2.15.1.81 problem 81 out of 249

Link to actual problem [9805] \[ \boxed {x y^{\prime \prime \prime }+\left (a +b \right ) y^{\prime \prime }-y^{\prime } x -y a=0} \]

type detected by program

{"unknown"}

type detected by Maple

[[_3rd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \operatorname {hypergeom}\left (\left [\frac {a}{2}\right ], \left [\frac {1}{2}, \frac {a}{2}+\frac {b}{2}\right ], \frac {x^{2}}{4}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\operatorname {hypergeom}\left (\left [\frac {a}{2}\right ], \left [\frac {1}{2}, \frac {a}{2}+\frac {b}{2}\right ], \frac {x^{2}}{4}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x \operatorname {hypergeom}\left (\left [\frac {1}{2}+\frac {a}{2}\right ], \left [\frac {3}{2}, \frac {a}{2}+\frac {b}{2}+\frac {1}{2}\right ], \frac {x^{2}}{4}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{x \operatorname {hypergeom}\left (\left [\frac {1}{2}+\frac {a}{2}\right ], \left [\frac {3}{2}, \frac {a}{2}+\frac {b}{2}+\frac {1}{2}\right ], \frac {x^{2}}{4}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x^{-a -b +2} \operatorname {hypergeom}\left (\left [1-\frac {b}{2}\right ], \left [2-\frac {b}{2}-\frac {a}{2}, -\frac {a}{2}-\frac {b}{2}+\frac {3}{2}\right ], \frac {x^{2}}{4}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{a} x^{b} y}{x^{2} \operatorname {hypergeom}\left (\left [1-\frac {b}{2}\right ], \left [2-\frac {b}{2}-\frac {a}{2}, -\frac {a}{2}-\frac {b}{2}+\frac {3}{2}\right ], \frac {x^{2}}{4}\right )}\right ] \\ \end{align*}