3.14 problem 13 (b)

3.14.1 Existence and uniqueness analysis
3.14.2 Solving as quadrature ode
3.14.3 Maple step by step solution

Internal problem ID [14137]
Internal file name [OUTPUT/13818_Saturday_March_02_2024_02_50_57_PM_91304232/index.tex]

Book: INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section: Chapter 2. First Order Equations. Exercises 2.1, page 32
Problem number: 13 (b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

\[ \boxed {y^{\prime }-\sqrt {y^{2}-1}=0} \] With initial conditions \begin {align*} [y \left (4\right ) = -1] \end {align*}

3.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as \begin {align*} y^{\prime } &= f(t,y)\\ &= \sqrt {y^{2}-1} \end {align*}

The \(y\) domain of \(f(t,y)\) when \(t=4\) is \[ \{1\le y \le \infty , -\infty \le y \le -1\} \] And the point \(y_0 = -1\) is inside this domain. Now we will look at the continuity of \begin {align*} \frac {\partial f}{\partial y} &= \frac {\partial }{\partial y}\left (\sqrt {y^{2}-1}\right ) \\ &= \frac {y}{\sqrt {y^{2}-1}} \end {align*}

The \(y\) domain of \(\frac {\partial f}{\partial y}\) when \(t=4\) is \[ \{-\infty \le y <-1, -1<y <1, 1<y \le \infty \} \] But the point \(y_0 = -1\) is not inside this domain. Hence existence and uniqueness theorem does not apply. Solution exists but no guarantee that unique solution exists.

3.14.2 Solving as quadrature ode

Since ode has form \(y^{\prime }= f(y)\) and initial conditions \(y = -1\) is verified to satisfy the ode, then the solution is \begin {align*} y&=y_0 \\ &=-1 \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -1 \\ \end{align*}

(a) Solution plot

(b) Slope field plot

Verification of solutions

\[ y = -1 \] Verified OK.

3.14.3 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [y^{\prime }-\sqrt {y^{2}-1}=0, y \left (4\right )=-1\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\sqrt {y^{2}-1} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{\sqrt {y^{2}-1}}=1 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {y^{\prime }}{\sqrt {y^{2}-1}}d t =\int 1d t +c_{1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y+\sqrt {y^{2}-1}\right )=t +c_{1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=\frac {\left ({\mathrm e}^{t +c_{1}}\right )^{2}+1}{2 \,{\mathrm e}^{t +c_{1}}} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} y \left (4\right )=-1 \\ {} & {} & -1=\frac {\left ({\mathrm e}^{4+c_{1}}\right )^{2}+1}{2 \,{\mathrm e}^{4+c_{1}}} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} c_{1} \\ {} & {} & c_{1} =\mathrm {I} \pi -4 \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} c_{1} =\mathrm {I} \pi -4\hspace {3pt}\textrm {into general solution and simplify}\hspace {3pt} \\ {} & {} & y=-\frac {\left ({\mathrm e}^{2 t -8}+1\right ) {\mathrm e}^{4-t}}{2} \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & y=-\frac {\left ({\mathrm e}^{2 t -8}+1\right ) {\mathrm e}^{4-t}}{2} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
<- separable successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve([diff(y(t),t)=sqrt(y(t)^2-1),y(4) = -1],y(t), singsol=all)
 

\[ y \left (t \right ) = -1 \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

DSolve[{y'[t]==Sqrt[y[t]^2-1],{y[4]==-1}},y[t],t,IncludeSingularSolutions -> True]
 

\[ y(t)\to -1 \]