2.68 problem 68

2.68.1 Solving as riccati ode
2.68.2 Maple step by step solution

Internal problem ID [10397]
Internal file name [OUTPUT/9345_Monday_June_06_2022_02_14_18_PM_29258920/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 68.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_rational, _Riccati]

\[ \boxed {x^{2} \left (a +x \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b x +c \right ) y=-\alpha x -\beta } \]

2.68.1 Solving as riccati ode

In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= -\frac {y^{2} a \lambda \,x^{2}+y^{2} \lambda \,x^{3}+b \,x^{2} y +c y x +\alpha x +\beta }{x^{2} \left (a +x \right )} \end {align*}

This is a Riccati ODE. Comparing the ODE to solve \[ y' = -\frac {y^{2} a \lambda }{a +x}-\frac {x \,y^{2} \lambda }{a +x}-\frac {b y}{a +x}-\frac {c y}{x \left (a +x \right )}-\frac {\alpha }{x \left (a +x \right )}-\frac {\beta }{x^{2} \left (a +x \right )} \] With Riccati ODE standard form \[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \] Shows that \(f_0(x)=-\frac {\alpha x +\beta }{x^{2} \left (a +x \right )}\), \(f_1(x)=-\frac {b \,x^{2}+c x}{x^{2} \left (a +x \right )}\) and \(f_2(x)=-\frac {\lambda \,x^{2} a +\lambda \,x^{3}}{x^{2} \left (a +x \right )}\). Let \begin {align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{-\frac {\left (\lambda \,x^{2} a +\lambda \,x^{3}\right ) u}{x^{2} \left (a +x \right )}} \tag {1} \end {align*}

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is \begin {align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end {align*}

But \begin {align*} f_2' &=-\frac {2 a \lambda x +3 \lambda \,x^{2}}{x^{2} \left (a +x \right )}+\frac {2 \lambda \,x^{2} a +2 \lambda \,x^{3}}{x^{3} \left (a +x \right )}+\frac {\lambda \,x^{2} a +\lambda \,x^{3}}{x^{2} \left (a +x \right )^{2}}\\ f_1 f_2 &=\frac {\left (b \,x^{2}+c x \right ) \left (\lambda \,x^{2} a +\lambda \,x^{3}\right )}{x^{4} \left (a +x \right )^{2}}\\ f_2^2 f_0 &=-\frac {\left (\lambda \,x^{2} a +\lambda \,x^{3}\right )^{2} \left (\alpha x +\beta \right )}{x^{6} \left (a +x \right )^{3}} \end {align*}

Substituting the above terms back in equation (2) gives \begin {align*} -\frac {\left (\lambda \,x^{2} a +\lambda \,x^{3}\right ) u^{\prime \prime }\left (x \right )}{x^{2} \left (a +x \right )}-\left (-\frac {2 a \lambda x +3 \lambda \,x^{2}}{x^{2} \left (a +x \right )}+\frac {2 \lambda \,x^{2} a +2 \lambda \,x^{3}}{x^{3} \left (a +x \right )}+\frac {\lambda \,x^{2} a +\lambda \,x^{3}}{x^{2} \left (a +x \right )^{2}}+\frac {\left (b \,x^{2}+c x \right ) \left (\lambda \,x^{2} a +\lambda \,x^{3}\right )}{x^{4} \left (a +x \right )^{2}}\right ) u^{\prime }\left (x \right )-\frac {\left (\lambda \,x^{2} a +\lambda \,x^{3}\right )^{2} \left (\alpha x +\beta \right ) u \left (x \right )}{x^{6} \left (a +x \right )^{3}} &=0 \end {align*}

Solving the above ODE (this ode solved using Maple, not this program), gives

\[ u \left (x \right ) = \left (a +x \right )^{\frac {\left (-b +1\right ) a +c}{a}} \left (c_{2} x^{-\frac {-a +c +\sqrt {a^{2}+\left (-4 \beta \lambda -2 c \right ) a +c^{2}}}{2 a}} \operatorname {hypergeom}\left (\left [-\frac {\sqrt {-4 \alpha \lambda +b^{2}-2 b +1}\, a +b a +\sqrt {a^{2}+\left (-4 \beta \lambda -2 c \right ) a +c^{2}}-2 a -c}{2 a}, \frac {-b a +\sqrt {-4 \alpha \lambda +b^{2}-2 b +1}\, a +2 a +c -\sqrt {a^{2}+\left (-4 \beta \lambda -2 c \right ) a +c^{2}}}{2 a}\right ], \left [1-\frac {\sqrt {a^{2}+\left (-4 \beta \lambda -2 c \right ) a +c^{2}}}{a}\right ], -\frac {x}{a}\right )+c_{1} x^{\frac {a -c +\sqrt {a^{2}+\left (-4 \beta \lambda -2 c \right ) a +c^{2}}}{2 a}} \operatorname {hypergeom}\left (\left [\frac {-b a -\sqrt {-4 \alpha \lambda +b^{2}-2 b +1}\, a +2 a +c +\sqrt {a^{2}+\left (-4 \beta \lambda -2 c \right ) a +c^{2}}}{2 a}, \frac {-b a +\sqrt {-4 \alpha \lambda +b^{2}-2 b +1}\, a +2 a +c +\sqrt {a^{2}+\left (-4 \beta \lambda -2 c \right ) a +c^{2}}}{2 a}\right ], \left [1+\frac {\sqrt {a^{2}+\left (-4 \beta \lambda -2 c \right ) a +c^{2}}}{a}\right ], -\frac {x}{a}\right )\right ) \] The above shows that \[ \text {Expression too large to display} \] Using the above in (1) gives the solution \[ \text {Expression too large to display} \] Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac {c_{2}}{c_{1}}=c_{3}\) the following solution

\[ \text {Expression too large to display} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} \text {Expression too large to display} \\ \end{align*}

Verification of solutions

\[ \text {Expression too large to display} \] Warning, solution could not be verified

2.68.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2} \left (a +x \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b x +c \right ) y=-\alpha x -\beta \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=-\frac {y^{2} a \lambda \,x^{2}+y^{2} \lambda \,x^{3}+y b \,x^{2}+c x y+\alpha x +\beta }{x^{2} \left (a +x \right )} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying Riccati sub-methods: 
   trying Riccati to 2nd Order 
   -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(b*x+c)*(diff(y(x), x))/(x*(a+x))-lambda*(alpha*x+beta)*y(x)/(x^2*(a+ 
      Methods for second order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      checking if the LODE has constant coefficients 
      checking if the LODE is of Euler type 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      checking if the LODE is missing y 
      -> Trying a Liouvillian solution using Kovacics algorithm 
      <- No Liouvillian solutions exists 
      -> Trying a solution in terms of special functions: 
         -> Bessel 
         -> elliptic 
         -> Legendre 
         -> Kummer 
            -> hyper3: Equivalence to 1F1 under a power @ Moebius 
         -> hypergeometric 
            -> heuristic approach 
            <- heuristic approach successful 
         <- hypergeometric successful 
      <- special function solution successful 
   <- Riccati to 2nd Order successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 1508

dsolve(x^2*(x+a)*(diff(y(x),x)+lambda*y(x)^2)+x*(b*x+c)*y(x)+alpha*x+beta=0,y(x), singsol=all)
 

\[ \text {Expression too large to display} \]

Solution by Mathematica

Time used: 5.239 (sec). Leaf size: 1770

DSolve[x^2*(x+a)*(y'[x]+\[Lambda]*y[x]^2)+x*(b*x+c)*y[x]+\[Alpha]*x+\[Beta]==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \frac {2 a \left (a-c+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}\right ) \operatorname {Hypergeometric2F1}\left (\frac {-c+a \left (b-\sqrt {b^2-2 b-4 \alpha \lambda +1}\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},\frac {-c+a \left (b+\sqrt {b^2-2 b-4 \alpha \lambda +1}\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},\frac {a+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{a},-\frac {x}{a}\right ) x^{\frac {\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{a}}-\frac {\left (-c+a \left (b-\sqrt {b^2-2 b-4 \alpha \lambda +1}\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}\right ) \left (-c+a \left (b+\sqrt {b^2-2 b-4 \alpha \lambda +1}\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}\right ) \operatorname {Hypergeometric2F1}\left (\frac {-c+a \left (b-\sqrt {b^2-2 b-4 \alpha \lambda +1}+2\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},\frac {-c+a \left (b+\sqrt {b^2-2 b-4 \alpha \lambda +1}+2\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},\frac {\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{a}+2,-\frac {x}{a}\right ) x^{\frac {a+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{a}}}{a+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}+2 a^{\frac {a+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{a}} c_1 \left (\frac {\left (c+a \left (\sqrt {b^2-2 b-4 \alpha \lambda +1}-b\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}\right ) \left (c-a \left (b+\sqrt {b^2-2 b-4 \alpha \lambda +1}\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}\right ) \operatorname {Hypergeometric2F1}\left (-\frac {c+a \left (-b+\sqrt {b^2-2 b-4 \alpha \lambda +1}-2\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},-\frac {c-a \left (b+\sqrt {b^2-2 b-4 \alpha \lambda +1}+2\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},2-\frac {\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{a},-\frac {x}{a}\right )}{2 a \left (\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}-a\right )}-\frac {\left (-a+c+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}\right ) \operatorname {Hypergeometric2F1}\left (-\frac {c+a \left (\sqrt {b^2-2 b-4 \alpha \lambda +1}-b\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},-\frac {c-a \left (b+\sqrt {b^2-2 b-4 \alpha \lambda +1}\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},1-\frac {\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{a},-\frac {x}{a}\right )}{x}\right ) x}{4 a^2 x \lambda \left (c_1 \operatorname {Hypergeometric2F1}\left (-\frac {c+a \left (\sqrt {b^2-2 b-4 \alpha \lambda +1}-b\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},-\frac {c-a \left (b+\sqrt {b^2-2 b-4 \alpha \lambda +1}\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},1-\frac {\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{a},-\frac {x}{a}\right ) a^{\frac {\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{a}}+x^{\frac {\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{a}} \operatorname {Hypergeometric2F1}\left (\frac {-c+a \left (b-\sqrt {b^2-2 b-4 \alpha \lambda +1}\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},\frac {-c+a \left (b+\sqrt {b^2-2 b-4 \alpha \lambda +1}\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},\frac {a+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{a},-\frac {x}{a}\right )\right )} \\ y(x)\to \frac {\frac {a \left (c^2-2 a (2 \beta \lambda +c)\right ) \left (\sqrt {a^2-2 a (2 \beta \lambda +c)+c^2}-a+c\right )}{x}-\frac {\left (2 \alpha a^3 \lambda +a^2 \left (2 \alpha \lambda \sqrt {a^2-2 a (2 \beta \lambda +c)+c^2}+4 b \beta \lambda +b c-2 \beta \lambda \right )-a \left (b c \sqrt {a^2-2 a (2 \beta \lambda +c)+c^2}+2 \beta \lambda \sqrt {a^2-2 a (2 \beta \lambda +c)+c^2}+b c^2+c^2+4 \beta c \lambda \right )+c^2 \left (\sqrt {a^2-2 a (2 \beta \lambda +c)+c^2}+c\right )\right ) \operatorname {Hypergeometric2F1}\left (-\frac {c+a \left (-b+\sqrt {b^2-2 b-4 \alpha \lambda +1}-2\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},-\frac {c-a \left (b+\sqrt {b^2-2 b-4 \alpha \lambda +1}+2\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},2-\frac {\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{a},-\frac {x}{a}\right )}{\operatorname {Hypergeometric2F1}\left (-\frac {c+a \left (\sqrt {b^2-2 b-4 \alpha \lambda +1}-b\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},-\frac {c-a \left (b+\sqrt {b^2-2 b-4 \alpha \lambda +1}\right )+\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{2 a},1-\frac {\sqrt {a^2-2 (c+2 \beta \lambda ) a+c^2}}{a},-\frac {x}{a}\right )}}{2 a^2 \lambda \left (2 a (2 \beta \lambda +c)-c^2\right )} \\ \end{align*}