2.15.3.36 problem 236 out of 249

Link to actual problem [14773] \[ \boxed {x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 x y^{\prime }+4 y=0} \]

type detected by program

{"higher_order_ODE_non_constant_coefficients_of_type_Euler"}

type detected by Maple

[[_high_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\sin \left (\ln \left (x \right )\right )}{x}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x y}{\sin \left (\ln \left (x \right )\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\cos \left (\ln \left (x \right )\right )}{x}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x y}{\cos \left (\ln \left (x \right )\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\sin \left (\ln \left (x \right )\right ) \ln \left (x \right )}{x}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x y}{\sin \left (\ln \left (x \right )\right ) \ln \left (x \right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\cos \left (\ln \left (x \right )\right ) \ln \left (x \right )}{x}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x y}{\cos \left (\ln \left (x \right )\right ) \ln \left (x \right )}\right ] \\ \end{align*}

\begin{align*} \\ \\ \end{align*}