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1.1 Chapter 3. Solutions of first-order equations.
Exercises at page 47

Table 1.1: Lookup table for all problems in current section

ID problem ODE

1 (i) o = 3t2 4 4t

1 (ii) z =be

1 (iii) T = g

18167 1 (iv) x = t21+1

18168 1 (v) x’ = cos (t)

18169 1 (vi) o' =9

2 (i) ¥ =12%— 31 +2

2 (i) ' =be”

2 (iii) = (x—1)°

2 (iv) ¥ =+vz2-1

18174 2 (v) o' =2z

18175 2 (vi) x’ = tan (x)

18176/ 3 (i) 3t’r — xt + (3t3z2 + t324) ' = 0
18177 3 (i)  1+2z+ (-2 +4)2/ =0
3 (i) 2/ =cos(2)

3(v) (-2 =at

3 (v) ey’ + 3r e’ =2t

3(vi)  2+3z+(Bt—z)z =
4 (i) z + 2z =¢é

18183 4 (ii) ¥ +ztan(t) =0

18184 4 (iii) x' — ztan (t) = 4sin (t)

Continued on next page
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Table 1.1 Lookup table

Continued from previous page

ID problem ODE

18185 4 (iv) 3z + (=3t* +2)z =3
18186, 4 (v) T +2zxt+tzt =0
18187 4 (vi) tz' + zln (t) = t?

18188 5 te' + zg(t) = h(t)
18189 6 t?z" — 6tz’ + 122 =0

1.2 Chapter 4. Autonomous systems. Exercises at
page 69

Table 1.2: Lookup table for all problems in current section

=

D problem ODE

18190 1 ' =-\z

18191 2 [ (t) = 2(t) , ¥/ (¢) = () + 2y(t)]
18192 3 22" — 2z’ +2x =0
5 (i) z" — 5z’ + 62 =0

5 (i) 2" — 4z’ + 42 =0

5 (iil=i) 2" —42'+5z =0

5 (iv) ' +32'=0

6 (i) 1’ -3z +22=0
18198 6 (ii) ' +1z=0

18199 6 (iii) 2’ +2z' +z=0
18200| 6 (iv)  z’—2z' +2z =0
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1.3 Chapter 5. Linear equations. Exercises at page
85

Table 1.3: Lookup table for all problems in current section

ID problem ODE

7 (i) ' —z =1t

7 (ii) g —z=¢

7 (iii) z" + 22’ + 4z = €' cos (2t)
18204 7 (iv) " — 2’ + z = sin (2t)
18205 7 (v) x" 4+ 42’ + 3z = tsin (¢)
18206 7 (vi) z" + x = cos (t)
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2.1 Chapter 3. Solutions of first-order equations.
Exercises at page 47

2.1.1 problem 1 (i) . . . . . . . i)
2.1.2 problem 1 (il) . . . . . . . .. 16
2.1.3 problem 1 (ili) . ... ... ... ... 221
214 problem 1 (iv) . . . . . . . ... 29
215 problem 1 (V) . . . . . . 36
216 problem 1 (Vi) . .. . ... 43
2.1.7 problem 2 (i) . . . . . . . ... 50)
2.1.8 problem 2 (i) . . . . . . ... k%)
219 problem 2 (iif) . .. . ... . ... .. 68
2.1.10 problem 2 (iv) . . . . . ... R2
2.1.11 problem 2 (V) . . . . .o 98
2.1.12 problem 2 (Vi) . . . ... 114
2.1.13 problem 3 (i) . . . . . . ... 128]
2.1.14 problem 3 (if) . . . . . . . .. 138
2.1.15 problem 3 (i) . . . . . . . . ... 155
2.1.16 problem 3 (iv) . . . . . .. 172
2.1.17 problem 3 (V) . . . . . . 1961
2118 problem 3 (vi) . .. .. ... 211
2119 problem 4 (i) . . . . . ... 217
2.1.20 problem 4 (il) . . . . . . .. 231
2.1.21 problem 4 (iii) . . . . . . ... 247
2.1.22 problem 4 (iv) . . . . . ... 2561
2123 problem 4 (V) . . . . ... 273
2.1.24 problem 4 (vi) . . .. ... 280
2.1.25 problem 5 . . . ... e e 295
2.1.26 problem 6 . . . . . ... L e e e 302
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2.1.1 problem 1 (i)

Existence and uniqueness analysis . . . . . . ... ... ... .. )
Solved as first order quadratureode . . . ... ... ... ... 101
Solved as first order Exactode . . .. ... ... ........ 11l
Maple step by step solution . . . . . .. ... ... ... .. .. 14
Maple trace . . . . . . . . . .. 14
Maple dsolve solution . . . .. ... ... ... .. ....... 15}
Mathematica DSolve solution . . . . .. .. ... ... ..... 15

Internal problem ID [18164]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 1 (i)

Date solved : Thursday, December 19, 2024 at 01:51:42 PM

CAS classification : [_quadrature]

Solve
z = 3t + 4t
With initial conditions

z(1) =0

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

o' +q(t)z = p(t)

Where here

q(t) =0
p(t) = 3t2 + 4t

Hence the ode is
z = 3t? + 4t

The domain of ¢(t) =0 is
{—00 <t < o0}
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And the point t, = 1 is inside this domain. The domain of p(t) = 3t% + 4t is

{—o0 <t < o0}

And the point ty = 1 is also inside this domain. Hence solution exists and is unique.

Solved as first order quadrature ode
Time used: 0.094 (sec)

Since the ode has the form ' = f(¢), then we only need to integrate f(t).
/dx:/3t2+4tdt
z=t4+22 +¢
Solving for the constant of integration from initial conditions, the solution becomes

r=t3+2t>-3

1000+ 1000+

500+

500+

— 5007 — 5007

— 10001 — 10001

(a) Solution plot (b) Slope field plot
z=t3+2t2-3 T’ =3t? + 4t

Summary of solutions found

r=t3+2t2-3
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Solved as first order Exact ode
Time used: 0.075 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

dz = (3t* + 4t) dt
(=3t> —4t)dt+dz =0 (2A)

Comparing (1A) and (2A) shows that

M(t,x) = —3t* — 4t
N(t,z) =1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
ox Ot
Using result found above gives
oM 0
= (=3t — 4t
Oor Oz ( )
=0
And
ON 0
-2
o ot )
=0
Since % = %’, then the ODE is exact The following equations are now set up to solve

for the function ¢(¢, z)

0p
g—t =M (1)
¢ N

Integrating (1) w.r.t. ¢ gives
9 4t = [
ot

@dt = /—3t2 — 4t dt
ot

¢ = —t> — 2% + f(x) (3)

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

0 )
%=O+f(x) (4)

But equation (2) says that % = 1. Therefore equation (4) becomes

1=0+ f'(z) (5)
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Solving equation (5) for f'(z) gives
flz) =1

Integrating the above w.r.t = gives

/f’(m)dx=/(1)da:

flx)=z+¢c

Where c; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

p=—-t3—2+zx+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

cg=—t3—2*+ 2
Solving for the constant of integration from initial conditions, the solution becomes
—t3 -2’4+ =-3

Solving for z gives

r=t"+2t*-3
10001 ; ; /77
800 177
W=
y J e
- R —
y 7
. s
7 /
o N ———
M e 7
x(#) o x(O) 0y e /
1177 f0r———m—meerr/
—2007 1117
N A e 4
—4001 B A 7
N /
—6001 111777 e v
Wissrr —————erry
~800; 17777
—10004 /' / 1/ /7rmmmeme s/
~10-8 —6-4-20 2 4 6 8 10 =5 0 5 10
t t
(a) Solution plot (b) Slope field plot

r=t3+2t2-3 =32+ 4t
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Summary of solutions found

r=t"+2t*-3
Maple step by step solution

Let’s solve
[z/ = 3t? + 4t,z(1) = 0]
° Highest derivative means the order of the ODE is 1

.Z'l

° Integrate both sides with respect to ¢
[z'dt = [ (3t* +4t)dt + C1

° Evaluate integral
z=1t3+2t*+ C1

° Solve for x
z=1t3+2t*+ CI1

o Use initial condition z(1) =0
0=C1+3

) Solve for _ C1
C1=-3

° Substitute _ C1 = —3 into general solution and simplify
r=1t"4+2t>-3

° Solution to the IVP
r=t3+2t*-3

Maple trace

“Methods for first order ODEs:

‘——— Trying classification methods —-—-
‘trying a quadrature

‘<— quadrature successful”
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15

Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 14

‘dsolve([diff (x(t),t) = 3*t"2+4xt,

op([x(1) = 0])],x(t),singsol=all)

r=t3+22-3

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 15

DSolve [{D[x[t],t]==3%t"2+4xt,{x[1]1==0}},
x[t],t,IncludeSingularSolutions->True]

z(t) =t +2t* -3
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2.1.2 problem 1 (ii)
Existence and uniqueness analysis . . . . . . ... ... ... .. 16!
Solved as first order quadratureode . . . ... ... ... ... 17
Solved as first order Exactode . . .. ... ... ........ 17
Maple step by step solution . . . . . .. ... ... ... .. .. 201
Mapletrace . . . . . . . . . . . . . 211
Maple dsolve solution . . . . ... ... .......... 21
Mathematica DSolve solution . . . . .. .. ... ... ..... 211

Internal problem ID [18165]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 1 (ii)
Date solved : Thursday, December 19, 2024 at 01:51:43 PM
CAS classification : [_quadrature]

Solve

r =be
With initial conditions

z(1)=0
Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

o' +q(t)z = p(t)

Where here
q(t) =0
p(t) = be'
Hence the ode is
' =be'

The domain of ¢(t) =0 is
{—00 <t < o0}
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And the point tq = 1 is inside this domain. The domain of p(t) = be' is

{—00 <t < o0}
And the point ¢ty = 1 is also inside this domain. Hence solution exists and is unique.

Solved as first order quadrature ode
Time used: 0.109 (sec)

Since the ode has the form 2’ = f(¢), then we only need to integrate f(t).

/dm—/bedt

z=bel+ ¢
Solving for the constant of integration from initial conditions, the solution becomes

r=>be —be

Summary of solutions found

x=>bel —be

Solved as first order Exact ode
Time used: 0.073 (sec)

To solve an ode of the form

M(z,) + N(z,) B =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

0¢  O¢dy
oz oy Oy dz =0 (B)

Hence

Comparing (A,B) shows that
0¢ _
or
0¢ _
oy
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But since aa g = then for the above to be valid, we require that

oM _ ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5?: ;’y = aay gs is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

By(')

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore
dz = (be') dt
(—be')dt+dz =0 (2A)
Comparing (1A) and (2A) shows that
M(t,x) = —be'
N(t,z) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0 .
" as e
=0
And
ON 0
Bt ot
=0
Since %]‘gf = 6t , then the ODE is exact The following equations are now set up to solve
for the function ¢(¢, z)
09
- M (1)
09

=N 2)
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Integrating (1) w.r.t. ¢ gives
99 dt = /Mdt
ot
o .. :
%dt —/ be'dt
¢ =—be' + f() (3)

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t  gives

0% _ 4
=0+ f(2) @

But equation (2) says that % = 1. Therefore equation (4) becomes
1=0+ f'(z) (5)
Solving equation (5) for f'(z) gives
fi(z) =1
Integrating the above w.r.t = gives
/f’(w) dx=/(1) dz

fx)=z+ac

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

¢=—be'+zx+c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

c,=—be'+z
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Solving for the constant of integration from initial conditions, the solution becomes
—be' +x = —be

Solving for z gives

x=>bel —be

Summary of solutions found

z=>be' —be
Maple step by step solution

Let’s solve
[#' =be', z(1) = 0]
° Highest derivative means the order of the ODE is 1
/

x
° Integrate both sides with respect to ¢

[2'dt = [beldt + C1

° Evaluate integral
z=be' + C1
° Solve for x
z="be'+ C1
) Use initial condition z(1) =0
0=be+ C1
) Solve for _ C1
C1 = —be
° Substitute _ C1 = —be into general solution and simplify
z =b(e! —e)

° Solution to the IVP
z =b(e" —e)
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21

Maple trace

‘“Methods for first order ODEs:

‘——— Trying classification methods ——-
‘trying a quadrature

‘<- quadrature successful’

Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 14

dsolve([diff (x(t),t) = brexp(t),
| op([x(1) = 01)],x(t),singsol=all)

x = —b(e — et)

Mathematica DSolve solution

Solving time : 0.004 (sec)
Leaf size : 14

‘DSolve[{D[x[t],t]==b*Exp[t],{x[1]==0}},
‘ x[t],t,IncludeSingularSolutions->True]

z(t) = b(e" —e)
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2.1.3 problem 1 (iii)
Existence and uniqueness analysis . . . . . . ... ... ... ..
Solved as first order quadratureode . . . ... ... ... ... 23]
Solved as first order Exactode . . . . . ... ... ... .... 24
Maple step by step solution . . . . . .. ... ... ... .. .. 271
Maple trace . . . . . . . . . ..
Maple dsolve solution . . . .. ... ... ... .. ....... 28]
Mathematica DSolve solution . . . . .. .. ... ... ..... 28

Internal problem ID [18166]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 1 (iii)

Date solved : Thursday, December 19, 2024 at 01:51:43 PM

CAS classification : [_quadrature]

Solve

With initial conditions

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

o' +q(t)z = p(t)

Where here

q(t)=0

1
t) =

p(?) 2+1

Hence the ode is
x = 1
2+1

The domain of ¢(t) =0 is
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And the point o = 1 is inside this domain. The domain of p(t) = z7 is

{—o0 <t < o0}

And the point ty = 1 is also inside this domain. Hence solution exists and is unique.

Solved as first order quadrature ode
Time used: 0.105 (sec)

Since the ode has the form z’ = f(¢), then we only need to integrate f(t).

1
/dw—/t2+1dt

x = arctan (t) + ¢

Solving for the constant of integration from initial conditions, the solution becomes

s
x = arctan (t) — 1

——— e~ >

=

o5l 1 e 777

' S Y
»»»»» (11
””””” R —
o /| e
N N
QQQQQ 7 BESSENINN
sl T My,77-=—=—=——
0.5 —0.5] o 77—

f

f

f

e~

—— =~ s~

—— =~ e~

Bt L [ S A R E—— N P | I TGN

Y

/ J S

/ ]

/ ]

—10 -5 0 5 10 -0 -5 0 5 10
t t
(a) Solution plot (b) Slope field plot
_ 1
x = arctan (t) — § =g

Summary of solutions found

x = arctan (t) — %
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Solved as first order Exact ode
Time used: 0.325 (sec)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

1
dx = (t2+1) dt

Therefore
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Comparing (1A) and (2A) shows that

M(t,z) = —

241
N(t,x) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
or Ot

Using result found above gives

oM _9( 1
or Or\ 2+1

=0
And
ON 0
heah S |
ot 0t( )
=0
Since %4 = %I, then the ODE is exact The following equations are now set up to solve

for the function ¢(¢, z)

0

=M M
86

e @

Integrating (1) w.r.t. ¢t gives

o9 ..
Edt—/Mdt

o6 . 1
Edt—/——t”_ldt

¢ = —arctan (t) + f(x) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

00 _ . ¢
=0+ f() @
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But equation (2) says that % = 1. Therefore equation (4) becomes
1=0+ f'(z) (5)
Solving equation (5) for f'(z) gives
fi(z) =1

Integrating the above w.r.t x gives

/f’(x)dx=/(1)dx

flx)=z+¢c

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢
¢ = —arctan (t) + = + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy constants into the constant c¢; gives the solution as

¢y = —arctan (t) + z

Solving for the constant of integration from initial conditions, the solution becomes

T
—arctan (t) + z = ~1

Solving for = gives

s
x = arctan (t) — 1
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0.5 —>—>—>)///// 7 ] ////‘/),)
. 0.5 —>—>—>)///// 7 ] // N
A R ) L
—_»_—>)))//// 7 ] J s
0+ o —_»_—>)))/‘/// 7 ] ////‘))),),_»
I
f
—0.51 ;
f
f
f

— 1.5

—10 -5 0 5

t t
(a) Solution plot (b) Slope field plot
x = arctan (t) — § x = tQil

Summary of solutions found

0y
x = arctan (t) — 1

Maple step by step solution

Let’s solve
[z = 7, 2(1) = 0]

= 51
° Highest derivative means the order of the ODE is 1

.'L'l

° Integrate both sides with respect to ¢
[2'dt = [ Zzdt + C1

° Evaluate integral
x = arctan (¢t) + C1
° Solve for x
x = arctan (¢t) + C1
. Use initial condition z(1) =0
0=7%+C1
° Solve for _ C1
Cl=-%

4
° Substitute __ C'1 = —7 into general solution and simplify
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x = arctan (t) — §

° Solution to the IVP

x = arctan (t) — §

Maple trace

“Methods for first order ODEs:

‘——— Trying classification methods ——-
‘trying a quadrature

‘<— quadrature successful’

Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 10

dsolve([diff (x(t),t) = 1/(£°2+1),
‘ op([x(1) = 0])],x(t),singsol=all)

s
x = arctan (t) — —

4
Mathematica DSolve solution

Solving time : 0.005 (sec)
Leaf size : 13

p
'DSolve[{D[x[t],t]==1/(1+t"2) ,{x[1]==0}},
L x[t],t,IncludeSingularSolutions->True]

z(t) — arctan(t) — Z
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2.1.4 problem 1 (iv)

Existence and uniqueness analysis . . . . . . ... ... ... .. 20|
Solved as first order quadratureode . . . ... ... ... ... 301
Solved as first order Exactode . . .. ... ... ........ 311
Maple step by step solution . . . . . .. ... ... ... .. .. 34
Maple trace . . . . . . . . . ..
Maple dsolve solution . . . .. ... ... ... .. .......
Mathematica DSolve solution . . . . .. .. ... ... .....

Internal problem ID [18167]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 1 (iv)

Date solved : Thursday, December 19, 2024 at 01:51:44 PM

CAS classification : [_quadrature]

Solve

With initial conditions

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

o' +q(t)z = p(t)

Where here
q(t)=0
1
t) =
p() 2+1
Hence the ode is
, 1
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The domain of ¢(¢t) =0 is
{—00 <t < o0}

1
t24+1

And the point ¢y = 1 is inside this domain. The domain of p(t) = is

{—00 <t < o0}

And the point £y = 1 is also inside this domain. Hence solution exists and is unique.

Solved as first order quadrature ode
Time used: 0.108 (sec)

Since the ode has the form 2’ = f(t), then we only need to integrate f(t).
/ dz = / -
V2 +1
x = arcsinh () 4+ ¢;
Solving for the constant of integration from initial conditions, the solution becomes

x = arcsinh (¢) — In (1 + \/é)

—10 =5 0 5

(a) Solution plot (b) Slope ﬁelld plot
z = arcsinh (¢) — In (1 + v/2) T =
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Summary of solutions found

x = arcsinh (t) — In (1 + \@)

Solved as first order Exact ode
Time used: 0.064 (sec)

To solve an ode of the form

M(z,) + N(z,y) S =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
el -0
Hence 06 06d
Y
— —_—— B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
- M
ox
09
TN
Ay
But since aajgy = aa; 5’; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = (93; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

dx:( 1 >dt
2+1

(— \/ﬁlﬁ) dt+dz = 0 (24)

Therefore
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Comparing (1A) and (2A) shows that

M(t,z) = —
N(t,z) =1

1
t2+1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
or Ot

Using result found above gives

=0
And
ON 0
T _"n
ot 8t( )
=0
Since %M = 6t , then the ODE is exact The following equations are now set up to solve

for the function ¢(¢, z)

0

=M M
86

i @

Integrating (1) w.r.t. ¢t gives

o9 ..
Edt—/Mdt

= |- ¢___

¢ = —arcsinh (¢) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

00 _ . ¢
=0+ f() @
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But equation (2) says that % = 1. Therefore equation (4) becomes
1=0+ f'(z) (5)
Solving equation (5) for f'(z) gives
fi(z) =1

Integrating the above w.r.t x gives

/f’(x)dx=/(1)dx

flx)=z+¢c

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢
¢ = —arcsinh (t) + z + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy constants into the constant c¢; gives the solution as

¢; = —arcsinh (t) +
Solving for the constant of integration from initial conditions, the solution becomes

—arcsinh (¢) + z = —In (1 + \/§>

Solving for x gives

x = arcsinh (t) — In (1 + \@)
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-10 -5 0 5 10

t t
(a) Solution plot (b) Slope ﬁeild plot
z = arcsinh (t) — In (1 + v/2) g’ = 1

Summary of solutions found

z = arcsinh (¢) — In (1 + \/5)

Maple step by step solution

Let’s solve

|:IL'/ = ﬁ,.’ll(l) = O]
. Highest derivative means the order of the ODE is 1
xl

° Integrate both sides with respect to ¢

Ja'dt = [ Z=dt+ C1
° Evaluate integral
x = arcsinh(t) + C1
° Solve for z
x = arcsinh(¢t) + C1
) Use initial condition (1) =0

0=1In(1++2)+ C1
° Solve for  C1
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Cl=-In(1+v2)

. Substitute _ C1 = —1In (1 + \/§) into general solution and simplify

z = arcsinh(¢) — In (1 + v/2)
. Solution to the IVP
z = arcsinh(¢) — In (1 + v/2)

Maple trace

“Methods for first order ODEs:

‘--- Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful”

Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 15

-

dsolve([diff(x(t),t) = 1/(t"2+1)"(1/2),
L op([x(1) = 0])],x(t),singsol=all)

x = arcsinh (t) — In (1 + \/5)

Mathematica DSolve solution

Solving time : 0.022 (sec)
Leaf size : 26

p
' DSolve[{D[x[t],t]==1/Sqrt[1+t~2],{x[1]==0}},
x[t],t,IncludeSingularSolutions->True]

z(t) — arctanh( ! ) - arctanh(i>
Ve +1 V2
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2.1.5 problem 1 (v)

Existence and uniqueness analysis . . . . . . ... ... ... .. 3061
Solved as first order quadratureode . . . ... ... ... ... 37
Solved as first order Exactode . . . . . ... ... ... .... 38]
Maple step by step solution . . . . . .. ... ... ... .. .. [41]
Maple trace . . . . . . . . . .. (41
Maple dsolve solution . . . .. ... ... ... .. ....... 42
Mathematica DSolve solution . . . . .. .. ... ... ..... 42

Internal problem ID [18168]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 1 (v)

Date solved : Thursday, December 19, 2024 at 01:51:44 PM

CAS classification : [_quadrature]

Solve
z’ = cos (t)
With initial conditions

z(1) =0

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

o' +q(t)z = p(t)

Where here

q(t) =0
p(t) = cos(t)
Hence the ode is
z' = cos (t)

The domain of ¢(t) =0 is
{—00 <t < o0}
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And the point ¢y = 1 is inside this domain. The domain of p(t) = cos (¢) is

{—o0 <t < o0}

And the point ty = 1 is also inside this domain. Hence solution exists and is unique.

Solved as first order quadrature ode

Time used: 0.109 (sec)

Since the ode has the form ' = f(¢), then we only need to integrate f(t).

/da::/cos(t) dt

z =sin (t) +

Solving for the constant of integration from initial conditions, the solution becomes

x =sin (t) —sin (1)

—0.57

o L

—1.54

N T N e N N N N N N N

———

(a) Solution plot
x = sin (¢t) — sin (1)

Summary of solutions found

1= e e e e e e

{
f
f
f
f
f
f
f

[\
|
N
|
a~
|
)
)
N
=

(b) Slope field plot
x' = cos (t)

x =sin () —sin (1)

37
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Solved as first order Exact ode
Time used: 0.321 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

dz = (cos (t))dt
(—cos(t))dt+dz =0 (2A)

Comparing (1A) and (2A) shows that
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
ox Ot
Using result found above gives
oM 0
% % (— COS (t))
=0
And
ON
1
o ()
= O
Since %];I = at , then the ODE is exact The following equations are now set up to solve

for the function ¢(¢, z)

0p
gZ_M' (1)
¢
5 =N (2)

Integrating (1) w.r.t. ¢ gives

@dt=/Mdt
ot

68? dt = / —cos (t)dt

¢ = —sin(t) + f(2) (3)

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

0 _ o, o
=0+ ) @

But equation (2) says that a¢ = 1. Therefore equation (4) becomes

1=0+ f'(z) (5)
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Solving equation (5) for f'(z) gives
flz) =1

Integrating the above w.r.t = gives

/ (z)dz = / (1)dz

fx)=z+c
Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢
p=—sin(t)+z+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and cy constants into the constant c; gives the solution as

cp=—sin(t)+z

Solving for the constant of integration from initial conditions, the solution becomes
—sin (¢) + ¢ = —sin(1)
Solving for z gives
x =sin () —sin (1)

—0.61 —0.51

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

—1.64 —1.51

N T N e N N N N N N N N

s

1= e e e e e e

{
f
f
f
f
f
f
!

—-27 - _n 0 =® m 31 2m . :
2 2 2 -6 —4 -2 0 2 4 6

(a) Solution plot (b) Slope field plot
x = sin (t) — sin (1) x' = cos (t)
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Summary of solutions found

x = sin (t) — sin (1)

Maple step by step solution

Let’s solve
[z = cos (t),z(1) = 0]

) Highest derivative means the order of the ODE is 1
.,L./

° Integrate both sides with respect to ¢
J2'dt = [ cos(t)dt + C1

° Evaluate integral
z = sin (t) + C1
° Solve for x
z = sin (t) + C1
. Use initial condition z(1) =0

0 =sin(1) + C1
° Solve for _ C1
C1 = —sin(1)
° Substitute _ C1 = —sin (1) into general solution and simplify
x = sin (t) — sin (1)
° Solution to the IVP
x = sin (t) — sin (1)

Maple trace

-

“Methods for first order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful”
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Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 11

dsolve([diff(x(t),t) = cos(t),
op([x(1) = 0])],x(t),singsol=all)

x = sin (t) — sin (1)

Mathematica DSolve solution

Solving time : 0.009 (sec)
Leaf size : 12

DSolve[{D[x[t],t]==Cos[t],{x[1]==0}},
x[t],t,IncludeSingularSolutions->True]

x(t) — sin(t) — sin(1)
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2.1.6 problem 1 (vi)
Solved as first order quadratureode . . . ... ... ... ... 3]
Solved as first order Exactode . . . . . ... ... ....... 44
Maple step by step solution . . . . .. ... ... ... ..... (48]

Maple trace

Mathematica DSolve solution

Maple dsolve solution

Internal problem ID [18169]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 1 (vi)

Date solved : Thursday, December 19, 2024 at 01:51:45 PM
CAS classification : [_quadrature]

Solve
o c?s (t)
sin (¢)
With initial conditions
z(1)=0

Solved as first order quadrature ode
Time used: 0.146 (sec)

Since the ode has the form z’ = f(¢), then we only need to integrate f(t).

/ / cos (

sin (

z = In (sin (t)) +c

Solving for the constant of integration from initial conditions, the solution becomes

z =In(sin (¢)) — In(sin (1))
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TNV 7NNV 7=\ )
T7=NVET 7NV \ b
0 ALl /=N T NN ~\ )
NN R EEANEEE ZAY
TNV 7NNV 7~\W
TNV 7NNV 7=\
—0.57 TOST L NN LNV L 7~
TNV 7NN L7~
IR EIANNEE [T
NOE MO AR RN AR R MANEE [N
AN R AN EAYN
T7=NVET T 7NNV 7=\ )
AN N SRR FONEE F AN
—1.51 T7=NVET 7NN 7=\ )
T7=NVET 7NNV 7=\ )
T7=NVET 7NNV 7=\ )
RN LR PAYER EALE
— 21 T7=NVET 7NN 7=\ )
T7=NVET 7NNV 7=\ )
—I6 _'5 _'4_'3 _'2 _'1 (') '1 i é —I6—I5—I4—I3—I2—Il (I) I1 é é
¢ t
(a) Solution plot (b) Slope ﬁezg plot
z =In(sin (¢)) — In (sin (1)) z’ = Z?x?(t)
Summary of solutions found
z =In(sin (¢)) — In(sin (1))
Solved as first order Exact ode
Time used: 0.072 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 06 04d
—_ —_— —y =
Oxr Oydx 0 (B)

Comparing (A,B) shows that

0p
a—M
0p
a_y_N



CHAPTER 2. BOOK SOLVED PROBLEMS 45

But since % = % then for the above to be valid, we require that
Y yox
oM _ ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

(96;: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore
oo (08 (t)
= ()
_cos (t) o
P o

Comparing (1A) and (2A) shows that

_cos(t)

M(t,z) = sin (t)

N(t,z)=1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
or Ot

Using result found above gives

oM 8 (_cos(t))

Bxr 9z \ sin(t)
=0
And
ON 0
= ad

=0
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Since %M = 3t , then the ODE is exact The following equations are now set up to solve

for the function ¢(¢, z)

6¢_
gZ—M' (1)
¢ _
%—N (2)

Integrating (1) w.r.t. ¢t gives

oo ..
Edt—/Mdt

(9¢ cos (t)
ot 9= /‘m@“

¢ = —In(sin (¢)) + f(2) 3)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t  gives

% 0+ f(@) @
But equation (2) says that 6—¢ = 1. Therefore equation (4) becomes
1=0+ f(z) (5)
Solving equation (5) for f'(z) gives
fllz) =1

Integrating the above w.r.t = gives

[r@do= [m

fx)=z+c

Where ¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

¢=—In(sin(t)) +z+c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

¢y =—In(sin(¢)) + z
Solving for the constant of integration from initial conditions, the solution becomes
—In(sin(t)) + z = —In (sin (1))

Solving for z gives
z =In(sin (¢)) — In(sin (1))

[ 1NV TN \
1NV 7N \
‘ of | 17NV 117Ny
[r=NVET 7N \
[7=NVET 7N \
[7=NVET 7N \
—05] =051 /NN \
[7=NVET 7N \
TN \
x(1) - (1) = \
[7=NV T 7N \
[ 7=\ TN \
—1.54 [/=NVET 7NN \
—1.57 [/=NVET 7NN \
7=\ TN \
7=\ TN \
A b INNV TN \
2 7NV 7N \
7//\\l1//\\ \
6 s 4 -3 2-1 0 1 & 3 “6-5-4-3-2-10 1 2 3
t t
(a) Solution plot (b) Slope Cf})(:%g plot
z = In (sin (¢)) — In (sin (1)) = sin(D

Summary of solutions found

z =1In(sin (¢)) — In (sin (1))
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Maple step by step solution

Let’s solve

[x' =<0 2(1) = O}

sin(t) ?

° Highest derivative means the order of the ODE is 1

xl

° Integrate both sides with respect to ¢
[o'dt = [<=Dgt 4+ C1

sin(t)

° Evaluate integral
z =In(sin (t)) + C1
. Solve for =
z =In(sin (¢)) + C1
) Use initial condition z(1) = 0

0=1In(sin (1)) + CI
° Solve for C1
C1 = —In(sin (1))
o Substitute _ C1 = —In(sin (1)) into general solution and simplify
z =In(sin (¢)) — In (sin (1))
. Solution to the IVP
z =In (sin (¢)) — In (sin (1))

Maple trace

“Methods for first order ODEs:

‘-—- Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful”

Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 13

‘dsolve([diff (x(t),t) = cos(t)/sin(t),
L op([x(1) = 0])],x(t),singsol=all)

z =In(sin (¢)) — In (sin (1))
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Mathematica DSolve solution

Solving time : 0.009 (sec)
Leaf size : 11

;
‘ DSolve [{D[x[t],t]==Cos[t]/Sin[t],{x[1]1==0}},
x[t],t,IncludeSingularSolutions->True]

z(t) — log(csc(1) sin(t))
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2.1.7 problem 2 (i)
Existence and uniqueness analysis . . . . . . ... ... ... .. B0l
Solved as first order autonomousode . . . . .. ... ... ... 53l
Maple step by step solution . . . . . ... ... ... ... .. H3l
Maple trace . . . . . . . . . . e B3l
Maple dsolve solution . . . . . ... ... ... L. B!
Mathematica DSolve solution . . . . . ... ... ... ..... kY

Internal problem ID [18170)]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (i)

Date solved : Thursday, December 19, 2024 at 01:51:47 PM
CAS classification : [_quadrature]

Solve

With initial conditions
z(0)=1
Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

z' = f(t,x)
=2?— 3242
The = domain of f(¢,z) when t =0 is

{—0 <z < o0}

And the point o = 1 is inside this domain. Now we will look at the continuity of

%z%(z2—3x+2)
=2z -3

The z domain of g—i when t = 0 is

{—00 <z < o0}

And the point g = 1 is inside this domain. Therefore solution exists and is unique.
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Solved as first order autonomous ode
Time used: 0.401 (sec)

Since the ode has the form 2’ = f(z) and initial conditions (¢, x) are given such that
they satisfy the ode itself, then we can write

0= f($)|z:zo
0=0

And the solution is immediately written as

T = X

=1
Singular solutions are found by solving
2 —3z+2=0

for z. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

r=1



52

BOOK SOLVED PROBLEMS

CHAPTER 2.

The following diagram is the phase line diagram. It classifies each of the above equilib-

rium points as stable or not stable or semi-stable.

unstable

stable

Figure 2.11: Phase line diagram
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(a) Solution plot
z=1
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Summary of solutions found

Maple step by step solution

Let’s solve
[/ = 2% — 3z + 2,2(0) = 1]
° Highest derivative means the order of the ODE is 1

/

x

° Solve for the highest derivative
2 =22-3x+2

° Separate variables
m2—§z+2 =1

° Integrate both sides with respect to ¢
[ m5dt = [1dt + C1

° Evaluate integral
In(z—2)—In(z—1)=t+ C1

° Solve for x

_ _2+et+01
T = “gror_q

e  Use initial condition z(0) =1

_ —24e??
1= eCl—1

) Solve for _ C1
C1 =)

° Solution does not satisfy initial condition

Maple trace

-

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful”




'DSolve[{D[x[t],t]==x[t]~2-3*x[t]+2,{x[0]==1}},
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Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 5

dsolve([diff(x(t),t) = x(t)~2-3*x(t)+2,
op([x(0) = 11)],x(t),singsol=all)

r=1

Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6

x[t],t,IncludeSingularSolutions->True]

z(t) > 1
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2.1.8 problem 2 (ii)

Existence and uniqueness analysis . . . . . . ... ... ... .. %!
Solved as first order autonomousode . . . . . .. ... ... .. 50
Solved as first order Exactode . . . . . ... ... ... .... 5ol
Solved using Lie symmetry for first orderode . . ... ... .. 601
Solved as first order ode of type ID 1 . . . . . . .. .. ... .. 64
Maple step by step solution . . . . .. ... ... ... .. ... 65]
Maple trace . . . . . . . . . L 66!
Maple dsolve solution . . . .. ... ... ... ......... 606!
Mathematica DSolve solution . . . . .. .. ... ... ..... 671

Internal problem ID [18171]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 2 (ii)

Date solved : Thursday, December 19, 2024 at 01:51:51 PM

CAS classification : [_quadrature]

Solve

With initial conditions

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as
' = f(t,z)
=be”

The z domain of f(¢,z) when ¢t =0 is

{—o0 <z < o0}

And the point zy = 1 is inside this domain. Now we will look at the continuity of
of _ 9
ox Oz

=be”

(be®)
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The x domain of g—i when ¢t =0 is
{—o0 <z < o0}
And the point zy = 1 is inside this domain. Therefore solution exists and is unique.

Solved as first order autonomous ode
Time used: 0.110 (sec)

Integrating gives

?dx =dt
o
-3 t+c
Solving for the constant of integration from initial conditions, the solution becomes
e ? e !
T T

Solving for z gives

Summary of solutions found

z=—In(—(tbe—1)e™")

Solved as first order Exact ode
Time used: 0.375 (sec)
To solve an ode of the form

dy
x
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

< oa,9) =0

Hence 06 06 d
Yy _
oxr  Oydr 0 (B)
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Comparing (A,B) shows that

09
T M
Oz
9 _ n
Oy
But since ;ﬂ:gy = 8‘9; g; then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore
dz = (be”) dt
(—be®)dt+dx =0 (2A)

Comparing (1A) and (2A) shows that
M(t,x) = —be”
N(t,z) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0 -
o om0
= —be”
And
ON 0
ot~ ot

=0
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Since % # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let
L L(oM _oN
N\ 0z ot
= 1((=be*) — (0))

= —be”

Since A depends on z, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

g L(ON _oM
M\ ot ox

= -(0) - (=be")

Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

— ede:z:

— ef—ldz

I

The result of integrating gives

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

M = puM
=e %(—be)
=-b
And
N = uN
=e*(1)
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M+N-—=0
TN

(D) + () 5 =0

The following equations are now set up to solve for the function ¢(¢, x)

0p —
g—t =M (1)
6
9 =N (2)
Integrating (1) w.r.t. ¢ gives
0 .. [~
N dt = /Mdt
op .
Edt = /—bdt
¢ = —tb+ f(z) 3)

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

9¢

% 0+ f() @
But equation (2) says that 3¢ = e~. Therefore equation (4) becomes
e " =0+ f'(z) (5)
Solving equation (5) for f'(z) gives
fz)=e

Integrating the above w.r.t = gives

/f’(z) dx=/(e_“’) dz

f@)=—"+a
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Where ¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢
p=—-th—e "+

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

ci=—th—e™”
Solving for the constant of integration from initial conditions, the solution becomes
—th—e® = —e

Solving for = gives
z=—In(—(tbe—1)e™")

Summary of solutions found

z=—In(—(the—1)e™")

Solved using Lie symmetry for first order ode
Time used: 0.569 (sec)

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by
e+ w1 — &) — W — wi€ —wyn =0 (A)

To determine &,n then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§ =tay +zaz + ay (1E)
n = tby + xbs + by (2E)
Where the unknown coeflicients are

{al, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives
by + be®(bs — ag) — b%e*“az — be®(tby + xbs + by) = 0
Putting the above in normal form gives
—b%e*®ag — e®btby — €“brbs — be®ay — €%bby + be®by + by = 0
Setting the numerator to zero gives
—b%e*® a3 — e®btby, — e"bxbs — be®ay — e®bby + be®bs + by = 0
Simplifying the above gives

—b%e* a3 — e®btby — e®bxbs — be®ay — e®bby + be®bs + by =0

(5E)

(6E)

(6E)

Looking at the above PDE shows the following are all the terms with {¢,z} in them.

{t,z,e", eh}

The following substitution is now made to be able to collect on all terms with {¢,z} in

them
{t =v1,2 =vq,€" = vs, €% = v4}

The above PDE (6E) now becomes
—b%v4a3 — v3bU1by — Usbuabs — busas — v3bby + busbs + by = 0
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3,v4}
Equation (7E) now becomes

—U3b’01b2 - ’U3b’02b3 + (—ba2 - bbl + bb3) V3 — b2’U4(13 + b2 =0

(7E)

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

b, =0
—bby =0
—bbs =0

—b%a3 =0

—ba2 - bbl + bb3 =0

Solving the above equations for the unknowns gives

a1 = ay
as = —b;
a3 =0
by =b,
by =0
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

§=1
n=20

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(z)
=0-—(be")(1)
= —be”
£E=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (t,z) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt dzx
—=—=dS 1
£ (1)

The above comes from the requirements that (é % + n%) S(t,x) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t
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S is found from
5= [Lay
n
1
N / —be” dy

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ds S+ w(t,z)S, @)
dR R, +w(t,7)R,

Where in the above Ry, R, S, S, are all partial derivatives and w(t, x) is the right hand
side of the original ode given by

w(t,z) =be®

Evaluating all the partial derivatives gives

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
-~ - 2A
IR (24)
We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
= =

dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S.
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Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).
/ ds = / —1dR
S (R) =—R +c

To complete the solution, we just need to transform the above back to ¢,z coordinates.
This results in

—— =—t+c
Which gives
z = —In (cob — tb)
Solving for the constant of integration from initial conditions, the solution becomes

z=—In (—tb + e_l)

Summary of solutions found

z=—In(—th+e™)

Solved as first order ode of type ID 1
Time used: 0.092 (sec)

Writing the ode as
' =be" (1)

And using the substitution © = e™* then

v =—2'e
The above shows that
' = —u'(t)e*
__v(®)
o
Substituting this in (1) gives
u'(t) b
U u
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The above simplifies to
w'(t) = —b (2)

Now ode (2) is solved for u(t).

Since the ode has the form u/(t) = f(t), then we only need to integrate f(t).
/ du = / —bdt
= —tb + C1

Substituting the solution found for u(t) in u = e™* gives

z = —1In (u(t))
=—In(—In(—tb+¢1))
=—In(—tb+c1)

Solving for the constant of integration from initial conditions, the solution becomes

r=—In(—th+e™")

Summary of solutions found

z=—In(—th+e")

Maple step by step solution

Let’s solve
[/ = be®, z(0) = 1]
° Highest derivative means the order of the ODE is 1

/

x

° Solve for the highest derivative
' =be”

° Separate variables
2=t

° Integrate both sides with respect to ¢
[ Zdt = [bdt+ C1

° Evaluate integral



CHAPTER 2. BOOK SOLVED PROBLEMS

66

—L =tb+ CI
° Solve for x
z=In (_tb+101)
o Use initial condition z(0) =1
1=1n (~)
) Solve for _ C1
o1 =1
° Substitute _ C1 = —% into general solution and simplify
z=1In ()

° Solution to the IVP

z =In ()

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful”

N\

Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 14

‘dsolve([diff (x(t),t) = brexp(x(t)),
op([x(0) = 11)],x(t),singsol=all)

z=—In (—tb + e_l)
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Mathematica DSolve solution

Solving time : 0.006 (sec)
Leaf size : 17

;
' DSolve [{D[x[t],t]==b*Exp[x[t]1],{x[01==1}},
x[t],t,IncludeSingularSolutions->True]

z(t) = 1 —log(1 — ebt)
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2.1.9 problem 2 (iii)

Existence and uniqueness analysis . . . . . . ... ... ... ..
Solved as first order autonomousode . . . . . .. ... ... ..
Solved as first order Exactode . . . . . ... ... ... ....
Solved using Lie symmetry for first orderode . . ... ... ..
Maple step by step solution . . . . . .. ... ... ... ...,
Maple trace . . . . . . . . ..
Maple dsolve solution . . . .. ... ... ... .........
Mathematica DSolve solution . . . . .. ... ... .......

Internal problem ID [18172]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (iii)

Date solved : Thursday, December 19, 2024 at 01:51:52 PM
CAS classification : [_quadrature]

Solve

With initial conditions

Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
' = f(t,x)
= (z—1)°

The z domain of f(¢,z) when ¢t =0 is

{—o0 <z < o0}

And the point o = 1 is inside this domain. Now we will look at the continuity of

af @ \
5 = g (@1

=2r—2
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The z domain of g—i when t = 0 is

{—o0 <z < o0}

And the point zy = 1 is inside this domain. Therefore solution exists and is unique.

Solved as first order autonomous ode

Time used: 0.083 (sec)

Since the ode has the form 2’ = f(z) and initial conditions (¢, z) are given such that
they satisfy the ode itself, then we can write

0= f(x)lxzwo
0=0

And the solution is immediately written as

T =X

x=1
Singular solutions are found by solving
(z—1°=0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

r=1

The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

semi-stable

<
Il
—

Figure 2.13: Phase line diagram
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(a) Solution plot

CHAPTER 2.

Summary of solutions found
Solved as first order Exact ode

Time used: 0.205 (sec)
To solve an ode of the form

0

¢(.’IJ, y) =

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
d
dz

ode. Taking derivative of ¢ w.r.t. x gives

Comparing (A,B) shows that

Hence
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But since % = % then for the above to be valid, we require that
y Yoz
oM  ON
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; g’y = [f; a"; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore
dz = ((z — 1)%) dt
(=(z—-1)*)dt+dz=0 (2A)
Comparing (1A) and (2A) shows that
M(t,z) = —(z —1)°
N(t,z)=1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0 2
a7 s @)
=242
And
ON 0
Bt~ ot
=0

Since %—A; # ‘98—127, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
A= N(% - W)
=1((—2z +2) — (0))
= -2+ 2
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Since A depends on z, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

1 (aN 8M)

T M\ ot Oz

= O = (2 +2)
_ 2

T or—1

Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

b= ede:c
_ ef—% dz
The result of integrating gives
©w= e—21n(a:—1)
. 1
(—1)°

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

M =uM
1 2
=m(—($—1) )

=-1
And
N = uN
1
=——(1
(x — 1)2( )
1
(-1
So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

(-1)+ ((x_ 1)2) i—f =0
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CHAPTER 2.

The following equations are now set up to solve for the function ¢(¢, x)

o W

.
¢ -
9 =N (2)

Integrating (1) w.r.t. ¢ gives

/—dt /Hdt
% [ -1a

¢=—t+ f(z) (3)

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z

Taking derivative of equation (3) w.r.t z gives

9¢ :
kg 4
5; =~ 0T /(@) (4)
But equation (2) says that 22 = = 1)2 Therefore equation (4) becomes
1
=0+ f'(z 5
o =0 @ ®)

Solving equation (5) for f'(z) gives

f (SC) = (:L'— 1)2

Integrating the above w.r.t = gives

/f /((x—11>>dx

flz) = - il‘i‘Cl

Where c¢; is constant of integration. Substituting result found above for f(z) into

equation (3) gives ¢

1
b=—t-—=+a
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

Clz—t—

1
r—1

Solving for the constant of integration from initial conditions, the solution becomes

z=1
1.4
121
x(1) 10 x(1)
0.8-
0.61
-10 -5 0 10
t
(a) Solution plot
rz=1
Summary of solutions found
z=1

0.5
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(b) Slope field plot
o = (z—1)

Solved using Lie symmetry for first order ode

Time used: 0.560 (sec)
Writing the ode as

= (z—1)°

' = w(t,z)

The condition of Lie symmetry is the linearized PDE given by

e+ w(nz - é-t) - w2£w —w — wn =0
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To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§ = tay + ras + a; (1E)
n= tbz + .’Ebg + b1 (QE)

Where the unknown coefficients are
{a1,az,a3,b1,b9, b3}
Substituting equations (1E,2E) and w into (A) gives
bo+ (x— 1) (bs —az) — (x — 1) ag — (22 — 2) (thy + 2bs + b)) =0  (BE)
Putting the above in normal form gives

—ztas + 4z3as — 2txbs — T2ay — 62203 — 22b3 + 2tby
+2xa2+4xa3—2xb1 —ag—a3+2b1+b2+b3 =0

Setting the numerator to zero gives

—ztas + 4z3a5 — 2txby — T2ay — 62203 — 22b3 + 2tby (6E)
+2xa2+4xa3 —2$b1 —az—a3+2b1+b2+b3 =0

Looking at the above PDE shows the following are all the terms with {¢,z} in them.
{t, 2}
The following substitution is now made to be able to collect on all terms with {¢,z} in
them
{t =v1,z = v}

The above PDE (6E) now becomes

—agvg + 40,31)3 — agvg — Gagvg — 2byv1v9 — b3v§ + 2a5v, (7E)

+ 4a3v2 — 2b11)2 + 2b2’U1 — Qa9 — a3 + 2b1 + b2 + b3 =0
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Collecting the above on the terms v; introduced, and these are
{v1, v2}

Equation (7E) now becomes

—2b2’l}1’l)2 + 2b2’U1 — 013’(1;1 + 4(1;3’0:2)) + (—a2 — 60,3 — bg) ’U% (SE)
+(2a2+4a3—2b1)'v2 —ag—ag+2b; +by+b3=0

Setting each coefficients in (8E) to zero gives the following equations to solve

—a3 =0
4a3 =0
—2b, =0
2bo =0

—a2—6a3—b3:O
2a2+4a3—2b1=0
—az—a3+2b1+b2+b3=0

Solving the above equations for the unknowns gives

ay = ay
ay = —bs
as =0
by = —bs
by =0
bs = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

§=1
n=20

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w=z)§
=0—((z—-1)*) (1)
=-—z’+2r -1

£=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dx
£

The above comes from the requirements that (E % + 176%) S(t,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=t

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

@ . St+W(t,IE)Sz (2)
dR  R;+w(t,z)R,

Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,z) = (z — 1)

Evaluating all the partial derivatives gives
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

-1 (2A)

-1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).
/ ds = / —1dR
S (R) =—R + Cy

To complete the solution, we just need to transform the above back to t,z coordinates.
This results in

= —t
71 +c

Which gives

Cg—t+1
r=————
—t-l-Cz
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R)

R R D R " Y

¢

S
R R R N R

RN N R A N N N N D
AR A AR BRI

NN N N NN
NN NN NN

R AR

~>~~ N\
—~~~\\
~>~~ N\
~>~>~\\
~>~>~N\\
~>~>~\\

e - -

B S

————~——~—~— |

—————

——————

~—————————

—————

—————

——————

~—————————

—————

———————

——————

~—————————

—————

—————

—————————

~—————————

—————

—————

——————

———————~—~—— |

BOOK SOLVED PROBLEMS

=(z— 1)2

dt

Original ode in ¢,z coordinates
dx

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

CHAPTER 2.
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Solving for the constant of integration from initial conditions, the solution becomes

1.44

1.21

0.8
0.67

(@ —1)°

(b) Slope field plot
:L.I

10

(a) Solution plot

-10
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Summary of solutions found

Maple step by step solution

Let’s solve
[z = (z — 1)*,2(0) = 1]
° Highest derivative means the order of the ODE is 1

/

T

° Solve for the highest derivative
= (z—1)>

° Separate variables

(xf1)2 -

° Integrate both sides with respect to ¢

° Evaluate integral
—L =t+C1
° Solve for x
- = %2
o Use initial condition z(0) =1
_ Cci-1
1 ="
) Solve for _ C1
C1 =)
° Solution does not satisfy initial condition

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful”
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Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 5

dsolve([diff(x(t),t) = (x(t)-1)"2,
op([x(0) = 11)],x(t),singsol=all)

r=1

Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6

DSolve[{D[x[t],t]l==(x[t]-1)"2,{x[0]==1}},
x[t],t,IncludeSingularSolutions->True]

z(t) > 1
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2.1.10 problem 2 (iv)

Existence and uniqueness analysis . . . . . . ... ... ... ..
Solved as first order autonomous ode
Solved as first order Exactode . . . . . ... ... ... ....
Solved using Lie symmetry for first order ode
Maple step by step solution . . . . . .. ... ... ... ...,
Maple trace . . . . . . . . ..
Maple dsolve solution . . . .. ... ... ... .........
Mathematica DSolve solution

Internal problem ID [18173]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (iv)

Date solved : Thursday, December 19, 2024 at 01:51:54 PM
CAS classification : [_quadrature]

Solve

With initial conditions

Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
' = f(t,x)
=+vz2-1

The z domain of f(¢,z) when ¢t =0 is

{1<z<o00,—00<zx< -1}

And the point zy = 1 is inside this domain. Now we will look at the continuity of

- 8 v

2 —1
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The z domain of g—i when t = 0 is
{—o<z<-1,-1<z<],l<z< 0}

But the point £y = 1 is not inside this domain. Hence existence and uniqueness theorem
does not apply. Solution exists but no guarantee that unique solution exists.

Solved as first order autonomous ode
Time used: 0.126 (sec)

Since the ode has the form 2’ = f(x) and initial conditions (%o, z¢) are given such that
they satisfy the ode itself, then we can write

0= f(@)lys,
0=0

And the solution is immediately written as

T = X

z=1
Singular solutions are found by solving
2—1=0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

r=1
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The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

Figure 2.17: Phase line diagram
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1 O O O I B O O
1.4 BEEEEEEEEEEREEREEEE
BEEEEEREEEEEEEEEEEE
T T A A O O
R A A B O O
1.24 N A O O O A A A O B O A
NN SEEEEEEEEEEEEREREEE|
x(1) 10 x(1)
0.5
0.8
0.61
O-
—10 -5 0 5 10 T s 0 5 10
t t
(a) Solution plot (b) Slope field plot
z=1 z =vz?2 -1
Summary of solutions found
r=1
Solved as first order Exact ode
Time used: 8.006 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 0pd
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that

0¢p
or
0¢p
8_y—N
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But since % = % then for the above to be valid, we require that
Y yox
oM _ ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

(96;: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore
dz = (\/362 — 1) dt
(—\/x2 - 1) dt+dz =0 (2A)
Comparing (1A) and (2A) shows that
M(t,z) =—Va? -1
N(t,z) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
or Ot

Using result found above gives

or Oz
=z
N 2 —1
And
N _ 0,
ot Ot
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Since % # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

1 /0M ON
A=N( )

P
=%(;;%3)‘@)
T ViR

Since A depends on z, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

o1 (ON _om
M\ ot ox

-0 ()

x
2 —1

Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

— edex

J ——de

7

=€

The result of integrating gives

In(z—1) In(z+1)
n= e 2 T 2
1

Vz—1vz+1

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

1
T Vo—1vz+ 1(—\/#7—1)

B 2 —1

T Vo—1vz+1
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And

N =uN
1

T Vr—1vz+1
1
T Vr—1vz+1

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

—  —dz
M+N—=0
TV g

(1)

B z2—1 N ( 1 ) dz _ 0
ve—1yx+1 r—1vz+1/) dt
The following equations are now set up to solve for the function ¢(¢, x)
o¢
ot

9
or

(1)
(2)

[
<

I
2|

Integrating (1) w.r.t. ¢ gives

99 41 — / M dt

ot
Q?&_i/_ Vo' -l g
ot V—1vz+1

_ vz2 -1t
b= @ ®)

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

09 tx x2—1t V-1t

90~ VA Ivioivarl 2@-10"viti oty T

(4)

=0+ f'(z)
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99 _

But equation (2) says that 32 = ﬁm Therefore equation (4) becomes

1
VT—1vz+1

0+ f'(z) (5)

Solving equation (5) for f'(z) gives

1

F@) = =71

Integrating the above w.r.t = gives

/f’(m)dx=/(mlm) dz

V-1 (z+1)In(z+ Va2 -1)
B vV —1vzr+1

f(z)

+

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

Va2 -1t N V(@—1)(z+1) In(z+vz2-1)

¢:_\/x—1\/x+1 rz—1vz+1

+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into the constant c; gives the solution as

Va1t N V(z—1)(z+1)In(z+v22-1)

C1 =

Solving for the constant of integration from initial conditions, the solution becomes

V2 -1t N V(@—1)(z+1) In(z+vz?-1)

=0
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x(t) o
_1_////////////////////
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111t rrrrri07711
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=31ttt rrrrrgd

-4 =3 =2 -1 0

,_.
&}
w
o

Figure 2.19: Slope field plot
r=+vz2-1

Summary of solutions found

Va1t N V(@—1)(z+1) In(z+vz2-1)

Solved using Lie symmetry for first order ode

=0

Time used: 1.941 (sec)
Writing the ode as
=vz?2 -1
' = w(t,z)
The condition of Lie symmetry is the linearized PDE given by
M+ wne — &) — w?é —wi€ —wm =10 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

£ =tay +zaz + a1 (1E)
n= tbQ + $b3 + bl (2E)
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Where the unknown coeflicients are

{ala a2, as, b17 b27 b3}

Substituting equations (1E,2E) and w into (A) gives

. x(tbz -l- $b3 + bl)
2 -1

b2+\/1172—1(b3—(12)—(.’132—1)a,3

=0 (5E)

Putting the above in normal form gives

_Va? - 1z%a3 + toby + 2%ay — agVa? — 1 —byvVa? — 1+ xby —as +bs 0
2 -1

Setting the numerator to zero gives

—Vz2 — 12%a3 — txby — 2%ay + asVx2 — 1 + byVa2 — 1 — xb; +ay — b3 =0 (6E)

Simplifying the above gives

—Va?2 —12%a3 — (2° — 1) ag + (2 — 1) b3 — tzby (6E)
— 223+ asVar? —1+boVa2 —1—zb =0

Since the PDE has radicals, simplifying gives
—V12 —12%a3 — taby — 2203+ asVa2 — 1+ bovVa2 — 1 —zby +as — by =0

Looking at the above PDE shows the following are all the terms with {¢,z} in them.

{t,x, x? — 1}

The following substitution is now made to be able to collect on all terms with {¢,z} in
them

{t:vl,x:vg,\/x2 -1 :’Ug}

The above PDE (6E) now becomes

—’1)3’U§G,3 - ’Ugaz — ’Ul’Ung + asvs — ’l)2b1 + bg’U3 + ag — b3 =0 (7E)
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Collecting the above on the terms v; introduced, and these are
{v1,v2,v3}
Equation (7E) now becomes
—v1Vgby — V3VIa3 — Viag — Vaby + (a3 + by) v3 — b3 +ay =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

—a; =0
—a3z =0
—b=0
—by, =0
az+by,=0
—bz3+ay =0

Solving the above equations for the unknowns gives

a1 = ay
a; =0
a3 =0
by =0
by =0
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

n=20
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(tz)§
=0 (Vam=1) (1)
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dx
£ 1

The above comes from the requirements that (f % + 77%) S(t,x) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=t

Sz/ldy
n

1
= [ ————d
/—\/x2—1 Y

S is found from

Which results in
S=—-In (a:-l—\/x2—1>

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ Si+w(t, z)S, @)
dR R+ uw(t,z)R,

Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,z) =vz2 -1

Evaluating all the partial derivatives gives
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

-1 (2A)

-1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).
/ ds = / —1dR
S (R) =—R + Cy

To complete the solution, we just need to transform the above back to t,z coordinates.
This results in

—In <x+\/a:2—1> =—t+c
Which gives

(e2t—2cz + 1) e—t+02
2

xr=
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

ODE in canonical coordinates

coordinates
transformation

Original ode in ¢,z coordinates

(R,5)

=1

das

dR
R A N T T A T N I N I I N

A N e N R A T I N N N I
RN NN NN T T AT I N N N N N
RN N T R A N N N

2 -1

dx

dt

SRR
FASIIALS AT
RS ASSS
FASIIASS S
SRS AR SSAS
AFAASALS AL
FASASASS T
FASIIALS AT

SO NN N N N N N NN
SO N NN N N N N N NN

R)

R R D R " Y

S

R R R N R

RN N R A N N N N D
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NN N N NN
NN NN NN

S S NN
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LSt S S NN
A S NS S NN
S S S S NN
Aot S S N NN
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lv/ W T T S S
AN NS N
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F e

S S S S NN
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——— R R X
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s S N S NN
Lt S S S N NN
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Solving for the constant of integration from initial conditions, the solution becomes

4

2

0

T e T4 s

0_

RS

—6

400
3007
200
100

t

(b) Slope field plot

t

(a) Solution plot

2 —1

z =

(e2t+1)e—t
2

Tr=



CHAPTER 2. BOOK SOLVED PROBLEMS

Summary of solutions found

(e®+1)e”t

Maple step by step solution

Let’s solve

[/ = V22 —1,z(0) = 1]

° Highest derivative means the order of the ODE is 1

/

x
° Solve for the highest derivative
=+vz2-1
° Separate variables
A= =1
° Integrate both sides with respect to ¢
| S&=dt = [1dt + CI
° Evaluate integral
1n(x+\/ﬁ) =t+ C1
° Solve for x
(e’
= T gettli
o Use initial condition z(0) =1
1— (egfe );+1
) Solve for _ C1
C1=0

° Substitute _ C1 = 0 into general solution and simplify
r=try
° Solution to the IVP

— e | et
rT=5+5
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful”

Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 5

‘dsolve([diff (x(t),t) = (x(£)"2-1)7(1/2),
‘ op([x(0) = 11)],x(t),singsol=all)

r=1

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0

‘DSolve[{D[x[t],t]==Sqrt[x[t]‘2-1],{x[0]==1}},
‘ x[t],t,IncludeSingularSolutions->True]

{3
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2.1.11 problem 2 (v)
Existence and uniqueness analysis . . . . . . ... ... ... .. O8]
Solved as first order autonomousode . . . . .. ... ... ... 99
Solved as first order Bernoulliode. . . . . . . .. ... .. ... 100
Solved as first order Exactode . . . ... ... ... ...... [103]
Solved using Lie symmetry for first orderode . . . . . ... .. 07
Maple step by step solution . . . . .. ... ... ... .. ... 112
Maple trace . . . . . . . . . L 113
Maple dsolve solution . . . . . .. ... .. .. .. ... ..., 113
Mathematica DSolve solution . . . . . ... ... ........ 113

Internal problem ID [18174]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (v)

Date solved : Thursday, December 19, 2024 at 01:52:05 PM
CAS classification : [_quadrature]

Solve

With initial conditions

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

' = f(t,x)
=2/

The = domain of f(¢,z) when t =0 is

{0 <}

And the point zy = 1 is inside this domain. Now we will look at the continuity of

of o
g—%@ﬁ)

NG
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The z domain of g—i when t = 0 is
{0 <z}

And the point zy = 1 is inside this domain. Therefore solution exists and is unique.

Solved as first order autonomous ode
Time used: 0.207 (sec)

Integrating gives

1
\/5=t+cl

The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

Figure 2.21: Phase line diagram
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r=t2+2t+1

BOOK SOLVED PROBLEMS
Solving for the constant of integration from initial conditions, the solution becomes

CHAPTER 2.
Solving for z gives

(1)
(2)

4

2
t

(b) Slope field plot

' =2z

—10-8 —6 —4 —2 0

2Vz

' = F(t,z)

r=t>+2t+1
2 =(2)Vz
' = fo(t)z + fi(t)z"

Solution plot

)

r=t2+2t+1

(a

—10 —=8 —6 —4 —2 0

100
801
60
401
20

O

Summary of solutions found

Solved as first order Bernoulli ode

In canonical form, the ODE is

The standard Bernoulli ODE has the form

Time used: 0.074 (sec)
This is a Bernoulli ODE.
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Comparing this to (1) shows that

Jo=
fi=2

The first step is to divide the above equation by ™ which gives

xl

— = 1) 3)

T
The next step is use the substitution v = '™ in equation (3) which generates a new
ODE in v(t) which will be linear and can be easily solved using an integrating factor.

Backsubstitution then gives the solution z(t) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

Dividing both sides of ODE (1) by z™ = /z gives

:ﬂ%:ou @)

Let

v=x""

SN ®)
Taking derivative of equation (5) w.r.t ¢ gives

r_ 1 ’
v—mx (6)

Substituting equations (5) and (6) into equation (4) gives

2v'(t)

'Ul

2
1

(7)

The above now is a linear ODE in v(t) which is now solved.
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CHAPTER 2.

Since the ode has the form v'(t) = f(¢), then we only need to integrate f(t).

[av=[1a

v(t)

The substitution v = 2!~ is now used to convert the above solution back to 2 which

t+01

results in

=t+a

VT

Solving for the constant of integration from initial conditions, the solution becomes

=t+1

VT

Solving for = gives

r=t2+2t+1

— S USOSOSONONON N
— eSS S SOOI\
R RN NSNS N NNNN
A R NS NN

—————

—10—8 —6 —4 —2 0

———

—10 =8 —6 —4 —2 0

1007
801
601
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201

N

2

t

(b) Slope field plot

t

(a) Solution plot
r=1"+2t+1

=2z

Summary of solutions found

r=t2+2t+1
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Solved as first order Exact ode
Time used: 0.109 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

dxr = (2\/5) dt
(—2vz)dt+dz =0 (2A)

Comparing (1A) and (2A) shows that

M(t,z) = -2z
N(t,x) =1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
ox Ot
Using result found above gives
oM 0
o 5(—2\/5)
__1
Y
And
ON 0
Bt o)

=0

Since %—Af # %—1;’, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

Al L(OM _oN
- N\ oz ot

-(-5)-0)

1

NG

Since A depends on z, it can not be used to obtain an integrating factor. We will now

try a second method to find an integrating factor. Let

5 L(ON _om
M\ ot or

Since B does not depend on ¢, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

Nzedea:

:ef—ﬁdx
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The result of integrating gives

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.
M = uM

- = (-2v3)

And

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

— —dzx
M+N—=0
TV g

o () -

The following equations are now set up to solve for the function ¢(¢, x)

06 —
g_t_M (1)
6

=N @)

Integrating (1) w.r.t. ¢ gives
9 44 — / Mdt
ot

9¢
5 4t = /—2dt

¢ =—2t+ f(x) (3)
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Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

0 _ ., o
=0+ 1) @

But equation (2) says that % = \/ig Therefore equation (4) becomes

1 !/
A 0+ f'(z) ()
Solving equation (5) for f'(z) gives
fe) ==

NG

Integrating the above w.r.t = gives

frome=f (&)

f(z)=2vVz+ ¢

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

¢:—2t+2\/5+61

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and cy; constants into the constant c; gives the solution as

Cci = -2t + 2\/5
Solving for the constant of integration from initial conditions, the solution becomes

—2t+ 2T =2

Solving for = gives
r=t"+2t+1



CHAPTER 2. BOOK SOLVED PROBLEMS 107

100 wol 1111111111111 111111
SRR RN RRER RN
AR ER RNl
AR RN R R AR RNk
801 s 111111ttt r11ft
AR RN RN A
RN RN RN N
Vrrrrrrrrrrrrrr1r1fr1
. NI
x(t) x(7) rrrrtrrrrrrrtrirfry
w7111
401 rrrrrrrrrrrrirrdrrry
AR RN AT RN
AN AR R AR AR Y
ol 7777177077
201 AN AT
TITIIIITI I I I I I
77T
0_ AAAAAAAAAAAAAAAAAAA
04— T T T T T T T T T T T T T T T T T T T
—10 -8 —6 —4 =2 0 2 4 6 8 —10—-8 —6—4 -2 0 2 4 6 8
t !
(a) Solution plot (b) Slope field plot
z=t24+2t+1 z =2z

Summary of solutions found

r=t2+2t+1

Solved using Lie symmetry for first order ode
Time used: 0.672 (sec)
Writing the ode as

=2/

' =w(t,x)
The condition of Lie symmetry is the linearized PDE given by
M+ w(ne — &) — w e — wif —wen =0 (A)

To determine &,n then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§ = tay + a3+ a; (1E)
n= tbz + .’Ebg + bl (2E)
Where the unknown coefficients are

{ala a2, as, b17 b27 b3}
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Substituting equations (1E,2E) and w into (A) gives
tb bs +b

by -+ 2v/T (bs — a5) — dzag — % —0 (5E)
Putting the above in normal form gives

_2.’E0,2 — .’Eb3 + 41,'3/2&3 - bQ\/i + tbg + b1 -0

N a
Setting the numerator to zero gives
—42%%ag + by/T — thy — 2za3 + b3 — by = 0 (6E)

Looking at the above PDE shows the following are all the terms with {¢,z} in them.

{ta z, \/Ea 133/2}

The following substitution is now made to be able to collect on all terms with {¢,z} in

them

{t =v1,2 =09, VT = v3,2%% = vy}
The above PDE (6E) now becomes
—2v9a9 — 4v4a3 — V1by + bov3 + Vob3 — by =0
Collecting the above on the terms v; introduced, and these are
{’Ul, Vg, U3, U4}
Equation (7E) now becomes

—’Ule + (—2a2 + b3) Vg + bg’l]g — 4’040,3 — b1 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

b, =0
—4a3 =0
—-b=0
—by, =0

—2a2 —+—b3 =0

(7E)

(8E)
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Solving the above equations for the unknowns gives

a1 = ay
as = ag
a3 =0
by=0
by =0
bs = 2as

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

n=0
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wtz)¢
=0— (2vz) (1)
= -2z
£=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (t,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dzx
& n

The above comes from the requirements that (£2 +n2) S(t,z) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=t

S=/1dy
n

S is found from
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Which results in

S=—Va

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ Sitw(t, z)S, @)
dR  R;+w(t,z)R,

Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,z) = 2¢/x

Evaluating all the partial derivatives gives

R, =1
R,=0
St=0
Sy = !

20z

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _
dR
We now need to express the RHS as function of R only. This is done by solving for ¢, x

-1 (2A)

in terms of R, S from the result obtained earlier and simplifying. This gives

as

-~ -1
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

/dS - /—1 dR
S(R)

:—R+CQ
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To complete the solution, we just need to transform the above back to ¢,z coordinates.

This results in

—t+02

xTr=

Which gives

c3 — 2cot + t?

xr=

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

ODE in canonical coordinates

Original ode in ¢,z coordinates

~
™n
[a
N—r
g8
8 =
%a
£ E
e
g
3 &
—
+~

ds

dR

N

dz

dt
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r=t2—2t+1
r=t*+2t+1

Solving for the constant of integration from initial conditions gives
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(b) Slope field plot

At2e+1]

£—2t+1

=2z

(a) Solutions plot

Summary of solutions found

=t —2t+1
r=t2+2t+1

Maple step by step solution

Let’s solve

1]

[/ = 2y/z,2(0)

Highest derivative means the order of the ODE is 1

/

X

Solve for the highest derivative

2V

Separate variables

x =

2

/

T

==

Integrate both sides with respect to ¢

| Zzdt = [2dt+ C1

~

~

QO
= <t
A l_l
£o o
g+ 5 0

..Lr..b

D A
502
=} O o+
= &8 =
= .|0.__
H o »n 8
[ ] [ ]
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o Use initial condition z(0) =1
o
) Solve for _ C1
C1 = (-2,2)
° Substitute _ C1 = (—2,2) into general solution and simplify
z=(t—1)°
° Solution to the IVP
z=(t—1)>

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful~

Maple dsolve solution

Solving time : 0.031 (sec)
Leaf size : 9

‘dsolve([diff (x(t),t) = 2%x(£)~(1/2),
‘ op([x(0) = 11)]1,x(t),singsol=all)

zz(t—i-l)2

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 10

‘DSolve[{D[x[t],t]==2*Sqrt[x[t]],{x[0]==1}},
‘ x[t],t,IncludeSingularSolutions->True]

() = (t +1)?
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2.1.12 problem 2 (vi)
Existence and uniqueness analysis . . . . . . ... ... ... .. 114
Solved as first order autonomousode . . . . . .. ... ... .. 115
Solved as first order Exactode . . . . . ... ... ... .... 116l
Solved using Lie symmetry for first orderode . . ... ... .. 121
Maple step by step solution . . . . . .. ... ... ... ..., 126
Maple trace . . . . . . . . .. 126
Maple dsolve solution . . . .. ... ... ... ......... 127
Mathematica DSolve solution . . . . .. ... ... ....... 127

Internal problem ID [18175]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (vi)

Date solved : Thursday, December 19, 2024 at 01:52:07 PM
CAS classification : [_quadrature]

Solve

With initial conditions

z(0) =1

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

The = domain of f(¢,z) when t =0 is
1 1
T < §7r—|-7r_Z10 \Y §7r+7r_Z10 <z

And the point o = 1 is inside this domain. Now we will look at the continuity of

af @
Fo %(’Gan (z))
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The z domain of g—i when t = 0 is
1 1
{z < 57r—|—7r_ZlO \Y 57r+7r_ZlO < x}

And the point zy = 1 is inside this domain. Therefore solution exists and is unique.

Solved as first order autonomous ode
Time used: 0.165 (sec)

Integrating gives

1
———dr =dt
/tan(x) v

In(sin(z)) =t+ ¢

Applying the exponential to both sides gives

In(sin(z)) t+c1

€ =€

sin (z) = e’c;

The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

y=0. unstable

Figure 2.26: Phase line diagram

Solving for the constant of integration from initial conditions, the solution becomes
sin (z) = e’sin (1)

Solving for z gives

z = arcsin (e’ sin (1))
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Summary of solutions found

Solved as first order Exact ode

Time used: 0.205 (sec)
To solve an ode of the form

d
M(w,y)+N(w,y)£=0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

¢(z,y) =0

a
dzx

Comparing (A,B) shows that

Hence
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But since % = % then for the above to be valid, we require that
y Yoz
oM  ON
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; g’y = [f; a"; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore
dz = (tan (x)) dt
(—tan(z))dt+dz =0 (2A)
Comparing (1A) and (2A) shows that
M(t,z) = —tan (z)
N(t,z)=1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0
% = a(— tan (.’E))
= —sec(z)?
And
ON 0
Bt~ ot
=0

Since %—A; # ‘98—127, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

Ao L(0M _oN
N\ Oz ot

=1((-1 —tan (z)*) — (0))

= —sec(z)°
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Since A depends on z, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

1 (ON OM
B=% ( 3 a_x)
= —cot (z) ((0) — (—1 — tan (x)Q))

= —cot (z) — tan (z)

Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

b= edez
— ef—cot(m)—tan(z) dz
The result of integrating gives
u= e—ln(sin(w))+ln(cos(z))
_cos(z)
~ sin(z)

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

And

_ cos(x)

= (1)

sin (z)

= cot (z)

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M+N-—=0
TN %

dzx

a =0

(=1) + (cot (z))
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The following equations are now set up to solve for the function ¢(¢, x)

o6 W

.
-
5. = N 2)

Integrating (1) w.r.t. ¢t gives
9 41 — / Mdt
ot

oo ..
Edt—/—ldt
¢=—t+ f(z) 3)

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z

Taking derivative of equation (3) w.r.t z gives

00 _ . ¢
=0+ f(a) @

But equation (2) says that % = cot (z). Therefore equation (4) becomes
cot (z) =0+ f'(z)

Solving equation (5) for f'(z) gives

f'(z) = cot (z)

Integrating the above w.r.t = gives

/f'(x) dz = /(cot (z))dz
f(z) =In(sin(x)) + ¢

Where ¢; is constant of integration. Substituting result found above for f(z) into

equation (3) gives ¢
¢p=—t+1In(sin(z)) +c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

¢ = —t+In(sin (x))

Solving for the constant of integration from initial conditions, the solution becomes
—t+1In (sin (z)) = In(sin (1))

Solving for z gives

z = arcsin (e sin (1))
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(a) Solution plot (b) Slope field plot
& = arcsin (e’ sin (1)) z' = tan (z)

Summary of solutions found

z = arcsin (e’ sin (1))
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Solved using Lie symmetry for first order ode
Time used: 0.626 (sec)

Writing the ode as

n (z)

T =ta
7z =w(t,x)

The condition of Lie symmetry is the linearized PDE given by

e+ w(e — &) —w % —wf—wm=0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§ =tay +zaz + ar (1E)
n= tb2 + $b3 + bl (QE)

Where the unknown coefficients are
{a1, az, a3, b1, b, b3}
Substituting equations (1E,2E) and w into (A) gives
by + tan (z) (b3 — a3) — tan (z)? as — (1+ tan (x)z) (tbe +zbs+b1) =0 (5E)
Putting the above in normal form gives

— tan (z)? thy — tan (z)° 2bs — tan () az — tan (z)* by
— tan (z) ag + tan (z) by — thy — zbs — by + by =0

Setting the numerator to zero gives

—tan (z)° thy — tan (z)° zbs — tan (z)* a3 — tan (z)° by (6E)
—tan (z) ag + tan () bs — thy — xbg — by + b2 =0

Looking at the above PDE shows the following are all the terms with {¢,z} in them.

{t, z,tan (z)}
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The following substitution is now made to be able to collect on all terms with {¢,z} in
them
{t = v1,2 = v, tan (x) = vs}

The above PDE (6E) now becomes

—’032”0162 — ’Ug’Ung - 1}?2)(13 — ’Ugbl — V3G9 — ’Ulbg — ’UQb3 + ’U3b3 — bl + b2 =0 (7E)
Collecting the above on the terms v; introduced, and these are

{Ul) Vg, U3}

Equation (7E) now becomes

—’Ug’l}lbg — ’Ulb2 — ’l)g’ljgbg — ’U2b3 + (—CL3 — bl) ’U% + (b3 — CLQ) V3 — bl + bz =0 (SE)

Setting each coefficients in (8E) to zero gives the following equations to solve

—by, =0
—b3 =0
—a3—b; =0
—by+b,=0
bs —a; =0

Solving the above equations for the unknowns gives

a1 =a
a; =0
a3 =10
by =0
by =0
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wz)¢
— 0 — (tan ()) (1)
= —tan (z)
£=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dx
£

The above comes from the requirements that (f % + 77(%) S(t,z) = 1. Starting with the

= ds (1)

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

S is found from

9!
I

dy

/
[

I |+

Which results in
S = —In (sin(z))

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS S +w(t,z)S, o)
dR ~ R, +w(t,7)R,

Where in the above R;, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,z) = tan (z)
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Evaluating all the partial derivatives gives

Ri=1
R,=0
Si=0
Sz = — cot (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

-1 (2A)

-1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).
/ ds = / —1dR
S (R) =—R + Cy

To complete the solution, we just need to transform the above back to t, z coordinates.
This results in

—In(sin(z)) = —t+c
Which gives

z = arcsin (')
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=1

(R,5)
das

ODE in canonical coordinates
dR

Canonical
coordinates
transformation

tan (x)

—10
z’ = tan (z)

—15

(b) Slope field plot

-20
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dt

Original ode in ¢,z coordinates
dx

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

CHAPTER 2.

arcsin (et+ln(sin(1)) )

(a) Solution plot
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Summary of solutions found

x = arcsin (e!¢in(1))

Maple step by step solution

Let’s solve
[z = tan (z),z(0) = 1]
° Highest derivative means the order of the ODE is 1

/

x
° Solve for the highest derivative
x’ = tan (x)
° Separate variables
taralz(x) =1

° Integrate both sides with respect to ¢
| @ dt = [ 1dt + C1

° Evaluate integral
In (sin (z)) =t + C1
° Solve for x

z = arcsin (e"+¢7)

. Use initial condition z(0) =1
1 = arcsin (e!)
° Solve for _ C1
C1 =1In(sin (1))
° Substitute __C1 = In (sin (1)) into general solution and simplify
x = arcsin (e’ sin (1))
° Solution to the IVP
x = arcsin (e’ sin (1))

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli
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‘trying separable
‘<— separable successful”

Maple dsolve solution

Solving time : 0.093 (sec)
Leaf size : 10

‘dsolve([diff (x(t),t) = tan(x(t)),
‘ op([x(0) = 11)]1,x(t),singsol=all)

z = arcsin (e’ sin (1))

Mathematica DSolve solution

Solving time : 0.007 (sec)
Leaf size : 12

'DSolve[{D[x[t],t]==Tan[x[t]],{x[0]==1}},
‘ x[t],t,IncludeSingularSolutions->True]

(t) — arcsin (e’ sin(1))
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2.1.13 problem 3 (i)

Solved as first order separableode . . . ... ... ... .... 129
Solved as first order Exactode . . . . . ... ... ....... 1311
Maple step by step solution . . . . . ... ... ... ... .. 136
Mapletrace . . . . . . . . . . ... 136
Maple dsolve solution . . . . . ... ... ... L. 137
Mathematica DSolve solution . . . . . ... ... ... ..... 137

Internal problem ID [18176]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 3 (i)

Date solved : Thursday, December 19, 2024 at 01:52:09 PM

CAS classification : [_separable]

Solve
3’z — zt + (3% + t3x4) =0

Factoring the ode gives these factors
z=0 (1)
'’ + 3r'zt? + 3t —1=0 (2)

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for x from

Solving gives z =0

Solving equation (2)
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Solved as first order separable ode
Time used: 0.903 (sec)

The ode 2/ = —% is separable as it can be written as

p_ 3t—1
TT Ty (22 +3)
= f(t)g(x)

Where

3t—1
t2
1

z (22 +3)

/ﬁdzz/f(t)dt
/x(x2+3) dz=/—3tt;1dt

(z2+3)7 1 1
T:_Z—Hn 3 +c

ft)=-
g(z) =

Integrating gives

Solving for z gives

\/t (-3t +2¢/In(3) 2 +cr2—t)

r=
t
\/—t (3t+2¢/m(3) 2+ 1tz —t)
r=
t
\/t (=3t +2y/n(B) 2+ etz —t)
o —
t
\/—t (3t+2/In(}) 2 +crt2—t)
o —

t
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Figure 2.30: Slope field plot
r'r3t? +32'rt2 +3t—1=0

Summary of solutions found

Tr =

\/t (=3t +2y/n (}) 2+ etz —t)

Tr=

t

\/—t (3t+2¢/m(3) &2+ er ez —t)

r = —

x=—

t

\/t (-3t+2y/In(H) e +ere2—t)

t

\/—t (3t+2y/m (&) 2+ etz —t)

t
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Solved as first order Exact ode
Time used: 0.313 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

(t°2® 4+ 3t°z) dz = (-3t + 1) d¢
(3t — 1) dt +(¢2° + 3t°z) dz = 0 (2A)

Comparing (1A) and (2A) shows that

M(t,z) =3t —1
N(t,z) = t*z® + 3t%x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0
T (3t—1
oxr Ox (3¢ —1)
=0
And
ON 0 ,, 3 9
i at(t 2’ + 3t°z)
= 2t x> + 6tz

Since %—A; %—f, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

g L(oM _ON
N\ Oz ot

1 3
= & (x2+3)((0) — (2t2® + 6tz))
2
o _g

Since A does not depend on z, then it can be used to find an integrating factor. The
integrating factor p is

= el Adt
— el —2at
The result of integrating gives
4 = e 20
_ !
=3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM

1
= 5Bt -1)
3t—1
t2
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CHAPTER 2.
And
N = uN
= t%(t%?’ + 3t%z)
= m(m2 + 3)

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

M+N-—-=0
+ dt
3t—1 9 dz
<—t2 )—i—(m(m +3) &g
The following equations are now set up to solve for the function ¢(¢, x)

op —
T =M 1
ot (1)
0 —
T =N 2
e (2)

Integrating (1) w.r.t. ¢t gives
9 41 — / Madt
ot

0 3t — 1
adt_/ 5 dt

6= +3I(0)+ f(2) 3)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and x
Taking derivative of equation (3) w.r.t z gives

0 _ ., p
=0+ 1) @

But equation (2) says that g—x = z(z? + 3). Therefore equation (4) becomes

(2 +3) =0+ f'(2)

Solving equation (5) for f'(z) gives
f(z) = z(z* + 3)
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Integrating the above w.r.t = gives

/f’(x)dx=/(:c(m2+3))dx

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

(z2 + 3)°

1
¢=¥+3ln(t)+ 4

+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

(z2 +3)"

1
cl—¥—|—3ln(t)+ 1

Solving for z gives

\/t (—3t +2 /=3I @)+ t?— t>

xr=

¢
\/—t <3t +2y/-3In(t) 82 +c1 82 — t)
xr=
t

\/t (—3t +2/=3In(t) 2 + ¢ 12 — t)

xr = —
t

\/—t <3t +2,/=3m @)+t — t)

=

t
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Figure 2.31: Slope field plot
r'r3t? +32'rt2 +3t—1=0

Summary of solutions found

\/t (—3t +2/=3In () 2+ 12 — t)

t

\/—t (3t +2/3mDE+ o2 — t)

t

\/t (—3t +2,/-3m@O) B+ — t)

t

\/—t (3t +2,/=3In () &2+ 1% — t)

t

Tr=

xr=

r = —

x=—
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Maple step by step solution

Let’s solve
3t’r — xt + (3t3z2 + t3z4) ' = 0
° Highest derivative means the order of the ODE is 1

/

x
° Solve for the highest derivative
Q42
° Separate variables
o'z(z? +3) = -3

° Integrate both sides with respect to ¢
['z(z® +3)dt = [ -3 dt + C1

° Evaluate integral

) — _1_3In(t)+ C1

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’
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Maple dsolve solution

Solving time : 0.022 (sec)
Leaf size : 139

‘dsolve(3*t‘2*x(t)-x(t)*t+(3*t’“3*x(t)’“2+t‘3*x(t)‘4)*diff (x(t),t) =0,
‘ x(t) ,singsol=all)

=0
\/—3t2+2t\/ t(1+3In(t)t+tc)
¢
\/—3t2—2t\/ t(1+3ln @)t + te)
\/—3t2+2t\/ t(1+ 3 ()t +tc)
= ¢
\/—3t2 9t\/—t (1 + 3 () ¢ + ter)
r =

t

Mathematica DSolve solution

Solving time : 6.967 (sec)
Leaf size : 157

} DSolve [{(3*t~2*x [t]-t*x [t])+(3*t"3*x[t] "2+t~ 3*x [t] "4)*D[x[t],t]==0,{}},
‘ x[t],t,IncludeSingularSolutions->True]

2(t) = 0
2(t) — _\/_3 V9t - 12tlo\g/(it) T dcit—4
o(t) = \/_3 /912t loig/(it) +dcit—4
(t) — _\/_3 N /9t — 12t lo\g/(it) Tt —4
2(t) — \/_3 N V9t — 12t 10\g/(;) Fdcit—4

z(t) = 0
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2.1.14 problem 3 (ii)
Solved as first order linearode . . . . . ... ... ... .... 138}
Solved as first order separableode . . .. ... ... ... ... [140]
Solved as first order Exactode . . . . . ... ... ... .... 142]
Solved using Lie symmetry for first orderode . . ... ... .. 147
Maple step by step solution . . . . . ... ... ... ... ... 153]
Maple trace . . . . . . . . .. 153
Maple dsolve solution . . . .. ... ... ... ......... 154
Mathematica DSolve solution . . . . .. .. ... ... ..... 154

Internal problem ID [18177]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 3 (ii)

Date solved : Thursday, December 19, 2024 at 01:52:12 PM

CAS classification : [_separable]

Solve

1+ 2z + (—t*+4) 2’

Solved as first order linear ode
Time used: 0.125 (sec)
In canonical form a linear first order is
' +q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = B4

p(t)=t2_4

The integrating factor u is
p=e Jaqdt

2
= ef_t27—4dt

Vi+2
t—2

=0
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The ode becomes

Integrating gives

J;\/t+2_/ Vi+2 "
Vi—2 ) -4)vE-2
=_\/—t—2(t—|—2)3/2+c

Dividing throughout by the integrating factor P gives the final solution

JE=?2 (—\/t T2t 42 42082 — 801)
VET2 (262 8)

xTr=
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Figure 2.32: Slope field plot
14+2z+ (—t*+4)2’ =0

Summary of solutions found

v%—zQwﬁ—2@+2f”+2qﬁ—8q)
Tr=
VET2 (22— 8)

Solved as first order separable ode
Time used: 0.171 (sec)

The ode ' = 122 is separable as it can be written as

, 142z
2 —4
= f(t)g(z)

Where

)= g

g(x)=2x+1
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Integrating gives
/ L /f(t)dt
9(x)
1 1
/2x+1d$_/t2—4dt

In(1+22) _ (t—2)"* .
— 5 =1 <—(t+2)1/4>+ 1

We now need to find the singular solutions, these are found by finding for what values
g(z) is zero, since we had to divide by this above. Solving g(z) =0 or 2z +1 =0 for
gives

T=—C

2

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In(1+22) _ ((t - 2)1/4> e

2 (t+2)"*
1
xT=—=
2
Solving for z gives
1
rT=—=
2
—e2\/t =2+t +2
x=—

2Vt +2
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Figure 2.33: Slope field plot
14+2z+ (—t*+4)2’ =0

Summary of solutions found

—e¥\t =24+t +2
2/t +2

Solved as first order Exact ode
Time used: 0.486 (sec)

To solve an ode of the form

o ®)

M(@,y)+N@,y)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

< pau) =0
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Hence 96 06d
Y
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
99 _
or
99 _
oy
But since aajgy = ;’: 6¢x then for the above to be valid, we require that
oM _ ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore

(—t*+4)dz = (-1—2z)dt
(2z4+1)dt+(—t*+4)dz =0 (2A)

Comparing (1A) and (2A) shows that

M(t,z) =2x+1
N(t,z) = —t*+4

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ ON
ox Ot
Using result found above gives
oM 0

=2
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And

Since ‘%’I # %—Jf, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

Al L(OM _oN
- N\ oz ot

1
= (@) - (-2)

=2t -2

24
Since A does not depend on z, then it can be used to find an integrating factor. The
integrating factor p is

= el Adt
—2t—2
_ o Bt
The result of integrating gives
In(t+2) 31n(t—2)
n= e 2z T 2

1
CVEF2 (t—2)%?

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

_ ! (20 +1)

CVET2 (-2

2¢ +1

ST

And

1 2
T Vit2 (-2 (= +4)
Vi+2

t—2
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CHAPTER 2.

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
—dz
M+ N-—- =
+ . 0
2z + 1 +(_\/t+2)d_:c_
VEF2 (t—2)%? Vi—2) dt
The following equations are now set up to solve for the function ¢(¢, x)
o —
% M 1
0p —
% _N 2
e 2)

Integrating (2) w.r.t. z gives

/—dx—/ﬁdx
9, _ [ _VE¥D,
o ¢ Vi—2 "
VIEZ L b 3)

$= =i

Where f(t) is used for the constant of integration since ¢ is a function of both ¢ and z

Taking derivative of equation (3) w.r.t ¢ gives

0¢ x T/t + 2
5= 3 + 5z + (1) (4)
VER2VE—2  2(t—2)
2z ,
Vit 2 (t—2)%? REAY
But equation (1) says that a—‘b \/HJ”(”;LZ)?, . Therefore equation (4) becomes
2r +1 2x
= EE + £(t) (5)

VIF2 (t-2°7  ViF2(t-

Solving equation (5) for f'(t) gives
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Integrating the above w.r.t ¢ gives

o e 1
/f (1) dé = / (\/t+ 2 (t - 2)3/2> «

VE+2
— == ta
2yt -2

ft) =

Where ¢, is constant of integration. Substituting result found above for f(t) into
equation (3) gives ¢

_x\/t+2_ Vt+2

N e R N 2

C1

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

A/t + 2 Vi+2
c=- —
! Vi—2 2/i—2

Solving for z gives

. 261\/t—2‘|‘\/t+2
N 2W/E+ 2
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Figure 2.34: Slope field plot
142+ (—t2+4)2' =0

Summary of solutions found

21Vt — 2+t +2

24/t +2

Solved using Lie symmetry for first order ode
Time used: 0.819 (sec)

Writing the ode as

o= 2z +1
24
' =w(t,x)

The condition of Lie symmetry is the linearized PDE given by
M+ w(ne — &) — W — Wi —wen =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
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degree 1 to use as anstaz gives
§=tay+zaz+a (1E)
1 = tb + xbs + by (2E)
Where the unknown coeflicients are

{ala az, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(21,' + 1) (b3 — az) _ (2117 + 1)2 as
£_4 (& — 4)? (5E)
2(2$ + 1) t(taz + zas + CLl) 2(tb2 + .’L'b3 + bl)
+ 2 -
(2 —4) 24

by +

=0

Putting the above in normal form gives

tby — 2t3by + 2t%zay + 4t x%a3 + t2ay — 2t2b; — 8t2by + t2bs + 4txa; + 2tras — 4x’as + 2ta; + Stby + Sz
(2 — 4)*

=0
Setting the numerator to zero gives

t4b2 - 2t3b2 + 2t2.’1}(12 + 4t x2a3 + t2a2 - 2t2b1 - 8t2b2 + t2b3 + 4txa1 + 2tza3 (GE)
—_ 41}20,3 —|— 2ta1 —|— Stbg —+— 81‘(12 —_ 4£L'CL3 —|— 4(12 — as —|— 8b1 —|— 16b2 —_ 4b3 = O

Looking at the above PDE shows the following are all the terms with {¢,z} in them.
{t,z}

The following substitution is now made to be able to collect on all terms with {¢,z} in
them

{t =v1,2 = vo}

The above PDE (6E) now becomes

bgfvj1 + 2a2vf1}2 + 4a3vlv§ — 2b2vi’ + 4a;v1v9 + agvf + 2a3v1v9 — 4a3v§ — 2b1vf (7E)
- SbQ'U% + b3’l)% + 2a12}1 + 8021)2 - 4(13’02 + 8b2’l}1 + 4&2 —as + 8b1 + 16()2 - 4b3 =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

bov} — 2bov3 4 2a5v3v5 + (ag — 2by — 8by + b3) v + dazv1v + (4ay + 2a3) V1V, (8E)
+ (2a1 + 8b2) U1 — 4a3v§ + (8&2 — 4(13) Vg + 4as — as + 8b; + 16by — 4b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

2a9 =0

—4a3 =0

4a3 =0

—2by =0

2a1 + 8b, =0
4a1 4+ 2a3 =0
8as —4a3 =0

a2—2b1—8b2+b3=0
4a2—a3+8b1+16b2—4b3=0

Solving the above equations for the unknowns gives

a; =0
as =0
a3 =0
by =0b;
by =0
bs = 2b;

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=0
n=2r+1
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dx
&

The above comes from the requirements that (f % + 176%) S(t,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=t
S is found from
1
S = / —dy
n
1
= d
/éz+1y
Which results in
g In (2ac2 +1)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS S, +w(t,z)Sa @
dR ~ R,+w(t,z)R,

Where in the above Ry, R, S, S, are all partial derivatives and w(t, x) is the right hand
side of the original ode given by

2z +1
w(t,xz) = 54
Evaluating all the partial derivatives gives
R, =1
R,=0
St = 0
1
Sy =

2z +1



CHAPTER 2. BOOK SOLVED PROBLEMS 151

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s 1
dR  t2—-4

(24)

We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

a1
dR ~ R?—4

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).

/dS /R2 dR

S(R) = _In( R4+2)+1n(R4—2)

+ co

To complete the solution, we just need to transform the above back to ¢,z coordinates.
This results in
In (1+ 2z) In(t+2) In(t—2)

> 1 ‘T g To

Which gives

In(t+2) , In(t—2)
e 2z T 3 t2
T = —
2 2
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical . . .
.. ) . . ODE in canonical coordinates
Original ode in ¢,z coordinates coordinates (R, S)
transformation ’
dr __ 2xz+1 ds 1
dt — t2—-4 dR R2—4
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Figure 2.35: Slope field plot
1+2z+ (-2 +4)2’ =0
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Summary of solutions found

R R EaC
T = - =

2 2

Maple step by step solution

Let’s solve
1+2z+ (—t*+4)2’ =0
° Highest derivative means the order of the ODE is 1

/

x
° Solve for the highest derivative
/. —1-2x
T = T2
° Separate variables
z 1
—1-2z =~ —t244

° Integrate both sides with respect to ¢
[ =Zdt = [ —hdt + C1

—-1-2z —t2+4
° Evaluate integral

In(—1—2z) _ In(¢t+2) In(t—2)
T2 ==z — 1 T0

. Solve for x
201y \/edC142_44C1 4 9401 2014496401 /e4C12_4e4C1
r=- 26701 (142) == 26701 (£42)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 18

| dsolve(1+2*x(t)+(-t~2+4) *diff (x(t),t) = 0,
‘ x(t) ,singsol=all)

Mathematica DSolve solution

Solving time : 0.078 (sec)
Leaf size : 87

' DSolve [{(1+2*x[t])+(4-t~2)*D[x[t],t]==0,{}},
x[t],t,IncludeSingularSolutions->True]

. V2—t(VA—8 =2/t +2+ 201 (t+2v2 -t — 2))
=) WEF2(t+2v/2—1—2)

() = —%
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2.1.15 problem 3 (iii)

Solved as first order homogeneous class A ode
Solved as first order homogeneous class D2 ode . ... ... .. 158]

Solved as first order isobaricode . . . . ... ... ... .... 159
Solved using Lie symmetry for first orderode . . ... ... .. 161
Solved as first order ode of type dAlembert . .. ... ... .. 167
Maple step by step solution . . . . .. ... ... ... .. ... 170
Maple trace . . . . . . . . . L Ival
Maple dsolve solution . . . . . .. ... .. .. .. ... ..., Ival
Mathematica DSolve solution . . . . .. .. ... ... ..... Iival

Internal problem ID [18178|

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 3 (iii)

Date solved : Thursday, December 19, 2024 at 01:52:17 PM
CAS classification : [[_homogeneous, ‘class A‘], _dAlembert]

Solve
x’ = cos (%)

Solved as first order homogeneous class A ode
Time used: 0.369 (sec)

In canonical form, the ODE is
' =F(tx)
x
= cos (= 1
(3 »
An ode of the form z’' = % is called homogeneous if the functions M (t,z) and

N(t,z) are both homogeneous functions and of the same order. Recall that a function
f(t,x) is homogeneous of order n if

f&"t, t"x) =t"f(t,x)

In this case, it can be seen that both M = cos (%) and N =1 are both homogeneous
and of the same order n = 0. Therefore this is a homogeneous ode. Since this ode is
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homogeneous, it is converted to separable ODE using the substitution u = ¥, or z = ut.

Hence
d_x = d—ut +u
dt — dt
Applying the transformation z = ut to the above ODE in (1) gives
d—ut + u = cos (u)
dt B
du _ cos (u(t)) — u(?)
dt t
Or . .
() - ) )
Or

u'(t)t — cos (u(t)) + u(t) =0
Which is now solved as separable in u(t).

The ode v/'(t) = ME)_"@) is separable as it can be written as

Where

Integrating gives

/ Wd’r =1n (t) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or cos (u) —u =0
for u(t) gives

u(t) = RootOf (—cos (_2) +_ 2Z)



CHAPTER 2. BOOK SOLVED PROBLEMS 157

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf (— cos (_2Z) + _Z) will not be used

Converting [“* — L dr = In(t) + ¢; back to z gives

cos(T)—7
/ Tl oms
————dr=1In c
cos (1) —T !
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Figure 2.36: Slope field plot
&’ = cos (%)

Summary of solutions found

z
t

1
/ de = 111 (t) + C1
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Solved as first order homogeneous class D2 ode
Time used: 0.151 (sec)

Applying change of variables x = u(t) ¢, then the ode becomes

u/'(t) t + u(t) = cos (u(t))

Which is now solved The ode v/(t) = —M is separable as it can be written as
PRIOES 10)
= f(t)g(w)
Where
1
t) ==
f) =3

Integrating gives

/ﬁdu=/f(t)dt
/mduz/%dt

u(t)
/ ;dT =ln(t)+c

—T7 4 cos (7)

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or —u+ cos (u) =0
for u(t) gives

u(t) = RootOf (—cos (_2) +__Z)

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf (—cos (_Z) + __Z) will not be used
Converting | W __ 1 __gr=1In (t) + ¢ back to z gives

—T7+4cos(T)

i 1
. dr=1
/ —7 + cos (1) dr =In(t) + e
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Figure 2.37: Slope field plot

' = cos (%)

Summary of solutions found

| =m0+

—7 + cos (7)

Solved as first order isobaric ode
Time used: 0.585 (sec)

Solving for =’ gives

z' = cos <£> (1)
t
Each of the above ode’s is now solved An ode &’ = f(t, z) is isobaric if

f(tt,tme) =t (8, ) (1)

Where here

f(t,2) = cos (%) 2)
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m is the order of isobaric. Substituting (2) into (1) and solving for m gives
m=1
Since the ode is isobaric of order m = 1, then the substitution

z = ut™

= ut
Converts the ODE to a separable in u(t). Performing this substitution gives
u(t) + tu'(t) = cos (u(t))
The ode u'(t) = —M is separable as it can be written as

() = 1O = st

Where

Integrating gives

/ﬁdu:/f(t)dt
/mdu:/%dt

u(t) 1
/ . =l +a

—T + cos (7)

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or —u+ cos (u) =0
for u(t) gives

u(t) = RootOf (—cos (_2) +_2)

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf (— cos (__Z) + __Z) will not be used
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1
—T74cos(T)

Converting [ u(t)

dr =1n (t) + ¢; back to z gives

| i =0+

—T + cos (7)
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Figure 2.38: Slope field plot

' = cos (%)

Summary of solutions found

[

—7 + cos (7)

Solved using Lie symmetry for first order ode
Time used: 1.046 (sec)

Writing the ode as

= ()
T =cos|(—
t

' =w(t,x)
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The condition of Lie symmetry is the linearized PDE given by
M+ Wi — &) — W —wif — wan =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§=tay +zaz+a (1E)
1 = tby + xbs + by (2E)

Where the unknown coefficients are
{a1, a2, as,b1,bs, b3}
Substituting equations (1E,2E) and w into (A) gives
N 2
) (bs — ag) — cos (;) as (5E)

t
zsin (%) (tas + zas + a1) N sin (2) (tby + zbs + by)
t2 t

Putting the above in normal form gives

cos (f)2 ast® + cos (%) t?as — cos (2) t2b3 — sin (%) t2by + sin (%) tzas — sin (2) twbs + sin (%) za3 — si
t2

=0

Setting the numerator to zero gives
2
— Cos (%) ast® — cos <%> t?as + cos <%) t2b3 + sin (%) t2by — sin (%) tzas (6E)
+ sin (%) txbs — sin (%) z2a3 + sin <%> tb; — sin (%) za; +bat? =0
Simplifying the above gives
ast®  ast®cos (%)

T x /T
5 5 — cos <?) t*ay + cos <¥> t2b3 + sin (z) t2by (6E)
. (T . (T [T\ (T (T
—sin (;) txas+sin (;) txbs —sin <¥> a3 +sin (;) tb; —sin (?) za; =0

byt? —
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Looking at the above PDE shows the following are all the terms with {¢,z} in them.

f1m,con (2) cos (%) o (7))

The following substitution is now made to be able to collect on all terms with {¢,z} in

them
T 2z . /X
{t = V1,Z = V9, COS <?> = V3, COS (?) = Uy, SIin (;) = v5}

The above PDE (6E) now becomes

1
bgvf — 5(131)% — 5(13’0%’04 — vgvfaz + vgvfb:; + v5vfb2 (TE)

2
— VU5V1V209 + U5U1U2b3 — Us5V503 + ’U5’U1b1 — VUgV2071 = 0
Collecting the above on the terms v; introduced, and these are
{/Ulv V2, U3, U4, US}

Equation (7E) now becomes

2
(b3 — a2) VaV1V5 + (bz - %) ’U% - a31)211)4 + (b3 - az) ’U%’U,g (8E)

2 2
+ ’U5’l)1b2 — UsVUsy0s3 + ’U5’l)1b1 — UsU2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0
by =0
—(11—0
—0,3—0
_8 _
2_
a
by~ =0
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Solving the above equations for the unknowns gives

a; =0
az = b3
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=t
n==x
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dx
£ 1

The above comes from the requirements that (f % + 771;%) S(t,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

ds (1)

dr _n
dt ¢
_*
ot
_*
ot
This is easily solved to give
T =tc;

Where now the coordinate R is taken as the constant of integration. Hence

rR=2
t
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And S is found from

Integrating gives

dt
5= [

= In (¢)

Where the constant of integration is set to zero as we just need one solution. Now
that R, S are found, we need to setup the ode in these coordinates. This is done by

evaluating

dsS . St+W(t, .’L')Sx

ﬁ - Rt +Ld(t, JI)Rx

2)

Where in the above Ry, R, S, S, are all partial derivatives and w(t, x) is the right hand

side of the original ode given by

w(t,z) = cos (%)

Evaluating all the partial derivatives gives

X
Ry=-3
Rl

t
1
St:;
S;=0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as t

d_chos(%)t—x

(24)

We now need to express the RHS as function of R only. This is done by solving for ¢, x

in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR ~ cos(R)— R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R)

/dS /cos(R

)—/WdR+CQ

= f(R), then we only need to integrate f(R).

1
SGD::/};gGﬁi?RdR+ﬂb

To complete the solution, we just need to transform the above back to t,x coordinates.
This results in

d_a+02

1““’2/95@

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . i ODE in canonical coordinates

Original ode in ¢,z coordinates coordinates (R, S)
transformation ’
dr __ T as _ 1
o = cos (%) dR = cos(R)—R

A A7 o\ o T\ > _T T T P VNS e
PPN IE NGNS | S T AAA AL N e
AAA 7w e—a o~ |~ ~a> 7 T A e O S VNSNS e
/////»jt\»»\\»»///// R ro Tl AN T TR
A AA A ADBLNNN e A A e A AAA A AL N
AAATAAASNINAN A AT S Gttt VI
AAPAAAA A r—e 7 A A S A A T it i T i
PAAAPAAAAANNAA A SN R=" i i T
AP PAT ISP Tt ettt alalalalallel VA TN e
R N, R VYR Vi e e ok RS R S
PAAPPPFAANNA A ISP S=ln(t) e A XA AL N
FAAFAAA Al r—a 7 7 A F A el U T e
AAATAAA NG AN A AT JJ A e 1 i e s
A AAAA A NN N T A Gt T
PO OO N S C o e o TS
AAA 7 o e—a N~ | T~ ~a> T T A A O W VNSNS b
e e R N R I Ol A A AAA AL N e
P O Y x Pl N Y S g e e AT FAT AL N a e e




CHAPTER 2. BOOK SOLVED PROBLEMS

167

3H 77N\ \\\N— ]
S 777NN NN\~
V\ /77777 \N—"\N\N—~~"/7/777
77 7N\ \\\~—="/77777
777NN\ ~"S ]
//\//\////

NN NN
\\\\\\\\\\
NN N

NN N

AN N Y N N N N N N
AN NN N 0 N N NN
AN N N N N

J 7=\ \\—~"/"/
J 77N\ \\\~—>"/"/
\ /77 777\ \\N~~""7777
S 777NN NN\~
3 SN\ ]

=
=
. 2 . .
NN N
ANONONONONONONONONIONNNN Y
NN N

AR T T T
t
Figure 2.39: Slope field plot

' = cos (%)

Summary of solutions found

Solved as first order ode of type dAlembert
Time used: 1.377 (sec)

Let p = 2’ the ode becomes

= COS (1:)
p= ¢

Solving for z from the above results in
x = arccos (p) t

This has the form

r =tf(p) + g(p)

*)
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Where f, g are functions of p = z'(t). The above ode is dAlembert ode which is now

solved.

Taking derivative of (*) w.r.t. ¢ gives

p=f+r+9) D
(! /@
p=f=0f+d)

Comparing the form z = tf 4+ g to (1A) shows that

f = arccos (p)
g=0

Hence (2) becomes

tp'(t)
V-p*+1

The singular solution is found by setting % = 0 in the above which gives

p — arccos (p) = —

p — arccos (p) =0

No singular solution are found.

The general solution is found when % # 0. From eq. (2A). This results in

(p(t) — arccos (p(t))) \/—p ()* + 1
t

This ODE is now solved for p(t). No inversion is needed. The ode p'(t) =

p(t)=—

2)

3)

_ (p(t)—arccos(p(t)))y/ —p(t)*+1

is separable as it can be written as

(p(t) — arccos (p(t))) \/ —p (t)* + 1

pt)=— "
= f(t)g(p)
Where
f)=—3

g(p) = (p — arccos (p)) /—p? + 1

t
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Integrating gives

/Flp)dp=/f(t)dt

/(p—arccos(;))mdpzf—%dt

p(t) 1 p | 1
=In{>)+
/ (1 — arccos (7)) vV—12+1 Te (t) “

We now need to find the singular solutions, these are found by finding for what values
g(p) is zero, since we had to divide by this above. Solving g(p) = 0 or (p — arccos (p)) vV—p>+1 =
0 for p(t) gives

p(t) = —1
p(t) =1
p(t) = RootOf (—cos (_Z) +__7)

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf (—cos (_Z) + __Z) will not be used

Therefore the solutions found are

p(t) 1 J | 1
=ln|-|+c
/ (1 —arccos (7)) vV—12+ 1 ! (t) !

p(t) = -1
p(t) =1
Substituing the above solution for p in (2A) gives
& = arccos (RootOf (— /_Z ! dr +In (1) +c >) t
(1 —arccos (7)) vV—12+1 t '
r=mt
z=0
The solution
z=0

was found not to satisfy the ode or the IC. Hence it is removed. The solution

T =t
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was found not to satisfy the ode or the IC. Hence it is removed.

3H /7N \ =\ ]
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V777777777 N\N777777777
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Figure 2.40: Slope field plot
z’ = cos (%)

Summary of solutions found

-z 1 1
= RootOf | — dr+In( =)+ t
i arccos ( 00 ( / (7’  arccos (7_)) \/T—i-l T n (t) C1)>

Maple step by step solution

Let’s solve
&’ = cos (%)
° Highest derivative means the order of the ODE is 1

xl

° Solve for the highest derivative

&’ = cos (%)
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful”

N

Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 27

‘dsolve(diff(x(t),t) = cos(x(t)/t),
x(t),singsol=all)

Z
z = RootOf (—/ - ! d_a+In(t)+ cl> t
—cos(_a)+_a

Mathematica DSolve solution

Solving time : 0.351 (sec)
Leaf size : 33

e

DSolve [{D[x[t],t]==Cos[x[t]/t],{}},

‘ x[t],t,IncludeSingularSolutions->True]

2(t)
t

1 K[1] = cos(K[1])

Solve [ / 1

dK[1] = —log(t) + c1, z(t)
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2.1.16 problem 3 (iv)

Solved as first order homogeneous class Aode . . . . . ... .. 172l
Solved as first order homogeneous class D2 ode . ... ... .. 175
Solved as first order homogeneous class Maple C ode . . . . . . [178]
Solved as first order Exactode . . . .. ... ... ....... 182
Solved as first order isobaricode . . .. ... ... ... ....
Solved using Lie symmetry for first orderode . . . .. ... .. 189
Maple step by step solution . . . . . .. ... ..., 194
Maple trace . . . . . . . . . . . 194
Maple dsolve solution . . . . ... ... ... ... ....... 194!
Mathematica DSolve solution . . . . .. .. ... ... ..... 195

Internal problem ID [18179]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 3 (iv)

Date solved : Thursday, December 19, 2024 at 01:52:21 PM

CAS classification : [[_homogeneous, ‘class A‘], _rational, _dAlembert]

Solve

(t* —2%) 2’ = at

Solved as first order homogeneous class A ode
Time used: 0.650 (sec)

In canonical form, the ODE is

' =F(t )
s (1)

2 4 g2

1\]\/[1((:2)) is called homogeneous if the functions M(¢,z) and

N(t,z) are both homogeneous functions and of the same order. Recall that a function
f(t,z) is homogeneous of order n if

f&"t, t"x) =t"f(t,x)

In this case, it can be seen that both M =tz and N = t?> — z? are both homogeneous
and of the same order n = 2. Therefore this is a homogeneous ode. Since this ode is

An ode of the form 2’ =
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homogeneous, it is converted to separable ODE using the substitution u = ¥, or z = ut.
Hence

d_x = d—ut +u
dt — dt
Applying the transformation z = ut to the above ODE in (1) gives
d—ut +u=-— “
dit w2 —1
u(t
du _ —as —u)
dt t
Or ©
— oz — ult)
/ 1) — u(t)2—1 —
u'(t) " 0
Or
u' () w(t)t +u(t)® — /' (t)t =0
Or

t(u®)? — 1) u'(t) +u(t)’ =0
Which is now solved as separable in u(t).

The ode u'(t) = — 40" __ 5 separable as it can be written as
t(u(t)2—1)

Where

Integrating gives
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We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u;‘il = 0 for u(?)
gives

u(t) =0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

Solving for u(t) gives
u(t)=0

u(t) = /- 1
N LambertW (—e—2¢1¢2)

Converting u(t) = 0 back to z gives

=0

Converting u(t) = \/ - Lamberth(—e_2cl ) back to x gives

1
v t\/_ LambertW (—e—2c1¢2)
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V77 ==N\\
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Figure 2.41: Slope field plot
(t2 =zt 2 ==t

Summary of solutions found

=0

1
v t\/_ LambertW (—e—2c1¢2)

Solved as first order homogeneous class D2 ode
Time used: 0.530 (sec)

Applying change of variables x = u(t) t, then the ode becomes
(8 —u(t)® ) (W' (t) t + u(t)) = u(t) t?

Which is now solved The ode v/(t) = — ( (1:)(;)—31>t is separable as it can be written as

iy u®)’
wle) = (u(®)?—1)t

= f(t)g(w)
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Where
1
t)=—=
3
U
g(U) - ’lL2 1

Integrating gives

1

1 1

1 1
t2=1n(¥)+01

(t)

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u;‘—il = 0 for u(?)
gives

U

In (u(t)) +

3
2u

u(t) =0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

Solving for u(t) gives

1
u(t) = \/ ~ LambertW (—e—2c1£2)

Converting u(t) = 0 back to z gives

=0

back to x gives

Converting u(t) = \/

_ 1
LambertW (—e~2¢1¢2)

1
—t,]—
v \/ LambertW (—e—2c1¢2)
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Figure 2.42: Slope field plot
(t? — 2?2’ = xt

Summary of solutions found

1
—t,]—
v \/ LambertW (—e—2¢1¢2)

Summary of solutions found

=0

1
—t,]—
v \/ LambertW (—e—2c1¢2)
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Solved as first order homogeneous class Maple C ode
Time used: 1.020 (sec)

Let Y = x — yo and X =t — z then the above is transformed to new ode in Y (X)

Ao () +30) @+ X)
XX = T )+ ) = (o + X7

Solving for possible values of xy and yo which makes the above ode a homogeneous ode

results in

Zo =

Y% =0
Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

%Y(X) - —X};(—i(})f)((Xf
In canonical form, the ODE is
Y' = F(X,Y)
e 0

An ode of the form Y’ = %gz,})) is called homogeneous if the functions M(X,Y) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function

f(X,Y) is homogeneous of order n if
fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = Y X and N = X?—Y? are both homogeneous
and of the same order n = 2. Therefore this is a homogeneous ode. Since this ode is

homogeneous, it is converted to separable ODE using the substitution v = %, or
Y = uX. Hence

ax ~ax~ T
Applying the transformation Y = uX to the above ODE in (1) gives
du u
x -
Xt e
u(X
du _ _u(x()2)—1 —u(X)

dX X
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Or ) x)
d _u(X)2—1 w(X .
ax UX) X =0
Or p p
(KU(X)) w(X)* X +u(X)® - (ﬁ“(xo X=0
Or

X (u(X)? 1) ( d‘; (X)> +u(X)? =0

Which is now solved as separable in u(X).

The ode J%u(X) = _X<:((TX));—1) is separable as it can be written as
iu( X)=— u(X)*
X X (w(X)* - 1)
= f(X)g(u)
Where
1
fX)=-+
3
u
g(u) uQ 1

Integrating gives
/ Ldu_ / F(X
g(u
u? —1
In (u(X)) + . In (l) +c
w(X)?  \X)

We now need to find the singular solutions, these are found by finding for What values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u2 ; = 0 for
u(X) gives

w(X)=0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.
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Therefore the solutions found are

Solving for u(X) gives

1
uX) = \/_ LambertW (—e—2¢1 X2)

Converting u(X) = 0 back to Y (X) gives

Y(X) =0

Converting u(X) = \/ — Lambertw(l—e—%l <zy back to Y (X) gives

1
Y(X) = X\/_ LambertW (—e—2¢1 X ?2)

Using the solution for Y (X)

Y(X)=0 (A)
And replacing back terms in the above solution using

Y=x+1y
X:t+$o

Y=z
X =t

Then the solution in z becomes using EQ (A)
z=0

Using the solution for Y (X)

Y(X)=X \/_ LambertW:l(—e—zc1 X?) ()
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And replacing back terms in the above solution using

Y=zx+4+1y
X=t+.’130

Y=z
X=t

Then the solution in z becomes using EQ (A)

1
T t\/_ LambertW (—e—2c1¢2)

/ — —— —=—a~a
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Figure 2.43: Slope field plot
(2 — 22’ =zt
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Solved as first order Exact ode
Time used: 0.237 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

Comparing (1A) and (2A) shows that

M(t,z) = —tz
N(t,z) =t* — 2°
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 9N
ox Ot
Using result found above gives
oM 0
R
= —¢
And
-t )
=2t

Since %_1\; # aa—f, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

Ao 1 /OM ON
N\ Oz ot
1
= m((—t) —(2t))
3t
T2 g2

Since A depends on z, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

g L(ON _ouM
M\ ot ox

— — (@) - (-1)

Tt
__3

X

Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

p= ede:L'
—e [-3da
The result of integrating gives
= 6_3 In(x)
1
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M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

And

So now a modified ODE is obtained from the original ODE which will be exact and

can be solved using the standard method. The modified ODE is
—dz

M+N-—-=0
+ dt

_t + H d_x_o
2 3 dt

The following equations are now set up to solve for the function ¢(¢, x)

0p —

_gt =M (1)
¢

i @

Integrating (1) w.r.t. ¢t gives

0 .. [+
Edt—/Mdt

86 ¢
Edt—/—ﬁdt

b= -1 4 f@) 3)

212

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t  gives

o _ t*
5 = 5+ /@ (4)
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t2

But equation (2) says that % = ;—3””2 Therefore equation (4) becomes

2 .2 2

Solving equation (5) for f'(z) gives

Integrating the above w.r.t x gives

/f’@)@:/(-%) do

fx)=—In(z)+ ¢

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢
t2
p=————-In(z)+¢

212
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

C1 = _2_,’E2 - ln(x)

Solving for z gives

LambertW(—thQCl )

r=e 2 A
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Figure 2.44: Slope field plot
(t2 =zt 2 ==t

Summary of solutions found

LambertW(—tzezcl )

r=e 2 A

Solved as first order isobaric ode
Time used: 0.615 (sec)

Solving for z’ gives
xt
x2 — 2

' =-

Each of the above ode’s is now solved An ode &’ = f(t, z) is isobaric if
f(tt,t"x) =t f(t, z)
Where here
xt
flt2)=-—>—3

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m=1

(1)

2)
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Since the ode is isobaric of order m = 1, then the substitution

z = ut™

=ut

Converts the ODE to a separable in u(t). Performing this substitution gives

: t*ut)
ult)+tu(t) = ——5"—
() () t2u(t)2_t2
The ode u'(t) = _<(1:)(+)—31>t is separable as it can be written as
3
d(t) = —— 2B
(u®)*—1)¢
= f()g(v)
Where
1
f)=—3
3
u
g(U) - uz -1

Integrating gives

/ﬁduz/f(t)dt
/“2u;1du=/—%dt

In (u(t)) + 2utt)2 —In (%) to

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u;‘—il = 0 for u(t)

gives
u(t) =0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(t)) + 2u1(t)2 Cn (%) to

u(t) =0
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Solving for u(t) gives
u(t) =0

1
u(t) = \/_ LambertW (—e—2¢1¢2)

Converting u(t) = 0 back to z gives

T _y
t

Converting u(t) = \/

1 .
TambertW (—e~%122) back to x gives

z_ | 1
t LambertW (—e—2¢1¢2)
Solving for = gives

z=0

=t/ — 1

v LambertW (—e—2c1¢2)
HNN V77 7m0\
[NNV V77 77=—==NN\ 0\
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Figure 2.45: Slope field plot
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Summary of solutions found

=0

1
v t\/_ LambertW (—e—2c1¢2)

Solved using Lie symmetry for first order ode
Time used: 0.829 (sec)
Writing the ode as

o xt
2412
' =w(t,x)

The condition of Lie symmetry is the linearized PDE given by

M+ w(e — &) — W — wi€ —w,n =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

f =tas + zasz + a1 (1E)
n= thy + .’L‘b3 + by (QE)

Where the unknown coefficients are

{al, az,as, by, b2a b3}

Substituting equations (1E,2E) and w into (A) gives

. zt(bs — as) r*t%a3 ( T 2z t2
,— _

—12 + x2 (—t2 4+ 1172)2 -\ —¢2 + 2 - (—t2 + IL'2)2

t 2z%t
_ <_ b A mz)Q) (tbs + b3 + by) = 0

) (taz+zas+aq) (5E)

Putting the above in normal form gives

3t22%by — 2t xag + 2t °bs — x'ag — 10y + t°by — t2way +ta?by — 2lay 0
) (2~ 22)° )
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Setting the numerator to zero gives
—3t22%by + 2t %ay — 2t 23b3 + a3 + 2*by — t3b; + t2za; — t 2%y + 23a; =0 (6E)
Looking at the above PDE shows the following are all the terms with {¢,z} in them.
{t, =}

The following substitution is now made to be able to collect on all terms with {¢,z} in
them

{t =v1,z = v9}
The above PDE (6E) now becomes
2020105 + azvy — 3byviv: + bovy — 2bsv105 + 1020y + 4108 — b1} — bivwi =0 (7E)
Collecting the above on the terms v; introduced, and these are
{v1, 02}
Equation (7E) now becomes
—b1v¥ — 3boviv: + a1v7vy + (2ap — 2b3) v1U5 — biv1va + (a3 + by) vy + a1v5 =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 =0
—b;=0
—3by =0
2a9 — 2b3 =0
a3 +by=0

Solving the above equations for the unknowns gives

a; =0
as = bs
a3 =0
by =0
by =0

bs = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

§
U]

t
T

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-—uwtmr)f

. (_—t?x—j—aﬂ) (t

x3

T2 g2
£€=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (t,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dzx
&

The above comes from the requirements that (f % + 776%) S(t,z) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=t

n
:/ lx3 dy
o

t2
S =1 —
n(x) + 572
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S is found from

Which results in

ﬁ . St+LU(t,$)Sw (2)
dR ~ R, +w(t, )R,
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Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

t
wt,z) = ——
_t2 + $2
Evaluating all the partial derivatives gives
Rt =
R, =
t
St = ﬁ
5 - —t2 4+ 22

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
— =0 2A
IR (24)
We now need to express the RHS as function of R only. This is done by solving for ¢,
in terms of R, S from the result obtained earlier and simplifying. This gives

as

ar ="

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form - S(R) = f(R), then we only need to integrate f(R).
S (R) = C2

To complete the solution, we just need to transform the above back to ¢,z coordinates.
This results in

2In (z)2® +¢*
2x2 N

C2

Which gives

LambertW(—t297262)
r=e€ 2

+c2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
. . . . ODE in canonical coordinates
Original ode in ¢,z coordinates coordinates (R, S)
transformation ’
dz _ _ _ wt _ das __ 0
dt — —t2+x2 dR
I WD I
R S s
VAP NNy f 4
SNNNIRAAstan BRIP4
N T ~aa
NN E < St BN A S(R]
~N NN\t BN A 25
— s e ~aNa Ny /{\ AT o> R frd t
gy |1 g 2hﬂx)x2+t2 _— -1y 3 T
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Figure 2.46: Slope field plot
(t? —2?) 2’ = xt
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Summary of solutions found

LambertW(—tze_282 )

r=e 2
Maple step by step solution

Let’s solve

(t? —z?) 2’ = xt

+c2

° Highest derivative means the order of the ODE is 1

xl

° Solve for the highest derivative

/. _xt
T =32

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful”

Maple dsolve solution

Solving time : 0.017 (sec)
Leaf size : 19

‘(dsolve((t‘Q—x(t)‘2)*diff(x(t),t) = x(t)*t,

‘ x(t) ,singsol=all)

1
v \/_ LambertW (—c; t2) t
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Mathematica DSolve solution

Solving time : 7.493 (sec)
Leaf size : 56

‘DSolve[{(t"2-x[t]~2)*D[x[t],t]==t*x[t],{}},
x[t],t,IncludeSingularSolutions->True]

z(t) » —

z(t) =

z(t) =0
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2.1.17 problem 3 (v)

Solved as first order linearode . . . . . ... ... ....... 1961
Solved as first order Exactode . . . . . ... ... ....... 198}
Solved using Lie symmetry for first orderode . . . .. .. . .. 2011
Maple step by step solution . . . . . .. ... ... ... .. .. 208
Mapletrace . . . . . . . . . . .. 209
Maple dsolve solution . . . .. ... ... ... .. ....... 210
Mathematica DSolve solution . . . . .. .. ... ... ..... 210]

Internal problem ID [18180]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 3 (v)

Date solved : Thursday, December 19, 2024 at 01:52:28 PM

CAS classification : [[_linear, ‘class A‘]]

Solve
ez’ + 3re’ =2t
Solved as first order linear ode

Time used: 0.069 (sec)

In canonical form a linear first order is

o' +q(t)z = p(t)

Comparing the above to the given ode shows that

q(t) =3
p(t) = 2te™
The integrating factor u is
b= efth
—e J3dt

— 3t
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up
(1) (2t )
(e3t) (2t e_3t)
(2t e_3te3t) dt
/ 2t e 3 dt
2+ ¢
e 3t (t2 + cl)

(ux)
(ze™)
d (x e3t)

BOOK SOLVED PROBLEMS

Dividing throughout by the integrating factor e gives the final solution

The ode becomes
Integrating gives

CHAPTER 2.

12

t

0
Figure 2.47: Slope field plot

ez’ + 3z edt =2t

T O
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Summary of solutions found

="+ c1)

Solved as first order Exact ode
Time used: 0.390 (sec)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 06 d
o9 oeay _
Or Oydx 0 (B)

Comparing (A,B) shows that

0p
or - M
0p
oy

But since 68:5 = aa 2;5 then for the above to be valid, we require that
y YOz

oM  ON

By Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

e”)dzr = (—3ze™ +2t) dt
(e*) ( 3t )
(3ze® —2t) dt +(e*) dz =0 (2A)
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Comparing (1A) and (2A) shows that

M(t,z) = 3ze® — 2t
N(t,z) = e*

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
ox Ot
Using result found above gives
oM 0
— 2t
Oz Oz (3z )
= 3¢
And
ON 0,
-l
= 3¢
Since %]‘gf = 3t , then the ODE is exact The following equations are now set up to solve

for the function ¢(¢, z)

0p
¢
o=V @

Integrating (2) w.r.t. z gives

—dx—/Ndx

o¢ 3t
8mdx_/e dzx

¢ =ze + f(t) 3)

Where f(t) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t ¢ gives

9¢

2 et (1) @
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But equation (1) says that % = 3z e* — 2t. Therefore equation (4) becomes
3ze¥ — 2t = 3z e’ + f/(t) (5)

Solving equation (5) for f'(t) gives
fi(t) = -2t

Integrating the above w.r.t ¢ gives

/ F()dt = / (—2t) dt

fit)=—t*+¢

Where ¢; is constant of integration. Substituting result found above for f(¢) into
equation (3) gives ¢

p=xe — >+
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

¢ = zedt —¢?

Solving for z gives

x=e 3 (t2 + cl)
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Figure 2.48: Slope field plot
ety 4 3z edt = 2t
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Summary of solutions found

z=e(t’ +c)

Solved using Lie symmetry for first order ode
Time used: 1.231 (sec)
Writing the ode as
' =—(3ze® —2t) e
' =w(t,z)
The condition of Lie symmetry is the linearized PDE given by
e+ w1 — &) — W — wi€ —wyn =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 2 to use as anstaz gives

€ = t?aq + tras + 2%ag + tas + zaz + ay (1E)
’l’] = t2b4 + t$b5 -I- x2b6 + tb2 + $b3 + bl (2E)
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Where the unknown coeflicients are

{a17 ag, as, a4, as, e, bl, b2, b3) b47 b5, bﬁ}

Substituting equations (1E,2E) and w into (A) gives

2tby + xbs + by — (3x et — 2t) e 3 (—2tay + tbs — was + 2xbs — ag + bs)
— (3ze® — 215)2 e %(tas + 2zag + az) — (—(9ze® —2) ™ (5E)
+ 3(3ze* — 2t) ™) (t?as + twas + zae + tas + zas + a1)
+ 3t2by + 3tzbs + 32°bg + 3tby + 3xbs + 3b; = 0

Putting the above in normal form gives

(—4t%as — 2€*as + 3be™ + bye™ — 9t z%a5 + 6 % twas — 8t°zag
+ 63 t3a, — 63 t2a4 + 23205 — 23 2%ag — 18 €% 2306 + 3t2bye’
+ 3e%z2a; — 322bge’ + 2tb,e% + e + 6 €3t2ay + 6 e3ta; — 4€3ta,
+ 2e3thy — 2e*zag — 9e%x2ag + 3thee + 3e%zay + 18 ¥ tzag
— 4t%as + 18*t°zas + 30 €*t 2°ag — 4 €*tzas + 4€°tabg) 6% =0

Setting the numerator to zero gives

—4t?a; — 2% aq + 3b1e% + bye® — 9€5% 2%a5 + 6 e%tra, — 8t2zag
+ 6e3t3as — 63 t%ay + 23 %5 — 23 2%ag — 18 %23 ag + 3t%be® (6E)
+ 3e%z2a; — 322bge’ + 2tb,e% + zbse® + 6 €3t2ay + 6 e3ita; — 4€e3ta,
+ 2e3thy — 2e*zas — 9eSx2ag + 3thee’ + 3 e zay + 18 ¥ tzas
— 4t3as + 18 ¥ t%zas + 30 €3t 22ag — 4 3tzas + 4 €3tzbg = 0

Simplifying the above gives

—4t%a5 — 2€%a; + 3b1€% + bye® — 9e%t 2%ay + 6 €%tza, — 8t zag
+ 6e3t3a, — 6> t%ay + 23 %bs — 23 2%ag — 18 €% 23ag + 3t2b,€% (6E)
+ 3e822ay — 322bgebt + 2tb,e8 + xbse’t + 6 €3t2a, + 6 €3ta; — 4 €3ta,
+ 2e3thy — 2e¥zag — 9eSz2as + 3thee’ + 3efizay + 18 € tzas
— 4t3as + 18 ¥ t%zas + 30 €3t 22ag — 4 3tzas + 4 €3 tzbg = 0

Looking at the above PDE shows the following are all the terms with {¢,z} in them.

{t, x, e3t, e6t}
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The following substitution is now made to be able to collect on all terms with {¢,z} in
them

6t

{t=v1,z= Vg, €3 = 3, €% = vs}

The above PDE (6E) now becomes

Gvgvi’(u + 18v3va2a5 — 9v4v1v§a5 + 30'031)1'03(16 — 18v4v§’a6 + 6’031)%(1,2
+ 18vsv1v2a3 — 91)41)%(13 — 6v31)fa4 + 6vav10204 — 4’U§’a5 — 4u3v1 V905 (TE)
+ 3v4v§a5 — 821%1)20,6 — 2v3v%a6 + 3v%b4v4 + 22)3v%b5 ~+ 4v3v1v2bg
— 3v§bﬁv4 + 6vsvia; — dvsviag + VU009 — 4vfa3 — 2u3v9a3
+ 3vlb2v4 + 2U31)1b3 + 2’Ulb4’U4 + Uzb5’04 — 2’03@1 + 3b1’U4 + b2’U4 =0

Collecting the above on the terms v; introduced, and these are

{Ul7 V2, U3, ’U4}

Equation (7E) now becomes

6usviay — 4vias + 18v3viveas — 8viveag + (6ag — 6ay + 2bs) vivs
+ 3v2byvy — 42a3 + 30vsv1v3as — QUavivaas + (18as — 4as + 4bg) V1V2V3
+ 6’[)4’01’02(14 + (6&1 - 4(12 + 2b3) V1U3 + (3b2 + 2b4) V1V4 — 181}4’1)30,6 - 2’03’03@6

+ (—9a3 + 3&5 — 3b6) ’U%’U4 - 2031)2&3 + (3a2 + b5) VoUyg — 2’03@1 + (3b1 + bz) Vg = 0
(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

—2a1 =0
—4a3 =0
—2a3 =0
6as =0
—9a5 =0
—4a5 =0
18a5 =0
—18as =0
—8ag =0
—2a6 =0
30as =0
3by =0

3as + b5 =0
3b1 +b, =0
3by +2by, =0

6a, — 4ay + 2b3 =0
6as — 6a4 + 2b5 =0
—9a3 + 3as — 3bg =0
18a3 — 4a5 + 4bg = 0
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Solving the above equations for the unknowns gives

a; =0
et
3
a3 =0
as =0
as =0
ag =0
by =0
by =0
2b5
b3=—?
by =0
bs = bs
b =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=tr— =
n=tc 3ac

Shifting is now applied to make & = 0 in order to simplify the rest of the computation
n=n-wlz)
2 3t —3¢ t
=t — 3%~ (—(3z e —2t) e7%) -3

_ (—2zeM 2% e
B 3

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,z) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dx

F=, =45 1)
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The above comes from the requirements that (£2 +n2) S(t,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

S is found from

1
=/Wdy
3

Which results in
_3ln(—ze* +¢)
2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =

as _ Sitw(t,z)S, @)

Where in the above R;, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,z) = —(3ze* — 2t) e

Evaluating all the partial derivatives gives

Rt:].
R,=0
B —9z 3 + 6t
' 2zedt — 22
3e3t
S =  oxedt — 22

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for ¢, x

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

R) = Cy
To complete the solution, we just need to transform the above back to ¢,z coordinates.
This results in

_3ln(—=ze* +¢°)
2

T = —(e 5 —t2)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

:C2

Which gives

Canonical ) . .
. . ) . . ODE in canonical coordinates
Original ode in ¢,z coordinates coordinates (R,S)
transformation ’

‘fi—fz—(3xe3t—2t)e_3t %=0

L A A

L O A A A

R IEEEEERERER 4

S{SSRERREES!

S UAE ISR R SR]

SRR REERE ’

PATY AN N % W N VN R=t

t \\\\2\\\\‘«\\ 3t 9 - - - :
_‘ Z FAAAAF AT AT _ - -
LTI g2 3n(zet 4t e o

IO AV A A A A 2

L%f?‘f?‘ﬂ“fﬁff >l

IO O O A

R

VP rEtr et

[ I R R 4

vttt trtttt

Nttt
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Figure 2.49: Slope field plot
ey’ + 3z e’ =2t

,_.
&}
w
o

Summary of solutions found

_2¢cy _
xz—(e 3 —t2>e 3t

Maple step by step solution

Let’s solve
ey’ + 3z e’ =2t
° Highest derivative means the order of the ODE is 1

/

T
° Isolate the derivative
¢ =-3z+%

° Group terms with z on the lhs of the ODE and the rest on the rhs of the ODE
o+ 3z =23

° The ODE is linear; multiply by an integrating factor u(t)
u(t) (2’ + 3z) = 240"
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o Assume the lhs of the ODE is the total derivative 4 (zu(t))
p(t) (2" + 3z) = 2'u(t) + ap'(t)

o Isolate p'(t)
' (t) = 3u(t)

° Solve to find the integrating factor

ult) = (%) e
. Integrate both sides with respect to ¢

[ (L(zu(t))) dt = [ 2804t + C1

. Evaluate the integral on the lhs
zut) = [ Qig?tdt + C1
° Solve for x

e e
1(t)
e  Substitute pu(t) = (¢3)?e~3

= J 2te 3te3tdt+C1

Tr=

(e3t)%e—3t
° Evaluate the integrals on the rhs
2
° Simplify

z =e3(t2 + C1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~




CHAPTER 2. BOOK SOLVED PROBLEMS 210

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 14

‘ dsolve(exp(3*t)*diff (x(t),t)+3*x(t)*exp(3*t) = 2%t,
‘ x(t) ,singsol=all)

z=e(t* +c)

Mathematica DSolve solution

Solving time : 0.056 (sec)
Leaf size : 17

‘ DSolve [{Exp[3*t]*D[x[t],t]+3*x[t]*Exp[3*t]==2*t,{}},
L x[t],t,IncludeSingularSolutions->True]

z(t) = e (8 + 1)
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2.1.18 problem 3 (vi)

Solved as first order Exactode . . . . . ... ... ....... 211
Maple step by step solution . . . . ... ... ... ... .... 215
Mapletrace . . . . . . . . . . . ... 216
Maple dsolve solution . . . .. .. ... ... ... ....... 216
Mathematica DSolve solution . . . . . ... ... ........ 216

Internal problem ID [18181]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 3 (vi)

Date solved : Thursday, December 19, 2024 at 01:52:30 PM

CAS classification :

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘,

Solve

2t+3z+ (3t —z)1' =12

Solved as first order Exact ode
Time used: 0.546 (sec)

To solve an ode of the form

M(z,) + N(z,5) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence
0¢p 4 0¢p @ .

oc T ayds " (B)

Comparing (A,B) shows that
9¢

or
¢

oy
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But since aa g = then for the above to be valid, we require that

oM _ ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5?: ;’y = aay gs is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

By(')

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

(Bt —z)dz = (£* —2t — 3z) dt
(—t*+2t+3z) dt+(3t —z)dz =0 (2A)

Comparing (1A) and (2A) shows that
M(t,x) = —t* + 2t + 3z
N(t,z)=3t—z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0 9
2
5y ax( —t? + 2t + 3z)
=3
And
ON 0
Since %]‘gf = 6t , then the ODE is exact The following equations are now set up to solve
for the function ¢(¢, z)
09
=M 1
5t (1)
09

=N 2)
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Integrating (1) w.r.t. ¢ gives

0¢
E&_/Mw

¢
Edt:/—t2+2t+3xdt
2 _ _
o= -1EZHZD |y ®)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t  gives

9¢ :

But equation (2) says that % = 3t — z. Therefore equation (4) becomes
3t—xz=3t+ f'(z) (5)
Solving equation (5) for f'(z) gives
fe)=—=
Integrating the above w.r.t = gives

/f'(x) dx:/(—z) dz

2

flz) = —%Jrc1

Where ¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into the constant c; gives the solution as
t(t? — 3t — 9z)

o =z
L 3 2
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v/ —6t3 + 99¢2 — 18¢;
v —6t3 + 99¢2 — 18¢;

r =3t —
r =3t +

BOOK SOLVED PROBLEMS

CHAPTER 2.
Solving for x gives
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Figure 2.50: Slope field plot
V=613 + 992 — 18¢,
vV —6t3 + 99t2 — 18¢;

2t+3z+ (3t —xz)2’ =t?

r =3t —
r =3t +

Summary of solutions found
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Maple step by step solution

Let’s solve
2t + 3z + (3t — x) 2’ =t

° Highest derivative means the order of the ODE is 1
.'I;I

([l Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function
F'(t,x) =0

o Compute derivative of lhs
F'(t,z) + (ZF(t,z)) o' =0

o Evaluate derivatives
3=3

o Condition met, ODE is exact

° Exact ODE implies solution will be of this form
[F(t,z) = C1,M(t,z) = F'(t,z) ,N(t,z) = ZF(t,1)]
° Solve for F'(t,z) by integrating M (¢,x) with respect to ¢
F(t,z) = [ (—t*+ 2t + 3z) dt + fi(x)
° Evaluate integral
F(t,z) = =Y + ¢ + 3tz + fi(=)
° Take derivative of F'(t,z) with respect to x
N(t,z) = %F(t,x)
° Compute derivative
3t —z=3t+ Lfi(z)
° Isolate for L fi(x)
whi(z) =~z
° Solve for fi(z)
filz)=-%
. Substitute fi(z) into equation for F'(¢,x)
F(t,z) = —3t3 +t* + 3tz — 3a?
° Substitute F'(t,z) into the solution of the ODE
—3t® + 8% + 3te — 2% = C1
° Solve for x

v/ —6t3+99t2—18C1 v/ —6t3+99t2—18C1
{a: = 3t — Y=OPFO=IBCT o _ 34 | V=GP EOOP=TEC
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

trying exact
<- exact successful"

differential order: 1; looking for linear symmetries

Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 51

‘dsolve (2+t+3xx (t)+(3xt-x(£) ) *diff (x(t),t) = £72,
‘ x(t) ,singsol=all)

v/ —6t3 + 99¢2 + 18¢;

r =3t — 3
665+ 9922 + 1
x=3t—|—\/ 6 +z9 + 18¢

Mathematica DSolve solution

Solving time : 0.161 (sec)
Leaf size : 67

‘ DSolve [{(2*t+3*x[t])+(3*t-x[t])*D[x[t],t]1==t"2,{}},
L x[t],t,IncludeSingularSolutions->True]

2t3
z(t) — 3t — z\/? — 112 — ¢

. [2t3
z(t) = 3t +1 5 — 112 — ¢
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2.1.19 problem 4 (i)

Solved as first order linearode . . . . . ... ... ....... 217
Solved as first order Exactode . . . . . ... ... ....... 219]
Solved using Lie symmetry for first orderode . . . .. .. . .. 223]
Maple step by step solution . . . . . .. ... ... ... .. .. 228
Mapletrace . . . . . . . . . . .. 229
Maple dsolve solution . . . .. ... ... ... .. ....... 229
Mathematica DSolve solution . . . . .. .. ... ... ..... 2301

Internal problem ID [18182]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 4 (i)

Date solved : Thursday, December 19, 2024 at 06:17:34 PM

CAS classification : [[_linear, ‘class A‘]]

Solve
' +2z =¢€
Solved as first order linear ode

Time used: 0.187 (sec)

In canonical form a linear first order is

o' +q(t)z = p(t)

Comparing the above to the given ode shows that

The integrating factor u is
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The ode becomes

Hp

(uz) = (1) (¢)
(ze®) = (¢*) (¢')

d (z e2t)

(ete2t) dt

/ ete? dt

Integrating gives

T 62t

e3t

:?—Fcl

Dividing throughout by the integrating factor e* gives the final solution

(e + 3¢p) e

T T T T T T T T T T T T —— — —— ——~—

—_——— = _F 7 \ .////// 77777777

—_——— = _~ 7 \ / N r

—_——— 7] / NN T S —

SRS NS —

—_—— = _=_~ 7 \ / N T S ————~— |

\\\\\ - \ N N S S —
\\\\\ \1\{\\\\ / NN S S——~—~—

\\V\V\I\V\I\\i\\\ / N T S ——~——

—_—— == _ 7 7 \ / N T S ———— -

n_j T A_/~ T L T _0 T iy T n_/_ T 7_3

t

Figure 2.51: Slope field plot

x4+ 2z =¢
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Summary of solutions found

3
Solved as first order Exact ode
Time used: 0.182 (sec)
To solve an ode of the form
d
M(z,y) + N(z,y) 52 =0 (A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06d
Y
— —_—— B
or + Oy dx 0 (B)
Comparing (A,B) shows that
0
T M
Oz
o9
T _N
Oy
But since aa;gy = 68; g; then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

dz = (—2z +¢') dt
(20 —€')dt+dz =0 (2A)
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Comparing (1A) and (2A) shows that

M(t,x) = 2z — €
N(t,x)=1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0 .
And
ON 0
= _Z1
o ot )
=0

Since %—Af # %—1;’, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let
Ao L(oM _oN
N\ Oz ot
((2) - (0))

1
2

Since A does not depend on z, then it can be used to find an integrating factor. The
integrating factor p is

=efAdt

_ pJ2dt

I

The result of integrating gives
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

—  —dzx
M+N—=0
T

(20— ) ) + (%) & =0

The following equations are now set up to solve for the function ¢(¢, x)

o¢ 0

.
¢ -
9 =N (2)

Integrating (2) w.r.t. z gives

/%dx=/ﬁdz

0 . [ o
axda:—/e dz

¢ =ze” + f(t) 3)

Where f(t) is used for the constant of integration since ¢ is a function of both ¢ and z

Taking derivative of equation (3) w.r.t ¢ gives

% = 2z e* + f'(t) (4)
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But equation (1) says that 22 = (2z — e*) e*. Therefore equation (4) becomes
(2z —€') e =2z e* + f'(t) (5)
Solving equation (5) for f'(t) gives

f/(t) — _ete2t

= —¢€

Integrating the above w.r.t ¢ results in

/ f)dt= / (—e*) dt

e3t

f(t) = —? + C1

Where ¢; is constant of integration. Substituting result found above for f(¢) into
equation (3) gives ¢
3t

¢=xe2t—?+cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy constants into the constant c; gives the solution as

0 e3t
cCi=re — —
3

Solving for z gives
(€% + 3cy) e
3
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Figure 2.52: Slope field plot
' + 2z =et

,_.
&}
w
o

Summary of solutions found

(€3 + 3c;) e
3

xr=

Solved using Lie symmetry for first order ode
Time used: 0.563 (sec)
Writing the ode as
T =—-2z+¢
' = w(t,z)
The condition of Lie symmetry is the linearized PDE given by
M+ w1 — &) — W€ — W€ —wen =0 (A)

To determine &,n then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

£ =tay +zaz + a1 (1E)
n= tb2 + CI?b3 + bl (2E)
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Where the unknown coefficients are
{a1,a2,a3,b1,bs,b3}
Substituting equations (1E,2E) and w into (A) gives
bo+ (—2z+¢€") (bs—as) — (—2m—l—et)2 a3 —e'(tag+xaz+ay)+2thy +2xb3+2b; =0 (5E)
Putting the above in normal form gives
—e?ag — e'tay + 3elras — 4z2as; — ela; — etay + etbs + 2tby + 2zas + 2by + by = 0
Setting the numerator to zero gives
—e?ag — e'tay + 3e'zaz — 4r%az — e'a; — e'ay + e'bs + 2ty + 2xay + 2by + by =0 (6E)
Simplifying the above gives
—e*az — e'tay + 3e'ras — 4x’az — e'a; — e'ay + e'bs + 2tby + 2xay +2b + b, =0 (6E)
Looking at the above PDE shows the following are all the terms with {¢,z} in them.
{t,z, e, e*}
The following substitution is now made to be able to collect on all terms with {¢,z} in
them
{t =v1,2 = vy,€" = v3,e* = vy}
The above PDE (6E) now becomes
—U3U1Qg — 4v§a3 + 3v3U2a3 — U301 + 20209 — V3a9 — Vaa3 + 201 +v3bs +2b; + b, =0 (7E)
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3,v4}
Equation (7E) now becomes

—V3010a9 + 2’01()2 - 4’03&3 + 3’03’02(13 + 2’02(12 + (—a1 —as+ b3) V3 — V403 + 2b1 + b2 =0 (8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

—az =0
209 =0
—4a3 =0
—a3=0
3az3 =0

2by =0

20 +b,=0

—al—a2—|-b3:0

Solving the above equations for the unknowns gives

a; = bs
a; =10
a3 =0
by =0
b =0
bs = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

§=1
n==zx
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation
n=n-w(tz)é
=z — (—2z+¢") (1)
=3z —¢
§=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

&t _do _

F=, =45 1)
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The above comes from the requirements that (£2 +n2) S(t,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

1
S=/—dy
n
1
_/3x—etdy

In (3z — €')
3

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S is found from

Which results in

S =

dS  Si+w(t,x)Se )
dR  R;+w(t,z)R,

Where in the above R;, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,z) = —2z + ¢

Evaluating all the partial derivatives gives

Rt_
R,=0
et
P 9z + 3et
1
Sy =
3x — et

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 2

w__Z 2A

dR 3 (24)
We now need to express the RHS as function of R only. This is done by solving for ¢,
in terms of R, S from the result obtained earlier and simplifying. This gives

as 2

dR~ 3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

To complete the solution, we just need to transform the above back to t, z coordinates.
This results in

In (3z — €') 2t

I
Which gives
e—2t+302 et
T3 T3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

ODE in canonical coordinates

Original ode in ¢,z coordinates coordinates (R, S)

transformation

de _ t as _ _ 2
2r +e 9 = —3

&

e a—a—a—
=

1 NN N N NN

\ o abPaa—a—aba—a—
s

J o

I S R R %
R R O S O VN
e NN N N N N N N %N N N N N N N N N N
A N S N T N N N N VN
ot \\\\\ij\\\\\\\\\\\\
22N NN NN N N N N N NN

SN N NN N N N N N N N N N N N N NN

R R O S O VN

R=t R R N S VN
Sa NN N N N N N N NN N N N N N O N N N

. i S SN Y B e e

T S W J, S e a i e a—a—a—a—
~
N N N

|
e bl —a ~a &y

s aa N \|f s
e e e e e e G R N Y e P =
e s waa \[f e
e —a s~ \ [/ e

e e N B e o
——b—b—b—b—b—s—s—b—a~a a l, o a e i
— G a \ f e
——s—s bbb bbb —s e —aaa \

B S S N X
e e \ |/ 4 a i

——s—s—a—p—sa a4
——ee e
——s—s

] ]n(&r—eﬁ D R T A R NN
1t S==________ R R R R R R e N e
i 3 OV VRN YR VR 25 " VR VG Ve Ve W VO VN

D S N Y e
R R VN
R N %
A N S N T N N N N VN
NN N NN N N N N N N N N N N N N N N
SN NN N N N N NN N NN N N N N N N
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Figure 2.53: Slope field plot
' + 2z =et

,_.
&}
w
o

Summary of solutions found

Maple step by step solution

Let’s solve
' +2zx=c¢e
° Highest derivative means the order of the ODE is 1

/

x
° Solve for the highest derivative
7' = -2z +¢

° Group terms with z on the lhs of the ODE and the rest on the rhs of the ODE
x4+ 2z =¢

° The ODE is linear; multiply by an integrating factor u(t)
pu(t) (2’ + 2z) = p(t) ¢

o Assume the lhs of the ODE is the total derivative 4 (zu(t))
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pu(t) (¢ +2x) = o'p(t) + oy (t)
e  Isolate p/(t)

p(t) = 2u(t)
° Solve to find the integrating factor
p(t) =e*

° Integrate both sides with respect to ¢
I (&an(t) dt = [ u(t)dt + C1

. Evaluate the integral on the lhs
zp(t) = [ p(t)etdt + C1

° Solve for x

J u(t)etdi+C1
w(t)

e  Substitute u(t) = e*

xr=

T = / etez.;dtt—l—CI
° Evaluate the integrals on the rhs
3t
e-+C1
T = 3e2t
° Simplify

(e3t+3C1)e~2
- 3

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 18

‘dsolve(diff (x(t),t)+2xx(t) = exp(t),
‘ x(t) ,singsol=all)

(€% + 3cy) e

3
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Mathematica DSolve solution

Solving time : 0.154 (sec)
Leaf size : 21

'DSolve[{D[x[t],t]+2+x[t]==Exp[t],{}},
x[t],t,IncludeSingularSolutions->True]

e _
.’I)(t) — g + cie

2t
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2.1.20 problem 4 (ii)

Solved as first order linearode . . . . . ... ... ....... 231]
Solved as first order separableode . . .. ... ... ... ... 233
Solved as first order homogeneous class D2 ode . . .. ... .. 234
Solved as first order Exactode . . . .. ... ... ....... 236
Solved using Lie symmetry for first orderode . . . . . ... .. 240
Maple step by step solution . . . . .. ... ... ... .. ... 240
Maple trace . . . . . . . . . L 246
Maple dsolve solution . . . . . .. ... .. .. .. ... ...,
Mathematica DSolve solution . . . . .. .. ... ... ..... 246

Internal problem ID [18183]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 4 (ii)

Date solved : Thursday, December 19, 2024 at 06:17:36 PM

CAS classification : [_separable]

Solve

'+ ztan () =0

Solved as first order linear ode
Time used: 0.059 (sec)
In canonical form a linear first order is
' +q(t)z = p(t)
Comparing the above to the given ode shows that

q(t) = tan (t)

p(t) =0
The integrating factor u is
p=e [qdt
—e J tan(t)dt

= sec (t)
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The ode becomes

=0

4y
att

(rsec(t) =0

d
dt

Integrating gives

Dividing throughout by the integrating factor sec (t) gives the final solution

x = ¢; cos (t)

—4 —3 -2
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Figure 2.54: Slope field plot

0

z' + ztan (t)

Summary of solutions found

x = ¢ cos (t)
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Solved as first order separable ode

Time used: 0.104 (sec)

The ode ' = —x tan (t) is separable as it can be written as
z' = —xtan (t)
= f(t)g(z)
Where

Integrating gives

/ﬁda::/f(t)dt
/%dxz/—tan(t) dt

In (z) =1In(cos (t)) + ¢

We now need to find the singular solutions, these are found by finding for what values
g(x) is zero, since we had to divide by this above. Solving g(z) = 0 or = 0 for z gives

z=0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (z) =In(cos (t)) + ¢
z=0

Solving for z gives
z=0

x = cos (t) e
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Figure 2.55: Slope field plot

' +xtan(t) =0

Summary of solutions found

x = cos (t) e

Solved as first order homogeneous class D2 ode

Time used: 0.244 (sec)

Applying change of variables z = u(t) ¢, then the ode becomes

0

o' (t) t 4+ u(t) + u(t) t tan (¢)

is separable as it can be written as

u(t) (tan (¢)t + 1)

u(t)(tan(t)t+1)
t

Which is now solved The ode u/(t)

u'(t) = —

Ft)g(u)

Where
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Integrating gives

/ﬁdu,:/f(t)dt

/ldu:/_tan(t)t+1dt
U t

In (u(t)) = In (Cost(t)) + o

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or v = 0 for u(t)
gives

u(t) =0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(t)) = In (C"S (t)> te

Solving for u(t) gives

u(t) =
u(t) = et c;)s (t)
Converting u(t) = 0 back to z gives
z=0

Converting u(t) = GCICTOS“) back to x gives

x = cos (t) e
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Figure 2.56: Slope field plot

' +xtan(t) =0

Summary of solutions found

x = cos (t) e

Solved as first order Exact ode

Time used: 0.111 (sec)

To solve an ode of the form

d
M(w,y)+N(w,y)£=0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

da
dz

¢(z,y) =0

Hence
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Comparing (A,B) shows that

94 _
or
0% _
oy

¢ _

520y — Byam then for the above to be valid, we require that

But since

OM ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = ﬁ is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

dz = (—zxtan (¢)) dt
(xtan (t))dt+dx =0 (2A)

Comparing (1A) and (2A) shows that
M(t,z) = xtan (¢)
N(t,x) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0

= tan (t)
And

ON

5 = o

=0
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then the ODE is not exact. Since the ODE is not exact, we will try to

Since % # %—If,
find an integrating factor to make it exact. Let
Ao L(oM _oN
N\ Oz ot
= 1((tan (2)) — (0))
= tan (t)

Since A does not depend on z, then it can be used to find an integrating factor. The

integrating factor p is

= el Adt
—e [ tan(t) dt
The result of integrating gives
) = ¢~ Inleos(t)
= sec (t)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
= sec (t) (z tan (t))

= z tan (t) sec (t)

And
N =uN
= sec (t) (1)

= sec (t)
Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
—dz

M+NE g
TN

(z tan (t) sec (t)) + (sec (¢)) i—f =0

The following equations are now set up to solve for the function ¢(¢,x)

0y —
%N ®

or
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Integrating (2) w.r.t. z gives

@dx = /Ndx
or

% dz = /sec (t)dz

¢ = wsec(t) + f(¢) (3)

Where f(t) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t ¢ gives

% = ztan (t) sec (t) + f'(¢) (4)
But equation (1) says that % = ztan (t) sec (t). Therefore equation (4) becomes
ztan (t) sec (t) = z tan (¢) sec (t) + f(¢) (5)

Solving equation (5) for f'(t) gives
fit)=0
Therefore
)=
Where ¢; is constant of integration. Substituting this result for f(¢) into equation (3)

gives ¢
¢ =xsec(t)+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

c1 = zsec (t)

Solving for = gives
1
sec (t)

8
Il
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Figure 2.57: Slope field plot
' +xtan(t) =0

Summary of solutions found

g =1
~ sec(t)

Solved using Lie symmetry for first order ode
Time used: 0.339 (sec)

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by
Ur; + w(nz - €t) - wzfz - wt€ — Wyt = 0 (A)

To determine &,n then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

£ =tay +zaz + a1 (1E)
n = tby + xbs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

by — ztan (t) (bs — az) — 22 tan () as (5E)
+ z(1 + tan (t)2) (tag + zas + ay) + tan () (tby + zbs + b1) =0

Putting the above in normal form gives

tan (t)° tzay + tan (t)® za; + tan (t) thy +  tan (¢) ay
+ tzag + x?az + tan (t) by + za; + by = 0

Setting the numerator to zero gives

tan (t)? tzay + tan (t) zay + tan (t) thy + z tan (¢) ay (6E)
+ tzay + x%a3 + tan (t) by + xay; + by =0

Looking at the above PDE shows the following are all the terms with {¢,z} in them.
{t, z,tan (t)}
The following substitution is now made to be able to collect on all terms with {¢,z} in
them
{t = v1,z = vo,tan (t) = vs}

The above PDE (6E) now becomes

VAV1U2Gg + V3201 + V1V2ay + Vavsay + vaas + vsviby + vaa; +vsby + by =0 (7E)
Collecting the above on the terms v; introduced, and these are

{v1,v2,v3}

Equation (7E) now becomes

v§v1v2a2 + v%mal + V10203 + VoUsay + vias + vsviby + vea; + vsby + by =0 (8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0
a, =0
a3 =0
by =0
by =0

Solving the above equations for the unknowns gives

a; =0
as =0
a3 =0
by =0
b, =0
bs = b

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£E=0
n=c
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dx
£ 7

The above comes from the requirements that (f % + 776%) S(t,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=t

S=/1dy
n
T

S is found from
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Which results in
S =In(x)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
as S + w(t,x)S, @)
dR  R;+w(t,z)R,
Where in the above Ry, R, S, S, are all partial derivatives and w(t, x) is the right hand
side of the original ode given by

w(t,z) = —z tan (¢)

Evaluating all the partial derivatives gives

Rt = 1
R,=0
St = 0
51
x
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
JR— tan (t) (2A)

We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives
ds
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.

= —tan (R)

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).

/dS /—tan (R) dR

=In (cos (R)) + c2

To complete the solution, we just need to transform the above back to ¢,z coordinates.
T