2.14.20.87 problem 1987 out of 2983

Link to actual problem [9498] \[ \boxed {x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (x a -b^{2}\right ) y=0} \]

type detected by program

{"second_order_bessel_ode"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\operatorname {BesselJ}\left (\sqrt {4 b^{2}+1}, 2 \sqrt {a}\, \sqrt {x}\right )}{\sqrt {x}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {\sqrt {x}\, y}{\operatorname {BesselJ}\left (\sqrt {4 b^{2}+1}, 2 \sqrt {a}\, \sqrt {x}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\operatorname {BesselY}\left (\sqrt {4 b^{2}+1}, 2 \sqrt {a}\, \sqrt {x}\right )}{\sqrt {x}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {\sqrt {x}\, y}{\operatorname {BesselY}\left (\sqrt {4 b^{2}+1}, 2 \sqrt {a}\, \sqrt {x}\right )}\right ] \\ \end{align*}