(
−2+

√
5
)
dt

))
10

◦ Compute integrals
yp(t) = − cos(t)

5 − sin(t)
10

• Substitute particular solution into general solution to ODE

y = C1 et
(
−2−

√
5
)
+ et

(
−2+

√
5
)
C2 − cos(t)

5 − sin(t)
10

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
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<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 34� �
dsolve(diff(diff(y(t),t),t)+4*diff(y(t),t)-y(t) = sin(t),y(t),singsol=all)� �

y = e
(
−2+

√
5
)
t
c2 + e−

(
2+

√
5
)
t
c1 −

cos (t)
5 − sin (t)

10

Mathematica DSolve solution

Solving time : 0.25 (sec)
Leaf size : 47� �
DSolve[{D[y[t],{t,2}]+4*D[y[t],t]-y[t]==Sin[t],{}},y[t],t,IncludeSingularSolutions->True]� �

y(t) → −sin(t)
10 − cos(t)

5 + e
−
((

2+
√
5
)
t
)(

c2e
2
√
5t + c1

)



chapter 2. book solved problems 674

2.8.8 Problem 8

Solved as second order linear constant coeff ode . . . . . . . . . 674
Solved as second order ode using Kovacic algorithm . . . . . . . 677
Solved as second order ode adjoint method . . . . . . . . . . . . 682
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 686
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 688
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 688

Internal problem ID [18587]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 56. Problems
at page 163
Problem number : 8
Date solved : Tuesday, January 28, 2025 at 12:03:15 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

Solve

y′′ + 3y = sin (x) + sin (3x)
3

Solved as second order linear constant coeff ode

Time used: 0.177 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 3, f(x) = sin (x) + sin(3x)
3 . Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 3y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 3. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2exλ + 3 exλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 3 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 3 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (3)

= ±i
√
3

Hence

λ1 = +i
√
3

λ2 = −i
√
3

Which simplifies to

λ1 = i
√
3

λ2 = −i
√
3

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β =
√
3. Therefore the final solution, when using Euler relation, can

be written as
y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

y = e0
(
c1 cos

(√
3x
)
+ c2 sin

(√
3x
))

Or

y = c1 cos
(√

3x
)
+ c2 sin

(√
3x
)
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Therefore the homogeneous solution yh is

yh = c1 cos
(√

3x
)
+ c2 sin

(√
3x
)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (x) + sin (3x)
3

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}, {cos (3x) , sin (3x)}]

While the set of the basis functions for the homogeneous solution found earlier is{
cos
(√

3x
)
, sin

(√
3x
)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x) + A3 cos (3x) + A4 sin (3x)

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

2A1 cos (x) + 2A2 sin (x)− 6A3 cos (3x)− 6A4 sin (3x) = sin (x) + sin (3x)
3

Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 =

1
2 , A3 = 0, A4 = − 1

18

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
sin (x)

2 − sin (3x)
18
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Therefore the general solution is

y = yh + yp

=
(
c1 cos

(√
3x
)
+ c2 sin

(√
3x
))

+
(
sin (x)

2 − sin (3x)
18

)
Will add steps showing solving for IC soon.

Summary of solutions found

y = sin (x)
2 − sin (3x)

18 + c1 cos
(√

3x
)
+ c2 sin

(√
3x
)

–6

–4

–2

0

2

4

6

y’(x)

–6 –4 –2 0 2 4 6

y(x)

Figure 2.94: Slope field plot
y′′ + 3y = sin (x) + sin(3x)

3

Solved as second order ode using Kovacic algorithm

Time used: 0.236 (sec)

Writing the ode as

y′′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 3



chapter 2. book solved problems 678

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
1 (6)

Comparing the above to (5) shows that

s = −3
t = 1

Therefore eq. (4) becomes

z′′(x) = −3z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.59: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −3 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(√

3x
)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to
y1 = z1

= cos
(√

3x
)

Which simplifies to

y1 = cos
(√

3x
)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos
(√

3x
)∫ 1

cos
(√

3x
)2 dx

= cos
(√

3x
)(√

3 tan
(√

3x
)

3

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
cos
(√

3x
))

+ c2

(
cos
(√

3x
)(√

3 tan
(√

3x
)

3

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 3y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos
(√

3x
)
+

c2
√
3 sin

(√
3x
)

3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (x) + sin (3x)
3

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}, {cos (3x) , sin (3x)}]

While the set of the basis functions for the homogeneous solution found earlier is{√
3 sin

(√
3x
)

3 , cos
(√

3x
)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x) + A3 cos (3x) + A4 sin (3x)
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The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

2A1 cos (x) + 2A2 sin (x)− 6A3 cos (3x)− 6A4 sin (3x) = sin (x) + sin (3x)
3

Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 =

1
2 , A3 = 0, A4 = − 1

18

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
sin (x)

2 − sin (3x)
18

Therefore the general solution is

y = yh + yp

=
(
c1 cos

(√
3x
)
+

c2
√
3 sin

(√
3x
)

3

)
+
(
sin (x)

2 − sin (3x)
18

)

Will add steps showing solving for IC soon.

Summary of solutions found

y = c1 cos
(√

3x
)
+

c2
√
3 sin

(√
3x
)

3 + sin (x)
2 − sin (3x)

18
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Figure 2.95: Slope field plot
y′′ + 3y = sin (x) + sin(3x)

3

Solved as second order ode adjoint method

Time used: 3.651 (sec)

In normal form the ode

y′′ + 3y = sin (x) + sin (3x)
3 (1)

Becomes

y′′ + p(x) y′ + q(x) y = r(x) (2)

Where

p(x) = 0
q(x) = 3

r(x) = sin (x) + sin (3x)
3

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (0)′ + (3ξ(x)) = 0

ξ′′(x) + 3ξ(x) = 0

Which is solved for ξ(x). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(x) +Bξ′(x) + Cξ(x) = 0
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Where in the above A = 1, B = 0, C = 3. Let the solution be ξ = eλx. Substituting this
into the ODE gives

λ2exλ + 3 exλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 3 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 3 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (3)

= ±i
√
3

Hence

λ1 = +i
√
3

λ2 = −i
√
3

Which simplifies to

λ1 = i
√
3

λ2 = −i
√
3

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β =
√
3. Therefore the final solution, when using Euler relation, can

be written as
ξ = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

ξ = e0
(
c1 cos

(√
3x
)
+ c2 sin

(√
3x
))

Or

ξ = c1 cos
(√

3x
)
+ c2 sin

(√
3x
)
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Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(x) y′ − yξ′(x) + ξ(x) p(x) y =
∫

ξ(x) r(x) dx

y′ + y

(
p(x)− ξ′(x)

ξ (x)

)
=
∫
ξ(x) r(x) dx

ξ (x)

Or

y′ −
y
(
−c1

√
3 sin

(√
3x
)
+ c2

√
3 cos

(√
3x
))

c1 cos
(√

3x
)
+ c2 sin

(√
3x
) =

c1 cos
(
x
(
−3+

√
3
))

−18+6
√
3 −

c1 cos
(
x
(
1+

√
3
))

2
(
1+

√
3
) −

c1 cos
(
x
(
3+

√
3
))

6
(
3+

√
3
) +

c1 cos
(
x
(√

3−1
))

2
√
3−2 +

c2 sin
(
x
(
−3+

√
3
))

−18+6
√
3 −

c2 sin
(
x
(
1+

√
3
))

2
(
1+

√
3
) −

c2 sin
(
x
(
3+

√
3
))

6
(
3+

√
3
) +

c2 sin
(
x
(√

3−1
))

2
√
3−2

c1 cos
(√

3x
)
+ c2 sin

(√
3x
)

Which is now a first order ode. This is now solved for y. In canonical form a linear first
order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) =
√
3
(
c1 sin

(√
3x
)
− c2 cos

(√
3x
))

c1 cos
(√

3x
)
+ c2 sin

(√
3x
)

p(x) =
(
2
(
cos (x)2 − 5

2

)
sin (x) c2

√
3− 6c1 cos (x)3 + 9c1 cos (x)

)
cos
(√

3x
)
− 2 sin

(√
3x
) (

c1 sin (x)
(
cos (x)2 − 5

2

)√
3 + 3 cos (x) c2

(
cos (x)2 − 3

2

))
9c2 sin

(√
3x
)
+ 9c1 cos

(√
3x
)

The integrating factor µ is

µ = e
∫
q dx

= e
∫ √

3
(
c1 sin

(√
3 x

)
−c2 cos

(√
3 x

))
c1 cos

(√
3 x

)
+c2 sin

(√
3 x

) dx

= 1
c1 cos

(√
3x
)
+ c2 sin

(√
3x
)

The ode becomes

d
dx(µy) = µp

d
dx(µy)

= (µ)
((

2
(
cos (x)2 − 5

2

)
sin (x) c2

√
3− 6c1 cos (x)3 + 9c1 cos (x)

)
cos
(√

3x
)
− 2 sin

(√
3x
) (

c1 sin (x)
(
cos (x)2 − 5

2

)√
3 + 3 cos (x) c2

(
cos (x)2 − 3

2

))
9c2 sin

(√
3x
)
+ 9c1 cos

(√
3x
) )
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d
dx

(
y

c1 cos
(√

3x
)
+ c2 sin

(√
3x
))

=
(

1
c1 cos

(√
3x
)
+ c2 sin

(√
3x
))((2(cos (x)2 − 5

2

)
sin (x) c2

√
3− 6c1 cos (x)3 + 9c1 cos (x)

)
cos
(√

3x
)
− 2 sin

(√
3x
) (

c1 sin (x)
(
cos (x)2 − 5

2

)√
3 + 3 cos (x) c2

(
cos (x)2 − 3

2

))
9c2 sin

(√
3x
)
+ 9c1 cos

(√
3x
) )

d
(

y

c1 cos
(√

3x
)
+ c2 sin

(√
3x
))

=
((

2
(
cos (x)2 − 5

2

)
sin (x) c2

√
3− 6c1 cos (x)3 + 9c1 cos (x)

)
cos
(√

3x
)
− 2 sin

(√
3x
) (

c1 sin (x)
(
cos (x)2 − 5

2

)√
3 + 3 cos (x) c2

(
cos (x)2 − 3

2

))(
9c2 sin

(√
3x
)
+ 9c1 cos

(√
3x
)) (

c1 cos
(√

3x
)
+ c2 sin

(√
3x
)) )

dx

Integrating gives

y

c1 cos
(√

3x
)
+ c2 sin

(√
3x
) =

∫ (
2
(
cos (x)2 − 5

2

)
sin (x) c2

√
3− 6c1 cos (x)3 + 9c1 cos (x)

)
cos
(√

3x
)
− 2 sin

(√
3x
) (

c1 sin (x)
(
cos (x)2 − 5

2

)√
3 + 3 cos (x) c2

(
cos (x)2 − 3

2

))(
9c2 sin

(√
3x
)
+ 9c1 cos

(√
3x
)) (

c1 cos
(√

3x
)
+ c2 sin

(√
3x
)) dx

=
i

(
eix
(
3+

√
3
)
− 9 eix

(
1+

√
3
)
+ 9 eix

(√
3−1

)
− eix

(
−3+

√
3
))

−18ic2 e2i
√
3x + 18c1 e2i

√
3x + 18ic2 + 18c1

+ c3

Dividing throughout by the integrating factor 1
c1 cos

(√
3x
)
+c2 sin

(√
3x
) gives the final solu-

tion

y =

(
18ie2i

√
3xc1c3 + 18ic1c3 + 18 e2i

√
3xc2c3 − 18c2c3 − eix

(
3+

√
3
)
+ 9 eix

(
1+

√
3
)
− 9 eix

(√
3−1

)
+ eix

(
−3+

√
3
))(

c1 cos
(√

3x
)
+ c2 sin

(√
3x
))

(18ic1 + 18c2) e2i
√
3x + 18ic1 − 18c2

Hence, the solution found using Lagrange adjoint equation method is

y

=

(
18ie2i

√
3xc1c3 + 18ic1c3 + 18 e2i

√
3xc2c3 − 18c2c3 − eix

(
3+

√
3
)
+ 9 eix

(
1+

√
3
)
− 9 eix

(√
3−1

)
+ eix

(
−3+

√
3
))(

c1 cos
(√

3x
)
+ c2 sin

(√
3x
))

(18ic1 + 18c2) e2i
√
3x + 18ic1 − 18c2

The constants can be merged to give

y

=

(
18ic1 e2i

√
3x + 18ic1 + 18c2 e2i

√
3x − 18c2 − eix

(
3+

√
3
)
+ 9 eix

(
1+

√
3
)
− 9 eix

(√
3−1

)
+ eix

(
−3+

√
3
))(

c1 cos
(√

3x
)
+ c2 sin

(√
3x
))

(18ic1 + 18c2) e2i
√
3x + 18ic1 − 18c2

Will add steps showing solving for IC soon.
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Summary of solutions found

y

=

(
18ic1 e2i

√
3x + 18ic1 + 18c2 e2i

√
3x − 18c2 − eix

(
3+

√
3
)
+ 9 eix

(
1+

√
3
)
− 9 eix

(√
3−1

)
+ eix

(
−3+

√
3
))(

c1 cos
(√

3x
)
+ c2 sin

(√
3x
))

(18ic1 + 18c2) e2i
√
3x + 18ic1 − 18c2

–6

–4

–2

0

2

4

6

y’(x)

–6 –4 –2 0 2 4 6

y(x)

Figure 2.96: Slope field plot
y′′ + 3y = sin (x) + sin(3x)

3

Maple step by step solution

Let’s solve
y′′ + 3y = sin (x) + sin(3x)

3

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 3 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−12
)

2

• Roots of the characteristic polynomial
r =

(
−I

√
3, I

√
3
)

• 1st solution of the homogeneous ODE
y1(x) = cos

(√
3x
)
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• 2nd solution of the homogeneous ODE
y2(x) = sin

(√
3x
)

• General solution of the ODE
y = C1y1(x) + C2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = C1 cos

(√
3x
)
+ C2 sin

(√
3x
)
+ yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = sin (x) + sin(3x)

3

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos
(√

3x
)

sin
(√

3x
)

−
√
3 sin

(√
3x
) √

3 cos
(√

3x
)


◦ Compute Wronskian
W (y1(x) , y2(x)) =

√
3

◦ Substitute functions into equation for yp(x)

yp(x) = −
√
3
(
cos
(√

3x
)(∫

sin
(√

3x
)
(sin(3x)+3 sin(x))dx

)
−sin

(√
3x
)(∫

cos
(√

3x
)
(sin(3x)+3 sin(x))dx

))
9

◦ Compute integrals
yp(x) = sin(x)

2 − sin(3x)
18

• Substitute particular solution into general solution to ODE
y = sin(x)

2 − sin(3x)
18 + C1 cos

(√
3x
)
+ C2 sin

(√
3x
)

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
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Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 31� �
dsolve(diff(diff(y(x),x),x)+3*y(x) = sin(x)+1/3*sin(3*x),y(x),singsol=all)� �

y(x) = sin
(√

3x
)
c2 + cos

(√
3x
)
c1 +

sin (x)
2 − sin (3x)

18

Mathematica DSolve solution

Solving time : 0.559 (sec)
Leaf size : 42� �
DSolve[{D[y[x],{x,2}]+3*y[x]==Sin[x]+1/3*Sin[3*x],{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → sin(x)
2 − 1

18 sin(3x) + c1 cos
(√

3x
)
+ c2 sin

(√
3x
)
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2.8.9 Problem 10

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 689
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 691
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 695
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 696
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 696

Internal problem ID [18588]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 56. Problems
at page 163
Problem number : 10
Date solved : Tuesday, January 28, 2025 at 12:03:20 PM
CAS classification : [[_linear, ‘class A‘]]

Solve

5x′ + x = sin (3t)

Solved as first order linear ode

Time used: 0.108 (sec)

In canonical form a linear first order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = 1
5

p(t) = sin (3t)
5

The integrating factor µ is

µ = e
∫
q dt

= e
∫ 1

5dt

= e t
5



chapter 2. book solved problems 690

The ode becomes
d
dt(µx) = µp

d
dt(µx) = (µ)

(
sin (3t)

5

)
d
dt

(
x e t

5

)
=
(
e t

5

)(sin (3t)
5

)

d
(
x e t

5

)
=
(
sin (3t) e t

5

5

)
dt

Integrating gives

x e t
5 =

∫ sin (3t) e t
5

5 dt

= −15 cos (3t) e t
5

226 + sin (3t) e t
5

226 + c1

Dividing throughout by the integrating factor e t
5 gives the final solution

x = sin (3t)
226 − 15 cos (3t)

226 + c1 e−
t
5

–3

–2

–1

0

1

2

3

x(t)

–4 –2 0 2 4

t

Figure 2.97: Slope field plot
5x′ + x = sin (3t)

Summary of solutions found

x = sin (3t)
226 − 15 cos (3t)

226 + c1 e−
t
5
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Solved as first order Exact ode

Time used: 0.105 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

(5) dx = (−x+ sin (3t)) dt
(x− sin (3t)) dt+(5) dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = x− sin (3t)
N(t, x) = 5
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x
(x− sin (3t))

= 1

And
∂N

∂t
= ∂

∂t
(5)

= 0

Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1

5((1)− (0))

= 1
5

Since A does not depend on x, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dt

= e
∫ 1

5 dt

The result of integrating gives

µ = e
t
5

= e t
5

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e t
5 (x− sin (3t))

= (x− sin (3t)) e t
5
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And

N = µN

= e t
5 (5)

= 5 e t
5

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dx
dt = 0(

(x− sin (3t)) e t
5

)
+
(
5 e t

5

) dx
dt = 0

The following equations are now set up to solve for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (2) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
N dx∫

∂φ

∂x
dx =

∫
5 e t

5 dx

(3)φ = 5x e t
5 + f(t)

Where f(t) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t t gives

(4)∂φ

∂t
= x e t

5 + f ′(t)

But equation (1) says that ∂φ
∂t

= (x− sin (3t)) e t
5 . Therefore equation (4) becomes

(5)(x− sin (3t)) e t
5 = x e t

5 + f ′(t)

Solving equation (5) for f ′(t) gives

f ′(t) = − sin (3t) e t
5
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Integrating the above w.r.t t gives∫
f ′(t) dt =

∫ (
− sin (3t) e t

5

)
dt

f(t) = 75 cos (3t) e t
5

226 − 5 sin (3t) e t
5

226 + c1

Where c1 is constant of integration. Substituting result found above for f(t) into
equation (3) gives φ

φ = 5x e t
5 + 75 cos (3t) e t

5

226 − 5 sin (3t) e t
5

226 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = 5x e t
5 + 75 cos (3t) e t

5

226 − 5 sin (3t) e t
5

226

Solving for x gives

x =

(
5 sin (3t) e t

5 − 75 cos (3t) e t
5 + 226c1

)
e− t

5

1130

–3

–2

–1

0

1

2

3

x(t)

–4 –2 0 2 4

t

Figure 2.98: Slope field plot
5x′ + x = sin (3t)
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Summary of solutions found

x =

(
5 sin (3t) e t

5 − 75 cos (3t) e t
5 + 226c1

)
e− t

5

1130

Maple step by step solution

Let’s solve
5x′ + x = sin (3t)

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative
x′ = −x

5 +
sin(3t)

5

• Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE
x′ + x

5 = sin(3t)
5

• The ODE is linear; multiply by an integrating factor µ(t)
µ(t)

(
x′ + x

5

)
= µ(t) sin(3t)

5

• Assume the lhs of the ODE is the total derivative d
dt
(xµ(t))

µ(t)
(
x′ + x

5

)
= x′µ(t) + xµ′(t)

• Isolate µ′(t)
µ′(t) = µ(t)

5

• Solve to find the integrating factor
µ(t) = e t

5

• Integrate both sides with respect to t∫ (
d
dt
(xµ(t))

)
dt =

∫ µ(t) sin(3t)
5 dt+ C1

• Evaluate the integral on the lhs
xµ(t) =

∫ µ(t) sin(3t)
5 dt+ C1

• Solve for x

x =
∫ µ(t) sin(3t)

5 dt+C1
µ(t)

• Substitute µ(t) = e t
5

x =
∫ sin(3t)e

t
5

5 dt+C1

e
t
5

• Evaluate the integrals on the rhs
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x = − 15 cos(3t)e
t
5

226 + sin(3t)e
t
5

226 +C1

e
t
5

• Simplify
x = sin(3t)

226 − 15 cos(3t)
226 + C1 e− t

5

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 23� �
dsolve(5*diff(x(t),t)+x(t) = sin(3*t),x(t),singsol=all)� �

x = −15 cos (3t)
226 + sin (3t)

226 + e− t
5 c1

Mathematica DSolve solution

Solving time : 0.08 (sec)
Leaf size : 31� �
DSolve[{5*D[x[t],t]+x[t]==Sin[3*t],{}},x[t],t,IncludeSingularSolutions->True]� �

x(t) → 1
226(sin(3t)− 15 cos(3t)) + c1e

−t/5
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2.8.10 Problem 11

Solved as higher order constant coeff ode . . . . . . . . . . . . . 697
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 699
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 702
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 702

Internal problem ID [18589]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 56. Problems
at page 163
Problem number : 11
Date solved : Tuesday, January 28, 2025 at 12:03:22 PM
CAS classification : [[_high_order, _missing_y]]

Solve

x′′′′ − 6x′′′ + 11x′′ − 6x′ = e−3t

Solved as higher order constant coeff ode

Time used: 0.063 (sec)

The characteristic equation is

λ4 − 6λ3 + 11λ2 − 6λ = 0

The roots of the above equation are

λ1 = 0
λ2 = 1
λ3 = 2
λ4 = 3

Therefore the homogeneous solution is

xh(t) = c1 + etc2 + e2tc3 + e3tc4
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The fundamental set of solutions for the homogeneous solution are the following

x1 = 1
x2 = et

x3 = e2t

x4 = e3t

This is higher order nonhomogeneous ODE. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE And xp is a particular solution to
the nonhomogeneous ODE. xh is the solution to

x′′′′ − 6x′′′ + 11x′′ − 6x′ = 0

Now the particular solution to the given ODE is found

x′′′′ − 6x′′′ + 11x′′ − 6x′ = e−3t

The particular solution is now found using the method of undetermined coefficients.

Looking at the RHS of the ode, which is

e−3t

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−3t}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, et, e2t, e3t}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1e−3t

The unknowns {A1} are found by substituting the above trial solution xp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

360A1e−3t = e−3t
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Solving for the unknowns by comparing coefficients results in[
A1 =

1
360

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp =
e−3t

360

Therefore the general solution is

x = xh + xp

=
(
c1 + etc2 + e2tc3 + e3tc4

)
+
(
e−3t

360

)

Maple step by step solution

Let’s solve
x′′′′ − 6x′′′ + 11x′′ − 6x′ = e−3t

• Highest derivative means the order of the ODE is 4
x′′′′

• Characteristic polynomial of homogeneous ODE
r4 − 6r3 + 11r2 − 6r = 0

• Roots of the characteristic polynomial
r = [0, 1, 2, 3]

• Homogeneous solution from r = 0
x1(t) = 1

• Homogeneous solution from r = 1
x2(t) = et

• Homogeneous solution from r = 2
x3(t) = e2t

• Homogeneous solution from r = 3
x4(t) = e3t

• General solution of the ODE
x = C1x1(t) + C2x2(t) + C3x3(t) + C4x4(t) + xp(t)

• Substitute in solutions of the homogeneous ODE
x = C1 + etC2 + e2tC3 + e3tC4 + xp(t)
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� Find a particular solution xp(t) of the ODE
◦ Define the forcing function of the ODE

f(t) = e−3t

◦ Form of the particular solution to the ODE where the ui(t) are to be found

xp(t) =
4∑

i=1
ui(t)xi(t)

◦ Calculate the 1st derivative of xp(t)

x′
p(t) =

4∑
i=1

(u′
i(t)xi(t) + ui(t)x′

i(t))

◦ Choose equation to add to a system of equations in u′
i(t)

4∑
i=1

u′
i(t)xi(t) = 0

◦ Calculate the 2nd derivative of xp(t)

x′′
p(t) =

4∑
i=1

(u′
i(t)x′

i(t) + ui(t)x′′
i (t))

◦ Choose equation to add to a system of equations in u′
i(t)

4∑
i=1

u′
i(t)x′

i(t) = 0

◦ Calculate the 3rd derivative of xp(t)

x′′′
p (t) =

4∑
i=1

(u′
i(t)x′′

i (t) + ui(t)x′′′
i (t))

◦ Choose equation to add to a system of equations in u′
i(t)

4∑
i=1

u′
i(t)x′′

i (t) = 0

◦ The ODE is of the following form where the Pi(t) in this situation are the coefficients of the derivatives in the ODE

x′′′′ +
(

3∑
i=0

Pi(t)x(i)
)

= f(t)

◦ Substitute xp(t) =
4∑

i=1
ui(t)xi(t) into the ODE(

3∑
j=0

Pj(t)
(

4∑
i=1

ui(t)x(j)
i (t)

))
+

4∑
i=1

(u′
i(t)x′′′

i (t) + ui(t)x′′′′
i (t)) = f(t)

◦ Rearrange the ODE
4∑

i=1

(
ui(t) ·

((
3∑

j=0
Pj(t)x(j)

i (t)
)

+ x′′′′
i (t)

)
+ u′

i(t)x′′′
i (t)

)
= f(t)
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◦ Notice that xi(t) are solutions to the homogeneous equation so the first term in the sum is 0
4∑

i=1
u′
i(t)x′′′

i (t) = f(t)

◦ We have now made a system of 4 equations in 4 unknowns ( u′
i(t))[

4∑
i=1

u′
i(t)xi(t) = 0,

4∑
i=1

u′
i(t)x′

i(t) = 0,
4∑

i=1
u′
i(t)x′′

i (t) = 0,
4∑

i=1
u′
i(t)x′′′

i (t) = f(t)
]

◦ Convert the system to linear algebra format, notice that the matrix is the wronskian W
x1(t) x2(t) x3(t) x4(t)
x′
1(t) x′

2(t) x′
3(t) x′

4(t)
x′′
1(t) x′′

2(t) x′′
3(t) x′′

4(t)
x′′′
1 (t) x′′′

2 (t) x′′′
3 (t) x′′′

4 (t)

 ·


u′
1(t)

u′
2(t)

u′
3(t)

u′
4(t)

 =


0
0
0

f(t)


◦ Solve for the varied parameters

u1(t)
u2(t)
u3(t)
u4(t)

 =
∫ 1

W
·


0
0
0

f(t)

 dt

◦ Substitute in the homogeneous solutions and forcing function and solve
u1(t)
u2(t)
u3(t)
u4(t)

 =


e−3t

18

− e−3t

8 et

e−3t

10 e2t

− e−3t

36 e3t


Find a particular solution xp(t) of the ODE
xp(t) = e−3t

360

• Substitute particular solution into general solution to ODE
x = C1 + etC2 + e2tC3 + e3tC4 + e−3t

360

Maple trace� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(diff(_b(_a), _a), _a), _a) = 6*(diff(diff(_b(_a), _a), _a))-11*(diff(_b(_a), _a))+6*_b(_
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Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful

<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 39� �
dsolve(diff(diff(diff(diff(x(t),t),t),t),t)-6*diff(diff(diff(x(t),t),t),t)+11*diff(diff(x(t),t),t)-6*diff(x(t),t) = exp(-3*t),x(t),singsol=all)� �

x =

(
c3 e6t + 3c1e4t + 3 e5tc2

2 + 3c4 e3t + 1
120

)
e−3t

3

Mathematica DSolve solution

Solving time : 0.039 (sec)
Leaf size : 45� �
DSolve[{D[x[t],{t,4}]-6*D[x[t],{t,3}]+11*D[x[t],{t,2}]-6*D[x[t],t]==Exp[-3*t],{}},x[t],t,IncludeSingularSolutions->True]� �

x(t) → e−3t

360 + c1e
t + 1

2c2e
2t + 1

3c3e
3t + c4
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2.8.11 Problem 14

Solved as higher order Euler type ode . . . . . . . . . . . . . . 703
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 708
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 709
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 709

Internal problem ID [18590]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 56. Problems
at page 163
Problem number : 14
Date solved : Tuesday, January 28, 2025 at 12:03:23 PM
CAS classification : [[_high_order, _missing_y]]

Solve

x4y′′′′ + x3y′′′ − 20x2y′′ + 20xy′ = 17x6

Solved as higher order Euler type ode

Time used: 0.244 (sec)

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

y′′′′ = λ(λ− 1) (λ− 2) (λ− 3)xλ−4

Substituting these back into

x4y′′′′ + x3y′′′ − 20x2y′′ + 20xy′ = 17x6

gives
20xλxλ−1 − 20x2λ(λ− 1)xλ−2 + x3λ(λ− 1) (λ− 2)xλ−3

+ x4λ(λ− 1) (λ− 2) (λ− 3)xλ−4 = 0

Which simplifies to

20λxλ − 20λ(λ− 1)xλ + λ(λ− 1) (λ− 2)xλ + λ(λ− 1) (λ− 2) (λ− 3)xλ = 0
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And since xλ 6= 0 then dividing through by xλ, the above becomes

20λ− 20λ(λ− 1) + λ(λ− 1) (λ− 2) + λ(λ− 1) (λ− 2) (λ− 3) = 0

Simplifying gives the characteristic equation as

λ4 − 5λ3 − 12λ2 + 36λ = 0

Solving the above gives the following roots

λ1 = 0
λ2 = 2
λ3 = 6
λ4 = −3

This table summarises the result
root multiplicity type of root
0 1 real root
−3 1 real root
2 1 real root
6 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

y = c1 +
c2
x3 + c3 x

2 + c4 x
6

The fundamental set of solutions for the homogeneous solution are the following

y1 = 1

y2 =
1
x3

y3 = x2

y4 = x6
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This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

x4y′′′′ + x3y′′′ − 20x2y′′ + 20xy′ = 0

Now the particular solution to the given ODE is found

x4y′′′′ + x3y′′′ − 20x2y′′ + 20xy′ = 17x6

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣
y1 y2 y3 y4

y′1 y′2 y′3 y′4
y′′1 y′′2 y′′3 y′′4
y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


1 1

x3 x2 x6

0 − 3
x4 2x 6x5

0 12
x5 2 30x4

0 − 60
x6 0 120x3


|W | = −6480

x
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The determinant simplifies to

|W | = −6480
x

Now we determine Wi for each Ui.

W1(x) = det


1
x3 x2 x6

− 3
x4 2x 6x5

12
x5 2 30x4


= 180x2

W2(x) = det

 1 x2 x6

0 2x 6x5

0 2 30x4


= 48x5

W3(x) = det


1 1

x3 x6

0 − 3
x4 6x5

0 12
x5 30x4


= −162

W4(x) = det


1 1

x3 x2

0 − 3
x4 2x

0 12
x5 2


= −30

x4

Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (17x6) (180x2)

(x4)
(
−6480

x

) dx

= −
∫ 3060x8

−6480x3 dx

= −
∫ (

−17x5

36

)
dx

= 17x6

216
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U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (17x6) (48x5)

(x4)
(
−6480

x

) dx

=
∫ 816x11

−6480x3 dx

=
∫ (

−17x8

135

)
dx

= −17x9

1215

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (17x6) (−162)

(x4)
(
−6480

x

) dx

= −
∫

−2754x6

−6480x3 dx

= −
∫ (17x3

40

)
dx

= −17x4

160

U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (17x6)

(
− 30

x4

)
(x4)

(
−6480

x

) dx

=
∫

−510x2

−6480x3 dx

=
∫ ( 17

216x

)
dx

= 17 ln (x)
216

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4
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Hence

yp =
(
17x6

216

)
+
(
−17x9

1215

)(
1
x3

)
+
(
−17x4

160

)(
x2)

+
(
17 ln (x)
216

)(
x6)

Therefore the particular solution is

yp =
17x6(−19 + 36 ln (x))

7776
Therefore the general solution is

y = yh + yp

=
(
c1 +

c2
x3 + c3 x

2 + c4 x
6
)
+
(
17x6(−19 + 36 ln (x))

7776

)

Maple step by step solution

Let’s solve
x4y′′′′ + x3y′′′ − 20x2y′′ + 20xy′ = 17x6

• Highest derivative means the order of the ODE is 4
y′′′′

Maple trace� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(diff(_b(_a), _a), _a), _a) = -(-17*_a^5+(diff(diff(_b(_a), _a), _a))*_a^2-20*(diff(_b(_a

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
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trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful

<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 41� �
dsolve(x^4*diff(diff(diff(diff(y(x),x),x),x),x)+x^3*diff(diff(diff(y(x),x),x),x)-20*x^2*diff(diff(y(x),x),x)+20*x*diff(y(x),x) = 17*x^6,y(x),singsol=all)� �

y(x) = 612 ln (x)x9 + (1296c3 − 323)x9 + 3888c1x5 + 7776c4 x3 − 2592c2
7776x3

Mathematica DSolve solution

Solving time : 0.014 (sec)
Leaf size : 49� �
DSolve[{x^4*D[y[x],{x,4}]+x^3*D[y[x],{x,3}]-20*x^2*D[y[x],{x,2}]+20*x*D[y[x],x]==17*x^6,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → 17
216x

6 log(x) +
(
− 323
7776 + c3

6

)
x6 − c1

3x3 + c2x
2

2 + c4
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2.8.12 Problem 15

Solved as higher order Euler type ode . . . . . . . . . . . . . . 710
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 716
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 717
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 717

Internal problem ID [18591]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 56. Problems
at page 163
Problem number : 15
Date solved : Tuesday, January 28, 2025 at 12:03:23 PM
CAS classification : [[_high_order, _exact, _linear, _nonhomogeneous]]

Solve

t4x′′′′ − 2t3x′′′ − 20t2x′′ + 12tx′ + 16x = cos (3 ln (t))

Solved as higher order Euler type ode

Time used: 0.617 (sec)

This is Euler ODE of higher order. Let x = tλ. Hence

x′ = λ tλ−1

x′′ = λ(λ− 1) tλ−2

x′′′ = λ(λ− 1) (λ− 2) tλ−3

x′′′′ = λ(λ− 1) (λ− 2) (λ− 3) tλ−4

Substituting these back into

t4x′′′′ − 2t3x′′′ − 20t2x′′ + 12tx′ + 16x = cos (3 ln (t))

gives
12tλ tλ−1 − 20t2λ(λ− 1) tλ−2 − 2t3λ(λ− 1) (λ− 2) tλ−3

+ t4λ(λ− 1) (λ− 2) (λ− 3) tλ−4 + 16tλ = 0

Which simplifies to

12λ tλ − 20λ(λ− 1) tλ − 2λ(λ− 1) (λ− 2) tλ + λ(λ− 1) (λ− 2) (λ− 3) tλ + 16tλ = 0
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And since tλ 6= 0 then dividing through by tλ, the above becomes

12λ− 20λ(λ− 1)− 2λ(λ− 1) (λ− 2) + λ(λ− 1) (λ− 2) (λ− 3) + 16 = 0

Simplifying gives the characteristic equation as

(λ− 2) (λ− 8) (λ+ 1)2 = 0

Solving the above gives the following roots

λ1 = 2
λ2 = 8
λ3 = −1
λ4 = −1

This table summarises the result
root multiplicity type of root
−1 2 real root
2 1 real root
8 1 real root

The solution is generated by going over the above table. For each real root λ of multi-
plicity one generates a c1t

λ basis solution. Each real root of multiplicty two, generates
c1t

λ and c2t
λ ln (t) basis solutions. Each real root of multiplicty three, generates c1tλ and

c2t
λ ln (t) and c3t

λ ln (t)2 basis solutions, and so on. Each complex root α±iβ of multiplic-
ity one generates tα(c1 cos(β ln (t)) + c2 sin(β ln (t))) basis solutions. And each complex
root α± iβ of multiplicity two generates ln (t) tα(c1 cos(β ln (t)) + c2 sin(β ln (t))) basis
solutions. And each complex root α±iβ of multiplicity three generates ln (t)2 tα(c1 cos(β ln (t)) + c2 sin(β ln (t)))
basis solutions. And so on. Using the above show that the solution is

x = c1
t
+ c2 ln (t)

t
+ c3 t

2 + c4 t
8

The fundamental set of solutions for the homogeneous solution are the following

x1 =
1
t

x2 =
ln (t)
t

x3 = t2

x4 = t8
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This is higher order nonhomogeneous Euler type ODE. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous Euler ODE And xp is a particular solution
to the nonhomogeneous Euler ODE. xh is the solution to

t4x′′′′ − 2t3x′′′ − 20t2x′′ + 12tx′ + 16x = 0

Now the particular solution to the given ODE is found

t4x′′′′ − 2t3x′′′ − 20t2x′′ + 12tx′ + 16x = cos (3 ln (t))

Let the particular solution be

xp = U1x1 + U2x2 + U3x3 + U4x4

Where xi are the basis solutions found above for the homogeneous solution xh and Ui(t)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (t)Wi(t)
aW (t) dt

Where W (t) is the Wronskian and Wi(t) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (t) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (t). This is given by

W (t) =

∣∣∣∣∣∣∣∣∣
x1 x2 x3 x4

x′
1 x′

2 x′
3 x′

4

x′′
1 x′′

2 x′′
3 x′′

4

x′′′
1 x′′′

2 x′′′
3 x′′′

4

∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions xi found above in the Wronskian gives

W =


1
t

ln(t)
t

t2 t8

− 1
t2

1−ln(t)
t2

2t 8t7

2
t3

−3+2 ln(t)
t3

2 56t6

− 6
t4

11−6 ln(t)
t4

0 336t5


|W | = 4374t2
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The determinant simplifies to

|W | = 4374t2

Now we determine Wi for each Ui.

W1(t) = det


ln(t)
t

t2 t8

1−ln(t)
t2

2t 8t7
−3+2 ln(t)

t3
2 56t6


= 18t6(−4 + 9 ln (t))

W2(t) = det


1
t

t2 t8

− 1
t2

2t 8t7
2
t3

2 56t6


= 162t6

W3(t) = det


1
t

ln(t)
t

t8

− 1
t2

1−ln(t)
t2

8t7

2
t3

−3+2 ln(t)
t3

56t6


= 81t3

W4(t) = det


1
t

ln(t)
t

t2

− 1
t2

1−ln(t)
t2

2t
2
t3

−3+2 ln(t)
t3

2


= 9

t3
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Now we are ready to evaluate each Ui(t).

U1 = (−1)4−1
∫

F (t)W1(t)
aW (t) dt

= (−1)3
∫ (cos (3 ln (t))) (18t6(−4 + 9 ln (t)))

(t4) (4374t2) dt

= −
∫ 18 cos (3 ln (t)) t6(−4 + 9 ln (t))

4374t6 dt

= −
∫ (cos (3 ln (t)) (−4 + 9 ln (t))

243

)
dt

= −

(
8
25 +

9 ln(t)
10

)
t cos (3 ln (t))

243 +

(
87
50 −

27 ln(t)
10

)
t sin (3 ln (t))

243

U2 = (−1)4−2
∫

F (t)W2(t)
aW (t) dt

= (−1)2
∫ (cos (3 ln (t))) (162t6)

(t4) (4374t2) dt

=
∫ 162 cos (3 ln (t)) t6

4374t6 dt

=
∫ (cos (3 ln (t))

27

)
dt

= cos (3 ln (t)) t
270 + t sin (3 ln (t))

90

U3 = (−1)4−3
∫

F (t)W3(t)
aW (t) dt

= (−1)1
∫ (cos (3 ln (t))) (81t3)

(t4) (4374t2) dt

= −
∫ 81 cos (3 ln (t)) t3

4374t6 dt

= −
∫ (cos (3 ln (t))

54t3

)
dt

= −
− 1

351 +
tan
(

3 ln(t)
2

)2
351 +

tan
(

3 ln(t)
2

)
117(

1 + tan
(

3 ln(t)
2

)2)
t2



chapter 2. book solved problems 715

U4 = (−1)4−4
∫

F (t)W4(t)
aW (t) dt

= (−1)0
∫ (cos (3 ln (t)))

( 9
t3

)
(t4) (4374t2) dt

=
∫ 9 cos(3 ln(t))

t3

4374t6 dt

=
∫ (cos (3 ln (t))

486t9

)
dt

=
(
− 2

17739 −
i

23652

)
t3i

t8
+
(
− 2

17739 +
i

23652

)
t−3i

t8

Now that all the Ui functions have been determined, the particular solution is found
from

xp = U1x1 + U2x2 + U3x3 + U4x4

Hence

xp =

−

(
8
25 +

9 ln(t)
10

)
t cos (3 ln (t))

243 +

(
87
50 −

27 ln(t)
10

)
t sin (3 ln (t))

243

(1
t

)

+
(
cos (3 ln (t)) t

270 + t sin (3 ln (t))
90

)(
ln (t)
t

)

+

−
− 1

351 +
tan
(

3 ln(t)
2

)2
351 +

tan
(

3 ln(t)
2

)
117(

1 + tan
(

3 ln(t)
2

)2)
t2

(t2)

+
((

− 2
17739 −

i
23652

)
t3i

t8
+
(
− 2

17739 +
i

23652

)
t−3i

t8

)(
t8
)

Therefore the particular solution is

xp =
(

31
47450 − 141i

94900

)
t−3it6i +

(
31

47450 + 141i
94900

)
t−3i

Therefore the general solution is

x = xh + xp

=
(
c1
t
+ c2 ln (t)

t
+c3 t

2+c4 t
8
)
+
((

31
47450−

141i
94900

)
t−3it6i+

(
31

47450 +
141i
94900

)
t−3i
)
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Maple step by step solution

Let’s solve
t4x′′′′ − 2t3x′′′ − 20t2x′′ + 12x′t+ 16x = cos (3 ln (t))

• Highest derivative means the order of the ODE is 4
x′′′′

Maple trace� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
-> Calling odsolve with the ODE`, diff(diff(diff(_b(_a), _a), _a), _a) = (c__1-16*_b(_a)*_a+2*_a^2*(diff(_b(_a), _a))+6*_a^3*(diff(d

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
-> Calling odsolve with the ODE`, diff(diff(_g(_f), _f), _f) = c__2+8*_g(_f)/_f^2+6*(diff(_g(_f), _f))/_f-(1/3)*c__1/_f^3+(1/10)*

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- solving first the homogeneous part of the ODE successful
<- high order exact_linear_nonhomogeneous successful

<- high order exact_linear_nonhomogeneous successful`� �
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Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 43� �
dsolve(t^4*diff(diff(diff(diff(x(t),t),t),t),t)-2*t^3*diff(diff(diff(x(t),t),t),t)-20*t^2*diff(diff(x(t),t),t)+12*diff(x(t),t)*t+16*x(t) = cos(3*ln(t)),x(t),singsol=all)� �
x

= (15066 + 34263i) t1−3i + (15066− 34263i) t1+3i + 23060700t9c3 − 1281150c2t3 + 854100c1 ln (t) + 94900c1 + 23060700c4
23060700t

Mathematica DSolve solution

Solving time : 0.076 (sec)
Leaf size : 48� �
DSolve[{t^4*D[x[t],{t,4}]-2*t^3*D[x[t],{t,3}]-20*t^2*D[x[t],{t,2}]+12*t*D[x[t],t]+16*x[t]==Cos[3*Log[t]],{}},x[t],t,IncludeSingularSolutions->True]� �

x(t) → c4t
9 + c3t

3 + c2 log(t) + c1
t

+ 141 sin(3 log(t))
47450 + 31 cos(3 log(t))

23725
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2.9 Chapter VII. Linear equations of order higher
than the first. section 63. Problems at page 196

2.9.1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
2.9.2 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722
2.9.3 Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
2.9.4 Problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735
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2.9.1 Problem 1

Solved as higher order constant coeff ode . . . . . . . . . . . . . 719
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 720
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 720
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 721

Internal problem ID [18592]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 63. Problems
at page 196
Problem number : 1
Date solved : Tuesday, January 28, 2025 at 12:03:24 PM
CAS classification : [[_3rd_order, _missing_x]]

Solve

y′′′ − y′′ − y′ + y = 0

Solved as higher order constant coeff ode

Time used: 0.023 (sec)

The characteristic equation is

λ3 − λ2 − λ+ 1 = 0

The roots of the above equation are

λ1 = −1
λ2 = 1
λ3 = 1

Therefore the homogeneous solution is

yh(x) = e−xc1 + exc2 + x exc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = x ex
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Maple step by step solution

Let’s solve
y′′′ − y′′ − y′ + y = 0

• Highest derivative means the order of the ODE is 3
y′′′

• Characteristic polynomial of ODE
r3 − r2 − r + 1 = 0

• Roots of the characteristic polynomial and corresponding multiplicities
r = [[−1, 1] , [1, 2]]

• Solution from r = −1
y1(x) = e−x

• 1st solution from r = 1
y2(x) = ex

• 2nd solution from r = 1
y3(x) = x ex

• General solution of the ODE
y = C1y1(x) + C2y2(x) + C3y3(x)

• Substitute in solutions and simplify
y = e−xC1 + ex(C3x+ C2 )

Maple trace� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 19� �
dsolve(diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)-diff(y(x),x)+y(x) = 0,y(x),singsol=all)� �

y(x) = e−xc1 + ex(c3x+ c2)
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Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 25� �
DSolve[{D[y[x],{x,3}]-D[y[x],{x,2}]-D[y[x],x]+y[x]==0,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → c1e
−x + ex(c3x+ c2)
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2.9.2 Problem 2

Solved as higher order constant coeff ode . . . . . . . . . . . . . 722
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 724
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 727
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 727

Internal problem ID [18593]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 63. Problems
at page 196
Problem number : 2
Date solved : Tuesday, January 28, 2025 at 12:03:25 PM
CAS classification : [[_high_order, _missing_y]]

Solve

y′′′′ − 3y′′′ + 3y′′ − y′ = e2x

Solved as higher order constant coeff ode

Time used: 0.059 (sec)

The characteristic equation is

λ4 − 3λ3 + 3λ2 − λ = 0

The roots of the above equation are

λ1 = 0
λ2 = 1
λ3 = 1
λ4 = 1

Therefore the homogeneous solution is

yh(x) = c1 + exc2 + x exc3 + x2exc4
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The fundamental set of solutions for the homogeneous solution are the following

y1 = 1
y2 = ex

y3 = x ex

y4 = x2ex

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 3y′′′ + 3y′′ − y′ = 0

Now the particular solution to the given ODE is found

y′′′′ − 3y′′′ + 3y′′ − y′ = e2x

The particular solution is now found using the method of undetermined coefficients.

Looking at the RHS of the ode, which is

e2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, x ex, x2ex, ex}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e2x

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2A1e2x = e2x
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Solving for the unknowns by comparing coefficients results in[
A1 =

1
2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
e2x
2

Therefore the general solution is

y = yh + yp

=
(
c1 + exc2 + x exc3 + x2exc4

)
+
(
e2x
2

)

Maple step by step solution

Let’s solve
y′′′′ − 3y′′′ + 3y′′ − y′ = e2x

• Highest derivative means the order of the ODE is 4
y′′′′

• Characteristic polynomial of homogeneous ODE
r4 − 3r3 + 3r2 − r = 0

• Roots of the characteristic polynomial and corresponding multiplicities
r = [[0, 1] , [1, 3]]

• Homogeneous solution from r = 0
y1(x) = 1

• 1st homogeneous solution from r = 1
y2(x) = ex

• 2nd homogeneous solution from r = 1
y3(x) = x ex

• 3rd homogeneous solution from r = 1
y4(x) = x2ex

• General solution of the ODE
y = C1y1(x) + C2y2(x) + C3y3(x) + C4y4(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = C1 + exC2 + x exC3 + x2exC4 + yp(x)
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� Find a particular solution yp(x) of the ODE
◦ Define the forcing function of the ODE

f(x) = e2x

◦ Form of the particular solution to the ODE where the ui(x) are to be found

yp(x) =
4∑

i=1
ui(x) yi(x)

◦ Calculate the 1st derivative of yp(x)

y′p(x) =
4∑

i=1
(u′

i(x) yi(x) + ui(x) y′i(x))

◦ Choose equation to add to a system of equations in u′
i(x)

4∑
i=1

u′
i(x) yi(x) = 0

◦ Calculate the 2nd derivative of yp(x)

y′′p(x) =
4∑

i=1
(u′

i(x) y′i(x) + ui(x) y′′i (x))

◦ Choose equation to add to a system of equations in u′
i(x)

4∑
i=1

u′
i(x) y′i(x) = 0

◦ Calculate the 3rd derivative of yp(x)

y′′′p (x) =
4∑

i=1
(u′

i(x) y′′i (x) + ui(x) y′′′i (x))

◦ Choose equation to add to a system of equations in u′
i(x)

4∑
i=1

u′
i(x) y′′i (x) = 0

◦ The ODE is of the following form where the Pi(x) in this situation are the coefficients of the derivatives in the ODE

y′′′′ +
(

3∑
i=0

Pi(x) y(i)
)

= f(x)

◦ Substitute yp(x) =
4∑

i=1
ui(x) yi(x) into the ODE(

3∑
j=0

Pj(x)
(

4∑
i=1

ui(x) y(j)i (x)
))

+
4∑

i=1
(u′

i(x) y′′′i (x) + ui(x) y′′′′i (x)) = f(x)

◦ Rearrange the ODE
4∑

i=1

(
ui(x) ·

((
3∑

j=0
Pj(x) y(j)i (x)

)
+ y′′′′i (x)

)
+ u′

i(x) y′′′i (x)
)

= f(x)
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◦ Notice that yi(x) are solutions to the homogeneous equation so the first term in the sum is 0
4∑

i=1
u′
i(x) y′′′i (x) = f(x)

◦ We have now made a system of 4 equations in 4 unknowns ( u′
i(x))[

4∑
i=1

u′
i(x) yi(x) = 0,

4∑
i=1

u′
i(x) y′i(x) = 0,

4∑
i=1

u′
i(x) y′′i (x) = 0,

4∑
i=1

u′
i(x) y′′′i (x) = f(x)

]
◦ Convert the system to linear algebra format, notice that the matrix is the wronskian W

y1(x) y2(x) y3(x) y4(x)
y′1(x) y′2(x) y′3(x) y′4(x)
y′′1(x) y′′2(x) y′′3(x) y′′4(x)
y′′′1 (x) y′′′2 (x) y′′′3 (x) y′′′4 (x)

 ·


u′
1(x)

u′
2(x)

u′
3(x)

u′
4(x)

 =


0
0
0

f(x)


◦ Solve for the varied parameters

u1(x)
u2(x)
u3(x)
u4(x)

 =
∫ 1

W
·


0
0
0

f(x)

 dx

◦ Substitute in the homogeneous solutions and forcing function and solve
u1(x)
u2(x)
u3(x)
u4(x)

 =


− e2x

2(
x2+2

)
e2x

2 ex

−x e2x
ex

e2x
2 ex


Find a particular solution yp(x) of the ODE
yp(x) = e2x

2

• Substitute particular solution into general solution to ODE
y = C1 + exC2 + x exC3 + x2exC4 + e2x

2

Maple trace� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(diff(_b(_a), _a), _a), _a) = 3*(diff(diff(_b(_a), _a), _a))-3*(diff(_b(_a), _a))+_b(_a)+
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Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful

<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 33� �
dsolve(diff(diff(diff(diff(y(x),x),x),x),x)-3*diff(diff(diff(y(x),x),x),x)+3*diff(diff(y(x),x),x)-diff(y(x),x) = exp(2*x),y(x),singsol=all)� �

y(x) = e2x
2 +

((
x2 − 2x+ 2

)
c2 + c3x+ c1 − c3

)
ex + c4

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 41� �
DSolve[{D[y[x],{x,4}]-3*D[y[x],{x,3}]+3*D[y[x],{x,2}]-D[y[x],x]==Exp[2*x],{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → 1
2e

x
(
ex + 2

(
c3
(
x2 − 2x+ 2

)
+ c2(x− 1) + c1

))
+ c4
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2.9.3 Problem 3

Solved as higher order constant coeff ode . . . . . . . . . . . . . 728
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 732
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 734
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 734

Internal problem ID [18594]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 63. Problems
at page 196
Problem number : 3
Date solved : Tuesday, January 28, 2025 at 12:03:25 PM
CAS classification : [[_3rd_order, _linear, _nonhomogeneous]]

Solve

y′′′ − y′′ + y′ − y = cos (x)

Solved as higher order constant coeff ode

Time used: 0.463 (sec)

The characteristic equation is

λ3 − λ2 + λ− 1 = 0

The roots of the above equation are

λ1 = 1
λ2 = i

λ3 = −i

Therefore the homogeneous solution is

yh(x) = exc1 + e−ixc2 + eixc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = e−ix

y3 = eix
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This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − y′′ + y′ − y = 0

Now the particular solution to the given ODE is found

y′′′ − y′′ + y′ − y = cos (x)

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3
y′′1 y′′2 y′′3

∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =

 ex e−ix eix

ex −ie−ix ieix

ex −e−ix −eix


|W | = 4iexe−ixeix

The determinant simplifies to

|W | = 4iex
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Now we determine Wi for each Ui.

W1(x) = det
[

e−ix eix

−ie−ix ieix

]
= 2i

W2(x) = det
[
ex eix

ex ieix

]
= (−1 + i) e(1+i)x

W3(x) = det
[

ex e−ix

ex −ie−ix

]
= (−1− i) e(1−i)x

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (cos (x)) (2i)

(1) (4iex) dx

=
∫ 2i cos (x)

4iex dx

=
∫ (cos (x) e−x

2

)
dx

= −cos (x) e−x

4 + e−x sin (x)
4

U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (cos (x))

(
(−1 + i) e(1+i)x)

(1) (4iex) dx

= −
∫ (−1 + i) cos (x) e(1+i)x

4iex dx

= −
∫ ((1

4 + i

4

)
cos (x) eix

)
dx

= −x

8 − ix

8 − e2ix
16 + ie2ix

16

= −x

8 − ix

8 − e2ix
16 + ie2ix

16
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U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (cos (x))

(
(−1− i) e(1−i)x)

(1) (4iex) dx

=
∫ (−1− i) cos (x) e(1−i)x

4iex dx

=
∫ ((

−1
4 + i

4

)
cos (x) e−ix

)
dx

=
∫ (

−1
4 + i

4

)
cos (x) e−ixdx

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(
−cos (x) e−x

4 + e−x sin (x)
4

)
(ex)

+
(
−x

8 − ix

8 − e2ix
16 + ie2ix

16

)(
e−ix

)
+
(∫ (

−1
4 + i

4

)
cos (x) e−ixdx

)(
eix
)

Therefore the particular solution is

yp =
(−5 + i− 4x) cos (x)

16 + (1 + i− 4x) sin (x)
16

Which simplifies to

yp =
(−5 + i− 4x) cos (x)

16 + (1 + i− 4x) sin (x)
16

Therefore the general solution is

y = yh + yp

=
(
exc1 + e−ixc2 + eixc3

)
+
(
(−5 + i− 4x) cos (x)

16 + (1 + i− 4x) sin (x)
16

)
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Maple step by step solution

Let’s solve
y′′′ − y′′ + y′ − y = cos (x)

• Highest derivative means the order of the ODE is 3
y′′′

• Characteristic polynomial of homogeneous ODE
r3 − r2 + r − 1 = 0

• Roots of the characteristic polynomial
r = [1, I,−I]

• Homogeneous solution from r = 1
y1(x) = ex

• Homogeneous solutions from r = I and r = −I
[y2(x) = sin (x) , y3(x) = cos (x)]

• General solution of the ODE
y = C1y1(x) + C2y2(x) + C3y3(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = C1 ex + C2 sin (x) + C3 cos (x) + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Define the forcing function of the ODE

f(x) = cos (x)
◦ Form of the particular solution to the ODE where the ui(x) are to be found

yp(x) =
3∑

i=1
ui(x) yi(x)

◦ Calculate the 1st derivative of yp(x)

y′p(x) =
3∑

i=1
(u′

i(x) yi(x) + ui(x) y′i(x))

◦ Choose equation to add to a system of equations in u′
i(x)

3∑
i=1

u′
i(x) yi(x) = 0

◦ Calculate the 2nd derivative of yp(x)

y′′p(x) =
3∑

i=1
(u′

i(x) y′i(x) + ui(x) y′′i (x))

◦ Choose equation to add to a system of equations in u′
i(x)

3∑
i=1

u′
i(x) y′i(x) = 0
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◦ The ODE is of the following form where the Pi(x) in this situation are the coefficients of the derivatives in the ODE

y′′′ +
(

2∑
i=0

Pi(x) y(i)
)

= f(x)

◦ Substitute yp(x) =
3∑

i=1
ui(x) yi(x) into the ODE(

2∑
j=0

Pj(x)
(

3∑
i=1

ui(x) y(j)i (x)
))

+
3∑

i=1
(u′

i(x) y′′i (x) + ui(x) y′′′i (x)) = f(x)

◦ Rearrange the ODE
3∑

i=1

(
ui(x) ·

((
2∑

j=0
Pj(x) y(j)i (x)

)
+ y′′′i (x)

)
+ u′

i(x) y′′i (x)
)

= f(x)

◦ Notice that yi(x) are solutions to the homogeneous equation so the first term in the sum is 0
3∑

i=1
u′
i(x) y′′i (x) = f(x)

◦ We have now made a system of 3 equations in 3 unknowns ( u′
i(x))[

3∑
i=1

u′
i(x) yi(x) = 0,

3∑
i=1

u′
i(x) y′i(x) = 0,

3∑
i=1

u′
i(x) y′′i (x) = f(x)

]
◦ Convert the system to linear algebra format, notice that the matrix is the wronskian W y1(x) y2(x) y3(x)

y′1(x) y′2(x) y′3(x)
y′′1(x) y′′2(x) y′′3(x)

 ·

 u′
1(x)

u′
2(x)

u′
3(x)

 =

 0
0

f(x)


◦ Solve for the varied parameters u1(x)

u2(x)
u3(x)

 =
∫ 1

W
·

 0
0

f(x)

 dx

◦ Substitute in the homogeneous solutions and forcing function and solve u1(x)
u2(x)
u3(x)

 =


− cos(x)e−x

4 + e−x sin(x)
4

−x
4 −

sin(2x)
8 + cos(2x)

8

−x
4 −

sin(2x)
8 − cos(2x)

8


Find a particular solution yp(x) of the ODE

yp(x) = (−2x−3) cos(x)
8 + (−2x+1) sin(x)

8

• Substitute particular solution into general solution to ODE
y = C1 ex + C2 sin (x) + C3 cos (x) + (−2x−3) cos(x)

8 + (−2x+1) sin(x)
8
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Maple trace� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 33� �
dsolve(diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)+diff(y(x),x)-y(x) = cos(x),y(x),singsol=all)� �

y(x) = (−x+ 4c1 − 2) cos (x)
4 + (−x+ 4c3 + 1) sin (x)

4 + c2ex

Mathematica DSolve solution

Solving time : 0.038 (sec)
Leaf size : 40� �
DSolve[{D[y[x],{x,3}]-D[y[x],{x,2}]+D[y[x],x]-y[x]==Cos[x],{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → 1
4(4c3e

x − (x+ 2− 4c1) cos(x) + (−x+ 1 + 4c2) sin(x))
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Internal problem ID [18595]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First
Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 63. Problems
at page 196
Problem number : 8
Date solved : Tuesday, January 28, 2025 at 12:03:26 PM
CAS classification : [[_2nd_order, _exact, _linear, _nonhomogeneous]]

Solve

x2y′′ + 3xy′ + y = 1
x

Solved as second order Euler type ode

Time used: 0.124 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = 3x,C = 1, f(x) = 1
x
. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ + 3xy′ + y = 0

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 + 3xrxr−1 + xr = 0

Simplifying gives
r(r − 1)xr + 3r xr + xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1) + 3r + 1 = 0

Or
r2 + 2r + 1 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = −1
r2 = −1

Since the roots are equal, then the general solution is

y = c1y1 + c2y2

Where y1 = xr and y2 = xr ln (x). Hence

y = c1
x

+ c2 ln (x)
x

Next, we find the particular solution to the ODE

x2y′′ + 3xy′ + y = 1
x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 =
ln (x)
x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
1
x

ln(x)
x

d
dx

( 1
x

)
d
dx

(
ln(x)
x

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
1
x

ln(x)
x

− 1
x2 − ln(x)

x2 + 1
x2

∣∣∣∣∣∣
Therefore

W =
(
1
x

)(
− ln (x)

x2 + 1
x2

)
−
(
ln (x)
x

)(
− 1
x2

)

Which simplifies to

W = 1
x3

Which simplifies to

W = 1
x3
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Therefore Eq. (2) becomes

u1 = −
∫ ln(x)

x2

1
x

dx

Which simplifies to

u1 = −
∫ ln (x)

x
dx

Hence

u1 = − ln (x)2

2

And Eq. (3) becomes

u2 =
∫ 1

x2

1
x

dx

Which simplifies to

u2 =
∫ 1

x
dx

Hence
u2 = ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
ln (x)2

2x

Therefore the general solution is

y = yh + yp

= ln (x)2 + 2c2 ln (x) + 2c1
2x

Will add steps showing solving for IC soon.

Summary of solutions found

y = ln (x)2 + 2c2 ln (x) + 2c1
2x
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Solved as second order linear exact ode

Time used: 0.097 (sec)

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = x2

q(x) = 3x
r(x) = 1

s(x) = 1
x

Hence

p′′(x) = 2
q′(x) = 3

Therefore (1) becomes

2− (3) + (1) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

x2y′ + yx =
∫ 1

x
dx

We now have a first order ode to solve which is

x2y′ + yx = ln (x) + c1
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In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = 1
x

p(x) = ln (x) + c1
x2

The integrating factor µ is

µ = e
∫
q dx

= e
∫ 1

x
dx

= x

The ode becomes
d
dx(µy) = µp

d
dx(µy) = (µ)

(
ln (x) + c1

x2

)
d
dx(yx) = (x)

(
ln (x) + c1

x2

)
d(yx) =

(
ln (x) + c1

x

)
dx

Integrating gives

yx =
∫ ln (x) + c1

x
dx

= ln (x)2

2 + c1 ln (x) + c2

Dividing throughout by the integrating factor x gives the final solution

y =
ln(x)2

2 + c1 ln (x) + c2
x

Will add steps showing solving for IC soon.

Summary of solutions found

y =
ln(x)2

2 + c1 ln (x) + c2
x
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Solved as second order integrable as is ode

Time used: 0.075 (sec)

Integrating both sides of the ODE w.r.t x gives∫ (
x2y′′ + 3xy′ + y

)
dx =

∫ 1
x
dx

x2y′ + yx = ln (x) + c1

Which is now solved for y. In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = 1
x

p(x) = ln (x) + c1
x2

The integrating factor µ is

µ = e
∫
q dx

= e
∫ 1

x
dx

= x

The ode becomes
d
dx(µy) = µp

d
dx(µy) = (µ)

(
ln (x) + c1

x2

)
d
dx(yx) = (x)

(
ln (x) + c1

x2

)
d(yx) =

(
ln (x) + c1

x

)
dx

Integrating gives

yx =
∫ ln (x) + c1

x
dx

= ln (x)2

2 + c1 ln (x) + c2
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Dividing throughout by the integrating factor x gives the final solution

y =
ln(x)2

2 + c1 ln (x) + c2
x

Will add steps showing solving for IC soon.

Summary of solutions found

y =
ln(x)2

2 + c1 ln (x) + c2
x

Solved as second order integrable as is ode (ABC method)

Time used: 0.118 (sec)

Writing the ode as

x2y′′ + 3xy′ + y = 1
x

Integrating both sides of the ODE w.r.t x gives∫ (
x2y′′ + 3xy′ + y

)
dx =

∫ 1
x
dx

x2y′ + yx = ln (x) + c1

Which is now solved for y. In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = 1
x

p(x) = ln (x) + c1
x2

The integrating factor µ is

µ = e
∫
q dx

= e
∫ 1

x
dx

= x
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The ode becomes
d
dx(µy) = µp

d
dx(µy) = (µ)

(
ln (x) + c1

x2

)
d
dx(yx) = (x)

(
ln (x) + c1

x2

)
d(yx) =

(
ln (x) + c1

x

)
dx

Integrating gives

yx =
∫ ln (x) + c1

x
dx

= ln (x)2

2 + c1 ln (x) + c2

Dividing throughout by the integrating factor x gives the final solution

y =
ln(x)2

2 + c1 ln (x) + c2
x

Will add steps showing solving for IC soon.

Solved as second order ode using change of variable on x method 2

Time used: 0.598 (sec)

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ + 3xy′ + y = 0

In normal form the ode

x2y′′ + 3xy′ + y = 0 (1)
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Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 3
x

q(x) = 1
x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
∫
p(x)dxdx

=
∫

e−
∫ 3

x
dxdx

=
∫

e−3 ln(x) dx

=
∫ 1

x3dx

= − 1
2x2 (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
1
x2

1
x6

= x4 (7)
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Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + x4y(τ) = 0

But in terms of τ

x4 = 1
4τ 2

Hence the above ode becomes

d2

dτ 2
y(τ) + y(τ)

4τ 2 = 0

The above ode is now solved for y(τ). Writing the ode as

d2

dτ 2
y(τ) + y(τ)

4τ 2 = 0 (1)

A
d2

dτ 2
y(τ) +B

d

dτ
y(τ) + Cy(τ) = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = 1
4τ 2

Applying the Liouville transformation on the dependent variable gives

z(τ) = y(τ) e
∫

B
2A dτ

Then (2) becomes

z′′(τ) = rz(τ) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4τ 2 (6)

Comparing the above to (5) shows that

s = −1
t = 4τ 2

Therefore eq. (4) becomes

z′′(τ) =
(
− 1
4τ 2

)
z(τ) (7)

Equation (7) is now solved. After finding z(τ) then y(τ) is found using the inverse
transformation

y(τ) = z(τ) e−
∫

B
2A dτ

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.68: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2
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The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4τ 2. There is a pole at τ = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4τ 2

For the pole at τ = 0 let b be the coefficient of 1
τ2

in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

τ2
in

the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 1

4τ 2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 1
4τ 2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 1
2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

τ − c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

τ − c1

)
+ (−)[

√
r]∞

= 1
2τ + (−) (0)

= 1
2τ

= 1
2τ

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(τ) of degree d = 0 to solve the ode. The polynomial p(τ) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(τ) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2τ

)
(0) +

((
− 1
2τ 2

)
+
(

1
2τ

)2

−
(
− 1
4τ 2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(τ) = pe
∫
ω dτ

= e
∫ 1

2τ dτ

=
√
τ

The first solution to the original ode in y(τ) is found from

y1 = z1e
∫
− 1

2
B
A

dτ

Since B = 0 then the above reduces to

y1 = z1

=
√
τ

Which simplifies to
y1 =

√
τ

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dτ

y21
dτ

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dτ

=
√
τ

∫ 1
τ
dτ

=
√
τ(ln (τ))
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Therefore the solution is

y(τ) = c1y1 + c2y2

= c1
(√

τ
)
+ c2

(√
τ(ln (τ))

)
Will add steps showing solving for IC soon.

The above solution is now transformed back to y using (6) which results in

y = c1

√
− 1
2x2 + c2

√
− 1
2x2 ln

(
− 1
2x2

)
Therefore the homogeneous solution yh is

yh = c1

√
− 1
2x2 + c2

√
− 1
2x2 ln

(
− 1
2x2

)
The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
√

− 1
2x2

y2 = −
√
− 1
2x2 ln (2) +

√
− 1
2x2 ln

(
− 1
x2

)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣
√

− 1
2x2 −

√
− 1

2x2 ln (2) +
√
− 1

2x2 ln
(
− 1

x2

)
d
dx

(√
− 1

2x2

)
d
dx

(
−
√
− 1

2x2 ln (2) +
√

− 1
2x2 ln

(
− 1

x2

))
∣∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣∣∣
√

− 1
2x2 −

√
− 1

2x2 ln (2) +
√

− 1
2x2 ln

(
− 1

x2

)
1

2
√

− 1
2x2 x3

− ln(2)
2
√

− 1
2x2 x3

+
ln
(
− 1

x2

)
2
√

− 1
2x2 x3

−
2
√

− 1
2x2

x

∣∣∣∣∣∣∣∣∣
Therefore

W =
(√

− 1
2x2

)− ln (2)

2
√

− 1
2x2 x3

+
ln
(
− 1

x2

)
2
√

− 1
2x2 x3

−
2
√

− 1
2x2

x


−

(
−
√

− 1
2x2 ln (2) +

√
− 1
2x2 ln

(
− 1
x2

)) 1

2
√

− 1
2x2 x3


Which simplifies to

W = 1
x3

Which simplifies to

W = 1
x3

Therefore Eq. (2) becomes

u1 = −
∫ −

√
− 1

2x2 ln(2)+
√

− 1
2x2 ln

(
− 1

x2

)
x
1
x

dx

Which simplifies to

u1 = −
∫

−

√
2
√

− 1
x2

(
ln (2)− ln

(
− 1

x2

))
2 dx
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Hence

u1 =

√
2
√

− 1
x2 x ln (2) ln (x)

2 +

√
2
√

− 1
x2 x ln

(
− 1

x2

)2
8

And Eq. (3) becomes

u2 =
∫ √

− 1
2x2

x
1
x

dx

Which simplifies to

u2 =
∫ √

2
√

− 1
x2

2 dx

Hence

u2 =

√
2
√
− 1

x2 x ln (x)
2

Therefore the particular solution, from equation (1) is

yp(x) =

√
2
√

− 1
x2 x ln (2) ln (x)

2 +

√
2
√

− 1
x2 x ln

(
− 1

x2

)2
8

√− 1
2x2

+

(
−
√
− 1

2x2 ln (2) +
√

− 1
2x2 ln

(
− 1

x2

))√
2
√

− 1
x2 x ln (x)

2

Which simplifies to

yp(x) = −
ln
(
− 1

x2

) (
ln
(
− 1

x2

)
+ 4 ln (x)

)
8x

Therefore the general solution is

y = yh + yp

=
(
c1

√
− 1
2x2 + c2

√
− 1
2x2 ln

(
− 1
2x2

))
+
(
−
ln
(
− 1

x2

) (
ln
(
− 1

x2

)
+ 4 ln (x)

)
8x

)

Will add steps showing solving for IC soon.
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Summary of solutions found

y = −
ln
(
− 1

x2

) (
ln
(
− 1

x2

)
+ 4 ln (x)

)
8x + c1

√
− 1
2x2 + c2

√
− 1
2x2 ln

(
− 1
2x2

)

Solved as second order ode using change of variable on y method 2

Time used: 0.148 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = 3x,C = 1, f(x) = 1
x
. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ + 3xy′ + y = 0

In normal form the ode

x2y′′ + 3xy′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 3
x

q(x) = 1
x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)
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Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + 3n

x2 + 1
x2 = 0 (5)

Solving (5) for n gives

n = −1 (6)

Substituting this value in (3) gives

v′′(x) + v′(x)
x

= 0

v′′(x) + v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form a linear first order is

u′(x) + q(x)u(x) = p(x)

Comparing the above to the given ode shows that

q(x) = 1
x

p(x) = 0

The integrating factor µ is

µ = e
∫
q dx

= e
∫ 1

x
dx

= x
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The ode becomes
d
dxµu = 0
d
dx(ux) = 0

Integrating gives

ux =
∫

0 dx+ c3

= c3

Dividing throughout by the integrating factor x gives the final solution

u(x) = c3
x

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c4

= c3 ln (x) + c4

Hence

y = v(x)xn

= c3 ln (x) + c4
x

= c3 ln (x) + c4
x

Now the particular solution to this ODE is found

x2y′′ + 3xy′ + y = 1
x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 =
ln (x)
x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
1
x

ln(x)
x

d
dx

( 1
x

)
d
dx

(
ln(x)
x

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
1
x

ln(x)
x

− 1
x2 − ln(x)

x2 + 1
x2

∣∣∣∣∣∣
Therefore

W =
(
1
x

)(
− ln (x)

x2 + 1
x2

)
−
(
ln (x)
x

)(
− 1
x2

)

Which simplifies to

W = 1
x3

Which simplifies to

W = 1
x3
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Therefore Eq. (2) becomes

u1 = −
∫ ln(x)

x2

1
x

dx

Which simplifies to

u1 = −
∫ ln (x)

x
dx

Hence

u1 = − ln (x)2

2

And Eq. (3) becomes

u2 =
∫ 1

x2

1
x

dx

Which simplifies to

u2 =
∫ 1

x
dx

Hence
u2 = ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
ln (x)2

2x

Therefore the general solution is

y = yh + yp

=
(
c3 ln (x) + c4

x

)
+
(
ln (x)2

2x

)

Will add steps showing solving for IC soon.

Summary of solutions found

y = c3 ln (x) + c4
x

+ ln (x)2

2x
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Solved as second order ode using Kovacic algorithm

Time used: 0.194 (sec)

Writing the ode as

x2y′′ + 3xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 3x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.69: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2
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For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 1

4x2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
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Trying α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x
x2 dx

= z1e
− 3 ln(x)

2

= z1

(
1

x3/2

)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x

x2 dx

(y1)2
dx

= y1

∫
e−3 ln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x
(ln (x))

)

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ + 3xy′ + y = 0
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The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1
x
+ c2 ln (x)

x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 =
ln (x)
x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
1
x

ln(x)
x

d
dx

( 1
x

)
d
dx

(
ln(x)
x

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
1
x

ln(x)
x

− 1
x2 − ln(x)

x2 + 1
x2

∣∣∣∣∣∣
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Therefore

W =
(
1
x

)(
− ln (x)

x2 + 1
x2

)
−
(
ln (x)
x

)(
− 1
x2

)
Which simplifies to

W = 1
x3

Which simplifies to

W = 1
x3

Therefore Eq. (2) becomes

u1 = −
∫ ln(x)

x2

1
x

dx

Which simplifies to

u1 = −
∫ ln (x)

x
dx

Hence

u1 = − ln (x)2

2

And Eq. (3) becomes

u2 =
∫ 1

x2

1
x

dx

Which simplifies to

u2 =
∫ 1

x
dx

Hence
u2 = ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
ln (x)2

2x
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Therefore the general solution is

y = yh + yp

=
(
c1
x
+ c2 ln (x)

x

)
+
(
ln (x)2

2x

)

Will add steps showing solving for IC soon.

Summary of solutions found

y = c1
x
+ c2 ln (x)

x
+ ln (x)2

2x

Solved as second order ode adjoint method

Time used: 0.179 (sec)

In normal form the ode

x2y′′ + 3xy′ + y = 1
x

(1)

Becomes

y′′ + p(x) y′ + q(x) y = r(x) (2)

Where

p(x) = 3
x

q(x) = 1
x2

r(x) = 1
x3

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ −

(
3ξ(x)
x

)′

+
(
ξ(x)
x2

)
= 0

ξ′′(x) + 4ξ(x)
x2 − 3ξ′(x)

x
= 0
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Which is solved for ξ(x). This is Euler second order ODE. Let the solution be ξ = xr,
then ξ′ = rxr−1 and ξ′′ = r(r − 1)xr−2. Substituting these back into the given ODE
gives

x2(r(r − 1))xr−2 − 3xrxr−1 + 4xr = 0

Simplifying gives
r(r − 1)xr − 3r xr + 4xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1)− 3r + 4 = 0

Or
r2 − 4r + 4 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = 2
r2 = 2

Since the roots are equal, then the general solution is

ξ = c1ξ1 + c2ξ2

Where ξ1 = xr and ξ2 = xr ln (x). Hence

ξ = c1 x
2 + c2 x

2 ln (x)

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(x) y′ − yξ′(x) + ξ(x) p(x) y =
∫

ξ(x) r(x) dx

y′ + y

(
p(x)− ξ′(x)

ξ (x)

)
=
∫
ξ(x) r(x) dx

ξ (x)

Or

y′ + y

(
3
x
− 2c1x+ 2c2x ln (x) + c2x

c1 x2 + c2 x2 ln (x)

)
=

c2 ln(x)2
2 + c1 ln (x)

c1 x2 + c2 x2 ln (x)

Which is now a first order ode. This is now solved for y. In canonical form a linear first
order is

y′ + q(x)y = p(x)
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Comparing the above to the given ode shows that

q(x) = −−c2 ln (x)− c1 + c2
x (c2 ln (x) + c1)

p(x) = ln (x) (c2 ln (x) + 2c1)
2x2 (c2 ln (x) + c1)

The integrating factor µ is

µ = e
∫
q dx

= e
∫
−−c2 ln(x)−c1+c2

x(c2 ln(x)+c1)
dx

= x

c2 ln (x) + c1

The ode becomes
d
dx(µy) = µp

d
dx(µy) = (µ)

(
ln (x) (c2 ln (x) + 2c1)
2x2 (c2 ln (x) + c1)

)
d
dx

(
yx

c2 ln (x) + c1

)
=
(

x

c2 ln (x) + c1

)(
ln (x) (c2 ln (x) + 2c1)
2x2 (c2 ln (x) + c1)

)
d
(

yx

c2 ln (x) + c1

)
=
(
ln (x) (c2 ln (x) + 2c1)
2x (c2 ln (x) + c1)2

)
dx

Integrating gives

yx

c2 ln (x) + c1
=
∫ ln (x) (c2 ln (x) + 2c1)

2x (c2 ln (x) + c1)2
dx

= ln (x)
2c2

+ c21
2c22 (c2 ln (x) + c1)

+ c3

Dividing throughout by the integrating factor x
c2 ln(x)+c1

gives the final solution

y = ln (x)2 c22 + c2(2c3 c22 + c1) ln (x) + c1(2c3 c22 + c1)
2x c22

Hence, the solution found using Lagrange adjoint equation method is

y = ln (x)2 c22 + c2(2c3 c22 + c1) ln (x) + c1(2c3 c22 + c1)
2x c22
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The constants can be merged to give

y = ln (x)2 c22 + c2(2c22 + c1) ln (x) + c1(2c22 + c1)
2x c22

Will add steps showing solving for IC soon.

Summary of solutions found

y = ln (x)2 c22 + c2(2c22 + c1) ln (x) + c1(2c22 + c1)
2x c22

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 20� �
dsolve(x^2*diff(diff(y(x),x),x)+3*x*diff(y(x),x)+y(x) = 1/x,y(x),singsol=all)� �

y(x) =
c2 + c1 ln (x) + ln(x)2

2
x

Mathematica DSolve solution

Solving time : 0.02 (sec)
Leaf size : 27� �
DSolve[{x^2*D[y[x],{x,2}]+3*x*D[y[x],x]+y[x]==1/x,{}},y[x],x,IncludeSingularSolutions->True]� �

y(x) → log2(x) + 2c2 log(x) + 2c1
2x
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