2.15.2.39 problem 139 out of 249

Link to actual problem [9892] \[ \boxed {x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a -4 c \right ) x^{3} y^{\prime \prime \prime }+\left (-2 \nu ^{2} c^{2}+2 a^{2}+4 \left (a +c -1\right )^{2}+4 \left (a -1\right ) \left (c -1\right )-1\right ) x^{2} y^{\prime \prime }+\left (2 \nu ^{2} c^{2}-2 a^{2}-\left (2 a -1\right ) \left (2 c -1\right )\right ) \left (2 a +2 c -1\right ) x y^{\prime }+\left (\left (-\nu ^{2} c^{2}+a^{2}\right ) \left (-\nu ^{2} c^{2}+a^{2}+4 c a +4 c^{2}\right )-b^{4} c^{4} x^{4 c}\right ) y=0} \]

type detected by program

{"unknown"}

type detected by Maple

[[_high_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \\ \left [R &= x, S \left (R \right ) &= \frac {x^{-a} y}{\operatorname {BesselJ}\left (\nu , b \,x^{c}\right )}\right ] \\ \end{align*}

\begin{align*} \\ \left [R &= x, S \left (R \right ) &= \frac {x^{-a} y}{\operatorname {BesselY}\left (\nu , b \,x^{c}\right )}\right ] \\ \end{align*}

\begin{align*} \\ \left [R &= x, S \left (R \right ) &= \frac {x^{-a} y}{\operatorname {BesselJ}\left (\nu , i b \,x^{c}\right )}\right ] \\ \end{align*}

\begin{align*} \\ \left [R &= x, S \left (R \right ) &= \frac {x^{-a} y}{\operatorname {BesselY}\left (\nu , i b \,x^{c}\right )}\right ] \\ \end{align*}