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chapter 1 . lookup tables for all problems in . . . 4

1.1 Chapter 3. Solutions of first-order equations.
Exercises at page 47

Table 1.1: Lookup table for all problems in current section

ID problem ODE

18164 1 (i) x′ = 3t2 + 4t

18165 1 (ii) x′ = b et

18166 1 (iii) x′ = 1
t2+1

18167 1 (iv) x′ = 1√
t2+1

18168 1 (v) x′ = cos (t)

18169 1 (vi) x′ = cos(t)
sin(t)

18170 2 (i) x′ = x2 − 3x+ 2

18171 2 (ii) x′ = b ex

18172 2 (iii) x′ = (x− 1)2

18173 2 (iv) x′ =
√
x2 − 1

18174 2 (v) x′ = 2
√
x

18175 2 (vi) x′ = tan (x)

18176 3 (i) 3t2x− xt+ (3t3x2 + t3x4)x′ = 0

18177 3 (ii) 1 + 2x+ (−t2 + 4)x′ = 0

18178 3 (iii) x′ = cos
(
x
t

)
18179 3 (iv) (t2 − x2)x′ = xt

18180 3 (v) e3tx′ + 3x e3t = 2t

18181 3 (vi) 2t+ 3x+ (3t− x)x′ = t2

18182 4 (i) x′ + 2x = et

18183 4 (ii) x′ + x tan (t) = 0

18184 4 (iii) x′ − x tan (t) = 4 sin (t)
Continued on next page
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Table 1.1 Lookup table
Continued from previous page

ID problem ODE

18185 4 (iv) t3x′ + (−3t2 + 2)x = t3

18186 4 (v) x′ + 2xt+ tx4 = 0

18187 4 (vi) tx′ + x ln (t) = t2

18188 5 tx′ + xg(t) = h(t)

18189 6 t2x′′ − 6tx′ + 12x = 0

1.2 Chapter 4. Autonomous systems. Exercises at
page 69

Table 1.2: Lookup table for all problems in current section

ID problem ODE

18190 1 x′ = −λx

18191 2 [x′(t) = x(t) , y′(t) = x(t) + 2y(t)]

18192 3 t2x′′ − 2tx′ + 2x = 0

18193 5 (i) x′′ − 5x′ + 6x = 0

18194 5 (ii) x′′ − 4x′ + 4x = 0

18195 5 (iiI=i) x′′ − 4x′ + 5x = 0

18196 5 (iv) x′′ + 3x′ = 0

18197 6 (i) x′′ − 3x′ + 2x = 0

18198 6 (ii) x′′ + x = 0

18199 6 (iii) x′′ + 2x′ + x = 0

18200 6 (iv) x′′ − 2x′ + 2x = 0
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1.3 Chapter 5. Linear equations. Exercises at page
85

Table 1.3: Lookup table for all problems in current section

ID problem ODE

18201 7 (i) x′′ − x = t2

18202 7 (ii) x′′ − x = et

18203 7 (iii) x′′ + 2x′ + 4x = et cos (2t)

18204 7 (iv) x′′ − x′ + x = sin (2t)

18205 7 (v) x′′ + 4x′ + 3x = t sin (t)

18206 7 (vi) x′′ + x = cos (t)
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2.1 Chapter 3. Solutions of first-order equations.
Exercises at page 47

2.1.1 problem 1 (i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 problem 1 (ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 problem 1 (iii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.4 problem 1 (iv) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.5 problem 1 (v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.6 problem 1 (vi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.7 problem 2 (i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.1.8 problem 2 (ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.1.9 problem 2 (iii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.1.10 problem 2 (iv) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.1.11 problem 2 (v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.1.12 problem 2 (vi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.1.13 problem 3 (i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
2.1.14 problem 3 (ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
2.1.15 problem 3 (iii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
2.1.16 problem 3 (iv) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
2.1.17 problem 3 (v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
2.1.18 problem 3 (vi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
2.1.19 problem 4 (i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
2.1.20 problem 4 (ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
2.1.21 problem 4 (iii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
2.1.22 problem 4 (iv) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
2.1.23 problem 4 (v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
2.1.24 problem 4 (vi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
2.1.25 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
2.1.26 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
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2.1.1 problem 1 (i)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 9
Solved as first order quadrature ode . . . . . . . . . . . . . . . 10
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 11
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 14
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 15
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 15

Internal problem ID [18164]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 1 (i)
Date solved : Thursday, December 19, 2024 at 01:51:42 PM
CAS classification : [_quadrature]

Solve

x′ = 3t2 + 4t

With initial conditions

x(1) = 0

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′ + q(t)x = p(t)

Where here

q(t) = 0
p(t) = 3t2 + 4t

Hence the ode is

x′ = 3t2 + 4t

The domain of q(t) = 0 is
{−∞ < t < ∞}
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And the point t0 = 1 is inside this domain. The domain of p(t) = 3t2 + 4t is

{−∞ < t < ∞}

And the point t0 = 1 is also inside this domain. Hence solution exists and is unique.

Solved as first order quadrature ode

Time used: 0.094 (sec)

Since the ode has the form x′ = f(t), then we only need to integrate f(t).∫
dx =

∫
3t2 + 4t dt

x = t3 + 2t2 + c1

Solving for the constant of integration from initial conditions, the solution becomes

x = t3 + 2t2 − 3

(a) Solution plot
x = t3 + 2t2 − 3

(b) Slope field plot
x′ = 3t2 + 4t

Summary of solutions found

x = t3 + 2t2 − 3
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Solved as first order Exact ode

Time used: 0.075 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

dx =
(
3t2 + 4t

)
dt(

−3t2 − 4t
)
dt+dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = −3t2 − 4t
N(t, x) = 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x

(
−3t2 − 4t

)
= 0

And
∂N

∂t
= ∂

∂t
(1)

= 0

Since ∂M
∂x

= ∂N
∂t
, then the ODE is exact The following equations are now set up to solve

for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives ∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
−3t2 − 4t dt

(3)φ = −t3 − 2t2 + f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 0 + f ′(x)

But equation (2) says that ∂φ
∂x

= 1. Therefore equation (4) becomes

(5)1 = 0 + f ′(x)
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Solving equation (5) for f ′(x) gives

f ′(x) = 1

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫
(1) dx

f(x) = x+ c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = −t3 − 2t2 + x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −t3 − 2t2 + x

Solving for the constant of integration from initial conditions, the solution becomes

−t3 − 2t2 + x = −3

Solving for x gives
x = t3 + 2t2 − 3

(a) Solution plot
x = t3 + 2t2 − 3

(b) Slope field plot
x′ = 3t2 + 4t
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Summary of solutions found

x = t3 + 2t2 − 3

Maple step by step solution

Let’s solve
[x′ = 3t2 + 4t, x(1) = 0]

• Highest derivative means the order of the ODE is 1
x′

• Integrate both sides with respect to t∫
x′dt =

∫
(3t2 + 4t) dt+ C1

• Evaluate integral
x = t3 + 2t2 + C1

• Solve for x
x = t3 + 2t2 + C1

• Use initial condition x(1) = 0
0 = C1 + 3

• Solve for _C1
C1 = −3

• Substitute _C1 = −3 into general solution and simplify
x = t3 + 2t2 − 3

• Solution to the IVP
x = t3 + 2t2 − 3

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
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Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 14� �
dsolve([diff(x(t),t) = 3*t^2+4*t,

op([x(1) = 0])],x(t),singsol=all)� �
x = t3 + 2t2 − 3

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 15� �
DSolve[{D[x[t],t]==3*t^2+4*t,{x[1]==0}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → t3 + 2t2 − 3
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2.1.2 problem 1 (ii)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 16
Solved as first order quadrature ode . . . . . . . . . . . . . . . 17
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 17
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 20
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 21
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 21

Internal problem ID [18165]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 1 (ii)
Date solved : Thursday, December 19, 2024 at 01:51:43 PM
CAS classification : [_quadrature]

Solve

x′ = b et

With initial conditions

x(1) = 0

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′ + q(t)x = p(t)

Where here

q(t) = 0
p(t) = b et

Hence the ode is

x′ = b et

The domain of q(t) = 0 is
{−∞ < t < ∞}
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And the point t0 = 1 is inside this domain. The domain of p(t) = b et is

{−∞ < t < ∞}

And the point t0 = 1 is also inside this domain. Hence solution exists and is unique.

Solved as first order quadrature ode

Time used: 0.109 (sec)

Since the ode has the form x′ = f(t), then we only need to integrate f(t).∫
dx =

∫
b et dt

x = b et + c1

Solving for the constant of integration from initial conditions, the solution becomes

x = b et − b e

Summary of solutions found

x = b et − b e

Solved as first order Exact ode

Time used: 0.073 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)
Therefore

dx =
(
b et
)
dt(

−b et
)
dt+dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = −b et

N(t, x) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives
∂M

∂x
= ∂

∂x

(
−b et

)
= 0

And
∂N

∂t
= ∂

∂t
(1)

= 0

Since ∂M
∂x

= ∂N
∂t
, then the ODE is exact The following equations are now set up to solve

for the function φ(t, x)
∂φ

∂t
= M (1)

∂φ

∂x
= N (2)
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Integrating (1) w.r.t. t gives ∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
−b et dt

(3)φ = −b et + f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 0 + f ′(x)

But equation (2) says that ∂φ
∂x

= 1. Therefore equation (4) becomes

(5)1 = 0 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 1

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫
(1) dx

f(x) = x+ c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = −b et + x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −b et + x
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Solving for the constant of integration from initial conditions, the solution becomes

−b et + x = −b e

Solving for x gives
x = b et − b e

Summary of solutions found

x = b et − b e

Maple step by step solution

Let’s solve
[x′ = b et, x(1) = 0]

• Highest derivative means the order of the ODE is 1
x′

• Integrate both sides with respect to t∫
x′dt =

∫
b etdt+ C1

• Evaluate integral
x = b et + C1

• Solve for x
x = b et + C1

• Use initial condition x(1) = 0
0 = b e + C1

• Solve for _C1
C1 = −b e

• Substitute _C1 = −be into general solution and simplify
x = b(et − e)

• Solution to the IVP
x = b(et − e)
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 14� �
dsolve([diff(x(t),t) = b*exp(t),

op([x(1) = 0])],x(t),singsol=all)� �
x = −b

(
e− et

)
Mathematica DSolve solution

Solving time : 0.004 (sec)
Leaf size : 14� �
DSolve[{D[x[t],t]==b*Exp[t],{x[1]==0}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → b

(
et − e

)
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2.1.3 problem 1 (iii)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 22
Solved as first order quadrature ode . . . . . . . . . . . . . . . 23
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 24
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 27
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 28
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 28

Internal problem ID [18166]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 1 (iii)
Date solved : Thursday, December 19, 2024 at 01:51:43 PM
CAS classification : [_quadrature]

Solve

x′ = 1
t2 + 1

With initial conditions

x(1) = 0

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′ + q(t)x = p(t)

Where here

q(t) = 0

p(t) = 1
t2 + 1

Hence the ode is

x′ = 1
t2 + 1

The domain of q(t) = 0 is
{−∞ < t < ∞}
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And the point t0 = 1 is inside this domain. The domain of p(t) = 1
t2+1 is

{−∞ < t < ∞}

And the point t0 = 1 is also inside this domain. Hence solution exists and is unique.

Solved as first order quadrature ode

Time used: 0.105 (sec)

Since the ode has the form x′ = f(t), then we only need to integrate f(t).∫
dx =

∫ 1
t2 + 1 dt

x = arctan (t) + c1

Solving for the constant of integration from initial conditions, the solution becomes

x = arctan (t)− π

4

(a) Solution plot
x = arctan (t)− π

4

(b) Slope field plot
x′ = 1

t2+1

Summary of solutions found

x = arctan (t)− π

4
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Solved as first order Exact ode

Time used: 0.325 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

dx =
(

1
t2 + 1

)
dt(

− 1
t2 + 1

)
dt+dx = 0 (2A)
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Comparing (1A) and (2A) shows that

M(t, x) = − 1
t2 + 1

N(t, x) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x

(
− 1
t2 + 1

)
= 0

And
∂N

∂t
= ∂

∂t
(1)

= 0

Since ∂M
∂x

= ∂N
∂t
, then the ODE is exact The following equations are now set up to solve

for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
− 1
t2 + 1 dt

(3)φ = − arctan (t) + f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 0 + f ′(x)
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But equation (2) says that ∂φ
∂x

= 1. Therefore equation (4) becomes

(5)1 = 0 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 1

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫
(1) dx

f(x) = x+ c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = − arctan (t) + x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = − arctan (t) + x

Solving for the constant of integration from initial conditions, the solution becomes

− arctan (t) + x = −π

4

Solving for x gives

x = arctan (t)− π

4
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(a) Solution plot
x = arctan (t)− π

4

(b) Slope field plot
x′ = 1

t2+1

Summary of solutions found

x = arctan (t)− π

4

Maple step by step solution

Let’s solve[
x′ = 1

t2+1 , x(1) = 0
]

• Highest derivative means the order of the ODE is 1
x′

• Integrate both sides with respect to t∫
x′dt =

∫ 1
t2+1dt+ C1

• Evaluate integral
x = arctan (t) + C1

• Solve for x
x = arctan (t) + C1

• Use initial condition x(1) = 0
0 = π

4 + C1
• Solve for _C1

C1 = −π
4

• Substitute _C1 = −π
4 into general solution and simplify
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x = arctan (t)− π
4

• Solution to the IVP
x = arctan (t)− π

4

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 10� �
dsolve([diff(x(t),t) = 1/(t^2+1),

op([x(1) = 0])],x(t),singsol=all)� �
x = arctan (t)− π

4

Mathematica DSolve solution

Solving time : 0.005 (sec)
Leaf size : 13� �
DSolve[{D[x[t],t]==1/(1+t^2),{x[1]==0}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → arctan(t)− π

4



chapter 2 . book solved problems 29

2.1.4 problem 1 (iv)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 29
Solved as first order quadrature ode . . . . . . . . . . . . . . . 30
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 31
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 34
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 35
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 35

Internal problem ID [18167]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 1 (iv)
Date solved : Thursday, December 19, 2024 at 01:51:44 PM
CAS classification : [_quadrature]

Solve

x′ = 1√
t2 + 1

With initial conditions

x(1) = 0

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′ + q(t)x = p(t)

Where here

q(t) = 0

p(t) = 1√
t2 + 1

Hence the ode is

x′ = 1√
t2 + 1
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The domain of q(t) = 0 is
{−∞ < t < ∞}

And the point t0 = 1 is inside this domain. The domain of p(t) = 1√
t2+1 is

{−∞ < t < ∞}

And the point t0 = 1 is also inside this domain. Hence solution exists and is unique.

Solved as first order quadrature ode

Time used: 0.108 (sec)

Since the ode has the form x′ = f(t), then we only need to integrate f(t).∫
dx =

∫ 1√
t2 + 1

dt

x = arcsinh (t) + c1

Solving for the constant of integration from initial conditions, the solution becomes

x = arcsinh (t)− ln
(
1 +

√
2
)

(a) Solution plot
x = arcsinh (t)− ln

(
1 +

√
2
) (b) Slope field plot

x′ = 1√
t2+1
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Summary of solutions found

x = arcsinh (t)− ln
(
1 +

√
2
)

Solved as first order Exact ode

Time used: 0.064 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)
Therefore

dx =
(

1√
t2 + 1

)
dt(

− 1√
t2 + 1

)
dt+dx = 0 (2A)
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Comparing (1A) and (2A) shows that

M(t, x) = − 1√
t2 + 1

N(t, x) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x

(
− 1√

t2 + 1

)
= 0

And
∂N

∂t
= ∂

∂t
(1)

= 0

Since ∂M
∂x

= ∂N
∂t
, then the ODE is exact The following equations are now set up to solve

for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
− 1√

t2 + 1
dt

(3)φ = − arcsinh (t) + f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 0 + f ′(x)
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But equation (2) says that ∂φ
∂x

= 1. Therefore equation (4) becomes

(5)1 = 0 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 1

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫
(1) dx

f(x) = x+ c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = − arcsinh (t) + x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = − arcsinh (t) + x

Solving for the constant of integration from initial conditions, the solution becomes

− arcsinh (t) + x = − ln
(
1 +

√
2
)

Solving for x gives

x = arcsinh (t)− ln
(
1 +

√
2
)
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(a) Solution plot
x = arcsinh (t)− ln

(
1 +

√
2
) (b) Slope field plot

x′ = 1√
t2+1

Summary of solutions found

x = arcsinh (t)− ln
(
1 +

√
2
)

Maple step by step solution

Let’s solve[
x′ = 1√

t2+1 , x(1) = 0
]

• Highest derivative means the order of the ODE is 1
x′

• Integrate both sides with respect to t∫
x′dt =

∫ 1√
t2+1dt+ C1

• Evaluate integral
x = arcsinh(t) + C1

• Solve for x
x = arcsinh(t) + C1

• Use initial condition x(1) = 0
0 = ln

(
1 +

√
2
)
+ C1

• Solve for _C1
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C1 = − ln
(
1 +

√
2
)

• Substitute _C1 = − ln
(
1 +

√
2
)
into general solution and simplify

x = arcsinh(t)− ln
(
1 +

√
2
)

• Solution to the IVP
x = arcsinh(t)− ln

(
1 +

√
2
)

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 15� �
dsolve([diff(x(t),t) = 1/(t^2+1)^(1/2),

op([x(1) = 0])],x(t),singsol=all)� �
x = arcsinh (t)− ln

(
1 +

√
2
)

Mathematica DSolve solution

Solving time : 0.022 (sec)
Leaf size : 26� �
DSolve[{D[x[t],t]==1/Sqrt[1+t^2],{x[1]==0}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → arctanh

(
t√

t2 + 1

)
− arctanh

(
1√
2

)
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2.1.5 problem 1 (v)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 36
Solved as first order quadrature ode . . . . . . . . . . . . . . . 37
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 38
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 41
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 42
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 42

Internal problem ID [18168]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 1 (v)
Date solved : Thursday, December 19, 2024 at 01:51:44 PM
CAS classification : [_quadrature]

Solve

x′ = cos (t)

With initial conditions

x(1) = 0

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′ + q(t)x = p(t)

Where here

q(t) = 0
p(t) = cos (t)

Hence the ode is

x′ = cos (t)

The domain of q(t) = 0 is
{−∞ < t < ∞}
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And the point t0 = 1 is inside this domain. The domain of p(t) = cos (t) is

{−∞ < t < ∞}

And the point t0 = 1 is also inside this domain. Hence solution exists and is unique.

Solved as first order quadrature ode

Time used: 0.109 (sec)

Since the ode has the form x′ = f(t), then we only need to integrate f(t).∫
dx =

∫
cos (t) dt

x = sin (t) + c1

Solving for the constant of integration from initial conditions, the solution becomes

x = sin (t)− sin (1)

(a) Solution plot
x = sin (t)− sin (1)

(b) Slope field plot
x′ = cos (t)

Summary of solutions found

x = sin (t)− sin (1)
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Solved as first order Exact ode

Time used: 0.321 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

dx = (cos (t)) dt
(− cos (t)) dt+dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = − cos (t)
N(t, x) = 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x
(− cos (t))

= 0

And
∂N

∂t
= ∂

∂t
(1)

= 0

Since ∂M
∂x

= ∂N
∂t
, then the ODE is exact The following equations are now set up to solve

for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives ∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
− cos (t) dt

(3)φ = − sin (t) + f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 0 + f ′(x)

But equation (2) says that ∂φ
∂x

= 1. Therefore equation (4) becomes

(5)1 = 0 + f ′(x)
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Solving equation (5) for f ′(x) gives

f ′(x) = 1

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫
(1) dx

f(x) = x+ c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = − sin (t) + x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = − sin (t) + x

Solving for the constant of integration from initial conditions, the solution becomes

− sin (t) + x = − sin (1)

Solving for x gives
x = sin (t)− sin (1)

(a) Solution plot
x = sin (t)− sin (1)

(b) Slope field plot
x′ = cos (t)
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Summary of solutions found

x = sin (t)− sin (1)

Maple step by step solution

Let’s solve
[x′ = cos (t) , x(1) = 0]

• Highest derivative means the order of the ODE is 1
x′

• Integrate both sides with respect to t∫
x′dt =

∫
cos (t) dt+ C1

• Evaluate integral
x = sin (t) + C1

• Solve for x
x = sin (t) + C1

• Use initial condition x(1) = 0
0 = sin (1) + C1

• Solve for _C1
C1 = − sin (1)

• Substitute _C1 = − sin (1) into general solution and simplify
x = sin (t)− sin (1)

• Solution to the IVP
x = sin (t)− sin (1)

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
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Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 11� �
dsolve([diff(x(t),t) = cos(t),

op([x(1) = 0])],x(t),singsol=all)� �
x = sin (t)− sin (1)

Mathematica DSolve solution

Solving time : 0.009 (sec)
Leaf size : 12� �
DSolve[{D[x[t],t]==Cos[t],{x[1]==0}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → sin(t)− sin(1)
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2.1.6 problem 1 (vi)

Solved as first order quadrature ode . . . . . . . . . . . . . . . 43
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 44
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 48
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 48
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 49

Internal problem ID [18169]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 1 (vi)
Date solved : Thursday, December 19, 2024 at 01:51:45 PM
CAS classification : [_quadrature]

Solve

x′ = cos (t)
sin (t)

With initial conditions

x(1) = 0

Solved as first order quadrature ode

Time used: 0.146 (sec)

Since the ode has the form x′ = f(t), then we only need to integrate f(t).∫
dx =

∫ cos (t)
sin (t) dt

x = ln (sin (t)) + c1

Solving for the constant of integration from initial conditions, the solution becomes

x = ln (sin (t))− ln (sin (1))
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(a) Solution plot
x = ln (sin (t))− ln (sin (1))

(b) Slope field plot
x′ = cos(t)

sin(t)

Summary of solutions found

x = ln (sin (t))− ln (sin (1))

Solved as first order Exact ode

Time used: 0.072 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

dx =
(
cos (t)
sin (t)

)
dt(

−cos (t)
sin (t)

)
dt+dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = −cos (t)
sin (t)

N(t, x) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x

(
−cos (t)
sin (t)

)
= 0

And

∂N

∂t
= ∂

∂t
(1)

= 0
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Since ∂M
∂x

= ∂N
∂t
, then the ODE is exact The following equations are now set up to solve

for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
−cos (t)
sin (t) dt

(3)φ = − ln (sin (t)) + f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 0 + f ′(x)

But equation (2) says that ∂φ
∂x

= 1. Therefore equation (4) becomes

(5)1 = 0 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 1

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫
(1) dx

f(x) = x+ c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = − ln (sin (t)) + x+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = − ln (sin (t)) + x

Solving for the constant of integration from initial conditions, the solution becomes

− ln (sin (t)) + x = − ln (sin (1))

Solving for x gives
x = ln (sin (t))− ln (sin (1))

(a) Solution plot
x = ln (sin (t))− ln (sin (1))

(b) Slope field plot
x′ = cos(t)

sin(t)

Summary of solutions found

x = ln (sin (t))− ln (sin (1))
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Maple step by step solution

Let’s solve[
x′ = cos(t)

sin(t) , x(1) = 0
]

• Highest derivative means the order of the ODE is 1
x′

• Integrate both sides with respect to t∫
x′dt =

∫ cos(t)
sin(t)dt+ C1

• Evaluate integral
x = ln (sin (t)) + C1

• Solve for x
x = ln (sin (t)) + C1

• Use initial condition x(1) = 0
0 = ln (sin (1)) + C1

• Solve for _C1
C1 = − ln (sin (1))

• Substitute _C1 = − ln (sin (1)) into general solution and simplify
x = ln (sin (t))− ln (sin (1))

• Solution to the IVP
x = ln (sin (t))− ln (sin (1))

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 13� �
dsolve([diff(x(t),t) = cos(t)/sin(t),

op([x(1) = 0])],x(t),singsol=all)� �
x = ln (sin (t))− ln (sin (1))
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Mathematica DSolve solution

Solving time : 0.009 (sec)
Leaf size : 11� �
DSolve[{D[x[t],t]==Cos[t]/Sin[t],{x[1]==0}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → log(csc(1) sin(t))
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2.1.7 problem 2 (i)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 50
Solved as first order autonomous ode . . . . . . . . . . . . . . . 51
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 53
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 54
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 54

Internal problem ID [18170]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (i)
Date solved : Thursday, December 19, 2024 at 01:51:47 PM
CAS classification : [_quadrature]

Solve

x′ = x2 − 3x+ 2

With initial conditions

x(0) = 1

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

x′ = f(t, x)
= x2 − 3x+ 2

The x domain of f(t, x) when t = 0 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. Now we will look at the continuity of
∂f

∂x
= ∂

∂x

(
x2 − 3x+ 2

)
= 2x− 3

The x domain of ∂f
∂x

when t = 0 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. Therefore solution exists and is unique.
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Solved as first order autonomous ode

Time used: 0.401 (sec)

Since the ode has the form x′ = f(x) and initial conditions (t0, x0) are given such that
they satisfy the ode itself, then we can write

0 = f(x)|x=x0

0 = 0

And the solution is immediately written as

x = x0

x = 1

Singular solutions are found by solving

x2 − 3x+ 2 = 0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

x = 1
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The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

Figure 2.11: Phase line diagram

(a) Solution plot
x = 1

(b) Slope field plot
x′ = x2 − 3x+ 2
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Summary of solutions found
x = 1

Maple step by step solution

Let’s solve
[x′ = x2 − 3x+ 2, x(0) = 1]

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative
x′ = x2 − 3x+ 2

• Separate variables
x′

x2−3x+2 = 1
• Integrate both sides with respect to t∫

x′

x2−3x+2dt =
∫
1dt+ C1

• Evaluate integral
ln (x− 2)− ln (x− 1) = t+ C1

• Solve for x
x = −2+et+C1

et+C1−1

• Use initial condition x(0) = 1
1 = −2+eC1

eC1−1

• Solve for _C1
C1 = ()

• Solution does not satisfy initial condition

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 5� �
dsolve([diff(x(t),t) = x(t)^2-3*x(t)+2,

op([x(0) = 1])],x(t),singsol=all)� �
x = 1

Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6� �
DSolve[{D[x[t],t]==x[t]^2-3*x[t]+2,{x[0]==1}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → 1
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2.1.8 problem 2 (ii)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 55
Solved as first order autonomous ode . . . . . . . . . . . . . . . 56
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 56
Solved using Lie symmetry for first order ode . . . . . . . . . . 60
Solved as first order ode of type ID 1 . . . . . . . . . . . . . . . 64
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 65
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 66
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 67

Internal problem ID [18171]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (ii)
Date solved : Thursday, December 19, 2024 at 01:51:51 PM
CAS classification : [_quadrature]

Solve

x′ = b ex

With initial conditions

x(0) = 1

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

x′ = f(t, x)
= b ex

The x domain of f(t, x) when t = 0 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. Now we will look at the continuity of
∂f

∂x
= ∂

∂x
(b ex)

= b ex
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The x domain of ∂f
∂x

when t = 0 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. Therefore solution exists and is unique.

Solved as first order autonomous ode

Time used: 0.110 (sec)

Integrating gives ∫ e−x

b
dx = dt

−e−x

b
= t+ c1

Solving for the constant of integration from initial conditions, the solution becomes

−e−x

b
= t− e−1

b

Solving for x gives
x = − ln

(
−(tb e− 1) e−1)

Summary of solutions found

x = − ln
(
−(tb e− 1) e−1)

Solved as first order Exact ode

Time used: 0.375 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

dx = (b ex) dt
(−b ex) dt+dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = −b ex

N(t, x) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives
∂M

∂x
= ∂

∂x
(−b ex)

= −b ex

And
∂N

∂t
= ∂

∂t
(1)

= 0
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Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1((−b ex)− (0))
= −b ex

Since A depends on x, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂t
− ∂M

∂x

)
= −e−x

b
((0)− (−b ex))

= −1

Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dx

= e
∫
−1 dx

The result of integrating gives

µ = e−x

= e−x

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= e−x(−b ex)
= −b

And

N = µN

= e−x(1)
= e−x
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dx
dt = 0

(−b) +
(
e−x
) dx
dt = 0

The following equations are now set up to solve for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives ∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
−b dt

(3)φ = −tb+ f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 0 + f ′(x)

But equation (2) says that ∂φ
∂x

= e−x. Therefore equation (4) becomes

(5)e−x = 0 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = e−x

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫ (
e−x
)
dx

f(x) = −e−x + c1
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Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = −tb− e−x + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −tb− e−x

Solving for the constant of integration from initial conditions, the solution becomes

−tb− e−x = −e−1

Solving for x gives
x = − ln

(
−(tb e− 1) e−1)

Summary of solutions found

x = − ln
(
−(tb e− 1) e−1)

Solved using Lie symmetry for first order ode

Time used: 0.569 (sec)

Writing the ode as

x′ = b ex

x′ = ω(t, x)

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = ta2 + xa3 + a1

(2E)η = tb2 + xb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}



chapter 2 . book solved problems 61

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + b ex(b3 − a2)− b2e2xa3 − b ex(tb2 + xb3 + b1) = 0

Putting the above in normal form gives

−b2e2xa3 − exbtb2 − exbxb3 − b exa2 − exbb1 + b exb3 + b2 = 0

Setting the numerator to zero gives

(6E)−b2e2xa3 − exbtb2 − exbxb3 − b exa2 − exbb1 + b exb3 + b2 = 0

Simplifying the above gives

(6E)−b2e2xa3 − exbtb2 − exbxb3 − b exa2 − exbb1 + b exb3 + b2 = 0

Looking at the above PDE shows the following are all the terms with {t, x} in them.

{t, x, ex, e2x}

The following substitution is now made to be able to collect on all terms with {t, x} in
them

{t = v1, x = v2, ex = v3, e2x = v4}

The above PDE (6E) now becomes

(7E)−b2v4a3 − v3bv1b2 − v3bv2b3 − bv3a2 − v3bb1 + bv3b3 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)−v3bv1b2 − v3bv2b3 + (−ba2 − bb1 + bb3) v3 − b2v4a3 + b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−bb2 = 0
−bb3 = 0
−b2a3 = 0

−ba2 − bb1 + bb3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = −b1

a3 = 0
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 0

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(t, x) ξ
= 0− (b ex) (1)
= −b ex

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt

ξ
= dx

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t
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S is found from

S =
∫ 1

η
dy

=
∫ 1

−b exdy

Which results in

S = e−x

b

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)

Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) = b ex

Evaluating all the partial derivatives gives

Rt = 1
Rx = 0
St = 0

Sx = −e−x

b

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.
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Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
−1 dR

S(R) = −R + c2

To complete the solution, we just need to transform the above back to t, x coordinates.
This results in

e−x

b
= −t+ c2

Which gives

x = − ln (c2b− tb)

Solving for the constant of integration from initial conditions, the solution becomes

x = − ln
(
−tb+ e−1)

Summary of solutions found

x = − ln
(
−tb+ e−1)

Solved as first order ode of type ID 1

Time used: 0.092 (sec)

Writing the ode as

x′ = b ex (1)

And using the substitution u = e−x then

u′ = −x′e−x

The above shows that

x′ = −u′(t) ex

= −u′(t)
u

Substituting this in (1) gives

−u′(t)
u

= b

u



chapter 2 . book solved problems 65

The above simplifies to

u′(t) = −b (2)

Now ode (2) is solved for u(t).

Since the ode has the form u′(t) = f(t), then we only need to integrate f(t).∫
du =

∫
−b dt

u(t) = −tb+ c1

Substituting the solution found for u(t) in u = e−x gives

x = − ln (u(t))
= − ln (− ln (−tb+ c1))
= − ln (−tb+ c1)

Solving for the constant of integration from initial conditions, the solution becomes

x = − ln
(
−tb+ e−1)

Summary of solutions found

x = − ln
(
−tb+ e−1)

Maple step by step solution

Let’s solve
[x′ = b ex, x(0) = 1]

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative
x′ = b ex

• Separate variables
x′

ex = b

• Integrate both sides with respect to t∫
x′

exdt =
∫
bdt+ C1

• Evaluate integral
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− 1
ex = tb+ C1

• Solve for x
x = ln

(
− 1

tb+C1

)
• Use initial condition x(0) = 1

1 = ln
(
− 1

C1

)
• Solve for _C1

C1 = −1
e

• Substitute _C1 = −1
e into general solution and simplify

x = ln
( 1
−tb+e−1

)
• Solution to the IVP

x = ln
( 1
−tb+e−1

)
Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 14� �
dsolve([diff(x(t),t) = b*exp(x(t)),

op([x(0) = 1])],x(t),singsol=all)� �
x = − ln

(
−tb+ e−1)
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Mathematica DSolve solution

Solving time : 0.006 (sec)
Leaf size : 17� �
DSolve[{D[x[t],t]==b*Exp[x[t]],{x[0]==1}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → 1− log(1− ebt)
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2.1.9 problem 2 (iii)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 68
Solved as first order autonomous ode . . . . . . . . . . . . . . . 69
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 70
Solved using Lie symmetry for first order ode . . . . . . . . . . 74
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 80
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 81
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 81

Internal problem ID [18172]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (iii)
Date solved : Thursday, December 19, 2024 at 01:51:52 PM
CAS classification : [_quadrature]

Solve

x′ = (x− 1)2

With initial conditions

x(0) = 1

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

x′ = f(t, x)
= (x− 1)2

The x domain of f(t, x) when t = 0 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. Now we will look at the continuity of
∂f

∂x
= ∂

∂x

(
(x− 1)2

)
= 2x− 2
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The x domain of ∂f
∂x

when t = 0 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. Therefore solution exists and is unique.

Solved as first order autonomous ode

Time used: 0.083 (sec)

Since the ode has the form x′ = f(x) and initial conditions (t0, x0) are given such that
they satisfy the ode itself, then we can write

0 = f(x)|x=x0

0 = 0

And the solution is immediately written as

x = x0

x = 1

Singular solutions are found by solving

(x− 1)2 = 0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

x = 1

The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

Figure 2.13: Phase line diagram
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(a) Solution plot
x = 1

(b) Slope field plot
x′ = (x− 1)2

Summary of solutions found
x = 1

Solved as first order Exact ode

Time used: 0.205 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)
Therefore

dx =
(
(x− 1)2

)
dt(

−(x− 1)2
)
dt+dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = −(x− 1)2

N(t, x) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives
∂M

∂x
= ∂

∂x

(
−(x− 1)2

)
= −2x+ 2

And
∂N

∂t
= ∂

∂t
(1)

= 0

Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1((−2x+ 2)− (0))
= −2x+ 2
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Since A depends on x, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂t
− ∂M

∂x

)
= − 1

(x− 1)2
((0)− (−2x+ 2))

= − 2
x− 1

Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dx

= e
∫
− 2

x−1 dx

The result of integrating gives

µ = e−2 ln(x−1)

= 1
(x− 1)2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
(x− 1)2

(
−(x− 1)2

)
= −1

And

N = µN

= 1
(x− 1)2

(1)

= 1
(x− 1)2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dx
dt = 0

(−1) +
(

1
(x− 1)2

)
dx
dt = 0
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The following equations are now set up to solve for the function φ(t, x)
∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives ∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
−1 dt

(3)φ = −t+ f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 0 + f ′(x)

But equation (2) says that ∂φ
∂x

= 1
(x−1)2 . Therefore equation (4) becomes

(5)1
(x− 1)2

= 0 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 1
(x− 1)2

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫ ( 1
(x− 1)2

)
dx

f(x) = − 1
x− 1 + c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = −t− 1
x− 1 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −t− 1
x− 1

Solving for the constant of integration from initial conditions, the solution becomes

x = 1

(a) Solution plot
x = 1

(b) Slope field plot
x′ = (x− 1)2

Summary of solutions found
x = 1

Solved using Lie symmetry for first order ode

Time used: 0.560 (sec)

Writing the ode as

x′ = (x− 1)2

x′ = ω(t, x)

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)
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To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = ta2 + xa3 + a1

(2E)η = tb2 + xb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + (x− 1)2 (b3 − a2)− (x− 1)4 a3 − (2x− 2) (tb2 + xb3 + b1) = 0

Putting the above in normal form gives

−x4a3 + 4x3a3 − 2txb2 − x2a2 − 6x2a3 − x2b3 + 2tb2
+ 2xa2 + 4xa3 − 2xb1 − a2 − a3 + 2b1 + b2 + b3 = 0

Setting the numerator to zero gives

(6E)−x4a3 + 4x3a3 − 2txb2 − x2a2 − 6x2a3 − x2b3 + 2tb2
+ 2xa2 + 4xa3 − 2xb1 − a2 − a3 + 2b1 + b2 + b3 = 0

Looking at the above PDE shows the following are all the terms with {t, x} in them.

{t, x}

The following substitution is now made to be able to collect on all terms with {t, x} in
them

{t = v1, x = v2}

The above PDE (6E) now becomes

(7E)−a3v
4
2 + 4a3v32 − a2v

2
2 − 6a3v22 − 2b2v1v2 − b3v

2
2 + 2a2v2

+ 4a3v2 − 2b1v2 + 2b2v1 − a2 − a3 + 2b1 + b2 + b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−2b2v1v2 + 2b2v1 − a3v
4
2 + 4a3v32 + (−a2 − 6a3 − b3) v22

+ (2a2 + 4a3 − 2b1) v2 − a2 − a3 + 2b1 + b2 + b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a3 = 0
4a3 = 0

−2b2 = 0
2b2 = 0

−a2 − 6a3 − b3 = 0
2a2 + 4a3 − 2b1 = 0

−a2 − a3 + 2b1 + b2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = −b3

a3 = 0
b1 = −b3

b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 0

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(t, x) ξ
= 0−

(
(x− 1)2

)
(1)

= −x2 + 2x− 1
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt

ξ
= dx

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2 + 2x− 1dy

Which results in

S = 1
x− 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)

Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) = (x− 1)2

Evaluating all the partial derivatives gives

Rt = 1
Rx = 0
St = 0

Sx = − 1
(x− 1)2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
−1 dR

S(R) = −R + c2

To complete the solution, we just need to transform the above back to t, x coordinates.
This results in

1
x− 1 = −t+ c2

Which gives

x = c2 − t+ 1
−t+ c2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dx
dt

= (x− 1)2 dS
dR

= −1

R = t

S = 1
x− 1

Solving for the constant of integration from initial conditions, the solution becomes

x = 1

(a) Solution plot
x = 1

(b) Slope field plot
x′ = (x− 1)2



chapter 2 . book solved problems 80

Summary of solutions found
x = 1

Maple step by step solution

Let’s solve[
x′ = (x− 1)2 , x(0) = 1

]
• Highest derivative means the order of the ODE is 1

x′

• Solve for the highest derivative
x′ = (x− 1)2

• Separate variables
x′

(x−1)2 = 1

• Integrate both sides with respect to t∫
x′

(x−1)2dt =
∫
1dt+ C1

• Evaluate integral
− 1

x−1 = t+ C1
• Solve for x

x = C1+t−1
t+C1

• Use initial condition x(0) = 1
1 = C1−1

C1

• Solve for _C1
C1 = ()

• Solution does not satisfy initial condition

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 5� �
dsolve([diff(x(t),t) = (x(t)-1)^2,

op([x(0) = 1])],x(t),singsol=all)� �
x = 1

Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6� �
DSolve[{D[x[t],t]==(x[t]-1)^2,{x[0]==1}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → 1
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2.1.10 problem 2 (iv)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 82
Solved as first order autonomous ode . . . . . . . . . . . . . . . 83
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 85
Solved using Lie symmetry for first order ode . . . . . . . . . . 90
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 96
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 97
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 97

Internal problem ID [18173]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (iv)
Date solved : Thursday, December 19, 2024 at 01:51:54 PM
CAS classification : [_quadrature]

Solve

x′ =
√
x2 − 1

With initial conditions

x(0) = 1

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

x′ = f(t, x)
=

√
x2 − 1

The x domain of f(t, x) when t = 0 is

{1 ≤ x ≤ ∞,−∞ ≤ x ≤ −1}

And the point x0 = 1 is inside this domain. Now we will look at the continuity of
∂f

∂x
= ∂

∂x

(√
x2 − 1

)
= x√

x2 − 1
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The x domain of ∂f
∂x

when t = 0 is

{−∞ ≤ x < −1,−1 < x < 1, 1 < x ≤ ∞}

But the point x0 = 1 is not inside this domain. Hence existence and uniqueness theorem
does not apply. Solution exists but no guarantee that unique solution exists.

Solved as first order autonomous ode

Time used: 0.126 (sec)

Since the ode has the form x′ = f(x) and initial conditions (t0, x0) are given such that
they satisfy the ode itself, then we can write

0 = f(x)|x=x0

0 = 0

And the solution is immediately written as

x = x0

x = 1

Singular solutions are found by solving
√
x2 − 1 = 0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

x = 1
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The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

Figure 2.17: Phase line diagram
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(a) Solution plot
x = 1

(b) Slope field plot
x′ =

√
x2 − 1

Summary of solutions found
x = 1

Solved as first order Exact ode

Time used: 8.006 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

dx =
(√

x2 − 1
)
dt(

−
√
x2 − 1

)
dt+dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = −
√
x2 − 1

N(t, x) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x

(
−
√
x2 − 1

)
= − x√

x2 − 1

And

∂N

∂t
= ∂

∂t
(1)

= 0
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Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1
((

− x√
x2 − 1

)
− (0)

)
= − x√

x2 − 1

Since A depends on x, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂t
− ∂M

∂x

)
= − 1√

x2 − 1

(
(0)−

(
− x√

x2 − 1

))
= − x

x2 − 1

Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dx

= e
∫
− x

x2−1 dx

The result of integrating gives

µ = e−
ln(x−1)

2 − ln(x+1)
2

= 1√
x− 1

√
x+ 1

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1√
x− 1

√
x+ 1

(
−
√
x2 − 1

)
= −

√
x2 − 1√

x− 1
√
x+ 1
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And

N = µN

= 1√
x− 1

√
x+ 1

(1)

= 1√
x− 1

√
x+ 1

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dx
dt = 0(

−
√
x2 − 1√

x− 1
√
x+ 1

)
+
(

1√
x− 1

√
x+ 1

)
dx
dt = 0

The following equations are now set up to solve for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives∫
∂φ

∂t
dt =

∫
M dt

∫
∂φ

∂t
dt =

∫
−

√
x2 − 1√

x− 1
√
x+ 1

dt

(3)φ = −
√
x2 − 1 t√

x− 1
√
x+ 1

+ f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

∂φ

∂x
= − tx√

x2 − 1
√
x− 1

√
x+ 1

+
√
x2 − 1 t

2 (x− 1)3/2
√
x+ 1

+
√
x2 − 1 t

2
√
x− 1 (x+ 1)3/2

+ f ′(x)

(4)

= 0 + f ′(x)
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But equation (2) says that ∂φ
∂x

= 1√
x−1

√
x+1 . Therefore equation (4) becomes

(5)1√
x− 1

√
x+ 1

= 0 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 1√
x− 1

√
x+ 1

Integrating the above w.r.t x gives

∫
f ′(x) dx =

∫ ( 1√
x− 1

√
x+ 1

)
dx

f(x) =
√

(x− 1) (x+ 1) ln
(
x+

√
x2 − 1

)
√
x− 1

√
x+ 1

+ c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = −
√
x2 − 1 t√

x− 1
√
x+ 1

+
√

(x− 1) (x+ 1) ln
(
x+

√
x2 − 1

)
√
x− 1

√
x+ 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −
√
x2 − 1 t√

x− 1
√
x+ 1

+
√

(x− 1) (x+ 1) ln
(
x+

√
x2 − 1

)
√
x− 1

√
x+ 1

Solving for the constant of integration from initial conditions, the solution becomes

−
√
x2 − 1 t√

x− 1
√
x+ 1

+
√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

)
√
x− 1

√
x+ 1

= 0
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Figure 2.19: Slope field plot
x′ =

√
x2 − 1

Summary of solutions found

−
√
x2 − 1 t√

x− 1
√
x+ 1

+
√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

)
√
x− 1

√
x+ 1

= 0

Solved using Lie symmetry for first order ode

Time used: 1.941 (sec)

Writing the ode as

x′ =
√
x2 − 1

x′ = ω(t, x)

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = ta2 + xa3 + a1

(2E)η = tb2 + xb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
√
x2 − 1 (b3 − a2)−

(
x2 − 1

)
a3 −

x(tb2 + xb3 + b1)√
x2 − 1

= 0

Putting the above in normal form gives

−
√
x2 − 1x2a3 + txb2 + x2a2 − a3

√
x2 − 1− b2

√
x2 − 1 + xb1 − a2 + b3√

x2 − 1
= 0

Setting the numerator to zero gives

(6E)−
√
x2 − 1x2a3 − txb2 − x2a2 + a3

√
x2 − 1 + b2

√
x2 − 1− xb1 + a2 − b3 = 0

Simplifying the above gives

(6E)−
√
x2 − 1x2a3 −

(
x2 − 1

)
a2 +

(
x2 − 1

)
b3 − txb2

− x2b3 + a3
√
x2 − 1 + b2

√
x2 − 1− xb1 = 0

Since the PDE has radicals, simplifying gives

−
√
x2 − 1x2a3 − txb2 − x2a2 + a3

√
x2 − 1 + b2

√
x2 − 1− xb1 + a2 − b3 = 0

Looking at the above PDE shows the following are all the terms with {t, x} in them.{
t, x,

√
x2 − 1

}
The following substitution is now made to be able to collect on all terms with {t, x} in
them {

t = v1, x = v2,
√
x2 − 1 = v3

}
The above PDE (6E) now becomes

(7E)−v3v
2
2a3 − v22a2 − v1v2b2 + a3v3 − v2b1 + b2v3 + a2 − b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−v1v2b2 − v3v
2
2a3 − v22a2 − v2b1 + (a3 + b2) v3 − b3 + a2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a2 = 0
−a3 = 0
−b1 = 0
−b2 = 0

a3 + b2 = 0
−b3 + a2 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 0

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(t, x) ξ

= 0−
(√

x2 − 1
)
(1)

= −
√
x2 − 1

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt

ξ
= dx

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√
x2 − 1

dy

Which results in

S = − ln
(
x+

√
x2 − 1

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)

Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) =
√
x2 − 1

Evaluating all the partial derivatives gives

Rt = 1
Rx = 0
St = 0

Sx = − 1√
x2 − 1
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
−1 dR

S(R) = −R + c2

To complete the solution, we just need to transform the above back to t, x coordinates.
This results in

− ln
(
x+

√
x2 − 1

)
= −t+ c2

Which gives

x = (e2t−2c2 + 1) e−t+c2

2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dx
dt

=
√
x2 − 1 dS

dR
= −1

R = t

S = − ln
(
x+

√
x2 − 1

)

Solving for the constant of integration from initial conditions, the solution becomes

x = (e2t + 1) e−t

2

(a) Solution plot
x =

(
e2t+1

)
e−t

2

(b) Slope field plot
x′ =

√
x2 − 1



chapter 2 . book solved problems 96

Summary of solutions found

x = (e2t + 1) e−t

2

Maple step by step solution

Let’s solve[
x′ =

√
x2 − 1, x(0) = 1

]
• Highest derivative means the order of the ODE is 1

x′

• Solve for the highest derivative
x′ =

√
x2 − 1

• Separate variables
x′

√
x2−1 = 1

• Integrate both sides with respect to t∫
x′

√
x2−1dt =

∫
1dt+ C1

• Evaluate integral
ln
(
x+

√
x2 − 1

)
= t+ C1

• Solve for x

x =
(
et+C1 )2+1
2 et+C1

• Use initial condition x(0) = 1

1 =
(
eC1 )2+1
2 eC1

• Solve for _C1
C1 = 0

• Substitute _C1 = 0 into general solution and simplify
x = et

2 + e−t

2

• Solution to the IVP
x = et

2 + e−t

2
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 5� �
dsolve([diff(x(t),t) = (x(t)^2-1)^(1/2),

op([x(0) = 1])],x(t),singsol=all)� �
x = 1

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0� �
DSolve[{D[x[t],t]==Sqrt[x[t]^2-1],{x[0]==1}},

x[t],t,IncludeSingularSolutions->True]� �
{}
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2.1.11 problem 2 (v)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 98
Solved as first order autonomous ode . . . . . . . . . . . . . . . 99
Solved as first order Bernoulli ode . . . . . . . . . . . . . . . . . 100
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 103
Solved using Lie symmetry for first order ode . . . . . . . . . . 107
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 112
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 113
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 113

Internal problem ID [18174]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (v)
Date solved : Thursday, December 19, 2024 at 01:52:05 PM
CAS classification : [_quadrature]

Solve

x′ = 2
√
x

With initial conditions

x(0) = 1

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

x′ = f(t, x)
= 2

√
x

The x domain of f(t, x) when t = 0 is

{0 ≤ x}

And the point x0 = 1 is inside this domain. Now we will look at the continuity of
∂f

∂x
= ∂

∂x

(
2
√
x
)

= 1√
x
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The x domain of ∂f
∂x

when t = 0 is
{0 < x}

And the point x0 = 1 is inside this domain. Therefore solution exists and is unique.

Solved as first order autonomous ode

Time used: 0.207 (sec)

Integrating gives ∫ 1
2
√
x
dx = dt

√
x = t+ c1

The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

Figure 2.21: Phase line diagram
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Solving for the constant of integration from initial conditions, the solution becomes
√
x = t+ 1

Solving for x gives
x = t2 + 2t+ 1

(a) Solution plot
x = t2 + 2t+ 1

(b) Slope field plot
x′ = 2

√
x

Summary of solutions found

x = t2 + 2t+ 1

Solved as first order Bernoulli ode

Time used: 0.074 (sec)

In canonical form, the ODE is

x′ = F (t, x)
= 2

√
x

This is a Bernoulli ODE.
x′ = (2)

√
x (1)

The standard Bernoulli ODE has the form

x′ = f0(t)x+ f1(t)xn (2)
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Comparing this to (1) shows that

f0 = 0
f1 = 2

The first step is to divide the above equation by xn which gives

x′

xn
= f1(t) (3)

The next step is use the substitution v = x1−n in equation (3) which generates a new
ODE in v(t) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution x(t) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(t) = 0
f1(t) = 2

n = 1
2

Dividing both sides of ODE (1) by xn =
√
x gives

x′ 1√
x
= 0 + 2 (4)

Let

v = x1−n

=
√
x (5)

Taking derivative of equation (5) w.r.t t gives

v′ = 1
2
√
x
x′ (6)

Substituting equations (5) and (6) into equation (4) gives

2v′(t) = 2
v′ = 1 (7)

The above now is a linear ODE in v(t) which is now solved.
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Since the ode has the form v′(t) = f(t), then we only need to integrate f(t).∫
dv =

∫
1 dt

v(t) = t+ c1

The substitution v = x1−n is now used to convert the above solution back to x which
results in

√
x = t+ c1

Solving for the constant of integration from initial conditions, the solution becomes
√
x = t+ 1

Solving for x gives
x = t2 + 2t+ 1

(a) Solution plot
x = t2 + 2t+ 1

(b) Slope field plot
x′ = 2

√
x

Summary of solutions found

x = t2 + 2t+ 1
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Solved as first order Exact ode

Time used: 0.109 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

dx =
(
2
√
x
)
dt(

−2
√
x
)
dt+dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = −2
√
x

N(t, x) = 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x

(
−2

√
x
)

= − 1√
x

And

∂N

∂t
= ∂

∂t
(1)

= 0

Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1
((

− 1√
x

)
− (0)

)
= − 1√

x

Since A depends on x, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂t
− ∂M

∂x

)
= − 1

2
√
x

(
(0)−

(
− 1√

x

))
= − 1

2x

Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dx

= e
∫
− 1

2x dx
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The result of integrating gives

µ = e−
ln(x)

2

= 1√
x

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1√
x

(
−2

√
x
)

= −2

And

N = µN

= 1√
x
(1)

= 1√
x

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dx
dt = 0

(−2) +
(

1√
x

)
dx
dt = 0

The following equations are now set up to solve for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives ∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
−2 dt

(3)φ = −2t+ f(x)



chapter 2 . book solved problems 106

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 0 + f ′(x)

But equation (2) says that ∂φ
∂x

= 1√
x
. Therefore equation (4) becomes

(5)1√
x
= 0 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 1√
x

Integrating the above w.r.t x gives

∫
f ′(x) dx =

∫ ( 1√
x

)
dx

f(x) = 2
√
x+ c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = −2t+ 2
√
x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −2t+ 2
√
x

Solving for the constant of integration from initial conditions, the solution becomes

−2t+ 2
√
x = 2

Solving for x gives
x = t2 + 2t+ 1



chapter 2 . book solved problems 107

(a) Solution plot
x = t2 + 2t+ 1

(b) Slope field plot
x′ = 2

√
x

Summary of solutions found

x = t2 + 2t+ 1

Solved using Lie symmetry for first order ode

Time used: 0.672 (sec)

Writing the ode as

x′ = 2
√
x

x′ = ω(t, x)

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = ta2 + xa3 + a1

(2E)η = tb2 + xb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + 2
√
x (b3 − a2)− 4xa3 −

tb2 + xb3 + b1√
x

= 0

Putting the above in normal form gives

−2xa2 − xb3 + 4x3/2a3 − b2
√
x+ tb2 + b1√

x
= 0

Setting the numerator to zero gives

(6E)−4x3/2a3 + b2
√
x− tb2 − 2xa2 + xb3 − b1 = 0

Looking at the above PDE shows the following are all the terms with {t, x} in them.{
t, x,

√
x, x3/2}

The following substitution is now made to be able to collect on all terms with {t, x} in
them {

t = v1, x = v2,
√
x = v3, x

3/2 = v4
}

The above PDE (6E) now becomes

(7E)−2v2a2 − 4v4a3 − v1b2 + b2v3 + v2b3 − b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)−v1b2 + (−2a2 + b3) v2 + b2v3 − 4v4a3 − b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−4a3 = 0
−b1 = 0
−b2 = 0

−2a2 + b3 = 0
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Solving the above equations for the unknowns gives

a1 = a1

a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 0

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(t, x) ξ
= 0−

(
2
√
x
)
(1)

= −2
√
x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt

ξ
= dx

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2
√
x
dy
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Which results in

S = −
√
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)

Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) = 2
√
x

Evaluating all the partial derivatives gives

Rt = 1
Rx = 0
St = 0

Sx = − 1
2
√
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
−1 dR

S(R) = −R + c2
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To complete the solution, we just need to transform the above back to t, x coordinates.
This results in

−
√
x = −t+ c2

Which gives

x = c22 − 2c2t+ t2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dx
dt

= 2
√
x dS

dR
= −1

R = t

S = −
√
x

Solving for the constant of integration from initial conditions gives

x = t2 − 2t+ 1
x = t2 + 2t+ 1
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(a) Solutions plot
(b) Slope field plot

x′ = 2
√
x

Summary of solutions found

x = t2 − 2t+ 1

x = t2 + 2t+ 1

Maple step by step solution

Let’s solve[
x′ = 2

√
x, x(0) = 1

]
• Highest derivative means the order of the ODE is 1

x′

• Solve for the highest derivative
x′ = 2

√
x

• Separate variables
x′
√
x
= 2

• Integrate both sides with respect to t∫
x′
√
x
dt =

∫
2dt+ C1

• Evaluate integral
2
√
x = 2t+ C1

• Solve for x
x = t2 + tC1 + 1

4C1
2
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• Use initial condition x(0) = 1
1 = C12

4

• Solve for _C1
C1 = (−2, 2)

• Substitute _C1 = (−2, 2) into general solution and simplify
x = (t− 1)2

• Solution to the IVP
x = (t− 1)2

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
Maple dsolve solution

Solving time : 0.031 (sec)
Leaf size : 9� �
dsolve([diff(x(t),t) = 2*x(t)^(1/2),

op([x(0) = 1])],x(t),singsol=all)� �
x = (t+ 1)2

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 10� �
DSolve[{D[x[t],t]==2*Sqrt[x[t]],{x[0]==1}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → (t+ 1)2



chapter 2 . book solved problems 114

2.1.12 problem 2 (vi)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 114
Solved as first order autonomous ode . . . . . . . . . . . . . . . 115
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 116
Solved using Lie symmetry for first order ode . . . . . . . . . . 121
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 126
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 127
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 127

Internal problem ID [18175]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (vi)
Date solved : Thursday, December 19, 2024 at 01:52:07 PM
CAS classification : [_quadrature]

Solve

x′ = tan (x)

With initial conditions

x(0) = 1

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

x′ = f(t, x)
= tan (x)

The x domain of f(t, x) when t = 0 is{
x <

1
2π + π_Z10∨ 1

2π + π_Z10 < x

}
And the point x0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂x
= ∂

∂x
(tan (x))

= 1 + tan (x)2
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The x domain of ∂f
∂x

when t = 0 is{
x <

1
2π + π_Z10∨ 1

2π + π_Z10 < x

}
And the point x0 = 1 is inside this domain. Therefore solution exists and is unique.

Solved as first order autonomous ode

Time used: 0.165 (sec)

Integrating gives ∫ 1
tan (x)dx = dt

ln (sin (x)) = t+ c1

Applying the exponential to both sides gives

eln(sin(x)) = et+c1

sin (x) = etc1

The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

Figure 2.26: Phase line diagram
Solving for the constant of integration from initial conditions, the solution becomes

sin (x) = et sin (1)

Solving for x gives
x = arcsin

(
et sin (1)

)
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(a) Solution plot
x = arcsin

(
et sin (1)

) (b) Slope field plot
x′ = tan (x)

Summary of solutions found

x = arcsin
(
et sin (1)

)
Solved as first order Exact ode

Time used: 0.205 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)
Therefore

dx = (tan (x)) dt
(− tan (x)) dt+dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = − tan (x)
N(t, x) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives
∂M

∂x
= ∂

∂x
(− tan (x))

= − sec (x)2

And
∂N

∂t
= ∂

∂t
(1)

= 0

Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1
((
−1− tan (x)2

)
− (0)

)
= − sec (x)2
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Since A depends on x, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂t
− ∂M

∂x

)
= − cot (x)

(
(0)−

(
−1− tan (x)2

))
= − cot (x)− tan (x)

Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dx

= e
∫
− cot(x)−tan(x) dx

The result of integrating gives

µ = e− ln(sin(x))+ln(cos(x))

= cos (x)
sin (x)

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= cos (x)
sin (x) (− tan (x))

= −1

And

N = µN

= cos (x)
sin (x) (1)

= cot (x)

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dx
dt = 0

(−1) + (cot (x)) dxdt = 0
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The following equations are now set up to solve for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives ∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
−1 dt

(3)φ = −t+ f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 0 + f ′(x)

But equation (2) says that ∂φ
∂x

= cot (x). Therefore equation (4) becomes

(5)cot (x) = 0 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = cot (x)

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫
(cot (x)) dx

f(x) = ln (sin (x)) + c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = −t+ ln (sin (x)) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −t+ ln (sin (x))

Solving for the constant of integration from initial conditions, the solution becomes

−t+ ln (sin (x)) = ln (sin (1))

Solving for x gives
x = arcsin

(
et sin (1)

)

(a) Solution plot
x = arcsin

(
et sin (1)

) (b) Slope field plot
x′ = tan (x)

Summary of solutions found

x = arcsin
(
et sin (1)

)
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Solved using Lie symmetry for first order ode

Time used: 0.626 (sec)

Writing the ode as

x′ = tan (x)
x′ = ω(t, x)

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = ta2 + xa3 + a1

(2E)η = tb2 + xb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + tan (x) (b3 − a2)− tan (x)2 a3 −
(
1 + tan (x)2

)
(tb2 + xb3 + b1) = 0

Putting the above in normal form gives

− tan (x)2 tb2 − tan (x)2 xb3 − tan (x)2 a3 − tan (x)2 b1
− tan (x) a2 + tan (x) b3 − tb2 − xb3 − b1 + b2 = 0

Setting the numerator to zero gives

(6E)− tan (x)2 tb2 − tan (x)2 xb3 − tan (x)2 a3 − tan (x)2 b1
− tan (x) a2 + tan (x) b3 − tb2 − xb3 − b1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {t, x} in them.

{t, x, tan (x)}
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The following substitution is now made to be able to collect on all terms with {t, x} in
them

{t = v1, x = v2, tan (x) = v3}

The above PDE (6E) now becomes

(7E)−v23v1b2 − v23v2b3 − v23a3 − v23b1 − v3a2 − v1b2 − v2b3 + v3b3 − b1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−v23v1b2 − v1b2 − v23v2b3 − v2b3 + (−a3 − b1) v23 + (b3 − a2) v3 − b1 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−b2 = 0
−b3 = 0

−a3 − b1 = 0
−b1 + b2 = 0
b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 0
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(t, x) ξ
= 0− (tan (x)) (1)
= − tan (x)

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt

ξ
= dx

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

− tan (x)dy

Which results in

S = − ln (sin (x))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)

Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) = tan (x)
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Evaluating all the partial derivatives gives

Rt = 1
Rx = 0
St = 0
Sx = − cot (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
−1 dR

S(R) = −R + c2

To complete the solution, we just need to transform the above back to t, x coordinates.
This results in

− ln (sin (x)) = −t+ c2

Which gives

x = arcsin
(
et−c2

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dx
dt

= tan (x) dS
dR

= −1

R = t

S = − ln (sin (x))

Solving for the constant of integration from initial conditions, the solution becomes

x = arcsin
(
et+ln(sin(1)))

(a) Solution plot
x = arcsin

(
et+ln(sin(1))) (b) Slope field plot

x′ = tan (x)



chapter 2 . book solved problems 126

Summary of solutions found

x = arcsin
(
et+ln(sin(1)))

Maple step by step solution

Let’s solve
[x′ = tan (x) , x(0) = 1]

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative
x′ = tan (x)

• Separate variables
x′

tan(x) = 1
• Integrate both sides with respect to t∫

x′

tan(x)dt =
∫
1dt+ C1

• Evaluate integral
ln (sin (x)) = t+ C1

• Solve for x
x = arcsin

(
et+C1)

• Use initial condition x(0) = 1
1 = arcsin

(
eC1)

• Solve for _C1
C1 = ln (sin (1))

• Substitute _C1 = ln (sin (1)) into general solution and simplify
x = arcsin (et sin (1))

• Solution to the IVP
x = arcsin (et sin (1))

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli



chapter 2 . book solved problems 127

trying separable
<- separable successful`� �
Maple dsolve solution

Solving time : 0.093 (sec)
Leaf size : 10� �
dsolve([diff(x(t),t) = tan(x(t)),

op([x(0) = 1])],x(t),singsol=all)� �
x = arcsin

(
et sin (1)

)
Mathematica DSolve solution

Solving time : 0.007 (sec)
Leaf size : 12� �
DSolve[{D[x[t],t]==Tan[x[t]],{x[0]==1}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → arcsin

(
et sin(1)

)
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2.1.13 problem 3 (i)

Solved as first order separable ode . . . . . . . . . . . . . . . . 129
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 131
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 136
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 137
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 137

Internal problem ID [18176]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 3 (i)
Date solved : Thursday, December 19, 2024 at 01:52:09 PM
CAS classification : [_separable]

Solve

3t2x− xt+
(
3t3x2 + t3x4)x′ = 0

Factoring the ode gives these factors
(1)x = 0

(2)x′x3t2 + 3x′xt2 + 3t− 1 = 0

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for x from

x = 0

Solving gives x = 0

Solving equation (2)
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Solved as first order separable ode

Time used: 0.903 (sec)

The ode x′ = − 3t−1
t2x(x2+3) is separable as it can be written as

x′ = − 3t− 1
t2x (x2 + 3)

= f(t)g(x)

Where

f(t) = −3t− 1
t2

g(x) = 1
x (x2 + 3)

Integrating gives ∫ 1
g(x) dx =

∫
f(t) dt∫

x
(
x2 + 3

)
dx =

∫
−3t− 1

t2
dt

(x2 + 3)2

4 = −1
t
+ ln

(
1
t3

)
+ c1

Solving for x gives

x =

√
t
(
−3t+ 2

√
ln
( 1
t3

)
t2 + c1 t2 − t

)
t

x =

√
−t
(
3t+ 2

√
ln
( 1
t3

)
t2 + c1 t2 − t

)
t

x = −

√
t
(
−3t+ 2

√
ln
( 1
t3

)
t2 + c1 t2 − t

)
t

x = −

√
−t
(
3t+ 2

√
ln
( 1
t3

)
t2 + c1 t2 − t

)
t
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Figure 2.30: Slope field plot
x′x3t2 + 3x′xt2 + 3t− 1 = 0

Summary of solutions found

x =

√
t
(
−3t+ 2

√
ln
( 1
t3

)
t2 + c1 t2 − t

)
t

x =

√
−t
(
3t+ 2

√
ln
( 1
t3

)
t2 + c1 t2 − t

)
t

x = −

√
t
(
−3t+ 2

√
ln
( 1
t3

)
t2 + c1 t2 − t

)
t

x = −

√
−t
(
3t+ 2

√
ln
( 1
t3

)
t2 + c1 t2 − t

)
t



chapter 2 . book solved problems 131

Solved as first order Exact ode

Time used: 0.313 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore (
t2x3 + 3t2x

)
dx = (−3t+ 1) dt

(3t− 1) dt+
(
t2x3 + 3t2x

)
dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = 3t− 1
N(t, x) = t2x3 + 3t2x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives
∂M

∂x
= ∂

∂x
(3t− 1)

= 0

And
∂N

∂t
= ∂

∂t

(
t2x3 + 3t2x

)
= 2t x3 + 6tx

Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1

t2x (x2 + 3)
(
(0)−

(
2t x3 + 6tx

))
= −2

t

Since A does not depend on x, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adt

= e
∫
− 2

t
dt

The result of integrating gives

µ = e−2 ln(t)

= 1
t2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
t2
(3t− 1)

= 3t− 1
t2
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And

N = µN

= 1
t2
(
t2x3 + 3t2x

)
= x

(
x2 + 3

)
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dx
dt = 0(

3t− 1
t2

)
+
(
x
(
x2 + 3

)) dx
dt = 0

The following equations are now set up to solve for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫ 3t− 1
t2

dt

(3)φ = 1
t
+ 3 ln (t) + f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 0 + f ′(x)

But equation (2) says that ∂φ
∂x

= x(x2 + 3). Therefore equation (4) becomes

(5)x
(
x2 + 3

)
= 0 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = x
(
x2 + 3

)
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Integrating the above w.r.t x gives∫
f ′(x) dx =

∫ (
x
(
x2 + 3

))
dx

f(x) = (x2 + 3)2

4 + c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = 1
t
+ 3 ln (t) + (x2 + 3)2

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 =
1
t
+ 3 ln (t) + (x2 + 3)2

4

Solving for x gives

x =

√
t
(
−3t+ 2

√
−3 ln (t) t2 + c1 t2 − t

)
t

x =

√
−t
(
3t+ 2

√
−3 ln (t) t2 + c1 t2 − t

)
t

x = −

√
t
(
−3t+ 2

√
−3 ln (t) t2 + c1 t2 − t

)
t

x = −

√
−t
(
3t+ 2

√
−3 ln (t) t2 + c1 t2 − t

)
t
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Figure 2.31: Slope field plot
x′x3t2 + 3x′xt2 + 3t− 1 = 0

Summary of solutions found

x =

√
t
(
−3t+ 2

√
−3 ln (t) t2 + c1 t2 − t

)
t

x =

√
−t
(
3t+ 2

√
−3 ln (t) t2 + c1 t2 − t

)
t

x = −

√
t
(
−3t+ 2

√
−3 ln (t) t2 + c1 t2 − t

)
t

x = −

√
−t
(
3t+ 2

√
−3 ln (t) t2 + c1 t2 − t

)
t
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Maple step by step solution

Let’s solve
3t2x− xt+ (3t3x2 + t3x4)x′ = 0

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative
x′ = −3t2x+xt

3t3x2+t3x4

• Separate variables
x′x(x2 + 3) = −3t−1

t2

• Integrate both sides with respect to t∫
x′x(x2 + 3) dt =

∫
−3t−1

t2
dt+ C1

• Evaluate integral(
x2+3

)2
4 = −1

t
− 3 ln (t) + C1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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Maple dsolve solution

Solving time : 0.022 (sec)
Leaf size : 139� �
dsolve(3*t^2*x(t)-x(t)*t+(3*t^3*x(t)^2+t^3*x(t)^4)*diff(x(t),t) = 0,

x(t),singsol=all)� �
x = 0

x =

√
−3t2 + 2t

√
−t (1 + 3 ln (t) t+ tc1)

t

x =

√
−3t2 − 2t

√
−t (1 + 3 ln (t) t+ tc1)

t

x = −

√
−3t2 + 2t

√
−t (1 + 3 ln (t) t+ tc1)

t

x = −

√
−3t2 − 2t

√
−t (1 + 3 ln (t) t+ tc1)

t

Mathematica DSolve solution

Solving time : 6.967 (sec)
Leaf size : 157� �
DSolve[{(3*t^2*x[t]-t*x[t])+(3*t^3*x[t]^2+t^3*x[t]^4)*D[x[t],t]==0,{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → 0

x(t) → −

√
−3−

√
9t− 12t log(t) + 4c1t− 4√

t

x(t) →

√
−3−

√
9t− 12t log(t) + 4c1t− 4√

t

x(t) → −

√
−3 +

√
9t− 12t log(t) + 4c1t− 4√

t

x(t) →

√
−3 +

√
9t− 12t log(t) + 4c1t− 4√

t
x(t) → 0
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2.1.14 problem 3 (ii)

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 138
Solved as first order separable ode . . . . . . . . . . . . . . . . 140
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 142
Solved using Lie symmetry for first order ode . . . . . . . . . . 147
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 153
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 154
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 154

Internal problem ID [18177]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 3 (ii)
Date solved : Thursday, December 19, 2024 at 01:52:12 PM
CAS classification : [_separable]

Solve

1 + 2x+
(
−t2 + 4

)
x′ = 0

Solved as first order linear ode

Time used: 0.125 (sec)

In canonical form a linear first order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = − 2
t2 − 4

p(t) = 1
t2 − 4

The integrating factor µ is

µ = e
∫
q dt

= e
∫
− 2

t2−4dt

=
√
t+ 2√
t− 2
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The ode becomes
d
dt(µx) = µp

d
dt(µx) = (µ)

(
1

t2 − 4

)
d
dt

(
x
√
t+ 2√
t− 2

)
=
(√

t+ 2√
t− 2

)(
1

t2 − 4

)

d
(
x
√
t+ 2√
t− 2

)
=
( √

t+ 2
(t2 − 4)

√
t− 2

)
dt

Integrating gives

x
√
t+ 2√
t− 2

=
∫ √

t+ 2
(t2 − 4)

√
t− 2

dt

= −
√
t− 2 (t+ 2)3/2

2 (t2 − 4) + c1

Dividing throughout by the integrating factor
√
t+2√
t−2 gives the final solution

x =

√
t− 2

(
−
√
t− 2 (t+ 2)3/2 + 2c1 t2 − 8c1

)
√
t+ 2 (2t2 − 8)
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Figure 2.32: Slope field plot
1 + 2x+ (−t2 + 4)x′ = 0

Summary of solutions found

x =

√
t− 2

(
−
√
t− 2 (t+ 2)3/2 + 2c1 t2 − 8c1

)
√
t+ 2 (2t2 − 8)

Solved as first order separable ode

Time used: 0.171 (sec)

The ode x′ = 1+2x
t2−4 is separable as it can be written as

x′ = 1 + 2x
t2 − 4

= f(t)g(x)

Where

f(t) = 1
t2 − 4

g(x) = 2x+ 1
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Integrating gives ∫ 1
g(x) dx =

∫
f(t) dt∫ 1

2x+ 1 dx =
∫ 1

t2 − 4 dt

ln (1 + 2x)
2 = ln

(
(t− 2)1/4

(t+ 2)1/4

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(x) is zero, since we had to divide by this above. Solving g(x) = 0 or 2x+ 1 = 0 for x
gives

x = −1
2

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (1 + 2x)
2 = ln

(
(t− 2)1/4

(t+ 2)1/4

)
+ c1

x = −1
2

Solving for x gives

x = −1
2

x = −−e2c1
√
t− 2 +

√
t+ 2

2
√
t+ 2
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Figure 2.33: Slope field plot
1 + 2x+ (−t2 + 4)x′ = 0

Summary of solutions found

x = −1
2

x = −−e2c1
√
t− 2 +

√
t+ 2

2
√
t+ 2

Solved as first order Exact ode

Time used: 0.486 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore (
−t2 + 4

)
dx = (−1− 2x) dt

(2x+ 1) dt+
(
−t2 + 4

)
dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = 2x+ 1
N(t, x) = −t2 + 4

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x
(2x+ 1)

= 2
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And
∂N

∂t
= ∂

∂t

(
−t2 + 4

)
= −2t

Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= − 1

t2 − 4((2)− (−2t))

= −2t− 2
t2 − 4

Since A does not depend on x, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adt

= e
∫ −2t−2

t2−4 dt

The result of integrating gives

µ = e−
ln(t+2)

2 − 3 ln(t−2)
2

= 1
√
t+ 2 (t− 2)3/2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
√
t+ 2 (t− 2)3/2

(2x+ 1)

= 2x+ 1
√
t+ 2 (t− 2)3/2

And

N = µN

= 1
√
t+ 2 (t− 2)3/2

(
−t2 + 4

)
= −

√
t+ 2√
t− 2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dx
dt = 0(

2x+ 1
√
t+ 2 (t− 2)3/2

)
+
(
−
√
t+ 2√
t− 2

)
dx
dt = 0

The following equations are now set up to solve for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (2) w.r.t. x gives∫
∂φ

∂x
dx =

∫
N dx

∫
∂φ

∂x
dx =

∫
−
√
t+ 2√
t− 2

dx

(3)φ = −x
√
t+ 2√
t− 2

+ f(t)

Where f(t) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t t gives

(4)∂φ

∂t
= − x

2
√
t+ 2

√
t− 2

+ x
√
t+ 2

2 (t− 2)3/2
+ f ′(t)

= 2x
√
t+ 2 (t− 2)3/2

+ f ′(t)

But equation (1) says that ∂φ
∂t

= 2x+1√
t+2 (t−2)3/2

. Therefore equation (4) becomes

(5)2x+ 1
√
t+ 2 (t− 2)3/2

= 2x
√
t+ 2 (t− 2)3/2

+ f ′(t)

Solving equation (5) for f ′(t) gives

f ′(t) = 1
√
t+ 2 (t− 2)3/2



chapter 2 . book solved problems 146

Integrating the above w.r.t t gives

∫
f ′(t) dt =

∫ ( 1
√
t+ 2 (t− 2)3/2

)
dt

f(t) = −
√
t+ 2

2
√
t− 2

+ c1

Where c1 is constant of integration. Substituting result found above for f(t) into
equation (3) gives φ

φ = −x
√
t+ 2√
t− 2

−
√
t+ 2

2
√
t− 2

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −x
√
t+ 2√
t− 2

−
√
t+ 2

2
√
t− 2

Solving for x gives

x = −2c1
√
t− 2 +

√
t+ 2

2
√
t+ 2
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Figure 2.34: Slope field plot
1 + 2x+ (−t2 + 4)x′ = 0

Summary of solutions found

x = −2c1
√
t− 2 +

√
t+ 2

2
√
t+ 2

Solved using Lie symmetry for first order ode

Time used: 0.819 (sec)

Writing the ode as

x′ = 2x+ 1
t2 − 4

x′ = ω(t, x)

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
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degree 1 to use as anstaz gives

(1E)ξ = ta2 + xa3 + a1

(2E)η = tb2 + xb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(2x+ 1) (b3 − a2)

t2 − 4 − (2x+ 1)2 a3
(t2 − 4)2

+ 2(2x+ 1) t(ta2 + xa3 + a1)
(t2 − 4)2

− 2(tb2 + xb3 + b1)
t2 − 4 = 0

Putting the above in normal form gives

t4b2 − 2t3b2 + 2t2xa2 + 4t x2a3 + t2a2 − 2t2b1 − 8t2b2 + t2b3 + 4txa1 + 2txa3 − 4x2a3 + 2ta1 + 8tb2 + 8xa2 − 4xa3 + 4a2 − a3 + 8b1 + 16b2 − 4b3
(t2 − 4)2

= 0

Setting the numerator to zero gives

(6E)t4b2 − 2t3b2 + 2t2xa2 + 4t x2a3 + t2a2 − 2t2b1 − 8t2b2 + t2b3 + 4txa1 + 2txa3
− 4x2a3 + 2ta1 + 8tb2 + 8xa2 − 4xa3 + 4a2 − a3 + 8b1 + 16b2 − 4b3 = 0

Looking at the above PDE shows the following are all the terms with {t, x} in them.

{t, x}

The following substitution is now made to be able to collect on all terms with {t, x} in
them

{t = v1, x = v2}

The above PDE (6E) now becomes

(7E)b2v
4
1 + 2a2v21v2 + 4a3v1v22 − 2b2v31 + 4a1v1v2 + a2v

2
1 + 2a3v1v2 − 4a3v22 − 2b1v21

−8b2v21+b3v
2
1+2a1v1+8a2v2−4a3v2+8b2v1+4a2−a3+8b1+16b2−4b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
4
1 − 2b2v31 +2a2v21v2 + (a2 − 2b1 − 8b2 + b3) v21 +4a3v1v22 + (4a1 +2a3) v1v2

+ (2a1 + 8b2) v1 − 4a3v22 + (8a2 − 4a3) v2 + 4a2 − a3 + 8b1 + 16b2 − 4b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
2a2 = 0

−4a3 = 0
4a3 = 0

−2b2 = 0
2a1 + 8b2 = 0
4a1 + 2a3 = 0
8a2 − 4a3 = 0

a2 − 2b1 − 8b2 + b3 = 0
4a2 − a3 + 8b1 + 16b2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 2b1

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = 2x+ 1
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt

ξ
= dx

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x+ 1dy

Which results in

S = ln (2x+ 1)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)

Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) = 2x+ 1
t2 − 4

Evaluating all the partial derivatives gives

Rt = 1
Rx = 0
St = 0

Sx = 1
2x+ 1



chapter 2 . book solved problems 151

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

t2 − 4 (2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 − 4

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫ 1
R2 − 4 dR

S(R) = − ln (R + 2)
4 + ln (R− 2)

4 + c2

To complete the solution, we just need to transform the above back to t, x coordinates.
This results in

ln (1 + 2x)
2 = − ln (t+ 2)

4 + ln (t− 2)
4 + c2

Which gives

x = e−
ln(t+2)

2 + ln(t−2)
2 +2c2

2 − 1
2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dx
dt

= 2x+1
t2−4

dS
dR

= 1
R2−4

R = t

S = ln (2x+ 1)
2

Figure 2.35: Slope field plot
1 + 2x+ (−t2 + 4)x′ = 0



chapter 2 . book solved problems 153

Summary of solutions found

x = e−
ln(t+2)

2 + ln(t−2)
2 +2c2

2 − 1
2

Maple step by step solution

Let’s solve
1 + 2x+ (−t2 + 4)x′ = 0

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative
x′ = −1−2x

−t2+4

• Separate variables
x′

−1−2x = 1
−t2+4

• Integrate both sides with respect to t∫
x′

−1−2xdt =
∫ 1

−t2+4dt+ C1
• Evaluate integral

− ln(−1−2x)
2 = ln(t+2)

4 − ln(t−2)
4 + C1

• Solve for x{
x = − e4C1 t+

√
e4C1 t2−4 e4C1+2 e4C1

2 e4C1 (t+2) , x = − e4C1 t+2 e4C1−
√

e4C1 t2−4 e4C1

2 e4C1 (t+2)

}
Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 18� �
dsolve(1+2*x(t)+(-t^2+4)*diff(x(t),t) = 0,

x(t),singsol=all)� �
x = −1

2 +
√
t− 2 c1√
t+ 2

Mathematica DSolve solution

Solving time : 0.078 (sec)
Leaf size : 87� �
DSolve[{(1+2*x[t])+(4-t^2)*D[x[t],t]==0,{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) →

√
2− t

(√
4− t2 − 2

√
t+ 2 + 2c1

(
t+ 2

√
2− t− 2

))
2
√
t+ 2

(
t+ 2

√
2− t− 2

)
x(t) → −1

2
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2.1.15 problem 3 (iii)

Solved as first order homogeneous class A ode . . . . . . . . . . 155
Solved as first order homogeneous class D2 ode . . . . . . . . . 158
Solved as first order isobaric ode . . . . . . . . . . . . . . . . . 159
Solved using Lie symmetry for first order ode . . . . . . . . . . 161
Solved as first order ode of type dAlembert . . . . . . . . . . . 167
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 170
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 171
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 171

Internal problem ID [18178]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 3 (iii)
Date solved : Thursday, December 19, 2024 at 01:52:17 PM
CAS classification : [[_homogeneous, ‘class A‘], _dAlembert]

Solve

x′ = cos
(x
t

)
Solved as first order homogeneous class A ode

Time used: 0.369 (sec)

In canonical form, the ODE is

x′ = F (t, x)

= cos
(x
t

)
(1)

An ode of the form x′ = M(t,x)
N(t,x) is called homogeneous if the functions M(t, x) and

N(t, x) are both homogeneous functions and of the same order. Recall that a function
f(t, x) is homogeneous of order n if

f(tnt, tnx) = tnf(t, x)

In this case, it can be seen that both M = cos
(
x
t

)
and N = 1 are both homogeneous

and of the same order n = 0. Therefore this is a homogeneous ode. Since this ode is
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homogeneous, it is converted to separable ODE using the substitution u = x
t
, or x = ut.

Hence
dx
dt = du

dt t+ u

Applying the transformation x = ut to the above ODE in (1) gives

du
dt t+ u = cos (u)

du
dt = cos (u(t))− u(t)

t

Or
u′(t)− cos (u(t))− u(t)

t
= 0

Or
u′(t) t− cos (u(t)) + u(t) = 0

Which is now solved as separable in u(t).

The ode u′(t) = cos(u(t))−u(t)
t

is separable as it can be written as

u′(t) = cos (u(t))− u(t)
t

= f(t)g(u)

Where

f(t) = 1
t

g(u) = cos (u)− u

Integrating gives ∫ 1
g(u) du =

∫
f(t) dt∫ 1

cos (u)− u
du =

∫ 1
t
dt∫ u(t) 1

cos (τ)− τ
dτ = ln (t) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or cos (u)− u = 0
for u(t) gives

u(t) = RootOf (− cos (_Z) + _Z)
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Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf (− cos (_Z) + _Z) will not be used

Converting
∫ u(t) 1

cos(τ)−τ
dτ = ln (t) + c1 back to x gives∫ x

t 1
cos (τ)− τ

dτ = ln (t) + c1

Figure 2.36: Slope field plot
x′ = cos

(
x
t

)
Summary of solutions found

∫ x
t 1
cos (τ)− τ

dτ = ln (t) + c1
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Solved as first order homogeneous class D2 ode

Time used: 0.151 (sec)

Applying change of variables x = u(t) t, then the ode becomes

u′(t) t+ u(t) = cos (u(t))

Which is now solved The ode u′(t) = −u(t)−cos(u(t))
t

is separable as it can be written as

u′(t) = −u(t)− cos (u(t))
t

= f(t)g(u)

Where

f(t) = 1
t

g(u) = −u+ cos (u)

Integrating gives ∫ 1
g(u) du =

∫
f(t) dt∫ 1

−u+ cos (u) du =
∫ 1

t
dt∫ u(t) 1

−τ + cos (τ)dτ = ln (t) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or −u+ cos (u) = 0
for u(t) gives

u(t) = RootOf (− cos (_Z) + _Z)

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf (− cos (_Z) + _Z) will not be used

Converting
∫ u(t) 1

−τ+cos(τ)dτ = ln (t) + c1 back to x gives∫ x
t 1
−τ + cos (τ)dτ = ln (t) + c1
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Figure 2.37: Slope field plot
x′ = cos

(
x
t

)
Summary of solutions found

∫ x
t 1
−τ + cos (τ)dτ = ln (t) + c1

Solved as first order isobaric ode

Time used: 0.585 (sec)

Solving for x′ gives

(1)x′ = cos
(x
t

)
Each of the above ode’s is now solved An ode x′ = f(t, x) is isobaric if

f(tt, tmx) = tm−1f(t, x) (1)

Where here
f(t, x) = cos

(x
t

)
(2)
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m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 1

Since the ode is isobaric of order m = 1, then the substitution

x = utm

= ut

Converts the ODE to a separable in u(t). Performing this substitution gives

u(t) + tu′(t) = cos (u(t))

The ode u′(t) = −u(t)−cos(u(t))
t

is separable as it can be written as

u′(t) = −u(t)− cos (u(t))
t

= f(t)g(u)

Where

f(t) = 1
t

g(u) = −u+ cos (u)

Integrating gives ∫ 1
g(u) du =

∫
f(t) dt∫ 1

−u+ cos (u) du =
∫ 1

t
dt∫ u(t) 1

−τ + cos (τ)dτ = ln (t) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or −u+ cos (u) = 0
for u(t) gives

u(t) = RootOf (− cos (_Z) + _Z)

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf (− cos (_Z) + _Z) will not be used
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Converting
∫ u(t) 1

−τ+cos(τ)dτ = ln (t) + c1 back to x gives∫ x
t 1
−τ + cos (τ)dτ = ln (t) + c1

Figure 2.38: Slope field plot
x′ = cos

(
x
t

)
Summary of solutions found

∫ x
t 1
−τ + cos (τ)dτ = ln (t) + c1

Solved using Lie symmetry for first order ode

Time used: 1.046 (sec)

Writing the ode as

x′ = cos
(x
t

)
x′ = ω(t, x)
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The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = ta2 + xa3 + a1

(2E)η = tb2 + xb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + cos
(x
t

)
(b3 − a2)− cos

(x
t

)2
a3

−
x sin

(
x
t

)
(ta2 + xa3 + a1)

t2
+

sin
(
x
t

)
(tb2 + xb3 + b1)

t
= 0

Putting the above in normal form gives

−
cos
(
x
t

)2
a3t

2 + cos
(
x
t

)
t2a2 − cos

(
x
t

)
t2b3 − sin

(
x
t

)
t2b2 + sin

(
x
t

)
txa2 − sin

(
x
t

)
txb3 + sin

(
x
t

)
x2a3 − sin

(
x
t

)
tb1 + sin

(
x
t

)
xa1 − b2t

2

t2
= 0

Setting the numerator to zero gives

(6E)− cos
(x
t

)2
a3t

2 − cos
(x
t

)
t2a2 + cos

(x
t

)
t2b3 + sin

(x
t

)
t2b2 − sin

(x
t

)
txa2

+ sin
(x
t

)
txb3 − sin

(x
t

)
x2a3 + sin

(x
t

)
tb1 − sin

(x
t

)
xa1 + b2t

2 = 0

Simplifying the above gives

(6E)b2t
2 − a3t

2

2 −
a3t

2 cos
(2x

t

)
2 − cos

(x
t

)
t2a2 + cos

(x
t

)
t2b3 + sin

(x
t

)
t2b2

−sin
(x
t

)
txa2+sin

(x
t

)
txb3−sin

(x
t

)
x2a3+sin

(x
t

)
tb1−sin

(x
t

)
xa1 = 0
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Looking at the above PDE shows the following are all the terms with {t, x} in them.

{
t, x, cos

(x
t

)
, cos

(
2x
t

)
, sin

(x
t

)}

The following substitution is now made to be able to collect on all terms with {t, x} in
them {

t = v1, x = v2, cos
(x
t

)
= v3, cos

(
2x
t

)
= v4, sin

(x
t

)
= v5

}

The above PDE (6E) now becomes

(7E)b2v
2
1 −

1
2a3v

2
1 −

1
2a3v

2
1v4 − v3v

2
1a2 + v3v

2
1b3 + v5v

2
1b2

− v5v1v2a2 + v5v1v2b3 − v5v
2
2a3 + v5v1b1 − v5v2a1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)(b3 − a2) v2v1v5 +
(
b2 −

a3
2

)
v21 −

a3v
2
1v4
2 + (b3 − a2) v21v3

+ v5v
2
1b2 − v5v

2
2a3 + v5v1b1 − v5v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−a1 = 0
−a3 = 0

−a3
2 = 0

b2 −
a3
2 = 0

b3 − a2 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = t

η = x

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt

ξ
= dx

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dx

dt
= η

ξ

= x

t

= x

t

This is easily solved to give

x = tc1

Where now the coordinate R is taken as the constant of integration. Hence

R = x

t
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And S is found from

dS = dt

ξ

= dt

t

Integrating gives

S =
∫

dt

T

= ln (t)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)

Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) = cos
(x
t

)
Evaluating all the partial derivatives gives

Rt = − x

t2

Rx = 1
t

St =
1
t

Sx = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= t

cos
(
x
t

)
t− x

(2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

cos (R)−R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫ 1
cos (R)−R

dR

S(R) =
∫ 1

cos (R)−R
dR + c2

S(R) =
∫ 1

cos (R)−R
dR + c2

To complete the solution, we just need to transform the above back to t, x coordinates.
This results in

ln (t) =
∫ x

t 1
cos (_a)− _ad_a+ c2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dx
dt

= cos
(
x
t

)
dS
dR

= 1
cos(R)−R

R = x

t
S = ln (t)
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Figure 2.39: Slope field plot
x′ = cos

(
x
t

)
Summary of solutions found

ln (t) =
∫ x

t 1
cos (_a)− _ad_a+ c2

Solved as first order ode of type dAlembert

Time used: 1.377 (sec)

Let p = x′ the ode becomes

p = cos
(x
t

)
Solving for x from the above results in

(1)x = arccos (p) t

This has the form

x = tf(p) + g(p) (*)
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Where f, g are functions of p = x′(t). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. t gives

p = f + (tf ′ + g′)dp
dt

p− f = (tf ′ + g′)dp
dt

(2)

Comparing the form x = tf + g to (1A) shows that

f = arccos (p)
g = 0

Hence (2) becomes

p− arccos (p) = − tp′(t)√
−p2 + 1

(2A)

The singular solution is found by setting dp
dt

= 0 in the above which gives

p− arccos (p) = 0

No singular solution are found.

The general solution is found when dp
dt 6= 0. From eq. (2A). This results in

p′(t) = −
(p(t)− arccos (p(t)))

√
−p (t)2 + 1

t
(3)

This ODE is now solved for p(t). No inversion is needed. The ode p′(t) = − (p(t)−arccos(p(t)))
√

−p(t)2+1
t

is separable as it can be written as

p′(t) = −
(p(t)− arccos (p(t)))

√
−p (t)2 + 1

t
= f(t)g(p)

Where

f(t) = −1
t

g(p) = (p− arccos (p))
√

−p2 + 1
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Integrating gives ∫ 1
g(p) dp =

∫
f(t) dt∫ 1

(p− arccos (p))
√
−p2 + 1

dp =
∫

−1
t
dt∫ p(t) 1

(τ − arccos (τ))
√
−τ 2 + 1

dτ = ln
(
1
t

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(p) is zero, since we had to divide by this above. Solving g(p) = 0 or (p− arccos (p))

√
−p2 + 1 =

0 for p(t) gives

p(t) = −1
p(t) = 1
p(t) = RootOf (− cos (_Z) + _Z)

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf (− cos (_Z) + _Z) will not be used

Therefore the solutions found are∫ p(t) 1
(τ − arccos (τ))

√
−τ 2 + 1

dτ = ln
(
1
t

)
+ c1

p(t) = −1
p(t) = 1

Substituing the above solution for p in (2A) gives

x = arccos
(
RootOf

(
−
∫ _Z 1

(τ − arccos (τ))
√
−τ 2 + 1

dτ + ln
(
1
t

)
+ c1

))
t

x = πt

x = 0

The solution
x = 0

was found not to satisfy the ode or the IC. Hence it is removed. The solution

x = πt
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was found not to satisfy the ode or the IC. Hence it is removed.

Figure 2.40: Slope field plot
x′ = cos

(
x
t

)
Summary of solutions found

x = arccos
(
RootOf

(
−
∫ _Z 1

(τ − arccos (τ))
√
−τ 2 + 1

dτ + ln
(
1
t

)
+ c1

))
t

Maple step by step solution

Let’s solve
x′ = cos

(
x
t

)
• Highest derivative means the order of the ODE is 1

x′

• Solve for the highest derivative
x′ = cos

(
x
t

)
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 27� �
dsolve(diff(x(t),t) = cos(x(t)/t),

x(t),singsol=all)� �
x = RootOf

(
−
∫ _Z

− 1
− cos (_a) + _ad_a+ ln (t) + c1

)
t

Mathematica DSolve solution

Solving time : 0.351 (sec)
Leaf size : 33� �
DSolve[{D[x[t],t]==Cos[x[t]/t],{}},

x[t],t,IncludeSingularSolutions->True]� �
Solve

[∫ x(t)
t

1

1
K[1]− cos(K[1])dK[1] = − log(t) + c1, x(t)

]
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2.1.16 problem 3 (iv)

Solved as first order homogeneous class A ode . . . . . . . . . . 172
Solved as first order homogeneous class D2 ode . . . . . . . . . 175
Solved as first order homogeneous class Maple C ode . . . . . . 178
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 182
Solved as first order isobaric ode . . . . . . . . . . . . . . . . . 186
Solved using Lie symmetry for first order ode . . . . . . . . . . 189
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 194
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 194
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 195

Internal problem ID [18179]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 3 (iv)
Date solved : Thursday, December 19, 2024 at 01:52:21 PM
CAS classification : [[_homogeneous, ‘class A‘], _rational, _dAlembert]

Solve (
t2 − x2)x′ = xt

Solved as first order homogeneous class A ode

Time used: 0.650 (sec)

In canonical form, the ODE is

x′ = F (t, x)

= − xt

−t2 + x2 (1)

An ode of the form x′ = M(t,x)
N(t,x) is called homogeneous if the functions M(t, x) and

N(t, x) are both homogeneous functions and of the same order. Recall that a function
f(t, x) is homogeneous of order n if

f(tnt, tnx) = tnf(t, x)

In this case, it can be seen that both M = tx and N = t2 − x2 are both homogeneous
and of the same order n = 2. Therefore this is a homogeneous ode. Since this ode is
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homogeneous, it is converted to separable ODE using the substitution u = x
t
, or x = ut.

Hence
dx
dt = du

dt t+ u

Applying the transformation x = ut to the above ODE in (1) gives

du
dt t+ u = − u

u2 − 1
du
dt =

− u(t)
u(t)2−1 − u(t)

t

Or

u′(t)−
− u(t)

u(t)2−1 − u(t)
t

= 0

Or
u′(t)u(t)2 t+ u(t)3 − u′(t) t = 0

Or
t
(
u(t)2 − 1

)
u′(t) + u(t)3 = 0

Which is now solved as separable in u(t).

The ode u′(t) = − u(t)3

t
(
u(t)2−1

) is separable as it can be written as

u′(t) = − u(t)3

t
(
u (t)2 − 1

)
= f(t)g(u)

Where

f(t) = −1
t

g(u) = u3

u2 − 1

Integrating gives ∫ 1
g(u) du =

∫
f(t) dt∫

u2 − 1
u3 du =

∫
−1
t
dt

ln (u(t)) + 1
2u (t)2

= ln
(
1
t

)
+ c1
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We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u3

u2−1 = 0 for u(t)
gives

u(t) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(t)) + 1
2u (t)2

= ln
(
1
t

)
+ c1

u(t) = 0

Solving for u(t) gives
u(t) = 0

u(t) =
√
− 1
LambertW (−e−2c1t2)

Converting u(t) = 0 back to x gives

x = 0

Converting u(t) =
√

− 1
LambertW

(
−e−2c1 t2

) back to x gives

x = t

√
− 1
LambertW (−e−2c1t2)
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Figure 2.41: Slope field plot
(t2 − x2)x′ = xt

Summary of solutions found

x = 0

x = t

√
− 1
LambertW (−e−2c1t2)

Solved as first order homogeneous class D2 ode

Time used: 0.530 (sec)

Applying change of variables x = u(t) t, then the ode becomes(
t2 − u(t)2 t2

)
(u′(t) t+ u(t)) = u(t) t2

Which is now solved The ode u′(t) = − u(t)3(
u(t)2−1

)
t
is separable as it can be written as

u′(t) = − u(t)3(
u (t)2 − 1

)
t

= f(t)g(u)
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Where

f(t) = −1
t

g(u) = u3

u2 − 1
Integrating gives ∫ 1

g(u) du =
∫

f(t) dt∫
u2 − 1
u3 du =

∫
−1
t
dt

ln (u(t)) + 1
2u (t)2

= ln
(
1
t

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u3

u2−1 = 0 for u(t)
gives

u(t) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(t)) + 1
2u (t)2

= ln
(
1
t

)
+ c1

u(t) = 0

Solving for u(t) gives
u(t) = 0

u(t) =
√
− 1
LambertW (−e−2c1t2)

Converting u(t) = 0 back to x gives

x = 0

Converting u(t) =
√

− 1
LambertW

(
−e−2c1 t2

) back to x gives

x = t

√
− 1
LambertW (−e−2c1t2)
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Figure 2.42: Slope field plot
(t2 − x2)x′ = xt

Summary of solutions found

x = 0

x = t

√
− 1
LambertW (−e−2c1t2)

Summary of solutions found

x = 0

x = t

√
− 1
LambertW (−e−2c1t2)
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Solved as first order homogeneous class Maple C ode

Time used: 1.020 (sec)

Let Y = x− y0 and X = t− x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − (Y (X) + y0) (x0 +X)

(Y (X) + y0)2 − (x0 +X)2

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 0
y0 = 0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − Y (X)X

−X2 + Y (X)2

In canonical form, the ODE is

Y ′ = F (X,Y )

= − Y X

−X2 + Y 2 (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = Y X and N = X2−Y 2 are both homogeneous
and of the same order n = 2. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = − u

u2 − 1
du
dX =

− u(X)
u(X)2−1 − u(X)

X
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Or
d

dX
u(X)−

− u(X)
u(X)2−1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
u(X)2X + u(X)3 −

(
d

dX
u(X)

)
X = 0

Or
X
(
u(X)2 − 1

)( d

dX
u(X)

)
+ u(X)3 = 0

Which is now solved as separable in u(X).

The ode d
dX

u(X) = − u(X)3

X
(
u(X)2−1

) is separable as it can be written as

d

dX
u(X) = − u(X)3

X
(
u (X)2 − 1

)
= f(X)g(u)

Where

f(X) = − 1
X

g(u) = u3

u2 − 1

Integrating gives ∫ 1
g(u) du =

∫
f(X) dX∫

u2 − 1
u3 du =

∫
− 1
X

dX

ln (u(X)) + 1
2u (X)2

= ln
(

1
X

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u3

u2−1 = 0 for
u(X) gives

u(X) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.
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Therefore the solutions found are

ln (u(X)) + 1
2u (X)2

= ln
(

1
X

)
+ c1

u(X) = 0

Solving for u(X) gives

u(X) = 0

u(X) =
√
− 1
LambertW (−e−2c1X2)

Converting u(X) = 0 back to Y (X) gives

Y (X) = 0

Converting u(X) =
√
− 1

LambertW
(
−e−2c1X2

) back to Y (X) gives

Y (X) = X

√
− 1
LambertW (−e−2c1X2)

Using the solution for Y (X)

Y (X) = 0 (A)

And replacing back terms in the above solution using

Y = x+ y0

X = t+ x0

Or

Y = x

X = t

Then the solution in x becomes using EQ (A)

x = 0

Using the solution for Y (X)

Y (X) = X

√
− 1
LambertW (−e−2c1X2) (A)
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And replacing back terms in the above solution using

Y = x+ y0

X = t+ x0

Or

Y = x

X = t

Then the solution in x becomes using EQ (A)

x = t

√
− 1
LambertW (−e−2c1t2)

Figure 2.43: Slope field plot
(t2 − x2)x′ = xt
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Solved as first order Exact ode

Time used: 0.237 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore (
t2 − x2) dx = (tx) dt

(−tx) dt+
(
t2 − x2) dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = −tx

N(t, x) = t2 − x2
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives
∂M

∂x
= ∂

∂x
(−tx)

= −t

And
∂N

∂t
= ∂

∂t

(
t2 − x2)

= 2t

Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1

t2 − x2 ((−t)− (2t))

= − 3t
t2 − x2

Since A depends on x, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂t
− ∂M

∂x

)
= − 1

tx
((2t)− (−t))

= −3
x

Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dx

= e
∫
− 3

x
dx

The result of integrating gives

µ = e−3 ln(x)

= 1
x3
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M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
x3 (−tx)

= − t

x2

And

N = µN

= 1
x3

(
t2 − x2)

= t2 − x2

x3

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dx
dt = 0(

− t

x2

)
+
(
t2 − x2

x3

)
dx
dt = 0

The following equations are now set up to solve for the function φ(t, x)
∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives ∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
− t

x2 dt

(3)φ = − t2

2x2 + f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= t2

x3 + f ′(x)
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But equation (2) says that ∂φ
∂x

= t2−x2

x3 . Therefore equation (4) becomes

(5)t2 − x2

x3 = t2

x3 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = −1
x

Integrating the above w.r.t x gives

∫
f ′(x) dx =

∫ (
−1
x

)
dx

f(x) = − ln (x) + c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = − t2

2x2 − ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = − t2

2x2 − ln (x)

Solving for x gives

x = e
LambertW

(
−t2e2c1

)
2 −c1
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Figure 2.44: Slope field plot
(t2 − x2)x′ = xt

Summary of solutions found

x = e
LambertW

(
−t2e2c1

)
2 −c1

Solved as first order isobaric ode

Time used: 0.615 (sec)

Solving for x′ gives

(1)x′ = − xt

x2 − t2

Each of the above ode’s is now solved An ode x′ = f(t, x) is isobaric if

f(tt, tmx) = tm−1f(t, x) (1)

Where here
f(t, x) = − xt

x2 − t2
(2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 1
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Since the ode is isobaric of order m = 1, then the substitution

x = utm

= ut

Converts the ODE to a separable in u(t). Performing this substitution gives

u(t) + tu′(t) = − t2u(t)
t2u (t)2 − t2

The ode u′(t) = − u(t)3(
u(t)2−1

)
t
is separable as it can be written as

u′(t) = − u(t)3(
u (t)2 − 1

)
t

= f(t)g(u)

Where

f(t) = −1
t

g(u) = u3

u2 − 1
Integrating gives ∫ 1

g(u) du =
∫

f(t) dt∫
u2 − 1
u3 du =

∫
−1
t
dt

ln (u(t)) + 1
2u (t)2

= ln
(
1
t

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u3

u2−1 = 0 for u(t)
gives

u(t) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(t)) + 1
2u (t)2

= ln
(
1
t

)
+ c1

u(t) = 0
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Solving for u(t) gives
u(t) = 0

u(t) =
√
− 1
LambertW (−e−2c1t2)

Converting u(t) = 0 back to x gives
x

t
= 0

Converting u(t) =
√

− 1
LambertW

(
−e−2c1 t2

) back to x gives

x

t
=
√

− 1
LambertW (−e−2c1t2)

Solving for x gives
x = 0

x = t

√
− 1
LambertW (−e−2c1t2)

Figure 2.45: Slope field plot
(t2 − x2)x′ = xt
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Summary of solutions found

x = 0

x = t

√
− 1
LambertW (−e−2c1t2)

Solved using Lie symmetry for first order ode

Time used: 0.829 (sec)

Writing the ode as

x′ = − xt

−t2 + x2

x′ = ω(t, x)

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = ta2 + xa3 + a1

(2E)η = tb2 + xb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2−
xt(b3 − a2)
−t2 + x2 − x2t2a3

(−t2 + x2)2
−
(
− x

−t2 + x2 −
2x t2

(−t2 + x2)2
)
(ta2+xa3+a1)

−
(
− t

−t2 + x2 + 2x2t

(−t2 + x2)2
)
(tb2 + xb3 + b1) = 0

Putting the above in normal form gives

−3t2x2b2 − 2t x3a2 + 2t x3b3 − x4a3 − x4b2 + t3b1 − t2xa1 + t x2b1 − x3a1

(t2 − x2)2
= 0
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Setting the numerator to zero gives

(6E)−3t2x2b2 + 2t x3a2 − 2t x3b3 + x4a3 + x4b2 − t3b1 + t2xa1 − t x2b1 + x3a1 = 0

Looking at the above PDE shows the following are all the terms with {t, x} in them.

{t, x}

The following substitution is now made to be able to collect on all terms with {t, x} in
them

{t = v1, x = v2}

The above PDE (6E) now becomes

(7E)2a2v1v32 + a3v
4
2 − 3b2v21v22 + b2v

4
2 − 2b3v1v32 + a1v

2
1v2 + a1v

3
2 − b1v

3
1 − b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−b1v
3
1 − 3b2v21v22 + a1v

2
1v2 + (2a2 − 2b3) v1v32 − b1v1v

2
2 + (a3 + b2) v42 + a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−b1 = 0
−3b2 = 0

2a2 − 2b3 = 0
a3 + b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = t

η = x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(t, x) ξ

= x−
(
− xt

−t2 + x2

)
(t)

= − x3

t2 − x2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt

ξ
= dx

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

− x3

t2−x2

dy

Which results in

S = ln (x) + t2

2x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)
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Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) = − xt

−t2 + x2

Evaluating all the partial derivatives gives

Rt = 1
Rx = 0

St =
t

x2

Sx = −t2 + x2

x3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
0 dR + c2

S(R) = c2

To complete the solution, we just need to transform the above back to t, x coordinates.
This results in

2 ln (x)x2 + t2

2x2 = c2

Which gives

x = e
LambertW

(
−t2e−2c2

)
2 +c2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dx
dt

= − xt
−t2+x2

dS
dR

= 0

R = t

S = 2 ln (x)x2 + t2

2x2

Figure 2.46: Slope field plot
(t2 − x2)x′ = xt
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Summary of solutions found

x = e
LambertW

(
−t2e−2c2

)
2 +c2

Maple step by step solution

Let’s solve
(t2 − x2)x′ = xt

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative
x′ = xt

t2−x2

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.017 (sec)
Leaf size : 19� �
dsolve((t^2-x(t)^2)*diff(x(t),t) = x(t)*t,

x(t),singsol=all)� �
x =

√
− 1
LambertW (−c1 t2)

t
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Mathematica DSolve solution

Solving time : 7.493 (sec)
Leaf size : 56� �
DSolve[{(t^2-x[t]^2)*D[x[t],t]==t*x[t],{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → − it√

W (−e−2c1t2)

x(t) → it√
W (−e−2c1t2)

x(t) → 0
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2.1.17 problem 3 (v)

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 196
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 198
Solved using Lie symmetry for first order ode . . . . . . . . . . 201
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 208
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 210
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 210

Internal problem ID [18180]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 3 (v)
Date solved : Thursday, December 19, 2024 at 01:52:28 PM
CAS classification : [[_linear, ‘class A‘]]

Solve

e3tx′ + 3x e3t = 2t

Solved as first order linear ode

Time used: 0.069 (sec)

In canonical form a linear first order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = 3
p(t) = 2t e−3t

The integrating factor µ is

µ = e
∫
q dt

= e
∫
3dt

= e3t
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The ode becomes
d
dt(µx) = µp

d
dt(µx) = (µ)

(
2t e−3t)

d
dt
(
x e3t

)
=
(
e3t
) (

2t e−3t)
d
(
x e3t

)
=
(
2t e−3te3t

)
dt

Integrating gives

x e3t =
∫

2t e−3te3t dt

= t2 + c1

Dividing throughout by the integrating factor e3t gives the final solution

x = e−3t(t2 + c1
)

Figure 2.47: Slope field plot
e3tx′ + 3x e3t = 2t
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Summary of solutions found

x = e−3t(t2 + c1
)

Solved as first order Exact ode

Time used: 0.390 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore (
e3t
)
dx =

(
−3x e3t + 2t

)
dt(

3x e3t − 2t
)
dt+

(
e3t
)
dx = 0 (2A)
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Comparing (1A) and (2A) shows that

M(t, x) = 3x e3t − 2t
N(t, x) = e3t

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x

(
3x e3t − 2t

)
= 3 e3t

And
∂N

∂t
= ∂

∂t

(
e3t
)

= 3 e3t

Since ∂M
∂x

= ∂N
∂t
, then the ODE is exact The following equations are now set up to solve

for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (2) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
N dx∫

∂φ

∂x
dx =

∫
e3t dx

(3)φ = x e3t + f(t)

Where f(t) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t t gives

(4)∂φ

∂t
= 3x e3t + f ′(t)
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But equation (1) says that ∂φ
∂t

= 3x e3t − 2t. Therefore equation (4) becomes

(5)3x e3t − 2t = 3x e3t + f ′(t)

Solving equation (5) for f ′(t) gives

f ′(t) = −2t

Integrating the above w.r.t t gives∫
f ′(t) dt =

∫
(−2t) dt

f(t) = −t2 + c1

Where c1 is constant of integration. Substituting result found above for f(t) into
equation (3) gives φ

φ = x e3t − t2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = x e3t − t2

Solving for x gives
x = e−3t(t2 + c1

)
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Figure 2.48: Slope field plot
e3tx′ + 3x e3t = 2t

Summary of solutions found

x = e−3t(t2 + c1
)

Solved using Lie symmetry for first order ode

Time used: 1.231 (sec)

Writing the ode as

x′ = −
(
3x e3t − 2t

)
e−3t

x′ = ω(t, x)

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 2 to use as anstaz gives

(1E)ξ = t2a4 + txa5 + x2a6 + ta2 + xa3 + a1

(2E)η = t2b4 + txb5 + x2b6 + tb2 + xb3 + b1



chapter 2 . book solved problems 202

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
2tb4 + xb5 + b2 −

(
3x e3t − 2t

)
e−3t(−2ta4 + tb5 − xa5 + 2xb6 − a2 + b3)

−
(
3x e3t − 2t

)2 e−6t(ta5 + 2xa6 + a3)−
(
−
(
9x e3t − 2

)
e−3t

+ 3
(
3x e3t − 2t

)
e−3t) (t2a4 + txa5 + x2a6 + ta2 + xa3 + a1

)
+ 3t2b4 + 3txb5 + 3x2b6 + 3tb2 + 3xb3 + 3b1 = 0

Putting the above in normal form gives(
−4t2a3 − 2 e3ta1 + 3b1e6t + b2e6t − 9 e6tt x2a5 + 6 e6ttxa4 − 8t2xa6
+ 6 e3tt3a4 − 6 e3tt2a4 + 2 e3tt2b5 − 2 e3tx2a6 − 18 e6tx3a6 + 3t2b4e6t
+ 3 e6tx2a5 − 3x2b6e6t + 2tb4e6t + xb5e6t + 6 e3tt2a2 + 6 e3tta1 − 4 e3tta2
+ 2 e3ttb3 − 2 e3txa3 − 9 e6tx2a3 + 3tb2e6t + 3 e6txa2 + 18 e3ttxa3
− 4t3a5 + 18 e3tt2xa5 + 30 e3tt x2a6 − 4 e3ttxa5 + 4 e3ttxb6

)
e−6t = 0

Setting the numerator to zero gives

(6E)
−4t2a3 − 2 e3ta1 + 3b1e6t + b2e6t − 9 e6tt x2a5 + 6 e6ttxa4 − 8t2xa6
+ 6 e3tt3a4 − 6 e3tt2a4 + 2 e3tt2b5 − 2 e3tx2a6 − 18 e6tx3a6 + 3t2b4e6t
+ 3 e6tx2a5 − 3x2b6e6t + 2tb4e6t + xb5e6t + 6 e3tt2a2 + 6 e3tta1 − 4 e3tta2
+ 2 e3ttb3 − 2 e3txa3 − 9 e6tx2a3 + 3tb2e6t + 3 e6txa2 + 18 e3ttxa3
− 4t3a5 + 18 e3tt2xa5 + 30 e3tt x2a6 − 4 e3ttxa5 + 4 e3ttxb6 = 0

Simplifying the above gives

(6E)
−4t2a3 − 2 e3ta1 + 3b1e6t + b2e6t − 9 e6tt x2a5 + 6 e6ttxa4 − 8t2xa6
+ 6 e3tt3a4 − 6 e3tt2a4 + 2 e3tt2b5 − 2 e3tx2a6 − 18 e6tx3a6 + 3t2b4e6t
+ 3 e6tx2a5 − 3x2b6e6t + 2tb4e6t + xb5e6t + 6 e3tt2a2 + 6 e3tta1 − 4 e3tta2
+ 2 e3ttb3 − 2 e3txa3 − 9 e6tx2a3 + 3tb2e6t + 3 e6txa2 + 18 e3ttxa3
− 4t3a5 + 18 e3tt2xa5 + 30 e3tt x2a6 − 4 e3ttxa5 + 4 e3ttxb6 = 0

Looking at the above PDE shows the following are all the terms with {t, x} in them.

{t, x, e3t, e6t}
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The following substitution is now made to be able to collect on all terms with {t, x} in
them

{t = v1, x = v2, e3t = v3, e6t = v4}

The above PDE (6E) now becomes

(7E)
6v3v31a4 + 18v3v21v2a5 − 9v4v1v22a5 + 30v3v1v22a6 − 18v4v32a6 + 6v3v21a2
+ 18v3v1v2a3 − 9v4v22a3 − 6v3v21a4 + 6v4v1v2a4 − 4v31a5 − 4v3v1v2a5
+ 3v4v22a5 − 8v21v2a6 − 2v3v22a6 + 3v21b4v4 + 2v3v21b5 + 4v3v1v2b6
− 3v22b6v4 + 6v3v1a1 − 4v3v1a2 + 3v4v2a2 − 4v21a3 − 2v3v2a3
+ 3v1b2v4 + 2v3v1b3 + 2v1b4v4 + v2b5v4 − 2v3a1 + 3b1v4 + b2v4 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

6v3v31a4 − 4v31a5 + 18v3v21v2a5 − 8v21v2a6 + (6a2 − 6a4 + 2b5) v21v3
+ 3v21b4v4 − 4v21a3 + 30v3v1v22a6 − 9v4v1v22a5 + (18a3 − 4a5 + 4b6) v1v2v3
+ 6v4v1v2a4 + (6a1 − 4a2 + 2b3) v1v3 + (3b2 + 2b4) v1v4 − 18v4v32a6 − 2v3v22a6
+ (−9a3 + 3a5 − 3b6) v22v4 − 2v3v2a3 + (3a2 + b5) v2v4 − 2v3a1 + (3b1 + b2) v4 = 0

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
−4a3 = 0
−2a3 = 0
6a4 = 0

−9a5 = 0
−4a5 = 0
18a5 = 0

−18a6 = 0
−8a6 = 0
−2a6 = 0
30a6 = 0
3b4 = 0

3a2 + b5 = 0
3b1 + b2 = 0
3b2 + 2b4 = 0

6a1 − 4a2 + 2b3 = 0
6a2 − 6a4 + 2b5 = 0

−9a3 + 3a5 − 3b6 = 0
18a3 − 4a5 + 4b6 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 = −b5
3

a3 = 0
a4 = 0
a5 = 0
a6 = 0
b1 = 0
b2 = 0

b3 = −2b5
3

b4 = 0
b5 = b5

b6 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = − t

3

η = tx− 2
3x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(t, x) ξ

= tx− 2
3x−

(
−
(
3x e3t − 2t

)
e−3t)(− t

3

)
= (−2x e3t + 2t2) e−3t

3
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt

ξ
= dx

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

(−2x e3t+2t2)e−3t

3

dy

Which results in

S = −3 ln (−x e3t + t2)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)

Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) = −
(
3x e3t − 2t

)
e−3t

Evaluating all the partial derivatives gives

Rt = 1
Rx = 0

St =
−9x e3t + 6t
2x e3t − 2t2

Sx = − 3 e3t
2x e3t − 2t2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
0 dR + c2

S(R) = c2

To complete the solution, we just need to transform the above back to t, x coordinates.
This results in

−3 ln (−x e3t + t2)
2 = c2

Which gives

x = −
(
e−

2c2
3 − t2

)
e−3t

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dx
dt

= −(3x e3t − 2t) e−3t dS
dR

= 0

R = t

S = −3 ln (−x e3t + t2)
2
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Figure 2.49: Slope field plot
e3tx′ + 3x e3t = 2t

Summary of solutions found

x = −
(
e−

2c2
3 − t2

)
e−3t

Maple step by step solution

Let’s solve
e3tx′ + 3x e3t = 2t

• Highest derivative means the order of the ODE is 1
x′

• Isolate the derivative
x′ = −3x+ 2t

e3t

• Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE
x′ + 3x = 2t

e3t

• The ODE is linear; multiply by an integrating factor µ(t)
µ(t) (x′ + 3x) = 2µ(t)t

e3t
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• Assume the lhs of the ODE is the total derivative d
dt
(xµ(t))

µ(t) (x′ + 3x) = x′µ(t) + xµ′(t)
• Isolate µ′(t)

µ′(t) = 3µ(t)
• Solve to find the integrating factor

µ(t) = (e3t)2 e−3t

• Integrate both sides with respect to t∫ (
d
dt
(xµ(t))

)
dt =

∫ 2µ(t)t
e3t dt+ C1

• Evaluate the integral on the lhs
xµ(t) =

∫ 2µ(t)t
e3t dt+ C1

• Solve for x

x =
∫ 2µ(t)t

e3t dt+C1
µ(t)

• Substitute µ(t) = (e3t)2 e−3t

x =
∫
2t e−3te3tdt+C1

(e3t)2e−3t

• Evaluate the integrals on the rhs
x = t2+C1

(e3t)2e−3t

• Simplify
x = e−3t(t2 + C1 )

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 14� �
dsolve(exp(3*t)*diff(x(t),t)+3*x(t)*exp(3*t) = 2*t,

x(t),singsol=all)� �
x = e−3t(t2 + c1

)
Mathematica DSolve solution

Solving time : 0.056 (sec)
Leaf size : 17� �
DSolve[{Exp[3*t]*D[x[t],t]+3*x[t]*Exp[3*t]==2*t,{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → e−3t(t2 + c1

)
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2.1.18 problem 3 (vi)

Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 211
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 215
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 216
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 216

Internal problem ID [18181]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 3 (vi)
Date solved : Thursday, December 19, 2024 at 01:52:30 PM
CAS classification :
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

Solve

2t+ 3x+ (3t− x)x′ = t2

Solved as first order Exact ode

Time used: 0.546 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)
Therefore

(3t− x) dx =
(
t2 − 2t− 3x

)
dt(

−t2 + 2t+ 3x
)
dt+(3t− x) dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = −t2 + 2t+ 3x
N(t, x) = 3t− x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives
∂M

∂x
= ∂

∂x

(
−t2 + 2t+ 3x

)
= 3

And
∂N

∂t
= ∂

∂t
(3t− x)

= 3

Since ∂M
∂x

= ∂N
∂t
, then the ODE is exact The following equations are now set up to solve

for the function φ(t, x)
∂φ

∂t
= M (1)

∂φ

∂x
= N (2)
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Integrating (1) w.r.t. t gives∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
−t2 + 2t+ 3x dt

(3)φ = −t(t2 − 3t− 9x)
3 + f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 3t+ f ′(x)

But equation (2) says that ∂φ
∂x

= 3t− x. Therefore equation (4) becomes

(5)3t− x = 3t+ f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = −x

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫
(−x) dx

f(x) = −x2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = −t(t2 − 3t− 9x)
3 − x2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −t(t2 − 3t− 9x)
3 − x2

2
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Solving for x gives

x = 3t−
√
−6t3 + 99t2 − 18c1

3

x = 3t+
√
−6t3 + 99t2 − 18c1

3

Figure 2.50: Slope field plot
2t+ 3x+ (3t− x)x′ = t2

Summary of solutions found

x = 3t−
√
−6t3 + 99t2 − 18c1

3

x = 3t+
√
−6t3 + 99t2 − 18c1

3
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Maple step by step solution

Let’s solve
2t+ 3x+ (3t− x)x′ = t2

• Highest derivative means the order of the ODE is 1
x′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(t, x) = 0
◦ Compute derivative of lhs

F ′(t, x) +
(

∂
∂x
F (t, x)

)
x′ = 0

◦ Evaluate derivatives
3 = 3

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (t, x) = C1 ,M(t, x) = F ′(t, x) , N(t, x) = ∂
∂x
F (t, x)

]
• Solve for F (t, x) by integratingM(t, x) with respect to t

F (t, x) =
∫
(−t2 + 2t+ 3x) dt+ f1(x)

• Evaluate integral
F (t, x) = − t3

3 + t2 + 3tx+ f1(x)
• Take derivative of F (t, x) with respect to x

N(t, x) = ∂
∂x
F (t, x)

• Compute derivative
3t− x = 3t+ d

dx
f1(x)

• Isolate for d
dx
f1(x)

d
dx
f1(x) = −x

• Solve for f1(x)
f1(x) = −x2

2

• Substitute f1(x) into equation for F (t, x)
F (t, x) = −1

3t
3 + t2 + 3tx− 1

2x
2

• Substitute F (t, x) into the solution of the ODE
−1

3t
3 + t2 + 3tx− 1

2x
2 = C1

• Solve for x{
x = 3t−

√
−6t3+99t2−18C1

3 , x = 3t+
√
−6t3+99t2−18C1

3

}
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 51� �
dsolve(2*t+3*x(t)+(3*t-x(t))*diff(x(t),t) = t^2,

x(t),singsol=all)� �
x = 3t−

√
−6t3 + 99t2 + 18c1

3

x = 3t+
√
−6t3 + 99t2 + 18c1

3

Mathematica DSolve solution

Solving time : 0.161 (sec)
Leaf size : 67� �
DSolve[{(2*t+3*x[t])+(3*t-x[t])*D[x[t],t]==t^2,{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → 3t− i

√
2t3
3 − 11t2 − c1

x(t) → 3t+ i

√
2t3
3 − 11t2 − c1



chapter 2 . book solved problems 217

2.1.19 problem 4 (i)

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 217
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 219
Solved using Lie symmetry for first order ode . . . . . . . . . . 223
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 228
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 229
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 230

Internal problem ID [18182]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 4 (i)
Date solved : Thursday, December 19, 2024 at 06:17:34 PM
CAS classification : [[_linear, ‘class A‘]]

Solve

x′ + 2x = et

Solved as first order linear ode

Time used: 0.187 (sec)

In canonical form a linear first order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = 2
p(t) = et

The integrating factor µ is

µ = e
∫
q dt

= e
∫
2dt

= e2t
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The ode becomes
d
dt(µx) = µp

d
dt(µx) = (µ)

(
et
)

d
dt
(
x e2t

)
=
(
e2t
) (

et
)

d
(
x e2t

)
=
(
ete2t

)
dt

Integrating gives

x e2t =
∫

ete2t dt

= e3t
3 + c1

Dividing throughout by the integrating factor e2t gives the final solution

x = (e3t + 3c1) e−2t

3

Figure 2.51: Slope field plot
x′ + 2x = et
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Summary of solutions found

x = (e3t + 3c1) e−2t

3

Solved as first order Exact ode

Time used: 0.182 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

dx =
(
−2x+ et

)
dt(

2x− et
)
dt+dx = 0 (2A)
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Comparing (1A) and (2A) shows that

M(t, x) = 2x− et

N(t, x) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x

(
2x− et

)
= 2

And

∂N

∂t
= ∂

∂t
(1)

= 0

Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1((2)− (0))
= 2

Since A does not depend on x, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dt

= e
∫
2 dt

The result of integrating gives

µ = e2t

= e2t
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e2t
(
2x− et

)
=
(
2x− et

)
e2t

And

N = µN

= e2t(1)
= e2t

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dx
dt = 0((

2x− et
)
e2t
)
+
(
e2t
) dx
dt = 0

The following equations are now set up to solve for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (2) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
N dx∫

∂φ

∂x
dx =

∫
e2t dx

(3)φ = x e2t + f(t)

Where f(t) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t t gives

(4)∂φ

∂t
= 2x e2t + f ′(t)
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But equation (1) says that ∂φ
∂t

= (2x− et) e2t. Therefore equation (4) becomes

(5)
(
2x− et

)
e2t = 2x e2t + f ′(t)

Solving equation (5) for f ′(t) gives

f ′(t) = −ete2t

= −e3t

Integrating the above w.r.t t results in∫
f ′(t) dt =

∫ (
−e3t

)
dt

f(t) = −e3t
3 + c1

Where c1 is constant of integration. Substituting result found above for f(t) into
equation (3) gives φ

φ = x e2t − e3t
3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = x e2t − e3t
3

Solving for x gives

x = (e3t + 3c1) e−2t

3
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Figure 2.52: Slope field plot
x′ + 2x = et

Summary of solutions found

x = (e3t + 3c1) e−2t

3

Solved using Lie symmetry for first order ode

Time used: 0.563 (sec)

Writing the ode as

x′ = −2x+ et

x′ = ω(t, x)

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = ta2 + xa3 + a1

(2E)η = tb2 + xb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+
(
−2x+et

)
(b3−a2)−

(
−2x+et

)2
a3−et(ta2+xa3+a1)+2tb2+2xb3+2b1 = 0

Putting the above in normal form gives

−e2ta3 − etta2 + 3 etxa3 − 4x2a3 − eta1 − eta2 + etb3 + 2tb2 + 2xa2 + 2b1 + b2 = 0

Setting the numerator to zero gives

(6E)−e2ta3 − etta2 + 3 etxa3 − 4x2a3 − eta1 − eta2 + etb3 + 2tb2 + 2xa2 + 2b1 + b2 = 0

Simplifying the above gives

(6E)−e2ta3 − etta2 + 3 etxa3 − 4x2a3 − eta1 − eta2 + etb3 + 2tb2 + 2xa2 + 2b1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {t, x} in them.

{t, x, et, e2t}

The following substitution is now made to be able to collect on all terms with {t, x} in
them

{t = v1, x = v2, et = v3, e2t = v4}

The above PDE (6E) now becomes

(7E)−v3v1a2−4v22a3+3v3v2a3−v3a1+2v2a2−v3a2−v4a3+2v1b2+v3b3+2b1+b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)−v3v1a2+2v1b2−4v22a3+3v3v2a3+2v2a2+(−a1−a2+b3) v3−v4a3+2b1+b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−a2 = 0
2a2 = 0

−4a3 = 0
−a3 = 0
3a3 = 0
2b2 = 0

2b1 + b2 = 0
−a1 − a2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = b3

a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(t, x) ξ
= x−

(
−2x+ et

)
(1)

= 3x− et

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt

ξ
= dx

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

3x− etdy

Which results in

S = ln (3x− et)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)

Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) = −2x+ et

Evaluating all the partial derivatives gives

Rt = 1
Rx = 0

St =
et

−9x+ 3 et

Sx = 1
3x− et

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2

3 (2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −2

3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
−2
3 dR

S(R) = −2R
3 + c2

To complete the solution, we just need to transform the above back to t, x coordinates.
This results in

ln (3x− et)
3 = −2t

3 + c2

Which gives

x = e−2t+3c2

3 + et
3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dx
dt

= −2x+ et dS
dR

= −2
3

R = t

S = ln (3x− et)
3
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Figure 2.53: Slope field plot
x′ + 2x = et

Summary of solutions found

x = e−2t+3c2

3 + et
3

Maple step by step solution

Let’s solve
x′ + 2x = et

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative
x′ = −2x+ et

• Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE
x′ + 2x = et

• The ODE is linear; multiply by an integrating factor µ(t)
µ(t) (x′ + 2x) = µ(t) et

• Assume the lhs of the ODE is the total derivative d
dt
(xµ(t))
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µ(t) (x′ + 2x) = x′µ(t) + xµ′(t)
• Isolate µ′(t)

µ′(t) = 2µ(t)
• Solve to find the integrating factor

µ(t) = e2t

• Integrate both sides with respect to t∫ (
d
dt
(xµ(t))

)
dt =

∫
µ(t) etdt+ C1

• Evaluate the integral on the lhs
xµ(t) =

∫
µ(t) etdt+ C1

• Solve for x
x =

∫
µ(t)etdt+C1

µ(t)

• Substitute µ(t) = e2t

x =
∫
ete2tdt+C1

e2t

• Evaluate the integrals on the rhs

x =
e3t
3 +C1
e2t

• Simplify

x =
(
e3t+3C1

)
e−2t

3

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 18� �
dsolve(diff(x(t),t)+2*x(t) = exp(t),

x(t),singsol=all)� �
x = (e3t + 3c1) e−2t

3
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Mathematica DSolve solution

Solving time : 0.154 (sec)
Leaf size : 21� �
DSolve[{D[x[t],t]+2*x[t]==Exp[t],{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → et

3 + c1e
−2t
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2.1.20 problem 4 (ii)

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 231
Solved as first order separable ode . . . . . . . . . . . . . . . . 233
Solved as first order homogeneous class D2 ode . . . . . . . . . 234
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 236
Solved using Lie symmetry for first order ode . . . . . . . . . . 240
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 245
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 246
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 246

Internal problem ID [18183]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 4 (ii)
Date solved : Thursday, December 19, 2024 at 06:17:36 PM
CAS classification : [_separable]

Solve

x′ + x tan (t) = 0

Solved as first order linear ode

Time used: 0.059 (sec)

In canonical form a linear first order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = tan (t)
p(t) = 0

The integrating factor µ is

µ = e
∫
q dt

= e
∫
tan(t)dt

= sec (t)
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The ode becomes

d
dtµx = 0

d
dt(x sec (t)) = 0

Integrating gives

x sec (t) =
∫

0 dt+ c1

= c1

Dividing throughout by the integrating factor sec (t) gives the final solution

x = c1 cos (t)

Figure 2.54: Slope field plot
x′ + x tan (t) = 0

Summary of solutions found

x = c1 cos (t)
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Solved as first order separable ode

Time used: 0.104 (sec)

The ode x′ = −x tan (t) is separable as it can be written as

x′ = −x tan (t)
= f(t)g(x)

Where

f(t) = − tan (t)
g(x) = x

Integrating gives ∫ 1
g(x) dx =

∫
f(t) dt∫ 1

x
dx =

∫
− tan (t) dt

ln (x) = ln (cos (t)) + c1

We now need to find the singular solutions, these are found by finding for what values
g(x) is zero, since we had to divide by this above. Solving g(x) = 0 or x = 0 for x gives

x = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (x) = ln (cos (t)) + c1

x = 0

Solving for x gives
x = 0
x = cos (t) ec1
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Figure 2.55: Slope field plot
x′ + x tan (t) = 0

Summary of solutions found
x = 0
x = cos (t) ec1

Solved as first order homogeneous class D2 ode

Time used: 0.244 (sec)

Applying change of variables x = u(t) t, then the ode becomes

u′(t) t+ u(t) + u(t) t tan (t) = 0

Which is now solved The ode u′(t) = −u(t)(tan(t)t+1)
t

is separable as it can be written as

u′(t) = −u(t) (tan (t) t+ 1)
t

= f(t)g(u)

Where

f(t) = −tan (t) t+ 1
t

g(u) = u
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Integrating gives ∫ 1
g(u) du =

∫
f(t) dt∫ 1

u
du =

∫
−tan (t) t+ 1

t
dt

ln (u(t)) = ln
(
cos (t)

t

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(t)
gives

u(t) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(t)) = ln
(
cos (t)

t

)
+ c1

u(t) = 0

Solving for u(t) gives
u(t) = 0

u(t) = ec1 cos (t)
t

Converting u(t) = 0 back to x gives

x = 0

Converting u(t) = ec1 cos(t)
t

back to x gives

x = cos (t) ec1
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Figure 2.56: Slope field plot
x′ + x tan (t) = 0

Summary of solutions found
x = 0
x = cos (t) ec1

Solved as first order Exact ode

Time used: 0.111 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

dx = (−x tan (t)) dt
(x tan (t)) dt+dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = x tan (t)
N(t, x) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives
∂M

∂x
= ∂

∂x
(x tan (t))

= tan (t)

And
∂N

∂t
= ∂

∂t
(1)

= 0
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Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1((tan (t))− (0))
= tan (t)

Since A does not depend on x, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dt

= e
∫
tan(t) dt

The result of integrating gives

µ = e− ln(cos(t))

= sec (t)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sec (t) (x tan (t))
= x tan (t) sec (t)

And

N = µN

= sec (t) (1)
= sec (t)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dx
dt = 0

(x tan (t) sec (t)) + (sec (t)) dxdt = 0

The following equations are now set up to solve for the function φ(t, x)
∂φ

∂t
= M (1)

∂φ

∂x
= N (2)
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Integrating (2) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
N dx∫

∂φ

∂x
dx =

∫
sec (t) dx

(3)φ = x sec (t) + f(t)

Where f(t) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t t gives

(4)∂φ

∂t
= x tan (t) sec (t) + f ′(t)

But equation (1) says that ∂φ
∂t

= x tan (t) sec (t). Therefore equation (4) becomes

(5)x tan (t) sec (t) = x tan (t) sec (t) + f ′(t)

Solving equation (5) for f ′(t) gives

f ′(t) = 0

Therefore
f(t) = c1

Where c1 is constant of integration. Substituting this result for f(t) into equation (3)
gives φ

φ = x sec (t) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = x sec (t)

Solving for x gives

x = c1
sec (t)
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Figure 2.57: Slope field plot
x′ + x tan (t) = 0

Summary of solutions found

x = c1
sec (t)

Solved using Lie symmetry for first order ode

Time used: 0.339 (sec)

Writing the ode as

x′ = −x tan (t)
x′ = ω(t, x)

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = ta2 + xa3 + a1

(2E)η = tb2 + xb3 + b1



chapter 2 . book solved problems 241

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 − x tan (t) (b3 − a2)− x2 tan (t)2 a3
+ x
(
1 + tan (t)2

)
(ta2 + xa3 + a1) + tan (t) (tb2 + xb3 + b1) = 0

Putting the above in normal form gives

tan (t)2 txa2 + tan (t)2 xa1 + tan (t) tb2 + x tan (t) a2
+ txa2 + x2a3 + tan (t) b1 + xa1 + b2 = 0

Setting the numerator to zero gives

(6E)tan (t)2 txa2 + tan (t)2 xa1 + tan (t) tb2 + x tan (t) a2
+ txa2 + x2a3 + tan (t) b1 + xa1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {t, x} in them.

{t, x, tan (t)}

The following substitution is now made to be able to collect on all terms with {t, x} in
them

{t = v1, x = v2, tan (t) = v3}

The above PDE (6E) now becomes

(7E)v23v1v2a2 + v23v2a1 + v1v2a2 + v2v3a2 + v22a3 + v3v1b2 + v2a1 + v3b1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)v23v1v2a2 + v23v2a1 + v1v2a2 + v2v3a2 + v22a3 + v3v1b2 + v2a1 + v3b1 + b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a2 = 0
a3 = 0
b1 = 0
b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = x

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt

ξ
= dx

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy
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Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)

Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) = −x tan (t)

Evaluating all the partial derivatives gives

Rt = 1
Rx = 0
St = 0

Sx = 1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − tan (t) (2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − tan (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
− tan (R) dR

S(R) = ln (cos (R)) + c2

To complete the solution, we just need to transform the above back to t, x coordinates.
This results in

ln (x) = ln (cos (t)) + c2
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Which gives

x = ec2 cos (t)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dx
dt

= −x tan (t) dS
dR

= − tan (R)

R = t

S = ln (x)
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Figure 2.58: Slope field plot
x′ + x tan (t) = 0

Summary of solutions found

x = ec2 cos (t)

Maple step by step solution

Let’s solve
x′ + x tan (t) = 0

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative
x′ = −x tan (t)

• Separate variables
x′

x
= − tan (t)

• Integrate both sides with respect to t∫
x′

x
dt =

∫
− tan (t) dt+ C1

• Evaluate integral
ln (x) = ln (cos (t)) + C1
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• Solve for x
x = cos (t) eC1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 8� �
dsolve(diff(x(t),t)+x(t)*tan(t) = 0,

x(t),singsol=all)� �
x = c1 cos (t)

Mathematica DSolve solution

Solving time : 0.136 (sec)
Leaf size : 15� �
DSolve[{D[x[t],t]+x[t]*Tan[t]==0,{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → c1 cos(t)
x(t) → 0
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Internal problem ID [18184]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 4 (iii)
Date solved : Thursday, December 19, 2024 at 06:17:37 PM
CAS classification : [_linear]

Solve

x′ − x tan (t) = 4 sin (t)

Solved as first order linear ode

Time used: 0.173 (sec)

In canonical form a linear first order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = − tan (t)
p(t) = 4 sin (t)

The integrating factor µ is

µ = e
∫
q dt

= e
∫
− tan(t)dt

= cos (t)
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The ode becomes
d
dt(µx) = µp

d
dt(µx) = (µ) (4 sin (t))

d
dt(x cos (t)) = (cos (t)) (4 sin (t))

d(x cos (t)) = (4 sin (t) cos (t)) dt

Integrating gives

x cos (t) =
∫

4 sin (t) cos (t) dt

= −2 cos (t)2 + c1

Dividing throughout by the integrating factor cos (t) gives the final solution

x = −2 cos (t) + c1 sec (t)

Figure 2.59: Slope field plot
x′ − x tan (t) = 4 sin (t)
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Summary of solutions found

x = −2 cos (t) + c1 sec (t)

Solved as first order Exact ode

Time used: 0.131 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

dx = (x tan (t) + 4 sin (t)) dt
(−x tan (t)− 4 sin (t)) dt+dx = 0 (2A)
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Comparing (1A) and (2A) shows that

M(t, x) = −x tan (t)− 4 sin (t)
N(t, x) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x
(−x tan (t)− 4 sin (t))

= − tan (t)

And

∂N

∂t
= ∂

∂t
(1)

= 0

Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1((− tan (t))− (0))
= − tan (t)

Since A does not depend on x, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dt

= e
∫
− tan(t) dt

The result of integrating gives

µ = eln(cos(t))

= cos (t)



chapter 2 . book solved problems 251

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= cos (t) (−x tan (t)− 4 sin (t))
= sin (t) (−4 cos (t)− x)

And

N = µN

= cos (t) (1)
= cos (t)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dx
dt = 0

(sin (t) (−4 cos (t)− x)) + (cos (t)) dxdt = 0

The following equations are now set up to solve for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (2) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
N dx∫

∂φ

∂x
dx =

∫
cos (t) dx

(3)φ = x cos (t) + f(t)

Where f(t) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t t gives

(4)∂φ

∂t
= −x sin (t) + f ′(t)
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But equation (1) says that ∂φ
∂t

= sin (t) (−4 cos (t)− x). Therefore equation (4) becomes

(5)sin (t) (−4 cos (t)− x) = −x sin (t) + f ′(t)

Solving equation (5) for f ′(t) gives

f ′(t) = −4 sin (t) cos (t)

Integrating the above w.r.t t gives∫
f ′(t) dt =

∫
(−2 sin (2t)) dt

f(t) = cos (2t) + c1

Where c1 is constant of integration. Substituting result found above for f(t) into
equation (3) gives φ

φ = x cos (t) + cos (2t) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = x cos (t) + cos (2t)

Solving for x gives

x = −cos (2t)− c1
cos (t)
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Figure 2.60: Slope field plot
x′ − x tan (t) = 4 sin (t)

Summary of solutions found

x = −cos (2t)− c1
cos (t)

Maple step by step solution

Let’s solve
x′ − x tan (t) = 4 sin (t)

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative
x′ = x tan (t) + 4 sin (t)

• Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE
x′ − x tan (t) = 4 sin (t)

• The ODE is linear; multiply by an integrating factor µ(t)
µ(t) (x′ − x tan (t)) = 4µ(t) sin (t)

• Assume the lhs of the ODE is the total derivative d
dt
(xµ(t))
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µ(t) (x′ − x tan (t)) = x′µ(t) + xµ′(t)
• Isolate µ′(t)

µ′(t) = −µ(t) tan (t)
• Solve to find the integrating factor

µ(t) = cos (t)
• Integrate both sides with respect to t∫ (

d
dt
(xµ(t))

)
dt =

∫
4µ(t) sin (t) dt+ C1

• Evaluate the integral on the lhs
xµ(t) =

∫
4µ(t) sin (t) dt+ C1

• Solve for x
x =

∫
4µ(t) sin(t)dt+C1

µ(t)

• Substitute µ(t) = cos (t)

x =
∫
4 sin(t) cos(t)dt+C1

cos(t)

• Evaluate the integrals on the rhs

x = 2 sin(t)2+C1
cos(t)

• Simplify
x =

(
2 sin (t)2 + C1

)
sec (t)

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 15� �
dsolve(diff(x(t),t)-x(t)*tan(t) = 4*sin(t),

x(t),singsol=all)� �
x = −2 cos (t) + c1 sec (t) + sec (t)
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Mathematica DSolve solution

Solving time : 0.065 (sec)
Leaf size : 17� �
DSolve[{D[x[t],t]-x[t]*Tan[t]==4*Sin[t],{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → sec(t)(− cos(2t) + c1)
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2.1.22 problem 4 (iv)

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 256
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 258
Solved using Lie symmetry for first order ode . . . . . . . . . . 262
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 270
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 272
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 272

Internal problem ID [18185]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 4 (iv)
Date solved : Thursday, December 19, 2024 at 06:17:39 PM
CAS classification : [_linear]

Solve

t3x′ +
(
−3t2 + 2

)
x = t3

Solved as first order linear ode

Time used: 0.101 (sec)

In canonical form a linear first order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = −3t2 − 2
t3

p(t) = 1

The integrating factor µ is

µ = e
∫
q dt

= e
∫
− 3t2−2

t3 dt

= e−
1
t2

t3



chapter 2 . book solved problems 257

The ode becomes
d
dt(µx) = µ

d
dt

(
x e−

1
t2

t3

)
= e−

1
t2

t3

d
(
x e−

1
t2

t3

)
= e−

1
t2

t3
dt

Integrating gives

x e−
1
t2

t3
=
∫ e−

1
t2

t3
dt

= e−
1
t2

2 + c1

Dividing throughout by the integrating factor e−
1
t2

t3
gives the final solution

x =
(
c1 e

1
t2 + 1

2

)
t3

Figure 2.61: Slope field plot
t3x′ + (−3t2 + 2)x = t3
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Summary of solutions found

x =
(
c1 e

1
t2 + 1

2

)
t3

Solved as first order Exact ode

Time used: 0.146 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore (
t3
)
dx =

(
−
(
−3t2 + 2

)
x+ t3

)
dt((

−3t2 + 2
)
x− t3

)
dt+

(
t3
)
dx = 0 (2A)
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Comparing (1A) and (2A) shows that

M(t, x) =
(
−3t2 + 2

)
x− t3

N(t, x) = t3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x

((
−3t2 + 2

)
x− t3

)
= −3t2 + 2

And
∂N

∂t
= ∂

∂t

(
t3
)

= 3t2

Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1

t3
((
−3t2 + 2

)
−
(
3t2
))

= −6t2 + 2
t3

Since A does not depend on x, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adt

= e
∫ −6t2+2

t3 dt

The result of integrating gives

µ = e−
1
t2−6 ln(t)

= e−
1
t2

t6
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−
1
t2

t6
((
−3t2 + 2

)
x− t3

)
= −(t3 + 3x t2 − 2x) e−

1
t2

t6

And

N = µN

= e−
1
t2

t6
(
t3
)

= e−
1
t2

t3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dx
dt = 0(

−(t3 + 3x t2 − 2x) e−
1
t2

t6

)
+
(
e−

1
t2

t3

)
dx
dt = 0

The following equations are now set up to solve for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (2) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
N dx

∫
∂φ

∂x
dx =

∫ e−
1
t2

t3
dx

(3)φ = x e−
1
t2

t3
+ f(t)
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Where f(t) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t t gives

(4)∂φ

∂t
= −3x e−

1
t2

t4
+ 2x e−

1
t2

t6
+ f ′(t)

= x(−3t2 + 2) e−
1
t2

t6
+ f ′(t)

But equation (1) says that ∂φ
∂t

= −
(
t3+3x t2−2x

)
e−

1
t2

t6
. Therefore equation (4) becomes

(5)−(t3 + 3x t2 − 2x) e−
1
t2

t6
= x(−3t2 + 2) e−

1
t2

t6
+ f ′(t)

Solving equation (5) for f ′(t) gives

f ′(t) = −e−
1
t2

t3

Integrating the above w.r.t t gives

∫
f ′(t) dt =

∫ (
−e−

1
t2

t3

)
dt

f(t) = −e−
1
t2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(t) into
equation (3) gives φ

φ = x e−
1
t2

t3
− e−

1
t2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 =
x e−

1
t2

t3
− e−

1
t2

2
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Solving for x gives

x =
t3
(
e−

1
t2 + 2c1

)
e

1
t2

2

Figure 2.62: Slope field plot
t3x′ + (−3t2 + 2)x = t3

Summary of solutions found

x =
t3
(
e−

1
t2 + 2c1

)
e

1
t2

2

Solved using Lie symmetry for first order ode

Time used: 1.458 (sec)

Writing the ode as

x′ = t3 + 3x t2 − 2x
t3

x′ = ω(t, x)
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The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 3 to use as anstaz gives

(1E)ξ = t3a7 + x t2a8 + t x2a9 + x3a10 + t2a4 + xta5 + x2a6 + ta2 + xa3 + a1

(2E)η = t3b7 + x t2b8 + t x2b9 + x3b10 + t2b4 + xtb5 + x2b6 + tb2 + xb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}

Substituting equations (1E,2E) and ω into (A) gives

(5E)3t2b7 + 2txb8 + x2b9 + 2tb4 + xb5 + b2

+(t3 + 3x t2 − 2x) (−3t2a7 + t2b8 − 2txa8 + 2txb9 − x2a9 + 3x2b10 − 2ta4 + tb5 − xa5 + 2xb6 − a2 + b3)
t3

− (t3 + 3x t2 − 2x)2 (t2a8 + 2txa9 + 3x2a10 + ta5 + 2xa6 + a3)
t6

−
(
3t2 + 6xt

t3
− 3(t3 + 3x t2 − 2x)

t4

)(
t3a7 + x t2a8

+ t x2a9 + x3a10 + t2a4 + xta5 + x2a6 + ta2 + xa3 + a1
)

− (3t2 − 2) (t3b7 + x t2b8 + t x2b9 + x3b10 + t2b4 + xtb5 + x2b6 + tb2 + xb3 + b1)
t3

= 0

Putting the above in normal form gives

−2t7a4 + t7a5 − t7b5 − 2t5b4 + 8x3a6 + 3t8a7 − t8b8 + t8a8 + 12x4a10 − 2t6b7 + t6a2 + t6a3 − t6b3 + 3t5b1 − 2t4b2 − 2t3b1 + 4x2a3 + 6t5xa3 + 6t4x2a3 − 3t4xa1 + 4t3xa2 − 4t3xa3 − 6t2x2a3 + 6t2xa1 + 2b2t6 − 2t7xb8 − 4x2b9t
6 + 6t7xa7 + 8t7xa8 − 2t7xb9 + 12t6x2a8 + 13t6x2a9 − 3t6x2b10 + 18t5x3a9 − 6t5x3b10 − 10t4x2a8 + 2t4x2b9 − 20t3x3a9 + 4t3x3b10 + 2t7xa9 + 3t6x2a10 + 18t5x3a10 + 24t4x4a10 − 4t5xa8 − 8t4x2a9 − 12t3x3a10 − 30t2x4a10 + 4t2x2a8 + 8t x3a9 + 3t6xa4 + 7t6xa5 + 2t6xa6 − 2t6xb6 + 9t5x2a5 + 12t5x2a6 − 3t5x2b6 + 15t4x3a6 + 2t4xa4 − 4t4xa5 − 8t3x2a5 − 8t3x2a6 + 2t3x2b6 − 18t2x3a6 + 4t x2a5 − xb5t

6 + t7b4
t6

= 0
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Setting the numerator to zero gives

(6E)

−2t7a4 − t7a5 + t7b5 + 2t5b4 − 8x3a6 − 3t8a7 + t8b8 − t8a8
− 12x4a10 + 2t6b7 − t6a2 − t6a3 + t6b3 − 3t5b1 + 2t4b2 + 2t3b1
− 4x2a3 − 6t5xa3 − 6t4x2a3 + 3t4xa1 − 4t3xa2 + 4t3xa3 + 6t2x2a3
− 6t2xa1 − 2b2t6 + 2t7xb8 + 4x2b9t

6 − 6t7xa7 − 8t7xa8 + 2t7xb9
− 12t6x2a8 − 13t6x2a9 + 3t6x2b10 − 18t5x3a9 + 6t5x3b10 + 10t4x2a8
− 2t4x2b9 + 20t3x3a9 − 4t3x3b10 − 2t7xa9 − 3t6x2a10 − 18t5x3a10
− 24t4x4a10 + 4t5xa8 + 8t4x2a9 + 12t3x3a10 + 30t2x4a10 − 4t2x2a8
− 8t x3a9 − 3t6xa4 − 7t6xa5 − 2t6xa6 + 2t6xb6 − 9t5x2a5
− 12t5x2a6 + 3t5x2b6 − 15t4x3a6 − 2t4xa4 + 4t4xa5 + 8t3x2a5
+ 8t3x2a6 − 2t3x2b6 + 18t2x3a6 − 4t x2a5 + xb5t

6 − t7b4 = 0

Looking at the above PDE shows the following are all the terms with {t, x} in them.

{t, x}

The following substitution is now made to be able to collect on all terms with {t, x} in
them

{t = v1, x = v2}

The above PDE (6E) now becomes

(7E)

−6v51v2a3 − 6v41v22a3 + 3v41v2a1 − 4v31v2a2 + 4v31v2a3 + 6v21v22a3
− 6v21v2a1 + 2v71v2b8 + 4v22b9v61 − 6v71v2a7 − 8v71v2a8 + 2v71v2b9
− 12v61v22a8− 13v61v22a9+3v61v22b10− 18v51v32a9+6v51v32b10+10v41v22a8
− 2v41v22b9 + 20v31v32a9 − 4v31v32b10 − 2v71v2a9 − 3v61v22a10 − 18v51v32a10
− 24v41v42a10+4v51v2a8+8v41v22a9+12v31v32a10+30v21v42a10− 4v21v22a8
− 8v1v32a9 − 3v61v2a4 − 7v61v2a5 − 2v61v2a6 + 2v61v2b6 − 9v51v22a5
− 12v51v22a6 + 3v51v22b6 − 15v41v32a6 − 2v41v2a4 + 4v41v2a5 + 8v31v22a5
+ 8v31v22a6 − 2v31v22b6 + 18v21v32a6 − 4v1v22a5 + v2b5v

6
1 − 2v71a4 − v71a5

+v71b5+2v51b4−8v32a6−3v81a7+v81b8−v81a8−12v42a10+2v61b7−v61a2
− v61a3 + v61b3 − 3v51b1 + 2v41b2 + 2v31b1 − 4v22a3 − 2b2v61 − v71b4 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}



chapter 2 . book solved problems 265

Equation (7E) now becomes

−6v21v2a1 − 24v41v42a10 + 30v21v42a10 − 8v1v32a9 − 15v41v32a6 + 18v21v32a6
− 4v1v22a5 − 8v32a6 − 12v42a10 + 2v41b2 + 2v31b1 − 4v22a3 + (−6a3 + 4a8) v2v51
+ (−6a3 + 10a8 − 2b9 + 8a9) v22v41 + (3a1 − 2a4 + 4a5) v2v41
+ (−4a2 + 4a3) v2v31 + (6a3 − 4a8) v22v21 + (2b8 − 6a7 − 8a8 + 2b9 − 2a9) v2v71
+ (4b9 − 12a8 − 13a9 + 3b10 − 3a10) v61v22 + (−18a9 + 6b10 − 18a10) v32v51
+ (20a9 − 4b10 + 12a10) v32v31 + (−3a4 − 7a5 − 2a6 + b5 + 2b6) v2v61
+ (−9a5 − 12a6 + 3b6) v22v51 + (8a5 + 8a6 − 2b6) v22v31 + (−3a7 + b8 − a8) v81
+ (−2a4 − a5 − b4 + b5) v71 + (2b7 − a2 − a3 + b3 − 2b2) v61 + (−3b1 + 2b4) v51 = 0

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
−4a3 = 0
−4a5 = 0
−15a6 = 0
−8a6 = 0
18a6 = 0
−8a9 = 0

−24a10 = 0
−12a10 = 0
30a10 = 0
2b1 = 0
2b2 = 0

−4a2 + 4a3 = 0
−6a3 + 4a8 = 0
6a3 − 4a8 = 0

−3b1 + 2b4 = 0
3a1 − 2a4 + 4a5 = 0

−9a5 − 12a6 + 3b6 = 0
8a5 + 8a6 − 2b6 = 0
−3a7 + b8 − a8 = 0

−18a9 + 6b10 − 18a10 = 0
20a9 − 4b10 + 12a10 = 0

−6a3 + 10a8 − 2b9 + 8a9 = 0
−2a4 − a5 − b4 + b5 = 0

−3a4 − 7a5 − 2a6 + b5 + 2b6 = 0
2b7 − a2 − a3 + b3 − 2b2 = 0

2b8 − 6a7 − 8a8 + 2b9 − 2a9 = 0
4b9 − 12a8 − 13a9 + 3b10 − 3a10 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = 0
a5 = 0
a6 = 0

a7 =
b8
3

a8 = 0
a9 = 0
a10 = 0
b1 = 0
b2 = 0
b3 = −2b7
b4 = 0
b5 = 0
b6 = 0
b7 = b7

b8 = b8

b9 = 0
b10 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0

η = t3 − 2x

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt

ξ
= dx

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

t3 − 2xdy

Which results in

S = − ln (t3 − 2x)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)

Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) = t3 + 3x t2 − 2x
t3

Evaluating all the partial derivatives gives

Rt = 1
Rx = 0

St = − 3t2
2t3 − 4x

Sx = 1
t3 − 2x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −3t2 + 2

2t3 (2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −3R2 + 2

2R3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
−3R2 − 2

2R3 dR

S(R) = − 1
2R2 − 3 ln (R)

2 + c2

To complete the solution, we just need to transform the above back to t, x coordinates.
This results in

− ln (t3 − 2x)
2 = − 1

2t2 − 3 ln (t)
2 + c2

Which gives

x = −e
3 ln(t)t2−2c2 t2+1

t2

2 + t3

2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dx
dt

= t3+3x t2−2x
t3

dS
dR

= −3R2+2
2R3

R = t

S = − ln (t3 − 2x)
2
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Figure 2.63: Slope field plot
t3x′ + (−3t2 + 2)x = t3

Summary of solutions found

x = −e
3 ln(t)t2−2c2 t2+1

t2

2 + t3

2

Maple step by step solution

Let’s solve
t3x′ + (−3t2 + 2)x = t3

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative

x′ = −
(
−3t2+2

)
x+t3

t3

• Collect w.r.t. x and simplify

x′ = 1 +
(
3t2−2

)
x

t3

• Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE
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x′ −
(
3t2−2

)
x

t3
= 1

• The ODE is linear; multiply by an integrating factor µ(t)

µ(t)
(
x′ −

(
3t2−2

)
x

t3

)
= µ(t)

• Assume the lhs of the ODE is the total derivative d
dt
(xµ(t))

µ(t)
(
x′ −

(
3t2−2

)
x

t3

)
= x′µ(t) + xµ′(t)

• Isolate µ′(t)

µ′(t) = −µ(t)
(
3t2−2

)
t3

• Solve to find the integrating factor

µ(t) = e−
1
t2

t3

• Integrate both sides with respect to t∫ (
d
dt
(xµ(t))

)
dt =

∫
µ(t) dt+ C1

• Evaluate the integral on the lhs
xµ(t) =

∫
µ(t) dt+ C1

• Solve for x
x =

∫
µ(t)dt+C1

µ(t)

• Substitute µ(t) = e−
1
t2

t3

x =
t3

(∫ e
− 1

t2
t3 dt+C1

)
e−

1
t2

• Evaluate the integrals on the rhs

x =
t3

(
e
− 1

t2
2 +C1

)
e−

1
t2

• Simplify

x =
(
C1 e

1
t2 + 1

2

)
t3
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 16� �
dsolve(t^3*diff(x(t),t)+(-3*t^2+2)*x(t) = t^3,

x(t),singsol=all)� �
x =

(
c1 e

1
t2 + 1

2

)
t3

Mathematica DSolve solution

Solving time : 0.036 (sec)
Leaf size : 23� �
DSolve[{t^3*D[x[t],t]+(2-3*t^2)*x[t]==t^3,{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → 1

2t
3
(
1 + 2c1e

1
t2
)
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2.1.23 problem 4 (v)

Solved as first order separable ode . . . . . . . . . . . . . . . . 273
Solved as first order Bernoulli ode . . . . . . . . . . . . . . . . . 276
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 279
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 284
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 285
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 285

Internal problem ID [18186]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 4 (v)
Date solved : Thursday, December 19, 2024 at 06:17:41 PM
CAS classification : [_separable]

Solve

x′ + 2xt+ tx4 = 0

Solved as first order separable ode

Time used: 0.527 (sec)

The ode x′ = −tx4 − 2xt is separable as it can be written as

x′ = −tx4 − 2xt
= f(t)g(x)

Where

f(t) = −t

g(x) = x
(
x3 + 2

)
Integrating gives ∫ 1

g(x) dx =
∫

f(t) dt∫ 1
x (x3 + 2) dx =

∫
−t dt

ln
( √

x

(x3 + 2)1/6

)
= −t2

2 + c1
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We now need to find the singular solutions, these are found by finding for what values
g(x) is zero, since we had to divide by this above. Solving g(x) = 0 or x(x3 + 2) = 0
for x gives

x = 0
x = −21/3

x = 21/3
2 − i

√
3 21/3
2

x = 21/3
2 + i

√
3 21/3
2

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
( √

x

(x3 + 2)1/6

)
= −t2

2 + c1

x = 0
x = −21/3

x = 21/3
2 − i

√
3 21/3
2

x = 21/3
2 + i

√
3 21/3
2

Solving for x gives

x = 0

x =

(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

e−3t2+6c1 − 1

x = −21/3

x = 21/3
2 − i

√
3 21/3
2

x = 21/3
2 + i

√
3 21/3
2

x = −

(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 (e−3t2+6c1 − 1) −
i
√
3
(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 (e−3t2+6c1 − 1)
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x = −

(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 (e−3t2+6c1 − 1) +
i
√
3
(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 e−3t2+6c1 − 2

Figure 2.64: Slope field plot
x′ + 2xt+ tx4 = 0

Summary of solutions found

x = 0

x =

(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

e−3t2+6c1 − 1

x = −21/3

x = 21/3
2 − i

√
3 21/3
2

x = 21/3
2 + i

√
3 21/3
2
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x = −

(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 (e−3t2+6c1 − 1) −
i
√
3
(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 (e−3t2+6c1 − 1)

x = −

(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 (e−3t2+6c1 − 1) +
i
√
3
(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 e−3t2+6c1 − 2

Solved as first order Bernoulli ode

Time used: 0.130 (sec)

In canonical form, the ODE is

x′ = F (t, x)
= −t x4 − 2xt

This is a Bernoulli ODE.
x′ = (−2t)x+ (−t)x4 (1)

The standard Bernoulli ODE has the form

x′ = f0(t)x+ f1(t)xn (2)

Comparing this to (1) shows that

f0 = −2t
f1 = −t

The first step is to divide the above equation by xn which gives

x′

xn
= f0(t)x1−n + f1(t) (3)

The next step is use the substitution v = x1−n in equation (3) which generates a new
ODE in v(t) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution x(t) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(t) = −2t
f1(t) = −t

n = 4
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Dividing both sides of ODE (1) by xn = x4 gives

x′ 1
x4 = − 2t

x3 − t (4)

Let

v = x1−n

= 1
x3 (5)

Taking derivative of equation (5) w.r.t t gives

v′ = − 3
x4x

′ (6)

Substituting equations (5) and (6) into equation (4) gives

−v′(t)
3 = −2v(t) t− t

v′ = 6tv + 3t (7)

The above now is a linear ODE in v(t) which is now solved.

In canonical form a linear first order is

v′(t) + q(t)v(t) = p(t)

Comparing the above to the given ode shows that

q(t) = −6t
p(t) = 3t

The integrating factor µ is

µ = e
∫
q dt

= e
∫
−6tdt

= e−3t2

The ode becomes
d
dt(µv) = µp

d
dt(µv) = (µ) (3t)

d
dt

(
v e−3t2

)
=
(
e−3t2

)
(3t)

d
(
v e−3t2

)
=
(
3t e−3t2

)
dt
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Integrating gives

v e−3t2 =
∫

3t e−3t2 dt

= −e−3t2

2 + c1

Dividing throughout by the integrating factor e−3t2 gives the final solution

v(t) = c1 e3t
2 − 1

2

The substitution v = x1−n is now used to convert the above solution back to x which
results in

1
x3 = c1 e3t

2 − 1
2

Figure 2.65: Slope field plot
x′ + 2xt+ tx4 = 0

Summary of solutions found
1
x3 = c1 e3t

2 − 1
2
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Solved as first order Exact ode

Time used: 0.221 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

dx =
(
−t x4 − 2xt

)
dt(

t x4 + 2xt
)
dt+dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = t x4 + 2xt
N(t, x) = 1



chapter 2 . book solved problems 280

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives
∂M

∂x
= ∂

∂x

(
t x4 + 2xt

)
= 4t x3 + 2t

And
∂N

∂t
= ∂

∂t
(1)

= 0

Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1
((
4t x3 + 2t

)
− (0)

)
= 4t x3 + 2t

Since A depends on x, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂t
− ∂M

∂x

)
= 1

tx (x3 + 2)
(
(0)−

(
4t x3 + 2t

))
= −4x3 − 2

x (x3 + 2)
Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dx

= e

∫ −4x3−2
x
(
x3+2

) dx

The result of integrating gives

µ = e− ln
(
x
(
x3+2

))
= 1

x (x3 + 2)
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M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
x (x3 + 2)

(
t x4 + 2xt

)
= t

And

N = µN

= 1
x (x3 + 2)(1)

= 1
x (x3 + 2)

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dx
dt = 0

(t) +
(

1
x (x3 + 2)

)
dx
dt = 0

The following equations are now set up to solve for the function φ(t, x)
∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives ∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
t dt

(3)φ = t2

2 + f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= 0 + f ′(x)
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But equation (2) says that ∂φ
∂x

= 1
x(x3+2) . Therefore equation (4) becomes

(5)1
x (x3 + 2) = 0 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 1
x (x3 + 2)

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫ ( 1
x (x3 + 2)

)
dx

f(x) = − ln (x3 + 2)
6 + ln (x)

2 + c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = t2

2 − ln (x3 + 2)
6 + ln (x)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 =
t2

2 − ln (x3 + 2)
6 + ln (x)

2

Solving for x gives

x =

(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

e−3t2+6c1 − 1

x = −

(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 (e−3t2+6c1 − 1) −
i
√
3
(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 (e−3t2+6c1 − 1)

x = −

(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 (e−3t2+6c1 − 1) +
i
√
3
(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 e−3t2+6c1 − 2
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Figure 2.66: Slope field plot
x′ + 2xt+ tx4 = 0

Summary of solutions found

x =

(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

e−3t2+6c1 − 1

x = −

(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 (e−3t2+6c1 − 1) −
i
√
3
(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 (e−3t2+6c1 − 1)

x = −

(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 (e−3t2+6c1 − 1) +
i
√
3
(
−2
(
e−3t2+6c1 − 1

)2
e−3t2+6c1

)1/3

2 e−3t2+6c1 − 2
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Maple step by step solution

Let’s solve
x′ + 2xt+ tx4 = 0

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative
x′ = −tx4 − 2xt

• Separate variables
x′

x(x3+2) = −t

• Integrate both sides with respect to t∫
x′

x(x3+2)dt =
∫
−tdt+ C1

• Evaluate integral

− ln
(
x3+2

)
6 + ln(x)

2 = − t2

2 + C1
• Solve for x

x =

(
−2
(
e−3t2+6C1−1

)2
e−3t2+6C1

)1/3

e−3t2+6C1−1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 121� �
dsolve(diff(x(t),t)+2*x(t)*t+t*x(t)^4 = 0,

x(t),singsol=all)� �

x =
21/3

((
2c1 e3t

2 − 1
)2)1/3

2c1 e3t2 − 1

x = −

(
1 + i

√
3
)
21/3

((
2c1 e3t

2 − 1
)2)1/3

4c1 e3t2 − 2

x =

(
i
√
3− 1

)
21/3

((
2c1 e3t

2 − 1
)2)1/3

4c1 e3t2 − 2

Mathematica DSolve solution

Solving time : 11.147 (sec)
Leaf size : 177� �
DSolve[{D[x[t],t]+2*t*x[t]+t*x[t]^4==0,{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → −

3
√
−2e2c1

3
√

e3t2 − e6c1

x(t) →
3
√
2e2c1

3
√

e3t2 − e6c1

x(t) → (−1)2/3 3
√
2e2c1

3
√

e3t2 − e6c1

x(t) → 0
x(t) → 3

√
−2

x(t) → − 3
√
2

x(t) → −(−1)2/3 3
√
2

x(t) → 1− i
√
3

22/3
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2.1.24 problem 4 (vi)

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 286
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 288
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 292
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 294
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 294

Internal problem ID [18187]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 4 (vi)
Date solved : Thursday, December 19, 2024 at 06:17:43 PM
CAS classification : [_linear]

Solve

tx′ + x ln (t) = t2

Solved as first order linear ode

Time used: 0.484 (sec)

In canonical form a linear first order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = ln (t)
t

p(t) = t

The integrating factor µ is

µ = e
∫
q dt

= e
∫ ln(t)

t
dt

= e
ln(t)2

2
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The ode becomes
d
dt(µx) = µp

d
dt(µx) = (µ) (t)

d
dt

(
x e

ln(t)2
2

)
=
(
e

ln(t)2
2

)
(t)

d
(
x e

ln(t)2
2

)
=
(
t e

ln(t)2
2

)
dt

Integrating gives

x e
ln(t)2

2 =
∫

t e
ln(t)2

2 dt

=
∫

t e
ln(t)2

2 dt+ c1

Dividing throughout by the integrating factor e
ln(t)2

2 gives the final solution

x = e−
ln(t)2

2

(∫
t e

ln(t)2
2 dt+ c1

)

Figure 2.67: Slope field plot
tx′ + x ln (t) = t2
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Summary of solutions found

x = e−
ln(t)2

2

(∫
t e

ln(t)2
2 dt+ c1

)
Solved as first order Exact ode

Time used: 0.176 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

(t) dx =
(
−x ln (t) + t2

)
dt(

x ln (t)− t2
)
dt+(t) dx = 0 (2A)
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Comparing (1A) and (2A) shows that

M(t, x) = x ln (t)− t2

N(t, x) = t

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x

(
x ln (t)− t2

)
= ln (t)

And

∂N

∂t
= ∂

∂t
(t)

= 1

Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1

t
((ln (t))− (1))

= ln (t)− 1
t

Since A does not depend on x, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adt

= e
∫ ln(t)−1

t
dt

The result of integrating gives

µ = e
ln(t)2

2 −ln(t)

= t
ln(t)
2 −1
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= t
ln(t)
2 −1(x ln (t)− t2

)
= −

(
−x ln (t) + t2

)
t
ln(t)
2 −1

And

N = µN

= t
ln(t)
2 −1(t)

= e
ln(t)2

2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dx
dt = 0(

−
(
−x ln (t) + t2

)
t
ln(t)
2 −1

)
+
(
e

ln(t)2
2

)
dx
dt = 0

The following equations are now set up to solve for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (2) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
N dx∫

∂φ

∂x
dx =

∫
e

ln(t)2
2 dx

(3)φ = x e
ln(t)2

2 + f(t)

Where f(t) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t t gives

(4)∂φ

∂t
= x ln (t) e

ln(t)2
2

t
+ f ′(t)
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But equation (1) says that ∂φ
∂t

= −(−x ln (t) + t2) t
ln(t)
2 −1. Therefore equation (4) be-

comes

(5)−
(
−x ln (t) + t2

)
t
ln(t)
2 −1 = x ln (t) e

ln(t)2
2

t
+ f ′(t)

Solving equation (5) for f ′(t) gives

f ′(t) = −− ln (t) t
ln(t)
2 −1tx+ t

ln(t)
2 −1t3 + x ln (t) e

ln(t)2
2

t

= −t1+
ln(t)
2

Integrating the above w.r.t t results in∫
f ′(t) dt =

∫ (
−t1+

ln(t)
2

)
dt

f(t) =
∫ t

0
−τ 1+

ln(τ)
2 dτ + c1

Where c1 is constant of integration. Substituting result found above for f(t) into
equation (3) gives φ

φ = x e
ln(t)2

2 +
∫ t

0
−τ 1+

ln(τ)
2 dτ + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = x e
ln(t)2

2 +
∫ t

0
−τ 1+

ln(τ)
2 dτ

Solving for x gives

x = −
(∫ t

0
−τ 1+

ln(τ)
2 dτ − c1

)
e−

ln(t)2
2
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Figure 2.68: Slope field plot
tx′ + x ln (t) = t2

Summary of solutions found

x = −
(∫ t

0
−τ 1+

ln(τ)
2 dτ − c1

)
e−

ln(t)2
2

Maple step by step solution

Let’s solve
tx′ + x ln (t) = t2

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative
x′ = −x ln(t)+t2

t

• Collect w.r.t. x and simplify
x′ = −x ln(t)

t
+ t

• Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE
x′ + x ln(t)

t
= t
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• The ODE is linear; multiply by an integrating factor µ(t)

µ(t)
(
x′ + x ln(t)

t

)
= µ(t) t

• Assume the lhs of the ODE is the total derivative d
dt
(xµ(t))

µ(t)
(
x′ + x ln(t)

t

)
= x′µ(t) + xµ′(t)

• Isolate µ′(t)
µ′(t) = µ(t) ln(t)

t

• Solve to find the integrating factor

µ(t) = e
ln(t)2

2

• Integrate both sides with respect to t∫ (
d
dt
(xµ(t))

)
dt =

∫
µ(t) tdt+ C1

• Evaluate the integral on the lhs
xµ(t) =

∫
µ(t) tdt+ C1

• Solve for x
x =

∫
µ(t)tdt+C1

µ(t)

• Substitute µ(t) = e
ln(t)2

2

x =
∫
t e

ln(t)2
2 dt+C1

e
ln(t)2

2

• Simplify

x = e−
ln(t)2

2

(∫
t e

ln(t)2
2 dt+ C1

)
Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 25� �
dsolve(t*diff(x(t),t)+x(t)*ln(t) = t^2,

x(t),singsol=all)� �
x = e−

ln(t)2
2

(∫
t e

ln(t)2
2 dt+ c1

)

Mathematica DSolve solution

Solving time : 0.145 (sec)
Leaf size : 48� �
DSolve[{t*D[x[t],t]+x[t]*Log[t]==t^2,{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → 1

2e
− 1

2 log2(t)−2
(√

2πerfi
(
log(t) + 2√

2

)
+ 2e2c1

)
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2.1.25 problem 5

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 295
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 296
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 300
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 301
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 301

Internal problem ID [18188]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 5
Date solved : Thursday, December 19, 2024 at 06:17:45 PM
CAS classification : [_linear]

Solve

tx′ + xg(t) = h(t)

Solved as first order linear ode

Time used: 0.060 (sec)

In canonical form a linear first order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = g(t)
t

p(t) = h(t)
t

The integrating factor µ is
µ = e

∫ g(t)
t

dt

Therefore the solution is

x =
(∫

h(t) e
∫ g(t)

t
dt

t
dt+ c1

)
e−
∫ g(t)

t
dt
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Summary of solutions found

x =
(∫

h(t) e
∫ g(t)

t
dt

t
dt+ c1

)
e−
∫ g(t)

t
dt

Solved as first order Exact ode

Time used: 0.374 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)
Therefore

(t) dx = (−xg(t) + h(t)) dt
(xg(t)− h(t)) dt+(t) dx = 0 (2A)
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Comparing (1A) and (2A) shows that

M(t, x) = xg(t)− h(t)
N(t, x) = t

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x
(xg(t)− h(t))

= g(t)

And

∂N

∂t
= ∂

∂t
(t)

= 1

Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1

t
((g(t))− (1))

= g(t)− 1
t

Since A does not depend on x, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adt

= e
∫ g(t)−1

t
dt

The result of integrating gives

µ = e
∫ g(t)−1

t
dt

= e
∫ g(t)−1

t
dt
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e
∫ g(t)−1

t
dt(xg(t)− h(t))

= (xg(t)− h(t)) e
∫ g(t)−1

t
dt

And

N = µN

= e
∫ g(t)−1

t
dt(t)

= t e
∫ g(t)−1

t
dt

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dx
dt = 0(

(xg(t)− h(t)) e
∫ g(t)−1

t
dt
)
+
(
t e
∫ g(t)−1

t
dt
) dx
dt = 0

The following equations are now set up to solve for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (2) w.r.t. x gives∫
∂φ

∂x
dx =

∫
N dx∫

∂φ

∂x
dx =

∫
t e
∫ g(t)−1

t
dt dx

(3)φ = t e
∫ g(t)−1

t
dtx+ f(t)

Where f(t) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t t gives

(4)∂φ

∂t
= e

∫ g(t)−1
t

dtx+ (g(t)− 1) e
∫ g(t)−1

t
dtx+ f ′(t)

= e
∫ g(t)−1

t
dtxg(t) + f ′(t)
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But equation (1) says that ∂φ
∂t

= (xg(t)− h(t)) e
∫ g(t)−1

t
dt. Therefore equation (4) be-

comes
(5)(xg(t)− h(t)) e

∫ g(t)−1
t

dt = e
∫ g(t)−1

t
dtxg(t) + f ′(t)

Solving equation (5) for f ′(t) gives

f ′(t) = −e
∫ g(t)−1

t
dth(t)

Integrating the above w.r.t t gives∫
f ′(t) dt =

∫ (
−e

∫ g(t)−1
t

dth(t)
)
dt

f(t) =
∫ t

0
−e

∫ g(τ)−1
τ

dτh(τ) dτ + c1

Where c1 is constant of integration. Substituting result found above for f(t) into
equation (3) gives φ

φ = t e
∫ g(t)−1

t
dtx+

∫ t

0
−e

∫ g(τ)−1
τ

dτh(τ) dτ + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = t e
∫ g(t)−1

t
dtx+

∫ t

0
−e

∫ g(τ)−1
τ

dτh(τ) dτ

Solving for x gives

x = −

(∫ t

0 −e
∫ g(τ)−1

τ
dτh(τ) dτ − c1

)
e
∫
− g(t)−1

t
dt

t

Summary of solutions found

x = −

(∫ t

0 −e
∫ g(τ)−1

τ
dτh(τ) dτ − c1

)
e
∫
− g(t)−1

t
dt

t
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Maple step by step solution

Let’s solve
tx′ + xg(t) = h(t)

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative
x′ = −xg(t)+h(t)

t

• Collect w.r.t. x and simplify
x′ = −xg(t)

t
+ h(t)

t

• Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE
x′ + xg(t)

t
= h(t)

t

• The ODE is linear; multiply by an integrating factor µ(t)

µ(t)
(
x′ + xg(t)

t

)
= µ(t)h(t)

t

• Assume the lhs of the ODE is the total derivative d
dt
(xµ(t))

µ(t)
(
x′ + xg(t)

t

)
= x′µ(t) + xµ′(t)

• Isolate µ′(t)
µ′(t) = µ(t)g(t)

t

• Solve to find the integrating factor

µ(t) = e
∫ g(t)

t
dt

• Integrate both sides with respect to t∫ (
d
dt
(xµ(t))

)
dt =

∫ µ(t)h(t)
t

dt+ C1
• Evaluate the integral on the lhs

xµ(t) =
∫ µ(t)h(t)

t
dt+ C1

• Solve for x

x =
∫ µ(t)h(t)

t
dt+C1

µ(t)

• Substitute µ(t) = e
∫ g(t)

t
dt

x =
∫ h(t)e

∫ g(t)
t dt

t
dt+C1

e
∫ g(t)

t dt

• Simplify

x =
(∫ h(t)e

∫ g(t)
t dt

t
dt+ C1

)
e−
∫ g(t)

t
dt
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 35� �
dsolve(t*diff(x(t),t)+x(t)*g(t) = h(t),

x(t),singsol=all)� �
x =

(∫
h(t) e

∫ g(t)
t

dt

t
dt+ c1

)
e−
∫ g(t)

t
dt

Mathematica DSolve solution

Solving time : 0.084 (sec)
Leaf size : 63� �
DSolve[{t*D[x[t],t]+x[t]*g[t]==h[t],{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → exp

(∫ t

1
−g(K[1])

K[1] dK[1]
)∫ t

1

exp
(
−
∫ K[2]
1 −g(K[1])

K[1] dK[1]
)
h(K[2])

K[2] dK[2]

+ c1


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2.1.26 problem 6

Solved as second order Euler type ode . . . . . . . . . . . . . . 302
Solved as second order solved by an integrating factor . . . . . 303
Solved as second order ode using change of variable on

x method 2 . . . . . . . . . . . . . . . . . . . . . . . . 304
Solved as second order ode using change of variable on

x method 1 . . . . . . . . . . . . . . . . . . . . . . . . 311
Solved as second order ode using change of variable on

y method 1 . . . . . . . . . . . . . . . . . . . . . . . . 313
Solved as second order ode using change of variable on

y method 2 . . . . . . . . . . . . . . . . . . . . . . . . 314
Solved as second order ode using Kovacic algorithm . . . . . . . 317
Solved as second order ode adjoint method . . . . . . . . . . . . 319
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 322
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 324
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 324

Internal problem ID [18189]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 6
Date solved : Thursday, December 19, 2024 at 06:17:47 PM
CAS classification : [[_Emden, _Fowler]]

Solve

t2x′′ − 6tx′ + 12x = 0

Solved as second order Euler type ode

Time used: 0.087 (sec)

This is Euler second order ODE. Let the solution be x = tr, then x′ = rtr−1 and
x′′ = r(r − 1)tr−2. Substituting these back into the given ODE gives

t2(r(r − 1))tr−2 − 6trtr−1 + 12tr = 0

Simplifying gives
r(r − 1) tr − 6r tr + 12tr = 0
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Since tr 6= 0 then dividing throughout by tr gives

r(r − 1)− 6r + 12 = 0

Or
r2 − 7r + 12 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = 3
r2 = 4

Since the roots are real and distinct, then the general solution is

x = c1x1 + c2x2

Where x1 = tr1 and x2 = tr2 . Hence

x = c2 t
4 + c1 t

3

Will add steps showing solving for IC soon.

Summary of solutions found

x = c2 t
4 + c1 t

3

Solved as second order solved by an integrating factor

Time used: 0.031 (sec)

The ode satisfies this form

x′′ + p(t)x′ +
(
p(t)2 + p′(t)

)
x

2 = f(t)

Where p(t) = −6
t
. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
− 6

t
dx

= 1
t3

Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)x) ′′ = 0( x
t3

)
′′ = 0
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Integrating once gives ( x
t3

)′
= c1

Integrating again gives ( x
t3

)
= c1t+ c2

Hence the solution is

x = c1t+ c2
1
t3

Or
x = t4c1 + c2 t

3

Will add steps showing solving for IC soon.

Summary of solutions found

x = t4c1 + c2 t
3

Solved as second order ode using change of variable on x method 2

Time used: 0.321 (sec)

In normal form the ode

t2x′′ − 6tx′ + 12x = 0 (1)

Becomes

x′′ + p(t)x′ + q(t)x = 0 (2)

Where

p(t) = −6
t

q(t) = 12
t2

Applying change of variables τ = g(t) to (2) gives

d2

dτ 2
x(τ) + p1

(
d

dτ
x(τ)

)
+ q1x(τ) = 0 (3)
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Where τ is the new independent variable, and

p1(τ) =
τ ′′(t) + p(t) τ ′(t)

τ ′ (t)2
(4)

q1(τ) =
q(t)
τ ′ (t)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(t) + p(t) τ ′(t) = 0

This ode is solved resulting in

τ =
∫

e−
∫
p(t)dtdt

=
∫

e−
∫
− 6

t
dtdt

=
∫

e6 ln(t) dt

=
∫

t6dt

= t7

7 (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(t)
τ ′ (t)2

=
12
t2

t12

= 12
t14

(7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
x(τ) + q1x(τ) = 0

d2

dτ 2
x(τ) + 12x(τ)

t14
= 0

But in terms of τ
12
t14

= 12
49τ 2
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Hence the above ode becomes
d2

dτ 2
x(τ) + 12x(τ)

49τ 2 = 0

The above ode is now solved for x(τ). Writing the ode as

d2

dτ 2
x(τ) + 12x(τ)

49τ 2 = 0 (1)

A
d2

dτ 2
x(τ) +B

d

dτ
x(τ) + Cx(τ) = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = 12
49τ 2

Applying the Liouville transformation on the dependent variable gives

z(τ) = x(τ) e
∫

B
2A dτ

Then (2) becomes

z′′(τ) = rz(τ) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −12
49τ 2 (6)

Comparing the above to (5) shows that

s = −12
t = 49τ 2

Therefore eq. (4) becomes

z′′(τ) =
(
− 12
49τ 2

)
z(τ) (7)
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Equation (7) is now solved. After finding z(τ) then x(τ) is found using the inverse
transformation

x(τ) = z(τ) e−
∫

B
2A dτ

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.26: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 49τ 2. There is a pole at τ = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 12
49τ 2
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For the pole at τ = 0 let b be the coefficient of 1
τ2

in the partial fractions decomposition
of r given above. Therefore b = −12

49 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 4

7
α−
c = 1

2 −
√
1 + 4b = 3

7

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

τ2
in

the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 12

49τ 2

Since the gcd(s, t) = 1. This gives b = −12
49 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 4

7
α−
∞ = 1

2 −
√
1 + 4b = 3

7

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 12
49τ 2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 4
7

3
7

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 4
7

3
7

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
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Trying α−
∞ = 3

7 then

d = α−
∞ −

(
α−
c1

)
= 3

7 −
(
3
7

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

τ − c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

τ − c1

)
+ (−)[

√
r]∞

= 3
7τ + (−) (0)

= 3
7τ

= 3
7τ

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(τ) of degree d = 0 to solve the ode. The polynomial p(τ) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(τ) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
7τ

)
(0) +

((
− 3
7τ 2

)
+
(

3
7τ

)2

−
(
− 12
49τ 2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(τ) = pe
∫
ω dτ

= e
∫ 3

7τ dτ

= τ 3/7
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The first solution to the original ode in x(τ) is found from

x1 = z1e
∫
− 1

2
B
A

dτ

Since B = 0 then the above reduces to
x1 = z1

= τ 3/7

Which simplifies to
x1 = τ 3/7

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dτ

x2
1

dτ

Since B = 0 then the above becomes

x2 = x1

∫ 1
x2
1
dτ

= τ 3/7
∫ 1

τ 6/7
dτ

= τ 3/7
(
7τ 1/7

)
Therefore the solution is

x(τ) = c1x1 + c2x2

= c1
(
τ 3/7

)
+ c2

(
τ 3/7

(
7τ 1/7

))
Will add steps showing solving for IC soon.

The above solution is now transformed back to x using (6) which results in

x = c174/7(t7)3/7

7 + c273/7
(
t7
)4/7

Will add steps showing solving for IC soon.

Summary of solutions found

x = c174/7(t7)3/7

7 + c273/7
(
t7
)4/7
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Solved as second order ode using change of variable on x method 1

Time used: 0.136 (sec)

In normal form the ode

t2x′′ − 6tx′ + 12x = 0 (1)

Becomes

x′′ + p(t)x′ + q(t)x = 0 (2)

Where

p(t) = −6
t

q(t) = 12
t2

Applying change of variables τ = g(t) to (2) results

d2

dτ 2
x(τ) + p1

(
d

dτ
x(τ)

)
+ q1x(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(t) + p(t) τ ′(t)

τ ′ (t)2
(4)

q1(τ) =
q(t)
τ ′ (t)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=
2
√
3
√

1
t2

c
(6)

τ ′′ = − 2
√
3

c
√

1
t2
t3



chapter 2 . book solved problems 312

Substituting the above into (4) results in

p1(τ) =
τ ′′(t) + p(t) τ ′(t)

τ ′ (t)2

=
− 2

√
3

c
√

1
t2 t3

− 6
t

2
√
3
√

1
t2

c(
2
√
3
√

1
t2

c

)2

= −7c
√
3

6
Therefore ode (3) now becomes

x(τ)′′ + p1x(τ)′ + q1x(τ) = 0
d2

dτ 2
x(τ)−

7c
√
3
(

d
dτ
x(τ)

)
6 + c2x(τ) = 0 (7)

The above ode is now solved for x(τ). Since the ode is now constant coefficients, it can
be easily solved to give

x(τ) = e 7
√
3 cτ
12

(
c1 cosh

(√
3 cτ
12

)
+ ic2 sinh

(√
3 cτ
12

))
Now from (6)

τ =
∫ 1

c

√
q dt

=

∫
2
√
3
√

1
t2
dt

c

= 2
√
3 ln (t)
c

Substituting the above into the solution obtained gives

x = t7/2
(
c1 cosh

(
ln (t)
2

)
+ ic2 sinh

(
ln (t)
2

))
Will add steps showing solving for IC soon.

Summary of solutions found

x = t7/2
(
c1 cosh

(
ln (t)
2

)
+ ic2 sinh

(
ln (t)
2

))
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Solved as second order ode using change of variable on y method 1

Time used: 0.169 (sec)

In normal form the given ode is written as

x′′ + p(t)x′ + q(t)x = 0 (2)

Where

p(t) = −6
t

q(t) = 12
t2

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 12
t2

−
(
−6

t

)′
2 −

(
−6

t

)2
4

= 12
t2

−
( 6
t2

)
2 −

(36
t2

)
4

= 12
t2

−
(
3
t2

)
− 9

t2

= 0

Since the Liouville ode invariant does not depend on the independent variable t then
the transformation

x = v(t) z(t) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(t) is given by

z(t) = e−
∫ p(t)

2 dt

= e−
∫ − 6

t
2

= t3 (5)

Hence (3) becomes

x = v(t) t3 (4)

Applying this change of variable to the original ode results in

t5v′′(t) = 0
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Which is now solved for v(t).

The above ode can be simplified to

v′′(t) = 0

Integrating twice gives the solution

v(t) = c1t+ c2

Will add steps showing solving for IC soon.

Now that v(t) is known, then

x = v(t) z(t)
= (c1t+ c2) (z(t)) (7)

But from (5)

z(t) = t3

Hence (7) becomes

x = (c1t+ c2) t3

Will add steps showing solving for IC soon.

Summary of solutions found

x = (c1t+ c2) t3

Solved as second order ode using change of variable on y method 2

Time used: 0.119 (sec)

In normal form the ode

t2x′′ − 6tx′ + 12x = 0 (1)

Becomes

x′′ + p(t)x′ + q(t)x = 0 (2)

Where

p(t) = −6
t

q(t) = 12
t2
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Applying change of variables on the depndent variable x = v(t) tn to (2) gives the
following ode where the dependent variables is v(t) and not x.

v′′(t) +
(
2n
t

+ p

)
v′(t) +

(
n(n− 1)

t2
+ np

t
+ q

)
v(t) = 0 (3)

Let the coefficient of v(t) above be zero. Hence

n(n− 1)
t2

+ np

t
+ q = 0 (4)

Substituting the earlier values found for p(t) and q(t) into (4) gives

n(n− 1)
t2

− 6n
t2

+ 12
t2

= 0 (5)

Solving (5) for n gives

n = 4 (6)

Substituting this value in (3) gives

v′′(t) + 2v′(t)
t

= 0

v′′(t) + 2v′(t)
t

= 0 (7)

Using the substitution

u(t) = v′(t)

Then (7) becomes

u′(t) + 2u(t)
t

= 0 (8)

The above is now solved for u(t). In canonical form a linear first order is

u′(t) + q(t)u(t) = p(t)

Comparing the above to the given ode shows that

q(t) = 2
t

p(t) = 0
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The integrating factor µ is

µ = e
∫
q dt

= e
∫ 2

t
dt

= t2

The ode becomes
d
dtµu = 0

d
dt
(
u t2
)
= 0

Integrating gives

u t2 =
∫

0 dt+ c1

= c1

Dividing throughout by the integrating factor t2 gives the final solution

u(t) = c1
t2

Now that u(t) is known, then

v′(t) = u(t)

v(t) =
∫

u(t) dt+ c2

= −c1
t
+ c2

Hence

x = v(t) tn

=
(
−c1

t
+ c2

)
t4

= (c2t− c1) t3

Will add steps showing solving for IC soon.

Summary of solutions found

x =
(
−c1

t
+ c2

)
t4
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Solved as second order ode using Kovacic algorithm

Time used: 0.048 (sec)

Writing the ode as

t2x′′ − 6tx′ + 12x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = t2

B = −6t (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(t) = 0 (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.27: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of t, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(t) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−6t
t2 dt

= z1e
3 ln(t)

= z1
(
t3
)
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Which simplifies to
x1 = t3

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
−−6t

t2 dt

(x1)2
dt

= x1

∫
e6 ln(t)

(x1)2
dt

= x1(t)

Therefore the solution is

x = c1x1 + c2x2

= c1
(
t3
)
+ c2

(
t3(t)

)
Will add steps showing solving for IC soon.

Summary of solutions found

x = c2 t
4 + c1 t

3

Solved as second order ode adjoint method

Time used: 0.154 (sec)

In normal form the ode

t2x′′ − 6tx′ + 12x = 0 (1)

Becomes

x′′ + p(t)x′ + q(t)x = r(t) (2)
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Where

p(t) = −6
t

q(t) = 12
t2

r(t) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ −

(
−6ξ(t)

t

)′

+
(
12ξ(t)
t2

)
= 0

ξ′′(t) + 6ξ(t)
t2

+ 6ξ′(t)
t

= 0

Which is solved for ξ(t). This is Euler second order ODE. Let the solution be ξ = tr,
then ξ′ = rtr−1 and ξ′′ = r(r−1)tr−2. Substituting these back into the given ODE gives

t2(r(r − 1))tr−2 + 6trtr−1 + 6tr = 0

Simplifying gives
r(r − 1) tr + 6r tr + 6tr = 0

Since tr 6= 0 then dividing throughout by tr gives

r(r − 1) + 6r + 6 = 0

Or
r2 + 5r + 6 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = −3
r2 = −2

Since the roots are real and distinct, then the general solution is

ξ = c1ξ1 + c2ξ2

Where ξ1 = tr1 and ξ2 = tr2 . Hence

ξ = c1
t3

+ c2
t2
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Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(t)x′ − xξ′(t) + ξ(t) p(t)x =
∫

ξ(t) r(t) dt

x′ + x

(
p(t)− ξ′(t)

ξ (t)

)
=
∫
ξ(t) r(t) dt
ξ (t)

Or

x′ + x

(
−6
t
−

−3c1
t4

− 2c2
t3

c1
t3
+ c2

t2

)
= 0

Which is now a first order ode. This is now solved for x. In canonical form a linear first
order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = − 4c2t+ 3c1
t (c2t+ c1)

p(t) = 0

The integrating factor µ is

µ = e
∫
q dt

= e
∫
− 4c2t+3c1

t(c2t+c1)
dt

= 1
t3 (c2t+ c1)

The ode becomes

d
dtµx = 0

d
dt

(
x

t3 (c2t+ c1)

)
= 0

Integrating gives

x

t3 (c2t+ c1)
=
∫

0 dt+ c3

= c3
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Dividing throughout by the integrating factor 1
t3(c2t+c1) gives the final solution

x = t3(c2t+ c1) c3

Hence, the solution found using Lagrange adjoint equation method is

x = t3(c2t+ c1) c3

The constants can be merged to give

x = t3(c2t+ c1)

Will add steps showing solving for IC soon.

Summary of solutions found

x = t3(c2t+ c1)

Maple step by step solution

Let’s solve
t2x′′ − 6tx′ + 12x = 0

• Highest derivative means the order of the ODE is 2
x′′

• Isolate 2nd derivative
x′′ = −12x

t2
+ 6x′

t

• Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
x′′ − 6x′

t
+ 12x

t2
= 0

• Multiply by denominators of the ODE
t2x′′ − 6tx′ + 12x = 0

• Make a change of variables
s = ln (t)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of x with respect to t , using the chain rule

x′ =
(

d
ds
x(s)

)
s′(t)

◦ Compute derivative

x′ =
d
ds

x(s)
t

◦ Calculate the 2nd derivative of x with respect to t , using the chain rule
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x′′ =
(

d2

ds2
x(s)

)
s′(t)2 + s′′(t)

(
d
ds
x(s)

)
◦ Compute derivative

x′′ =
d2
ds2 x(s)

t2
−

d
ds

x(s)
t2

Substitute the change of variables back into the ODE

t2
(

d2
ds2 x(s)

t2
−

d
ds

x(s)
t2

)
− 6 d

ds
x(s) + 12x(s) = 0

• Simplify
d2

ds2
x(s)− 7 d

ds
x(s) + 12x(s) = 0

• Characteristic polynomial of ODE
r2 − 7r + 12 = 0

• Factor the characteristic polynomial
(r − 3) (r − 4) = 0

• Roots of the characteristic polynomial
r = (3, 4)

• 1st solution of the ODE
x1(s) = e3s

• 2nd solution of the ODE
x2(s) = e4s

• General solution of the ODE
x(s) = C1x1(s) + C2x2(s)

• Substitute in solutions
x(s) = C1 e3s + C2 e4s

• Change variables back using s = ln (t)
x = C2 t4 + C1 t3

• Simplify
x = t3(C2 t+ C1 )

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
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Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 13� �
dsolve(t^2*diff(diff(x(t),t),t)-6*t*diff(x(t),t)+12*x(t) = 0,

x(t),singsol=all)� �
x = t3(c2t+ c1)

Mathematica DSolve solution

Solving time : 0.017 (sec)
Leaf size : 16� �
DSolve[{t^2*D[x[t],{t,2}]-6*t*D[x[t],t]+12*x[t]==0,{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → t3(c2t+ c1)
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Solve

x′ = −λx

Solved as first order autonomous ode

Time used: 0.148 (sec)

Integrating gives ∫
− 1
λx

dx = dt

− ln (x)
λ

= t+ c1

Singular solutions are found by solving

−λx = 0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

x = 0
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The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

Figure 2.69: Phase line diagram
Solving for x gives

x = 0
x = e−c1λ−tλ

Summary of solutions found
x = 0
x = e−c1λ−tλ
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Solved as first order homogeneous class D2 ode

Time used: 0.121 (sec)

Applying change of variables x = u(t) t, then the ode becomes

u′(t) t+ u(t) = −λu(t) t

Which is now solved The ode u′(t) = −u(t)(tλ+1)
t

is separable as it can be written as

u′(t) = −u(t) (tλ+ 1)
t

= f(t)g(u)

Where

f(t) = −tλ+ 1
t

g(u) = u

Integrating gives ∫ 1
g(u) du =

∫
f(t) dt∫ 1

u
du =

∫
−tλ+ 1

t
dt

ln (u(t)) = −tλ+ ln
(
1
t

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(t)
gives

u(t) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(t)) = −tλ+ ln
(
1
t

)
+ c1

u(t) = 0
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Solving for u(t) gives
u(t) = 0

u(t) = e−tλ+c1

t

Converting u(t) = 0 back to x gives

x = 0

Converting u(t) = e−tλ+c1
t

back to x gives

x = e−tλ+c1

Summary of solutions found
x = 0
x = e−tλ+c1

Solved as first order Exact ode

Time used: 0.106 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

dx = (−λx) dt
(λx) dt+dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = λx

N(t, x) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives

∂M

∂x
= ∂

∂x
(λx)

= λ

And

∂N

∂t
= ∂

∂t
(1)

= 0

Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1((λ)− (0))
= λ
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Since A does not depend on x, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dt

= e
∫
λ dt

The result of integrating gives

µ = etλ

= etλ

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= etλ(λx)
= λx etλ

And

N = µN

= etλ(1)
= etλ

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dx
dt = 0(

λx etλ
)
+
(
etλ
) dx
dt = 0

The following equations are now set up to solve for the function φ(t, x)
∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (2) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
N dx∫

∂φ

∂x
dx =

∫
etλ dx

(3)φ = etλx+ f(t)
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Where f(t) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t t gives

(4)∂φ

∂t
= λx etλ + f ′(t)

But equation (1) says that ∂φ
∂t

= λx etλ. Therefore equation (4) becomes

(5)λx etλ = λx etλ + f ′(t)

Solving equation (5) for f ′(t) gives

f ′(t) = 0

Therefore
f(t) = c1

Where c1 is constant of integration. Substituting this result for f(t) into equation (3)
gives φ

φ = etλx+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = etλx

Solving for x gives
x = c1 e−tλ

Summary of solutions found

x = c1 e−tλ

Solved using Lie symmetry for first order ode

Time used: 0.349 (sec)

Writing the ode as

x′ = −λx

x′ = ω(t, x)
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The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = ta2 + xa3 + a1

(2E)η = tb2 + xb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 − λx(b3 − a2)− λ2x2a3 + λ(tb2 + xb3 + b1) = 0

Putting the above in normal form gives

−λ2x2a3 + λtb2 + λxa2 + λb1 + b2 = 0

Setting the numerator to zero gives

(6E)−λ2x2a3 + λtb2 + λxa2 + λb1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {t, x} in them.

{t, x}

The following substitution is now made to be able to collect on all terms with {t, x} in
them

{t = v1, x = v2}

The above PDE (6E) now becomes

(7E)−λ2a3v
2
2 + λa2v2 + λb2v1 + λb1 + b2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−λ2a3v
2
2 + λa2v2 + λb2v1 + λb1 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

λa2 = 0
λb2 = 0

−λ2a3 = 0
λb1 + b2 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = x

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt

ξ
= dx

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t



chapter 2 . book solved problems 335

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)

Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) = −λx

Evaluating all the partial derivatives gives

Rt = 1
Rx = 0
St = 0

Sx = 1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −λ (2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −λ

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.
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Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
−λ dR

S(R) = −λR + c2

To complete the solution, we just need to transform the above back to t, x coordinates.
This results in

ln (x) = −tλ+ c2

Which gives

x = e−tλ+c2

Summary of solutions found

x = e−tλ+c2

Maple step by step solution

Let’s solve
x′ = −λx

• Highest derivative means the order of the ODE is 1
x′

• Solve for the highest derivative
x′ = −λx

• Separate variables
x′

x
= −λ

• Integrate both sides with respect to t∫
x′

x
dt =

∫
−λdt+ C1

• Evaluate integral
ln (x) = −tλ+ C1

• Solve for x
x = e−tλ+C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 11� �
dsolve(diff(x(t),t) = -lambda*x(t),

x(t),singsol=all)� �
x = c1 e−tλ

Mathematica DSolve solution

Solving time : 0.021 (sec)
Leaf size : 18� �
DSolve[{D[x[t],t]==\[Lambda]*x[t],{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → c1e

λt

x(t) → 0
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2.2.2 problem 2

Solution using Matrix exponential method . . . . . . . . . . . . 338
Solution using explicit Eigenvalue and Eigenvector method . . . 339
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 343
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 345
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 345

Internal problem ID [18191]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 4. Autonomous systems. Exercises at page 69
Problem number : 2
Date solved : Thursday, December 19, 2024 at 06:17:49 PM
CAS classification : system_of_ODEs

x′ = x

y′ = x+ 2y

Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or [
x′

y′

]
=
[
1 0
1 2

] [
x

y

]

For the above matrix A, the matrix exponential can be found to be

eAt =
[

et 0
e2t − et e2t

]
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=
[

et 0
e2t − et e2t

] [
c1
c2

]

=
[

etc1
(e2t − et) c1 + e2tc2

]

=
[

etc1
(c1 + c2) e2t − etc1

]

Since no forcing function is given, then the final solution is ~xh(t) above.

Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or [
x′

y′

]
=
[
1 0
1 2

] [
x

y

]

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det
([

1 0
1 2

]
− λ

[
1 0
0 1

])
= 0

Therefore

det
([

1− λ 0
1 2− λ

])
= 0

Since the matrix A is triangular matrix, then the determinant is the product of the
elements along the diagonal. Therefore the above becomes

(1− λ)(2− λ) = 0
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The roots of the above are the eigenvalues.

λ1 = 1
λ2 = 2

This table summarises the above result
eigenvalue algebraic multiplicity type of eigenvalue
1 1 real eigenvalue
2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes([
1 0
1 2

]
− (1)

[
1 0
0 1

])[
v1
v2

]
=
[
0
0

]
[
0 0
1 1

] [
v1
v2

]
=
[
0
0

]
Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is [

0 0 0
1 1 0

]
Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives[

1 1 0
0 0 0

]
Therefore the system in Echelon form is[

1 1
0 0

] [
v1
v2

]
=
[
0
0

]
The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −t}

Hence the solution is [
v1
t

]
=
[
−t

t

]
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as[

v1
t

]
= t

[
−1
1

]
Let t = 1 the eigenvector becomes [

v1
t

]
=
[
−1
1

]
Considering the eigenvalue λ2 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes([
1 0
1 2

]
− (2)

[
1 0
0 1

])[
v1
v2

]
=
[
0
0

]
[
−1 0
1 0

] [
v1
v2

]
=
[
0
0

]
Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is [

−1 0 0
1 0 0

]

R2 = R2 +R1 =⇒
[
−1 0 0
0 0 0

]
Therefore the system in Echelon form is[

−1 0
0 0

] [
v1
v2

]
=
[
0
0

]
The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 0}

Hence the solution is [
v1
t

]
=
[
0
t

]
Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as[

v1
t

]
= t

[
0
1

]
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Let t = 1 the eigenvector becomes [
v1
t

]
=
[
0
1

]
The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity
eigenvalue algebraic m geometric k defective? eigenvectors

1 1 1 No
[

−1
1

]

2 1 1 No
[
0
1

]

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
t

=
[
−1
1

]
et

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
2t

=
[
0
1

]
e2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as [
x

y

]
= c1

[
−et

et

]
+ c2

[
0
e2t

]
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Which becomes [
x

y

]
=
[

−c1 et

c1 et + c2 e2t

]

Figure 2.70: Phase plot

Maple step by step solution

Let’s solve
[x′ = x, y′ = x+ 2y]

• Define vector

→
x(t) =

[
x

y

]
• Convert system into a vector equation

→
x
′
(t) =

[
1 0
1 2

]
· →x(t) +

[
0
0

]
• System to solve
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→
x
′
(t) =

[
1 0
1 2

]
· →x(t)

• Define the coefficient matrix

A =
[
1 0
1 2

]
• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A[[

1,
[
−1
1

]]
,

[
2,
[
0
1

]]]
• Consider eigenpair[

1,
[
−1
1

]]
• Solution to homogeneous system from eigenpair

→
x1 = et ·

[
−1
1

]
• Consider eigenpair[

2,
[
0
1

]]
• Solution to homogeneous system from eigenpair

→
x2 = e2t ·

[
0
1

]
• General solution to the system of ODEs

→
x = C1→

x1 + C2→
x2

• Substitute solutions into the general solution
→
x = C1 et ·

[
−1
1

]
+ C2 e2t ·

[
0
1

]
• Substitute in vector of dependent variables[

x

y

]
=
[

−C1 et

C1 et + C2 e2t

]
• Solution to the system of ODEs

{x = −C1 et, y = C1 et + C2 e2t}
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Maple dsolve solution

Solving time : 0.081 (sec)
Leaf size : 23� �
dsolve([diff(x(t),t) = x(t), diff(y(t),t) = x(t)+2*y(t)]

,{op([x(t), y(t)])})� �
x = etc2
y = −etc2 + c1 e2t

Mathematica DSolve solution

Solving time : 0.009 (sec)
Leaf size : 33� �
DSolve[{{D[x[t],t]==x[t],D[y[t],t]==x[t]+2*y[t]},{}},

{x[t],y[t]},t,IncludeSingularSolutions->True]� �
x(t) → c1e

t

y(t) → et
(
c1
(
et − 1

)
+ c2e

t
)
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2.2.3 problem 3

Solved as second order Euler type ode . . . . . . . . . . . . . . 347
Solved as second order solved by an integrating factor . . . . . 347
Solved as second order ode using change of variable on

x method 2 . . . . . . . . . . . . . . . . . . . . . . . . 348
Solved as second order ode using change of variable on

x method 1 . . . . . . . . . . . . . . . . . . . . . . . . 355
Solved as second order ode using change of variable on

y method 1 . . . . . . . . . . . . . . . . . . . . . . . . 357
Solved as second order ode using change of variable on

y method 2 . . . . . . . . . . . . . . . . . . . . . . . . 359
Solved as second order ode using non constant coeff trans-

formation on B method . . . . . . . . . . . . . . . . . 361
Solved as second order ode using Kovacic algorithm . . . . . . . 363
Solved as second order ode adjoint method . . . . . . . . . . . . 366
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 369
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 371
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 371

Internal problem ID [18192]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 4. Autonomous systems. Exercises at page 69
Problem number : 3
Date solved : Thursday, December 19, 2024 at 06:17:50 PM
CAS classification :
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

Solve

t2x′′ − 2tx′ + 2x = 0
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Solved as second order Euler type ode

Time used: 0.090 (sec)

This is Euler second order ODE. Let the solution be x = tr, then x′ = rtr−1 and
x′′ = r(r − 1)tr−2. Substituting these back into the given ODE gives

t2(r(r − 1))tr−2 − 2trtr−1 + 2tr = 0

Simplifying gives
r(r − 1) tr − 2r tr + 2tr = 0

Since tr 6= 0 then dividing throughout by tr gives

r(r − 1)− 2r + 2 = 0

Or
r2 − 3r + 2 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = 1
r2 = 2

Since the roots are real and distinct, then the general solution is

x = c1x1 + c2x2

Where x1 = tr1 and x2 = tr2 . Hence

x = c2 t
2 + c1t

Will add steps showing solving for IC soon.

Summary of solutions found

x = c2 t
2 + c1t

Solved as second order solved by an integrating factor

Time used: 0.029 (sec)

The ode satisfies this form

x′′ + p(t)x′ +
(
p(t)2 + p′(t)

)
x

2 = f(t)
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Where p(t) = −2
t
. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
− 2

t
dx

= 1
t

Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)x) ′′ = 0(x
t

)
′′ = 0

Integrating once gives (x
t

)′
= c1

Integrating again gives (x
t

)
= c1t+ c2

Hence the solution is

x = c1t+ c2
1
t

Or
x = t2c1 + c2t

Will add steps showing solving for IC soon.

Summary of solutions found

x = t2c1 + c2t

Solved as second order ode using change of variable on x method 2

Time used: 0.335 (sec)

In normal form the ode

t2x′′ − 2tx′ + 2x = 0 (1)

Becomes

x′′ + p(t)x′ + q(t)x = 0 (2)
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Where

p(t) = −2
t

q(t) = 2
t2

Applying change of variables τ = g(t) to (2) gives

d2

dτ 2
x(τ) + p1

(
d

dτ
x(τ)

)
+ q1x(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(t) + p(t) τ ′(t)

τ ′ (t)2
(4)

q1(τ) =
q(t)
τ ′ (t)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(t) + p(t) τ ′(t) = 0

This ode is solved resulting in

τ =
∫

e−
∫
p(t)dtdt

=
∫

e−
∫
− 2

t
dtdt

=
∫

e2 ln(t) dt

=
∫

t2dt

= t3

3 (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(t)
τ ′ (t)2

=
2
t2

t4

= 2
t6

(7)
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Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
x(τ) + q1x(τ) = 0

d2

dτ 2
x(τ) + 2x(τ)

t6
= 0

But in terms of τ
2
t6

= 2
9τ 2

Hence the above ode becomes

d2

dτ 2
x(τ) + 2x(τ)

9τ 2 = 0

The above ode is now solved for x(τ). Writing the ode as

d2

dτ 2
x(τ) + 2x(τ)

9τ 2 = 0 (1)

A
d2

dτ 2
x(τ) +B

d

dτ
x(τ) + Cx(τ) = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = 2
9τ 2

Applying the Liouville transformation on the dependent variable gives

z(τ) = x(τ) e
∫

B
2A dτ

Then (2) becomes

z′′(τ) = rz(τ) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −2
9τ 2 (6)

Comparing the above to (5) shows that

s = −2
t = 9τ 2

Therefore eq. (4) becomes

z′′(τ) =
(
− 2
9τ 2

)
z(τ) (7)

Equation (7) is now solved. After finding z(τ) then x(τ) is found using the inverse
transformation

x(τ) = z(τ) e−
∫

B
2A dτ

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.31: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2
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The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 9τ 2. There is a pole at τ = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 2
9τ 2

For the pole at τ = 0 let b be the coefficient of 1
τ2

in the partial fractions decomposition
of r given above. Therefore b = −2

9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

3
α−
c = 1

2 −
√
1 + 4b = 1

3

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

τ2
in

the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 2

9τ 2

Since the gcd(s, t) = 1. This gives b = −2
9 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

3
α−
∞ = 1

2 −
√
1 + 4b = 1

3

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 2
9τ 2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2
3

1
3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2
3

1
3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 1
3 then

d = α−
∞ −

(
α−
c1

)
= 1

3 −
(
1
3

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

τ − c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

τ − c1

)
+ (−)[

√
r]∞

= 1
3τ + (−) (0)

= 1
3τ

= 1
3τ

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(τ) of degree d = 0 to solve the ode. The polynomial p(τ) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(τ) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
3τ

)
(0) +

((
− 1
3τ 2

)
+
(

1
3τ

)2

−
(
− 2
9τ 2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(τ) = pe
∫
ω dτ

= e
∫ 1

3τ dτ

= τ 1/3

The first solution to the original ode in x(τ) is found from

x1 = z1e
∫
− 1

2
B
A

dτ

Since B = 0 then the above reduces to

x1 = z1

= τ 1/3

Which simplifies to
x1 = τ 1/3

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dτ

x2
1

dτ

Since B = 0 then the above becomes

x2 = x1

∫ 1
x2
1
dτ

= τ 1/3
∫ 1

τ 2/3
dτ

= τ 1/3
(
3τ 1/3

)
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Therefore the solution is

x(τ) = c1x1 + c2x2

= c1
(
τ 1/3

)
+ c2

(
τ 1/3

(
3τ 1/3

))
Will add steps showing solving for IC soon.

The above solution is now transformed back to x using (6) which results in

x = c132/3(t3)1/3

3 + c231/3
(
t3
)2/3

Will add steps showing solving for IC soon.

Summary of solutions found

x = c132/3(t3)1/3

3 + c231/3
(
t3
)2/3

Solved as second order ode using change of variable on x method 1

Time used: 0.116 (sec)

In normal form the ode

t2x′′ − 2tx′ + 2x = 0 (1)

Becomes

x′′ + p(t)x′ + q(t)x = 0 (2)

Where

p(t) = −2
t

q(t) = 2
t2

Applying change of variables τ = g(t) to (2) results

d2

dτ 2
x(τ) + p1

(
d

dτ
x(τ)

)
+ q1x(τ) = 0 (3)
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Where τ is the new independent variable, and

p1(τ) =
τ ′′(t) + p(t) τ ′(t)

τ ′ (t)2
(4)

q1(τ) =
q(t)
τ ′ (t)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
2
√

1
t2

c
(6)

τ ′′ = −
√
2

c
√

1
t2
t3

Substituting the above into (4) results in

p1(τ) =
τ ′′(t) + p(t) τ ′(t)

τ ′ (t)2

=
−

√
2

c
√

1
t2 t3

− 2
t

√
2
√

1
t2

c(√
2
√

1
t2

c

)2

= −3c
√
2

2

Therefore ode (3) now becomes

x(τ)′′ + p1x(τ)′ + q1x(τ) = 0
d2

dτ 2
x(τ)−

3c
√
2
(

d
dτ
x(τ)

)
2 + c2x(τ) = 0 (7)

The above ode is now solved for x(τ). Since the ode is now constant coefficients, it can
be easily solved to give

x(τ) = e 3
√
2 cτ
4

(
c1 cosh

(√
2 cτ
4

)
+ ic2 sinh

(√
2 cτ
4

))
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Now from (6)

τ =
∫ 1

c

√
q dt

=

∫ √
2
√

1
t2
dt

c

=
√
2 ln (t)
c

Substituting the above into the solution obtained gives

x = t3/2
(
c1 cosh

(
ln (t)
2

)
+ ic2 sinh

(
ln (t)
2

))
Will add steps showing solving for IC soon.

Summary of solutions found

x = t3/2
(
c1 cosh

(
ln (t)
2

)
+ ic2 sinh

(
ln (t)
2

))
Solved as second order ode using change of variable on y method 1

Time used: 0.063 (sec)

In normal form the given ode is written as

x′′ + p(t)x′ + q(t)x = 0 (2)

Where

p(t) = −2
t

q(t) = 2
t2

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 2
t2

−
(
−2

t

)′
2 −

(
−2

t

)2
4

= 2
t2

−
( 2
t2

)
2 −

( 4
t2

)
4

= 2
t2

−
(
1
t2

)
− 1

t2

= 0



chapter 2 . book solved problems 358

Since the Liouville ode invariant does not depend on the independent variable t then
the transformation

x = v(t) z(t) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(t) is given by

z(t) = e−
∫ p(t)

2 dt

= e−
∫ − 2

t
2

= t (5)

Hence (3) becomes

x = v(t) t (4)

Applying this change of variable to the original ode results in

t3v′′(t) = 0

Which is now solved for v(t).

The above ode can be simplified to

v′′(t) = 0

Integrating twice gives the solution

v(t) = c1t+ c2

Will add steps showing solving for IC soon.

Now that v(t) is known, then

x = v(t) z(t)
= (c1t+ c2) (z(t)) (7)

But from (5)

z(t) = t

Hence (7) becomes

x = (c1t+ c2) t

Will add steps showing solving for IC soon.

Summary of solutions found

x = (c1t+ c2) t
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Solved as second order ode using change of variable on y method 2

Time used: 0.227 (sec)

In normal form the ode

t2x′′ − 2tx′ + 2x = 0 (1)

Becomes

x′′ + p(t)x′ + q(t)x = 0 (2)

Where

p(t) = −2
t

q(t) = 2
t2

Applying change of variables on the depndent variable x = v(t) tn to (2) gives the
following ode where the dependent variables is v(t) and not x.

v′′(t) +
(
2n
t

+ p

)
v′(t) +

(
n(n− 1)

t2
+ np

t
+ q

)
v(t) = 0 (3)

Let the coefficient of v(t) above be zero. Hence

n(n− 1)
t2

+ np

t
+ q = 0 (4)

Substituting the earlier values found for p(t) and q(t) into (4) gives

n(n− 1)
t2

− 2n
t2

+ 2
t2

= 0 (5)

Solving (5) for n gives

n = 2 (6)

Substituting this value in (3) gives

v′′(t) + 2v′(t)
t

= 0

v′′(t) + 2v′(t)
t

= 0 (7)
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Using the substitution

u(t) = v′(t)

Then (7) becomes

u′(t) + 2u(t)
t

= 0 (8)

The above is now solved for u(t). In canonical form a linear first order is

u′(t) + q(t)u(t) = p(t)

Comparing the above to the given ode shows that

q(t) = 2
t

p(t) = 0

The integrating factor µ is

µ = e
∫
q dt

= e
∫ 2

t
dt

= t2

The ode becomes
d
dtµu = 0

d
dt
(
u t2
)
= 0

Integrating gives

u t2 =
∫

0 dt+ c1

= c1

Dividing throughout by the integrating factor t2 gives the final solution

u(t) = c1
t2

Now that u(t) is known, then

v′(t) = u(t)

v(t) =
∫

u(t) dt+ c2

= −c1
t
+ c2
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Hence

x = v(t) tn

=
(
−c1

t
+ c2

)
t2

= (c2t− c1) t

Will add steps showing solving for IC soon.

Summary of solutions found

x =
(
−c1

t
+ c2

)
t2

Solved as second order ode using non constant coeff transformation on B
method

Time used: 0.059 (sec)

Given an ode of the form

Ax′′ +Bx′ + Cx = F (t)

This method reduces the order ode the ODE by one by applying the transformation

x = Bv

This results in

x′ = B′v + v′B

x′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0
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The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from x = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = t2

B = −2t
C = 2
F = 0

The above shows that for this ode

AB′′ +BB′ + CB =
(
t2
)
(0) + (−2t) (−2) + (2) (−2t)

= 0

Hence the ode in v given in (1) now simplifies to

−2t3v′′ + (0) v′ = 0

Now by applying v′ = u the above becomes

−2t3u′(t) = 0

Which is now solved for u. Since the ode has the form u′(t) = f(t), then we only need
to integrate f(t). ∫

du =
∫

0 dt+ c1

u(t) = c1

The ode for v now becomes
v′(t) = c1

Which is now solved for v. Since the ode has the form v′(t) = f(t), then we only need
to integrate f(t). ∫

dv =
∫

c1 dt

v(t) = c1t+ c2
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Replacing v(t) above by − x
2t , then the solution becomes

x(t) = Bv

= −2(c1t+ c2) t

Will add steps showing solving for IC soon.

Summary of solutions found

x = −2(c1t+ c2) t

Solved as second order ode using Kovacic algorithm

Time used: 0.044 (sec)

Writing the ode as

t2x′′ − 2tx′ + 2x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = t2

B = −2t (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)
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Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(t) = 0 (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.32: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]
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Since r = 0 is not a function of t, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(t) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−2t
t2 dt

= z1e
ln(t)

= z1(t)

Which simplifies to
x1 = t

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
−−2t

t2 dt

(x1)2
dt

= x1

∫
e2 ln(t)

(x1)2
dt

= x1(t)

Therefore the solution is

x = c1x1 + c2x2

= c1(t) + c2(t(t))

Will add steps showing solving for IC soon.

Summary of solutions found

x = c2 t
2 + c1t
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Solved as second order ode adjoint method

Time used: 0.276 (sec)

In normal form the ode

t2x′′ − 2tx′ + 2x = 0 (1)

Becomes

x′′ + p(t)x′ + q(t)x = r(t) (2)

Where

p(t) = −2
t

q(t) = 2
t2

r(t) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ −

(
−2ξ(t)

t

)′

+
(
2ξ(t)
t2

)
= 0

ξ′′(t) + 2ξ′(t)
t

= 0

Which is solved for ξ(t). This is second order ode with missing dependent variable ξ.
Let

p(t) = ξ′

Then

p′(t) = ξ′′

Hence the ode becomes

p′(t) + 2p(t)
t

= 0

Which is now solve for p(t) as first order ode. In canonical form a linear first order is

p′(t) + q(t)p(t) = p(t)
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Comparing the above to the given ode shows that

q(t) = 2
t

p(t) = 0

The integrating factor µ is

µ = e
∫
q dt

= e
∫ 2

t
dt

= t2

The ode becomes
d
dtµp = 0

d
dt
(
p t2
)
= 0

Integrating gives

p t2 =
∫

0 dt+ c1

= c1

Dividing throughout by the integrating factor t2 gives the final solution

p(t) = c1
t2

For solution (1) found earlier, since p = ξ′ then we now have a new first order ode to
solve which is

ξ′ = c1
t2

Since the ode has the form ξ′ = f(t), then we only need to integrate f(t).∫
dξ =

∫
c1
t2

dt

ξ = −c1
t
+ c2

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(t)x′ − xξ′(t) + ξ(t) p(t)x =
∫

ξ(t) r(t) dt

x′ + x

(
p(t)− ξ′(t)

ξ (t)

)
=
∫
ξ(t) r(t) dt
ξ (t)
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Or

x′ + x

(
−2
t
− c1

t2
(
− c1

t
+ c2

)) = 0

Which is now a first order ode. This is now solved for x. In canonical form a linear first
order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = − −2c2t+ c1
t (−c2t+ c1)

p(t) = 0

The integrating factor µ is

µ = e
∫
q dt

= e
∫
− −2c2t+c1

t(−c2t+c1)
dt

= 1
(c2t− c1) t

The ode becomes

d
dtµx = 0

d
dt

(
x

(c2t− c1) t

)
= 0

Integrating gives

x

(c2t− c1) t
=
∫

0 dt+ c3

= c3

Dividing throughout by the integrating factor 1
(c2t−c1)t gives the final solution

x = (c2t− c1) tc3

Hence, the solution found using Lagrange adjoint equation method is

x = (c2t− c1) tc3
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The constants can be merged to give

x = (c2t− c1) t

Will add steps showing solving for IC soon.

Summary of solutions found

x = (c2t− c1) t

Maple step by step solution

Let’s solve
t2x′′ − 2tx′ + 2x = 0

• Highest derivative means the order of the ODE is 2
x′′

• Isolate 2nd derivative
x′′ = −2x

t2
+ 2x′

t

• Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
x′′ − 2x′

t
+ 2x

t2
= 0

• Multiply by denominators of the ODE
t2x′′ − 2tx′ + 2x = 0

• Make a change of variables
s = ln (t)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of x with respect to t , using the chain rule

x′ =
(

d
ds
x(s)

)
s′(t)

◦ Compute derivative

x′ =
d
ds

x(s)
t

◦ Calculate the 2nd derivative of x with respect to t , using the chain rule

x′′ =
(

d2

ds2
x(s)

)
s′(t)2 + s′′(t)

(
d
ds
x(s)

)
◦ Compute derivative

x′′ =
d2
ds2 x(s)

t2
−

d
ds

x(s)
t2

Substitute the change of variables back into the ODE

t2
(

d2
ds2 x(s)

t2
−

d
ds

x(s)
t2

)
− 2 d

ds
x(s) + 2x(s) = 0
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• Simplify
d2

ds2
x(s)− 3 d

ds
x(s) + 2x(s) = 0

• Characteristic polynomial of ODE
r2 − 3r + 2 = 0

• Factor the characteristic polynomial
(r − 1) (r − 2) = 0

• Roots of the characteristic polynomial
r = (1, 2)

• 1st solution of the ODE
x1(s) = es

• 2nd solution of the ODE
x2(s) = e2s

• General solution of the ODE
x(s) = C1x1(s) + C2x2(s)

• Substitute in solutions
x(s) = C1 es + C2 e2s

• Change variables back using s = ln (t)
x = C2 t2 + C1 t

• Simplify
x = t(C2 t+ C1 )

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
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Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 11� �
dsolve(t^2*diff(diff(x(t),t),t)-2*t*diff(x(t),t)+2*x(t) = 0,

x(t),singsol=all)� �
x = t(c2t+ c1)

Mathematica DSolve solution

Solving time : 0.16 (sec)
Leaf size : 133� �
DSolve[{t^2*D[x[t],{t,2}]-2*D[x[t],t]+2*x[t]==0,{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → 2−

1
2 i
(√

7−i
)
t
1
2−

i
√
7

2

(
c2t

i
√
7Hypergeometric1F1

(
−1
2 − i

√
7

2 , 1− i
√
7,−2

t

)

+ 2i
√
7c1Hypergeometric1F1

(
1
2i
(
i+

√
7
)
, 1 + i

√
7,−2

t

))
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2.2.4 problem 5 (i)

Solved as second order linear constant coeff ode . . . . . . . . . 372
Solved as second order ode using Kovacic algorithm . . . . . . . 374
Solved as second order ode adjoint method . . . . . . . . . . . . 377
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 381
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 382
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 382

Internal problem ID [18193]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 4. Autonomous systems. Exercises at page 69
Problem number : 5 (i)
Date solved : Thursday, December 19, 2024 at 06:17:52 PM
CAS classification : [[_2nd_order, _missing_x]]

Solve

x′′ − 5x′ + 6x = 0

Solved as second order linear constant coeff ode

Time used: 0.059 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = −5, C = 6. Let the solution be x = eλt. Substituting
this into the ODE gives

λ2etλ − 5λ etλ + 6 etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 − 5λ+ 6 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = −5, C = 6 into the above gives

λ1,2 =
5

(2) (1) ±
1

(2) (1)
√
−52 − (4) (1) (6)

= 5
2 ± 1

2

Hence

λ1 =
5
2 + 1

2

λ2 =
5
2 − 1

2

Which simplifies to
λ1 = 3
λ2 = 2

Since roots are real and distinct, then the solution is

x = c1e
λ1t + c2e

λ2t

x = c1e
(3)t + c2e

(2)t

Or
x = c1 e3t + c2 e2t

Will add steps showing solving for IC soon.

Summary of solutions found

x = c1 e3t + c2 e2t
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Figure 2.71: Slope field plot
x′′ − 5x′ + 6x = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.055 (sec)

Writing the ode as

x′′ − 5x′ + 6x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −5 (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(t) = z(t)
4 (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.34: Necessary conditions for each Kovacic case



chapter 2 . book solved problems 376

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1
4 is not a function of t, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(t) = e− t
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−5
1 dt

= z1e
5t
2

= z1
(
e 5t

2

)
Which simplifies to

x1 = e2t

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
−−5

1 dt

(x1)2
dt

= x1

∫
e5t

(x1)2
dt

= x1
(
e5te−4t)
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Therefore the solution is

x = c1x1 + c2x2

= c1
(
e2t
)
+ c2

(
e2t
(
e5te−4t))

Will add steps showing solving for IC soon.

Summary of solutions found

x = c1 e2t + c2 e3t

Figure 2.72: Slope field plot
x′′ − 5x′ + 6x = 0

Solved as second order ode adjoint method

Time used: 0.293 (sec)

In normal form the ode

x′′ − 5x′ + 6x = 0 (1)
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Becomes

x′′ + p(t)x′ + q(t)x = r(t) (2)

Where

p(t) = −5
q(t) = 6
r(t) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (−5ξ(t))′ + (6ξ(t)) = 0
ξ′′(t) + 5ξ′(t) + 6ξ(t) = 0

Which is solved for ξ(t). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(t) +Bξ′(t) + Cξ(t) = 0

Where in the above A = 1, B = 5, C = 6. Let the solution be ξ = eλt. Substituting this
into the ODE gives

λ2etλ + 5λ etλ + 6 etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 5λ+ 6 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 5, C = 6 into the above gives

λ1,2 =
−5

(2) (1) ±
1

(2) (1)
√

52 − (4) (1) (6)

= −5
2 ± 1

2
Hence

λ1 = −5
2 + 1

2

λ2 = −5
2 − 1

2
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Which simplifies to
λ1 = −2
λ2 = −3

Since roots are real and distinct, then the solution is

ξ = c1e
λ1t + c2e

λ2t

ξ = c1e
(−2)t + c2e

(−3)t

Or
ξ = c1 e−2t + c2 e−3t

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(t)x′ − xξ′(t) + ξ(t) p(t)x =
∫

ξ(t) r(t) dt

x′ + x

(
p(t)− ξ′(t)

ξ (t)

)
=
∫
ξ(t) r(t) dt
ξ (t)

Or

x′ + x

(
−5− −2c1 e−2t − 3c2 e−3t

c1 e−2t + c2 e−3t

)
= 0

Which is now a first order ode. This is now solved for x. In canonical form a linear first
order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = −2c2 e−t + 3c1
c2 e−t + c1

p(t) = 0

The integrating factor µ is

µ = e
∫
q dt

= e
∫
− 2c2 e−t+3c1

c2 e−t+c1
dt

= e−3t

c2 e−t + c1
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The ode becomes

d
dtµx = 0

d
dt

(
x e−3t

c2 e−t + c1

)
= 0

Integrating gives

x e−3t

c2 e−t + c1
=
∫

0 dt+ c3

= c3

Dividing throughout by the integrating factor e−3t

c2 e−t+c1
gives the final solution

x = e2t
(
c1 et + c2

)
c3

Hence, the solution found using Lagrange adjoint equation method is

x = e2t
(
c1 et + c2

)
c3

The constants can be merged to give

x = e2t
(
c1 et + c2

)
Will add steps showing solving for IC soon.

Summary of solutions found

x = e2t
(
c1 et + c2

)
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Figure 2.73: Slope field plot
x′′ − 5x′ + 6x = 0

Maple step by step solution

Let’s solve
x′′ − 5x′ + 6x = 0

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of ODE
r2 − 5r + 6 = 0

• Factor the characteristic polynomial
(r − 2) (r − 3) = 0

• Roots of the characteristic polynomial
r = (2, 3)

• 1st solution of the ODE
x1(t) = e2t

• 2nd solution of the ODE
x2(t) = e3t

• General solution of the ODE
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x = C1x1(t) + C2x2(t)
• Substitute in solutions

x = C1 e2t + C2 e3t

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 17� �
dsolve(diff(diff(x(t),t),t)-5*diff(x(t),t)+6*x(t) = 0,

x(t),singsol=all)� �
x = c1 e3t + c2 e2t

Mathematica DSolve solution

Solving time : 0.013 (sec)
Leaf size : 20� �
DSolve[{D[x[t],{t,2}]-5*D[x[t],t]+6*x[t]==0,{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → e2t

(
c2e

t + c1
)
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2.2.5 problem 5 (ii)

Solved as second order linear constant coeff ode . . . . . . . . . 383
Solved as second order solved by an integrating factor . . . . . 385
Solved as second order ode using Kovacic algorithm . . . . . . . 386
Solved as second order ode adjoint method . . . . . . . . . . . . 389
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 393
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 393
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 394

Internal problem ID [18194]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 4. Autonomous systems. Exercises at page 69
Problem number : 5 (ii)
Date solved : Thursday, December 19, 2024 at 06:17:52 PM
CAS classification : [[_2nd_order, _missing_x]]

Solve

x′′ − 4x′ + 4x = 0

Solved as second order linear constant coeff ode

Time used: 0.061 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = −4, C = 4. Let the solution be x = eλt. Substituting
this into the ODE gives

λ2etλ − 4λ etλ + 4 etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 − 4λ+ 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC



chapter 2 . book solved problems 384

Substituting A = 1, B = −4, C = 4 into the above gives

λ1,2 =
4

(2) (1) ±
1

(2) (1)

√
(−4)2 − (4) (1) (4)

= 2

Hence this is the case of a double root λ1,2 = −2. Therefore the solution is

x = c1e2t + c2t e2t (1)

Will add steps showing solving for IC soon.

Summary of solutions found

x = c1 e2t + c2t e2t

Figure 2.74: Slope field plot
x′′ − 4x′ + 4x = 0
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Solved as second order solved by an integrating factor

Time used: 0.033 (sec)

The ode satisfies this form

x′′ + p(t)x′ +
(
p(t)2 + p′(t)

)
x

2 = f(t)

Where p(t) = −4. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
−4 dx

= e−2t

Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)x) ′′ = 0(
e−2tx

) ′′ = 0

Integrating once gives (
e−2tx

)′ = c1

Integrating again gives (
e−2tx

)
= c1t+ c2

Hence the solution is

x = c1t+ c2
e−2t

Or
x = c1t e2t + c2 e2t

Will add steps showing solving for IC soon.

Summary of solutions found

x = c1t e2t + c2 e2t
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Figure 2.75: Slope field plot
x′′ − 4x′ + 4x = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.047 (sec)

Writing the ode as

x′′ − 4x′ + 4x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −4 (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(t) = 0 (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.36: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of t, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(t) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−4
1 dt

= z1e
2t

= z1
(
e2t
)

Which simplifies to
x1 = e2t

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
−−4

1 dt

(x1)2
dt

= x1

∫
e4t

(x1)2
dt

= x1(t)



chapter 2 . book solved problems 389

Therefore the solution is

x = c1x1 + c2x2

= c1
(
e2t
)
+ c2

(
e2t(t)

)
Will add steps showing solving for IC soon.

Summary of solutions found

x = c1 e2t + c2t e2t

Figure 2.76: Slope field plot
x′′ − 4x′ + 4x = 0

Solved as second order ode adjoint method

Time used: 0.148 (sec)

In normal form the ode

x′′ − 4x′ + 4x = 0 (1)
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Becomes

x′′ + p(t)x′ + q(t)x = r(t) (2)

Where

p(t) = −4
q(t) = 4
r(t) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (−4ξ(t))′ + (4ξ(t)) = 0
ξ′′(t) + 4ξ′(t) + 4ξ(t) = 0

Which is solved for ξ(t). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(t) +Bξ′(t) + Cξ(t) = 0

Where in the above A = 1, B = 4, C = 4. Let the solution be ξ = eλt. Substituting this
into the ODE gives

λ2etλ + 4λ etλ + 4 etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 4λ+ 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 4, C = 4 into the above gives

λ1,2 =
−4

(2) (1) ±
1

(2) (1)

√
(4)2 − (4) (1) (4)

= −2

Hence this is the case of a double root λ1,2 = 2. Therefore the solution is

ξ = c1e−2t + c2t e−2t (1)
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Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(t)x′ − xξ′(t) + ξ(t) p(t)x =
∫

ξ(t) r(t) dt

x′ + x

(
p(t)− ξ′(t)

ξ (t)

)
=
∫
ξ(t) r(t) dt
ξ (t)

Or

x′ + x

(
−4− −2c1 e−2t + c2 e−2t − 2c2t e−2t

c1 e−2t + c2t e−2t

)
= 0

Which is now a first order ode. This is now solved for x. In canonical form a linear first
order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = −2c2t+ 2c1 + c2
c2t+ c1

p(t) = 0

The integrating factor µ is

µ = e
∫
q dt

= e
∫
− 2c2t+2c1+c2

c2t+c1
dt

= e−2t

c2t+ c1

The ode becomes

d
dtµx = 0

d
dt

(
x e−2t

c2t+ c1

)
= 0

Integrating gives

x e−2t

c2t+ c1
=
∫

0 dt+ c3

= c3
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Dividing throughout by the integrating factor e−2t

c2t+c1
gives the final solution

x = (c2t+ c1) e2tc3

Hence, the solution found using Lagrange adjoint equation method is

x = (c2t+ c1) e2tc3

The constants can be merged to give

x = (c2t+ c1) e2t

Will add steps showing solving for IC soon.

Summary of solutions found

x = (c2t+ c1) e2t

Figure 2.77: Slope field plot
x′′ − 4x′ + 4x = 0
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Maple step by step solution

Let’s solve
x′′ − 4x′ + 4x = 0

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of ODE
r2 − 4r + 4 = 0

• Factor the characteristic polynomial
(r − 2)2 = 0

• Root of the characteristic polynomial
r = 2

• 1st solution of the ODE
x1(t) = e2t

• Repeated root, multiply x1(t) by t to ensure linear independence
x2(t) = t e2t

• General solution of the ODE
x = C1x1(t) + C2x2(t)

• Substitute in solutions
x = C1 e2t + C2 t e2t

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 14� �
dsolve(diff(diff(x(t),t),t)-4*diff(x(t),t)+4*x(t) = 0,

x(t),singsol=all)� �
x = (c2t+ c1) e2t
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Mathematica DSolve solution

Solving time : 0.013 (sec)
Leaf size : 18� �
DSolve[{D[x[t],{t,2}]-4*D[x[t],t]+4*x[t]==0,{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → e2t(c2t+ c1)
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2.2.6 problem 5 (iiI=i)

Solved as second order linear constant coeff ode . . . . . . . . . 395
Solved as second order ode using Kovacic algorithm . . . . . . . 397
Solved as second order ode adjoint method . . . . . . . . . . . . 401
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 404
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 405
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 405

Internal problem ID [18195]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 4. Autonomous systems. Exercises at page 69
Problem number : 5 (iiI=i)
Date solved : Thursday, December 19, 2024 at 06:17:53 PM
CAS classification : [[_2nd_order, _missing_x]]

Solve

x′′ − 4x′ + 5x = 0

Solved as second order linear constant coeff ode

Time used: 0.090 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = −4, C = 5. Let the solution be x = eλt. Substituting
this into the ODE gives

λ2etλ − 4λ etλ + 5 etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 − 4λ+ 5 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = −4, C = 5 into the above gives

λ1,2 =
4

(2) (1) ±
1

(2) (1)
√
−42 − (4) (1) (5)

= 2± i

Hence

λ1 = 2 + i

λ2 = 2− i

Which simplifies to
λ1 = 2 + i

λ2 = 2− i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 2 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

x = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes
x = e2t(c1 cos (t) + c2 sin (t))

Will add steps showing solving for IC soon.

Summary of solutions found

x = e2t(c1 cos (t) + c2 sin (t))
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Figure 2.78: Slope field plot
x′′ − 4x′ + 5x = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.105 (sec)

Writing the ode as

x′′ − 4x′ + 5x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −4 (3)
C = 5

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(t) = −z(t) (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.38: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of t, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = cos (t)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−4
1 dt

= z1e
2t

= z1
(
e2t
)

Which simplifies to
x1 = e2t cos (t)

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
−−4

1 dt

(x1)2
dt

= x1

∫
e4t

(x1)2
dt

= x1(tan (t))
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Therefore the solution is

x = c1x1 + c2x2

= c1
(
e2t cos (t)

)
+ c2

(
e2t cos (t) (tan (t))

)
Will add steps showing solving for IC soon.

Summary of solutions found

x = c1 e2t cos (t) + c2 e2t sin (t)

Figure 2.79: Slope field plot
x′′ − 4x′ + 5x = 0
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Solved as second order ode adjoint method

Time used: 0.615 (sec)

In normal form the ode

x′′ − 4x′ + 5x = 0 (1)

Becomes

x′′ + p(t)x′ + q(t)x = r(t) (2)

Where

p(t) = −4
q(t) = 5
r(t) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (−4ξ(t))′ + (5ξ(t)) = 0
ξ′′(t) + 4ξ′(t) + 5ξ(t) = 0

Which is solved for ξ(t). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(t) +Bξ′(t) + Cξ(t) = 0

Where in the above A = 1, B = 4, C = 5. Let the solution be ξ = eλt. Substituting this
into the ODE gives

λ2etλ + 4λ etλ + 5 etλ = 0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 4λ+ 5 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 4, C = 5 into the above gives

λ1,2 =
−4

(2) (1) ±
1

(2) (1)
√

42 − (4) (1) (5)

= −2± i
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Hence

λ1 = −2 + i

λ2 = −2− i

Which simplifies to
λ1 = −2 + i

λ2 = −2− i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −2 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

ξ = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes
ξ = e−2t(c1 cos (t) + c2 sin (t))

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(t)x′ − xξ′(t) + ξ(t) p(t)x =
∫

ξ(t) r(t) dt

x′ + x

(
p(t)− ξ′(t)

ξ (t)

)
=
∫
ξ(t) r(t) dt
ξ (t)

Or

x′ + x

(
−4− (−2 e−2t(c1 cos (t) + c2 sin (t)) + e−2t(−c1 sin (t) + c2 cos (t))) e2t

c1 cos (t) + c2 sin (t)

)
= 0

Which is now a first order ode. This is now solved for x. In canonical form a linear first
order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = −(2c1 + c2) cos (t)− sin (t) (c1 − 2c2)
c1 cos (t) + c2 sin (t)

p(t) = 0
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The integrating factor µ is

µ = e
∫
q dt

= e
∫
− (2c1+c2) cos(t)−sin(t)(c1−2c2)

c1 cos(t)+c2 sin(t) dt

= e− ln(tan(t)c2+c1)+
ln

(
1+tan(t)2

)
2 −2t

The ode becomes

d
dtµx = 0

d
dt

(
x e− ln(tan(t)c2+c1)+

ln
(
1+tan(t)2

)
2 −2t

)
= 0

Integrating gives

x e− ln(tan(t)c2+c1)+
ln

(
1+tan(t)2

)
2 −2t =

∫
0 dt+ c3

= c3

Dividing throughout by the integrating factor e− ln(tan(t)c2+c1)+
ln

(
1+tan(t)2

)
2 −2t gives the

final solution

x = (tan (t) c2 + c1) e
ln
(

1√
1+tan(t)2

)
+2t

c3

Hence, the solution found using Lagrange adjoint equation method is

x = (tan (t) c2 + c1) e
ln
(

1√
1+tan(t)2

)
+2t

c3

The constants can be merged to give

x = (tan (t) c2 + c1) e
ln
(

1√
1+tan(t)2

)
+2t

Will add steps showing solving for IC soon.

Summary of solutions found

x = (tan (t) c2 + c1) e
ln
(

1√
1+tan(t)2

)
+2t
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Figure 2.80: Slope field plot
x′′ − 4x′ + 5x = 0

Maple step by step solution

Let’s solve
x′′ − 4x′ + 5x = 0

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of ODE
r2 − 4r + 5 = 0

• Use quadratic formula to solve for r

r = 4±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (2− I, 2 + I)

• 1st solution of the ODE
x1(t) = e2t cos (t)

• 2nd solution of the ODE
x2(t) = e2t sin (t)

• General solution of the ODE
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x = C1x1(t) + C2x2(t)
• Substitute in solutions

x = C1 e2t cos (t) + C2 e2t sin (t)

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 18� �
dsolve(diff(diff(x(t),t),t)-4*diff(x(t),t)+5*x(t) = 0,

x(t),singsol=all)� �
x = e2t(c1 sin (t) + c2 cos (t))

Mathematica DSolve solution

Solving time : 0.015 (sec)
Leaf size : 22� �
DSolve[{D[x[t],{t,2}]-4*D[x[t],t]+5*x[t]==0,{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → e2t(c2 cos(t) + c1 sin(t))



chapter 2 . book solved problems 406

2.2.7 problem 5 (iv)

Solved as second order linear constant coeff ode . . . . . . . . . 406
Solved as second order linear exact ode . . . . . . . . . . . . . . 408
Solved as second order missing y ode . . . . . . . . . . . . . . . 410
Solved as second order integrable as is ode . . . . . . . . . . . . 413
Solved as second order integrable as is ode (ABC method) . . . 414
Solved as second order ode using Kovacic algorithm . . . . . . . 416
Solved as second order ode adjoint method . . . . . . . . . . . . 419
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 423
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 423
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 424

Internal problem ID [18196]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 4. Autonomous systems. Exercises at page 69
Problem number : 5 (iv)
Date solved : Thursday, December 19, 2024 at 06:17:54 PM
CAS classification : [[_2nd_order, _missing_x]]

Solve

x′′ + 3x′ = 0

Solved as second order linear constant coeff ode

Time used: 0.065 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = 3, C = 0. Let the solution be x = eλt. Substituting this
into the ODE gives

λ2etλ + 3λ etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 3λ = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 3, C = 0 into the above gives

λ1,2 =
−3

(2) (1) ±
1

(2) (1)
√

32 − (4) (1) (0)

= −3
2 ± 3

2

Hence

λ1 = −3
2 + 3

2

λ2 = −3
2 − 3

2

Which simplifies to
λ1 = 0
λ2 = −3

Since roots are real and distinct, then the solution is

x = c1e
λ1t + c2e

λ2t

x = c1e
(0)t + c2e

(−3)t

Or
x = c1 + c2 e−3t

Will add steps showing solving for IC soon.

Summary of solutions found

x = c1 + c2 e−3t
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Figure 2.81: Slope field plot
x′′ + 3x′ = 0

Solved as second order linear exact ode

Time used: 0.125 (sec)

An ode of the form

p(t)x′′ + q(t)x′ + r(t)x = s(t)

is exact if

p′′(t)− q′(t) + r(t) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = 3
r(x) = 0
s(x) = 0

Hence

p′′(x) = 0
q′(x) = 0
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Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(t)x′ + (q(t)− p′(t))x)′ = s(x)

Integrating gives

p(t)x′ + (q(t)− p′(t))x =
∫

s(t) dt

Substituting the above values for p, q, r, s gives

x′ + 3x = c1

We now have a first order ode to solve which is

x′ + 3x = c1

Integrating gives ∫ 1
−3x+ c1

dx = dt

− ln (−3x+ c1)
3 = t+ c2

Applying the exponential to both sides gives

e
ln
(

1
(−3x+c1)1/3

)
= et+c2

1
(−3x+ c1)1/3

= etc2

Singular solutions are found by solving

−3x+ c1 = 0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

x = c1
3

Solving for x gives

x = c1
3

x = (c1 e3tc32 − 1) e−3t

3c32
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Will add steps showing solving for IC soon.

Summary of solutions found

x = c1
3

x = (c1 e3tc32 − 1) e−3t

3c32

Figure 2.82: Slope field plot
x′′ + 3x′ = 0

Solved as second order missing y ode

Time used: 0.260 (sec)

This is second order ode with missing dependent variable x. Let

p(t) = x′

Then

p′(t) = x′′
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Hence the ode becomes

p′(t) + 3p(t) = 0

Which is now solve for p(t) as first order ode. Integrating gives∫
− 1
3pdp = dt

− ln (p)
3 = t+ c1

Applying the exponential to both sides gives

e
ln
(

1
p1/3

)
= et+c1

1
p (t)1/3

= c1 et

Singular solutions are found by solving

−3p = 0

for p(t). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(t) = 0

Solving for p(t) gives
p(t) = 0

p(t) = c1 e−3t

For solution (1) found earlier, since p = x′ then we now have a new first order ode to
solve which is

x′ = 0

Since the ode has the form x′ = f(t), then we only need to integrate f(t).∫
dx =

∫
0 dt+ c2

x = c2

For solution (2) found earlier, since p = x′ then we now have a new first order ode to
solve which is

x′ = c1 e−3t
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Since the ode has the form x′ = f(t), then we only need to integrate f(t).∫
dx =

∫
c1 e−3t dt

x = −c1 e−3t

3 + c3

Will add steps showing solving for IC soon.

Summary of solutions found
x = c2

x = −c1 e−3t

3 + c3

Figure 2.83: Slope field plot
x′′ + 3x′ = 0
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Solved as second order integrable as is ode

Time used: 0.061 (sec)

Integrating both sides of the ODE w.r.t t gives∫
(x′′ + 3x′) dt = 0

x′ + 3x = c1

Which is now solved for x. Integrating gives∫ 1
−3x+ c1

dx = dt

− ln (−3x+ c1)
3 = t+ c2

Applying the exponential to both sides gives

e
ln
(

1
(−3x+c1)1/3

)
= et+c2

1
(−3x+ c1)1/3

= etc2

Singular solutions are found by solving

−3x+ c1 = 0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

x = c1
3

Solving for x gives

x = c1
3

x = (c1 e3tc32 − 1) e−3t

3c32

Will add steps showing solving for IC soon.

Summary of solutions found

x = c1
3

x = (c1 e3tc32 − 1) e−3t

3c32
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Figure 2.84: Slope field plot
x′′ + 3x′ = 0

Solved as second order integrable as is ode (ABC method)

Time used: 0.056 (sec)

Writing the ode as
x′′ + 3x′ = 0

Integrating both sides of the ODE w.r.t t gives∫
(x′′ + 3x′) dt = 0

x′ + 3x = c1

Which is now solved for x. Integrating gives∫ 1
−3x+ c1

dx = dt

− ln (−3x+ c1)
3 = t+ c2
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Applying the exponential to both sides gives

e
ln
(

1
(−3x+c1)1/3

)
= et+c2

1
(−3x+ c1)1/3

= etc2

Singular solutions are found by solving

−3x+ c1 = 0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

x = c1
3

Solving for x gives

x = c1
3

x = (c1 e3tc32 − 1) e−3t

3c32

Will add steps showing solving for IC soon.

Figure 2.85: Slope field plot
x′′ + 3x′ = 0
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Solved as second order ode using Kovacic algorithm

Time used: 0.054 (sec)

Writing the ode as

x′′ + 3x′ = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 3 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9
4 (6)

Comparing the above to (5) shows that

s = 9
t = 4

Therefore eq. (4) becomes

z′′(t) = 9z(t)
4 (7)
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Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.40: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 9
4 is not a function of t, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(t) = e− 3t
2
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
3
1 dt

= z1e
− 3t

2

= z1
(
e− 3t

2

)
Which simplifies to

x1 = e−3t

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
− 3

1 dt

(x1)2
dt

= x1

∫
e−3t

(x1)2
dt

= x1

(
e3t
3

)
Therefore the solution is

x = c1x1 + c2x2

= c1
(
e−3t)+ c2

(
e−3t

(
e3t
3

))

Will add steps showing solving for IC soon.

Summary of solutions found

x = c1 e−3t + c2
3
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Figure 2.86: Slope field plot
x′′ + 3x′ = 0

Solved as second order ode adjoint method

Time used: 0.267 (sec)

In normal form the ode

x′′ + 3x′ = 0 (1)

Becomes

x′′ + p(t)x′ + q(t)x = r(t) (2)

Where

p(t) = 3
q(t) = 0
r(t) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (3ξ(t))′ + (0) = 0

ξ′′(t)− 3ξ′(t) = 0
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Which is solved for ξ(t). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(t) +Bξ′(t) + Cξ(t) = 0

Where in the above A = 1, B = −3, C = 0. Let the solution be ξ = eλt. Substituting
this into the ODE gives

λ2etλ − 3λ etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 − 3λ = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −3, C = 0 into the above gives

λ1,2 =
3

(2) (1) ±
1

(2) (1)
√
−32 − (4) (1) (0)

= 3
2 ± 3

2
Hence

λ1 =
3
2 + 3

2

λ2 =
3
2 − 3

2

Which simplifies to
λ1 = 3
λ2 = 0

Since roots are real and distinct, then the solution is

ξ = c1e
λ1t + c2e

λ2t

ξ = c1e
(3)t + c2e

(0)t

Or
ξ = c1 e3t + c2
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Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(t)x′ − xξ′(t) + ξ(t) p(t)x =
∫

ξ(t) r(t) dt

x′ + x

(
p(t)− ξ′(t)

ξ (t)

)
=
∫
ξ(t) r(t) dt
ξ (t)

Or

x′ + x

(
3− 3c1 e3t

c1 e3t + c2

)
= 0

Which is now a first order ode. This is now solved for x. In canonical form a linear first
order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = 3c2
c1 e3t + c2

p(t) = 0

The integrating factor µ is

µ = e
∫
q dt

= e
∫ 3c2

c1 e3t+c2
dt

= e3t
c1 e3t + c2

The ode becomes

d
dtµx = 0

d
dt

(
x e3t

c1 e3t + c2

)
= 0

Integrating gives

x e3t
c1 e3t + c2

=
∫

0 dt+ c3

= c3
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Dividing throughout by the integrating factor e3t
c1 e3t+c2

gives the final solution

x = c3
(
c1 + c2 e−3t)

Hence, the solution found using Lagrange adjoint equation method is

x = c3
(
c1 + c2 e−3t)

The constants can be merged to give

x = c1 + c2 e−3t

Will add steps showing solving for IC soon.

Summary of solutions found

x = c1 + c2 e−3t

Figure 2.87: Slope field plot
x′′ + 3x′ = 0
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Maple step by step solution

Let’s solve
x′′ + 3x′ = 0

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of ODE
r2 + 3r = 0

• Factor the characteristic polynomial
r(r + 3) = 0

• Roots of the characteristic polynomial
r = (−3, 0)

• 1st solution of the ODE
x1(t) = e−3t

• 2nd solution of the ODE
x2(t) = 1

• General solution of the ODE
x = C1x1(t) + C2x2(t)

• Substitute in solutions
x = C1 e−3t + C2

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 12� �
dsolve(diff(diff(x(t),t),t)+3*diff(x(t),t) = 0,

x(t),singsol=all)� �
x = c1 + c2 e−3t
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Mathematica DSolve solution

Solving time : 0.015 (sec)
Leaf size : 19� �
DSolve[{D[x[t],{t,2}]+3*D[x[t],t]==0,{}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → c2 −

1
3c1e

−3t
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2.2.8 problem 6 (i)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 425
Solved as second order linear constant coeff ode . . . . . . . . . 426
Solved as second order ode using Kovacic algorithm . . . . . . . 428
Solved as second order ode adjoint method . . . . . . . . . . . . 431
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 435
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 436
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 436

Internal problem ID [18197]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 4. Autonomous systems. Exercises at page 69
Problem number : 6 (i)
Date solved : Thursday, December 19, 2024 at 06:17:55 PM
CAS classification : [[_2nd_order, _missing_x]]

Solve

x′′ − 3x′ + 2x = 0

With initial conditions

x(0) = 0
x′(0) = 1

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = −3
q(t) = 2
F = 0

Hence the ode is

x′′ − 3x′ + 2x = 0
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The domain of p(t) = −3 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 2 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode

Time used: 0.111 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = −3, C = 2. Let the solution be x = eλt. Substituting
this into the ODE gives

λ2etλ − 3λ etλ + 2 etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 − 3λ+ 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −3, C = 2 into the above gives

λ1,2 =
3

(2) (1) ±
1

(2) (1)
√
−32 − (4) (1) (2)

= 3
2 ± 1

2

Hence

λ1 =
3
2 + 1

2

λ2 =
3
2 − 1

2
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Which simplifies to
λ1 = 2
λ2 = 1

Since roots are real and distinct, then the solution is

x = c1e
λ1t + c2e

λ2t

x = c1e
(2)t + c2e

(1)t

Or
x = c1 e2t + etc2

Will add steps showing solving for IC soon.

Summary of solutions found

x = e2t − et

(a) Solution plot
x = e2t − et

(b) Slope field plot
x′′ − 3x′ + 2x = 0
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Solved as second order ode using Kovacic algorithm

Time used: 0.062 (sec)

Writing the ode as

x′′ − 3x′ + 2x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −3 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(t) = z(t)
4 (7)
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Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.42: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1
4 is not a function of t, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(t) = e− t
2
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−3
1 dt

= z1e
3t
2

= z1
(
e 3t

2

)
Which simplifies to

x1 = et

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
−−3

1 dt

(x1)2
dt

= x1

∫
e3t

(x1)2
dt

= x1
(
e3te−2t)

Therefore the solution is

x = c1x1 + c2x2

= c1
(
et
)
+ c2

(
et
(
e3te−2t))

Will add steps showing solving for IC soon.

Summary of solutions found

x = e2t − et
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(a) Solution plot
x = e2t − et

(b) Slope field plot
x′′ − 3x′ + 2x = 0

Solved as second order ode adjoint method

Time used: 0.311 (sec)

In normal form the ode

x′′ − 3x′ + 2x = 0 (1)

Becomes

x′′ + p(t)x′ + q(t)x = r(t) (2)

Where

p(t) = −3
q(t) = 2
r(t) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (−3ξ(t))′ + (2ξ(t)) = 0
ξ′′(t) + 3ξ′(t) + 2ξ(t) = 0
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Which is solved for ξ(t). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(t) +Bξ′(t) + Cξ(t) = 0

Where in the above A = 1, B = 3, C = 2. Let the solution be ξ = eλt. Substituting this
into the ODE gives

λ2etλ + 3λ etλ + 2 etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 3λ+ 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 3, C = 2 into the above gives

λ1,2 =
−3

(2) (1) ±
1

(2) (1)
√

32 − (4) (1) (2)

= −3
2 ± 1

2
Hence

λ1 = −3
2 + 1

2

λ2 = −3
2 − 1

2

Which simplifies to
λ1 = −1
λ2 = −2

Since roots are real and distinct, then the solution is

ξ = c1e
λ1t + c2e

λ2t

ξ = c1e
(−1)t + c2e

(−2)t

Or
ξ = c1 e−t + c2 e−2t
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Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(t)x′ − xξ′(t) + ξ(t) p(t)x =
∫

ξ(t) r(t) dt

x′ + x

(
p(t)− ξ′(t)

ξ (t)

)
=
∫
ξ(t) r(t) dt
ξ (t)

Or

x′ + x

(
−3− −c1 e−t − 2c2 e−2t

c1 e−t + c2 e−2t

)
= 0

Which is now a first order ode. This is now solved for x. In canonical form a linear first
order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = −c2 e−t + 2c1
c2 e−t + c1

p(t) = 0

The integrating factor µ is

µ = e
∫
q dt

= e
∫
− c2 e−t+2c1

c2 e−t+c1
dt

= e−2t

c2 e−t + c1

The ode becomes

d
dtµx = 0

d
dt

(
x e−2t

c2 e−t + c1

)
= 0

Integrating gives

x e−2t

c2 e−t + c1
=
∫

0 dt+ c3

= c3
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Dividing throughout by the integrating factor e−2t

c2 e−t+c1
gives the final solution

x = et
(
c1 et + c2

)
c3

Hence, the solution found using Lagrange adjoint equation method is

x = et
(
c1 et + c2

)
c3

The constants can be merged to give

x = et
(
c1 et + c2

)
Will add steps showing solving for IC soon.

Summary of solutions found

x = et
(
et − 1

)

(a) Solution plot
x = et

(
et − 1

) (b) Slope field plot
x′′ − 3x′ + 2x = 0
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Maple step by step solution

Let’s solve[
x′′ − 3x′ + 2x = 0, x(0) = 0, x′∣∣∣{t=0}

= 1
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of ODE
r2 − 3r + 2 = 0

• Factor the characteristic polynomial
(r − 1) (r − 2) = 0

• Roots of the characteristic polynomial
r = (1, 2)

• 1st solution of the ODE
x1(t) = et

• 2nd solution of the ODE
x2(t) = e2t

• General solution of the ODE
x = C1x1(t) + C2x2(t)

• Substitute in solutions
x = C1 et + C2 e2t

� Check validity of solution x = _C1et + _C2e2t

◦ Use initial condition x(0) = 0
0 = _C1+ _C2

◦ Compute derivative of the solution
x′ = _C1 et + 2_C2 e2t

◦ Use the initial condition x′∣∣∣{t=0}
= 1

1 = _C1+ 2_C2
◦ Solve for _C1 and _C2

{_C1 = −1,_C2 = 1}
◦ Substitute constant values into general solution and simplify

x = e2t − et
• Solution to the IVP

x = e2t − et
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 13� �
dsolve([diff(diff(x(t),t),t)-3*diff(x(t),t)+2*x(t) = 0,

op([x(0) = 0, D(x)(0) = 1])],x(t),singsol=all)� �
x = e2t − et

Mathematica DSolve solution

Solving time : 0.018 (sec)
Leaf size : 14� �
DSolve[{D[x[t],{t,2}]-3*D[x[t],t]+2*x[t]==0,{x[0]==0,Derivative[1][x][0] == 1}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → et

(
et − 1

)
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2.2.9 problem 6 (ii)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 437
Solved as second order linear constant coeff ode . . . . . . . . . 438
Solved as second order can be made integrable . . . . . . . . . . 440
Solved as second order ode using Kovacic algorithm . . . . . . . 442
Solved as second order ode adjoint method . . . . . . . . . . . . 445
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 449
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 450
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 450

Internal problem ID [18198]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 4. Autonomous systems. Exercises at page 69
Problem number : 6 (ii)
Date solved : Thursday, December 19, 2024 at 06:17:56 PM
CAS classification : [[_2nd_order, _missing_x]]

Solve

x′′ + x = 0

With initial conditions

x(0) = 0
x′(0) = 1

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = 0
q(t) = 1
F = 0
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Hence the ode is

x′′ + x = 0

The domain of p(t) = 0 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 1 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode

Time used: 0.097 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be x = eλt. Substituting this
into the ODE gives

λ2etλ + etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i
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Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

x = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes
x = e0(c1 cos (t) + c2 sin (t))

Or
x = c1 cos (t) + c2 sin (t)

Will add steps showing solving for IC soon.

Summary of solutions found

x = sin (t)

(a) Solution plot
x = sin (t)

(b) Slope field plot
x′′ + x = 0
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Solved as second order can be made integrable

Time used: 0.879 (sec)

Multiplying the ode by x′ gives

x′x′′ + x′x = 0

Integrating the above w.r.t t gives∫
(x′x′′ + x′x) dt = 0

x′2

2 + x2

2 = c1

Which is now solved for x. Solving for the derivative gives these ODE’s to solve

(1)x′ =
√

−x2 + 2c1

(2)x′ = −
√

−x2 + 2c1

Now each of the above is solved separately.

Solving Eq. (1)

Integrating gives ∫ 1√
−x2 + 2c1

dx = dt

arctan
(

x√
−x2 + 2c1

)
= t+ c2

Singular solutions are found by solving√
−x2 + 2c1 = 0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

x =
√
2√c1

x = −
√
2√c1

Solving for x gives

x =
√
2√c1

x = tan (t+ c2)
√
2
√

c1

tan (t+ c2)2 + 1

x = −
√
2√c1
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Solving Eq. (2)

Integrating gives ∫
− 1√

−x2 + 2c1
dx = dt

− arctan
(

x√
−x2 + 2c1

)
= t+ c3

Singular solutions are found by solving

−
√
−x2 + 2c1 = 0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

x =
√
2√c1

x = −
√
2√c1

Solving for x gives

x =
√
2√c1

x = −
√
2√c1

x = − tan (t+ c3)
√
2
√

c1

tan (t+ c3)2 + 1

Will add steps showing solving for IC soon.

Summary of solutions found

x = tan (t)
√

1
1 + tan (t)2
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(a) Solution plot
x = tan (t)

√
1

1+tan(t)2
(b) Slope field plot

x′′ + x = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.077 (sec)

Writing the ode as

x′′ + x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(t) = −z(t) (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.44: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0



chapter 2 . book solved problems 444

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of t, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = cos (t)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

Since B = 0 then the above reduces to

x1 = z1

= cos (t)

Which simplifies to
x1 = cos (t)

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Since B = 0 then the above becomes

x2 = x1

∫ 1
x2
1
dt

= cos (t)
∫ 1

cos (t)2
dt

= cos (t) (tan (t))

Therefore the solution is
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x = c1x1 + c2x2

= c1(cos (t)) + c2(cos (t) (tan (t)))

Will add steps showing solving for IC soon.

Summary of solutions found

x = sin (t)

(a) Solution plot
x = sin (t)

(b) Slope field plot
x′′ + x = 0

Solved as second order ode adjoint method

Time used: 0.393 (sec)

In normal form the ode

x′′ + x = 0 (1)

Becomes

x′′ + p(t)x′ + q(t)x = r(t) (2)

Where

p(t) = 0
q(t) = 1
r(t) = 0
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The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (0)′ + (ξ(t)) = 0

ξ′′(t) + ξ(t) = 0

Which is solved for ξ(t). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(t) +Bξ′(t) + Cξ(t) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be ξ = eλt. Substituting this
into the ODE gives

λ2etλ + etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ
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Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

ξ = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes
ξ = e0(c1 cos (t) + c2 sin (t))

Or
ξ = c1 cos (t) + c2 sin (t)

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(t)x′ − xξ′(t) + ξ(t) p(t)x =
∫

ξ(t) r(t) dt

x′ + x

(
p(t)− ξ′(t)

ξ (t)

)
=
∫
ξ(t) r(t) dt
ξ (t)

Or

x′ − x(−c1 sin (t) + c2 cos (t))
c1 cos (t) + c2 sin (t)

= 0

Which is now a first order ode. This is now solved for x. In canonical form a linear first
order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = −−c1 sin (t) + c2 cos (t)
c1 cos (t) + c2 sin (t)

p(t) = 0

The integrating factor µ is

µ = e
∫
q dt

= e
∫
−−c1 sin(t)+c2 cos(t)

c1 cos(t)+c2 sin(t) dt

= 1
c1 cos (t) + c2 sin (t)
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The ode becomes
d
dtµx = 0

d
dt

(
x

c1 cos (t) + c2 sin (t)

)
= 0

Integrating gives
x

c1 cos (t) + c2 sin (t)
=
∫

0 dt+ c3

= c3

Dividing throughout by the integrating factor 1
c1 cos(t)+c2 sin(t) gives the final solution

x = (c1 cos (t) + c2 sin (t)) c3
Hence, the solution found using Lagrange adjoint equation method is

x = (c1 cos (t) + c2 sin (t)) c3

The constants can be merged to give

x = c1 cos (t) + c2 sin (t)

Will add steps showing solving for IC soon.

Summary of solutions found

x = sin (t)

(a) Solution plot
x = sin (t)

(b) Slope field plot
x′′ + x = 0
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Maple step by step solution

Let’s solve[
x′′ + x = 0, x(0) = 0, x′∣∣∣{t=0}

= 1
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−I, I)

• 1st solution of the ODE
x1(t) = cos (t)

• 2nd solution of the ODE
x2(t) = sin (t)

• General solution of the ODE
x = C1x1(t) + C2x2(t)

• Substitute in solutions
x = C1 cos (t) + C2 sin (t)

� Check validity of solution x = _C1 cos (t) + _C2 sin (t)
◦ Use initial condition x(0) = 0

0 = _C1
◦ Compute derivative of the solution

x′ = −_C1 sin (t) + _C2 cos (t)

◦ Use the initial condition x′∣∣∣{t=0}
= 1

1 = _C2
◦ Solve for _C1 and _C2

{_C1 = 0,_C2 = 1}
◦ Substitute constant values into general solution and simplify

x = sin (t)
• Solution to the IVP

x = sin (t)
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 6� �
dsolve([diff(diff(x(t),t),t)+x(t) = 0,

op([x(0) = 0, D(x)(0) = 1])],x(t),singsol=all)� �
x = sin (t)

Mathematica DSolve solution

Solving time : 0.01 (sec)
Leaf size : 7� �
DSolve[{D[x[t],{t,2}]+x[t]==0,{x[0]==0,Derivative[1][x][0] == 1}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → sin(t)
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2.2.10 problem 6 (iii)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 451
Solved as second order linear constant coeff ode . . . . . . . . . 452
Solved as second order solved by an integrating factor . . . . . 453
Solved as second order ode using Kovacic algorithm . . . . . . . 455
Solved as second order ode adjoint method . . . . . . . . . . . . 458
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 461
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 462
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 463

Internal problem ID [18199]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 4. Autonomous systems. Exercises at page 69
Problem number : 6 (iii)
Date solved : Thursday, December 19, 2024 at 06:17:59 PM
CAS classification : [[_2nd_order, _missing_x]]

Solve

x′′ + 2x′ + x = 0

With initial conditions

x(0) = 0
x′(0) = 1

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = 2
q(t) = 1
F = 0



chapter 2 . book solved problems 452

Hence the ode is

x′′ + 2x′ + x = 0

The domain of p(t) = 2 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 1 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode

Time used: 0.098 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = 2, C = 1. Let the solution be x = eλt. Substituting this
into the ODE gives

λ2etλ + 2λ etλ + etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 2λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 2, C = 1 into the above gives

λ1,2 =
−2

(2) (1) ±
1

(2) (1)

√
(2)2 − (4) (1) (1)

= −1

Hence this is the case of a double root λ1,2 = 1. Therefore the solution is

x = c1e−t + c2t e−t (1)
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Will add steps showing solving for IC soon.

Summary of solutions found

x = t e−t

(a) Solution plot
x = t e−t

(b) Slope field plot
x′′ + 2x′ + x = 0

Solved as second order solved by an integrating factor

Time used: 0.197 (sec)

The ode satisfies this form

x′′ + p(t)x′ +
(
p(t)2 + p′(t)

)
x

2 = f(t)

Where p(t) = 2. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
2 dx

= et

Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)x) ′′ = 0(
etx
) ′′ = 0
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Integrating once gives (
etx
)′ = c1

Integrating again gives (
etx
)
= c1t+ c2

Hence the solution is

x = c1t+ c2
et

Or
x = c1t e−t + c2 e−t

Will add steps showing solving for IC soon.

Summary of solutions found

x = t e−t

(a) Solution plot
x = t e−t

(b) Slope field plot
x′′ + 2x′ + x = 0
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Solved as second order ode using Kovacic algorithm

Time used: 0.049 (sec)

Writing the ode as

x′′ + 2x′ + x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(t) = 0 (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.46: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of t, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(t) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
2
1 dt

= z1e
−t

= z1
(
e−t
)
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Which simplifies to
x1 = e−t

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
− 2

1 dt

(x1)2
dt

= x1

∫
e−2t

(x1)2
dt

= x1(t)

Therefore the solution is

x = c1x1 + c2x2

= c1
(
e−t
)
+ c2

(
e−t(t)

)
Will add steps showing solving for IC soon.

Summary of solutions found

x = t e−t
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(a) Solution plot
x = t e−t

(b) Slope field plot
x′′ + 2x′ + x = 0

Solved as second order ode adjoint method

Time used: 0.143 (sec)

In normal form the ode

x′′ + 2x′ + x = 0 (1)

Becomes

x′′ + p(t)x′ + q(t)x = r(t) (2)

Where

p(t) = 2
q(t) = 1
r(t) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (2ξ(t))′ + (ξ(t)) = 0
ξ′′(t)− 2ξ′(t) + ξ(t) = 0
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Which is solved for ξ(t). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(t) +Bξ′(t) + Cξ(t) = 0

Where in the above A = 1, B = −2, C = 1. Let the solution be ξ = eλt. Substituting
this into the ODE gives

λ2etλ − 2λ etλ + etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 − 2λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −2, C = 1 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)

√
(−2)2 − (4) (1) (1)

= 1

Hence this is the case of a double root λ1,2 = −1. Therefore the solution is

ξ = c1et + c2t et (1)

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(t)x′ − xξ′(t) + ξ(t) p(t)x =
∫

ξ(t) r(t) dt

x′ + x

(
p(t)− ξ′(t)

ξ (t)

)
=
∫
ξ(t) r(t) dt
ξ (t)

Or

x′ + x

(
2− c1 et + etc2 + c2t et

c1 et + c2t et

)
= 0

Which is now a first order ode. This is now solved for x. In canonical form a linear first
order is

x′ + q(t)x = p(t)
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Comparing the above to the given ode shows that

q(t) = −−c2t− c1 + c2
c2t+ c1

p(t) = 0

The integrating factor µ is

µ = e
∫
q dt

= e
∫
−−c2t−c1+c2

c2t+c1
dt

= et
c2t+ c1

The ode becomes

d
dtµx = 0

d
dt

(
x et

c2t+ c1

)
= 0

Integrating gives

x et
c2t+ c1

=
∫

0 dt+ c3

= c3

Dividing throughout by the integrating factor et
c2t+c1

gives the final solution

x = (c2t+ c1) e−tc3

Hence, the solution found using Lagrange adjoint equation method is

x = (c2t+ c1) e−tc3

The constants can be merged to give

x = (c2t+ c1) e−t

Will add steps showing solving for IC soon.

Summary of solutions found

x = t e−t
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(a) Solution plot
x = t e−t

(b) Slope field plot
x′′ + 2x′ + x = 0

Maple step by step solution

Let’s solve[
x′′ + 2x′ + x = 0, x(0) = 0, x′∣∣∣{t=0}

= 1
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of ODE
r2 + 2r + 1 = 0

• Factor the characteristic polynomial
(r + 1)2 = 0

• Root of the characteristic polynomial
r = −1

• 1st solution of the ODE
x1(t) = e−t

• Repeated root, multiply x1(t) by t to ensure linear independence
x2(t) = t e−t

• General solution of the ODE
x = C1x1(t) + C2x2(t)

• Substitute in solutions
x = C1 e−t + C2 t e−t
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� Check validity of solution x = _C1e−t + _C2te−t

◦ Use initial condition x(0) = 0
0 = _C1

◦ Compute derivative of the solution
x′ = −_C1 e−t + _C2 e−t − _C2t e−t

◦ Use the initial condition x′∣∣∣{t=0}
= 1

1 = −_C1+ _C2
◦ Solve for _C1 and _C2

{_C1 = 0,_C2 = 1}
◦ Substitute constant values into general solution and simplify

x = t e−t

• Solution to the IVP
x = t e−t

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 10� �
dsolve([diff(diff(x(t),t),t)+2*diff(x(t),t)+x(t) = 0,

op([x(0) = 0, D(x)(0) = 1])],x(t),singsol=all)� �
x = t e−t
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Mathematica DSolve solution

Solving time : 0.013 (sec)
Leaf size : 12� �
DSolve[{D[x[t],{t,2}]+2*D[x[t],t]+x[t]==0,{x[0]==0,Derivative[1][x][0] == 1}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → e−tt
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2.2.11 problem 6 (iv)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 464
Solved as second order linear constant coeff ode . . . . . . . . . 465
Solved as second order ode using Kovacic algorithm . . . . . . . 467
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 470
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 471
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 472

Internal problem ID [18200]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 4. Autonomous systems. Exercises at page 69
Problem number : 6 (iv)
Date solved : Thursday, December 19, 2024 at 06:18:00 PM
CAS classification : [[_2nd_order, _missing_x]]

Solve

x′′ − 2x′ + 2x = 0

With initial conditions

x(0) = 0
x′(0) = 1

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = −2
q(t) = 2
F = 0

Hence the ode is

x′′ − 2x′ + 2x = 0
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The domain of p(t) = −2 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 2 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode

Time used: 0.116 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = −2, C = 2. Let the solution be x = eλt. Substituting
this into the ODE gives

λ2etλ − 2λ etλ + 2 etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 − 2λ+ 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −2, C = 2 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)
√
−22 − (4) (1) (2)

= 1± i

Hence

λ1 = 1 + i

λ2 = 1− i

Which simplifies to
λ1 = 1 + i

λ2 = 1− i
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Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 1 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

x = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes
x = et(c1 cos (t) + c2 sin (t))

Will add steps showing solving for IC soon.

Summary of solutions found

x = et sin (t)

(a) Solution plot
x = et sin (t)

(b) Slope field plot
x′′ − 2x′ + 2x = 0
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Solved as second order ode using Kovacic algorithm

Time used: 0.067 (sec)

Writing the ode as

x′′ − 2x′ + 2x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(t) = −z(t) (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.48: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of t, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = cos (t)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−2
1 dt

= z1e
t

= z1
(
et
)
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Which simplifies to
x1 = et cos (t)

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
−−2

1 dt

(x1)2
dt

= x1

∫
e2t

(x1)2
dt

= x1(tan (t))

Therefore the solution is

x = c1x1 + c2x2

= c1
(
et cos (t)

)
+ c2

(
et cos (t) (tan (t))

)
Will add steps showing solving for IC soon.

Summary of solutions found

x = et sin (t)
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(a) Solution plot
x = et sin (t)

(b) Slope field plot
x′′ − 2x′ + 2x = 0

Maple step by step solution

Let’s solve[
x′′ − 2x′ + 2x = 0, x(0) = 0, x′∣∣∣{t=0}

= 1
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of ODE
r2 − 2r + 2 = 0

• Use quadratic formula to solve for r

r = 2±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (1− I, 1 + I)

• 1st solution of the ODE
x1(t) = et cos (t)

• 2nd solution of the ODE
x2(t) = et sin (t)

• General solution of the ODE
x = C1x1(t) + C2x2(t)

• Substitute in solutions
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x = C1 et cos (t) + C2 et sin (t)
� Check validity of solution x = _C1et cos (t) + _C2et sin (t)

◦ Use initial condition x(0) = 0
0 = _C1

◦ Compute derivative of the solution
x′ = _C1 et cos (t)− _C1 et sin (t) + _C2 et sin (t) + _C2 et cos (t)

◦ Use the initial condition x′∣∣∣{t=0}
= 1

1 = _C1+ _C2
◦ Solve for _C1 and _C2

{_C1 = 0,_C2 = 1}
◦ Substitute constant values into general solution and simplify

x = et sin (t)
• Solution to the IVP

x = et sin (t)

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 9� �
dsolve([diff(diff(x(t),t),t)-2*diff(x(t),t)+2*x(t) = 0,

op([x(0) = 0, D(x)(0) = 1])],x(t),singsol=all)� �
x = et sin (t)
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Mathematica DSolve solution

Solving time : 0.012 (sec)
Leaf size : 11� �
DSolve[{D[x[t],{t,2}]-2*D[x[t],t]+2*x[t]==0,{x[0]==0,Derivative[1][x][0] == 1}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → et sin(t)
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Internal problem ID [18201]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 5. Linear equations. Exercises at page 85
Problem number : 7 (i)
Date solved : Thursday, December 19, 2024 at 06:18:01 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x′′ − x = t2

With initial conditions

x(0) = 0
x′(0) = 1

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = 0
q(t) = −1
F = t2

Hence the ode is

x′′ − x = t2
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The domain of p(t) = 0 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = −1 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = t2 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode

Time used: 0.288 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = f(t)

Where A = 1, B = 0, C = −1, f(t) = t2. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the non-homogeneous ODE Ax′′(t) +Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ − x = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be x = eλt. Substituting
this into the ODE gives

λ2etλ − etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 − 1 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1

Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

x = c1e
λ1t + c2e

λ2t

x = c1e
(1)t + c2e

(−1)t

Or
x = c1 et + c2 e−t

Therefore the homogeneous solution xh is

xh = c1 et + c2 e−t

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

t2

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, t, t2}]
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While the set of the basis functions for the homogeneous solution found earlier is

{et, e−t}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A3t
2 + A2t+ A1

The unknowns {A1, A2, A3} are found by substituting the above trial solution xp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A3t
2 − A2t− A1 + 2A3 = t2

Solving for the unknowns by comparing coefficients results in

[A1 = −2, A2 = 0, A3 = −1]

Substituting the above back in the above trial solution xp, gives the particular solution

xp = −t2 − 2

Therefore the general solution is

x = xh + xp

=
(
c1 et + c2 e−t

)
+
(
−t2 − 2

)
Will add steps showing solving for IC soon.

Summary of solutions found

x = −t2 − 2 + 3 et
2 + e−t

2
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(a) Solution plot
x = −t2 − 2 + 3 et

2 + e−t

2

(b) Slope field plot
x′′ − x = t2

Solved as second order ode using Kovacic algorithm

Time used: 0.085 (sec)

Writing the ode as

x′′ − x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(t) = z(t) (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.50: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0



chapter 2 . book solved problems 480

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1 is not a function of t, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(t) = e−t

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

Since B = 0 then the above reduces to

x1 = z1

= e−t

Which simplifies to
x1 = e−t

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Since B = 0 then the above becomes

x2 = x1

∫ 1
x2
1
dt

= e−t

∫ 1
e−2t dt

= e−t

(
e2t
2

)

Therefore the solution is
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x = c1x1 + c2x2

= c1
(
e−t
)
+ c2

(
e−t

(
e2t
2

))

This is second order nonhomogeneous ODE. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the nonhomogeneous ODE Ax′′(t) + Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ − x = 0

The homogeneous solution is found using the Kovacic algorithm which results in

xh = c1 e−t + etc2
2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

t2

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, t, t2}]

While the set of the basis functions for the homogeneous solution found earlier is{
et
2 , e

−t

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A3t
2 + A2t+ A1

The unknowns {A1, A2, A3} are found by substituting the above trial solution xp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A3t
2 − A2t− A1 + 2A3 = t2



chapter 2 . book solved problems 482

Solving for the unknowns by comparing coefficients results in

[A1 = −2, A2 = 0, A3 = −1]

Substituting the above back in the above trial solution xp, gives the particular solution

xp = −t2 − 2

Therefore the general solution is

x = xh + xp

=
(
c1 e−t + etc2

2

)
+
(
−t2 − 2

)
Will add steps showing solving for IC soon.

Summary of solutions found

x = −t2 − 2 + 3 et
2 + e−t

2

(a) Solution plot
x = −t2 − 2 + 3 et

2 + e−t

2

(b) Slope field plot
x′′ − x = t2
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Maple step by step solution

Let’s solve[
x′′ − x = t2, x(0) = 0, x′∣∣∣{t=0}

= 1
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of homogeneous ODE
r2 − 1 = 0

• Factor the characteristic polynomial
(r − 1) (r + 1) = 0

• Roots of the characteristic polynomial
r = (−1, 1)

• 1st solution of the homogeneous ODE
x1(t) = e−t

• 2nd solution of the homogeneous ODE
x2(t) = et

• General solution of the ODE
x = C1x1(t) + C2x2(t) + xp(t)

• Substitute in solutions of the homogeneous ODE
x = C1 e−t + etC2 + xp(t)

� Find a particular solution xp(t) of the ODE
◦ Use variation of parameters to find xp here f(t) is the forcing function[

xp(t) = −x1(t)
(∫ x2(t)f(t)

W (x1(t),x2(t))dt
)
+ x2(t)

(∫ x1(t)f(t)
W (x1(t),x2(t))dt

)
, f(t) = t2

]
◦ Wronskian of solutions of the homogeneous equation

W (x1(t) , x2(t)) =
[

e−t et

−e−t et

]
◦ Compute Wronskian

W (x1(t) , x2(t)) = 2
◦ Substitute functions into equation for xp(t)

xp(t) = − e−t
(∫

t2etdt
)

2 + et
(∫

t2e−tdt
)

2

◦ Compute integrals
xp(t) = −t2 − 2

• Substitute particular solution into general solution to ODE
x = etC2 + C1 e−t − t2 − 2
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� Check validity of solution x = et_C2+ _C1e−t − t2 − 2
◦ Use initial condition x(0) = 0

0 = _C2+ _C1− 2
◦ Compute derivative of the solution

x′ = et_C2− _C1 e−t − 2t

◦ Use the initial condition x′∣∣∣{t=0}
= 1

1 = −_C1+ _C2
◦ Solve for _C1 and _C2{

_C1 = 1
2 ,_C2 = 3

2

}
◦ Substitute constant values into general solution and simplify

x = −t2 − 2 + 3 et
2 + e−t

2

• Solution to the IVP
x = −t2 − 2 + 3 et

2 + e−t

2

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
Maple dsolve solution

Solving time : 0.014 (sec)
Leaf size : 21� �
dsolve([diff(diff(x(t),t),t)-x(t) = t^2,

op([x(0) = 0, D(x)(0) = 1])],x(t),singsol=all)� �
x = −t2 − 2 + 3 et

2 + e−t

2
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Mathematica DSolve solution

Solving time : 0.013 (sec)
Leaf size : 27� �
DSolve[{D[x[t],{t,2}]-x[t]==t^2,{x[0]==0,Derivative[1][x][0] == 1}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → 1

2
(
−2
(
t2 + 2

)
+ e−t + 3et

)
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Internal problem ID [18202]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 5. Linear equations. Exercises at page 85
Problem number : 7 (ii)
Date solved : Thursday, December 19, 2024 at 06:18:03 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x′′ − x = et

With initial conditions

x(0) = 0
x′(0) = 1

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = 0
q(t) = −1
F = et

Hence the ode is

x′′ − x = et
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The domain of p(t) = 0 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = −1 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = et is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode

Time used: 0.301 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = f(t)

Where A = 1, B = 0, C = −1, f(t) = et. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the non-homogeneous ODE Ax′′(t) +Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ − x = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be x = eλt. Substituting
this into the ODE gives

λ2etλ − etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 − 1 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1

Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

x = c1e
λ1t + c2e

λ2t

x = c1e
(1)t + c2e

(−1)t

Or
x = c1 et + c2 e−t

Therefore the homogeneous solution xh is

xh = c1 et + c2 e−t

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

et

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{et}]
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While the set of the basis functions for the homogeneous solution found earlier is

{et, e−t}

Since et is duplicated in the UC_set, then this basis is multiplied by extra t. The
UC_set becomes

[{t et}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

xp = A1t et

The unknowns {A1} are found by substituting the above trial solution xp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2A1et = et

Solving for the unknowns by comparing coefficients results in[
A1 =

1
2

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp =
t et
2

Therefore the general solution is

x = xh + xp

=
(
c1 et + c2 e−t

)
+
(
t et
2

)

Will add steps showing solving for IC soon.

Summary of solutions found

x = t et
2 + et

4 − e−t

4
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(a) Solution plot
x = t et

2 + et
4 − e−t

4

(b) Slope field plot
x′′ − x = et

Solved as second order ode using Kovacic algorithm

Time used: 0.155 (sec)

Writing the ode as

x′′ − x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(t) = z(t) (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.52: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1 is not a function of t, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(t) = e−t

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

Since B = 0 then the above reduces to

x1 = z1

= e−t

Which simplifies to
x1 = e−t

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Since B = 0 then the above becomes

x2 = x1

∫ 1
x2
1
dt

= e−t

∫ 1
e−2t dt

= e−t

(
e2t
2

)

Therefore the solution is



chapter 2 . book solved problems 493

x = c1x1 + c2x2

= c1
(
e−t
)
+ c2

(
e−t

(
e2t
2

))

This is second order nonhomogeneous ODE. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the nonhomogeneous ODE Ax′′(t) + Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ − x = 0

The homogeneous solution is found using the Kovacic algorithm which results in

xh = c1 e−t + etc2
2

The particular solution xp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on t as well. Let

(1)xp(t) = u1x1 + u2x2

Where u1, u2 to be determined, and x1, x2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

x1 = e−t

x2 =
et
2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

x2f(t)
aW (t)

(3)u2 =
∫

x1f(t)
aW (t)
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Where W (t) is the Wronskian and a is the coefficient in front of x′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣x1 x2

x′
1 x′

2

∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e−t et

2

d
dt
(e−t) d

dt

(
et
2

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e
−t et

2

−e−t et
2

∣∣∣∣∣∣
Therefore

W =
(
e−t
)(et

2

)
−
(
et
2

)(
−e−t

)
Which simplifies to

W = e−tet

Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ e2t

2
1 dt

Which simplifies to

u1 = −
∫ e2t

2 dt

Hence

u1 = −e2t
4

And Eq. (3) becomes

u2 =
∫ e−tet

1 dt
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Which simplifies to

u2 =
∫

1dt

Hence
u2 = t

Therefore the particular solution, from equation (1) is

xp(t) = −e2te−t

4 + t et
2

Which simplifies to

xp(t) =
et(−1 + 2t)

4

Therefore the general solution is

x = xh + xp

=
(
c1 e−t + etc2

2

)
+
(
et(−1 + 2t)

4

)

Will add steps showing solving for IC soon.

Summary of solutions found

x = −e−t

4 + et
2 + et(−1 + 2t)

4
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(a) Solution plot
x = − e−t

4 + et
2 + et(−1+2t)

4

(b) Slope field plot
x′′ − x = et

Solved as second order ode adjoint method

Time used: 0.403 (sec)

In normal form the ode

x′′ − x = et (1)

Becomes

x′′ + p(t)x′ + q(t)x = r(t) (2)

Where

p(t) = 0
q(t) = −1
r(t) = et

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (0)′ + (−ξ(t)) = 0

ξ′′(t)− ξ(t) = 0
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Which is solved for ξ(t). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(t) +Bξ′(t) + Cξ(t) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be ξ = eλt. Substituting
this into the ODE gives

λ2etλ − etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 − 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1

Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

ξ = c1e
λ1t + c2e

λ2t

ξ = c1e
(1)t + c2e

(−1)t

Or
ξ = c1 et + c2 e−t

Will add steps showing solving for IC soon.
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The original ode now reduces to first order ode

ξ(t)x′ − xξ′(t) + ξ(t) p(t)x =
∫

ξ(t) r(t) dt

x′ + x

(
p(t)− ξ′(t)

ξ (t)

)
=
∫
ξ(t) r(t) dt
ξ (t)

Or

x′ − x(c1 et − c2 e−t)
c1 et + c2 e−t

=
c2t+ c1 e2t

2
c1 et + c2 e−t

Which is now a first order ode. This is now solved for x. In canonical form a linear first
order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = −c1 e2t − c2
c1 e2t + c2

p(t) = et(c1 e2t + 2c2t)
2c1 e2t + 2c2

The integrating factor µ is

µ = e
∫
q dt

= e
∫
− c1 e2t−c2

c1 e2t+c2
dt

=
√
e2t

c1 e2t + c2

The ode becomes
d
dt(µx) = µp

d
dt(µx) = (µ)

(
et(c1 e2t + 2c2t)
2c1 e2t + 2c2

)
d
dt

(
x
√
e2t

c1 e2t + c2

)
=
( √

e2t
c1 e2t + c2

)(
et(c1 e2t + 2c2t)
2c1 e2t + 2c2

)

d
(

x
√
e2t

c1 e2t + c2

)
=
(

et(c1 e2t + 2c2t)
√
e2t

(2c1 e2t + 2c2) (c1 e2t + c2)

)
dt
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Integrating gives

x
√
e2t

c1 e2t + c2
=
∫ et(c1 e2t + 2c2t)

√
e2t

(2c1 e2t + 2c2) (c1 e2t + c2)
dt

=
√
e2t e−tt

2c1
−

√
e2t e−tc2(−1 + 2t)
4c1 (c1 e2t + c2)

+ c3

Dividing throughout by the integrating factor
√
e2t

c1 e2t+c2
gives the final solution

x =
(e2t)3/2 e−tc1t+

√
e2t e−tc2

2 + 2c3c1(c1 e2t + c2)
2
√
e2t c1

Hence, the solution found using Lagrange adjoint equation method is

x =
(e2t)3/2 e−tc1t+

√
e2t e−tc2

2 + 2c3c1(c1 e2t + c2)
2
√
e2t c1

The constants can be merged to give

x =
(e2t)3/2 e−tc1t+

√
e2t e−tc2

2 + 2c1(c1 e2t + c2)
2
√
e2t c1

Will add steps showing solving for IC soon.

Summary of solutions found

x =

(
e2t
)3/2e−tt

2 −
√
e2t e−t

8 + e2t
4 − 1

8√
e2t
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(a) Solution plot

x =

(
e2t

)3/2
e−tt

2 −
√

e2t e−t

8 + e2t
4 − 1

8√
e2t

(b) Slope field plot
x′′ − x = et

Maple step by step solution

Let’s solve[
x′′ − x = et, x(0) = 0, x′∣∣∣{t=0}

= 1
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of homogeneous ODE
r2 − 1 = 0

• Factor the characteristic polynomial
(r − 1) (r + 1) = 0

• Roots of the characteristic polynomial
r = (−1, 1)

• 1st solution of the homogeneous ODE
x1(t) = e−t

• 2nd solution of the homogeneous ODE
x2(t) = et

• General solution of the ODE
x = C1x1(t) + C2x2(t) + xp(t)

• Substitute in solutions of the homogeneous ODE
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x = C1 e−t + etC2 + xp(t)
� Find a particular solution xp(t) of the ODE

◦ Use variation of parameters to find xp here f(t) is the forcing function[
xp(t) = −x1(t)

(∫ x2(t)f(t)
W (x1(t),x2(t))dt

)
+ x2(t)

(∫ x1(t)f(t)
W (x1(t),x2(t))dt

)
, f(t) = et

]
◦ Wronskian of solutions of the homogeneous equation

W (x1(t) , x2(t)) =
[

e−t et

−e−t et

]
◦ Compute Wronskian

W (x1(t) , x2(t)) = 2
◦ Substitute functions into equation for xp(t)

xp(t) = − e−t
(∫

e2tdt
)

2 + et
(∫

1dt
)

2

◦ Compute integrals
xp(t) = et(−1+2t)

4

• Substitute particular solution into general solution to ODE
x = C1 e−t + etC2 + et(−1+2t)

4

� Check validity of solution x = _C1e−t + et_C2+ et(−1+2t)
4

◦ Use initial condition x(0) = 0
0 = _C1+ _C2− 1

4

◦ Compute derivative of the solution
x′ = −_C1 e−t + et_C2+ et(−1+2t)

4 + et
2

◦ Use the initial condition x′∣∣∣{t=0}
= 1

1 = −_C1+ _C2+ 1
4

◦ Solve for _C1 and _C2{
_C1 = −1

4 ,_C2 = 1
2

}
◦ Substitute constant values into general solution and simplify

x = − e−t

4 + (2t+1)et
4

• Solution to the IVP
x = − e−t

4 + (2t+1)et
4
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
Maple dsolve solution

Solving time : 0.015 (sec)
Leaf size : 20� �
dsolve([diff(diff(x(t),t),t)-x(t) = exp(t),

op([x(0) = 0, D(x)(0) = 1])],x(t),singsol=all)� �
x = −e−t

4 + (2t+ 1) et
4

Mathematica DSolve solution

Solving time : 0.033 (sec)
Leaf size : 27� �
DSolve[{D[x[t],{t,2}]-x[t]==Exp[t],{x[0]==0,Derivative[1][x][0] == 1}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → 1

4e
−t
(
e2t(2t+ 1)− 1

)
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2.3.3 problem 7 (iii)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 503
Solved as second order linear constant coeff ode . . . . . . . . . 504
Solved as second order ode using Kovacic algorithm . . . . . . . 507
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 512
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 514
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 514

Internal problem ID [18203]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 5. Linear equations. Exercises at page 85
Problem number : 7 (iii)
Date solved : Thursday, December 19, 2024 at 06:18:04 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

Solve

x′′ + 2x′ + 4x = et cos (2t)

With initial conditions

x(0) = 0
x′(0) = 1

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = 2
q(t) = 4
F = et cos (2t)

Hence the ode is

x′′ + 2x′ + 4x = et cos (2t)
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The domain of p(t) = 2 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 4 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = et cos (2t) is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode

Time used: 0.376 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = f(t)

Where A = 1, B = 2, C = 4, f(t) = et cos (2t). Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the non-homogeneous ODE Ax′′(t) +Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + 2x′ + 4x = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = 2, C = 4. Let the solution be x = eλt. Substituting this
into the ODE gives

λ2etλ + 2λ etλ + 4 etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 2λ+ 4 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 2, C = 4 into the above gives

λ1,2 =
−2

(2) (1) ±
1

(2) (1)
√

22 − (4) (1) (4)

= −1± i
√
3

Hence

λ1 = −1 + i
√
3

λ2 = −1− i
√
3

Which simplifies to

λ1 = i
√
3− 1

λ2 = −1− i
√
3

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −1 and β =
√
3. Therefore the final solution, when using Euler relation,

can be written as
x = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes

x = e−t
(
c1 cos

(√
3 t
)
+ c2 sin

(√
3 t
))

Therefore the homogeneous solution xh is

xh = e−t
(
c1 cos

(√
3 t
)
+ c2 sin

(√
3 t
))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

et cos (2t)
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{et cos (2t) , et sin (2t)}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−t cos

(√
3 t
)
, e−t sin

(√
3 t
)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1et cos (2t) + A2et sin (2t)

The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3A1et cos (2t)− 8A1et sin (2t) + 3A2et sin (2t) + 8A2et cos (2t) = et cos (2t)

Solving for the unknowns by comparing coefficients results in[
A1 =

3
73 , A2 =

8
73

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp =
3 et cos (2t)

73 + 8 et sin (2t)
73

Therefore the general solution is

x = xh + xp

=
(
e−t
(
c1 cos

(√
3 t
)
+ c2 sin

(√
3 t
)))

+
(
3 et cos (2t)

73 + 8 et sin (2t)
73

)

Will add steps showing solving for IC soon.

Summary of solutions found

x = 3 et cos (2t)
73 + 8 et sin (2t)

73 + e−t

(
−
3 cos

(√
3 t
)

73 +
17
√
3 sin

(√
3 t
)

73

)



chapter 2 . book solved problems 507

(a) Solution plot
x = 3 et cos(2t)

73 + 8 et sin(2t)
73 +

e−t

(
−

3 cos
(√

3 t
)

73 +
17

√
3 sin

(√
3 t
)

73

)
(b) Slope field plot
x′′ + 2x′ + 4x = et cos (2t)

Solved as second order ode using Kovacic algorithm

Time used: 0.393 (sec)

Writing the ode as

x′′ + 2x′ + 4x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2 (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
1 (6)

Comparing the above to (5) shows that

s = −3
t = 1

Therefore eq. (4) becomes

z′′(t) = −3z(t) (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.54: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −3 is not a function of t, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = cos
(√

3 t
)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
2
1 dt

= z1e
−t

= z1
(
e−t
)

Which simplifies to

x1 = e−t cos
(√

3 t
)

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
− 2

1 dt

(x1)2
dt

= x1

∫
e−2t

(x1)2
dt

= x1

(√
3 tan

(√
3 t
)

3

)
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Therefore the solution is

x = c1x1 + c2x2

= c1
(
e−t cos

(√
3 t
))

+ c2

(
e−t cos

(√
3 t
)(√

3 tan
(√

3 t
)

3

))

This is second order nonhomogeneous ODE. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the nonhomogeneous ODE Ax′′(t) + Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + 2x′ + 4x = 0

The homogeneous solution is found using the Kovacic algorithm which results in

xh = c1 e−t cos
(√

3 t
)
+

c2 sin
(√

3 t
)
e−t

√
3

3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

et cos (2t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{et cos (2t) , et sin (2t)}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−t cos

(√
3 t
)
,
sin
(√

3 t
)
e−t

√
3

3

}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1et cos (2t) + A2et sin (2t)
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The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3A1et cos (2t)− 8A1et sin (2t) + 3A2et sin (2t) + 8A2et cos (2t) = et cos (2t)

Solving for the unknowns by comparing coefficients results in[
A1 =

3
73 , A2 =

8
73

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp =
3 et cos (2t)

73 + 8 et sin (2t)
73

Therefore the general solution is

x = xh + xp

=
(
c1 e−t cos

(√
3 t
)
+

c2 sin
(√

3 t
)
e−t

√
3

3

)
+
(
3 et cos (2t)

73 + 8 et sin (2t)
73

)

Will add steps showing solving for IC soon.

Summary of solutions found

x = −
3 e−t cos

(√
3 t
)

73 +
17 sin

(√
3 t
)
e−t

√
3

73 + 3 et cos (2t)
73 + 8 et sin (2t)

73
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(a) Solution plot

x = −
3 e−t cos

(√
3 t
)

73 +
17 sin

(√
3 t
)
e−t

√
3

73 +
3 et cos(2t)

73 + 8 et sin(2t)
73

(b) Slope field plot
x′′ + 2x′ + 4x = et cos (2t)

Maple step by step solution

Let’s solve[
x′′ + 2x′ + 4x = et cos (2t) , x(0) = 0, x′∣∣∣{t=0}

= 1
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of homogeneous ODE
r2 + 2r + 4 = 0

• Use quadratic formula to solve for r

r = (−2)±
(√

−12
)

2

• Roots of the characteristic polynomial
r =

(
−1− I

√
3, I

√
3− 1

)
• 1st solution of the homogeneous ODE

x1(t) = e−t cos
(√

3 t
)

• 2nd solution of the homogeneous ODE
x2(t) = e−t sin

(√
3 t
)

• General solution of the ODE
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x = C1x1(t) + C2x2(t) + xp(t)
• Substitute in solutions of the homogeneous ODE

x = C1 e−t cos
(√

3 t
)
+ e−t sin

(√
3 t
)
C2 + xp(t)

� Find a particular solution xp(t) of the ODE
◦ Use variation of parameters to find xp here f(t) is the forcing function[

xp(t) = −x1(t)
(∫ x2(t)f(t)

W (x1(t),x2(t))dt
)
+ x2(t)

(∫ x1(t)f(t)
W (x1(t),x2(t))dt

)
, f(t) = et cos (2t)

]
◦ Wronskian of solutions of the homogeneous equation

W (x1(t) , x2(t)) =

 e−t cos
(√

3 t
)

e−t sin
(√

3 t
)

−e−t cos
(√

3 t
)
− sin

(√
3 t
)
e−t

√
3 −e−t sin

(√
3 t
)
+ e−t

√
3 cos

(√
3 t
)


◦ Compute Wronskian
W (x1(t) , x2(t)) =

√
3 e−2t

◦ Substitute functions into equation for xp(t)

xp(t) =
√
3 e−t

(
− cos

(√
3 t
)(∫

sin
(√

3 t
)
cos(2t)e2tdt

)
+sin

(√
3 t
)(∫

cos
(√

3 t
)
cos(2t)e2tdt

))
3

◦ Compute integrals
xp(t) = et(3 cos(2t)+8 sin(2t))

73

• Substitute particular solution into general solution to ODE
x = e−t sin

(√
3 t
)
C2 + C1 e−t cos

(√
3 t
)
+ et(3 cos(2t)+8 sin(2t))

73

� Check validity of solution x = e−t sin
(√

3 t
)
_C2+ _C1e−t cos

(√
3 t
)
+ et(3 cos(2t)+8 sin(2t))

73

◦ Use initial condition x(0) = 0
0 = 3

73 + _C1
◦ Compute derivative of the solution

x′ = −e−t sin
(√

3 t
)
_C2+ e−t

√
3 cos

(√
3 t
)
_C2− _C1 e−t cos

(√
3 t
)
− _C1 e−t

√
3 sin

(√
3 t
)
+ et(3 cos(2t)+8 sin(2t))

73 + et(−6 sin(2t)+16 cos(2t))
73

◦ Use the initial condition x′∣∣∣{t=0}
= 1

1 = 19
73 +

√
3_C2− _C1

◦ Solve for _C1 and _C2{
_C1 = − 3

73 ,_C2 = 17
√
3

73

}
◦ Substitute constant values into general solution and simplify

x = −
3 e−t cos

(√
3 t
)

73 +
17 sin

(√
3 t
)
e−t

√
3

73 +
3 et
(
cos(2t)+ 8 sin(2t)

3

)
73

• Solution to the IVP
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x = −
3 e−t cos

(√
3 t
)

73 +
17 sin

(√
3 t
)
e−t

√
3

73 +
3 et
(
cos(2t)+ 8 sin(2t)

3

)
73

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
Maple dsolve solution

Solving time : 0.026 (sec)
Leaf size : 47� �
dsolve([diff(diff(x(t),t),t)+2*diff(x(t),t)+4*x(t) = exp(t)*cos(2*t),

op([x(0) = 0, D(x)(0) = 1])],x(t),singsol=all)� �
x = −

3 e−t cos
(√

3 t
)

73 +
17 sin

(√
3 t
)
e−t

√
3

73 +
3 et
(
cos (2t) + 8 sin(2t)

3

)
73

Mathematica DSolve solution

Solving time : 1.045 (sec)
Leaf size : 62� �
DSolve[{D[x[t],{t,2}]+2*D[x[t],t]+4*x[t]==Exp[t]*Cos[2*t],{x[0]==0,Derivative[1][x][0] == 1}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → 1

73e
−t
(
8e2t sin(2t) + 17

√
3 sin

(√
3t
)
+ 3e2t cos(2t)− 3 cos

(√
3t
))
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2.3.4 problem 7 (iv)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 515
Solved as second order linear constant coeff ode . . . . . . . . . 516
Solved as second order ode using Kovacic algorithm . . . . . . . 519
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 524
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 526
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 527

Internal problem ID [18204]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 5. Linear equations. Exercises at page 85
Problem number : 7 (iv)
Date solved : Thursday, December 19, 2024 at 06:18:45 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

Solve

x′′ − x′ + x = sin (2t)

With initial conditions

x(0) = 0
x′(0) = 1

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = −1
q(t) = 1
F = sin (2t)

Hence the ode is

x′′ − x′ + x = sin (2t)
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The domain of p(t) = −1 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 1 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = sin (2t) is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode

Time used: 0.227 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = f(t)

Where A = 1, B = −1, C = 1, f(t) = sin (2t). Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the non-homogeneous ODE Ax′′(t) +Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ − x′ + x = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = −1, C = 1. Let the solution be x = eλt. Substituting
this into the ODE gives

λ2etλ − λ etλ + etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 − λ+ 1 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −1, C = 1 into the above gives

λ1,2 =
1

(2) (1) ±
1

(2) (1)
√
−12 − (4) (1) (1)

= 1
2 ± i

√
3

2
Hence

λ1 =
1
2 + i

√
3

2

λ2 =
1
2 − i

√
3

2
Which simplifies to

λ1 =
1
2 + i

√
3

2

λ2 =
1
2 − i

√
3

2

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 1
2 and β =

√
3
2 . Therefore the final solution, when using Euler relation, can

be written as
x = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes

x = e
t
2

(
c1 cos

(√
3 t
2

)
+ c2 sin

(√
3 t
2

))

Therefore the homogeneous solution xh is

xh = e t
2

(
c1 cos

(√
3 t
2

)
+ c2 sin

(√
3 t
2

))
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (2t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (2t) , sin (2t)}]

While the set of the basis functions for the homogeneous solution found earlier is{
e t

2 cos
(√

3 t
2

)
, e t

2 sin
(√

3 t
2

)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1 cos (2t) + A2 sin (2t)

The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−3A1 cos (2t)− 3A2 sin (2t) + 2A1 sin (2t)− 2A2 cos (2t) = sin (2t)

Solving for the unknowns by comparing coefficients results in[
A1 =

2
13 , A2 = − 3

13

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp =
2 cos (2t)

13 − 3 sin (2t)
13

Therefore the general solution is

x = xh + xp

=
(
e t

2

(
c1 cos

(√
3 t
2

)
+ c2 sin

(√
3 t
2

)))
+
(
2 cos (2t)

13 − 3 sin (2t)
13

)
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Will add steps showing solving for IC soon.

Summary of solutions found

x = 2 cos (2t)
13 − 3 sin (2t)

13 + e t
2

−
2 cos

(√
3 t
2

)
13 +

40
√
3 sin

(√
3 t
2

)
39



(a) Solution plot
x = 2 cos(2t)

13 − 3 sin(2t)
13 +

e
t
2

(
−

2 cos
(√

3 t
2

)
13 +

40
√
3 sin

(√
3 t
2

)
39

)
(b) Slope field plot
x′′ − x′ + x = sin (2t)

Solved as second order ode using Kovacic algorithm

Time used: 0.279 (sec)

Writing the ode as

x′′ − x′ + x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −1 (3)
C = 1
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Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
4 (6)

Comparing the above to (5) shows that

s = −3
t = 4

Therefore eq. (4) becomes

z′′(t) = −3z(t)
4 (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.56: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −3
4 is not a function of t, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = cos
(√

3 t
2

)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−1
1 dt

= z1e
t
2

= z1
(
e t

2

)
Which simplifies to

x1 = e t
2 cos

(√
3 t
2

)

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt
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Substituting gives

x2 = x1

∫
e
∫
−−1

1 dt

(x1)2
dt

= x1

∫
et

(x1)2
dt

= x1

2
√
3 tan

(√
3 t
2

)
3


Therefore the solution is

x = c1x1 + c2x2

= c1

(
e t

2 cos
(√

3 t
2

))
+ c2

e t
2 cos

(√
3 t
2

)2
√
3 tan

(√
3 t
2

)
3


This is second order nonhomogeneous ODE. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the nonhomogeneous ODE Ax′′(t) + Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ − x′ + x = 0

The homogeneous solution is found using the Kovacic algorithm which results in

xh = c1 e
t
2 cos

(√
3 t
2

)
+

2c2 sin
(√

3 t
2

)
e t

2
√
3

3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (2t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (2t) , sin (2t)}]
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While the set of the basis functions for the homogeneous solution found earlier ise t
2 cos

(√
3 t
2

)
,
2 sin

(√
3 t
2

)
e t

2
√
3

3


Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1 cos (2t) + A2 sin (2t)

The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−3A1 cos (2t)− 3A2 sin (2t) + 2A1 sin (2t)− 2A2 cos (2t) = sin (2t)

Solving for the unknowns by comparing coefficients results in[
A1 =

2
13 , A2 = − 3

13

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp =
2 cos (2t)

13 − 3 sin (2t)
13

Therefore the general solution is

x = xh + xp

=

c1 e
t
2 cos

(√
3 t
2

)
+

2c2 sin
(√

3 t
2

)
e t

2
√
3

3

+
(
2 cos (2t)

13 − 3 sin (2t)
13

)

Will add steps showing solving for IC soon.

Summary of solutions found

x = −
2 e t

2 cos
(√

3 t
2

)
13 +

40 sin
(√

3 t
2

)
e t

2
√
3

39 + 2 cos (2t)
13 − 3 sin (2t)

13
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(a) Solution plot

x = −
2 e

t
2 cos

(√
3 t
2

)
13 +

40 sin
(√

3 t
2

)
e
t
2
√
3

39 +
2 cos(2t)

13 − 3 sin(2t)
13

(b) Slope field plot
x′′ − x′ + x = sin (2t)

Maple step by step solution

Let’s solve[
x′′ − x′ + x = sin (2t) , x(0) = 0, x′∣∣∣{t=0}

= 1
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of homogeneous ODE
r2 − r + 1 = 0

• Use quadratic formula to solve for r

r = 1±
(√

−3
)

2

• Roots of the characteristic polynomial

r =
(

1
2 −

I
√
3

2 , 12 +
I
√
3

2

)
• 1st solution of the homogeneous ODE

x1(t) = e t
2 cos

(√
3 t
2

)
• 2nd solution of the homogeneous ODE

x2(t) = e t
2 sin

(√
3 t
2

)
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• General solution of the ODE
x = C1x1(t) + C2x2(t) + xp(t)

• Substitute in solutions of the homogeneous ODE

x = C1 e t
2 cos

(√
3 t
2

)
+ e t

2 sin
(√

3 t
2

)
C2 + xp(t)

� Find a particular solution xp(t) of the ODE
◦ Use variation of parameters to find xp here f(t) is the forcing function[

xp(t) = −x1(t)
(∫ x2(t)f(t)

W (x1(t),x2(t))dt
)
+ x2(t)

(∫ x1(t)f(t)
W (x1(t),x2(t))dt

)
, f(t) = sin (2t)

]
◦ Wronskian of solutions of the homogeneous equation

W (x1(t) , x2(t)) =

 e t
2 cos

(√
3 t
2

)
e t

2 sin
(√

3 t
2

)
e
t
2 cos

(√
3 t
2

)
2 −

sin
(√

3 t
2

)
e
t
2
√
3

2
e
t
2 sin

(√
3 t
2

)
2 +

e
t
2
√
3 cos

(√
3 t
2

)
2


◦ Compute Wronskian

W (x1(t) , x2(t)) =
√
3 et
2

◦ Substitute functions into equation for xp(t)

xp(t) = −
2
√
3 e

t
2
(
cos
(√

3 t
2

)(∫
sin
(√

3 t
2

)
sin(2t)e−

t
2 dt
)
−sin

(√
3 t
2

)(∫
cos
(√

3 t
2

)
sin(2t)e−

t
2 dt
))

3

◦ Compute integrals
xp(t) = 2 cos(2t)

13 − 3 sin(2t)
13

• Substitute particular solution into general solution to ODE

x = e t
2 sin

(√
3 t
2

)
C2 + C1 e t

2 cos
(√

3 t
2

)
+ 2 cos(2t)

13 − 3 sin(2t)
13

� Check validity of solution x = e t
2 sin

(√
3 t
2

)
_C2+ _C1e t

2 cos
(√

3 t
2

)
+ 2 cos(2t)

13 − 3 sin(2t)
13

◦ Use initial condition x(0) = 0
0 = 2

13 + _C1
◦ Compute derivative of the solution

x′ =
e
t
2 sin

(√
3 t
2

)
_C2

2 +
e
t
2
√
3 cos

(√
3 t
2

)
_C2

2 +
_C1 e

t
2 cos

(√
3 t
2

)
2 −

_C1 e
t
2
√
3 sin

(√
3 t
2

)
2 − 4 sin(2t)

13 − 6 cos(2t)
13

◦ Use the initial condition x′∣∣∣{t=0}
= 1

1 = − 6
13 +

√
3_C2

2 + _C1
2

◦ Solve for _C1 and _C2{
_C1 = − 2

13 ,_C2 = 40
√
3

39

}
◦ Substitute constant values into general solution and simplify
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x = −
2 e

t
2 cos

(√
3 t
2

)
13 +

40 sin
(√

3 t
2

)
e
t
2
√
3

39 + 2 cos(2t)
13 − 3 sin(2t)

13

• Solution to the IVP

x = −
2 e

t
2 cos

(√
3 t
2

)
13 +

40 sin
(√

3 t
2

)
e
t
2
√
3

39 + 2 cos(2t)
13 − 3 sin(2t)

13

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
Maple dsolve solution

Solving time : 0.021 (sec)
Leaf size : 46� �
dsolve([diff(diff(x(t),t),t)-diff(x(t),t)+x(t) = sin(2*t),

op([x(0) = 0, D(x)(0) = 1])],x(t),singsol=all)� �
x = −

2 e t
2 cos

(√
3 t
2

)
13 +

40 sin
(√

3 t
2

)
e t

2
√
3

39 + 2 cos (2t)
13 − 3 sin (2t)

13
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Mathematica DSolve solution

Solving time : 1.62 (sec)
Leaf size : 67� �
DSolve[{D[x[t],{t,2}]-D[x[t],t]+x[t]==Sin[2*t],{x[0]==0,Derivative[1][x][0] == 1}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → 1

39

(
−9 sin(2t) + 40

√
3et/2 sin

(√
3t
2

)
+ 6 cos(2t)− 6et/2 cos

(√
3t
2

))
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2.3.5 problem 7 (v)

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 528
Solved as second order linear constant coeff ode . . . . . . . . . 529
Solved as second order ode using Kovacic algorithm . . . . . . . 532
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 537
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 539
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 539

Internal problem ID [18205]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 5. Linear equations. Exercises at page 85
Problem number : 7 (v)
Date solved : Thursday, December 19, 2024 at 06:20:09 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

Solve

x′′ + 4x′ + 3x = t sin (t)

With initial conditions

x(0) = 0
x′(0) = 1

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = 4
q(t) = 3
F = t sin (t)

Hence the ode is

x′′ + 4x′ + 3x = t sin (t)
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The domain of p(t) = 4 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 3 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = t sin (t) is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode

Time used: 0.519 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = f(t)

Where A = 1, B = 4, C = 3, f(t) = t sin (t). Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the non-homogeneous ODE Ax′′(t) +Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + 4x′ + 3x = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = 4, C = 3. Let the solution be x = eλt. Substituting this
into the ODE gives

λ2etλ + 4λ etλ + 3 etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 4λ+ 3 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 4, C = 3 into the above gives

λ1,2 =
−4

(2) (1) ±
1

(2) (1)
√

42 − (4) (1) (3)

= −2± 1

Hence
λ1 = −2 + 1
λ2 = −2− 1

Which simplifies to
λ1 = −1
λ2 = −3

Since roots are real and distinct, then the solution is

x = c1e
λ1t + c2e

λ2t

x = c1e
(−1)t + c2e

(−3)t

Or
x = c1 e−t + c2 e−3t

Therefore the homogeneous solution xh is

xh = c1 e−t + c2 e−3t

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

t sin (t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{t sin (t) , cos (t) t, cos (t) , sin (t)}]
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While the set of the basis functions for the homogeneous solution found earlier is

{e−3t, e−t}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1t sin (t) + A2 cos (t) t+ A3 cos (t) + A4 sin (t)

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution xp

into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

2A1 cos (t) + 2A1t sin (t) + 2A2 cos (t) t− 2A2 sin (t)
+ 2A3 cos (t) + 2A4 sin (t) + 4A1 sin (t) + 4A1t cos (t)
− 4A2 sin (t) t+ 4A2 cos (t)− 4A3 sin (t) + 4A4 cos (t) = t sin (t)

Solving for the unknowns by comparing coefficients results in[
A1 =

1
10 , A2 = −1

5 , A3 =
11
50 , A4 =

1
25

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp =
t sin (t)

10 − cos (t) t
5 + 11 cos (t)

50 + sin (t)
25

Therefore the general solution is

x = xh + xp

=
(
c1 e−t + c2 e−3t)+ (t sin (t)

10 − cos (t) t
5 + 11 cos (t)

50 + sin (t)
25

)

Will add steps showing solving for IC soon.

Summary of solutions found

x = t sin (t)
10 − cos (t) t

5 + 11 cos (t)
50 + sin (t)

25 + e−t

4 − 47 e−3t

100
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(a) Solution plot
x = t sin(t)

10 − cos(t)t
5 + 11 cos(t)

50 + sin(t)
25 + e−t

4 −
47 e−3t

100

(b) Slope field plot
x′′ + 4x′ + 3x = t sin (t)

Solved as second order ode using Kovacic algorithm

Time used: 0.153 (sec)

Writing the ode as

x′′ + 4x′ + 3x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4 (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)



chapter 2 . book solved problems 533

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(t) = z(t) (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.58: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1 is not a function of t, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(t) = e−t

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
4
1 dt

= z1e
−2t

= z1
(
e−2t)

Which simplifies to
x1 = e−3t

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
− 4

1 dt

(x1)2
dt

= x1

∫
e−4t

(x1)2
dt

= x1

(
e−4te6t

2

)
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Therefore the solution is

x = c1x1 + c2x2

= c1
(
e−3t)+ c2

(
e−3t

(
e−4te6t

2

))

This is second order nonhomogeneous ODE. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the nonhomogeneous ODE Ax′′(t) + Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + 4x′ + 3x = 0

The homogeneous solution is found using the Kovacic algorithm which results in

xh = c1 e−3t + c2 e−t

2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

t sin (t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{t sin (t) , cos (t) t, cos (t) , sin (t)}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−t

2 , e−3t
}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1t sin (t) + A2 cos (t) t+ A3 cos (t) + A4 sin (t)
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The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution xp

into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

2A1 cos (t) + 2A1t sin (t) + 2A2 cos (t) t− 2A2 sin (t)
+ 2A3 cos (t) + 2A4 sin (t) + 4A1 sin (t) + 4A1t cos (t)
− 4A2 sin (t) t+ 4A2 cos (t)− 4A3 sin (t) + 4A4 cos (t) = t sin (t)

Solving for the unknowns by comparing coefficients results in[
A1 =

1
10 , A2 = −1

5 , A3 =
11
50 , A4 =

1
25

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp =
t sin (t)

10 − cos (t) t
5 + 11 cos (t)

50 + sin (t)
25

Therefore the general solution is

x = xh + xp

=
(
c1 e−3t + c2 e−t

2

)
+
(
t sin (t)

10 − cos (t) t
5 + 11 cos (t)

50 + sin (t)
25

)

Will add steps showing solving for IC soon.

Summary of solutions found

x = t sin (t)
10 − cos (t) t

5 + 11 cos (t)
50 + sin (t)

25 + e−t

4 − 47 e−3t

100
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(a) Solution plot
x = t sin(t)

10 − cos(t)t
5 + 11 cos(t)

50 + sin(t)
25 + e−t

4 −
47 e−3t

100

(b) Slope field plot
x′′ + 4x′ + 3x = t sin (t)

Maple step by step solution

Let’s solve[
x′′ + 4x′ + 3x = t sin (t) , x(0) = 0, x′∣∣∣{t=0}

= 1
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of homogeneous ODE
r2 + 4r + 3 = 0

• Factor the characteristic polynomial
(r + 3) (r + 1) = 0

• Roots of the characteristic polynomial
r = (−3,−1)

• 1st solution of the homogeneous ODE
x1(t) = e−3t

• 2nd solution of the homogeneous ODE
x2(t) = e−t

• General solution of the ODE
x = C1x1(t) + C2x2(t) + xp(t)

• Substitute in solutions of the homogeneous ODE
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x = C1 e−3t + C2 e−t + xp(t)
� Find a particular solution xp(t) of the ODE

◦ Use variation of parameters to find xp here f(t) is the forcing function[
xp(t) = −x1(t)

(∫ x2(t)f(t)
W (x1(t),x2(t))dt

)
+ x2(t)

(∫ x1(t)f(t)
W (x1(t),x2(t))dt

)
, f(t) = t sin (t)

]
◦ Wronskian of solutions of the homogeneous equation

W (x1(t) , x2(t)) =
[

e−3t e−t

−3 e−3t −e−t

]
◦ Compute Wronskian

W (x1(t) , x2(t)) = 2 e−4t

◦ Substitute functions into equation for xp(t)

xp(t) = − e−3t(∫ t sin(t)e3tdt
)

2 + e−t
(∫

t sin(t)etdt
)

2

◦ Compute integrals
xp(t) = (−10t+11) cos(t)

50 + sin(t)(5t+2)
50

• Substitute particular solution into general solution to ODE
x = C2 e−t + C1 e−3t + (−10t+11) cos(t)

50 + sin(t)(5t+2)
50

� Check validity of solution x = _C2e−t + _C1e−3t + (−10t+11) cos(t)
50 + sin(t)(5t+2)

50

◦ Use initial condition x(0) = 0
0 = _C2+ _C1+ 11

50

◦ Compute derivative of the solution
x′ = −_C2 e−t − 3_C1 e−3t − cos(t)

5 − (−10t+11) sin(t)
50 + cos(t)(5t+2)

50 + sin(t)
10

◦ Use the initial condition x′∣∣∣{t=0}
= 1

1 = −_C2− 3_C1− 4
25

◦ Solve for _C1 and _C2{
_C1 = − 47

100 ,_C2 = 1
4

}
◦ Substitute constant values into general solution and simplify

x = e−t

4 − 47 e−3t

100 + (−10t+11) cos(t)
50 + sin(t)(5t+2)

50

• Solution to the IVP
x = e−t

4 − 47 e−3t

100 + (−10t+11) cos(t)
50 + sin(t)(5t+2)

50
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
Maple dsolve solution

Solving time : 0.021 (sec)
Leaf size : 35� �
dsolve([diff(diff(x(t),t),t)+4*diff(x(t),t)+3*x(t) = t*sin(t),

op([x(0) = 0, D(x)(0) = 1])],x(t),singsol=all)� �
x = e−t

4 − 47 e−3t

100 + (−10t+ 11) cos (t)
50 + sin (t) (5t+ 2)

50

Mathematica DSolve solution

Solving time : 0.023 (sec)
Leaf size : 42� �
DSolve[{D[x[t],{t,2}]+4*D[x[t],t]+3*x[t]==t*Sin[t],{x[0]==0,Derivative[1][x][0] == 1}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → 1

100
(
e−3t(25e2t − 47

)
+ 2(5t+ 2) sin(t) + (22− 20t) cos(t)

)
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2.3.6 problem 7 (vi)
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Internal problem ID [18206]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 5. Linear equations. Exercises at page 85
Problem number : 7 (vi)
Date solved : Thursday, December 19, 2024 at 06:20:11 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

Solve

x′′ + x = cos (t)

With initial conditions

x(0) = 0
x′(0) = 1

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = 0
q(t) = 1
F = cos (t)

Hence the ode is

x′′ + x = cos (t)



chapter 2 . book solved problems 541

The domain of p(t) = 0 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 1 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = cos (t) is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode

Time used: 0.218 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = f(t)

Where A = 1, B = 0, C = 1, f(t) = cos (t). Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the non-homogeneous ODE Ax′′(t) +Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + x = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be x = eλt. Substituting this
into the ODE gives

λ2etλ + etλ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 1 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

x = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes
x = e0(c1 cos (t) + c2 sin (t))

Or
x = c1 cos (t) + c2 sin (t)

Therefore the homogeneous solution xh is

xh = c1 cos (t) + c2 sin (t)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (t)
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (t) , sin (t)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (t) , sin (t)}

Since cos (t) is duplicated in the UC_set, then this basis is multiplied by extra t. The
UC_set becomes

[{t sin (t) , cos (t) t}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

xp = A1t sin (t) + A2 cos (t) t

The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A1 cos (t)− 2A2 sin (t) = cos (t)

Solving for the unknowns by comparing coefficients results in[
A1 =

1
2 , A2 = 0

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp =
t sin (t)

2

Therefore the general solution is

x = xh + xp

= (c1 cos (t) + c2 sin (t)) +
(
t sin (t)

2

)

Will add steps showing solving for IC soon.
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Summary of solutions found

x = t sin (t)
2 + sin (t)

(a) Solution plot
x = t sin(t)

2 + sin (t)
(b) Slope field plot
x′′ + x = cos (t)

Solved as second order ode using Kovacic algorithm

Time used: 0.094 (sec)

Writing the ode as

x′′ + x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt
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Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(t) = −z(t) (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.60: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of t, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = cos (t)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

Since B = 0 then the above reduces to

x1 = z1

= cos (t)

Which simplifies to
x1 = cos (t)

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Since B = 0 then the above becomes

x2 = x1

∫ 1
x2
1
dt

= cos (t)
∫ 1

cos (t)2
dt

= cos (t) (tan (t))
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Therefore the solution is

x = c1x1 + c2x2

= c1(cos (t)) + c2(cos (t) (tan (t)))

This is second order nonhomogeneous ODE. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the nonhomogeneous ODE Ax′′(t) + Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + x = 0

The homogeneous solution is found using the Kovacic algorithm which results in

xh = c1 cos (t) + c2 sin (t)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (t) , sin (t)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (t) , sin (t)}

Since cos (t) is duplicated in the UC_set, then this basis is multiplied by extra t. The
UC_set becomes

[{t sin (t) , cos (t) t}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

xp = A1t sin (t) + A2 cos (t) t



chapter 2 . book solved problems 548

The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A1 cos (t)− 2A2 sin (t) = cos (t)

Solving for the unknowns by comparing coefficients results in[
A1 =

1
2 , A2 = 0

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp =
t sin (t)

2

Therefore the general solution is

x = xh + xp

= (c1 cos (t) + c2 sin (t)) +
(
t sin (t)

2

)
Will add steps showing solving for IC soon.

Summary of solutions found

x = t sin (t)
2 + sin (t)

(a) Solution plot
x = t sin(t)

2 + sin (t)
(b) Slope field plot
x′′ + x = cos (t)
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Solved as second order ode adjoint method

Time used: 5.898 (sec)

In normal form the ode

x′′ + x = cos (t) (1)

Becomes

x′′ + p(t)x′ + q(t)x = r(t) (2)

Where

p(t) = 0
q(t) = 1
r(t) = cos (t)

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ − (0)′ + (ξ(t)) = 0

ξ′′(t) + ξ(t) = 0

Which is solved for ξ(t). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Aξ′′(t) +Bξ′(t) + Cξ(t) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be ξ = eλt. Substituting this
into the ODE gives

λ2etλ + etλ = 0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i
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Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

ξ = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes
ξ = e0(c1 cos (t) + c2 sin (t))

Or
ξ = c1 cos (t) + c2 sin (t)

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(t)x′ − xξ′(t) + ξ(t) p(t)x =
∫

ξ(t) r(t) dt

x′ + x

(
p(t)− ξ′(t)

ξ (t)

)
=
∫
ξ(t) r(t) dt
ξ (t)

Or

x′ − x(−c1 sin (t) + c2 cos (t))
c1 cos (t) + c2 sin (t)

=
− cos(t)2c2

2 + c1
(

sin(t) cos(t)
2 + t

2

)
c1 cos (t) + c2 sin (t)

Which is now a first order ode. This is now solved for x. In canonical form a linear first
order is

x′ + q(t)x = p(t)
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Comparing the above to the given ode shows that

q(t) = −−c1 sin (t) + c2 cos (t)
c1 cos (t) + c2 sin (t)

p(t) = − cos (t)2 c2 + c1 sin (t) cos (t) + c1t

2c1 cos (t) + 2c2 sin (t)

The integrating factor µ is

µ = e
∫
q dt

= e
∫
−−c1 sin(t)+c2 cos(t)

c1 cos(t)+c2 sin(t) dt

= 1
c1 cos (t) + c2 sin (t)

The ode becomes

d
dt(µx) = µp

d
dt(µx) = (µ)

(
− cos (t)2 c2 + c1 sin (t) cos (t) + c1t

2c1 cos (t) + 2c2 sin (t)

)

d
dt

(
x

c1 cos (t) + c2 sin (t)

)
=
(

1
c1 cos (t) + c2 sin (t)

)(
− cos (t)2 c2 + c1 sin (t) cos (t) + c1t

2c1 cos (t) + 2c2 sin (t)

)

d
(

x

c1 cos (t) + c2 sin (t)

)
=
(

− cos (t)2 c2 + c1 sin (t) cos (t) + c1t

(2c1 cos (t) + 2c2 sin (t)) (c1 cos (t) + c2 sin (t))

)
dt

Integrating gives

x

c1 cos (t) + c2 sin (t)
=
∫

− cos (t)2 c2 + c1 sin (t) cos (t) + c1t

(2c1 cos (t) + 2c2 sin (t)) (c1 cos (t) + c2 sin (t))
dt

=
−t tan

(
t
2

)
− 2t tan

(
t
2

)3 − t tan
(
t
2

)5 − 1
2 −

tan
(
t
2
)2

2 + tan
(
t
2
)4

2 + tan
(
t
2
)6

2(
1 + tan

(
t
2

)2)2 (
c1 tan

(
t
2

)2 − 2 tan
(
t
2

)
c2 − c1

) + c3

Dividing throughout by the integrating factor 1
c1 cos(t)+c2 sin(t) gives the final solution

x = −1
2 + (2c1c3 + 1) cos

(
t

2

)2

+ sin
(
t

2

)
(2c2c3 + t) cos

(
t

2

)
− c1c3
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Hence, the solution found using Lagrange adjoint equation method is

x = −1
2 + (2c1c3 + 1) cos

(
t

2

)2

+ sin
(
t

2

)
(2c2c3 + t) cos

(
t

2

)
− c1c3

The constants can be merged to give

x = −1
2 + (2c1 + 1) cos

(
t

2

)2

+ sin
(
t

2

)
(2c2 + t) cos

(
t

2

)
− c1

Will add steps showing solving for IC soon.

Summary of solutions found

x = sin
(
t

2

)
(2 + t) cos

(
t

2

)

(a) Solution plot
x = sin

(
t
2
)
(2 + t) cos

(
t
2
) (b) Slope field plot

x′′ + x = cos (t)
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Maple step by step solution

Let’s solve[
x′′ + x = cos (t) , x(0) = 0, x′∣∣∣{t=0}

= 1
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of homogeneous ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−I, I)

• 1st solution of the homogeneous ODE
x1(t) = cos (t)

• 2nd solution of the homogeneous ODE
x2(t) = sin (t)

• General solution of the ODE
x = C1x1(t) + C2x2(t) + xp(t)

• Substitute in solutions of the homogeneous ODE
x = C1 cos (t) + C2 sin (t) + xp(t)

� Find a particular solution xp(t) of the ODE
◦ Use variation of parameters to find xp here f(t) is the forcing function[

xp(t) = −x1(t)
(∫ x2(t)f(t)

W (x1(t),x2(t))dt
)
+ x2(t)

(∫ x1(t)f(t)
W (x1(t),x2(t))dt

)
, f(t) = cos (t)

]
◦ Wronskian of solutions of the homogeneous equation

W (x1(t) , x2(t)) =
[

cos (t) sin (t)
− sin (t) cos (t)

]
◦ Compute Wronskian

W (x1(t) , x2(t)) = 1
◦ Substitute functions into equation for xp(t)

xp(t) = − cos(t)
(∫

sin(2t)dt
)

2 + sin (t)
(∫

cos (t)2 dt
)

◦ Compute integrals
xp(t) = cos(t)

4 + t sin(t)
2

• Substitute particular solution into general solution to ODE
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x = C1 cos (t) + C2 sin (t) + cos(t)
4 + t sin(t)

2

� Check validity of solution x = _C1 cos (t) + _C2 sin (t) + cos(t)
4 + t sin(t)

2

◦ Use initial condition x(0) = 0
0 = _C1+ 1

4

◦ Compute derivative of the solution
x′ = −_C1 sin (t) + _C2 cos (t) + sin(t)

4 + cos(t)t
2

◦ Use the initial condition x′∣∣∣{t=0}
= 1

1 = _C2
◦ Solve for _C1 and _C2{

_C1 = −1
4 ,_C2 = 1

}
◦ Substitute constant values into general solution and simplify

x = sin (t)
(
1 + t

2

)
• Solution to the IVP

x = sin (t)
(
1 + t

2

)
Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
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Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 12� �
dsolve([diff(diff(x(t),t),t)+x(t) = cos(t),

op([x(0) = 0, D(x)(0) = 1])],x(t),singsol=all)� �
x = sin (t)

(
1 + t

2

)

Mathematica DSolve solution

Solving time : 0.028 (sec)
Leaf size : 14� �
DSolve[{D[x[t],{t,2}]+x[t]==Cos[t],{x[0]==0,Derivative[1][x][0] == 1}},

x[t],t,IncludeSingularSolutions->True]� �
x(t) → 1

2(t+ 2) sin(t)


	Lookup tables for all problems in current book
	Chapter 3. Solutions of first-order equations. Exercises at page 47
	Chapter 4. Autonomous systems. Exercises at page 69
	Chapter 5. Linear equations. Exercises at page 85

	Book Solved Problems
	Chapter 3. Solutions of first-order equations. Exercises at page 47
	problem 1 (i)
	Existence and uniqueness analysis
	Solved as first order quadrature ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 1 (ii)
	Existence and uniqueness analysis
	Solved as first order quadrature ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 1 (iii)
	Existence and uniqueness analysis
	Solved as first order quadrature ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 1 (iv)
	Existence and uniqueness analysis
	Solved as first order quadrature ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 1 (v)
	Existence and uniqueness analysis
	Solved as first order quadrature ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 1 (vi)
	Solved as first order quadrature ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 2 (i)
	Existence and uniqueness analysis
	Solved as first order autonomous ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 2 (ii)
	Existence and uniqueness analysis
	Solved as first order autonomous ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Solved as first order ode of type ID 1
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 2 (iii)
	Existence and uniqueness analysis
	Solved as first order autonomous ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 2 (iv)
	Existence and uniqueness analysis
	Solved as first order autonomous ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 2 (v)
	Existence and uniqueness analysis
	Solved as first order autonomous ode
	Solved as first order Bernoulli ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 2 (vi)
	Existence and uniqueness analysis
	Solved as first order autonomous ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 3 (i)
	Solved as first order separable ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 3 (ii)
	Solved as first order linear ode
	Solved as first order separable ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 3 (iii)
	Solved as first order homogeneous class A ode
	Solved as first order homogeneous class D2 ode
	Solved as first order isobaric ode
	Solved using Lie symmetry for first order ode
	Solved as first order ode of type dAlembert
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 3 (iv)
	Solved as first order homogeneous class A ode
	Solved as first order homogeneous class D2 ode
	Solved as first order homogeneous class Maple C ode
	Solved as first order Exact ode
	Solved as first order isobaric ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 3 (v)
	Solved as first order linear ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 3 (vi)
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 4 (i)
	Solved as first order linear ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 4 (ii)
	Solved as first order linear ode
	Solved as first order separable ode
	Solved as first order homogeneous class D2 ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 4 (iii)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 4 (iv)
	Solved as first order linear ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 4 (v)
	Solved as first order separable ode
	Solved as first order Bernoulli ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 4 (vi)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 5
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 6
	Solved as second order Euler type ode
	Solved as second order solved by an integrating factor
	Solved as second order ode using change of variable on x method 2
	Solved as second order ode using change of variable on x method 1
	Solved as second order ode using change of variable on y method 1
	Solved as second order ode using change of variable on y method 2
	Solved as second order ode using Kovacic algorithm
	Solved as second order ode adjoint method
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution


	Chapter 4. Autonomous systems. Exercises at page 69
	problem 1
	Solved as first order autonomous ode
	Solved as first order homogeneous class D2 ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 2
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution
	Maple dsolve solution
	Mathematica DSolve solution

	problem 3
	Solved as second order Euler type ode
	Solved as second order solved by an integrating factor
	Solved as second order ode using change of variable on x method 2
	Solved as second order ode using change of variable on x method 1
	Solved as second order ode using change of variable on y method 1
	Solved as second order ode using change of variable on y method 2
	Solved as second order ode using non constant coeff transformation on B method
	Solved as second order ode using Kovacic algorithm
	Solved as second order ode adjoint method
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 5 (i)
	Solved as second order linear constant coeff ode
	Solved as second order ode using Kovacic algorithm
	Solved as second order ode adjoint method
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 5 (ii)
	Solved as second order linear constant coeff ode
	Solved as second order solved by an integrating factor
	Solved as second order ode using Kovacic algorithm
	Solved as second order ode adjoint method
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 5 (iiI=i)
	Solved as second order linear constant coeff ode
	Solved as second order ode using Kovacic algorithm
	Solved as second order ode adjoint method
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 5 (iv)
	Solved as second order linear constant coeff ode
	Solved as second order linear exact ode
	Solved as second order missing y ode
	Solved as second order integrable as is ode
	Solved as second order integrable as is ode (ABC method)
	Solved as second order ode using Kovacic algorithm
	Solved as second order ode adjoint method
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 6 (i)
	Existence and uniqueness analysis
	Solved as second order linear constant coeff ode
	Solved as second order ode using Kovacic algorithm
	Solved as second order ode adjoint method
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 6 (ii)
	Existence and uniqueness analysis
	Solved as second order linear constant coeff ode
	Solved as second order can be made integrable
	Solved as second order ode using Kovacic algorithm
	Solved as second order ode adjoint method
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 6 (iii)
	Existence and uniqueness analysis
	Solved as second order linear constant coeff ode
	Solved as second order solved by an integrating factor
	Solved as second order ode using Kovacic algorithm
	Solved as second order ode adjoint method
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 6 (iv)
	Existence and uniqueness analysis
	Solved as second order linear constant coeff ode
	Solved as second order ode using Kovacic algorithm
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution


	Chapter 5. Linear equations. Exercises at page 85
	problem 7 (i)
	Existence and uniqueness analysis
	Solved as second order linear constant coeff ode
	Solved as second order ode using Kovacic algorithm
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 7 (ii)
	Existence and uniqueness analysis
	Solved as second order linear constant coeff ode
	Solved as second order ode using Kovacic algorithm
	Solved as second order ode adjoint method
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 7 (iii)
	Existence and uniqueness analysis
	Solved as second order linear constant coeff ode
	Solved as second order ode using Kovacic algorithm
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 7 (iv)
	Existence and uniqueness analysis
	Solved as second order linear constant coeff ode
	Solved as second order ode using Kovacic algorithm
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 7 (v)
	Existence and uniqueness analysis
	Solved as second order linear constant coeff ode
	Solved as second order ode using Kovacic algorithm
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 7 (vi)
	Existence and uniqueness analysis
	Solved as second order linear constant coeff ode
	Solved as second order ode using Kovacic algorithm
	Solved as second order ode adjoint method
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution




