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1.1 Exercises 3, page 60
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4205 4(a) y' + ycos (z) = sin (2x)
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Solve
yy==z
Solved as first order separable ode
Time used: 0.130 (sec)
The ode
y == (2.1)
” .
is separable as it can be written as
y ==
)
= f(2)9(v)
Where
flz)==
1
9j\y) =~
() "

Integrating gives

Solving for y gives
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Figure 2.1: Slope field plot
yy==z

Summary of solutions found

y=vVz2+2¢
y=—vz2+2¢
Solved as first order homogeneous class A ode

Time used: 0.484 (sec)

In canonical form, the ODE is

y =F(z,y)
T
== 1
y (1)
An ode of the form ¢’ = %((zg)) is called homogeneous if the functions M (z,y) and N(z,y)

are both homogeneous functions and of the same order. Recall that a function f(x,y) is
homogeneous of order n if

[t z,t"y) =" f(z,y)

In this case, it can be seen that both M = x and N = y are both homogeneous and of the
same order n = 1. Therefore this is a homogeneous ode. Since this ode is homogeneous, it
is converted to separable ODE using the substitution v = ¥, or y = ux. Hence

dy du

—=—x+4u

dez dzx +

Applying the transformation y = uz to the above ODE in (1) gives

—uav+u—1
dzx o
du  aig — @)
dz T
Or . @)
/ _W—ux _
u'(z) o =0
Or

v (z) u(z) x4+ u(z)® —1=0
Which is now solved as separable in u(z).

The ode
w(z)? — 1

u(z) = - u(z)x

(2.2)
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is separable as it can be written as

(@) _uiw()i)—x 1
= f(z)g(u)
Where
fla)=—_
olw) =~ — !

Integrating gives

In (u(x2)2 - _ (%) e

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

2
-1
u _0
u
for u(x) gives
u(z) = -1
u(z) =1

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

Solving for u(z) gives
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Converting u(xz) = 1 back to y gives

y=x
Converting u(x) = —”’2;1"'“”2 back to y gives
Y = /e2c1 + xr2
Converting u(x) = ——“32;““””2 back to y gives
y — —‘/6201 + xz
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Figure 2.2: Slope field plot
yy=z
Summary of solutions found
y=x
Y= /6201 _|_ .’12'2
y=-—x
Y= —1 /e2c1 + x2
Solved as first order homogeneous class D2 ode
Time used: 0.297 (sec)
Applying change of variables y = u(x) z, then the ode becomes
(v (z) z 4+ u(z))u(z)z ==z
Which is now solved The ode
N _u(a:)2 -1
u'(z) = “w@)z (2.3)
is separable as it can be written as
/ _u(x)2 —1
= f(z)g(u)
Where
1
fla)=—_
u? —1
g(u) =
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Integrating gives

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

2
-1
u _0
u
for u(z) gives
u(z) = -1
u(z) =1

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

2
u(z) = -1
u(z) =1
Solving for u(z) gives
u(z) = -1
u(z) =1
u(r) = ——
z
A /62c1 + 11,'2
uw(r) = ————
x
Converting u(x) = —1 back to y gives
y=—z
Converting u(x) = 1 back to y gives
y=w

/e261 _;’_:1:2
T

Converting u(z) = back to y gives

Y =\ /e201 + 1'2
o /e2cl+£L’2
T

Converting u(x) = back to y gives

y — A /6201 _+_ .’L’2
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Figure 2.3: Slope field plot
yy==z
Summary of solutions found
y=x
y:1/e201+x2
y=-—z
y — —1/6201 ‘|‘.’L'2

Solved as first order homogeneous class Maple C ode
Time used: 0.440 (sec)

Let Y =y — yo and X = x — z then the above is transformed to new ode in Y (X)

d 1’0+X
—Y(X)=-—2"2
dX ( ) Y(X)+y0

Solving for possible values of zy and yo which makes the above ode a homogeneous ode
results in

£B0=0
Yo =0

Using these values now it is possible to easily solve for Y (X). The above ode now becomes

d X
—Y(X) = —
dX (X) Y (X)
In canonical form, the ODE is
Y =F(X,Y)
X
== 1
> 1)
An ode of the form Y’ = %g((;,)) is called homogeneous if the functions M (X,Y’) and

N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

f"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = X and N =Y are both homogeneous and of
the same order n = 1. Therefore this is a homogeneous ode. Since this ode is homogeneous,
it is converted to separable ODE using the substitution u = %, or Y =uX. Hence

v _ du
dX dXx
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Applying the transformation Y = uX to the above ODE in (1) gives

du 1
axaTe=y
x - X
Or . (x)
d ux) ¥
ax U X) x
Or

(iiwxouuyx+mxf—1=o

Which is now solved as separable in u(X).

The ode

d w(X)? -1
d—Xu(X) =———r (2.4)

is separable as it can be written as

d u(X)? -1
X" =%
= f(X)g(v)
Where
1
f(X) = X
«w=“;1

Integrating gives

/j%m“i/ﬂxmx

U 1

In (u()g)2 -1 _ In (%) + ¢

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

w?—-1

=0
u
for u(X) gives
uw(X)=-1
u(X)=1

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.
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Therefore the solutions found are

In (u(X)* 1) _ In <l) to

2 X
u(X)=-1
uw(X) =1

Solving for u(X) gives
uw(X)=-1
u(X)=1
wX) = ———
X
uX) ==

Converting u(X) = —1 back to Y'(X) gives
Y(X)=-X
Converting u(X) = 1 back to Y (X) gives
Y(X)=X
Converting u(X) = @ back to Y (X) gives
Y(X) = Ve + X2
Converting u(X) = —@ back to Y(X) gives
Y(X) = —VeX + X2
Using the solution for Y (X)
Y(X)=X (A)
And replacing back terms in the above solution using

Y=y+y
XICC+.’130

Y=y
X=z

Then the solution in y becomes using EQ (A)
y=zx
Using the solution for Y (X)
Y(X) = Ve + X2 (A)
And replacing back terms in the above solution using

Y=y+y
X =z+x
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Or

Y=y
X==z

Then the solution in y becomes using EQ (A)

Y = /e2c1 + xr2
Using the solution for Y (X)
Y(X)=-X (A)

And replacing back terms in the above solution using

Y =y+uyo
X=.’13+.’IIO

Y=y
X=z

Then the solution in y becomes using EQ (A)
y=—zx
Using the solution for Y (X)
YV(X) = —Ver + X2 (A)
And replacing back terms in the above solution using

Y=y+y
X =z+x

Y=y
X==z

Then the solution in y becomes using EQ (A)

y — —1/6201 +.’L’2
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Figure 2.4: Slope field plot
Yyy=z
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Solved as first order Bernoulli ode
Time used: 0.064 (sec)

In canonical form, the ODE is

y =F(z,y)
_*
Y
This is a Bernoulli ODE.
V=) (1)
)
The standard Bernoulli ODE has the form
y' = fo(z)y + fi(z)y" (2)
Comparing this to (1) shows that
fo
fi=z
The first step is to divide the above equation by y™ which gives
yl
i fi(z) 3)

The next step is use the substitution v = y'~" in equation (3) which generates a new
ODE in v(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows
that

fo(z)
fi(z

n

|I
p_n

Dividing both sides of ODE (1) by y" = , gives
yy=0+z (4)

Let

Taking derivative of equation (5) w.r.t x gives

v = 2yy (6)
Substituting equations (5) and (6) into equation (4) gives
v'(z) _
. =
v'=2z (7

The above now is a linear ODE in v(z) which is now solved.

Since the ode has the form v'(z) = f(z), then we only need to integrate f(z).

/dv—/2zdx

—x +c
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The substitution v = y'~™ is now used to convert the above solution back to y which
results in

Y =2"+c

Solving for y gives

y=Vzl+c

<

|

|
Ht\:
+

9
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Figure 2.5: Slope field plot
Yy==x
Summary of solutions found
y=vVzr2+c
y=—val+c
Solved as first order Exact ode
Time used: 0.083 (sec)
To solve an ode of the form
d
M(z,y) + N(z,y) 52 =0 (8)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. z gives

d
E(Zs(xa y) =0

Hence 06 06d
Yy _
or  Oydxr 0 (B)

Comparing (A,B) shows that

0p
ﬁ_M
09
6_y_N

8%¢ _ 9%¢
dzdy ~ OyOx

But since then for the above to be valid, we require that

oM _on
oy Oz
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If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘2: ;’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(y)dy = (z) dz
(—z)dz+(y)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —=
N(z,y) =y

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM _ 0
dy  dy
=0
And
ON 0
or %(y)
=0

Since %iy/f = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

0p
¢

Integrating (1) w.r.t. z gives

@dx:/de
or

op .
adx—/—xdx

.’IJ2

=2+ ()

Where f(y) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ /() (4)

But equation (2) says that g—z = y. Therefore equation (4) becomes

y=0+f(y) (5)
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Solving equation (5) for f'(y) gives
fly)=y

Integrating the above w.r.t y gives

[rwa=[wa

fw) =% +e

Where ¢; is constant of integration. Substituting result found above for f(y) into equation

(3) gives ¢
2 g2
b=-5+% +o

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and cy constants into the constant c¢; gives the solution as

Solving for y gives
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Figure 2.6: Slope field plot
yy=z

Summary of solutions found

y=\Vz>+ 2
y=—vz2+2¢
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Solved as first order isobaric ode
Time used: 0.330 (sec)
Solving for 3’ gives

!

T
y=-
Y

Each of the above ode’s is now solved An ode y' = f(z,y) is isobaric if
f(tz,t"y) =t f(z,y) 1)

Where here

flz,y) = (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

<8

m=1
Since the ode is isobaric of order m = 1, then the substitution

y=uz"

=uxr

Converts the ODE to a separable in u(z). Performing this substitution gives

uw(z) + zu'(z) = ﬁ
The ode
/ _ u(x)2 —1
is separable as it can be written as
, u(z)? — 1
= f(z)g(u)
Where
1
f(z) = —25
us—1
gu) = —

Integrating gives

/ﬁdu=/f(w)dm
/ﬁdu=/—%dm

In 2_1 1
2 x
We now need to find the singular solutions, these are found by finding for what values

g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

2
-1
U ~0

u
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for u(z) gives

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

2
u(z) = -1
u(z) =1
Solving for u(z) gives
u(z) = -1
u(z) =1
A /6201 + .'152
u(r) = ———
x
u(z) = ———m—
x
Converting u(x) = —1 back to y gives
v__,
x
Converting u(x) = 1 back to y gives
Y_1q
x

/e2c1 +x2
T

Converting u(x) = back to y gives

Yy B ,/6201 +$2
T T

_ /6261 +$2
T

Converting u(x) = back to y gives

A /6201 _+_ .’172

T

8|

Solving for y gives

I
8

A /6201 + .’132

SEEESEE
I
|
8

— A /6201 + $2
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Figure 2.7: Slope field plot
yy==z
Summary of solutions found
y=x
y — A /6201 _|_ $2
y=-—x
Y= _1/6201 + .’132
Solved using Lie symmetry for first order ode
Time used: 0.593 (sec)
Writing the ode as
y="
()
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — Wny —wz —wyn =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree

1 to use as anstaz gives
¢ = xaz +yaz + a;
’I’]=.’Eb2+yb3+b1

Where the unknown coefficients are

{(11, a2, as, b17 b2, b3}

Substituting equations (1E,2E) and w into (A) gives

z(b3 — ag) B z%as _Taztyastar N x(zby + ybs + b)

by + =0
y y? y y?
Putting the above in normal form gives
r’ag — £°by + 2yzag — 2yxbs + yPaz — bay® — xby +ya; 0

y2

(1E)
(2E)

(5E)
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Setting the numerator to zero gives
—z%ag + 22by — 2yzway + 2yrbs — yas + byy® + by —ya; =0 (6E)
Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z =v1,y =}
The above PDE (6E) now becomes
—2a201V9 — a3V — azv; + bov} + bovs + 2b3v1v5 — ayvy + bivy =0 (TE)
Collecting the above on the terms v; introduced, and these are
{v1, va}
Equation (7E) now becomes
(—as + by) v} + (—2ag + 2b3) v1vs + bivy + (—az + by) v3 — ayvy =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

—a; =0

—2a9 +2b3 =0
—az3+by=0

Solving the above equations for the unknowns gives

ar =0
as = bs
as = by
by =0
by = by
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

E=x
n=y
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y)§

()

—a? 42
Y
§=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
3 n

The above comes from the requirements that (§a% +n%> S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x
S is found from
1
S= [ —dy
n
1
= | g2
)
Which results in
g_n (—x22 +4?)

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

aS _ S;+w(z,y)Sy @)
dR R, +w(z,y)Ry

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

xr
W(J?,y) = 5

Evaluating all the partial derivatives gives

R,=1
R,=0
z
Sy = —
22 — o2
Yy
Sy=—x2_y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for z,y in

terms of R, S from the result obtained earlier and simplifying. This gives

as

R
The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

0 (2A)

0

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).

S(R) = C
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To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

In(-z+y) In(z+y)
2 2

=C2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

. . . Cano.nica,l ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
-0
SR
R=zx
In(—z+y) In(z- : i
2 + 2
S\N\NN\NNN—— S S/
NN\ N N—— S S/
A\NNNNN~—— S )]
IVANN NN ~—— 7 7 7 T
TVVANNNNSN—— /27 ] [ ]
VY YN NNN—/ T T T T T ]
y(x) 0]
F 171777 /7—N\NL0 L0401
AT 7 /S ,—>~N N\ L\
F ]/ ) /S ——~x\N\ N\
/) /S S S s ———>x N N\ NN
2y, S m—m——N NN\ N
S S S S S m—m =~ N N\ N\
- /) S S S s ~>~N N N\ N\

\
.|
/

Figure 2.8: Slope field plot
yy=z

Summary of solutions found

In(—z+y) +ln(m+y)
2 2

=c2

Maple step by step solution

Let’s solve

y(@) (fy(2) ==
° Highest derivative means the order of the ODE is 1

=y(2)
° Integrate both sides with respect to x
[y(@) (Ly(z)) dz = [ zdz + C1
° Evaluate integral
m)z _ x2
U =5+ 0

o Solve for y(x)
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{y(z) = Va2 +2C1,y(z) = —V/22 + 2C1 }

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful”

Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 23

‘ dsolve(y(x)*diff(y(x),x) = x,y(x),singsol=all)

y(z) = Vo' + o
o) =~V T e

Mathematica DSolve solution

Solving time : 0.078 (sec)
Leaf size : 35

LDSolve [{D[y[x],x]*y[x]==x,{}},y[x] ,x,IncludeSingularSolutions->Truel

~—

y(x) = —vz2+2¢
y(x) = Va2 +2¢;
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2.1.2 Problem 1(b)
Solved as first order linearode . . . . ... ... ... ....... 29
Solved as first order Exactode . . . . ... ... ... ....... 30
Solved using Lie symmetry for first orderode . . . . . .. ... ..
Maple step by step solution . . . . .. ... ... ... ... ... . 37
Maple trace . . . . . . . . . e e
Maple dsolve solution . . . ... ... ... ... ... .. ...,
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [4191]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 1(b)

Date solved : Monday, January 27, 2025 at 08:41:39 AM
CAS classification : [[_linear, ‘class A‘]]

Solve
y —y=21’

Solved as first order linear ode
Time used: 0.075 (sec)
In canonical form a linear first order is
Y +q(z)y = p(z)

Comparing the above to the given ode shows that

q(z) = -1
p(z) = o
The integrating factor u is
p= efqu
= e_z
The ode becomes
d
g (M) = 1o

d
=) = (W) ()
d —x —x
4 (o) = () (@)
d(ye™) = (z°77) dz
Integrating gives
ye ¥ = /x3e_x dx
= —(x3+3a:2 +6x—|—6) e+
Dividing throughout by the integrating factor e™* gives the final solution

y=—a34+ce*—322—62—6
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Figure 2.9: Slope field plot

y—y=2°

Summary of solutions found

y=—a>+c e —32°—62—6

Solved as first order Exact ode
Time used: 0.102 (sec)

To solve an ode of the form

M(z,) + N(z,y) 2 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d

Hence 96 04d
A
Oxr Oydx 0 (B)

Comparing (A,B) shows that

09
%—M
09
6_y_N

But since 8‘9; g = 8‘9 25’5 then for the above to be valid, we require that
Y yox

oM _ ON

oy Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
(,;9; (ffy = aizg; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (2° +y) dz
(—2® —y)dz+dy=0 (2A)
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Comparing (1A) and (2A) shows that

M(xay) =—.’L'3—y
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0 3
3_3/ @ (_ - y)
=-1
And
ON
1
o ( )
= 0

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

3_M _9N
dy ox
= 1((—1) —(0))
=-1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is
b= efAd:t
— ef—l dx

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM

And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

m+NY g

dx

_ _ dy
(3 T z\ 79 _
(@ +9)e) + () L =0
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The following equations are now set up to solve for the function ¢(z,y)

% _w (1)
0p  —
oy =" 2)

Integrating (2) w.r.t. y gives

0p . [
a—ydy—/Ndy
g—jdyz/e_””dy
p=ye "+ f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

09 _

5p = Ve f'(z) (4)

But equation (1) says that % = —(z3 + y) e7®. Therefore equation (4) becomes
—(®+y)e " =—ye " + f(x) (5)
Solving equation (5) for f'(z) gives
f(@) =~z
Integrating the above w.r.t x gives
/f'(w) dz = / (—z%¢™*) dz
f(@)=(z*+32>+62+6)e " +c1
Where c¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
p=ye "+ (x3+3x2+6x+6)e_x+cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

ca=ye "+ (x3 + 32% 4 62 + 6) e’ ”
Solving for y gives

y=—(2%e"+3z% " +6re " +6e " —ci)€
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y(x) 0 |
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Figure 2.10: Slope field plot

y—y=2a°

Summary of solutions found

y=—(2°e"+3z% " +6re " +6e " —ci)e

Solved using Lie symmetry for first order ode
Time used: 0.757 (sec)
Writing the ode as

y =2’ +y
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ny - &) — W2€y —wz§ —wyn =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
2 to use as anstaz gives

€ = z2a4 + Tyas + y2a6 + xag + yas + a; (1E)
n= .’L‘2b4 + $yb5 + y2b6 + zby + yb3 +b (2E)

Where the unknown coefficients are

{ala a2, a3, a4, as, e, bl, b2, b3) b47 b5, bﬁ}

Substituting equations (1E,2E) and w into (A) gives

2xby + ybs + by + (2° +y) (—2zas + zbs — yas + 2ybs — a2 + bs)

- (ac3 + y)2 (zas + 2yag + as) — 3 (x2a4 + zyas + y2as + zas + yas + al)
— x2b4 — .’L‘yb5 - y2b6 - xb2 - yb3 - bl =0

(5E)

Putting the above in normal form gives

—x"as — 2x6ya6 — z%a5 — 2w4ya5 — 4x3y2a6 — 5ztay + b5 — 2w3ya3 — 4x3ya5
+ 223ybs — 3x%y%as — 4x3as + 2305 — 3xyas — v y%as — 2y°as — 3x2ay
— 22by — 2zyas — y2as — ylas + y2bg — xby + 2xbs — yas + ybs — by + by =0
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Setting the numerator to zero gives

7

—x'ag — 2z6ya6 — 28

as — 2x4ya5 — 4x3y2a6 —5ztay + ztbs — 2a:3ya3 — 4x3ya5 (6E)
+ 223ybg — 3x%y%ag — 4z3as + 2305 — 3xyas — v y%as — 2y°as — 33y
— z%bs — 2zyas — yPaz — yPas + y°be — Ty + 2bs — yas + ybs — by + by =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z =v1,y = v}

The above PDE (6E) now becomes

—asv! — 2agv5vy — azvd — 2a5vivy — dagvivi — 2a3v3vy — Sayv] — dasvivy (7E)
2,2 4 3 3 2 2 3 3 2
— 3aguiv; + bsv] + 2bgv Ve — 4agvy — 3azvive — asv1v; — 2a6V5 + bsvy — 3a1v]
- a3’U§ — 2a4'01v2 — a5v§ - b4’l)f + bﬁ’Ug — AUy — b2U1 + 2b4'l]1 + b5’l)2 - bl + b2 =0

Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

—asv] — 2agvSvy — azvd — 2a5v1vy + (—bay + bs) vi — dagvivs
+ (—2a3 — 4as + 2bg) vivy + (—4az + bs) v} — 3agvivs (8E)
— 3a3v°vy + (—3a; — by) V2 — asv1v3 — 2440103 + (—by + 2bg) vy
— 2a61)§ + (—CL3 —as + bﬁ) ’Ug + (—az + b5) Vg — bl + b2 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—3a3 =0

—a3 =0
—2a4,=0
—2a5 =0

—a5 =0

—4a¢ =0
—3ag =0
—2ag =0
—3a; — by =0
—4ay+ b3 =0
—as+b5=0
—bas+b5=0
—by+b,=0
—by +2by, =0

—2a3—4a5+2b6 =0
—a3—a5+b6=O
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Solving the above equations for the unknowns gives

by
a1=—§
a; =0
a3 =10
ag =0
as =0
ag =0
by = 2by
by = 2b,
bs =0
by = by
bs =0
bg =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

n=x*+2z+2
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-wy)é

=x2+2x+2—(x3+y) (—%)

1 1
2 3
=2?+2r+2+ cad 4+ 2
T T + 3z + 3y
g = 0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F =, = 1)

The above comes from the requirements that (ﬁa% +n%> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S is found from

1
d
/w2+2x+2+%x3+%y Y

Which results in

S =3In(z°+32°+6x+y+6)
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Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

ﬁ _ Sﬂ? +w(x’y)Sy
dR R, +w(z,y)Ry

(2)

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(z,y) =2°+y
Evaluating all the partial derivatives gives

R, =1
R, =0
922 + 18z + 18

22 +322+6x+y+6
3

S 3 1 6s g+ 6

z:

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

as
ﬁ—?)

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).

/dS /3dR

R)—3R+Cz

To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

31ln (x3—|—3x2—|—6x—|—y+6) =3z +c
Which gives
452

y=e"t3 — 23 —-32> —62—6

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . ) ; ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
R=z

S =3In (x3+3x2+6w+
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Figure 2.11: Slope field plot

Yy —y=2°

Summary of solutions found

y=e"t% — 23— 32> — 6z —6
Maple step by step solution

Let’s solve
=Y(@) —y(z) =2°

° Highest derivative means the order of the ODE is 1
=y(@)

° Solve for the highest derivative
wy(z) =y(z) +2°

° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
wy(z) —y(a) = 2°

° The ODE is linear; multiply by an integrating factor u(x)
() (y(z) — y(@)) = pz) 2°

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(@) (£y(2) —y(2) = (£y(@)) u@) +y(2) ()

o Isolate 2 u(z)
k(@) = —p(z)

° Solve to find the integrating factor
p(z) = e

° Integrate both sides with respect to x
J (& W) u(2))) dz = [ p(z) z*dz + C1

° Evaluate the integral on the lhs
y(@) p(a) = [ p(z) s¥dz + C1

o Solve for y(x)

z)z3dx+C1
y(z) = L )ﬂ(z) =

o Substitute pu(z) = e~*

z3e~%dz+C1
y(z) = fe——w
° Evaluate the integrals on the rhs
— (234322 4-62+6)e~%+C1
y(z) = ( 6o Je

° Simplify
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y(z) = -2+ C1e® — 322 — 62 — 6

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 23

'dsolve(diff (y(x),x)-y(x) = x73,y(x),singsol=all)

y(z) = —2° — 32° — 63 — 6 + ¢y

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 26

‘ DSolve [{D[y[x],x]-y[x]==x"3,{}},y[x],x,IncludeSingularSolutions->True]

y(x) = —2® — 32% — 62+ c1e” — 6
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2.1.3 Problem 1(c)

Solved as first order linearode . . . . ... ... ... ....... 391
Solved as first order Exactode . . . . ... ... ... ....... Z10)
Maple step by step solution . . . . . . ... ... ... ... 43]
Maple trace . . . . . . . . . .. 44
Maple dsolve solution . . . . . ... .. ... L. 44
Mathematica DSolve solution . . . . ... ... ... ........ 44

Internal problem ID [4192]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 1(c)

Date solved : Monday, January 27, 2025 at 08:41:41 AM
CAS classification : [_linear]

Solve
Yy +ycot(z) ==
Solved as first order linear ode

Time used: 0.085 (sec)

In canonical form a linear first order is
Yy +a(z)y = p(z)
Comparing the above to the given ode shows that

q(z) = cot (z)

p(z) =z
The integrating factor u is
p=e J[qdx
—e [ cot(z)dz
= sin (z)
The ode becomes
d
. HY) = 1p

d
1z 1Y) = (1) (2)
L (ysin(2)) = (sin (2)) (2)
dx
d(ysin(z)) = (zsin (z)) dz
Integrating gives
ysin (z) = /xsin (z) dx
=sin (z) — zcos (z) + ¢
Dividing throughout by the integrating factor sin (z) gives the final solution

y=1—xzcot(z)+ ¢ csc(x)



CHAPTER 2. BOOK SOLVED PROBLEMS 40

SN T L AVN—T V=71 1)\
N RN A A A B O
ANT L AVN~=T A=\
A2 T S N4 N—/ ] | N/
VLN NS N/ ] | -7
TV~ VNN N
AN VNN N— =2/ /]
yoo of VNV NN NN~ S/ ) ] ]
VLN N N NN LSS S
A0 0 ~N N NN //K/mf[
Vb N N N [/ 7/ ]
NN A RN
e N AN S A A N A
XL(R»\\X /‘i/’y/!/‘sl)‘ff
=1V b ~N N\ [ /7 /7~ \V |
= > B 3 p
Figure 2.12: Slope field plot
Y +ycot(z) =z
Summary of solutions found
y=1—zcot(x)+cscsc(x)
Solved as first order Exact ode
Time used: 0.157 (sec)
To solve an ode of the form
d
M(z,y) + N(z,y) 7> =0 (A)

dz

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06 d
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
Oy
But since 6‘9; a¢y = 8(9: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = aajgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy=0 (1A)

Therefore

dy = (—ycot (z) + z)dx
(ycot (z) —z)dx+dy =0 (2A)



CHAPTER 2. BOOK SOLVED PROBLEMS 41

Comparing (1A) and (2A) shows that
M(z,y) =ycot (z) —
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0
En a—y(y cot (z) — z)
= cot (z)
And
ON
o (1)
= 0

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

(-2
((COta ? ) —8(0))

= cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

p= efAd:z
— ef cot(z) dz
The result of integrating gives
b= eln(sin(m))
= sin (z)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
= sin (z) (y cot (z) — x)

= ycos (z) — zsin (z)

And

= sin (z) (1)

= sin ()

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N3—z =0
(ycos (z) — zsin (z)) + (sin (z)) j—z =0
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The following equations are now set up to solve for the function ¢(z,y)

- i 1)
6
oy = N (2)
Integrating (2) w.r.t. y gives

0 . [

8_y dy = /Ndy

Z—;b dy = /sin (z)dy

¢ = ysin (z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t x gives

00 — yeos () + 1'a) @

But equation (1) says that % = ycos () — zsin (z). Therefore equation (4) becomes

ycos (z) — zsin (z) = ycos (z) + f'(x) (5)
Solving equation (5) for f'(z) gives

f'(z) = —zsin (z)

Integrating the above w.r.t = gives

/f’(m) dz = / (—zsin (z)) dz

f(z) = —sin(z) + zcos (z) + 1

Where c; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

¢ = ysin (z) —sin (z) + z cos (z) + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢, constants into the constant c; gives the solution as

¢1 = ysin (z) — sin (z) + z cos (z)

Solving for y gives
—sin (z) + zcos (z) — ¢
sin (z)

Yy=-
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Figure 2.13: Slope field plot
Y +ycot(z) ==

Summary of solutions found

—sin (z) + zcos(z) — ¢y
sin (z)

y=-

Maple step by step solution

Let’s solve
y(z) +y(@)cot (z) =2
° Highest derivative means the order of the ODE is 1
=y(®)
° Solve for the highest derivative
4y(z) = —y(z)cot (z) +
) Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
4y(z) +y(z) cot (z) =z
° The ODE is linear; multiply by an integrating factor u(x)
(@) (y(x) +y(z) cot (z)) = p(z)
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
(@) (£y(@) +y(2) cot (z)) = (f£u(2)) u(z) +y(2) (@)
o Isolate - /u(x)
Lu(a) = p(a) cot (¢)
° Solve to find the integrating factor
p(z) = sin ()
° Integrate both sides with respect to x
J (& (y(2) u(=))) dz = [ p(z) zdz + C1
° Evaluate the integral on the lhs
y(@) u(x) = [ u(z) ada + C1
o Solve for y(x)

xz)zdz+C1
y(z) = L L(x)+
) Substitute p(z) = sin (x)
sin(z)zdz+ C1
(o) = LR
° Evaluate the integrals on the rhs

sin(x)—x cos(z)+C1
y(.’L’) = salz) sin(z)( =
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° Simplify
y(z) =1—zcot(z) + C1 csc(x)

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

N\

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 15

‘ dsolve(diff (y(x),x)+y(x)*cot(x) = x,y(x),singsol=all)

y(x) =1 —cot (x) z + csc(z) ¢

Mathematica DSolve solution

Solving time : 0.04 (sec)
Leaf size : 17

LDSolve [{D[y[x],x]+y[x]*Cot [x]==x,{}},y[x] ,x,IncludeSingularSolutions->Truel

y(z) = —zcot(z) + ¢y csc(x) + 1
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2.1.4 Problem 1(d)
Solved as first order linearode . . . . ... ... ... ....... 45]
Solved as first order Exactode . . . . ... ... ... ....... 461
Maple step by step solution . . . . . . ... ... ... ... 49]
Maple trace . . . . . . . . . . ... B0
Maple dsolve solution . . . . . ... .. ... L. B0l
Mathematica DSolve solution . . . . ... ... ... ........ B0

Internal problem ID [4193]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 1(d)

Date solved : Monday, January 27, 2025 at 08:41:43 AM
CAS classification : [_linear]

Solve
y' + ycot (z) = tan (z)
Solved as first order linear ode

Time used: 0.122 (sec)

In canonical form a linear first order is

Y + q(z)y = p(x)

Comparing the above to the given ode shows that

q(z) = cot (x
p(z) = tan (x)
The integrating factor u is
p=e J[qdx
—e [ cot(z)dz
= sin (z)
The ode becomes
d
g M) = kp

d
1z HY) = (1) (tan (z))
d, . .
3 vsin (z)) = (sin (z)) (tan (z))
d(ysin (z)) = (tan (z)sin (z)) dz
Integrating gives
ysin (z) = /tan (z)sin (x) dx
= —sin (z) + In (sec (z) + tan (z)) + ¢
Dividing throughout by the integrating factor sin (z) gives the final solution

y = (—sin (z) + In (sec (z) + tan (z)) + ¢1) csc (z)
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Figure 2.14: Slope field plot
y' + ycot (z) = tan (z)

Summary of solutions found

y = (—sin (z) + In (sec (z) + tan (z)) + ¢1) csc (z)

Solved as first order Exact ode
Time used: 0.118 (sec)

To solve an ode of the form

M(z,) + N(z,y) 2 =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06 d
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
Oy
But since 6‘9; a¢y = 8(9: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = aajgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy=0 (1A)

Therefore

dy = (—ycot (z) + tan (z)) dz
(ycot (z) —tan (z))dz+dy =0 (2A)
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Comparing (1A) and (2A) shows that
M(z,y) = ycot (z) — tan (z)
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0
By B_y(y cot (z) — tan (z))
= cot (z)
And
ON
o (1)

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

(-2
((COta ? ) —8(0))

= cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

p= efAd:z
— ef cot(z) dz
The result of integrating gives
b= eln(sin(m))
= sin (z)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
= sin (z) (y cot (z) — tan (z))

= cos (z) y — tan (z) sin (z)

And

= sin (z) (1)

= sin ()

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+Nd—y:0
dz

(cos (z) y — tan (z) sin (z)) + (sin (z)) j—z =0
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The following equations are now set up to solve for the function ¢(z,y)

% _w (1)
0p  —
oy =" 2)

Integrating (2) w.r.t. y gives

a—(bdy=/ﬁdy
Oy

0
6—3 dy = /sin (z)dy

¢ = ysin (z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t x gives

0 — cos(a)y + 1'a) (@

But equation (1) says that % = cos (z) y — tan (z) sin (z). Therefore equation (4) becomes
cos (z) y — tan (z) sin (z) = cos (z) y + f'(z) (5)
Solving equation (5) for f'(z) gives

f'(z) = — tan (z) sin (z)

Integrating the above w.r.t = gives

/ f(z)dz = / (—tan (z) sin (z)) dz
f(z) =sin (z) — In (sec (x) + tan (z)) + ¢;
Where c; is constant of integration. Substituting result found above for f(z) into equation

(3) gives ¢
¢ = ysin (z) + sin (z) — ln (sec (z) + tan (z)) + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢, constants into the constant c; gives the solution as

¢; = ysin (z) + sin (z) — In (sec (z) + tan (z))

Solving for y gives
_sin (z) —In(sec (z) + tan (z)) —a
B sin (z)
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Figure 2.15: Slope field plot
y' + ycot (z) = tan (z)

Summary of solutions found

_sin (z) —In(sec (z) + tan (z)) —a
sin ()

Maple step by step solution

Let’s solve
4y(z) + y(z) cot (z) = tan (z)
° Highest derivative means the order of the ODE is 1
()
° Solve for the highest derivative
4y(z) = —y(z) cot (z) + tan (z)
) Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
4y(z) + y(z) cot (z) = tan (z)
° The ODE is linear; multiply by an integrating factor u(x)
() (£y(@) +y(z) cot (z)) = u(z) tan (z)
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
(@) (£y(@) +y(2) cot (z)) = (f£u(2)) u(z) +y(2) (@)
o Isolate - /u(x)
L 4(z) = u(z) cot (2)
° Solve to find the integrating factor
p(z) = sin ()
° Integrate both sides with respect to x

[ (& (y(z) p(z))) dz = [ p(z)tan (z) dz + C1
° Evaluate the integral on the lhs

y(z) p(z) = [ p(z) tan (z) dz + C1
o Solve for y(x)

) tan(z)dz+ C1
y(z) = J u( )tu((x)) +
) Substitute p(z) = sin (x)
sin(z) tan(z)dz+C.
y(z) = Lot ):in((z)) =
° Evaluate the integrals on the rhs

__ —sin(z)+In(sec(z)+tan(z))+ C1
y(CL') - sin(z)
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° Simplify
y(z) = (—sin (z) + In (sec (z) + tan (z)) + C1) csc (z)

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

N\

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 19

1 dsolve(diff (y(x),x)+y(x)*cot(x) = tan(x),y(x),singsol=all)

y(x) = csc (x) (—sin (x) + In (sec (z) + tan (z)) + ¢1)

Mathematica DSolve solution

Solving time : 0.04 (sec)
Leaf size : 18

LDSolve[{D[y[x],x]+y[x]*Cot[x]==Tan[x],{}},y[x],x,IncludeSingularSolutions—>Truey

y(x) — csc(z)arctanh(sin(z)) 4 ¢; csc(z) — 1
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2.1.5 Problem 1(e)

Solved as first order linearode . . . . ... ... ... .......
Solved as first order Exactode . . . . ... ... ... .......
Maple step by step solution . . . . . . ... ... ... ...
Maple trace . . . . . . . . . . ...
Maple dsolve solution . . . . . ... .. ... L.
Mathematica DSolve solution . . . . ... ... ... ........

Internal problem ID [4194]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 1(e)

Date solved : Monday, January 27, 2025 at 08:41:45 AM
CAS classification : [_linear]

Solve
y' + ytan (z) = cot (x)
Solved as first order linear ode

Time used: 0.114 (sec)

In canonical form a linear first order is

Y + q(z)y = p(x)

Comparing the above to the given ode shows that

q(z) = tan (x)
p(z) = cot (z
The integrating factor u is
p=e [qdx
—e [ tan(z)dz
= sec ()
The ode becomes
d
3p M) = 1o

d
1z #Y) = (k) (cot (2))
d
3 Y sec (2)) = (sec () (cot (2))
d(ysec (z)) = (cot (x) sec (z)) dz
Integrating gives
ysec(x) = / cot () sec (x) dx
= In (csc (z) — cot (z)) + 1
Dividing throughout by the integrating factor sec (z) gives the final solution

y = cos (z) (In (csc (z) — cot (z)) + ¢1)
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Figure 2.16: Slope field plot
y' + ytan (z) = cot (z)
Summary of solutions found
y = cos (z) (In (csc (z) — cot (z)) + 1)
Solved as first order Exact ode
Time used: 0.103 (sec)
To solve an ode of the form
d
M(z,y) + N(z,y) 2% =0 (A)

dz

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06 d
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
Oy
But since 6‘9; a¢y = 8(9: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = aajgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy=0 (1A)

Therefore

dy = (—ytan (z) + cot (z)) dz
(ytan (z) — cot (z))dz+dy =0 (2A)
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Comparing (1A) and (2A) shows that
M (z,y) = ytan (z) — cot (z)
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _on
oy Oz
Using result found above gives
oM 0
By B_y(y tan (x) — cot (z))
= tan (z)
And
ON 0
o~ o)

=0

Since %iy/f # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] (8M 6N)

- N oy ox
= 1((tan (z)) — (0))
= tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

p= efAdm
— ef tan(z) dz
The result of integrating gives
p=e" In(cos(z))
= sec (z)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
= sec (z) (y tan (z) — cot (x))

= ytan (z) sec (z) — csc ()

And

= sec (z)

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M + Nj—i =0
(y tan (z) sec (z) — csc (z)) + (sec (x) j—i =0
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The following equations are now set up to solve for the function ¢(z,y)

% _w (1)
0p  —
oy =" 2)

Integrating (2) w.r.t. y gives

Oy
op .
6—ydy—/sec(m)dy

¢ = ysec(z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t x gives

% = ytan (z)sec (z) + f'(x) (4)

But equation (1) says that % = ytan (z) sec () — csc (z). Therefore equation (4) becomes
ytan (z)sec (z) — csc (z) = ytan (z) sec (z) + f'(z) (5)
Solving equation (5) for f'(z) gives
f'(x) = —csc ()
Integrating the above w.r.t = gives
/f'(m) dr = / (—csc(z))dz
f(z) =1n(csc(z) + cot (z)) + 1
Where c; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
¢ = ysec(x) + ln (csc (z) + cot (x)) + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢, constants into the constant c; gives the solution as

¢1 = ysec (z) + In (csc (z) + cot (z))

Solving for y gives
_In(csc(z) +cot (z)) —a
sec (x)
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Figure 2.17: Slope field plot
y' + ytan (z) = cot ()

Summary of solutions found

__In(esc(z) +cot (z)) — a1
sec ()

Maple step by step solution

Let’s solve
4y(z) + y(z) tan (z) = cot (z)
° Highest derivative means the order of the ODE is 1
=y(®)
° Solve for the highest derivative
4 y(z) = —y(z) tan (z) + cot (z)
) Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
4y(z) + y(z) tan (z) = cot (z)
° The ODE is linear; multiply by an integrating factor u(x)
() (£y(@) +y(z) tan (z)) = p(z) cot (z)
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
() (Ly(@) +y(z) tan (z)) = (Fy(2)) wz) +y(@) (Lu(@))
o Isolate - /u(x)
2 () = u(s) tan (o)

° Solve to find the integrating factor

/,1,(117) = cosl(x)

° Integrate both sides with respect to x

J (& (@) w(z))) de = [ (@) cot («) da + O1
° Evaluate the integral on the lhs

y(@) p(x) = [ () cot (z) da + C1
o Solve for y(x)

) cot(x)dz+C1
y(z) = [ u(z) “t((z)) +
o Substitute u(z) =
y(z) = cos () (f zgzggdx + C’I)
° Evaluate the integrals on the rhs

y(z) = cos (z) (In (csc (z) — cot (x)) + C1)
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 17

e hY

dsolve(diff (y(x),x)+y(x)*tan(x) = cot(x),y(x),singsol=all)

y(x) = (—In(csc(z) + cot (x)) + ¢1) cos (z)

Mathematica DSolve solution

Solving time : 0.046 (sec)
Leaf size : 16

[DSolve [{D[y[x],x]+y[x]*Tan[x]==Cot [x] ,{}},y[x],x, IncludeSingularSolutions->True]]

y(x) — cos(z)(—arctanh(cos(z)) + ¢1)
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2.1.6 Problem 1(f)

Solved as first order linearode . . . . ... ... ... ....... ¥
Solved as first order Exactode . . . . ... ... ... ....... sy
Maple step by step solution . . . . . . ... ... ... ... 60]
Maple trace . . . . . . . . . . ... 611
Maple dsolve solution . . . . . ... .. ... L. 611
Mathematica DSolve solution . . . . ... ... ... ........ 611

Internal problem ID [4195]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 1(f)

Date solved : Monday, January 27, 2025 at 08:41:47 AM
CAS classification : [_linear]

Solve

T

y +yln(z) =2

Solved as first order linear ode
Time used: 0.266 (sec)
In canonical form a linear first order is
Y +q(z)y = p(z)

Comparing the above to the given ode shows that

q(z) = In(z)

p(z) =z*
The integrating factor u is

p=e [ In(z)dz

Therefore the solution is

y= </ x—xefln(x)dxdx + cl) e—fln(x)dx

Summary of solutions found

y = </ x—zefln(x)dwdx + Cl> e—fln(z)d:t

Solved as first order Exact ode
Time used: 0.166 (sec)
To solve an ode of the form

dy
x
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. x gives

d
Hence 06 06 d
op  opay _
Oxr Oydx 0 (B)
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Comparing (A,B) shows that

But since 6‘9 g = ﬂﬁ then for the above to be valid, we require that

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; E‘fy = 6‘2125’; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—yln(z) + z7%) dz
(yln(z) —z7%)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =yl (z) —z™*
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
= 2 (yl —x®
3y = 5y V@ —27)
=In (z)
And
ON
1
e ( )
= ()

Slnce 7& , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

1 (o _on
dy ox
((ln( ) —(0)
=In(x)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is
— 6fAda:

— ef In(z) dz

7
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The result of integrating gives

zln(z)—z

p=e

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
= 1% " (yln (z) — ")

=e *(yln(x)z®—1)

And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+ Nd—y =0
dz
(e*(yIn(z) z® — 1)) + (z"e™*) j—i =0

The following equations are now set up to solve for the function ¢(z,y)

0  —
g—w_M (1)
¢ _w

Integrating (2) w.r.t. y gives
% dy = / Ndy
Ay

9¢

3 dy = /ﬂvf"'e_”c dy

¢ =z "y + f(x) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

9¢

5, =" (In(2) + 1) e~y — 2%~y + f(z) (4)

=z "yIn(z) + f'(z)
But equation (1) says that % = e *(yln (z) z* — 1). Therefore equation (4) becomes
e *(yln(z)z® — 1) = 2% "y ln (z) + f'(z) (5)

Solving equation (5) for f'(z) gives

f/(w) — _e—:E
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Integrating the above w.r.t = gives

/f /( e_z)dz

flz)=e"+a

Where ¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
p=x"¢"y+e "+

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

co=zx"""y+e

Solving for y gives

Summary of solutions found

Maple step by step solution

Let’s solve
&Y(z) +y(@)n(z) =27
° Highest derivative means the order of the ODE is 1
=y(®)
° Solve for the highest derivative
&Y(@) = —y()In(z) + 27
° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
=y(@) +y(@)n(z) =2~
° The ODE is linear; multiply by an integrating factor u(x)
wz) (4y(@) +y(@)In(2)) = p(z) z~*
o Assume the lhs of the ODE is the total derivative % (y(z) u(z))

dx

w(=) (y(@) +y(@) In (2)) = (5y(2)) w@) +y(@) (Gu()
o Isolate - yu(x)

L(e) = p(@)In (2)
° Solve to find the integrating factor

p(z) = zve”
° Integrate both sides with respect to x

[ (@) p(@))) do = [ () a~*dz + C1
° Evaluate the integral on the lhs

y(2) p() = [ p(z)a*do + C1
o Solve for y(x)

z)x *dx+Cl1
y(z) = J u( )u(x) +

o Substitute u(z) = =%

y(o) = Lo

T

—T
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° Evaluate the integrals on the rhs
y(z) = =55
° Simplify

y(z) =z7*(C1e* —1)

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

N

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 16

1 dsolve(diff (y(x),x)+y(x)*1n(x) = x~(-x),y(x),singsol=all)

y(z) = ("c; —1)z™°

Mathematica DSolve solution

Solving time : 0.083 (sec)
Leaf size : 19

[DSolve [{D[y[x],x]+y[x]*Log[x]==x"(-x) ,{}},y[x],x, IncludeSingularSolutions—>True:ﬂ

y(x) = z7%(=1 4 c1€e")
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2.1.7 Problem 2(a)
Solved as first order linearode . . . . ... ... ... ... .... 62
Solved as first order homogeneous class Aode . . . . .. ... ... 63
Solved as first order homogeneous class D2ode . . . ... ... .. 65}
Solved as first order homogeneous class Maple Code . . . ... .. 671
Solved as first order Exactode . . . . ... ... ... ....... 60]
Solved as first order isobaricode . . . . ... ... ... ... ... 72
Solved using Lie symmetry for first orderode . . . . ... ... .. [74
Maple step by step solution . . . . . ... ... ... .. ... ... 77
Maple trace . . . . . . . . . . . e e e [78]
Maple dsolve solution . . . . .. ... ... ... ... ... ... 78]
Mathematica DSolve solution . . . . . ... ... ... ....... 78

Internal problem ID [4196]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 2(a)

Date solved : Monday, January 27, 2025 at 08:41:49 AM

CAS classification : [_linear]

Solve

Solved as first order linear ode

Time used: 0.036 (sec)

Ty +y==z

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

The ode becomes

Integrating gives
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Dividing throughout by the integrating factor x gives the final solution

z? + 2¢;
Y 2z

s/ /7 7T L\ N ————
AR NN R AN
A7 77Tl A N——
ST N
IV N—meee o o
g / /’ / / / / /; &/;/’ /“ /> /° /°
S S S ST T,
yo o S S S S S S S
SIS S =SS S S S S
s NI A A
_2’//’/er \\ \ /\/ //7 /p / / / /
NI LR
S| ————~~N\ [/
=4 ) o 3 .

Figure 2.18: Slope field plot
' +ty=z

Summary of solutions found

4+ 20
N 2x

Solved as first order homogeneous class A ode
Time used: 0.245 (sec)

In canonical form, the ODE is

y = F(z,y)
y—x
= — 1
. )
An ode of the form ¢ = % is called homogeneous if the functions M (z,y) and N(z,y)

are both homogeneous functions and of the same order. Recall that a function f(z,y) is
homogeneous of order n if

f(tnx’ tny) = tnf(x’ y)
In this case, it can be seen that both M = —y 4+ 2 and N = z are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = ¥, or y = uz.
Hence

dy du
dz = ax +u
Applying the transformation y = uz to the above ODE in (1) gives
du
ax +u=1—-u
du 11— 2u(z)
dz = =z
Or
o (z) — 1—2u(z) _ 0
x
Or

v(z)z+2u(z) —1=0

Which is now solved as separable in u(z).
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The ode
2 -1
W(z) = - 242 =1 (2.6)
x
is separable as it can be written as
, _2u(z) -1
(z) = -2
= f(z)g(u)
Where
1
fla) =~
g(u) = —2u+1

Integrating gives

—————=In(z)+¢

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

—2u+1=0

for u(z) gives
1
u(z) = 2
Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

_ -1
5 n(z) +c
u(z) = =
Solving for u(z) gives
1
u(z) = 3
x? + e—2cl
u(z) = 212
Converting u(x) = 1 back to y gives
T
¥=32
Converting u(z) = " back to y gives
_ ‘,1:2 + e—201

y 2x
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Figure 2.19: Slope field plot

xy+y==z
Summary of solutions found
x
V=3
72 4 e—201
v= 2z

Solved as first order homogeneous class D2 ode

Time used: 0.127 (sec)

Applying change of variables y = u(x) z, then the ode becomes
z(u(z)z +u(z)) +u(z)z ==

Which is now solved The ode
2u(z) —1

/
=— 2.
(2) - (27)
is separable as it can be written as
, _2u(z) -1
W(2) = -0
= f(z)g(w)
Where
1
flz) = =
glu) =—-2u+1

Integrating gives

/ﬁdu:/f(x)dx
1

1
/—2u+1d“_/5d‘”

In (2u(z) — 1)
— 5 = In(z) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

—2u+1=0
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for u(z) gives

u(z) = %

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

- 5 =Iln(z)+c
u(z) = =
Solving for u(z) gives
1
u(x)=§
$2_|_e—201
u(z) = 507
Converting u(z) = 1 back to y gives
_r
Y72
Converting u(x) = "32+2;;2C1 back to y gives
_$2+e_2cl
y= 2z
s/ /7 /0T VN N~ ——
ST T VN o ~————
d/7 777 7 7] \ N———— -
SIS N\ ~—— -~
S ST N s s
S LSS ~—
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D /S SSSSS
e N A A A A A V4
et NN rr’7 7777
om0 [ rsz 7,777
————\ \ [ 7177777
—3*/2”%\‘\\&‘ //f‘////f
Figure 2.20: Slope field plot
Ty ty=2x
Summary of solutions found
_*
Y72
m2+e—261
y:
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Solved as first order homogeneous class Maple C ode
Time used: 0.241 (sec)

Let Y =y — yo and X = x — x, then the above is transformed to new ode in Y'(X)

d _Y(X)—i—yg—l'o—X

x X)) = 2t X

Solving for possible values of zy and yo which makes the above ode a homogeneous ode
results in

Tog =

Yo =0

Using these values now it is possible to easily solve for Y (X). The above ode now becomes

d Y(X)-X
—YX)=—""*t—
dX (X) X
In canonical form, the ODE is
Y'=F(X,Y)
Y - X
=——— 1
= 1)

An ode of the form Y’ = %gg is called homogeneous if the functions M (X,Y’) and

N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = X —Y and N = X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution v = %, or Y =uX.

Hence v d
u
X —axo T
Applying the transformation Y = uX to the above ODE in (1) gives
du
du  —2u(X)+1
dx X
Or d 2u(X) + 1
—2u +
Or p
Which is now solved as separable in u(X).
The ode
d 2u(X) -1

is separable as it can be written as

ax"
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Where
1

F(X) =~

g(u) =—-2u+1

Integrating gives

/ﬁdu:/f(X)dX

1 1
— [ Zax
/—2u+1du /Xd

In(2u(X)—-1)
— 5 —111(X)+Cl

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

—2u+1=0

for u(X) gives

u(X):%

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (2u(X) —1)

— B =In (X) + C1
1
X)==
u(X) = 5
Solving for u(X) gives
1
X)==
u(x)=
X2 +e—201
uX) = "%
Converting u(X) = 1 back to Y (X) gives
X
Y(X) =2
(x)=%
Converting u(X) = 4" back to Y(X) gives
X2 +e—201
Y(X)=—5—
(X) 9%
Using the solution for Y'(X)
X
Y(X) =" (A)

And replacing back terms in the above solution using

Y=y+y
X =z+x
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Or

Y=y
X=z

Then the solution in y becomes using EQ (A)

_*
Y=3
Using the solution for Y (X)
X2+e—201
v(xX) =" (A)
And replacing back terms in the above solution using
Y=y+y
XI.’E+.’130
Or
Y=y
X=x
Then the solution in y becomes using EQ (A)
_ $2+e_2cl
y= 2z
s/ /77 7 7 T b N~ —
ST VN ~————
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Figure 2.21: Slope field plot
o t+y==z
Solved as first order Exact ode
Time used: 0.117 (sec)
To solve an ode of the form
d
M(z,y) + N(z,y) 52 =0 (8)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
%(Zs(xa y) =0
Hence 9 96 d
9% 0% _, (B)

dr ' Oydzx
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Comparing (A,B) shows that

o
T M
Oz
9 _ n
Ay
But since % = 5’; ;’x then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
gj gy = ggx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

()dy = (—y+2z)de
(y—x)dx+(x)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(J),y) =Yy—x
N(z,y) ==

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
0y Oz
Using result found above gives
oM _o,
oy oy
=1
And
ON 0
o~ 2™
=1

Since %i; = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)
09 _

or M (1)
9¢

Integrating (2) w.r.t. y gives

%dy:/Ndy
Oy

op .
a—ydy—/xdy

¢ =yz + f(x) (3)
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Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

% v+ 1@ @

But equation (1) says that 52 = y — z. Therefore equation (4) becomes
y—z=y+f(z) (5)

Solving equation (5) for f'(z) gives

Integrating the above w.r.t = gives

/f’(x)da:=/(—x)dx

.’L'2

fl@)=—5 +a

Where ¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

1
¢ =yzr— 53:2 +c
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and

combining c¢; and cy constants into the constant c; gives the solution as

1

2
c1=yr 2x
Solving for y gives
z% + 2¢;
4 2x
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Figure 2.22: Slope field plot
Yy +y==zx

Summary of solutions found

2+ 20
N 2x

Y
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Solved as first order isobaric ode
Time used: 0.104 (sec)

Solving for 3’ gives

Each of the above ode’s is now solved An ode y' = f(z,y) is isobaric if

fltz, t™y) =™ f(z,y) (1)

Where here

flay) = -4 (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives
m=1
Since the ode is isobaric of order m = 1, then the substitution

y=uz"

=uxr

Converts the ODE to a separable in u(z). Performing this substitution gives

u(z) + zu'(z) = —m(zﬁ
The ode
2 -1
v (z) = _2ulo) — 1 (2.9)
x
is separable as it can be written as
, _2u(z) -1
w(z) = -2
= f(z)g(w)
Where
1
flz) = o
glu) =—-2u+1

Integrating gives

—————2 =Iln(x)+¢q

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

—2u+1=0
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for u(z) gives
1
u(z) = =
(2) =3
Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

- 5 =In(z) + ¢
u(z) = =
Solving for u(z) gives
1
u(z) = 2
x2 + e—201
u(z) = 222
Converting u(z) = 3 back to y gives
y 1
r 2

Converting u(x) = % back to y gives

Y wZ + e—201
T 212

Solving for y gives

y(x) 0]

NN NN
AN N NN NN
AN N N N NN N NN
AN N NN N N NN N
AN

=11

-2

SONONONNNN N\
AN N NN

IS
o
o
N

Figure 2.23: Slope field plot
Yy +y==x

Summary of solutions found
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Solved using Lie symmetry for first order ode
Time used: 0.429 (sec)

Writing the ode as

y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - €z) - w2€y —we§ —wyn =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

§ = zaz + yas + a (1E)
n = xbs +ybs + by (2E)

Where the unknown coefficients are

{ala aq, asg, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

—z)(bs—a —2)%a 1 - xbs + ybs + b
bg—(y ) (b 2)_(y 2) 3_(_+y 5 )(xa2+ya3+a1)+—2 31 _
x x x x x

(5E)
Putting the above in normal form gives
2 2. _ 2 _ .2 2. _
Tap + a3 — 2byx” — 1°b3 — 2xyaz + 2y“az — xby +ya;
— pe =0
Setting the numerator to zero gives
—zay — 2%ag + 2b,2° + 2%bs + 2zyas — 2y%as + xby —ya; =0 (6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z =v1,y = v}
The above PDE (6E) now becomes
—agv} — asv] + 2a3v1v; — 2a3v5 + 2byv? + bsvi — a1vp + byv; = 0 (TE)
Collecting the above on the terms v; introduced, and these are
{v1, v2}
Equation (7E) now becomes

(—CLQ — as + 262 + bg) ’U% + 2a3v1v2 + bl’Ul - 2@3’03 — A1V = 0 (8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

by =0
—a; =0
—2a3 =0
2a3 =0

—a2—a3+2b2+b3=0

Solving the above equations for the unknowns gives

a; =0
ay = 2by + b3
a3 =0
bp=0
by = by
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

E=x
n=y

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-wy)é

~v- (-7 @

=2y—=x
£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=y =48 1)

The above comes from the requirements that (56% +77%> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==zx

n
1
B / 2y—xdy

In (2y — x)
2

S is found from

Which results in

S =
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Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

ﬁ _ Sﬂ? +w(x’y)Sy
dR R, +w(z,y)Ry

(2)

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

__Yy-z
CU(CC ’ y) - T
Evaluating all the partial derivatives gives
R, =1
Ry=0
1
Sy =
2z — 4y
1
S =
Yooy —=

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1

T (24)

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

s _ 1
dR~ 2R

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).
/ ds = / L dR
B R
|
S(R )

2
n(R
) =— ; +c

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

In(2y—z)  In(x)
2 2

Which gives

_ x2 + 6202

v= 2z
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R,S)

transformation ’
as _ 1
dR 2R

R==x

In(2y — x)
2
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Figure 2.24: Slope field plot

Ty ty=zx
Summary of solutions found
1:2 + e202
y= 2z

Maple step by step solution

Let’s solve

2(Ly(@) +y(e) =2
° Highest derivative means the order of the ODE is 1

Ly(z)
° Isolate the derivative
ay(@) =1-23

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
2y(z)+ ¥ =1

° The ODE is linear; multiply by an integrating factor u(x)
w(z) (Ly(e) +12) = u(a)

o Assume the lhs of the ODE is the total derivative 2 (y(z) u(z))

() (Zy(@) +12) = (Ly()) n(z) + y(2) (Lu())

e Isolate 2 u(z)
an(z) =2

° Solve to find the integrating factor
pz) ==

. Integrate both sides with respect to x

[ (L (y(z) p(z))) dz = [ p(z)dz + C1
U Evaluate the integral on the lhs

y(z) p(z) = [ p(z) dz + C1
o Solve for y(x)

da+C1
y(z) = S/ u(a;)(zac;r
o Substitute u(z) = z
zdz+C1
y(z) = Lot
° Evaluate the integrals on the rhs
2 4C1

y(z) = =
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° Simplify

_ x%4201
y(z) = =52

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 13

'dsolve (diff (y(x) ,x)*x+y(x) = x,y(x),singsol=all)

Mathematica DSolve solution

Solving time : 0.026 (sec)
Leaf size : 17

LDSolve[{x*D[y[x],x]+y[x]==x,{}},y[x],x,IncludeSingularSolutions->True]
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2.1.8 Problem 2(b)
Solved as first order linearode . . . . . . . . . .. . ... .. ... 79

Solved as first order homogeneous class D2ode . . . .. ... ...
Solved as first order Exactode . . . . .. .. ... ... ......
Solved as first order isobaricode . . . .. .. ... ... ......
Solved using Lie symmetry for first orderode . . . . ... ... ..
Maple step by step solution . . . . . ... .. ... ... ...,
Maple trace . . . . . . . . . L
Maple dsolve solution
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [4197]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 2(b)

Date solved : Monday, January 27, 2025 at 08:41:51 AM

CAS classification : [_linear]

Solve

zy —y=2a°

Solved as first order linear ode

Time used: 0.044 (sec)

In canonical form a linear first order is

Y +q(z)y = p(z)

Comparing the above to the given ode shows that

The integrating factor u is

The ode becomes

Integrating gives

1
Q(x)——;
p(z) = 2?
m el adz

_ef— dx
_1
_.17

d

agmﬁ—w

841
fd
09
90
90
90
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gives the final solution

1
T

Dividing throughout by the integrating factor

— > o o > > o & & & & & & o |
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Figure 2.25: Slope field plot

Summary of solutions found

Solved as first order homogeneous class D2 ode

Time used: 0.028 (sec)

Applying change of variables y = u(x) z, then the ode becomes

z(v'(z) z + u(z)) — u(z) z = 2*

Which is now solved Since the ode has the form «'(z) = f(z), then we only need to

integrate f(z).

+ ¢; back to y gives

z2
2

Converting u(z) =

— o > o > o > o [

— e e e e e > & & o o o o o o

L e o o N N

e SN N N N NN

s\ Y ) )V )/
W/V/v/v///?// \q\\\s\u\\u

AL —

AN N NN

[ e N~ -~ S~y -y N S

— — > > > > > o & O

c—o—o— o—o—o—o—o—Cc— c— o [

X

Figure 2.26: Slope field plot

oy —y =2’
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Summary of solutions found

Solved as first order Exact ode
Time used: 0.099 (sec)
To solve an ode of the form

dy
x
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. = gives

d

Hence 96  06d
Yy _
or  Oydxr 0 (B)

Comparing (A,B) shows that

0

e =M
0
=N

8%¢ __ 82%¢

But since a0y = Byoa

then for the above to be valid, we require that

oM  ON

By Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
{f; g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (z* +y)dz
(=2 —y)dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

The next step is to determine if the ODE is is exact or not. The ODE is exact when the

following condition is satisfied
oM  ON

By Oz
Using result found above gives
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And
ON 0

o aa:( z)
=1

Since aM 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let
oM ON
dy oz
1
=—((-1)—-(Q
(1) - (1)
2
oz
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor yu is

o= el Ade
— e -2dz
The result of integrating gives
[ = e 2@
1
72

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+Nd—=0
dz

(=) + () =

The following equations are now set up to solve for the function ¢(z,y)

9 M (1)
0 —
ay = (2)
Integrating (2) w.r.t. y gives
8¢ dy = /Ndy
dy
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Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

Y i) (4)
But equation (1) says that % = _”f{y. Therefore equation (4) becomes
T 6)
x? x?
Solving equation (5) for f'(z) gives
f@)=—a

Integrating the above w.r.t = gives

/f’(x)dx=/(—m)dx

2

f@)=—%“+ﬁ

Where c; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

2
T

sV T,
T 2

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

22
2

C =

SHES

Solving for y gives

z(z? + 2¢1)
Y= 9

y(x) 07

14

24

—_——————— e ————
—_—————— e —
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\T\Q\Q\Q\Q\\\ ///y/o/p/af
—— o S n/ K\\\Q\Q\ZQ\Q\Q

// [ ( & k\\\\\Q\Q\Q\Q\
— T —— T g T
—_—S——————————————————————

‘zg‘zg\za‘za‘.ﬁ:\.‘@\-@\.ﬂ‘.@‘.ﬂ‘-ﬂ‘.ﬂ‘.ﬂ‘-ﬂ\.ﬁ
\ \ N e

S
— g o g g g g 0=
e~ ——m——m—————m————— —— o ——o

INY

0

O

X

Figure 2.27: Slope field plot

oy —y =1’

Summary of solutions found

z(x? + 2c1)
Y= 9
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Solved as first order isobaric ode
Time used: 0.282 (sec)

Solving for 3’ gives

Each of the above ode’s is now solved An ode 3y = f(z,y) is isobaric if

flz,t™y) =" f(z,y)
Where here
2+ y
T

f(x,y) =

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m =3
Since the ode is isobaric of order m = 3, then the substitution

y=uzx"

=U$3

Converts the ODE to a separable in u(z). Performing this substitution gives

34 .3
3z%u(z) + 2’/ (z) = %u(z)
The ode
2u(z) — 1
! e T A—
w(z) = -
is separable as it can be written as
2u(z) —1
l —
u'(z) = .
= f(z)g(u)
Where
1
fz) = p
g(u) = —2u+1

Integrating gives

/ﬁdu=/f(x)dz
| it [ 5

——————=hn(@)+a

1)

(1)

(2)

(2.10)

We now need to find the singular solutions, these are found by finding for what values

g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

—2u+1=0
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for u(z) gives
1
u(z) = 2
Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

_ —1
5 n(z) +c
u(z) = =
Solving for u(z) gives
1
u(z) = 2
xQ + e—261
u(z) = 57
Converting u(z) = 3 back to y gives
y 1
5=3
. x2+e—201 .
Converting u(z) = 52— back to y gives

y .’1:2 + e—201

3 212

Solving for y gives

z(z? + e20)

2

oS I S A A S Y A A A A A |
A N S A A A A
A /7~N 070111
AV S\ N A A A A
R Y A A A A
A A A N AN A A A |
R A A A N A B B
oo of IS =]
A Y A A S i A A A
I A A N SR A A
crrrr s o N=7s,70 1|
g o N=7011T1
B A A A A A AR W A A B |
N
s VNS T

Ny

0

O

X

Figure 2.28: Slope field plot

vy —y =1’

Summary of solutions found

8
w0

b

_ z(x? + e72)
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Solved using Lie symmetry for first order ode
Time used: 0.288 (sec)

Writing the ode as

) = =’ +y
i
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - gz) - w2§y —wz€ — Wyl = 0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

§ = zas + yas + o (1E)
n = xbs +ybs + by (2E)

Where the unknown coeflicients are

{al, as, as, by, b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(@ +y) (bs—as)  (2°+y) as

b2 + - 72 (5E)
z3 + zby + ybs + b
—(390— 2y)(wa2+ya3+a1)—$=0
x x
Putting the above in normal form gives
2%as + 3xtay — 203 + 40Pyas + 223a; + xby —yay
— e =0
Setting the numerator to zero gives
—z8a3 — 3z*ay + xtbs — 423yas — 223a; — by + ya; =0 (6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z, v}
The following substitution is now made to be able to collect on all terms with {z,y} in
them
{z =v1,y = v}
The above PDE (6E) now becomes
6 4 3 4 3 _
—agv] — 3agv] — 4azvive + b3vy — 2a1v5 + a1vy — biv; =0 (7TE)

Collecting the above on the terms v; introduced, and these are

{v1, v}
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Equation (7E) now becomes
—a3v? + (=3ay + b3) vi — 4asvivy — 20,03 — byvy + ajvy = 0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0

—2a; =0
—4a3 =0
—a3=0
-b1=0
—3az+b3=0

Solving the above equations for the unknowns gives

a; =0
as = aq
a3 =10
by=0
by = by
b3 = 3as

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

£E=0
n==x

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _

F=y =48 1)

The above comes from the requirements that (56% +77%> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

S is found from

N
Il

SP3|I+

Which results in

s=1Y
X

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

ﬁ _ Sx +W($,y)Sy
dR R, +w(z,y)R,

(2)
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

2 +y
W(ili ’ y) - T
Evaluating all the partial derivatives gives
R, =1
R,=0
Y
Sx == —P
1
Sy - 5

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
R 2A
R (24)
We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

as

ar = E

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

/dS=/RdR
R2

S(R) = 7+Cg

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

SHES

_+02

Which gives

(2 + 2c)

y= 2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates
. (R, S)
transformation
s _
iz =R
R==x
Yy 2
S== ]
T A
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Figure 2.29: Slope field plot

vy —y =1

Summary of solutions found

(22 + 2c)
2

Maple step by step solution

Let’s solve
2(Ly(@)) - y(x) = 2°
° Highest derivative means the order of the ODE is 1

()
° Solve for the highest derivative
xr Es
Ly(z) = vt

o Collect w.r.t. y(z) and simplify
&y(@) =12 +

° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
4 ) =

° The ODE is linear; multiply by an integrating factor u(x)
() (—2 + Ly(2)) = p(z) 22

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

w(z) (-42 + Ly(@)) = (Ly(@)) w(2) + (@) (La()

) Isolate L (z)
an(z) = -2
. Solve to find the integrating factor
px) = ;
° Integrate both sides with respect to x
[ (L (y(z) p(z))) dz = [ p(z) z?dz + C1
° Evaluate the integral on the lhs

y(@) u(x) = [ p(z) ade + C1
o Solve for y(x)

2dz+C
y(z) = —fu(w);(m)H :

U Substitute u(z) = %
y(z) = z([ zdz + C1)
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° Evaluate the integrals on the rhs
y(x) = x(% + C'])
° Simplify

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 14

'dsolve(diff (y(x),x)*x-y(x) = x73,y(x),singsol=all)

22+ 2c¢)x
y(z) = (e +20)z 5 )
Mathematica DSolve solution

Solving time : 0.028 (sec)
Leaf size : 17

LDSolve[{x*D[y[X],x]—y[x]==x‘3,{}},y[x],x,IncludeSingularSolutions—>True]

3

x
y(x) — 5 + ¢z
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2.1.9 Problem 2(c)

Solved as first order linearode . . . . ... ... ... .......
Solved as first order Exactode . . . . ... ... ... .......
Solved using Lie symmetry for first orderode . . . . . .. ... ..
Maple step by step solution . . . . .. ... ... ... ... ... .

Maple trace

Maple dsolve solution .
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [4198]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 2(c)

Date solved : Monday, January 27, 2025 at 08:41:53 AM
CAS classification : [_linear]

Solve

zy +ny ="

Solved as first order linear ode

Time used: 0.086 (sec)

In canonical form a linear first order is

The integrating factor u is

The ode becomes

Integrating gives

Y +q(z)y = p(z)

Comparing the above to the given ode shows that

q(x) = g

p(z) ="

L= efqda:

_ of Bds
%(uy) = up
W) = () (@)
3 z") = (") (z" )

d(yz") = (z"'z") dz

/m”‘lx” dz

.1'2”

%4-01

Dividing throughout by the integrating factor z™ gives the final solution

Summary of solutions found

y:

" _
% +x ncl

n

- _nc
m +x 1
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Solved as first order Exact ode
Time used: 0.177 (sec)
To solve an ode of the form

dy
M(z,9) + N(z,5) £ =0 (A)
T
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06d
Y
— —_—— B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
9y
But since ;;gy = ;): g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = a‘fgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (—ny +2")dz
(ny —2")dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =ny — z"
N(z,y) ==z

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oy oy Y
=n
And
ON 0

or %(x)
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Since %i; # 88—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

P (aM 8N)

T N\ 8y Oz
= () - (1)
_n- 1

Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor y is

= el Ade
— e =l dg
The result of integrating gives
j1 = D@
= xn_l

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M =uM

n—l(

=z (ny —z")

= (ny — ™) 2"

And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is
—dy

M+N-2=0
+ dx

((ny —2™) 2" ") + (z") j—z =0

The following equations are now set up to solve for the function ¢(z,y)

Integrating (2) w.r.t. y gives

¢=yz" + f(x) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.

Taking derivative of equation (3) w.r.t z gives
0  z"ny
or «

= nyz" + f(a)

+ f'(z) (4)
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But equation (1) says that % = (ny — z") ™ !. Therefore equation (4) becomes

(ny —2™) 2" ' =nya™ ' + f(2) (5)
Solving equation (5) for f'(z) gives

f’(x) — _xn—lxn

Integrating the above w.r.t x results in

/f'(:c)dx:/(—z2”_1) dz

2n

f(z) = —2—n+c1

Where c; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

x?n
¢=y$n_%+cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

172“

TV T o

Solving for y gives
_ Qan4+z) "
2n

Summary of solutions found

_ Qan+®) ™
2n

Solved using Lie symmetry for first order ode
Time used: 0.447 (sec)

Writing the ode as
) —ny+a”

i
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — Wny —we€ —wyn =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

§ = zaz +yaz +a (1E)
n = xbs +ybs + by (2E)

Where the unknown coefficients are

{al, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

(—ny + ") (b3 —a3) (—ny+ x”)2 as
bs + - 3
x x

"n —ny+zx"
- ( - >(ma2%—ya3+—aﬂ-+

(5E)
n(.’Ebg + yb3 + bl)
xT

=0
2 x2

Putting the above in normal form gives

n*y2as + z"nxay; — x"nyas — n by + nylas + r¥"as + r"na; — z"xbs — T yas — nxb; + nya; — byx?

72
=0

Setting the numerator to zero gives

—n?y2as — z"nzay + z"nyas + nx’by — nyas — r¥"ag (6E)
— z"na; + 2" bz + x"yas + nxb, — nya, + boz? + z"a; = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y,2"}

The following substitution is now made to be able to collect on all terms with {z,y} in

them

{37 =0,y =V, T" = U3}

The above PDE (6E) now becomes

—7’L2’I)§CL3 — VUsnviag — ’I’L’Ugag + V3NvU2a3 + nv%bg — Nvaa; (7E)
2 2
— vsnaj + nv1by 4 v3v2a3 — v3as + bovy 4 v3v1bs +v3a; =0

Collecting the above on the terms v; introduced, and these are
{,UI’ V2, '03}

Equation (7E) now becomes

(nbs + bs) vi + (—nas + bs) vivs + nvibs + (—n’as — naz) v3 (8E)
+ (nas + az) vovs — nvpa; — viaz + (—na; +a;) vz =0

Setting each coefficients in (8E) to zero gives the following equations to solve

nbl =0
—ag = 0
—na; =0

—na; +a; =0
nas +az =0
—n2as —naz =0
nby + by =0
—nag +b3 =0
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Solving the above equations for the unknowns gives

a; =0
as = Qg
a3 =0
by =0
by =0
bs = nas

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

{=z
:’n,y

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y)§

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

e =y~ (1)

The above comes from the requirements that (Ea% -I-n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S is found from
n
1
N / 2ny — " dy
Which results in
g In (2ny — z™)
2n

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

aS _ S;+w(z,y)Sy @)
dR R, +w(z,y)Ry

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by
_ —ny+z”

wiz,y) = —_
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Evaluating all the partial derivatives gives

R, =1
R,=0
1
* 7 “dny + 227
_ 1
Y 2ny —an

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s 1

R 9 (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

as 1
dR 2R
The above is a quadrature ode. This is the whole point of Lie symmetry method. It

converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form ;%S(R) = f(R), then we only need to integrate f(R).

/dS /——dR

S(R) = ln;R) b

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

In(2ny —z") _ In(z)
2n

Which gives

e—n(ln(m)—?cz) + zn
2n

y:

Summary of solutions found

e—n(ln(a:) —2¢2) + "
2n

y:

Maple step by step solution

Let’s solve

z(zy(2)) +ny(z) =
° Highest derivative means the order of the ODE is 1

=y(2)
° Solve for the highest derivative
fry(e) = =g

o Collect w.r.t. y(z) and simplify

Ly(e) = 22 4 2

) Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
y(e) + ™0 = 2

T T
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° The ODE is linear; multiply by an integrating factor u(x)

u(z) (Ey() + 2 ) = 1

o Assume the lhs of the ODE is the total derivative 2 (y(z) u(z))

w(a) (Ly(e) + ™) = (Ly(2)) ue) + (@) (La()

e  Isolate 2 u(z)
% u(z) = u(ﬁ)n

° Solve to find the integrating factor
p(z) = z"

° Integrate both sides with respect to x
[ (L(y(z) p(z))) do = [ D4z + C1

° Evaluate the integral on the lhs

y()pz) = [ @dw + C1
° Solve for y(x)

G e
@) ="

o Substitute u(z) = z"

R
y(x) -
° Evaluate the integrals on the rhs
2z 2
y(z) = !
° Simplify

y(z) =2 +z7"C1

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 20

‘dsolve (diff(y(x),x)*x+n*y(x) = x"n,y(x),singsol=all)

n

x
y(z) = on +27 "¢

Mathematica DSolve solution

Solving time : 0.049 (sec)
Leaf size : 24

‘DSolve[{x*D[y[X],x]+n*y[x]==x“n,{}},y[x],x,IncludeSingularSolutions—>True]

:L.n

y(z) — on + ¢z

—-n
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2.1.10 Problem 2(d)

Solved as first order linearode . . . . ... ... ... .......
Solved as first order Exactode . . . . ... ... ... .......
Solved using Lie symmetry for first orderode . . . . . .. ... ..
Maple step by step solution . . . . .. ... ... ... ... ... .
Mapletrace . . . . . . . . . . . e
Maple dsolve solution . . . ... ... ... ... ... .. ...,
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [4199]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 2(d)

Date solved : Monday, January 27, 2025 at 08:41:55 AM
CAS classification : [_linear]

Solve
zy —ny ="
Solved as first order linear ode
Time used: 0.090 (sec)
In canonical form a linear first order is

Y +q(z)y = p(z)

Comparing the above to the given ode shows that

n
q(z) = T
p(z) ="
The integrating factor u is
= elade
— o —Zda
= :L'_n
The ode becomes
é%mw=wm
d

Integrating gives

yr " = /z”‘lm_" dx
=In(z)+ ¢
Dividing throughout by the integrating factor ™" gives the final solution
y=2z"(In(z) + ¢1)

Summary of solutions found

y=z"(In(z) 4+ ¢1)



CHAPTER 2. BOOK SOLVED PROBLEMS 100

Solved as first order Exact ode
Time used: 0.132 (sec)
To solve an ode of the form

dy
M(z,9) + N(z,5) £ =0 (A)
T
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06d
Y
— —_—— B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
9y
But since ;;gy = ;): g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = a‘fgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (ny + z") dz
(—ny —2z")dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —ny — z"
N(z,y) =z

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oy oy Y
=-n
And
ON 0

or %(x)
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Since %i; # ‘98—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4l (8M aN)

~ N\dy Oz
1

= —((=n) - (1)

—n-—1

x
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
—e JAdz

:ef_z_ldx

The result of integrating gives

w= e(—n—l) In(z)
— m—n—l

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM

=z " (—ny — 2")

—1—z""ny

And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

—  —dy

M + E—O
—1—z""ny a dy
( : )—l—(x )W

The following equations are now set up to solve for the function ¢(z,y)

0p —

g—x =M (1)
¢ N

oy - (2)

Integrating (2) w.r.t. y gives
@ dy = / Ndy
Oy
0¢ n
6_y dy = / x "dy
¢=yz "+ f(z) (3)
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Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

=T fa) @

But equation (1) says that % = w Therefore equation (4) becomes

—1—x""ny e
TEE et £ () )
Solving equation (5) for f'(z) gives
—n—1 —n
nyzx r—x "ny —1
f'(x) =
x
1
oz

Integrating the above w.r.t = results in

/f’(@@:/(-%) do

f(x)=—In(z)+ ¢

Where ¢, is constant of integration. Substituting result found above for f(x) into equation
(3) gives ¢
dp=yzr " —In(z)+c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and c; constants into the constant c; gives the solution as

aa=yz " —In(z)

Solving for y gives
y=2z"(In(z) + ¢1)

Summary of solutions found

y=2z"(In(z) + ¢1)

Solved using Lie symmetry for first order ode
Time used: 0.326 (sec)
Writing the ode as

, ny+z"
y =
x
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - fz) - w2€y - wz€ — Wyl = 0 (A)
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To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

£ =zaz +yas + a (1E)
n= wbg + yb3 + bl (QE)

Where the unknown coefficients are

{ala az, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(ny +2")(bs —az2) (ny+ ") as
72

) (zag + yaz + a1) —

by +

. (5E)
B (m”n _ny+az”

n(xby + ybs + by)
x

=0

x? x?
Putting the above in normal form gives

n*y2as + z"nxay + 3x"nyas + n by — ny?as + r2"a3 + z"na; — "xbs — x"yas + nxb, — nya; — byx?

72
=0

Setting the numerator to zero gives

—n?y2as — z"nzay — 3x"nyas — nx?by + nylas — x%"as (6E)
— z™nay + 2"xbs + z"yas — nxby + nya, + bex? + z"a; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y,2"}

The following substitution is now made to be able to collect on all terms with {z,y} in

them

{x =v1,y =vo,2" = v3}

The above PDE (6E) now becomes

—n2vga3 — v3nvi1a9 + ’rL’U;a3 - 3’037’1’02@3 - ’I'I,’U%bz + nvaaq (7E)
2 2
— vsna; — nv1by 4 v3v2a3 — v3a3 + bovy 4 v3v1bs +v3a1 =0

Collecting the above on the terms v; introduced, and these are
{,017 V2, '1)3}

Equation (7E) now becomes

(—nby + by) v; + (—nas + bs) vivs — nvibs + (—n’as + nas) v3 (8E)

+ (—3nas + a3) vovs + nvoa; — v§a3 + (—na; +a1)vs =0
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Setting each coefficients in (8E) to zero gives the following equations to solve

na; =0

—a3z3 =0

—nb; =0

—na; +a; =0
—3nas + a3 =0
—n?a3z +naz =0
—nby + b2 =0
—nag + b3 =0

Solving the above equations for the unknowns gives

a; =0
as = agy
a3 =0
by =0
by =0
bs = nasy

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

E=x

n=ny
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y)§

oy — (ny +:c”) ()

T

= —xn

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that (56% +77%> S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

1
S:/—dy

n

—CL‘"

b (2

S is found from

Which results in

S=-yzx
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Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

ﬁ _ Sﬂ? +w(x’y)Sy
dR R, +w(z,y)Ry

(2)

Where in the above R, R,, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

wo(z,y) = ny + "
x
Evaluating all the partial derivatives gives
R, =1
R,=0
Sy =nyz !
Sy=—z"

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 1

D 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

s 1

dR~ R
The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form - S(R) = f(R), then we only need to integrate f(R).
/ s = / ——dR
=—In(R)+c

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

—yzr " =—In(z) +c
Which gives

y = (In(z) —cs) 2"

Summary of solutions found

= (In(z) — ¢c2) 2"
Maple step by step solution

Let’s solve

2(Ly(@) —ny(z) =
° Highest derivative means the order of the ODE is 1

()
° Solve for the highest derivative
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deylw) = MR

) Collect w.r.t. y(z) and simplify
Ly(o) =2 4 22

T T

° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
ay(@) - =2

° The ODE is linear; multiply by an integrating factor u(x)
u(a) (o) — ™2 = 1o

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(z) (Ly(@) - "2 = (Ly(2)) w(2) + y(@) (La()

o Isolate 2 u(z)

u(r) = e

T

° Solve to find the integrating factor

wz) =&
. Integrate both sides with respect to x
[ (L(y(z) p(z))) do = [ D4z + C1
° Evaluate the integral on the lhs

y(z)p(z) = [ @dw + C1
o Solve for y(x)

G e
@) ="

o Substitute p(z) = =
y(z) =2z"([ tdz + C1)

° Evaluate the integrals on the rhs
y(z) =z"(In(z) + C1)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 12

'dsolve(diff (y(x) ,x)*x-n*xy(x) = x"n,y(x),singsol=all) J

y(@) = (In(z) + 1) 2"
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Mathematica DSolve solution

Solving time : 0.046 (sec)
Leaf size : 14

;
DSolve [{x*D[y[x],x]-n*y[x]==x"n,{}},y[x],x,IncludeSingularSolutions->True]

y(z) = 2" (log(z) + 1)
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2.1.11 Problem 2(e)

Solved as first order linearode . . . . ... ... ... ....... 108
Solved as first order Exactode . . . . .. ... ... ........ 109
Solved using Lie symmetry for first orderode . . . . . .. ... .. 112
Maple step by step solution . . . . .. ... ... ... ... .. .. 118
Maple trace . . . . . . . . . .. 119
Maple dsolve solution . . . ... ... ... ... . ... ... 119
Mathematica DSolve solution . . . . ... ... ... ........ 119

Internal problem ID [4200]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 2(e)

Date solved : Monday, January 27, 2025 at 08:41:56 AM
CAS classification : [_linear]

Solve
(P+z)y+y==
Solved as first order linear ode

Time used: 0.105 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

(0) = ——
N =7 (x2+1)
1
The integrating factor u is
b= efqdz
= ef a:(a:21+1) e
. T
2 +1
The ode becomes
d
e (ny) = pp

=) (57)
%(my?—x—kl) B < xf+1> <x211)
() - ()

Integrating gives

YT z
—_— _— d.’L'
22 +1 /(w2+1)3/2

1
Vel
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Dividing throughout by the integrating factor \/ﬁ gives the final solution

avzi+1-1

8 R NN —
——— ) ] \ Nre————
N ——
7] N
—e = -~ / /v \\;_, B
Voo o~~~ / N———
———— =) - -
yo o ————— 7 S
[ S S R S / P
I /[ S
— N
—————\
2 \b /rz P
—————~\ ]
8] ————— [/ - —=——

Figure 2.30: Slope field plot
(@ +z)y+y=2

Summary of solutions found

z
Solved as first order Exact ode
Time used: 0.186 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 96 06d
Y
— —_—— T B
Or Oydx 0 (B)
Comparing (A,B) shows that
0
T M
Oz
99
T _N
Oy
But since 512 a¢y = ;; (9¢x then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘?: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
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might not exist. The first step is to write the ODE in standard form to check for exactness,
which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(2 +2z)dy = (—y+ ) dz
(y—z)dz+(z° +2)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(.’I?,y)=y—.’17
N(z,y) =24z

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
By = 8_y(y — )
=1
And
ON 0
o = T
=322 +1

Since %i; %—]l, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

. (aM 8N)

T N\ 8y Oz

_ 1 _ 2
= :c((l) (322 +1))
_ 3z

o241

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p=e JAdz
= ef_zgj-l da
The result of integrating gives
31n(z2+1)
u = e 2
B 1
(22 + 1)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM

1
= W(y—x)

y—1
(552—1—1)3/2
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And

_ 3
= N 1)3/2 (x -l-x)
x
Vo2 +1
Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

. _dy
M —~Z =0
+ dzx

The following equations are now set up to solve for the function ¢(z,y)

0p —
o0~ M M
0p

Integrating (2) w.r.t. y gives
@ dy = / N dy
Ay

9 4 _/Ld
Oy V= V2 +1 Y

LN
6= =+ 1@ (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

99 y yz? :
g - 4
_ Y /
RISV
But equation (1) says that % = ﬁ Therefore equation (4) becomes

(xzy_|——13;3/2 = (22 51)3/2 + f'(z) (5)

Solving equation (5) for f'(z) gives

Integrating the above w.r.t = gives

/f’(m)dx=/<—(x2fw> dz
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112

Where c¢; is constant of integration. Substituting result found above for f(z) into equation

(3) gives ¢
YT 1
= + +c
P= Vi Jeri

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and c; constants into the constant c; gives the solution as

yx

1

C1

Solving for y gives

= +
V2 +1

Vzz +1

S ]\ ~e—m—
——— =~ 7 / /V \ ~—— ———

P R N
—_—,——— - ) /” \ ~———
—_—,—— -~/ /‘" N ———

R S / —_— e — = -

—,—— - -~ /
Y o] e

- — e — - e

P S S
P
/ //a/ﬂ,,ﬂ,__\afé

—,—,———— =

——— N S
/

14

— =\ /o
21 -~ . \b /r; ////g,’_ﬁ'»ﬂ
————~\ [/
S\ /S

% 2 ; ; 3

Figure 2.31: Slope field plot
(B +r)y+y==x

Summary of solutions found

avzi+1-1

T

Solved using Lie symmetry for first order ode
Time used: 1.940 (sec)
Writing the ode as

Y=
v= z (22 +1)
y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Mo +w(ny — &) — W2fy —we€ —wyn =0 (A)
To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree

3 to use as anstaz gives

¢ = 2iay + 2%yag + Ty%ag + yPayg + a4y + yzas + ylag + rag +yas +a;  (1E)

n= .’133b7 + iI?beg + CI?beg + y3b10 + x2b4 + yxb5 + y2b6 + .'13b2 + ybg + bl (2E)
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Where the unknown coeflicients are

{a1, a2, a3, as, as, as, az, as, ag, ao, b, b2, b3, bs, bs, bg, bz, bg, by, bro}
Substituting equations (1E,2E) and w into (A) gives

3:172b7 + 2zybg + y2b9 + 2xby + ybs + by (5E)

(y — z) (—3z2%a; + x2bs — 2xyag + 2xyby — y?ag + 3y*b1o — 2xays + Tbs — yas + 2ybs — az + bs)
a z(z2+1)

(y — z)? (z2as + 2zyag + 3ya10 + zas + 2yag + as) 1 y—1
- 22 (22 + 1) B (x(m2+1) +x2 (z2 +1)

2y — 2z

(2 +1)°

n .'133b7 + .'E2yb8 + $y2b9 + y3b10 + 1172b4 + yccb5 + y2b6 + .’L‘bz + yb3 + bl
z(z2+1)

) (z°ar + 2’yas + £ y°as + y’a10 + z’as + yzas + y’as + ras + yas + a1)

=0

Putting the above in normal form gives

ybsx? + 223ybs — 223yag — 3x%y%a1 + 62 y3a0 + 2x3y3a10 — 3x2ytar + 4x*b; + 227 ybs + 4xPybg + x5y

=0
Setting the numerator to zero gives

ybsx? +223ybs — 223yag — 3x2y a0 +6x yiai0+223y3a10— 3x2y4a10 +4z*b, + 2x7yb8 +4x°ybg
+ 2%9%by + x4y2bg + 22°yby — x4y2a8 + z*y%aq + 32ty?byy — 223y3ag — 223y3b10 + 223yar
+ 2x3yb9 + 3x2y2ag + 3x2y2b10 —2z y3a9 —2x y3b10 +227 by + 52°by + 2°bs — 22304 — 3 a5 + 23bs
— 3y3a6 +2by? — 2x3ya2 + 2x3ya3 — 3z2y2a3 — 3x2ya1 +2xyas + 328b; + 72867 — 280, + %04
—3zar + b — ag — 4ytaig + 323bs + 2Oybs — xtyas + zryas + 22 ybs + 2zt ybs — 2239 %as
+ 22392 ag — 23y — 322y a6 + x2yay + v yas — 22%yag + 22°ybs — x y2as + 4z yPas — T y2bg
+ 280y + zay + 32tby + 2*bs + 2230y + 2301 — 2%as — 2203 + 22b5 — 2y2a3 4+ xby —ya; =0
(6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z =v1,y = v}

The above PDE (6E) now becomes

vivabg + 205vaby — viviag + viviag + 3vivabiy — 203v3ag — 2v3v3byg

+ 203v9a7 + 203vaby + 3vIv3ag + 3vIV3bi — 2v1v5ag — 2v1V3byg

— 2vi’vga2 + 2va2a3 — 3va§a3 — 31)%1)2(11 + 2vv00a3 + 'U?'Ugbg, — va2a4

+ vivaas + 20ivabs + 2uivabs — 203v2as + 2v3vaag — Vivibs — 3viviag

+ v%v2a4 + ’U%’UQCL{, — 21}%1)2% + 2v%v2b6 — vlv%ag, + 4vlv§a6 — vlvgbﬁ (TE)
+ vabsv + 2vSvpbg — 203v9a9 — 3vIViag + 6v1VEaL0 + 203V3asg

— 3va§a10 + 2UI’I)2b8 + 4vi’v2b8 + ’U?’U%bg — 2v§a3 + v1b; — V904

+ 4viby + 207by + 505by + v5bs — 203ay — vias + vibs — Svdag + 2b2v7

+ 3v¥b; + T08b; — v8a; + v¥bg — 3viar + vibs — viag — 4vsasg + 3v3by

+ U?bz + ’Uzllaz + 31)1%2 + Uilbg + 21)%04 + ’U%bl — U%ag — ’U%ag + U%b3 =0
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Collecting the above on the terms v; introduced, and these are

{vla v2}

Equation (7E) now becomes

(7b7 — Qy —|— bg —|— bg) ’U? + (2&1 — 2a4 — a5 —|- b1 + 3b4 —+— b5) ’U%
—|—(—a2 —a3—|—2b2+b3)v%-|- (4b7—3a7+b8 —a8+a2+3b2+bg)vf
+ (5b4 + b5) ’U? + (bg —ag+ ag + 3b10) ’U%’Ui1 + (2bg + 4b8) ’Ug’U?
+ (—2(19 — 2b10 + 2a10) vgvf + (2a7 + 2b9 - 2(12 + 2a3 + 2bg - 2a9) ’Ug’l)is
+ (3ag + 3b1g — 3as — 3ayo) vavi + (—2ag — 2byg + 6ay) vavy
+ (=3a1 + a4 + a5 — 2a6 + bs + 2bg) vov] + (—ay + as + 2bs + 2bg) vov;
+ (—2as5 + 2ag — bg) v3V: + (—as + 4ag — bg) Vav; + 201v03
+ v8uabs — 3vivias — 3vivyaig + 2v]vabs + viVSby — 203as

+ ’Ulbl — V901 + 2’0'171)4 - 3'03016 + 3’U§b7 — 4113&10 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

bs =0

bg =0

—a1 =0
—2a3 =0
2a3 =0
—3ag =0
—4a,0=0
—3a10 =0
2by =0

3b; =0

2bs =0

5by + b5 =0
2bg + 4bg =0

—2a5 + 2a —bg =0

—as + 4ag — bg =0

—2a9 — 2b1g + 2a10 =0

—2ag — 2byp +6a10 =0

—ag —az+2by+b3=0

—ay4 + a5 + 2bs +2bg =0

3ag + 3b1g — 3az — 3a10 =0

Tby —ar+bg+by =0

bg —ag + ag + 3b1p =0

—3a; + a4 + a5 — 2ag + bs + 2bg =0
2a1 — 2a4 — a5+ by +3by+b5 =0
2a7 + 2bg — 2as + 2a3 + 2bg — 2a9 =0
4b; — 3a7 + bg —ag + as +3by + b3 =0

(8E)
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Solving the above equations for the unknowns gives

a; =0

as = —bs + 2byg
a3 =0

as =0

as =0

ag =0

a7 = —bsg +bio
ag = 2byg

ag = —byo
ayp =0
by=0

by = —b3 + by
bs = b3
by=0

bs =0

bg =0

b; =0

bs =0

by =0
bio = bio

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

E =22+ 2% —zy’ + 22

n=y"+z

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y)§

_ .3 y—x 3 2 2

2ty — 2Py + 32y — 2 + 2y
B 2+

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

F=, = 1)

The above comes from the requirements that (Ea% +n%> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
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S is found from

1 d
- 3y3 _ 23y 32242 —a2 4 2yx Y
34z

Which results in

n(x 2—11?
(@ (g ¢ o)

T

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

aS _ Sp+w(z,y)Sy
dR R, +w(z,y)R,

2)

Where in the above R,, R,, S, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

wiz,y) = -2 L _
V= z(z2+1)
Evaluating all the partial derivatives gives

R, =1

R,=0

_ Y y’ -1
T yr+1 2zy?—2r+4y
2 +1

S —
Yo(yz 1) (zyr -z +2y)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

a_ 1
dR 2z

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

5 _ 1
dR ~ 2R

(24)

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

[ds= [~par
S(R):_lnéR)

+ ¢

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in
In (zy? — = + 2y) In (z)

1 1 -
n(yr+1)+ 5 5 +cy
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
.. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
a5 _ 1
dR 2R
R==x

Sz—ln(yx—i-l)—i-l—nﬁ;

Solving for y gives

6202 —1— \/_x2e2cz + 12 — e2¢2 +1
(22 —1)x

e2cz _ 1 + ,\/_x26202 + z2 _ e202 _|_ 1
(€22 —1)z

SE—— A B S —
/2 A N\ —
I T
—_——— = =~ / / \ ———— - = o
e = -~ / / \\a AAAAA
v . - - -~ e / N oro—— = ==
—_—— - ) — - -

y(x) 0 —_,——— -~ L/ s ———
T > / s
AAAAA —N S m—m——
ﬂﬂﬂﬂﬂ -~N [/
= ~\ [/
————N
N\ [

Figure 2.32: Slope field plot
(B +r)y+y==x

Summary of solutions found

e202 —1= \/—11328262 + 2 — e2c2 +1
(€22 — 1)z

e262 _ 1 + \/—$26202 + 1;2 _ e202 _|_ 1
(e —1)x
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Maple step by step solution

Let’s solve
(@® + ) (Fy(@) +y(z) =2

° Highest derivative means the order of the ODE is 1
2y(z)

° Solve for the highest derivative

ay(@) =5

o Collect w.r.t. y(z) and simplify

(@) = —Fn + #h

) Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

° The ODE is linear; multiply by an integrating factor u(x)
u@) (#v() + K ) = 55

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(z) (L) + ) = (Zy(@) w(a) + (@) (Lu())

o Isolate L p(z)

° Solve to find the integrating factor

x

wz) = 7
° Integrate both sides with respect to x
J (@) pe)) dz = [ &rdo + C1
° Evaluate the integral on the lhs

y(@) (o) = [ Hiyde + C1

241

o Solve for y(x)

J 52 de+C1

y(@) = =5
o Substitute p(z) = =
V21 (f (302_:”1)3/2dw+01>
y(z) = p
) Evaluate the integrals on the rhs
Va?+1 ( ————+C1
y(.’l?) — ( \m/z2+1 )
° Simplify
y(x) — Clx/x;-i-l—l
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 19

dsolve ((x~3+x)*diff (y(x) ,x)+y(x) = x,y(x),singsol=all)

v$2+1c1—1

T

y(z) =

Mathematica DSolve solution

Solving time : 0.039 (sec)
Leaf size : 23

LDSolve [{(x"3+x)*D [y [x] ,x]+y [x]==x,{}},y[x] ,x,IncludeSingularSolutions->True]

—14+cvz2+1

T

y(z) —
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2.1.12 Problem 3(a)
Solved as first order linearode . . . . ... ... ... ....... 120
Solved as first order Exactode . . . . .. ... ... ........ 121]
Maple step by step solution . . . . . . ... ... ... ... 124
Maple trace . . . . . . . . . . .. 125
Maple dsolve solution . . . . . ... .. ... oL 125]
Mathematica DSolve solution . . . . . .. ... ... ... ..... 125]

Internal problem ID [4201]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 3(a)

Date solved : Monday, January 27, 2025 at 08:41:59 AM
CAS classification : [_linear]

Solve

cot()y +y==x

Solved as first order linear ode
Time used: 0.112 (sec)
In canonical form a linear first order is
Y +q(z)y = p(x)

Comparing the above to the given ode shows that

4(z) = tan (z)
p(z) = z tan (z)

The integrating factor u is

p=e [qdx
—e [ tan(z)dz
= sec ()
The ode becomes
d
3p M) = kp

L () = () (& tan (2)

%(y sec (z)) = (sec(z)) (ztan (x))

d(ysec(z)) = (ztan (x) sec (z)) dz
Integrating gives

ysec(z) = /xtan (x) sec (z) dz

- W —In (sec (z) + tan (z)) + ¢

Dividing throughout by the integrating factor sec (z) gives the final solution

y = —In (sec (z) + tan (z)) cos (x) + ¢ cos (z) + z
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Figure 2.33: Slope field plot
cot()y +y==x

Summary of solutions found

y = —1In (sec (z) + tan (z)) cos (z) + ¢1 cos (z) +

Solved as first order Exact ode
Time used: 0.164 (sec)

To solve an ode of the form

M(z,) + N(z,3) 2 =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06 d
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
Oy
But since 6‘12 a¢y = 8(9: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = aajgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or

might not exist. The first step is to write the ODE in standard form to check for exactness,

which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(cot (z))dy = (—y + z)dx
(y —z)dz +(cot (x))dy =0 (2A)
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Comparing (1A) and (2A) shows that
M(z,y) =y —=
N(z,y) = cot (z)

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM_o,
oy oy
=1
And
ON 0
B a(wt (z))
= —csc(z)”

Since %iy/[ # %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

At (3_M _ 5_N)
N\ oy Oz
= tan (z) ((1) — (=1 — cot (m)2))
= 2tan (z) + cot (z)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
— efAdz

L
— ef2tan(m)+cot(z) dz

The result of integrating gives
b= e—2ln(cos(m))+ln(sin(ac))
_ sin(x)

 cos (z)?

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
_ sin(z)

 cos (z)? y-2)

= (y — x) sec (z) tan ()
And

_ sin(z)

2 (cot (2))

 cos (z)
= sec ()

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N@:0
dz

(v — ) sec (a) tam (2)) + (sec () T2 = 0
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The following equations are now set up to solve for the function ¢(z,y)

3(;5_—
g—w—M (1)
6
8_y_N (2)

Integrating (2) w.r.t. y gives
% dy = / Ndy
Ay
99 dy = /sec (z)dy

Oy
¢ = ysec(z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.

Taking derivative of equation (3) w.r.t  gives

% = ysec (z) tan (z) + f'(z) (4)

But equation (1) says that % = (y — z) sec (z) tan (x). Therefore equation (4) becomes
(y — z) sec (z) tan (z) = ysec (z) tan (z) + f'(x) (5)

Solving equation (5) for f'(z) gives

f'(z) = —x tan (z) sec ()
Integrating the above w.r.t = gives

/ f(z)dz = / (—z tan () sec (z)) dz

T

f(z)=— + In (sec (z) + tan (z)) + ¢

cos ()

Where ¢; is constant of integration. Substituting result found above for f(x) into equation
(3) gives ¢
¢ = ysec(z) — #(x) + In (sec (z) + tan (z)) + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into the constant c¢; gives the solution as

+ In (sec (z) + tan (z))

¢ =ysec(z) — o5 (2)

Solving for y gives

In (sec (z) + tan (z)) cos (z) — ¢y cos (z) —
sec (x) cos (x)

y=-
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Figure 2.34: Slope field plot
cot()y +y==x

Summary of solutions found

In (sec (z) + tan (z)) cos (z) — ¢y cos (z) — =
sec (x) cos (x)

Yy=-

Maple step by step solution

Let’s solve
cot (z) (Ly()) +y(e) ==

° Highest derivative means the order of the ODE is 1
&y(z)

° Solve for the highest derivative

(@) =5

o Collect w.r.t. y(z) and simplify

d — (z)
Ey(x) - _th:(Dz) + cot(m)

° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE

d (z) __ T
wy(@) + czt(w) = cot(@)
° The ODE is linear; multiply by an integrating factor u(x)

w(z) (L) + L) = sz
° Assume the lhs of the ODE is the total derivative
w(a) (Ly(e) + 22 ) = (L£y(@) ue) +y(@) (£

e Isolate 2 u(z)

(z) p(z))

e

= (Y
))

%/,L(l’) = cﬁg(xa?:)
° Solve to find the integrating factor

M(LE) = cosl(x)

° Integrate both sides with respect to x
J () pla)) do = [ 5d + C1
° Evaluate the integral on the lhs

z) = [ 4224, 4 O

cot(z)

) Solve for y(x)

2 )]

cot(x)

y@) ="
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e  Substitute u(z) = —%

cos(z)
y(flf) = COS (CL’) (f md$ —|— 01)
° Evaluate the integrals on the rhs
y(z) = cos (x) (co:(x) — In (sec (z) + tan (z)) + CI)

° Simplify
y(xz) = —In (sec (z) + tan (x)) cos () + C1 cos (z) + =

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 19

Ldsolve(cot(x) *diff (y(x),x)+y(x) = x,y(x),singsol=all) J

y(z) = z + cos (z) (— In (sec (z) + tan (z)) + ¢1)

Mathematica DSolve solution

Solving time : 0.065 (sec)
Leaf size : 45

-/

LDSolve [{Cot [x]*#D[y[x] ,x]+y[x]==x,{}},y[x],x,IncludeSingularSolutions->True]

y(x) = = + cos(z) <log <cos (;) — sin (g)) — log (sin <§> + cos (;)) + cl>
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2.1.13 Problem 3(b)
Solved as first order linearode . . . . ... ... ... ....... 126
Solved as first order Exactode . . . . .. ... ... ........ 127
Maple step by step solution . . . . . . ... ... ... ... 130
Maple trace . . . . . . . . . . e e 131l
Maple dsolve solution . . . . . ... .. ... oL 131l
Mathematica DSolve solution . . . . . .. ... ... ... ..... [131]

Internal problem ID [4202]
Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60
Problem number : 3(b)

Date solved : Monday, January 27, 2025 at 08:42:01 AM
CAS classification : [_linear]

Solve

cot (z)y +y = tan (z)

Solved as first order linear ode

Time used: 0.135 (sec)

In canonical form a linear first order is

Y + q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

The ode becomes

Integrating gives

dzx

L= efqdz
— eftan(:c)dw
= sec (z)
d
ap M) = kp

L (uy) = (4 (tan (2)?)

d (ysec (z)) = (sec (z)) (tan (z)?)

d(ysec (z)) = (tan (z)’sec (z)) dw

ysec(z) = /tan () sec (z) dx

Dividing throughout by the integrating factor sec (z) gives the final solution

Y

_ sin(z)’  sin(z) _In(sec(z) + tan (z))

~ 2cos (z)° 2 2

_ tan (x)

_ In(sec (z) + tan (z)) cos (z)

2

2

+ ¢ cos ()

+ ¢
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Figure 2.35: Slope field plot
cot (z)y' +y = tan (x)

Summary of solutions found

)= tan2(x) _ In(sec(z) + t2an (z)) cos (x) + ¢; cos (z)

Solved as first order Exact ode

Time used: 0.257 (sec)

To solve an ode of the form

M(z,) + N(z,9) 2 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives
d

Hence 06 06 d
Yy _
oxr  Oydr 0 (B)
Comparing (A,B) shows that
0¢ _
or
0¢ _
oy
But since % = 66—284’— then for the above to be valid, we require that
oM _oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; g’y = afg; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or

might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(cot (z)) dy = (—y + tan (z)) dz
(y — tan (z)) dz +(cot (z))dy =0 (2A)
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Comparing (1A) and (2A) shows that
M(z,y) =y — tan (z)
N(z,y) = cot (z)

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
By a—y(y — tan (z))
=1
And
ON 0
B a(wt (z))
= —csc(z)”

Since %iy/[ # %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
=5(% %)
= tan () ((1) — <—1 — cot (m)Q))

= 2tan (z) + cot (z)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

b= efAdz
— ef2tan(m)+cot(z) dz

The result of integrating gives
b= e—2ln(cos(m))+ln(sin(ac))
_ sin(x)

 cos (z)?

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
sin ()

= cos (a)’ (y — tan (z))

= (y — tan (z)) sec (z) tan (x)
And

_ sin(z)

2 (cot (2))

 cos (z)

= sec ()

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N%:0
dzx
dy

dz =0

((y — tan (z)) sec (z) tan (x)) + (sec (x)
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The following equations are now set up to solve for the function ¢(z,y)

3(;5_—
g—w—M (1)
6
8_y_N (2)

Integrating (2) w.r.t. y gives

@dy= /Ndy
Oy

0
6_§ dy = /sec (z)dy

¢ = ysec(z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

% = ysec (z) tan (z) + f'(z) (4)

But equation (1) says that % = (y — tan (z)) sec (z) tan (x). Therefore equation (4) be-
comes

(y — tan (z)) sec (z) tan (z) = ysec (z) tan (z) + f'(z) (5)
Solving equation (5) for f'(z) gives

f'(z) = —tan (z)* sec (z)

Integrating the above w.r.t x gives

/f’(x) dx=/(—tan (z)?sec (z)) dz

__ sin (z)? _sin(z)  In(sec(z)+tan(z)) .
fo) = 2 cos () 2 2 ta

Where ¢; is constant of integration. Substituting result found above for f(x) into equation
(3) gives ¢

sin (z)° _sin(z) N In (sec (z) + tan (z))

2 cos (z)? 2 2

¢ = ysec(z) — ¢l

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and cy constants into the constant c; gives the solution as

sin (z)° _sin(z) | In(sec(z) +tan (z))
2 cos (z)? 2 2

¢ =ysec(z) —

Solving for y gives

—1In (sec (z) + tan (z)) cos (z)* + sin (z) cos (z)° + 2¢; cos ()? + sin (z)°

2sec (z) cos ()

y:
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Figure 2.36: Slope field plot
cot (z)y' +y = tan (x)

Summary of solutions found

—In (sec (z) 4 tan (z)) cos (z)* + sin (z) cos (z)* + 2¢; cos (z)* + sin (z)°
2sec (z) cos (z)?

y:

Maple step by step solution

Let’s solve

cot (z) (£y(@)) + y(x) = tan (z)

° Highest derivative means the order of the ODE is 1

=y(2)
° Solve for the highest derivative
£1(a) = e

° Collect w.r.t. y(z) and simplify

d _ (z) tan(z)
%y(x) - _czt(a:) + cot(z)

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

d (z) __ tan(z)
Ey(z) + cgt(z) ~ cot(z)

° The ODE is linear; multiply by an integrating factor u(x)
() (Ly(z) + L) = el

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(z) (L) + 225) = (L)) wz) + y(@) (Lu())

o Isolate - u(x)
%M(LE) = clcl;gzvx))

° Solve to find the integrating factor
K (IL') = cosl(m)

. Integrate both sides with respect to x
I (L (y(2) p(z))) do = [ H220@ g 4

cot(z)

. Evaluate the integral on the lhs
y(z) p(z) = [ @)y 4 oy

cot(z)
o Solve for y(ac)

x) tan(x
M dat- 01

y(z) = (@)
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e  Substitute u(z) = —%

cos(z)

y(x) = cos () (f _tan(e) gy 01)

cos(z) cot(z)

° Evaluate the integrals on the rhs
. 3 .
y(x) — CoS (w) <2s(1:r;£8)2 + 51n2(x) _ ln(sec(x)z—i-tan(z)) + C])
° Simplify

y(a:) _ tanQ(x) _ ln(sec(z)-l—t;n(a:))cos(x) + C1 cos (.’E)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 23

‘ dsolve(cot (x)*diff (y(x),x)+y(x) = tan(x),y(x),singsol=all)

y(z) = tan2(x) _cos (z)In (sec 2(:8) + tan (z)) + cos (z) &

Mathematica DSolve solution

Solving time : 0.058 (sec)
Leaf size : 25

‘ DSolve [{Cot [x]#D[y[x] ,x]+y[x]==Tan[x],{}},y[x],x, IncludeSingularSolutions->True]‘

y(z) — %(cos(z)(—arctanh(sin(z))) + tan(z) + 2¢; cos(z))
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2.1.14 Problem 3(c)
Solved as first order linearode . . . . ... ... ... ....... 132
Solved as first order Exactode . . . . .. ... ... ........ 133
Maple step by step solution . . . . . . ... ... ... .......
Maple trace . . . . . . . . . . e e 137
Maple dsolve solution . . . . . ... .. ... oL 137
Mathematica DSolve solution . . . . . .. ... ... ... ..... 137

Internal problem ID [4203]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 3(c)

Date solved : Monday, January 27, 2025 at 08:42:04 AM
CAS classification : [_linear]

Solve

tan (z) 3y + y = cot (z)

Solved as first order linear ode
Time used: 0.129 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

(z)

cot
p(z) = cot (z)”

The integrating factor u is

p=e [ qdx
—e [ cot(z)dz
= sin (z)
The ode becomes
d
ap HY) = kp

L () = (1) (cot (2)?)
%(y sin (z)) = (sin (2)) (cot (z)?)
d(ysin (z)) = (cot (z)’sin (z)) da
Integrating gives
ysin (z) = /cot (z)sin (z) d
= cos (z) + In (csc (z) — cot (z)) + ¢
Dividing throughout by the integrating factor sin (z) gives the final solution

y = (cos (z) + In (csc (z) — cot (z)) + ¢1) csc (x)
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Figure 2.37: Slope field plot
tan (z)y' +y = cot (z)

Summary of solutions found

y = (cos (z) + In (csc (z) — cot (z)) + ¢1) esc (z)

Solved as first order Exact ode
Time used: 0.195 (sec)

To solve an ode of the form

M(z,9)+ N(z,y) % = 0 (A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06 d
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
Ay
But since 6‘12 a¢y = 8(9: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = aajgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy=0 (1A)

Therefore

(tan (z)) dy = (—y + cot (z)) dz
(y — cot (x)) dz +(tan (z))dy =0 (2A)
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Comparing (1A) and (2A) shows that

M(z,y) =y — cot (z)
N(z,y) = tan ()

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0
oy a—y(y — cot (z))
And
ON 0
8_.’[ = %(tan (x))
= sec (z)°

Since %iy/f # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] (aM 8N)

N oy Oox
= cot (z) ((1) — (tan () + 1))
= — tan (z)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

b= efAdm
— ef—tan(m) dz

The result of integrating gives
b= eln(cos(x))
= cos ()

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
= cos (z) (y — cot (z))
= (y — cot (z)) cos (z)
And
N = uN
= cos (z) (tan (x))
= sin (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N% =0
((y — cot (z)) cos (z)) + (sin (z)) j_i =0
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The following equations are now set up to solve for the function ¢(z,y)

3(;5_—
g—w—M (1)
6
8_y_N (2)

Integrating (2) w.r.t. y gives

a—(bdy=/ﬁdy
Oy

0
6—3 dy = /sin (z)dy

¢ = ysin () + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

0 — cos(a)y + 1'a) @

But equation (1) says that % = (y — cot (z)) cos (x). Therefore equation (4) becomes

(y — cot (z)) cos (z) = cos (z) y + f'() ()
Solving equation (5) for f'(z) gives

f'(z) = — cos (z) cot (x)

Integrating the above w.r.t = gives

/ fl(z)dz = / (— cos (z) cot (z)) dz
f(z) = —cos(z) — In(csc (z) — cot (z)) + ¢1
Where c; is constant of integration. Substituting result found above for f(x) into equation

(3) gives ¢
¢ = ysin (z) — cos (z) — In (csc (z) — cot (x)) + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and c; constants into the constant c; gives the solution as

¢; = ysin (x) — cos (z) — In (csc (x) — cot (z))

Solving for y gives
_cos (z) +In (csc (z) — cot (x)) + 1
B sin (z)
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Figure 2.38: Slope field plot
tan (z)y' +y = cot (z)

Summary of solutions found

cos (z) + In (csc (z) — cot (z)) + ¢
sin (z)

Maple step by step solution

Let’s solve

tan (2) (Ly(2)) +y(2) = cot ()
° Highest derivative means the order of the ODE is 1

&y(@)
° Solve for the highest derivative
Lyle) =

o Collect w.r.t. y(z) and simplify
%y(m) _ _ y= + cot(z)

tan(z) tan(z)

° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
ﬁy(z) + y(z) _ cot(x)

tan(z) tan(z)

° The ODE is linear; multiply by an integrating factor u(x)

w(e) (Ly(o) + 2l ) = Hets

o Assume the lhs of the ODE is the total derivative 2 (y(z) u(z))
u@) (£y@) + 425 = (£y(@) u@) +y(@) (Ful)

e Isolate 2 u(z)

%u(x) = tgx(lg(ca)c)

° Solve to find the integrating factor
p(z) = sin ()
° Integrate both sides with respect to x
J (& (o) n(@)) do = [ MR dw + C1
° Evaluate the integral on the lhs
y(z f w(z) cot(:c)d + C1

tan(z)

o Solve for y(z)

u(z) cot(x) dz+C1

tan(x)

y(z) = 1(z)




CHAPTER 2. BOOK SOLVED PROBLEMS 137

o Substitute pu(z) = sin (x)
f sin(z) cot(z) do+C1

_ tan(x)
y(flf) - sin(zx)
° Evaluate the integrals on the rhs
cos(z)+In(csc(z)—cot(x))+C.
o) - ettt s
° Simplify

y(z) = (cos (z) + In (csc (z) — cot (z)) + C1) csc (z)

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---

trying a quadrature
trying 1st order linear

<- 1st order linear successful"

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 19

'dsolve(tan(x)*diff (y(x),x)+y(x)

= cot(x),y(x),singsol=all)

y(z) = csc (z) (cos (z) + In (csc (z) — cot (z)) + ¢1)

Mathematica DSolve solution

Solving time : 0.066 (sec)
Leaf size : 29

e

kDSolve [{Tan[x]*D[y[x] ,x]+y[x]==Cot [x] ,{}},y[x],x, IncludeSingularSolutions—>TrueiJ

y(x) — csc(x) (cos(x) + log (sin (;)) — log (cos (g)) + cl)
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2.1.15 Problem 3(a)
Solved as first order linearode . . . . ... ... ... ....... 138
Solved as first order Exactode . . . . .. ... ... ........ 139
Maple step by step solution . . . . . . ... ... ... ... 142
Maple trace . . . . . . . . . . e e 143
Maple dsolve solution . . . . . ... .. ... oL 143]
Mathematica DSolve solution . . . . . .. ... ... ... ..... 143]

Internal problem ID [4204]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 3(a)

Date solved : Monday, January 27, 2025 at 08:42:06 AM
CAS classification : [_linear]

Solve

tan (z)y = y — cos ()

Solved as first order linear ode
Time used: 0.120 (sec)
In canonical form a linear first order is
Y +q(z)y = p(x)

Comparing the above to the given ode shows that

q(z) = — cot (z)
p(z) = — cos (z) cot (z)

The integrating factor u is

b= efqdz
— ef—cot(x)dx

= csc (z)
The ode becomes
d%(uy) = pp
<L () = (1) (~ cos (a) cot (¢))

%(y csc (x)) = (csc (x)) (— cos (z) cot (z))
d(ycsc (z)) = (— cos (z) cot (z) csc (z)) dx
Integrating gives
yesc(x) = /—cos (x) cot (x) csc (z) dz
=cot(z)+z+ ¢

Dividing throughout by the integrating factor csc (z) gives the final solution

y = (cot () + z + ¢1) sin (x)
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Figure 2.39: Slope field plot
tan (z)y' =y — cos ()
Summary of solutions found
y = (cot () + x + ¢1) sin (z)
Solved as first order Exact ode
Time used: 0.166 (sec)
To solve an ode of the form
d
M(z,y) + N(z,y) 7> =0 (A)

dz

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06 d
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
Oy
But since 6‘12 a¢y = 8(9: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = aajgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy=0 (1A)

Therefore

(tan (z))dy = (y — cos (z)) dz
(—y + cos(z))dz +(tan (z))dy =0 (2A)
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Comparing (1A) and (2A) shows that
M(z,y) = —y + cos (z)
N(z,y) = tan (z)

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
By a—y(—y + cos (z))
=-1
And
ON 0
B a(tan (z))
= sec ()

Since %iy/[ # %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

At (3_M _ B_N)
N\ oy Oz
= cot (z) ((—1) — (tan (z)® + 1))
= —2cot (z) — tan (x)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p= efAd:n
— ef —2cot(z)—tan(z) dz
The result of integrating gives
b= e—2ln(sin(x))+ln(cos(ac))
_ cos(x)
sin ()

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
_ cos(x) ot cos (1
= R+ con @)

= cot (z) (—ycsc (z) + cot (z))

And

_ cos(x) an (1
- e (ten @)

= csc ()

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N%:0
dz

(cot (z) (—y csc (z) + cot (z))) + (csc (x)) j—z =0
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The following equations are now set up to solve for the function ¢(z,y)

% _w (1)
0p
oy =" 2)

Integrating (2) w.r.t. y gives

%dy=/ﬁdy
Oy

0
6_§ dy = /CSC (z)dy

¢ = yesc(z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

% = —ycsc () cot (z) + f'(x) (4)

But equation (1) says that % = cot (z) (—ycsc(x) + cot (x)). Therefore equation (4)
becomes

cot (z) (—y csc (z) + cot (x)) = —ycsc (z) cot (z) + f'(z) (5)
Solving equation (5) for f'(z) gives

f'(@) = cot ()’

Integrating the above w.r.t x gives

/f’(a:) dz = / (cot (z)?) dz

f(x):—cot(:c)—i-g—x—i-cl

Where ¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

¢=ycsc(m)—cot(m)+g—x—|—cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

c1 = yesc () —cot(x)—i-g—z

Solving for y gives

_ m—2cot(z) —2¢c; — 22

2csc (z)
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Figure 2.40: Slope field plot
tan (z)y' =y — cos ()

Summary of solutions found

T — 2cot (z) — 2¢; — 2%
2csc (z)

Maple step by step solution

Let’s solve
tan (2) (£y(2)) = () — cos (2)
° Highest derivative means the order of the ODE is 1
&y(z)
° Solve for the highest derivative
y(z)—cos(z)

%y(.’l)) tan(z)
o Collect w.r.t. y(z) and simplify

(@) = Sy — )

° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE

d (z) cos(z)
Ey(z) - tgn(z) — 7 tan(z)

° The ODE is linear; multiply by an integrating factor u(x)
(o) (y(o) — 2 ) = —tslente)

o Assume the lhs of the ODE is the total derivative 2 (y(z) u(z))
() (Zy(@) — L25) = (Ly()) n(@) +y(2) (£n())

e Isolate 2 u(z)

d — _ =)
%M(x) - _tang(cw)

° Solve to find the integrating factor

M(LE) = sinl(x)

° Integrate both sides with respect to x
J (£ (@) (=) de = [ —422E 4z 4 C1
° Evaluate the integral on the lhs

y(@) (o) = [ -4 de + C1

" tan(z)

) Solve for y(x)

f H(z) 005(1) dz+C1
y(z) = e
w(z)
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e  Substitute u(z) = =+

sin(z)

y(x) = sin (x) (f —_cose) g 4 C’I)

sin(z) tan(z)
° Evaluate the integrals on the rhs
y(z) = sin (z) (cot (z) + = + C1)

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 15

'dsolve(tan(x)*diff (y(x),x) = y(x)-cos(x),y(x),singsol=all)

y(x) = (cot (x) — g +x+ cl) sin ()

Mathematica DSolve solution

Solving time : 0.054 (sec)
Leaf size : 28

-

.
DSolve [{Tan[x]*D[y[x],x]==y[x]1-Cos[x],{}},y[x],x,IncludeSingularSolutions->True]

N

1 1
1,-,— tanQ(x)) + ¢; sin(z)

y(x) — cos(z) Hypergeometric2F1 (—5, 5
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2.1.16 Problem 4(a)
Solved as first order linearode . . . . ... ... ... ....... 144
Solved as first order Exactode . . . . .. ... ... ........ 145]
Maple step by step solution . . . . . . ... ... ... ....... 148
Maple trace . . . . . . . . . . .. 149
Maple dsolve solution . . . . . ... .. ... oL 149
Mathematica DSolve solution . . . . . .. ... ... ... ..... 149

Internal problem ID [4205]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 4(a)

Date solved : Monday, January 27, 2025 at 08:42:09 AM
CAS classification : [_linear]

Solve
y' + ycos (z) = sin (2z)
Solved as first order linear ode

Time used: 0.131 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

q(z) = cos (z)
p(x) = sin (2z)

The integrating factor u is

p=e J[qdx
—e [ cos(z)dz
— esin(a:)
The ode becomes
d
3p (M) = kp

L () = (1) (s (22))

% (y @) = (@) (sin (2z))

d(ye™®)) = (sin (2z) ™) dz
Integrating gives
y et — / sin (2z) e¥2® dx
= 2sin (z) @ — 2@ 4 ¢
Dividing throughout by the integrating factor e*™® gives the final solution

y = 2sin (z) + e 5@ ¢; — 2
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Figure 2.41: Slope field plot
y' + ycos (z) = sin (2z)
Summary of solutions found
y = 2sin (z) + e *"@¢; — 2
Solved as first order Exact ode
Time used: 0.122 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 06 9pd
Y
— —_—— T B
Oxr Oydx 0 (B)
Comparing (A,B) shows that
09
M
ox
09
T _N
dy
But since ;%g; = 88—;% then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = 6‘9;—8"; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—ycos (z) +sin (2z)) dz
(ycos(z) —sin (2z))dz+dy =0 (2A)
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Comparing (1A) and (2A) shows that

M(z,y) = ycos (z) — sin (2x)
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _on
oy Oz
Using result found above gives
oM 0 .
By 8_y(y cos (z) — sin (2z))
= cos ()
And
ON
Bz (1)
= 0

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

-5 %)

Oy Oox
= 1((cos (z)) — (0))
= cos ()

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p= efAdz
—e J cos(z) dz

The result of integrating gives

sin(z)

p=e
=e

sin(z)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M =uM
= "2@) (4 cos (z) — sin (2z))
= cos (z) (—2sin (z) + y) 2@

And

— esin(m)(l)
— esin(w)

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

(cos (z) (—2sin (z) + y) e®) + (efn@)) =
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The following equations are now set up to solve for the function ¢(z,y)

% _w (1)
0p
oy =" 2)

Integrating (2) w.r.t. y gives
@ dy = / Ndy
Ay

@ dy — /esin(z') dy
oy

¢ =ye@ + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

o9

o0 = &) cos (a) y + f'() @

But equation (1) says that % = cos () (—2sin (z) + y) e¥™@. Therefore equation (4)
becomes
cos (z) (—=2sin (z) + y) @ = @ cos (z) y + f'(z) (5)

Solving equation (5) for f'(z) gives

f'(z) = —2cos (x) @ sin (z)
Integrating the above w.r.t = gives

/f’(x) dz = / (—2cos (z) e @ sin (7)) dz
f

(z) = —2sin (z) &M@ 4 252 4 ¢

Where ¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
¢ =y esin(w) — 2sin (.’II) esin(x) +2 esin(x) +¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

a=y esin(ac) — 2gin (SE) esin(:c) +2 esin(:c)

Solving for y gives

y=e" sin(z) (2 sin (.’E) esin(av:) -9 esin(av) + Cl)
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Figure 2.42: Slope field plot
y' + ycos (z) = sin (2z)

Summary of solutions found

y=e" sin(z) (2 sin (.’E) esin(z) —9 esin(:/v) + Cl)

Maple step by step solution

Let’s solve
%y(z) + cos (z) y(z) = sin (2z)
. Highest derivative means the order of the ODE is 1
=y(®)
° Solve for the highest derivative
%y(m) = —cos (z) y(z) + sin (2z)
° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
%y(z) + cos (z) y(z) = sin (2z)
° The ODE is linear; multiply by an integrating factor u(x)
#(x) (4y() + cos (z) y(z)) = (=) sin (2z)
o Assume the lhs of the ODE is the total derivative 2 (y(z) u(z))
w(z) (Ly(@) + cos (2) y(2)) = (Zy(@)) p(2) +y(2) (Guz))

) Isolate L p(z)

Lu(z) = p(z) cos (z)

. Solve to find the integrating factor
:U'(x) — esin(x)

° Integrate both sides with respect to x
[ (L (y(z) u(z))) dz = [ p(z)sin (2z) dz + C1
° Evaluate the integral on the lhs

y(z) p(z) = [ p(z)sin (2z) dz + C1
o Solve for y(x)

) sin(2z)dx+ C1
y(z) = [ n(=) “((x)) +

° Substitute u(z) = es@)

__ [eo(® sin(2z)dx+C1

y(z) = osin (@)
° Evaluate the integrals on the rhs

_ 2e8n®@) sin(g)—2e50(*) L 01
y(m) - esin(z)

° Simplify
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y(z) = 2sin (z) + e~ 5@ C1 — 2

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 17

-

Ldsolve(diff(y(x),x)+cos(x)*y(x) = sin(2#*x),y(x),singsol=all)

~—

y(x) = 2sin (z) — 2 4 e~ 5@ ¢,

Mathematica DSolve solution

Solving time : 0.077 (sec)
Leaf size : 20

‘ DSolve [{D[y[x],x]+y[x]*Cos [x]==Sin[2*x] ,{}},y[x],x, IncludeSingularSolutions—>Trl#e]

y(z) — 2sin(z) 4 c;e” 5@ — 2
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2.1.17 Problem 4(b)
Solved as first order linearode . . . . ... ... ... ....... 150
Solved as first order Exactode . . . . .. ... ... ........ 1511
Maple step by step solution . . . . . . ... ... ... ... 154
Maple trace . . . . . . . . . . .. 155
Maple dsolve solution . . . . . ... .. ... oL 155]
Mathematica DSolve solution . . . . . .. ... ... ... ..... 155]

Internal problem ID [4206]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 4(b)

Date solved : Monday, January 27, 2025 at 08:42:11 AM
CAS classification : [_linear]

Solve

cos (z)y' +y = sin (2z)

Solved as first order linear ode
Time used: 0.200 (sec)
In canonical form a linear first order is
Y +q(z)y = p(x)

Comparing the above to the given ode shows that

a() = sec ()
p(x) = 2sin (z)

The integrating factor u is

b= efqu
— efsec(x)dx

= sec (z) + tan (z)
The ode becomes
%(uy) = pp
<-(1uy) = () (25in (@)
%(y(sec () +tan(x))) = (sec(x) + tan (z)) (2sin (z))
d(y(sec (z) + tan (z))) = (2sin (z) (sec (z) + tan (z))) dz
Integrating gives
y(sec (z) + tan (z)) = /2sin (z) (sec (z) + tan (z)) dz
= —2sin(z) — 2In(sin(z) — 1) + &

Dividing throughout by the integrating factor sec (z) + tan (z) gives the final solution

_ (—2sin (z) — 21In(sin (z) — 1) + ¢1) (cos (x) — sin (z) + 1)

Y cos (z) + 1 + sin (z)
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Figure 2.43: Slope field plot
cos (z)y' + y = sin (2z)

Summary of solutions found

(—2sin (z) — 21n(sin (z) — 1) + ¢1) (cos (z) — sin (z) + 1)
cos (z) + 1 + sin (x)

y:

Solved as first order Exact ode
Time used: 0.362 (sec)

To solve an ode of the form

M(z,) + N(z,3) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. z gives

d
Hence 96 04d
Yy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
09
9 M
09
T _N
9y
But since aa;gy = ;’; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘?: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore

(cos(z))dy = (—y +sin (2z)) dz
(y — sin (2z)) dz +(cos (z))dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(z,y) = y — sin (2x)
N(z,y) = cos ()

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0 )
By a—y(y — sin (2z))
=1
And
ON 0

or E(COS (z))

= —sin (z)

Since %i; 9N then the ODE is not exact. Since the ODE is not exact, we will try to

Oz ?
find an integrating factor to make it exact. Let

Ao L(oM _oN
N\ dy Oz
= sec (z) (1) — (—sin (z)))
= sec () + tan ()
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is
—e [Adz

L
— ef sec(z)+tan(z) dz

The result of integrating gives

= eln(sec(x)—i—tan(x))—ln(cos(x))

_ sec(z) + tan ()
cos ()

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

_sec(z) ttan(z), <in (22
- CoS (117) (y (2 ))

_ —y+2cos (x) sin (x)
sin (z) — 1

And

N =uN
_ sec (z) + tan (
cos ()
= sec (z) + tan (x)

%) (cos ()
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Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M—FN%:O
dz

) + (sec (z) + tan (z)) j—i _0

(—y + 2 cos (z) sin ()
sin (z) — 1

The following equations are now set up to solve for the function ¢(z,y)

o

Integrating (2) w.r.t. y gives

@dy = /Ndy
Oy

g—z dy = /sec (x) + tan (z) dy

¢ = y(sec (z) + tan (z)) + f(z) 3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

9¢

B y(sec (z) tan (z) + 1 + tan (35)2) + f'(2) (4)
" sin (wy) -1 +f(@)

—y+2 cos(z) sin(z)

sn(z)-1 - Lherefore equation (4) becomes

But equation (1) says that % =

—y + 2cos (z)sin (z) y

sin (z) — 1 ~sin(z) — 1

+ f'(z) (5)

Solving equation (5) for f'(z) gives

_ 2cos (z) sin (z)

fle) = sin (z) — 1

Integrating the above w.r.t = gives

[r@a= [ (QC;Z((?)SEI 1@)) dm

f(z) =2sin(z) +2In(sin(z) — 1) + ¢

Where ¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
¢ = y(sec (z) + tan (z)) + 2sin (z) + 2In (sin(z) — 1) + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

c; = y(sec (z) + tan (x)) + 2sin (x) + 21n (sin (z) — 1)
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Solving for y gives
2sin(z) +2In(sin(z) — 1) —

Y sec (z) + tan (z)
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Figure 2.44: Slope field plot
cos (z)y +y =sin (2z)

Summary of solutions found

_2sin(z) +2In(sin(z) — 1) —a
sec (z) + tan (z)

Maple step by step solution

Let’s solve
cos (z) (Ly(z)) + y(z) = sin (2z)
° Highest derivative means the order of the ODE is 1

=y(2)
° Solve for the highest derivative
fyle) = e

. Collect w.r.t. y(z) and simplify

d _ _ y(=) sin(2z)
dwy(x) — cos(z) + cos(z)

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
%y(iﬂ) + y(z) __ sin(2z)

cos(z) ~  cos(z)

° The ODE is linear; multiply by an integrating factor u(x)
u(@) (Ev(e) + 53 ) = "

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(z) (Ly(@) + 225) = (Ly(@)) pz) + y(@) (Lu())

o Isolate - u(x)

%M(LE) = clcl;é(xx))

. Solve to find the integrating factor
p(z) = sec (x) + tan (x)

° Integrate both sides with respect to x
J (@) p(x))) de = [ #2284z 4 C1

° Evaluate the integral on the lhs
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y(l’ f w(z) sm(2m)dm + C1

cos(z)
o Solve for y(z)
f u(z)sin(2z) do+C1

cos(z)

y(z) = (@)

o Substitute p(z) = sec (z) + tan (z)
f (sec(z)+tan(z)) sin(2x) de+C1

_ cos(z)
y(.’II) - sec(z)+tan(z)
° Evaluate the integrals on the rhs
_ —2sin(z)—2In(sin(z)—1)+C1
y(m) - sec(z)+tan(z)
° Simplify
(—2sin(z)—21In(sin(z)—1)+ C1)(cos(z)—sin(x)+1)
y(m) cos(z)+sin(z)+1

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 34

'dsolve(diff (y(x),x)*cos(x)+y(x) = sin(2*x),y(x),singsol=all)

(—2sin (z) — 2In (sin () — 1) + ¢1) (cos (x) — sin (z) + 1)
cos (z) +sin (z) + 1

y(z) =

Mathematica DSolve solution

Solving time : 0.078 (sec)
Leaf size : 42

DSolve [{Cos [x]#D [y [x] ,x]+y[x]==Sin[2*x] ,{}},y[x],x, IncludeSingularSolutions—>Trl#e]

y(z) — ¢~ 22rctanh(tan(3)) (—2 sin(z) — 4log (cos (g) — sin <g>> + c1>
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2.1.18 Problem 4(c)
Solved as first order linearode . . . . ... ... ... ....... 156]
Solved as first order Exactode . . . . .. ... ... ........ 157
Maple step by step solution . . . . . . ... ... ... ... 160
Maple trace . . . . . . . . . . e e 161l
Maple dsolve solution . . . . . ... .. ... oL 161l
Mathematica DSolve solution . . . . . .. ... ... ... ..... 16Tl

Internal problem ID [4207]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 4(c)

Date solved : Monday, January 27, 2025 at 08:42:14 AM
CAS classification : [_linear]

Solve
y' + ysin (z) = sin (2z)

Solved as first order linear ode
Time used: 0.121 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

q(z) = sin (z)
p(x) = sin (2z)

The integrating factor u is

p=e J[qdx
—e [ sin(z)dz
— e cos(z)
The ode becomes
d
3p (M) = kp

L () = (1) (s (22))
< (ye ) = (¢ sin (20))
d(ye @) = (sin (2z) e~ @) dz
Integrating gives
ye @) = / sin (2z) e~ °08(2) o
= 2cos (z)e” cos(z) 4 9 g c0s(®) 4 ¢
Dividing throughout by the integrating factor e~ > gives the final solution

y = ¢; @ 4 2cos (z) + 2
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Figure 2.45: Slope field plot
y' + ysin (x) = sin (2z)

Summary of solutions found

y = c; 6@ 4 2cos (z) + 2

Solved as first order Exact ode
Time used: 0.189 (sec)

To solve an ode of the form

M(z,) + N(z,) B =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 06 9pd
Y
— —_—— T B
Oxr Oydx 0 (B)
Comparing (A,B) shows that
09
M
ox
09
T _N
dy
But since ;%g; = 88—;% then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = 6‘9;—8"; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—ysin (z) + sin (2z)) dz
(ysin (z) —sin (2z))dz+dy =0 (2A)
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Comparing (1A) and (2A) shows that
M(z,y) = ysin (x) — sin (2z)
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _on
oy Oz
Using result found above gives
oM 0 :
By oy —(ysin (x) — sin (2z))
= sin (z)
And
ON
o (1)

—O

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

-v(a =)

dy ox
= 1((sin (z)) — (0))
= sin ()

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

b= efAda:
— ef sin(z) dz
The result of integrating gives
p=e" cos(x)
— e~ cos(z)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
= e~ %@ (ysin (z) — sin (2z))
= sin (z) (=2 cos (z) + y) e~ “*@
And

N =uN
—e” cos(m)(l)

—e cos(z)

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

(sin (z) (—2cos (z) +y) e~ @) 4 (e7 @) =
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The following equations are now set up to solve for the function ¢(z,y)

o - M (1)
0p —
— =N 2
o )
Integrating (2) w.r.t. y gives
% dy = / N dy
dy
% _ — cos(z)
By dy = / e dy
¢ =ye 0 4 f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

9¢

0 = sin(z)e” Oy + f(z) @)

But equation (1) says that % = sin () (—2cos (z) + y) e~ @), Therefore equation (4)
becomes
sin (z) (=2 cos (z) + ) e~ @ = sin (z) e~ @y + f'(z) (5)
Solving equation (5) for f'(z) gives
f'(z) = —2sin (z) e~ @ cos (z)
Integrating the above w.r.t = gives
/f'(x) dz = / (—2sin (z) e~ ®) cos (z)) dz

f(x) = —2cos (z) e~ (@ —2e=s(® 4 ¢

Where ¢, is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
¢ =ye~ cos(x) _ 2 cos (.’L‘) e cos(z) __ %2¢~ cos(z) T+

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

a=ye” cos(z) __ 2 cos (.’L‘) e cos(z) __ ¢~ cos(z)

Solving for y gives

y = ecos(:):) (2 CoS (.’L') e~ cos(x) +92e” cos(z) 4+ 01)
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Figure 2.46: Slope field plot
y' + ysin (x) = sin (2z)

Summary of solutions found

y = ecos(z) (2 cos (.’13) e cos(z) +2e” cos(z) + Cl)

Maple step by step solution

Let’s solve
%y(z) + sin (z) y(z) = sin (2z)
. Highest derivative means the order of the ODE is 1
=y(®)
° Solve for the highest derivative
4y(z) = —sin (z) y(z) + sin (2z)
° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
%y(z) + sin (z) y(z) = sin (2z)
° The ODE is linear; multiply by an integrating factor u(x)
w(z) (y(z) +sin (z)y(z)) = u(z)sin (22)
o Assume the lhs of the ODE is the total derivative 2 (y(z) u(z))
w=) (y() +sin (2) y(2) = (Zy(@)) ulz) +y(@) (Gu())

) Isolate L p(z)

L () = p(z)sin (2)

. Solve to find the integrating factor
:U'(x) —e cos(z)

° Integrate both sides with respect to x
[ (L (y(z) u(z))) dz = [ p(z)sin (2z) dz + C1
° Evaluate the integral on the lhs

y(z) p(z) = [ p(z)sin (2z) dz + C1
o Solve for y(x)

) sin(2z)dx+ C1
y(z) = [ n(=) “((x)) +

) Substitute u(z) = e~ @)

_ [e 8@ sin(2z)dx+C1
y(z) - e— cos(z)

° Evaluate the integrals on the rhs

26~ ©05(2) cog(x)+2e~ €0s() 4 O1
y(m) = e— cos(z)

° Simplify
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y(x) = C1 €@ + 2cos (z) + 2

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 15

-

Ldsolve(diff(y(x),x)+y(x)*sin(x) = sin(2#*x),y(x),singsol=all)

~—

y(x) = 2cos (z) + 2 + @) ¢,

Mathematica DSolve solution

Solving time : 0.067 (sec)
Leaf size : 18

‘ DSolve [{D[y[x],x]+y[x]*Sin[x]==Sin[2*x] ,{}},y[x],x, IncludeSingularSolutions—>Trl#e]

y(z) — 2cos(x) + ¢ 42
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2.1.19 Problem 4(d)
Solved as first order linearode . . . . ... ... ... ....... 162
Solved as first order Exactode . . . . .. ... ... ........ 163
Maple step by step solution . . . . . . ... ... ... ... 166
Maple trace . . . . . . . . . . .. 167
Maple dsolve solution . . . . . ... .. ... oL 167
Mathematica DSolve solution . . . . . .. ... ... ... ..... 167

Internal problem ID [4208]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 4(d)

Date solved : Monday, January 27, 2025 at 08:42:16 AM
CAS classification : [_linear]

Solve
sin (z) y' + y = sin (2z)

Solved as first order linear ode
Time used: 0.319 (sec)
In canonical form a linear first order is
y +a(z)y = p(z)
Comparing the above to the given ode shows that
q(z) = csc(z)
p(z) = 2cos (z)

The integrating factor y is
p= ef csc(z)dx

Therefore the solution is

- (/ 2 cos (z) e/ =¥ dy 4 cl> o= escle)dz

37 \r r\.\ f / ' / /7 ’“ \?: \m \u \rx ]L }j / '
S S VARV | VNNV LT/

\ Vs NNN N LTS

A A A A A Y A

g \t \u /ﬂ\a/h / /\ wp‘“\ \t \\ /\Q
NN ~N—/ ) S =N\~
yo of NN N N =S/ /=N N\ N
N~ NN N— S /=N N
d— VN N—— [ /S =\
~ 7V VNN [/ 7 —=7 1\
STV VNNN 7T N
A7 T LVNNY TN
VAR S S U [ 77 /7 7 1\
s/ bV YD P77 7 1)
—4 -2 0 2 4

X

Figure 2.47: Slope field plot
sin (z)y' +y = sin (2z)

Summary of solutions found

v (/ 2 cos (z) e/ =@y 4 01) e~ J esc(a)de
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Solved as first order Exact ode
Time used: 0.329 (sec)
To solve an ode of the form

dy
M(z,9) + N(z,5) £ =0 (4)
T
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06d
Y
— —_—— B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
i M
o
T _N
9y
But since ;;gy = ;): g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = a‘fgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(sin(z)) dy = (—y +sin (2z)) dz
(y — sin (2z)) dz +(sin (z)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =y — sin (2z)
N(z,y) = sin (z)

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
= 5y —sin(20)
=1
And
ON 0

B 8—x(Sin (z))

= cos (z)
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Since %i; # %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
A=y ( By %>
= csc(z) ((1) — (cos (x)))

= csc (z) — cot ()
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
—e JAdz

U
— ef csc(z)—cot(zx) dz

The result of integrating gives

— e In(sin(z))—In(csc(z)+cot(x))
_ 1
~ sin () (csc (z) + cot (x))

7

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

1
" sin (z) (csc (x) + cot (x))
_ Y- 2sin (x) cos ()
cos(z) +1

(y — sin (2))

And

1 .
~ sin (2) (1csc @)+ ot () 0 (@)

csc (x) + cot (z)

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N-=2=0
+ dz

(y - iifig)f?s (x)) + (csc @ i oot (x)) S_Z =0

The following equations are now set up to solve for the function ¢(z,y)

0p —
9 =M (1)
0p
oy = N (2)
Integrating (2) w.r.t. y gives
@ dy = /Ndy
Oy

op . 1
Ay dy = / csc (z) + cot (z) dy

— Yy -
¢= csc (z) + cot () + /(@) (3)
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Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

@?___y(—c&%x)an(x)_]__cmmxf)

= + f(z 4
Ox (csc (z) + cot (x))? f@) )
_ Y /
~ cos(z)+1 +f(=)
But equation (1) says that % = % Therefore equation (4) becomes
y — 2sin () cos (x) Yy ,

= )
cos(z)+1 cos(z) +1 +f(=) (5)

Solving equation (5) for f'(z) gives

2sin (z) cos (x)
cos (z) +1

fl(x) = -

Integrating the above w.r.t = gives

[rew [(Fam)

f(z) =2cos(z) —2In(cos(z) + 1) + ¢;

Where ¢, is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

B y
¢= csc (x) + cot (x)

+2cos(z) —2In(cos(z) + 1) + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

o= @ -gil—cot @ +2cos (z) — 21n (cos (z) + 1)

Solving for y gives

y = 2In(cos (z) + 1) cot (z) + 21In (cos (z) + 1) csc (z)
— 2cos (z) cot (x) — 2 cos (z) csc (z) + ¢1 cot (x) + ¢1 csc (x)

y(x) 07

14
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Figure 2.48: Slope field plot
sin (z) y + y = sin (2z)

Summary of solutions found

y =2In(cos(x) + 1) cot (x) + 21n (cos (x) + 1) csc ()
— 2cos (z) cot (x) — 2 cos (x) csc (x) + ¢; cot (z) + ¢ csc (z)
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Maple step by step solution

Let’s solve

sin (2) (Ly(2)) + y(z) = sin (22)
° Highest derivative means the order of the ODE is 1

=Y(@)

° Solve for the highest derivative
fyte) = e

) Collect w.r.t. y(z) and simplify

d _ () sin(2z)
%y(x) - _s?iln(x) + sin(z)

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
dzy(x) + y(xz) __ sin(2z)

sin(z) ~ sin(z)

° The ODE is linear; multiply by an integrating factor u(x)
u(z) (Ly(o) + 1) = vzl

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(a) (Ly(@) + 225) = (Ly(@)) n(z) + y(@) (£u())

o Isolate - /u(x)

° Solve to find the integrating factor
u(z) = csc(x) — cot (z)

° Integrate both sides with respect to x

J (@) w(a)) do = [ M52 dn + C1
° Evaluate the integral on the lhs

y(z)p(z) = [ £ (“;lil(r;()zx) dx + C1

o Solve for y(m)

f p(x) 511;()2.7:) do+C1

sm

y(x) = 1(2)

) Substitute u(z) = csc (z) — cot (z)
f (csc(z)—cot(z)) sin(2z) do+C1

y(.’l?) = cssézla(va)c) cot ()
° Evaluate the integrals on the rhs
_ —2cos(z)+2In(cos(z)+1)+C1
y(.’L‘) - csc(z)—cot(z)
° Simplify

y(z) = (—2cos (z) + 21In (cos (z) + 1) + C1) (cos (x) + 1) csc (z)
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 24

e hY

dsolve(sin(x)*diff (y(x),x)+y(x) = sin(2*x),y(x),singsol=all)

y(x) = csc(x) (—2cos (z) +2In (cos (z) + 1) + ¢1) (cos (z) + 1)

Mathematica DSolve solution

Solving time : 0.268 (sec)
Leaf size : 38

e B

LDSolve [{Sin[x]#D[y[x] ,x]+y[x]==Sin[2*x] ,{}},y[x],x, IncludeSingularSolutions->Tr1ﬁe]

y(x) — erctanh(cos(@) (—2\ /sin?(z) csc(z) (cos(ac) + log <sec:2 (g))) + cl)
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2.1.20 Problem 5(a)
Solved as first order linearode . . . . ... ... ... ....... 168
Solved as first order Exactode . . . . .. ... ... ........ 169
Maple step by step solution . . . . . . ... ... ... ... 172
Maple trace . . . . . . . . . . e e 173
Maple dsolve solution . . . . . ... .. ... oL 173l
Mathematica DSolve solution . . . . . .. ... ... ... ..... 173

Internal problem ID [4209]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 5(a)

Date solved : Monday, January 27, 2025 at 08:42:20 AM
CAS classification : [_linear]

Solve

V2 +1y +y =2z

Solved as first order linear ode

Time used: 0.101

(sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

The ode becomes

Integrating gives

1
xTr) =
@) z?2+1
(z) = 2x
RV
M=efqd:1:
:ef z;+1dm
=zr+vVa?+1
d
ap M) = 1p

%(uy) = (w) (;—xﬂ)

Ly(a+vam+1)) = (2+ Va2 +1) (2_w>

V41
d(y(e+Va?+1)) = (23”(93 22”12: 1)> de

y(x+x/ﬁ) :/2x<a¢+\/a;2+1) da

z2+1
= V22 + 1z — arcsinh (z) + z° + ¢;
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Dividing throughout by the integrating factor z + v/z2 4+ 1 gives the final solution

z2 + 1z — arcsinh (z) + 22 + ¢

V= z+Vz2+1
VYAV NN N NN N ——mr S/
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Figure 2.49: Slope field plot
Va4 1y +y=2z
Summary of solutions found
_ Va?+ 1z —arcsinh (z) + 2% + ¢
v s+ V1
Solved as first order Exact ode
Time used: 0.206 (sec)
To solve an ode of the form
d
M(z,y) + N(z,y) 7> =0 (A)

dz

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 96 06d
Y
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
99
T M
ox
09
T _N
9y
But since % = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
8‘12 (ffy = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
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might not exist. The first step is to write the ODE in standard form to check for exactness,
which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
(W) dy = (—y +2z)dz
(y - 20) do+(Va? +1) dy = 0 (2A)
Comparing (1A) and (2A) shows that

M(z,y) =y — 2z
N(z,y) =Vvz?+1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
T T (y—-2
9y oy (y — 22)
And
ON 0
Zr_ 2 2
- (%( %+ 1)
=z
2241

Since %‘/[ # %—];J, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] (6M aN)

~ N\dy oz

- (- ()

_Vrl+l-x

241
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

’u:efAda:

vV :c2+1—:c
e oA

The result of integrating gives

. In (w2 +1)
earcsmh(:z)— —a

#,:

N

2 +1

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

T
24+ 1

= (y — 22) (1+ fo)

=1+ (y — 2x)
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And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.

The modified ODE is
_dy .

M A
+ e 0
x dy
-2 1 Vrz+1) ==
((y x)(+\/m))+<x+ x+)dx 0
The following equations are now set up to solve for the function ¢(z,y)
op —
T —-M 1
e (1)
0p —
— =N 2
o )

Integrating (2) w.r.t. y gives
@ dy = /Ndy
Ay
99
/a—ydy=/m+vﬂv2+1dy
6=y(z+Va?+1) + f(a) 3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

2=y(14 s )+ @) (@)

But equation (1) says that % = (y — 2z) (1 + ﬁ) Therefore equation (4) becomes

z x ,
(y — 2z) (1+W)=y(1+ﬁ>+f($) (5)
Solving equation (5) for f'(z) gives
2
f(z) = 2x(z —;2\/—9: 1-|— 1)

Integrating the above w.r.t = gives

f(xz) = —Vz? + 1z + arcsinh (z) — 2% + ¢;

Where c; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

¢ = y(m-l- Va2 + 1) — V22 + 1z + arcsinh (z) — 2° + ¢
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But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into the constant c; gives the solution as

cl—y<x+\/a:2 ) V22 + 1z + arcsinh (z) — 2°

Solving for y gives

_ Va2 + 1z —arcsinh (z) + 22 + ¢
Y r+Vz2+1

y(x) 0

24
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Figure 2.50: Slope field plot

Vel+1ly +y=2z

Summary of solutions found

Vz?2 + 1x — arcsinh (z) + 22 + ¢
r+vVz2+1

Maple step by step solution

Let’s solve

211 (Ly(@) +y(@) =2
° Highest derivative means the order of the ODE is 1

=y(®)

° Solve for the highest derivative
Ly(o) = 22

o Collect w.r.t. y(z) and simplify

d _ _ _y= 2z

V(@) =—Jrn t
° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

d yx) _ _ 2
w¥(@) + g = Ve

° The ODE is linear; multiply by an integrating factor u(x)
we) (Ly(@) + k) = %8s

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
() (Zy(@) + 25 ) = (Lu(@) pa) + y(@) (Eul)

e  Isolate 2 u(z)

() = S5
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° Solve to find the integrating factor
pwz)=z+Vx2+1

. Integrate both sides with respect to x
[ (E(y(z) p(z)))dz = [ %dx + C1

° Evaluate the integral on the lhs

y(@) p(z) = [ %iide + C1

o Solve for y(x)

[ 22 gy o1

y(@) = ==
o Substitute u(z) =z + vz2 + 1
2(m+\/m)z
J—— de—}-CI
° Evaluate the integrals on the rhs
z24x+/224+1—arcsinh(z)+ C1
y(m) _ zr+ ;—+\/z2+1 (z)+

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 34

|dsolve((x~2+1)~(1/2)*diff (y(x),x)+y(x) = 2*x,y(x),singsol=all)

(z) = z? + v/22 + 1 — arcsinh (z) + ¢;
Y r+vVr2+1

Mathematica DSolve solution

Solving time : 0.084 (sec)
Leaf size : 33

~N

LDSolve [{Sqrt[1+x~2]1#D [y [x] ,x]+y [x]==2*x,{}},y [x] ,x, IncludeSingularSolutions—>Trlje]

y(z) — e2resinh(@) (—arcsinh(x) + 22+ Vo2 + 1z + cl)
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2.1.21 Problem 5(b)
Solved as first order linearode . . . . ... ... ... ....... 174
Solved as first order Exactode . . . . .. ... ... ........ 175
Maple step by step solution . . . . . . ... ... ... ....... 178
Maple trace . . . . . . . . . . .. 179
Maple dsolve solution . . . . . ... .. ... oL 179
Mathematica DSolve solution . . . . . .. ... ... ... ..... 179

Internal problem ID [4210]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 5(b)

Date solved : Monday, January 27, 2025 at 08:42:22 AM
CAS classification : [_linear]

Solve

V2 + 1y —y=2vVa2+1

Solved as first order linear ode

Time used: 0.094 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

1
2 +1

The integrating factor u is

The ode becomes

Integrating gives

uzefqu

— o/ van®
_ 1
z+vVzr2+1

d
a(uy) = up

() = (1) 2)

i erver) = rve) @
(o) = Grvern)

] 2
———= | ———=dx
r+ V241 /x+\/ac2+1
= zvx2 + 1 + arcsinh (z) — 2° + ¢;
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Dividing throughout by the integrating factor — - \/ﬁ gives the final solution

y = <x+ Va2 + 1) (x\/acz + 1+ arcsinh (z) — 2° +cl>

~

y(x) 0]

14
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Figure 2.51: Slope field plot
V2+1ly —y=2vx2+1

Summary of solutions found

Y= <x+ Va2 + 1) (xx/xz + 1 + arcsinh (z) — 2° —l-cl>

Solved as first order Exact ode
Time used: 0.146 (sec)
To solve an ode of the form

M(z,) + N(z,) B =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d

Hence 96 04d
Yy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Ay
But since % = (,;9; g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘12 (ffy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
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might not exist. The first step is to write the ODE in standard form to check for exactness,
which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
( x2+1> dy = (y+2\/$27+1> dx
(—y - 2\/3TH) dz +(\/QT—H> dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —y—2Vz2+1
N(z,y) = Va2 +1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the

following condition is satisfied
oM _ ON

oy Oz

Using result found above gives

oM _ 9 <—y—2\/rﬂ>

dy Oy

=1
And
ON 0
Y _ Y (/2
or 8z< z-l—l)
B T
2 +1

Since %i; # %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L] <8M 8N>

T N\dy Oz

=l ()

/=g g
z2+1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

uzefAdw

_ T

z2+1

The result of integrating gives

X In 124—1
p=e" arcsinh(z)— ( 5 )
B 1
Va2 +1 (z+ V22 +1)
M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

1 2
RS (z+ Va2 +1) (—y—ZM)

_ y+2vVz2+1
Va2 +1 (z+ V22 +1)
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And
N =uN
- v (5
2+1 (z+ V2 +1)
1
VIR + 1

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M + Nd—y =0
dx
_ y+2vz2+1 +< 1 )d_y_
Va2 +1 (z+ Va2 +1) r++vVa2+1/) dz
The following equations are now set up to solve for the function ¢(z,y)
0p —
— =M 1
o (1)
0p —
2 =N 2
o )
Integrating (2) w.r.t. y gives
@ dy = /Ndy
Oy
0p / 1
—dy= | ————=d
Oy Y z+vVz2+1 Y
6= (Va2 +1-2)y+ f(a) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

. (ﬁ _ 1) v+ f(=) (4)

But equation (1) says that ¢ = — \/Tﬁz(‘/%

3 Therefore equation (4) becomes

y+2vVz2+1 _( z

T — - 1)y+ /@ 5)

xr2

Solving equation (5) for f'(z) gives
, 2
T)=————
/@) r+Vr2+1

Integrating the above w.r.t = gives
2
"(z dx:/(——) dx
/f (@) z+vVar+1
f(z) = 2° — V22 + 1 — arcsinh (z) + ¢;

Where c¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
¢ = (\/wQ +1-— x) y+ 2? — 2v/22 + 1 — arcsinh (z) + ¢
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But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into the constant c; gives the solution as

o = (, /22 + 1 — $) y+ 22 — 2v/22 + 1 — arcsinh (z)

Solving for y gives

_ xv/z? + 1+ arcsinh (z) — 2° + ¢
Y Vri+l—z

y(x) 0

k \ \ NN N N S T eSS
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j \ \\\\\\q\e\q\q\q\q
| \ \ \\\\\\\\Q\\Q\Q\Q\Q
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|
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Figure 2.52: Slope field plot
Ve2+1ly —y=2vz2 +1

Summary of solutions found

_ zvz?+ 1+ arcsinh (z) — 2%+ ¢
Y Vz+1l—zx

Maple step by step solution

Let’s solve
2+ 1(Ly(z)) —y(z) =2va2 +1

° Highest derivative means the order of the ODE is 1

=y(®)
° Solve for the highest derivative
z)+2vz2+1
%y(fl;) = y( ),+/932+1 *

o Collect w.r.t. y(z) and simplify

Ly(z) =2+ J55

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
Ly(z) — K- =2

° The ODE is linear; multiply by an integrating factor u(x)
w(z) (L) — H5) = 2(z)

o Assume the Ihs of the ODE is the total derivative - (y(z) u(z))
u(a) (£y(@) - 225) = (£4(@) 1@ + (@) (£u(2))

e  Isolate 2 u(z)

T

@) = 2
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° Solve to find the integrating factor

w®@) = s
° Integrate both sides with respect to x
[ (£ W(e) w(x))) do = [ 2p(z) do + C1
° Evaluate the integral on the lhs
y(@) u(x) = [ 2u(z) dw + C1
o Solve for y(x)

2u(x)dz+C1
y(z) = ! u(uzx)+

o Substitute u(z) = m
y(z) = (z+ V22 + 1) (f el + CI)
° Evaluate the integrals on the rhs

y(z) = (z+ V22 + 1) (zv2? + 1 + arcsinh(z) — 2 + C1)

Maple trace

e N

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 32

dsolve ((x~2+1)~(1/2) *diff (y (x) , ) -y (x) = 2% (x~2+1)~(1/2) ,y(x) ,singsol=all)}

y(z) = (x\/sT—i—l + arcsinh (z) — z* + cl> (ac + M)

Mathematica DSolve solution

Solving time : 0.068 (sec)
Leaf size : 31

-

N
LDSolve [{Sqrt[1+x~2]*D [y [x] ,x] -y [x]==2%Sqrt [1+x~2] ,{}},y[x],x, IncludeSingularSothions—>True]

y(z) — e¥resinh(® (arcsinh(x) — 2+ V2 + 1z + cl>
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2.1.22 Problem 5(c)

Solved as first order linear ode
Solved as first order Exact ode
Maple step by step solution

Maple dsolve solution

Mathematica DSolve solution

Internal problem ID [4211]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 5(c)

Date solved : Monday, January 27, 2025 at 08:42:24 AM

CAS classification : [_linear]

Solve

VE@+a)(z+b) (2 —3)+y=0

Solved as first order linear ode

Time used: 0.310 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

q(z)

The integrating factor u is

1
n= ef 2/ (z+a)(z+b)

Therefore the solution is

1

2

p(z) = S

2

V(z+a)(z+b)

dx

1
3ef N D N S
Y= 5 dx + c1]e 2y/(z+a)(z+b)

Summary of solutions found

f%dz
3¢’ 2V/ra@th)
y=(/ :

Solved as first order Exact ode
Time used: 0.321 (sec)

To solve an ode of the form

1
dz + q) e | aErae

d
M(z,y) + N(z,9) 52 =0

dz

Maple trace . . . . . . . . . . ..

dx

dx

LL80)
LL80)

185

L8]
L8]

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. = gives

dz

4 bey) =0
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Hence 8(15 (9¢ p
ay
B
oz 8y dz =0 (B)
Comparing (A,B) shows that
99 _
or
99 _
oy
But since 6‘9; gy = ayaz then for the above to be valid, we require that
oM _ oN
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
Eff gy = a‘fg’x is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

<2\/(x+a)(x+b)) dy = (3\/(m+a)(x+b)—y> dz
(—3\/(x+a) (z+0) +y) dx+<2\/(x+a) (x+b)> dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —3\/(z+a) (z +b) +
N(z,y) = 2\/(z +a) (z +b)

The next step is to determine if the ODE is is exact or not. The ODE is exact when the

following condition is satisfied
OM ON

By Or
Using result found above gives

%—fz%(—3\/(x+a)(w+b)+y>
1

And
N
889: (2\/ z+a)(z+ b)>
_at+b+2z
V(z+a)(z+b)
Since %iy‘[ %];] , then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let
4o L(om_ox
oy or

_ 1 <(1)_< a+b+2z ))
2y/(z+a) (z+b) V(z+a)(z+D)

_VE+a)(z+b)—a—b—2z
B 2(z+a)(z+0)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p= efAda:
\/(a:+a)(m+b)—a—b—2md
— ef 2(z+a)(z+b) z
The result of integrating gives
(a—b) 1n(%+g+z+,/(z+b)2+(a—b)(z+b)) (b—a)ln(%+%+z+\/(z+a)2+(b—a)(z+a))
V (2+b)2+(a—b) (z+b)+ > V(z+a)2+(b—a)(z+a)+ . In((e+a) (w41
p=e 2a—2b - 2(a=b) h 2
ﬁ\/a+b+2x+2\/(x+a)(x+b)
2\/(z+a)(z+b)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

\/E\/a+b+2z+2\/(z+a)(x+b)
N 2/ (@ +a) (@ +0b)
(—3\/(z+a)(x+b)+y)\/i\/a+b+2x+2\/(x+a)(x+b)
2¢/(z +a) (z +b)

<—3\/(93+a) (x +b) -l—y)

And
N =uN
B ﬁ\/a+b+2x+2\/(x+a)(x+b)
2¢/(z +a) (z +b)
=\/§\/a+b+2x+2\/(x+a)(x+b)

(2V@+a) @ +b))

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

i

(-3VETa) @b +y) V2 Jatb+20+2/(+a)(@+h)
2\/@+a) @ +b)

+(veVorsrarGrae

The following equations are now set up to solve for the function ¢(z,y)

EZM (1)
S
5 = (2)

Integrating (2) w.r.t. y gives

@dyz /Ndy
Ay

g_jdyz/\/5\/&+b+2x+2\/(x+a)($+b)dy

p=v2\Ja+b+2+2/(@+a) @ +b)y+ () (3)
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Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

%: \/§y<2+ a+b+2z )

(z+a)(z+b)

+ f'(z) (4)

Oz 2\/a+b+2x+2\/(x+a)(z+b)

B \/iy\/a+b+2x+2\/(w+a)(z+b)
B 2\/(z +a) (z +b)

+ f'(z)

(=3 @+a)@Hb)+y) V2 atbt2e+2y/(o+a) (@+D)

2/(z+a)(z+b)

But equation (1) says that 22 = . Therefore equa-

tion (4) becomes

(—3\/(x+a)(x+b)+y> \/ﬁ\/a+b+2x+2\/(x+a)(w+b)

2¢/(z +a) (z+b) (5)
 VEyfatb+2w+2)/(@ta)(@+D)
B 2/(z +a) (z +b)

+ f'(z)

Solving equation (5) for f'(z) gives

, 3v2\Ja+b+22+2/(w+a) (@ +0)
i) = - i

Integrating the above w.r.t = gives

/f'(x)dz:/ (_3\/5\/a+b+2x+2\/(x+a) (x+b)) "

2

dr + ¢,

f(w):/Ow_3\/§\/a+b+2rz2\/(r+a)(7+b)

Where c; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

¢=\/5\/a+b+2x+2\/(x+a)(x+b)y+/x

3\/5\/a+b+2r+2\/(r+a)(r+b)
B 2

dr+ ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy; constants into the constant c; gives the solution as

3\/5\/a+b+27+2\/(r+a)(r+b)d

C1=\/§\/a+b+2x+2\/(x+a)(a:—i—b)y—i—/x— 5

Solving for y gives

0

(fz _3\/5 \/a+b+2'r-|2-2\/(7'+a,)(‘r+b) dr — 01) \/5

y=-

2\/a+b+22+2/(c+a) (@ +b)
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Summary of solutions found

z  3V2y/a+b+274+2/(t+a)(7+b
(fo— X 2\/< X >dT_cl)\/§

y=-

2\/a+b+2x+2\/(x+a)(m+b)

Maple step by step solution

Let’s solve

V(z+a)(z+b) (2Ly(z) —3) +y(z) =0
° Highest derivative means the order of the ODE is 1

&y(@)

° Solve for the highest derivative
d (.’I?) _ _ y(=)—3y/(z+a)(z+b)
dY 2/ ta)(@+b)

o Collect w.r.t. y(z) and simplify
y(z)

d _3
() =3 = 5 GhaeT
° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE

4 _ y@ 3
LY@+ 3 rae — 2
° The ODE is linear; multiply by an integrating factor u(x)

T 3u(x
u(@) (Ly(@) + 5720 ) = o
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

(@) (£y(@) + 77259 ) = (L) w(@) + y(@) (Eulz))
o Isolate - /u(x)

p(z)

d _
wH(®) = 5 i aerm
° Solve to find the integrating factor
u(x) = \/2a—|-2b+4a:—|—4\/(a:+a) (x +b)

° Integrate both sides with respect to x

J (£ (@) p(x))) de = [ 24Ddz + C1
° Evaluate the integral on the lhs

y(z) p(z) = [ 22z + 1
o Solve for y(x)

R 2F e
yo) ="

e  Substitute p(z) = \/2(1 +2b+4z+4/(z +a) (z+b)
f 3\/2a+2b+4x+4\/m
2

\/2a+2b+4z+4« /(z+a)(z+b)
° Simplify
3 ( [ \/2a+2b+4a-+4, /(x+a)(x+b)dx> +201
y(z) =

2y/2a-+2b+40+4,/(a+a) (@ +d)
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 60

‘dsolve(((x+a)*(x+b))‘(1/2)*(2*diff(y(x),x)—3)+y(x) = 0,y(x),singsol=all)

3<f\/2a+2b+4z+4\/(z+a)(x—i—b)dx) +4c¢;

y(z) =

Mathematica DSolve solution

Solving time : 0.391 (sec)
Leaf size : 115

2\/2a—|-2b+4x+4\/(x-l—a)(z—|-b)

LDSolve [{Sqrt [(x+a)* (x+b)1*(2*D [y [x],x]1-3)+y[x]1==0,{}},y[x],x, IncludeSingularSolLﬁtions->True]

y(z)
va+ /b + xarctanh(\/fm) z
Svexp | — /
1

Via+z)(b+z)

””‘“é) Va+ Kb+ K[]
Vi(e+ K[1])(b+ K[1])

+C
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2.1.23 Problem 5(d)
Solved as first order linearode . . . . ... ... ... ....... 186
Solved as first order Exactode . . . . .. ... ... ........ 187
Maple step by step solution . . . . . . ... ... ... ... 190
Maple trace . . . . . . . . . . e e 191l
Maple dsolve solution . . . . . ... .. ... oL 191l
Mathematica DSolve solution . . . . . .. ... ... ... ..... [197]

Internal problem ID [4212]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 5(d)

Date solved : Monday, January 27, 2025 at 08:42:27 AM
CAS classification : [_linear]

Solve

Vc+a)(z+b)y +y=ve+a—Vz+b

Solved as first order linear ode
Time used: 0.317 (sec)

In canonical form a linear first order is

y +a(z)y = p(z)
Comparing the above to the given ode shows that
1
Q\r) =
(=) V(z+a)(z+D)
_Vrt+a—Vz+b
V(z+a)(z+D)

p(z)

The integrating factor u is
1
= ef Teraem &

Therefore the solution is

1
dz + ¢, | e ! Veromm

= (\/117 +a—Vz+ b) ef (m+al)(x+b) dz
y / V(@ +a) (z +0)

Summary of solutions found

1
dz + ¢ | e VEroEm

_ / (\/3C +a—Vz+ b) ef e
o V(@ + a) (z +b)
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Solved as first order Exact ode
Time used: 0.251 (sec)

To solve an ode of the form

M(z,9) + N(z,9) 2 =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 06 0 d
Yy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
09
T M
ox
09
T _N
9y
But since % = (,;9; g; then for the above to be valid, we require that
oM _ oN
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = 6‘9;—8"; is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(\/(x+a)(m+b)> dy = (—y+\/:v+a—\/ac+b> dz
(y—\/x+a+\/x+b>dx+<\/(x+a)(x+b)>dy=0 (2A)

Comparing (1A) and (2A) shows that

M(z,y)=y—vVz+a+Vz+b
N(z,y) = V/(z +a) (z +b)

The next step is to determine if the ODE is is exact or not. The ODE is exact when the

following condition is satisfied
OM  ON

dy Oz

Using result found above gives

88—]\;=%<y—\/x+a+\/x+b)
=1
And
ai;fzﬁx(\/(x+a)(x+b)>

_ a+b+2z
2¢/(z +a) (z+b)
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Since %i; # %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L L(OM _oN
N\ Oy Oz

_ 1 (1) - a+b+2x
V(z+a)(z+b) 2/(z +a) (z +b)

_2/(z+a)(z+b)—a—b—2
B 2(z+a)(z+0)

Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is

N=6fAd:1:

f 2 (z+a)(z+b)7a7b72zd

2(z+a)(z+b) z

=e

The result of integrating gives

(a—b) ln(%+%+w+a/(w+b)2+(a—b)(w+b)) (b—a) 1n(g+ g +w+\/(m+a)2+(b—a)(w+a))

V/ (@+b)2+(a—b)(z+b)+ > _ (@+a)2+4(b—a)(z+a)+ 5 _In((z+a)(z+
M = e a—b a—b P}
_a+b+2z+2\/(z+a)(x+D)
2/ (z +a)(z+0)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M =pM

_a+b+20+2y/(z+a)(z+b)/ r+a+Vz

_ Wi (v-vo+a+Vao+b)

_(y—\/x-l-a-l-\/x-l-b)(a+b+2m+2\/(z+a)($+b)>

= 2\/(z+a)(z+0)

And

N =uN
_a+b+2c+2\/(z+a)(z+b) z+a)(z
B 2\/(z +a) (z +b) <\/( ot +b)>
= et VT @ty

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is
dy

M < =
+ dzx

N
(?/—\/x+a+\/x+b)<a+b+2x+2\/(x+a)(x+b)> 0 b i
( 2\/(z +a)(z+0) +(§+§+$+\/(x+a)(m+b)>£=o

The following equations are now set up to solve for the function ¢(z,y)

06  —
=M (1)
%N 2
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Integrating (2) w.r.t. y gives

@dy= /Ndy
dy

dp . [a b
6—ydy—/§+§+z+\/(z+a)(x+b)dy

a+b+2x+2\/(z+a)(z+0d)
ool é ) s 1 ©

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

__atbi2x
% — (2 + V(z+a)(w+b)) Y + f/( ) (4)
oxr 2 o

(y—v/a@Fa++/z+b) (a+b+2x+2\ /(x+a)(m+b)>
2+/(z+a)(z+b)

But equation (1) says that g—f = . Therefore equation

(4) becomes

(y_¢x+a+¢x+b)(a+b+2z+2\/(z+a)(w+b)>_<2+%>y :
NCEDICED - 2 e
(5)

Solving equation (5) for f'(z) gives

<a+b+2a:+2\/(:c—|—a)(w+b)> (Vz+a—Vz+b)

fla) =~ 2/ (@ +a) (@ +b)

Integrating the above w.r.t = gives

/f’(x)dm:/ (_<a+b+2x+2\/(x+a)(x+b)) (\/x+a—\/x+b)) "

2y/(z+a) (z+b)

V(z+a)(z+0b)(2z — b+ 3a)

f(@)=— N
VE+a)(@+b) 2z —a+3b) 2a+a)*? 2z +0b)>?
" 3Vz+b N 3 + 3 +ca

Where ¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

<a+b+2w+2\/(x+a)(x+b)>y \/(x+a)(x+b)(2x—b+3a)

¢= 2 B 3Vr+a
N ViE+a)(@+b)Qr—a+3b) 2+a)’’ N 2z + b)*? e
3V +b 3 3 '

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

(a+b+2x+2\/(x+a)(z+b))y_ \/(x+a)(x+b)(2x—b+3a,)

2 3vz ta
N V@ +a)(@+0b)(2c—a+3b) 2z +a)*? N 2z + b)Y’

3Vx+b 3 3

Ci =
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Summary of solutions found

<a+b+2x+2\/(x+a)(x+b)>y V@ +a) (@ +0b) (2z — b+ 3a)

2 3Vzr+a

N ViE+a)(@+b)Qr—a+3b) 2+a)’’ L 2+ b)** _ .

3Vz+b 3 3

Maple step by step solution

Let’s solve

V(z+a)(z+b) (Zy(@) +yl@) =vo+a—Vz+b
° Highest derivative means the order of the ODE is 1

=y(@)

° Solve for the highest derivative
d _ —y(@)+vzta—vx+b
(@) = /(@ta)(@+b)

) Collect w.r.t. y(z) and simplify

d —___ y@ Vata—yvz+b
dwy(x) V/ (z+a)(z+b) t V/(z+a)(z+b)

o Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

d y(z) — Vzta—v z+b
dz y(.’I;) + \/(z-‘,-a) (z+b) \/(Z-l-a) (z+b)

° The ODE is linear; multiply by an integrating factor u(x)

d y(z) _ #=@)(Vzta—va+b)
p(z) (dmy(m) + \/(w+a)(z+b)> = T J@ta)@td)

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

() (Ly(@) + 20 ) = (@) w(@) + y(@) (Lu(e))

e Isolate 2 u(z)

p(z)

d _
k(@) = (@+a)(@1b)
. Solve to find the integrating factor

wz)=a+b+2zx+2/(z+a)(x+b)

° Integrate both sides with respect to x
(z) (Va+ta—vz+b
| (@) ule)) de = [ “2REEL R dn + O

° Evaluate the integral on the lhs

x T+a—\/z+b
y(@) p(z) = [ LD gy

o Solve for y(x)

| ) (/oFa—/eFE

) dz+C1
_ V (z+a)(z+b)
y(@) = @

e  Substitute u(z) = a+b+2z+2+/(z + a) (z+ b)
(a+b+22+2y/(aFa) (@ +D) ) (VaFa—vaTh)

y(z) = (GO de+C1
a+b+2z+2/(z+a) (z+b)
. Evaluate the integrals on the rhs
4(z+0a)3/2  a(ztb)3/2 4 2vz¥a (z+b)(2z—b+3a) _ 2va+b (z+a)(2z—a+3b) 101
y(;z;) = 3 3 3v/(z+a)(z+b) 3y/(z+a)(z+b)
a+b+2x+2+/(z+a)(z-+b)

° Simplify
. 2 ( ((2a+2w)\/w+a+(—2b—2z) Vz+b+ %) v/ (z+a)(z+b)+3(z+b) (— %-I—a—l— %z) Vz+a+vz+b (z+a) (—2z+a—3b)>

y(x) - (z+a)(z+b) <3a+3b+6m+6 (m+a)(m+b))
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 114

‘ dsolve (((x+a)*(x+b)) ~(1/2)*diff (y(x),x)+y(x) = (x+a)~(1/2)-(x+b)~(1/2) ,y(x? ,singsol=a:

y(z)

_2(Qa+22) Vo ta+ (=2b—22)Va+b+3c) (z+a) (@ +b) +6(x+b) (-5 +a+¥)Vatat

V(z+a)(z+D) (3a+3b+6m+6\/(m+a)(:c+b))

Mathematica DSolve solution

Solving time : 1.687 (sec)
Leaf size : 145

LDSolve [{Sqrt[(x+a)*(x+b)]*D [y [x] ,x]+y[x]==Sqrt [x+a] -Sqrt [x+b] ,{}},y[x],x, Includ%SingularSolu

y(z)
2v/a + /b + marctanh(f’ﬁlﬁ)
—exp | —

Via+z)(b+z)

sarctanh ( YKL /T K] /6+K[]
exp ( (\/a+K[1]) < a+ K[l]

V(a+K[])(b+K[1])

1 V(e + K[1])(b+ K[1])

+c
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