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Introduction

This gives detailed description of all supported differential equations in my step-by-step
ode solver. Whenever possible, each ode type algorithm is described using flow chart.

Each ode type is given an internal code name. This internal code is used internally by
the solver to determine which solver to call to solve the specific ode.

The following is the top level chart of supported solvers.

single differential equation

first order

degree one
(linear in y′)
y′ = f(x, y)

Not linear in
p = y′. ODE
has form
f(x, y, p)

second order

linear ode nonlinear ode

higher order ode

linear ode

system of first order odes

supported solvers

system of linear first order odes

Figure 1: Top level flow chart for ode solver

This diagram illustrate some of the plots generated for direction field and phase plots.
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single first order ode y′(t) = f(t, y)

Autonomous
ode y′(t) = f(y)

y′(t) = f(t, y) y′(t) = f(t)

two first order system of ode’s which as autonomous. As an example

x′(t) = f(x, y) = 2x(t)y(t)
y′(t) = g(x, y) = 1− x(t)2 − y(t)

With IC x(0) = 2, y(0) = 2)

Initial conditions given?
YES NO

PHASE PLOT

Initial conditions given?
YES NO

SLOPE FIELD

In addition, also plot solution of each ode on its own Can not plot individual solutions as no IC is given

Figure 2: Direction and slope fields generated
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chapter 1 . f irst order ode 8

1.1 Existence and uniqueness for first order ode
There are two theorems that we will be using. One is for first order ode which is linear
in y and one for first order ode which is not linear in y.

1.1.1 Existence and uniqueness for non linear first order ode
in y

Given a first order ode y′ = f(x, y) (where y enters the ode as nonlinear, for example
y2 or 1

y
) and with initial conditions y(x0) = y0 then we say a solution exists somewhere

in vicinity of initial point (x0, y0) if f(x, y) is continuous at (x0, y0). But we do not
know yet if there is only one solution or infinite number of solutions. If f(x, y) is not
continuous at (x0, y0) then we say the theory does not apply and we do not do the next
check. Solution could still exist and even be unique, but theory does not say anything
about this.

If we found that f(x, y) is continuous at (x0, y0) then now we check if fy(x, y) is also
continuous at (x0, y0). If it is, then we say there is only one solution curve (i.e. a unique
solution) that passes through the initial point (x0, y0) and in some region around it.

If fy(x, y) turns out not to be continuous at (x0, y0) then theory does not guarantee
uniqueness. Solution could still be unique but theory does not say anything about this.
We have to solve the ode to find out.

1.1.1.1 Example 1

y′ = 2√y
y(0) = 0

First we find the region where solution exists and is unique. Domain of f(x, y) = 2√y
is y ≥ 0 (since we do not want complex numbers). Since y0 = 0 is inside this domain,
then we know solution exists. The domain of fy = 1√

y
is y > 0. We see that the region

is all x and y > 0. i.e. the top half of the plane not including x-axis.

Since the point given is (0, 0) then the theory do not apply. The point x0, y0 have to
be inside the region and not on the edge.

There is no guarantee that solution will be unique. Solving this ode gives

2√y = 2x+ c
√
y = x+ c1
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At IC
0 = c1

Hence solution is
√
y = x

y = x2

But y = 0 is another solution. Notice that y = 0 can not be obtained from √
y = x+ c1

for any choice of c1. So it is a singular solution and not trivial solution. This shows that
solution exists but is not unique. In this example, theory predicted that solution exists
but did not say anything about uniqueness. Only by solving it, we found the solution
is not unique.

1.1.1.2 Example 2

y′ = y
1
3

y(0) = 0

First we find the region where solution exists and is unique. f(x, y) = y
1
3 . The domain

of y 1
3 is y ≥ 0 since we do not want complex values. Hence solution exists. The domain

of fy = 1
3

1
y
2
3
is y > 0. Hence the region is all x and y > 0. i.e. the top half of the plane

not including x-axis. Since the point given is (0, 0) on the x-axis, then the theory do
not apply. There is no guarantee solution is unique. Only way to find out is to try to
solve the ode and find out. Solving the ode gives∫

dy

y
1
3
=
∫
dx

3
2y

2
3 = x+ C

Applying IC gives C = 0. Hence solution is
3
2y

2
3 = x

Solving for y

y2 =
(
2
3x
)3

Taking the square root of both sides gives

y = ±

√(
2
3x
)3

= ±
(
2
3x
) 3

2
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So there are two solutions. There is also a trivial solution y = 0. We see that the
solution exists but not unique.

1.1.1.3 Example 3

y′ = x
√
y − 3

y(4) = 3

First we find the region where solution exists and is unique. Domain of f(x, y) =
x
√
y − 3 is y − 3 ≥ 0 or y ≥ 3 since we do not want complex numbers and all x values.

This shows solution exists. Domain of fy = x
2
√
y−3 is y > 3. Since point (4, 3) is not

inside this domain (it can not be on the edge, it has to be fully inside), then theory do
not apply. No guarantee that unique solution exist. Solving this gives

2
√
y − 3 = 1

2x
2 + c

At initial conditions
0 = 8 + c

Hence c = −8 and the solution becomes

2
√
y − 3 = 1

2x
2 − 8√

y − 3 = 1
4x

2 − 4

y − 3 =
(
1
4x

2 − 4
)2

y =
(
1
4x

2 − 4
)2

+ 3

Is this the only solution? Is this solution unique? No. By inspection we see that y = 3
is also a solution. Hence the solution exist but is not unique.

1.1.1.4 Example 4

y′ = −1
1 + x

y2 + 1
x− 1

y(0) = 0

f(x, y) = −1
1+x

y2 + 1
x−1 is continuous in x everywhere except at x = −1 and x = 1. And

fy = −2
1+x

y is continuous except at x = −1. Since initial conditions at x0 = 0, y0 = 0
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then there is a unique solution in some rectangle inside the rectangle −1 < x < 1 and
for all y. Solving the ode gives

2√y =
∫ x

0

√
y sin τ
√
y

+ c1

At x = 0, y = 0 the above gives
0 = c1

Hence the solution is
2√y =

∫ x

0

√
y sin τ
√
y

1.1.1.5 Example 5

y′ =
√
1− y2

y(0) = 1

f(x, y) =
√
1− y2 is continuous in x everywhere. For y we want 1− y2 ≥ 0 or y2 ≤ 1.

The point y0 = 1 satisfies this. Now fy = −2y
2
√

1−y2
. We want 1− y2 > 1 or y2 < 1. The

point y0 does not satisfy this. Hence theory says nothing about uniqueness. Solution
can be unique or not. When the ode has form y′ = f(y) we always check if IC satisfies
the ode. In this case y(x) = 1 does satisfy the ode. So this means y(x) = 1 is solution.
We do not need to solve by integration. But if we did, we will obtain the following

dy√
1− y2

= dx

arcsin (y) = x+ c

y = sin (x+ c)

At initial conditions the above gives 1 = sin c. Hence c = π
2 . Therefore solution is

y = sin
(
x+ π

2

)
= cosx. So this is another solution that satisfies the ode. Solution is

not unique.



chapter 1 . f irst order ode 12

1.1.1.6 Example 6

y′ =
√

1− y2 + x

y(0) = 1

f(x, y) =
√
1− y2 + x is continuous in x everywhere. For y we want 1 − y2 ≥ 0 or

y2 ≤ 1. The point y0 = 1 satisfies this. Now fy = −2y
2
√

1−y2
. We want 1− y2 > 1 or y2 < 1.

The point y0 does not satisfy this. Hence theory does not apply.

In this case the ode has form y′ = f(x, y) and not y′ = f(y). So we can not just check
if initial conditions satisfies the ode and use that as solution. If we did, we see that
y(x) = 1 does satisfy the ode at x = 0 but this will be wrong solution. In this case we
have to go ahead and solve the ode. In this case we will find that no general solution
exists.

1.1.1.7 Example 7

y′ =
√
1− y2

y(0) = 2

f(x, y) =
√
1− y2 is continuous in x everywhere. For y we want 1− y2 ≥ 0 or y2 ≤ 1.

The point y0 = 2 does not satisfy. Hence theorem does not apply. We just need any
solution that satisfies the ode. Since the ode has form y′ = f(y) and not y′ = f(x, y)
then we always try y(x) = y0 to see if it satisfies the ode. Substituting y = 2 into the
ode gives

0 =
√
1− y2

=
√
1− 4

Therefore this solution did not work. In this case we have to solve the ode by integration
which gives

dy√
1− y2

= dx

arcsin (y) = x+ c

y = sin (x+ c)

At initial conditions the above gives 2 = sin c. Or c = arcsin (2). Hence the solution is

y(x) = sin (x+ arcsin (2))
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1.1.1.8 Example 8

y′ = 1
y

y(1) = 0

By Existence and uniqueness, we see f(x, y) is not defined at y0 = 0. Hence theorem
does not apply. Since ode has form y′ = f(y) we now check if IC satisfies the ode itself.
Plugging in y = 0 into the ode is not satisfied due to 1

0 . So we have to solve the ode in
this case. integrating gives

∫
ydy =

∫
dx

1
2y

2 = x+ c

At IC this gives

0 = 1 + c

c = −1

Hence solution is
1
2y

2 = x− 1

y(x) = ±
√
2 (x− 1)

We see solution is not unique.

1.1.2 Existence and uniqueness for linear first order ode in y

These are ode’s in the form
y′ + p(x) y = q(x)

The theorem says that if both p(x) , q(x) are continuous at x0 then solution exists and
is unique. Notice that now we do not check on y0 but only on x0. We get both existence
and uniqueness all in one test. If either p or q are not continuous, then no guarantee
solution exist or be unique.
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1.1.2.1 Example 1

y′ = y

x
y(0) = 1

In standard form y′ − p(x) y = q(x). So p = −1
x
, q = 0. Hence the domain of p is all

x except x = 0. Domain of q is all x. Since the IC includes x = 0 then no guarantee
solution exists or be unique. Theory does not say anything. We have to try to solve the
ode to find out. Solving gives

y = cx

As solution. Applying I.C. gives
1 = 0

Not possible. Therefore no solution exist.

1.1.2.2 Example 2

y′ = y

x
y(0) = 0

In standard form y′ − p(x) y = q(x). So p = −1
x
, q = 0. Domain of p is x 6= 0. Domain

of q is all x. Since IC includes x = 0 then theory says nothing about existence and
uniqueness. We have to solve the ode to find out. Solving gives

y = cx

Applying I.C. gives
0 = 0

Which is true for any c. Hence solution exist which is y = cx for any c. Hence solution
is not unique. There are ∞ number of solutions.

1.1.2.3 Example 3

y′ = y

x
y(1) = 0
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In standard form y′ − p(x) y = q(x). So p = −1
x
, q = 0. The domain of p is all x except

x = 0. Domain of q is all x. Since IC does not include x = 0 then solution is guaranteed
to exist and be unique in some region near x = 1. Solving gives

y = cx

As solution. Applying I.C. gives
0 = c

Hence the unique solution is
y = 0 x > 0

Solution exists and is unique. Solution can only be in the right hand plan which includes
x = 1 and it can not cross x = 0. i.e. solution is y = 0 for all x > 0. If IC was y(−1) = 0
then the solution would have been y = 0 for all x < 0.

1.1.2.4 Example 4

y′ = 1
2
√
x

y(0) = 1

In standard form y′ − p(x) y = q(x). Hence p = −1
2
√
x
, q = 0. Domain of p is x > 0 (to

avoid complex numbers) and the domain for q is all x. Combining these gives x > 0.
Since IC includes x = 0 then the theory does not apply. Solving the ode gives

y =
√
x+ c

At (x0, y0) the above gives
1 = c

Hence solution is
y =

√
x+ 1 x > 0

So here solution exists and is unique. Even though theory did not apply.
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These are first order ode’s which are linear in y′ but can be nonlinear in y.

1.2.1 Flow charts

1.2.1.1 First flow chart

First order ODE where y′ is linear f(x, y, y′) = 0

Solved by integration

y′ = f(x)

y =
∫

f dx+ c

Linear. Solved by finding
an integrating factor.

y′ + f(x)y = g(x)

Separable. Solved by
separation and then
integration.

y′ = F (x, y)
= f(x)g(y)

Homogeneous type A.

y′ = f
(y
x

)
Solved using substitution
y = ux which converts to
separable ode.

Homogeneous type C.
ODE has the form

y′ = (a+ bx+ y)
1
n

y′ = (a+ bx+ y)n

Where n is integer not
one. Solve by substitution
z = (a+ bx+ y). See
example

This is called
homogeneous type Maple
C. This is different from
what is called just
homogeneous type C
above. ODE has the form

y′ = f(x, y)
g(x, y)

Solved using
transformation
x = X + x0, y = Y + y0 to
convert to homogeneous
type A. See this

Bernoulli y′ + Py = Qyn

where n 6= 1, n 6= 0.
Solved using substituion
v = y1−n which converts
the ode to linear one
v′ +(1−n)Pv = (1−n)Q.

Exact. ODE has the form

y′ = −M(x, y)
N(x, y)

Or as typically written

M(x, y)dx+N(x, y)dy = 0

Where ∂M
∂y = ∂N

∂x

Not Exact, but can find
integrating factor which
makes it exact. ODE has
the form

y′ = −M(x, y)
N(x, y)

Or as typically written

M(x, y)dx+N(x, y)dy = 0

Where ∂M
∂y 6= ∂N

∂x but can
find integrating factor µ
such that ∂(µM)

∂y = ∂(µN)
∂x

Riccati. ODE has any of
these forms

y′ = f0(x) + f1(x)y + f2(x)y2

y′ = f0(x) + f2(x)y2

Where f0 6= 0. An
example if y′ = x2 − y2.
Solved by using
transformation y = u′

f2u
which generates second
order ode in u to solve.

Isobaric. Generalization of
homogeneous where the
substitution y = vxm

makes the ODE separable.
The weight m here need
not be 1 as the case with
homogeneous. An
example is
2x3y′ = 1 +

√
1 + 4x2y

where weight m = −2
here and y = vx( − 2)
makes the ode separable.

Special form called
SpecialFormIDOne for
ode of form

y′ = g(x)ea(x)+by + f(x)

Solved by substitution
u = e−by which converts
the ode to linear. b must
not depend on x.

First order differential
type. These are special
ode’s which can written
as complete differential
d(f(x, y)) = d(g(x, y))
which is then solved by
just integrating. For an
example y′ = x−y

x+y can be
written
y dy = d

( 1
2x

2 − xy
)
which

is now solved by
integrating both sides.
See this

Polynomial ode. ODE of
the form

y′ = a1x+ b1y + c1
a2x+ b2y + c2

Where the two lines can
be either parallel or not.

First order
q(x)y′ + r(x)y = f(x)
solved using series
method. Submethods
supported are

1. Irregular singular
point

2. Ordinary point
3. Ordinary point

Regular singular
point

Expansion around point
other than zero is also
supported, including
initial conditions.

Abel first kind. ODE of
the form

y′ = f0(x) + f1(x)y
+ fx(x)y2 + f3(x)y3

Currently the solver
detect this ODE and
evaluates the Abel
invariant only.

First order ode
q(x)y′ + r(x)y = f(x)
solved using Laplace
method.

Figure 1.1: Flow chart for first order linear in y′ solver
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1.2.1.2 Second flow chart

This flow chart contains more details on the exact solver for first order ode.

ode

first order F (x, y, y′) = 0

linear in y′. Hence y′ = f(x, y) non-linear

separable

if ODE has the form
y′ = P (x)Q(y).
Example y′ = xy,
then it is separable.

dy

Q(y) = P (x) dx∫
dy

Q(y) =
∫

P (x) dx

and solve for y

Linear. Solve with
integrating factor

if ODE has this form
y′ + P (x)y = Q(x)
Example y′ + xy = 2x,
then Integrating factor
µ =

∫
eP (x) dx, hence

d(µy) = µQ(x)

µy =
∫

µQ(x) + c

ODE is exact or can be made exact. Write
ODE in form M(x, y)dx+N(x, y)dy = 0

∂M
∂y = ∂N

∂x ?

Example
2xy dx+ (x2 + cos y) dy = 0

ex.
(2y2x− y)dx+ xdy = 0.
Find integrating factor µ

yes no

Set up these two equations

dU

dx
= M

dU

dy
= N

From first equation find
U =

∫
M dx+ f(y) where

f(y) is some arbitrary
function of y only. Using
second equation now solve
for f(y). The final
solution is U = c where c
is constant.

Multiply the original ODE
by the found integrating
factor µ

M = µM

N = µN

A =
∂M
∂y

− ∂N
∂x

N

is A function of x alone?
yes no

µ = e
∫
Adx

B =
∂N
∂x

− ∂M
∂y

M

is B function of y alone?
yes no

µ = e
∫
B dy

Try other
methods. see
above

And follow same method

We come here if ODE is
not separable, not exact,
and can not be made
exact. Example is
y′ = ye

y
x +y
x . With ODE

in form dy
dx = f(x, y),

replace y in RHS with
y = ux where u = u(x).
If RHS now only has u
in it, then ODE is
homegeneous. Apply
transformation y = ux it
will become separable.

Not linear
Canonical form y′ = f0 + f1y + f2y

2 + f3y
3

f0 = 0, f3 = 0
Bernoulli. Example
y′ = xy + y2

f3 = 0 Riccati.
Example
y′ = 1 + xy + y2

f3 ̸= 0 Abel first
kind. Example
y′ = 1+xy+y2+xy3

we start by divinding
by y2. Then let u be
the coefficient of x
term left on the
right. Example using
the above ode.

y′

y2
= x

y
+ 1

Let u = 1
y or y = 1

u ,
hence y′ = −u′

u2 ,
subtituting back
gives u′ + xu = 1
which is linear in u
and solved using
integrating factor.
Hence y is now
found. Nasser M. Abbasi August 20, 2016. d1.ipe

know particular solution yp?

yes No

use substitution
y = yp + 1/u

use substitution y = − u′

uf2
this leads to second order
ODE which can be solved

To do. Few Abel ODE can be solved exactly.

R =
∂N
∂x

− ∂M
∂y

xM−yN

is R function of t = xy alone?

yes no

µ = e
∫
Rdt

Figure 1.2: Additional flow chart for first order linear in y′ and exact solver



chapter 1 . f irst order ode 19

1.2.2 Quadrature ode

y′ = f(x)
y′ = f(y)

The following flow chart gives the algorithm for solving quadrature ode.

y′ = f(y) or y′ = f(x)

Integrate both sides and
apply IC if give to solve
for IC.

y′ = f(y) y′ = f(x)

IC are givenNO IC are given

Integrate both sides.
This gives general
solution with constant
of integration.

Integrating gives

∫ 1
f(y) dy = x+ c1

Result of
∫ 1

f(y) dy contains all
ln as functions of y

Result of
∫ 1

f(y) dy is not all ln
as functions of y

In this case, apply exponential to
both sides and solve for IC from
the transformed equation. Then
plugin the solution for c1 back
into the transformed equation,

In this case, solve for c1 directly.

first_order_quad_algorithm,ipe

Figure 1.3: Flow chart for first order quadrature

ode internal name "quadrature"

Solved by direct integration. For the first form the solution is y =
∫
f(x) dx+ c. And

for the second form the solution is
∫

dy
f(y) =

∫
dx or

∫
dy
f(y) = x+ c. These two forms are

special cases of separable first order ode y′ = f(x) g(y) .

1.2.2.1 Example 1

y′ = y

y(0) = 1

Solution exists and unique. Integrating gives

ln y = x+ c

y = cex
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Applying IC gives
1 = c

Hence solution is
y = ex

1.2.2.2 Example 2

y′ = y − 1
y(0) = 1

Solution exists and unique. Integrating gives

ln (y − 1) = x+ c

y − 1 = cex

Applying IC gives
0 = c

Hence solution is

y − 1 = 0
y = 1

1.2.2.3 Example 3

y′ = x

y(0) = 1

Integrating gives
y = x2

2 + c

Applying IC gives
1 = c

Hence solution is
y(x) = x2

2 + 1
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1.2.2.4 Example 4

y′ = sin y + 1
y(0) = π

This has unique solution. Integrating and solving for c results in the solution

y = 2arccos
(

−x√
4 + 4x+ 2x2

)

1.2.2.5 Example 5

y′ = y(y − 1) (y − 3)
y(0) = 4

A solution exist an is unique. Integrating gives

∫
dy

y (y − 1) (y − 3) =
∫
dx

1
3 ln y + 1

6 ln (y − 3)− 1
2 ln (y − 1) = x+ c1 (1)

Applying initial conditions gives

1
3 ln 4 + 1

6 ln (1)− 1
2 ln (3) = c1

1
3 ln 4− 1

2 ln (3) = c1

Hence the solution from (1) is

1
3 ln y + 1

6 ln (y − 3)− 1
2 ln (y − 1) = x+ 1

3 ln 4− 1
2 ln (3)

Lets see what happens if we convert to exponential first. Applying exponential to both
sides of (1) gives

exp
(
ln y 1

3 + ln (y − 3)
1
6 + ln (y − 1)

−1
2

)
= c2e

x

y
1
3 (y − 3)

1
6

(
1√
y − 1

)
= c2e

x

y
1
3 (y − 3)

1
6

√
y − 1

= c2e
x (2)
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At IC
4 1

3 (4− 3)
1
6

√
4− 1

= c2

4 1
3

√
3
= c2

Hence the solution from (2) is

y
1
3 (y − 3)

1
6

√
y − 1

= 4 1
3

√
3
ex

And this is also correct. I prefer to convert to exponential when the solution has the
form f(y) = cg(x) where f(y) is made up of all ln as functions of y. This makes
finding constant of integration easier in all cases.

1.2.2.6 Example 6

y′ = ay − by2

y(0) = y0

A solution exist an is unique. Integrating gives∫
dy

ay − by2
=
∫
dx

1
a
ln y − 1

a
ln (by − a) = x+ c1

ln y − ln (by − a) = ax+ ac1
y

by − a
= eax+ac1

y

by − a
= c2e

ax

y = c2bye
ax − ac2e

ax

y(1− c2be
ax) = −ac2eax

y = −ac2eax

1− c2beax

= ac2e
ax

c2beax − 1
= ac2
c2b− e−ax

= a

b− 1
c2
e−ax

= a

b+ c3e−ax
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Applying IC

y0 =
a

b+ c3
(b+ c3) y0 = a

by0 + c3y0 = a

c3 =
a− by0
y0

Hence the solution becomes

y = a

b+
(

a−by0
y0

)
e−ax

= ay0
by0 + (a− by0) e−ax

1.2.3 Linear ode
y′ + p(x) y = q(x)

ode internal name "linear"

Solved by finding integration factor µ = e
∫
p(x)dx. The ode then becomes d

dx
(µy) = µq.

Integrating gives µy =
∫
µqdx+ c or

y = 1
µ

(∫
µqdx+ c

)
1.2.3.1 Example 1

y′ − 1
2
√
x
y = x

y(0) = 1

The above shows that p(x) = 1
2
√
x
and q(x) = x. The domain of p(x) is all the real

line except x = 0 and domain of q(x) is all the real line. Combining domains gives all
the real line except x = 0. Since initial x0 is x = 0 which is outside the domain, then
uniqueness and existence theory do not apply. Solving gives

y = −2x 3
2 − 12

√
x− 6x− 12 + c1e

√
x

Applying IC

1 = −12 + c1

c1 = 13
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Hence solution is

y = −2x 3
2 − 12

√
x− 6x− 12 + 13e

√
x x 6= 0

In this case, solution exists and unique.

1.2.3.2 Example 2

y′ − y

x
= 0

y(0) = 1

The above shows that p(x) = 1
1 .The domain of p(x) is all the real line except x = 0.

Since initial x0 is x = 0 which is outside the domain, then uniqueness and existence
theory do not apply. We are not guaranteed solution exist or if it exist, is unique.
Solving gives

y = c1x

Applying IC gives
1 = 0

Which is not possible. Hence no solution exist.

1.2.3.3 Example 3

y′ + 2y cot (2x) = 4x csc (x) sec2 (x)
Hence p = 2 cot (2x) , q = 4x csc (x) sec (x)2. Therefore the integrating factor is

µ = e
∫
p(x)dx

= e
∫
2 cot(2x)dx

= e−
1
2 ln
(
1+cot2(2x)

)
= 1√

1 + cot2 (2x)
Then the ode becomes

d

dx
(yµ) = µ4x csc (x) sec2 (x)

d

dx

(
y

1√
1 + cot2 (2x)

)
= 1√

1 + cot2 (2x)
4x csc (x) sec2 (x)

y√
1 + cot2 (2x)

=
∫ 4x csc (x) sec2 (x)√

1 + cot2 (2x)
dx+ c1

y =
√

1 + cot2 (2x)c1 +
√

1 + cot2 (2x)
∫ 4x csc (x) sec2 (x)√

1 + cot2 (2x)
dx



chapter 1 . f irst order ode 25

1.2.3.4 Example 4

y′ + y cot (x) = cos x
y(0) = 0

We see that y′ = cosx− y cot (x). Because cot (x) is 1
tan(x) which is not defined at x = 0

then uniqueness and existence theory do not apply. Here we have p = cot (x) , q = cos (x).
Therefore the integrating factor is

µ = e
∫
p(x)dx

= e
∫
cot(x)dx

= eln(sinx)

= sin x

Then the ode becomes

d

dx
(yµ) = µ cosx

d

dx
(y sin x) = sin x cosx

y sin x =
∫

sin x cosx dx+ c1

y = 1
sin xc1 +

1
sin x

∫
sin x cosx dx

= 1
sin xc1 +

1
sin x

sin2 x

2
= 1

sin xc1 +
sin x
2

y sin x = c1 +
1
2 sin x

At y(0) = 0 the above results c1 = 0. Hence the solution is

y = sin x
2

Therefore no solution exists.
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1.2.4 Separable ode

y′ = F (x, y)
= f(x) g(y)

The following flow chart gives the algorithm for solving separable ode.

y′ = F (x, y)

y′ = F (x, y)
y(x0) = y0

Initial conditions (x0, y0) given No initial conditions

Apply theoreom
of existence and
uniquness

solution exists and unique solution does not exist
or not unique

Separate
F (x, y) = g(y)f(x) and
ode becomes
y′ = g(y)f(x)

Separate
F (x, y) = g(y)f(x)

g(y) = 0 at
y = y0

g(y) ̸= 0 at
y = y0

Can not separate as can not
divide by g(y) because g(y) = 0
at initial conditions. In this case
solution is y = y0 because
solution is unique and hence
only one solution exists.
For example, the ode y′ = yx
with y(x0) = 0 has solution
y = 0. The ode y′ = cos(y)x
with y(x0) = π

2 has solution
y = π

2

Divide by g(y) and integrate
both sides and apply IC to solve
for constant of integration.

Divide by g(y) and integrate
both sides. And solve for
constant of integration. Even if
g(y0) = 0 in this case, we go
ahead and separate and
integration. It is possible to get
no solution or inifinite number of
solutions or one solution. For
example y′ = y/x with
x0 = 0, y0 = 0. The solution is
y = cx for any c. But y′ = y/x
with x0 = 0, y0 = 1 has no
solution.

Separate
F (x, y) = g(y)f(x) and
ode becomes
y′ = g(y)f(x)

Divide by g(y) and integrate
both sides. Solution contains
constant of integration.

Note. For separable F (x, y) must
depend on both x and y, else
it will be quadrature ode. See
the quadrature ode flow chart for
that.

Figure 1.4: Flow chart for first order separable

ode internal name "separable"
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Solved by separating and integrating. dy
dx

1
g(y) = f(x). Integrating gives

∫ 1
g
dy =

∫
fdx. If

it is possible to do the integration of the LHS then explicit solution in y is obtained else
the solution is implicit. The most difficult part is to determine that a given expression
F (x, y) is separable or not. i.e. given y′ = F (x, y) to find f(x) and g(y) . Code in solver
is over 600 lines long just to determine this due to many edge cases.

1.2.4.1 Example

Solve

y′ = y3 sin x
y(0) = 0

From uniqueness and existence theory we see that solution to y′ = y3 sin x exist and
is unique. This is because f = y3 sin x is continuous everywhere (hence solution exist)
and fy = 3y2 sin x is also continuous everywhere (hence uniqueness is guaranteed).

This is little more tricky than it looks. Notice that y = 0 at x = 0. This is special IC,
because this means if we start by dividing both sides by y3 to separate them as we
normally do, this gives

dy

y3
= sin xdx

But when we get to later on (after integration and adding constant of integration) to
solve for c we will have problems. The reason is, we should not divide by y in first
place, since y = 0 at initial conditions. In this special IC case, then at x = 0 the ode is

y′ = 0

Hence y = C1. But since the solution is guaranteed to be unique, then C1 must be zero
to give y = 0 as only one value of y(x) can exist. Hence this is the solution. This way
we do not even have to integrate or solve for constant of integration. If we were not
given IC, then we do as normal and now can divide by y. Assuming y 6= 0 then the ode
becomes

dy

y3
= sin xdx

Integrating gives

− 1
2y2 = − cosx+ c

1
y2

= 2 cos x− 2c

1
y2

= 2 cos x+ c1 (1)
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Hence
y2 = 1

2 cos x+ c1

Therefore
y = ± 1√

2 cos x+ c1
(2)

So we should always start, when IC are given, by checking uniqueness and existence
and never divide by y if y = 0 at initial conditions. In all other cases, we can divide to
separate. Lets do more examples on this to practice.

1.2.4.2 Example

Solve

y′ = y(x− 1)
y(2) = 0

f = y(x− 1) which is clearly continuous everywhere and so is fy. Hence it is guaranteed
that solution exist and unique. Since y = 0 at initial conditions, then we can’t divide
by y to separate. So we use the alternative method. At IC the ode itself becomes

y′ = 0

Hence
y = c

Since y is constant, then y = 0 because it can only have one value due to uniqueness.
Therefore the solution is

y = 0

Let now look at the general case to make things more clear.

1.2.4.3 Example

Solve
y′ = f(y) g(x)

Such that f(y) g(x) is continuos everywhere and fyg is also. Hence it is guaranteed that
solution exist and unique. Let initial conditions be such that f(y0) = 0. For example,
if f(y) = y and y(0) = 0. In this case, we can not separate using

dy

f (y) = g(x)
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Since f(y) = 0 at I.C. So we use the short cut method. Substituting IC into the ode
gives

y′ = 0
y = c

But since the solution is unique, then C1 = 0 since y = 0 is given and only one solution
y(x) can exist. Hence this is the solution.

y = 0

So the bottom line is this: Given a first order ode y′ = f(y) g(x) where the solution
exist and unique and f(y) = 0 at IC, then the solution is always

y = 0

Lets look at another special case ode.

1.2.4.4 Example

Solve

y′ = y

x
y(0) = 1

We see that f = y
x
is not continuous at x = 0. Hence by uniqueness and existence

theorem, there is no guarantee that solution exist. (Notice we do not say that no
solution exist, as there might be one, but there is no guarantee that one exists using
the theorem).

1.2.5 Homogeneous ode

y′ = F
(y
x

)
ode internal name "homogeneous"

This is called Homogeneous type A in Maple. Solved by substituting y = ux which
converts it to separable ode. A homogeneous ode has the form y′ = f(x, y) where
tf(x, y) = f(tx, ty). In solving these types of problems, separable is called. It is best to
return implicit solution from separable and not explicit. This makes the substitution
u = y

x
easier. If explicit solution is needed, it can be done after this operation is done.
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1.2.5.1 Example 1

xy′ − y − 2√yx = 0

y′ = y

x
+ 2
x

√
yx

For real x

dy

dx
= y

x
+ 2
√
yx

x2

= y

x
+ 2
√
y

x

Let u = y
x
, hence dy

dx
= xdu

dx
+ u and the above ode becomes

x
du

dx
+ u = u+ 2

√
u

x
du

dx
= 2

√
u

du

u
1
2
= 2
x
dx

Which is separable. If we do not obtain separable ode, then we have made mistake.
Integrating gives ∫

u
−1
2 du =

∫ 2
x
dx

2u 1
2 = 2 ln x+ c1

u
1
2 = ln x+ c2

Replacing u = y
x
gives √

y

x
= ln x+ c2

1.2.5.2 Example 2

dy

dx
= 2y2 − xy

3xy − 2x2
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Let y = ux or u = y
x
, hence dy

dx
= xdu

dx
+ u and the above ode becomes

x
du

dx
+ u = 2u2x2 − x2u

3x2u− 2x2

x
du

dx
+ u = 2u2 − u

3u− 2

x
du

dx
= 2u2 − u

3u− 2 − u

= 2u2 − u

3u− 2 − u(3u− 2)
3u− 2

= (2u2 − u)− u(3u− 2)
3u− 2

= 2u2 − u− 3u2 + 2u
3u− 2

= −u2 + u

3u− 2

= u(1− u)
3u− 2

Hence
du

dx
=
(
1
x

)(
u(1− u)
3u− 2

)
Which is separable. If we do not obtain separable ode, then we have made mistake.
Integrating gives ∫ 3u− 2

u (1− u)du =
∫ 1
x
dx

−2 ln u− ln (u− 1) = ln x+ c1

Replacing u = y
x
gives

−2 ln
(y
x

)
− ln

(y
x
− 1
)
= ln x+ c1

ln
(
x2

y2

)
− ln

(
y − x

x

)
= ln x+ c1

ln
(
x2

y2

)
+ ln

(
x

y − x

)
= ln x+ c1

Applying exponential to each side gives(
x2

y2

)(
x

y − x

)
= c2x (1)
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Lets say that we had also initial conditions y(1) = −1, then the above gives(
1

−1− 1

)
= c2

−1
2 = c2

Therefore the solution (1) becomes(
x2

y2

)(
x

y − x

)
= −1

2x

1.2.5.3 Example 3

dy

dx
= 2(2y − x)

x+ y

y(0) = 2

Let y = ux or u = y
x
, hence dy

dx
= xdu

dx
+ u and the above ode becomes

x
du

dx
+ u = 2(2ux− x)

x+ ux

x
du

dx
+ u = 2(2u− 1)

1 + u

x
du

dx
= 2(2u− 1)

1 + u
− u

= 2(2u− 1)− u(1 + u)
1 + u

= −u2 + 3u− 2
1 + u

This is separable

1 + u

−u2 + 3u− 2du = 1
x
dx

Integrating ∫ 1 + u

−u2 + 3u− 2du =
∫ 1
x
dx

−3 ln (u− 2) + 2 ln (u− 1) = ln x+ c
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Replacing u = y
x
gives

−3 ln
(y
x
− 2
)
+ 2 ln

(y
x
− 1
)
= ln x+ c

−3 ln
(
y − 2x
x

)
+ 2 ln

(
y − x

x

)
= ln x+ c

ln
(

x

y − 2x

)3

+ ln
(
y − x

x

)2

= ln x+ c (1)

Note on the power rule for log. n ln (m) = ln (mn) is valid for m > 0 and in real domain.
So in this above we implicitly assumed this is true in order to write −3 ln

(
y−2x
x

)
as

ln
(

x
y−2x

)3
. Now, taking exponential of (1) gives(

x

y − 2x

)3(
y − x

x

)2

= c1x

x3

(y − 2x)3
(y − x)2

x2
= c1x

x(y − x)2

(y − 2x)3
= c1x

(y − x)2

(y − 2x)3
= c1 (2)

At y(0) = 2 then

(2)2

(2)3
= c1

1
2 = c1

Hence the solution from (2) becomes

(y − x)2

(y − 2x)3
= 1

2

It is important in these kind of problems where left side has ln as function of y(x) is
to take exponential. Lets see what happens of we do not. Starting again from (1) and
let us try to solve for IC from (1) as is

ln
(

x

y − 2x

)3

+ ln
(
y − x

x

)2

= ln x+ c

At y(0) = 2 the above becomes

ln (0)3 + ln
(
2
0

)2

= ln 0 + c
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We see this will not work. These types of issues are easy to work around when solving
by hand and looking at equations. But very hard to program since the code has to
handle any form of expression.

1.2.5.4 Example 4

dy

dx
= 1 + y

2x
y(0) = 0

The RHS is not defined at x = 0, therefore existence and uniqueness theorem does
not apply. Lets solve this as linear ode and not as homogeneous first to show that we
obtain same solution. It is much easier to solve this as linear ode.

dy

dx
− y

2x = 1

Integrating factor is I = e
∫
− 1

2xdx = e−
1
2 lnx = x−

1
2 = 1√

x
. Hence the above becomes

d

dx
(yI) = I

Integrating
y√
x
=
∫ 1√

x
dx

= 2
√
x+ c

y = 2x+ c
√
x

At y(0) = 0
0 = 0 + (0) c

Which is true for any c. Therefore there are infinite number of solutions. The solution
is

y = 2x+ c
√
x

Now we solve as homogeneous ode. Let y = ux or u = y
x
, hence dy

dx
= xdu

dx
+ u and the

above ode becomes

x
du

dx
+ u = 1 + ux

2x
x
du

dx
+ u = 1 + u

2
x
du

dx
= 1 + u

2 − u

x
du

dx
= 2− u

2
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This is separable
2

2− u
du = 1

x
dx

Integrating ∫ 2
2− u

du =
∫ 1
x
dx

−2 ln (u− 2) = ln x+ c

= ln (c1x)

Replacing u = y
x
gives

−2 ln
(y
x
− 2
)
= ln (c1x)

−2 ln
(y
x
− 2
)
− ln (c1x) = 0

ln
(

x

(y − 2x)2 c1

)
= 0

Taking exponential
x

c1 (y − 2x)2
= 1

x = c1(y − 2x)2

Apply IC y(0) = 0
0 = c1(0)

Which is true for any c1. Hence solution is

1
c1

√
x = y − 2x

y = 2x+ 1
c1

√
x

Or
y = 2x+ c2

√
x

Which is same as earlier solution.
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1.2.5.5 Example 5

dy

dx
= y2 − x2 − 2xy
y2 − x2 + 2xy

y(1) = −1

At x = 1, y = −1 then f(x, y) = y2−x2−2xy
y2−x2+2xy is defined. And fy is also defined at

x = 1, y = −1. Hence a unique solution exist.

Let y = ux or u = y
x
, hence dy

dx
= xdu

dx
+ u and the above ode becomes

x
du

dx
+ u = u2x2 − x2 − 2ux2

u2x2 − x2 + 2ux2

x
du

dx
+ u = u2 − 1− 2u

u2 − 1 + 2u

x
du

dx
= u2 − 1− 2u
u2 − 1 + 2u − u

= u2 − 1− 2u− u(u2 − 1 + 2u)
u2 − 1 + 2u

= −u
3 + u2 + u+ 1
u2 − 1 + 2u

This is separable.
du

dx

(
u2 + 2u− 1

u3 + u2 + u+ 1

)
= −1

x

Integrating gives ∫
u2 + 2u− 1

u3 + u2 + u+ 1du = −
∫ 1
x
dx

− ln (1 + u) + ln
(
1 + u2

)
= − ln x+ c1

Replacing u = y
x
gives

− ln
(
1 + y

x

)
+ ln

(
1 + y2

x2

)
= − ln x+ c



chapter 1 . f irst order ode 37

Applying exponential to each side gives(
1 + y

x

)−1
(
1 + y2

x2

)
= c1

1
x(

x

x+ y

)(
x2 + y2

x2

)
= c1

1
x(

x2

x+ y

)(
x2 + y2

x2

)
= c1

x2 + y2 = c1(x+ y)
1
c1

(
x2 + y2

)
= x+ y

c2
(
x2 + y2

)
= x+ y (1)

At y(1) = −1 the above gives
2c2 = 0

Hence
c2 = 0

Therefore from (1)

x+ y = 0
y = −x

1.2.6 Homogeneous type C y′ = (a+ bx+ cy)
n
m

ode internal name "homogeneousTypeC"

Ode has the form y′ = (a+ bx+ cy)
n
m where n,m integers. Solved by substituting

z = (a+ bx+ cy) .

1.2.6.1 Introduction

This note is about solving a first order ode of the form y′ = (a+ bx+ cy)
1
n and

y′ = (a+ bx+ cy)m where n,m 6= 1 and are integers. This is of the form y′ = f(x, y)
1
n

and y′ = f(x, y)m. Where f(x, y) must be linear in both y and x. The reason it needs
to be linear in x so that the transformed ode in z becomes separable.

One way to solve y′ = (a+ bx+ cy)
1
n is to raise both sides to n. For example for n = 2

the ode becomes (y′)2 = (a+ bx+ cy) which can be solved as d’Alembert.

This is what Maple seems to do based on what the Maple advisor says about the type
of this ode being d’Alembert.
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But the problem with squaring both sides or raising both sides of ode to some power
is that this will introduce extraneous solutions to the original ode. Hence it is will be
better to avoid doing this if at all possible.

The following methods solve these odes without having to square or raise both sides to
same power and eliminate the introduction of extraneous solutions.

It is important to note that f(x, y) must be linear in x, y and not have product terms
xy.

1.2.6.2 Solving y′ = (a+ bx+ cy)
1
n

For n integer 6= 1 which can be negative or positive, the ode is

dy

dx
= (a+ bx+ cy)

1
n (1)

Let z = a+ bx+ cy then

dz

dx
= b+ c

dy

dx
dy

dx
=
(
dz

dx
− b

)
1
c

Hence (1) becomes (
dz

dx
− b

)
1
c
= z

1
n

dz

dx
= cz

1
n + b∫

dz

cz
1
n + b

=
∫
dx (2)

If the left side is integrable, then the solution to (1) can be found. For n integer it is
possible to find antiderivative. For example for n = 2 then (2) becomes

2
c

√
z −

2b ln
(
b+ c

√
z
)

c2
= x+ C1

Replacing back z = a+ bx+ cy the above becomes

2
c

√
a+ bx+ cy −

2b ln
(
b+ c

√
a+ bx+ cy

)
c2

= x+ C1 (3)

Which is the implicit solution to (1).
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To show that the above does not work if we had xy term, lets give an example. Let
y′ = (a+ xy)

1
2 , then following the above, let z = a+ xy and dz

dx
= y + xy′ or y′ =

dz
dx

−y

x
.

Hence z 1
2 =

dz
dx

−y

x
or xz 1

2 + y = dz
dx

and this is not separable. (it is Chini ode, where is
very hard to solve).

for n = 2. Using a = 1, b = 1, c = 1 Eq. (1) becomes

dy

dx
= (1 + x+ y)

1
2

And (3) becomes

2
√

1 + x+ y − 2 ln
(
1 +

√
1 + x+ y

)
= x+ C1 (4)

And for n = 3 Eq. (2) becomes

3
(
−2b+ cz

1
3

)
2c2 z

1
3 +

3b2 ln
(
b+ cz

1
3

)
c3

= x+ C1

Replacing back z = a+ bx+ cy the above becomes

3
(
−2b+ c(a+ bx+ cy)

1
3

)
2c2 z

1
3 +

3b2 ln
(
b+ c(a+ bx+ cy)

1
3

)
c3

= x+ C1 (5)

Which is the implicit solution to (1) for n = 3. Using a = 1, b = 1, c = 1 then (1)
becomes

dy

dx
= (1 + x+ y)

1
3

And its solution (5) becomes

3
2

(
−2 + (1 + x+ y)

1
3

)
(1 + x+ y)

1
3 + 3 ln

(
1 + (1 + x+ y)

1
3

)
= x+ C1

And so on for higher values of n. This also works negative values of n. For example, for
n = −2 then (1) becomes

dy

dx
= (a+ bx+ cy)

−1
2

And the integral equation (2) now becomes∫
dz

cz
−1
n + b

=
∫
dx

Which for n = 2 gives

1
b3
(
−2bc

√
z + b2z + 2c2 ln

(
c+ b

√
z
))

= x+ C1
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Replacing back z = a+ bx+ cy the above becomes

1
b3

(
−2bc

√
a+ bx+ cy + b2(a+ bx+ cy) + 2c2 ln

(
c+ b

√
a+ bx+ cy

))
= x+ C1

For a = 1, b = 1, c = 1 the above becomes(
−2
√

1 + x+ y + (1 + x+ y) + 2 ln
(
1 +

√
1 + x+ y

))
= x+ C1

And so on.

1.2.6.3 Solving y′ = (a+ bx+ cy)m

For m integer 6= 1 which can be negative or positive, the ode is

dy

dx
= (a+ bx+ cy)m (1)

Let z = a+ bx+ cy then

dz

dx
= b+ c

dy

dx
dy

dx
=
(
dz

dx
− b

)
1
c

Hence (1) becomes (
dz

dx
− b

)
1
c
= zm

dz

dx
= czm + b∫

dz

czm + b
=
∫
dx (2)

If the left side is integrable, then the solution to (1) can be found. For m integer it is
possible to find antiderivative. For example for n = 2 then (2) becomes

1√
bc

arctan
(√

c

b
z

)
= x+ C1

Replacing back z = a+ bx+ cy the above becomes

1√
bc

arctan
(√

c

b
(a+ bx+ cy)

)
= x+ C1 (3)

Which is the implicit solution to (1).
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for m = 2. For an example, for a = 1, b = 1, c = 1 Eq. (1) becomes

dy

dx
= (1 + x+ y)2

And (3) becomes

arctan (1 + x+ y) = x+ C1

1 + x+ y = tan (x+ C1)
y = tan (x+ C1)− 1− x (4)

And for m = 3 Eq. (2) becomes

−1
6b 2

3 c
1
3

2
√
3 arctan

1− 2
(
c
b

) 1
3 z

√
3

− 2 ln
(
b

1
3 + c

1
3 z
)
+ ln

(
b

2
3 − b

1
3 c

1
3 + c

2
3 z2
) = x+C1

Replacing back z = a+ bx+ cy the above becomes

−1
6b 2

3 c
1
3

2
√
3 arctan

1− 2
(
c
b

) 1
3 (a+ bx+ cy)
√
3

− 2 ln
(
b

1
3 + c

1
3 (a+ bx+ cy)

)
+ ln

(
b

2
3 − b

1
3 c

1
3 + c

2
3 (a+ bx+ cy)2

) = x+C1

(5)
Which is the implicit solution to (1) for m = 3. Using a = 1, b = 1, c = 1 then (1)
becomes

dy

dx
= (1 + x+ y)3

And its solution (5) now simplifies to

−1
6

(
2
√
3 arctan

(
1− 2(1 + x+ y)√

3

)
− 2 ln (2 + x+ y) + ln

(
(1 + x+ y)2

))
= x+ C1

And so on for higher values of m, but solution get complicated very quickly. This
method also works for negative m.

For example, for m = −2 then (1) becomes

dy

dx
= (a+ bx+ cy)−2

And the integral equation (2) now becomes∫
dz

cz−2 + b
=
∫
dx

Which gives

z

b
−

√
c arctan

(√
b
c
z
)

b
3
2

= x+ C1
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Replacing back z = a+ bx+ cy the above becomes

a+ bx+ cy

b
−

√
c arctan

(√
b
c
(a+ bx+ cy)

)
b

3
2

= x+ C1

For a = 1, b = 1, c = 1 the above becomes

(1 + x+ y)− arctan (1 + x+ y) = x+ C1

arctan (1 + x+ y) = (1 + x+ y)− x− C1

arctan (1 + x+ y) = 1 + y − C1

arctan (1 + x+ y) = y + C2

And and so on for = −3,−4, · · · as all of these are integrable but become complicated
very quickly and the computer is needed to find the antiderivatives in these cases.

1.2.6.4 Examples

1.2.6.4.1 Example 1 y′ = (1 + 5x+ y)
1
2

Let z = 1 + 5x+ y, then dz
dx

= 5 + y′. This simplifies to

y′ = z′ − 5(
1 + x2 + y

) 1
2 = z′ − 5
z

1
2 = z′ − 5

dz

dx
= z

1
2 + 5

Which is separable. Hence

dz

z
1
2 + 5

= dx

2
√
z − 5 ln

(
5 +

√
z
)
+ 5 ln

(√
z − 5

)
− 5 ln (z − 25) = x+ C1

Hence the implicit solution is

2
√

1 + 5x+ y − 5 ln
(
5 +

√
1 + 5x+ y

)
+ 5 ln

(√
1 + 5x+ y − 5

)
− 5 ln (1 + 5x+ y − 25) = x+ C1

2
√
1 + 5x+ y − 5 ln

(
5 +

√
1 + 5x+ y

)
+ 5 ln

(√
1 + 5x+ y − 5

)
− 5 ln (5x+ y − 24) = x+ C1

(1)

The above method is now compared to using d’Alembert for solving the ode, which
results after squaring both sides of the given ode. Squaring the ode gives
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(y′)2 = (1 + 5x+ y)
y = (y′)2 − 1− 5x
= x(−5) +

(
p2 − 1

)
= xf(p) + g(p) (2)

Where p = dy
dx
. This is d’Alembert of the form y = xf(p) + g(p) where f(p) = 5 and

g(p) = p2 − 1. Taking derivative of (2) w.r.t. x gives

p = f(p) + x
df

dp

dp

dx
+ dg

dp

dp

dx

p− f(p) =
(
x
df

dp
+ dg

dp

)
dp

dx
(3)

Using f(p) = 5 and g(p) = p2 − 1 the above becomes

p− 5 = 2pdp
dx

dp

dx
= p− 5

2p

Which is separable. Solving for p gives

p = 5LambertW
(
C

5 e
x
10−1

)
+ 5

Substituting this back into (2) gives

y = −5x+
((

5 LambertW
(
C

5 e
x
10−1

)
+ 5
)2

− 1
)

(4)

This is an explicit general solution for the ode y′ = (1 + 5x+ y)
1
2 . The singular solution

is found when dp
dx

= 0 in (3) which gives

p− 5 = 0
p = 5

Eq (2) now becomes

y = −5x+
(
52 − 1

)
= 24− 5x (5)
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However, and this is the problem with squaring the ode, it can be shown that both
solution (4) and (5) do not verify the given y′ = (1 + 5x+ y)

1
2 . What went wrong?

They do verify the ode y′ = −(1 + 5x+ y)
1
2 (with minus sign). This example shows

why one must be careful when squaring both sides of an ode and solving the squared
version. Because the squared version of the ode, when also squaring it, results with
same solutions. Therefore It is better to avoid the squaring operation and to try to find
a method to solve the original ode in its original form.

1.2.6.5 References

1. will-squaring-both-sides-of-the-ode-change-its-type Thanks to this answer which
gave the main hint on how to solve such ode. I expanded this idea for a more
general cases and different exponents.

2. Wikipedia entry on D’Alembert’s equation This show alternative method to solve
the ode for 1

2 .

3. Wikipedia entry on Riccati equation

4. Wikipedia entry on Abel ode

5. paper: Exactness of Second Order Ordinary Differential Equations and Integrating
Factors by R. AlAhmad, M. Al-Jararha and H. Almefleh

1.2.7 Homogeneous Maple type C

y′ = f(x, y)
g (x, y)

ode internal name "homogeneousTypeMapleC"

This is different than the above homogeneous type C. This has the form y′ = f(x,y)
g(x,y)

solved by transformation x = X + x0, y = Y + y0. If able to solve for y0, x0 then the
ode becomes Homogeneous type A.

So what is homogeneous ode of class C ? It is an ode y′ = F (x, y) which is not
homogeneous ode of class A but using the transformation x = X + x0, y = Y + y0 it
can become one. This means if given an ode and it is not homogeneous ode of class A
then if such transformation can be found to convert it to one, it is called homogeneous
ode of class C. The transformed ode is then solved in Y (X) as homogeneous ode and
the solution is transformed back to y(x) using x = X + x0, y = Y + y0. This however
required finding (if possible) the x0, y0. This section illustrates this method with an
example.

https://math.stackexchange.com/questions/4489716/will-squaring-both-sides-of-the-ode-change-its-type
https://en.wikipedia.org/wiki/D%27Alembert%27s_equation
https://en.wikipedia.org/wiki/Riccati_equation
https://en.wikipedia.org/wiki/Abel_equation_of_the_first_kind
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1.2.7.1 Example

y′ = 8y2 + 12xy − 10y − 6x+ 3
y2 + 6xy − 2y + 9x2 − 6x+ 1

Using methods in earlier sections it can be shown that this is not isobaric for any degree
including m = 1 (which means it is not even homogeneous ode of class A, which is
special case of isobaric). Let

x = X + x0

y = Y + y0

The above ode becomes

Y ′ = 8(Y + y0)2 + 12(X + x0) (Y + y0)− 10(Y + y0)− 6(X + x0) + 3
(Y + y0)2 + 6 (X + x0) (Y + y0)− 2 (Y + y0) + 9 (X + x0)2 − 6 (X + x0) + 1

(1)
= F (X,Y )

The question now becomes to find x0, y0 such that the above ode is isobaric of degree 1.
( homogeneous ode of class A). Earlier section showed that this becomes the condition
that

m = −XFX

Y FY
(2)

Where m = 1. Applying the above to (1) and setting m = 1 gives

1 = −
X d

dX

(
8(Y+y0)2+12(X+x0)(Y+y0)−10(Y+y0)−6(X+x0)+3

(Y+y0)2+6(X+x0)(Y+y0)−2(Y+y0)+9(X+x0)2−6(X+x0)+1

)
Y d

dY

(
8(Y+y0)2+12(X+x0)(Y+y0)−10(Y+y0)−6(X+x0)+3

(Y+y0)2+6(X+x0)(Y+y0)−2(Y+y0)+9(X+x0)2−6(X+x0)+1

)
= −

X
(

−6(3X+3Y+3x0+3y0−2)(2Y+2y0−1)
(y0−1+3x0+Y+3X)3

)
Y
(

2(3X+3Y+3x0+3y0−2)(6X+6x0−1)
(y0−1+3x0+Y+3X)3

)
= −X(−6(3X + 3Y + 3x0 + 3y0 − 2) (2Y + 2y0 − 1))

Y (2 (3X + 3Y + 3x0 + 3y0 − 2) (6X + 6x0 − 1))

1 = 3X
Y

2Y + 2y0 − 1
6X + 6x0 − 1

The above is satisfied is 2Y+2y0−1
6X+6x0−1 = 1

3
Y
X
. Which means 6Y+6y0−3

6X+6x0−1 = Y
X
. This implies if

6y0− 3 = 0 and 6x0− 1 = 0 then the equation is satisfied. Therefore a solution is found
which is

6y0 − 3 = 0

y0 =
1
2
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And

6x0 − 1 = 0

x0 =
1
6

Since transformation is found, then substituting the above two equations in (1) gives

Y ′ =
8
(
Y + 1

2

)2 + 12
(
X + 1

6

) (
Y + 1

2

)
− 10

(
Y + 1

2

)
− 6
(
X + 1

6

)
+ 3(

Y + 1
2

)2 + 6
(
X + 1

6

) (
Y + 1

2

)
− 2

(
Y + 1

2

)
+ 9

(
X + 1

6

)2 − 6
(
X + 1

6

)
+ 1

= 43XY + 2Y 2

(3X + Y )2

= G(X,Y )

The above ode is now homogeneous ode of class A. We can verify this using method
from above section as follows

m = −XGX

Y GY

=
−X d

dX

(
4Y (3X+2Y )

(3X+Y )2

)
Y d

dY

(
4Y (3X+2Y )

(3X+Y )2

)
=

−X
(
−36 Y

(3X+Y )3 (X + Y )
)

Y
(
36 X

(3X+Y )3 (X + Y )
)

= 1

We see that this is indeed homogeneous ode of class A. Now this is solved easily using
the substitution Y = uX. This results in

− ln
(
Y +X

X

)
+ 3 ln

(
Y

X

)
− 3 ln

(
−3X − Y

X

)
− lnX = c1 (3)

But from earlier

X = x− x0

= x− 1
6

Y = y − y0

= y − 1
2
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Hence the solution (3) in y(x) now becomes

− ln
(
y − 1

2 + x− 1
6

x− 1
6

)
+ 3 ln

(
y − 1

2
x− 1

6

)
− 3 ln

(
−
3
(
x− 1

6

)
−
(
y − 1

2

)
x− 1

6

)
− ln

(
x− 1

6

)
= c2

− ln
(
x+ y − 2

3
x− 1

6

)
+ 3 ln

(
6y − 3
6x− 1

)
− 3 ln

(
6y − 18x
6x− 1

)
− ln

(
x− 1

6

)
= c2

− ln
(
6
(
x+ y − 2

3

)
6x− 1

)
+ 3 ln

(
6y − 3
6x− 1

)
− 3 ln

(
6y − 3x
6x− 1

)
− ln

(
x− 1

6

)
= c2

The above is the solution (implicit) to the original ode. The main difficulty with this
method is in solving (if possible) equation (2) when m = 1 which is

1 = −XFX

Y FY

For x0, y0. In other words, to find explicit values for x0, y0 which makes the RHS above
1. If we can find such x0, y0 then the original ode can now be solved. If not, then this
method will not work and we say the ode is not homogeneous ode of class C. Using the
software Maple this can be found as follows� �
restart;
eq:=1=3*X/Y*(2*Y+2*y0-1)/(6*X+6*x0-1);
solve(identity(eq,X),[x0,y0])� �
Which gives� �
[[x0 = 1/6, y0 = 1/2]]� �
And Using Mathematica� �
eq = 1 == 3*X/Y*(2*Y + 2*y0 - 1)/(6*X + 6*x0 - 1);
SolveAlways[eq, {X, Y}]� �
Which gives� �
{{x0 -> 1/6, y0 -> 1/2}}� �
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1.2.8 Homogeneous type D
ode internal name "homogeneousTypeD"

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u

Hence the given ode becomes

du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)

The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux.

1.2.8.1 Examples

1.2.8.1.1 Example

The first step is to see if we can write the above as

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Hence
y′ = y

x
− 2
x
e

−y
x (2)

Comparing (2) to (1) shows that

n = 1
m = 1

g(x) = −2
x

b = −1

f
(
b
y

x

)
= e−

y
x



chapter 1 . f irst order ode 49

Hence the solution is
y = ux (A)

Where u is the solution to
u′ = 1

x
g(x) f(u) (3)

Therefore f(bu) = e−u and (3) becomes

u′ = − 2
x2
e−u

This is separable.

eudu = − 2
x2
dx∫

eudu = −2
∫ 1
x2
dx

eu = 2
x
+ c1

u = ln
(
2
x
+ c1

)
Hence (A) becomes

y = x ln
(
2
x
+ c1

)

1.2.8.1.2 Example y′x− y − 2ex− y
x = 0

The first step is to see if we can write the above as

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Hence

y′x− y − 2ex
−y
x = 0

y′ = y

x
− 2
x
exe

−y
x (2)

Comparing (2) to (1) shows that

n = 1
m = 1

g(x) = −2
x
ex

b = −1

f
(
b
y

x

)
= e−

y
x
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Hence the solution is
y = ux (A)

Where u is the solution to
u′ = 1

x
g(x) f(u) (3)

Therefore f(u) = e−u and (3) becomes

u′ = − 2
x2
exe−u

This is separable.

eudu = − 2
x2
exdx∫

eudu = −2
∫

ex

x2
dx

eu = −2
(
−e

x

x
+ Ei (x)

)
+ c1

Where Ei (x) is the exponential integral Ei (x) =
∫∞
−x

e−t

t
dt. Hence

u = ln
(
c1 − 2

(
−e

x

x
+ Ei (x)

))
And (A) becomes

y = x ln
(
c1 − 2

(
−e

x

x
+ Ei (x)

))

1.2.8.1.3 Example y′x− y − 2 sin
(
3 y
x

)
= 0

The first step is to see if we can write the above as

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Hence

y′x− y − 2 sin
(
3y
x

)
= 0

y′ = y

x
− 2
x
sin
(
3y
x

)
(2)

Comparing (2) to (1) shows that

n = 1
m = 1

g(x) = −2
x

b = 3

f
(
b
y

x

)
= sin

(
3y
x

)
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Hence the solution is
y = ux (A)

Where u is the solution to
u′ = 1

x
g(x) f(u) (3)

Therefore f(u) = sin (3u) and (3) becomes

u′ = − 2
x2

sin (3u)

This is separable.

1
sin (3u)du = − 2

x2
dx∫ 1

sin (3u)du = −2
∫ 1
x2
dx

1
3

(
ln sin

(
3u
2

)
− ln cos

(
3u
2

))
= 2
x
+ c1

ln sin
(
3u
2

)
− ln cos

(
3u
2

)
= −6

x
+ c2

ln
sin
(3u

2

)
cos
(3u

2

) = −6
x
+ c2

ln tan
(
3u
2

)
= −6

x
+ c2

tan
(
3u
2

)
= c3e

− 6
x

3u
2 = arctan

(
c3e

− 6
x

)
u = 2

3 arctan
(
c3e

− 6
x

)
And (A) becomes

y = 2
3x arctan

(
c3e

− 6
x

)
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1.2.8.1.4 Example y′ = y
x
− 2

x

√
sin
(
3 y
x

)
The first step is to see if we can write the above as

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Hence
y′ = y

x
− 2
x

(
sin
(
3y
x

)) 1
2 (2)

Comparing (2) to (1) shows that

n = 1
m = 2

g(x) = −2
x

b = 3

f
(
b
y

x

)
= sin

(
3y
x

)
Hence the solution is

y = ux (A)

Where u is the solution to
u′ = 1

x
g(x) f(u)

1
2 (3)

Therefore f(u) = sin (3u) and (3) becomes

u′ = − 2
x2

sin (3u)
1
2

This is separable.

1√
sin (3u)

du = − 2
x2
dx∫ 1√

sin (3u)
du = −2

∫ 1
x2
dx∫ 1√

sin (3u)
du = 2

x
+ c1

Leaving the integral as is, since it is too complicated to solve, then using y = ux where
u is the solution of the above.
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1.2.8.1.5 Example y − 2x3 tan
(
y
x

)
− y′x = 0

The first step is to see if we can write the above as

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Hence

y − 2x3 tan
(y
x

)
− y′x = 0

y′x = y − 2x3 tan
(y
x

)
y′ = y

x
− 2x2 tan

(y
x

)
(2)

Comparing (2) to (1) shows that

n = 1
m = 1

g(x) = −2x2

b = 1

f
(
b
y

x

)
= tan

(y
x

)
Hence the solution is

y = ux (A)

Where u is the solution to
u′ = 1

x
g(x) f(u) (3)

Therefore f(u) = tan u and (3) becomes

u′ = −2x tan u

This is separable.
1
tandu = −2xdx∫ 1
tandu = −2

∫
xdx

ln (sin u) = −x2 + c1

sin u = c2e
−x2

u = arcsin
(
c2e

−x2
)

Hence (A) becomes
y = x arcsin

(
c2e

−x2
)
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1.2.8.1.6 Example y′ = y
x
+ x sin

(
y
x

)
The first step is to see if we can write the above as

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Hence
y′ = y

x
+ x sin

(y
x

)
(2)

Comparing (2) to (1) shows that

n = 1
m = 1

g(x) = x

b = 1

f
(
b
y

x

)
= sin

(y
x

)
Hence the solution is

y = ux (A)

Where u is the solution to
u′ = 1

x
g(x) f(u) (3)

Therefore f(u) = sin u and (3) becomes

u′ = 1
x
(x) sin (u)

This is separable.
1

sin udu = dx∫ 1
sin udu =

∫
dx

ln sin u2 − ln cos u2 = x+ c1

ln tan u2 = x+ c1

tan u2 = c2e
x

u

2 = arctan (c2ex)

u = 2arctan (c2ex)

Hence (A) becomes
y = 2x arctan (c2ex)
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1.2.9 Homogeneous type D2
y′ = f(x, y)

ode internal name "homogeneousTypeD2"

These are ode of any form, in which the change of variables results in either separable or
quadrature ode. Hence given an ode y′ = f(x, y) the change of variables y(x) = u(x)x
is made and the resulting ode in u(x) is examined. If it is separable or quadrature, then
it is solved for u and hence the solution y = ux is found.

1.2.9.1 Examples

1.2.9.1.1 Example y′ = −y
(
y2+3x2+2x

)
x2+y2

Applying change of variables y = ux results in

u′ = −u(u
2 + 3)

u2 + 1
x+ 1
x

Which is separable. Solving this for u(x) by integration gives

1
3 ln

((
u2 + 3

)
u
)
+ x+ ln (x) = c1

Hence the solution in y(x) is

1
3 ln

(((y
x

)2
+ 3
)
y

x

)
+ x+ ln (x) = c1

1.2.10 isobaric ode

1.2.10.1 Introduction

ode internal name "isobaric"

This is a generalization of the above homogeneous ODE, where the substitution y =
v(x)xm makes the ODE separable. The weight m needs to be found first.

These are examples showing how to solve isobaric ode’s step by step method. The same
method is also used to solve homogeneous odes, which is special case of isobaric.

The hardest part is to determine if the ode is isobaric or homogeneous and to find the
degree of the isobaric.

An ode y′ = f(x, y) is called isobaric of degree m if

f(tx, tmy) = tm−1f(x, y)
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It is called homogeneous ode if m = 1

f(tx, ty) = f(x, y)

So homogeneous ode is special case of isobaric ode when m = 1. Another common
definition of a homogeneous ode is that when writing the ode as

y′ = f(x, y)

= M(x, y)
N (x, y)

Then M,N must both be homogeneous functions of same degree. Care is needed here,
Homogeneous function is not the same as a homogeneous ode. A function M(x, y) is
homogeneous function of degree n if M(tx, ty) = tnM(x, y) where n here do not have
to be zero.

Using this second definition of homogeneous ode of M(x,y)
N(x,y) , we can check if M(x, y)

and N(x, y) are both homogeneous functions and also have same degree (whatever this
degree happened to be). If this is the case, then we say the ode itself is homogeneous
ode.

It is possible to have an ode y′ = M(x,y)
N(x,y) where M,N are both homogeneous functions

but with different degrees. In this case the ode is not homogeneous ode even though
both M,N are each homogeneous functions.

We can use similar way to view isobaric ode. By saying that an isobaric ode is one
when it is written as

y′ = f(x, y)

= M(x, y)
N (x, y)

Then givenM(tx, tmy) = trM(x, y) is homogeneous function of degree r andN(tx, tmy) =
tr−m+1N(x, y) is homogeneous function of degree r −m + 1. In this case we say that
the ode itself is isobaric of degree m, since

f(tx, tmy) = trM(x, y)
tr−m+1N (x, y)

= tm−1M(x, y)
N (x, y)

= tm−1f(x, y)

The above gives us another method to determine if an ode is homogeneous ode or
isobaric ode. We start by writing the ode as y′ = M(x,y)

N(x,y) . If M,N are both homogeneous
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functions of same degree, then the ode is homogeneous ode and we stop. If however M
satisfies M(tx, tmy) = trM(x, y) and N satisfies N(tx, tmy) = tr−m+1N(x, y) where r
is positive integer, then we say the ode is isobaric of degree m.

Why is it important to know if an ode is homogeneous or isobaric? This is because if
an ode is isobaric of degree m then the substitution y = uxm or u = y

xm converts to
separable ode in u. If an ode is homogeneous then the substitution y = ux or u = y

x

converts to separable ode in u.

This is why it is very useful to determine if an ode is isobaric or homogeneous ode.
Because it allows us to use this substitution to convert it to separable. Separable ode’s
are easy to solve, since they involve only integration. Of course the integrals can be
very difficult to solve, but this is another issue.

How to determine if an ode is homogeneous or isobaric in practice? To check if an ode
is homogeneous, we start with the definition that ode y′ = f(x, y) is homogeneous ode
if in

f(tx, tmy) = tm−1f(x, y) (A)

then if m = 1 then the ode is homogenous. If not, then the ode is not homogenous and
we check if it is isobaric by solving for m. How to find m?

This is done by taking derivative of both sides of equation (A) w.r.t. t and setting t = 1
after that. This results in

xfx +myfy = (m− 1) f
xfx +myfy = mf − f

xfx + f = m(f − yfy)

Hence
m = f + xfx

f − yfy

Here is the important point. If it is possible to simplify the RHS above to an actual
numerical value, then m is the degree of isobaric and the ode is indeed isobaric. If it
is not possible to obtain a numerical m value, then the ode is not isobaric. The best
way to learn how to do this is by examples. Note in the above fx is partial derivative.
Which means taking derivative of f w.r.t while keeping y fixed.
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1.2.10.2 Examples

1.2.10.2.1 Example 1

dy

dx
=

−
(
y2 + 2

x

)
2yx (1)

Here f(x, y) = −
(
y2+ 2

x

)
2yx . We start by checking if it is isobaric or not. To find m such

that f(tx, tmy) = tm−1f(x, y) we do (as given in the introduction)

m = f + xfx
f − yfy

(2)

=
−
(
y2+ 2

x

)
2yx + x

(
xy2+4
2x3y

)
−
(
y2+ 2

x

)
2yx − y

(
−xy2−2

2x2y2

)
=

1
x2y

− 2
x2y

= −1
2

Hence this is isobaric of index m = −1
2 because it has a numerical solution as a result.

To verify this result, hereM(x, y) =
(
−y2 − 2

x

)
, N(x, y) = 2yx. Let us start by checking

for isobaric (since homogeneous is special case).

M(tx, tmy) =
(
−t2my2 + 2

tx

)
= 1
t

(
−t2m+1y2 + 2

x

)
= t−1

(
−t2m+1y2 + 2

x

)
The above is same as

(
−y2 − 2

x

)
when 2m+1 = 0 orm = −1

2 . From the above we also see
that r = −1. This is by comparing the last result above to trM(x, y). Now that we found
candidate m and r, then all what we have to do is check N(tx, tmy) = tr−m−1N(x, y)
or not. If it is, then we are done and the ode is isobaric of degree m

N(tx, tmy) = 2tmytx

= 2t−1
2 ytx

= t
1
2 (2yx)

= t
1
2N(x, y)
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Now we check if 1
2 = r −m + 1. Which it is. Since r −m + 1 = −1 −

(
−1

2

)
+ 1 = 1

2 .
Hence this ode is isobaric. From now on Eq (2) will be used to find m.

Hence the substitution y = vxm will make the ode separable. This is the whole point
of isobaric ode’s. The hardest part is to find m. Substituting y = vx

=1
2 in (1) results in

v
dv

dx
= −1

x

This is solved for v easily since separable, and then y is found from y = vx
=1
2 .

1.2.10.2.2 Example 2
dy

dx
= x

√
x4 + 4y − x3 (1)

We start by checking if it is isobaric or not. Using

m = f + xfx
f − yfy

=

(
x
√
x4 + 4y − x3

)
+ x
(√

x4 + 4y + 2x4√
x4+4y

− 3x2
)

(
x
√
x4 + 4y − x3

)
− x3 − 2xy√

x4+4y

=
4 x√

x4+4y

(
2y − x2

√
x4 + 4y + x4

)
x√

x4+4y

(
2y − 2x2

√
x4 + 4y + x4

)
=

4 x√
x4+4y
x√

x4+4y

= 4

Therefore this is isobaric of order 4. Substituting y = vxm = vx4 in (1) results in

v′ = −4v +
√
1 + 4v − 1
x

Which is separable. This is solved easily for v(x) and then y is found from y = vx4.

1.2.10.2.3 Example 3

x
(
x− y3

) dy
dx

=
(
3x+ y3

)
y

dy

dx
= (3x+ y3) y

x (x− y3) (1)
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We start by checking if it is isobaric or not. Using

m = f + xfx
f − yfy

=

(
3x+y3

)
y

x(x−y3) + x
(

3y
x(−y3+x) −

(
y3+3x

)
y

x2(−y3+x) −
(
y3+3x

)
y

x(−y3+x)2

)
(3x+y3)y
x(x−y3) − y

(
3y3

x(−y3+x) +
y3+3x

x(−y3+x) +
3(y3+3x)y3
x(−y3+x)2

)
=

−4 y4

(x−y3)2

−12 y4

(x−y3)2

= 1
3

m = 1
3 makes each term the same weight 4

3 . Hence the substitution y = vx
1
3 will make

the ode separable. Substituting this in (1) results in

dv

dx
= −4

3x
v(v3 + 2)
(v3 − 1)

Which is separable. This is solved for v, and then y is found from y = vx
1
3 .

1.2.10.2.4 Example 4

y′ = y

x
ln (xy − 1) (1)

We start by checking if it is isobaric or not. Using

m = f + xfx
f − yfy

=
y
x
ln (xy − 1) + x

(
−y ln(xy−1)

x2 + y2

x(xy−1)

)
y
x
ln (xy − 1)− y

(
ln(xy−1)

x
+ y

xy−1

)
=

y2

xy−1

− y2

xy−1

= −1

Hence the substitution y = v
x
will make the ode separable. Substituting this in (1)

results in
v′ = v ln (v)

x

Which is separable. This is solved for v, and then y is found from y = v
x
.
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1.2.10.2.5 Example 5

(y′)2 = y(y − 2y′x)3 (1)
One way to handle this is to first solve for y′ and then apply the above method. This
will result in m = −1.

1.2.10.2.6 Example 6

(x− y) y′ − x− y = 0

y′ = x+ y

x− y
(1)

= f(x, y)

We start by checking if it homogenous or not. Using

m = f + xfx
f − yfy

=
x+y
x−y

+ x
(

1
x−y

− x+y

(x−y)2

)
x+y
x−y

− y
((

1
x−y

+ x+y

(x−y)2

))
=

x
(

1
x−y

− x+y

(x−y)2

)
−y
((

1
x−y

+ x+y

(x−y)2

))
= 1

Since m = 1 then this is homogeneous ode (special case of isobaric). Hence the substi-
tution v = y

x
makes the ode (1) separable.

1.2.10.2.7 Example 7

y′x− y − 2√xy = 0

y′ =
y + 2√xy

x
(1)

We start by checking if it homogenous or not. Using

m = f + xfx
f − yfy

=
y+2√xy

x
+ x
(

y
x
√
xy

− y+2√xy

x2

)
y+2√xy

x
− y

(1+ x√
xy

x

)
= 1
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Since m = 1 then this is homogeneous ode (special case of isobaric). Hence the substi-
tution v = y

x
makes the ode (1) separable.

1.2.10.2.8 Example 8

y′ = −y(y2 + 3x2 + 2x)
x2 + y2

(1)

We start by checking if it homogenous or not. Using

m = f + xfx
f − yfy

=
−y
(
y2+3x2+2x

)
x2+y2

+ x d
dx

(
−y
(
y2+3x2+2x

)
x2+y2

)
−y(y2+3x2+2x)

x2+y2
− y d

dy

(
−y(y2+3x2+2x)

x2+y2

)
=

−y
(
y2+3x2+2x

)
x2+y2

+ x
(
−2y

(
−x2+2xy2+y2

)
(x2+y2)2

)
−y(y2+3x2+2x)

x2+y2
− y

(
−3x4+2x3−2xy2+y4

(x2+y2)2

)
= 3x4 + 8x2y2 + 4xy2 + y4

4x2y2 + 4xy2

Since this does not simplify to numerical value, it is not homogenous ode. This turns
out to be homogenous type D. See earlier note on this. There is a slight difference in
definition between homogenous ode and homogenous type D. In Maple terms, homoge-
nous ode is called homogenous ode type A. A homogenous type D is one in which the
substitution y = ux makes the ode separable or quadrature.
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1.2.11 First order special form ID 1 y′ = g(x) ea(x)+by + f(x)
ode internal name "first order special form ID 1"

Special form which did not fit in any of the above ones. Solved by the substitution
u = e−by which converts the ode to a linear first order ode in u(x) which is solved, then
y is found. b must not depend on for this to work.

1.2.11.1 Example

y′ = 5ex2+20y + sin x (1)

Here a(x) = x2, b = 20, f(x) = sin x, g(x) = 5. Hence

u = e−by = e−20y

Therefore

du

dx
= −20y′e−20y

= −20y′u

Or
y′ = − u′

20u (2)

Comparing (1,2) gives

− u′

20u = 5ex2+20y + sin x

= 5e20yex2 + sin x

= 51
u
ex

2 + sin x

Or

−u′ = 100ex2 + 20u sin x
u′ = −100ex2 − 20u sin x

u′ + 20u sin x = −100ex2 (3)

This is linear first order ode. The integrating factor is

I = e
∫
20 sinxdx

= e−20 cosx
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(3) becomes
d

dx
(uI) = −I100ex2

ue−20 cosx = −100
∫
ex

2
e−20 cosxdx+ c

u = −100e20 cosx
∫
ex

2−20 cosxdx+ ce20 cosx

= e20 cosx
(
−100

∫
ex

2−20 cosxdx+ c

)
But u = e−20y therefore

e−20y = e20 cosx
(
−100

∫
ex

2−20 cosxdx+ c

)
−20y = ln

(
e20 cosx

(
−100

∫
ex

2−20 cosxdx+ c

))
y = − 1

20 ln
(
e20 cosx

(
−100

∫
ex

2−20 cosxdx+ c

))

1.2.12 Polynomial ode y′ = a1x+b1y+c1
a2x+b2y+c2

ode internal name "polynomial"

Special form for first order ode where the lines a1x+ b1y+ c1 = 0, a2x+ b2y+ c2 = 0 can
be either parallel or not parallel. If the lines are not parallel then the transformation
X = x−x0, Y = y−y0 transforms the ode to homogeneous ode. If the lines are parallel
then the transformation U(x) = a1x+ b1y converts the ode to separable in U(x). The
not parallel case is when a1

b1
6= a2

b2
and the second case is when a1

b1
= a2

b2
.

1.2.12.1 Example lines are not parallel

y′ = −6x+ y − 3
2x− y − 1

Comparing to y′ = a1x+b1y+c1
a2x+b2y+c2

shows that a1 = −6, b1 = 1, a2 = 2, b2 = −1. Hence
a1
b1

= −6, a2
b2

= −2. This shows the lines are not parallel. Let

X = x− x0

Y = y − y0

The constant x0, y0 are found by solving

a1x0 + b1y0 + c1 = 0
a2x0 + b2y0 + c2 = 0



chapter 1 . f irst order ode 65

Or

−6x0 + y0 − 3 = 0
2x0 − y0 − 1 = 0

Solving for x0, y0 gives

x0 = −1
y0 = −3

Hence

X = x+ 1
Y = y + 3

Using this transformation in y′ = −6x+y−3
2x−y−1 results in the ode

dY

dX
= 6X − Y

−2X + Y

This is a homogeneous ode
dY

dX
=

6− Y
X

−2 + Y
Y

Let u = Y
X
. Now it is solved as was shown in the above sections. At the end, Y is

replaced by y − y0 to obtain the solution in y(x).

1.2.12.2 Example lines are parallel

y′ = − x+ y

3x+ 3y − 4
Comparing to y′ = a1x+b1y+c1

a2x+b2y+c2
shows that a1 = −1, b1 = −1, a2 = 3, b2 = 3. Hence

a1
b1

= 1, a2
b2

= 1. This shows the lines are parallel. Let

U(x) = a1x+ b1y

= −x− y

Hence y′ = −1− U ′(x). Hence the ode becomes

−1− U ′ − U

−3U − 4 = 0

U ′ = −2U + 4
3U + 4

This is separable. After solving for U(x), then y is found from U(x) = −x− y

y = −x− U
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1.2.13 Bernoulli ode y′ + Py = Qyn

ode internal name "bernoulli"

This has the form y′+Py = Qyn where n 6= 1, n 6= 0. Solved by dividing by yn and then
using the substitution v = y1−n. This converts the ode to linear ode v′ + (1− n)Pv =
(1− n)Q which is solved for v, then y is found.

1.2.14 Exact ode M(x, y) +N(x, y) y′ = 0
ode internal name "exact"

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (1)

If the above ODE is exact, then there it can be written as a complete differential

M(x, y) +N(x, y) dy
dx

= dφ(x, y)

= ∂φ

∂x

dx

dx
+ ∂φ

∂y

dy

dx

= ∂φ

∂x
+ ∂φ

∂y

dy

dx
(2)

Comparing (1,2) shows that

∂φ

∂x
=M (3)

∂φ

∂y
= N (4)

But since ∂2φ
∂y∂x

= ∂2φ
∂x∂y

then this implies

∂

∂y

(
∂φ

∂x

)
= ∂

∂x

(
∂φ

∂y

)
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
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and we have to now look for an integrating factor to force this condition, which might
or might not exist. Given the ode is exact, then integrating (3) gives

φ =
∫
Mdx+ f(y) (5)

Where f(y) is arbitrary function to be found. Taking derivative of the above w.r.t. y
gives

∂φ

∂y
= d

dy

∫
Mdx+ f ′(y)

Comparing the above to (4) gives an equation to solve for f(
d

dy

∫
Mdx

)
+ f ′(y) = N (6)

Once f(y) is found then from (5) and since φ is constant it becomes

c =
∫
Mdx+ f(y)

This is an implicit solution for y(x).

1.2.14.1 Examples

1.2.14.1.1 Example1 (
3x2 + 2xy2

)
+
(
2x2y + 4y3

)
y′ = 0

Hence M = (3x2 + 2xy2) , N = (2x2y + 4y3). We see that ∂M
∂y

= 4xy and ∂N
∂x

= 4xy,
hence exact. Then (5) gives

φ =
∫
Mdx+ f(y)

=
∫

3x2 + 2xy2dx+ f(y)

= x3 + x2y2 + f(y)

Hence (6) gives

d

dy

(
x3 + x2y2 + f(y)

)
= N

2yx2 + f ′(y) = 2x2y + 4y3

f ′(y) = 4y3

Therefore f(y) = y4 + c1. Therefore
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φ =
∫
Mdx+ f(y)

= x3 + x2y2 + f(y)
= x3 + x2y2 + y4 + c1

But φ = c, since constant. Hence combining constants the above becomes

x3 + x2y2 + y4 = C

Which is implicit solution for y(x).

1.2.14.1.2 Example2(
ln
(
y + x

x+ 3

)
− y + x

x+ 3

)
dx+ ln

(
y + x

x+ 3

)
dy = 0

Hence M =
(
ln
(
y+x
x+3

)
− y+x

x+3

)
, N = ln

(
y+x
x+3

)
. We see that ∂M

∂y
= 3−y

(y+x)(x+3) and ∂N
∂x

=
3−y

(y+x)(x+3) , hence the ode is exact. Eq (5) gives

φ =
∫
Mdx+ f(y)

=
∫ (

ln
(
y + x

x+ 3

)
− y + x

x+ 3

)
dx+ f(y)

= (3− y) ln
(
y − 3
x+ 3

)
+ (y + x) ln

(
y + x

x+ 3

)
+ (3− y) ln (x+ 3)− x+ f(y)

= (3− y)
(
ln
(
y − 3
x+ 3

)
+ ln (x+ 3)

)
+ (y + x) ln

(
y + x

x+ 3

)
− x+ f(y)

= (3− y) ln (y − 3) + (y + x) ln
(
y + x

x+ 3

)
− x+ f(y)

Hence (6) gives

d

dy
(φ) = N

d

dy

(
(3− y) ln (y − 3) + (y + x) ln

(
y + x

x+ 3

)
− x+ f(y)

)
= ln

(
y + x

x+ 3

)
ln
(
y + x

x+ 3

)
− ln (y − 3) + f ′(y) = ln

(
y + x

x+ 3

)
− ln (y − 3) + f ′(y) = 0

f ′(y) = ln (y − 3)
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Therefore

f(y) =
∫

ln (y − 3) dy

= ln (y − 3) (y − 3) + 3− y + c1

Hence from above

φ = (3− y) ln (y − 3) + (y + x) ln
(
y + x

x+ 3

)
− x+ f(y)

= (3− y) ln (y − 3) + (y + x) ln
(
y + x

x+ 3

)
− x+ ln (y − 3) (y − 3) + 3− y + c1

= −(y − 3) ln (y − 3) + (y + x) ln
(
y + x

x+ 3

)
− x+ ln (y − 3) (y − 3) + 3− y + c1

= (y + x) ln
(
y + x

x+ 3

)
− x+ 3− y + c1

= (y + x) ln
(
y + x

x+ 3

)
− x− y + c2

But φ = c, since constant. Hence combining constants the above becomes

(y + x) ln
(
y + x

x+ 3

)
− x− y = C

1.2.15 Not exact ode but can be made exact with integrating
factor

ode internal name "exactWithIntegrationFactor"

This has the formM(x, y)+N(x, y) y′ = 0 where ∂M
∂y

6= ∂N
∂x

where there exist integrating
factor µ such that µM(x, y) + µN(x, y) y′ = 0 becomes exact. Three methods are
implemented to find the integrating factor.

1.2.15.1 First integrating factor µ(x) that depends on x only

Let

µM(x, y) + µN(x, y) dy
dx

= dφ(x, y) (1)

= ∂φ

∂x

dx

dx
+ ∂φ

∂y

dy

dx

= ∂φ

∂x
+ ∂φ

∂y

dy

dx
(2)
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Comparing (1),(2) then

∂φ

∂x
= µM

∂φ

∂y
= µN

The compatibility condition is ∂2φ
∂y∂x

= ∂2φ
∂x∂y

then this implies

∂

∂y

(
∂φ

∂x

)
= ∂

∂x

(
∂φ

∂y

)
∂µM

∂y
= ∂µN

∂x

µyM + µMy = µxN + µNx

µxN = µyM + µMy − µNx

µxN = µyM + µ(My −Nx)

µx = µyM

N
+ µ

N
(My −Nx)

Assuming µ ≡ µ(x) then µy = 0 and the above simplifies to

µx = µ

N
(My −Nx)

dµ

dx

1
µ
= 1
N

(
∂M

∂y
− ∂N

∂x

)
Let 1

N

(
∂M
∂y

− ∂N
∂x

)
= A. If A ≡ A(x) which depends only on x then we can solve the

above.

dµ

dx

1
µ
= A

µ = e
∫
Adx

Let M = µM,N = µN then the ode

M(x, y) +N(x, y) y′ = 0

is now exact.
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1.2.15.2 Second integrating factor µ(y) that depends on y only

Let

µM(x, y) + µN(x, y) dy
dx

= dφ(x, y) (1)

= ∂φ

∂x

dx

dx
+ ∂φ

∂y

dy

dx

= ∂φ

∂x
+ ∂φ

∂y

dy

dx
(2)

Comparing (1),(2) then
∂φ

∂x
= µM

∂φ

∂y
= µN

The compatibility condition is ∂2φ
∂y∂x

= ∂2φ
∂x∂y

then this implies

∂

∂y

(
∂φ

∂x

)
= ∂

∂x

(
∂φ

∂y

)
∂µM

∂y
= ∂µN

∂x

µyM + µMy = µxN + µNx

µyM = µxN + µNx − µMy

µyM = µxN + µ(Nx −My)

µy =
µxN

M
+ 1
M
µ(Nx −My)

Assuming µ ≡ µ(y) then µx = 0 and the above simplifies to

µy =
1
M
µ(Nx −My)

dµ

dy

1
µ
= 1
M

(Nx −My)

Let 1
M
(Nx −My) = B. If B ≡ B(y) which depends only on y then we can solve the

above.
dµ

dy

1
µ
= B(y)

µ = e
∫
Bdy

Let M = µM,N = µN then the ode

M(x, y) +N(x, y) y′ = 0

is now exact.
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1.2.15.3 Third integrating factor µ(xy)

Using similar method If the above did not work, then we try

R = 1
xM − yN

(
∂N

∂x
− ∂M

∂y

)
If R is function of t = xy only then the integrating factor is µ = e

∫
Rdt and let

M = µM,N = µN then the ode M(x, y) +N(x, y) y′ = 0 is now exact.

1.2.16 Not exact first order ode where integrating factor is
found by inspection

ode internal name "exactByInspection"

This has the formM(x, y)+N(x, y) y′ = 0 where ∂M
∂y

6= ∂N
∂x

(i.e. the ode is not exact) and
none of the above three known methods for finding integrating factor were successful.
This solver uses trial and error using a number of built-in common integrating factor
to see if any one of them makes the ode exact.

1.2.16.1 Example

ydx+ x
(
x2y − 1

)
dy = 0

M(x, y) +N(x, y) y′ = 0

Where

∂M

∂y
= 1

∂N

∂x
= 3x2y − 1

Hence not exact. Trying the above 3 methods shows it is not possible to find an
integrating factor. But by inspection let I = y

x3 . Then the ode becomes

yIdx+ Ix
(
x2y − 1

)
dy = 0

y
y

x3
dx+ y

x3
x
(
x2y − 1

)
dy = 0

y2

x3
dx+

(
y2 − y

x2

)
dy = 0

M(x, y) +N(x, y) y′ = 0
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Where

M = y2

x3

N =
(
y2 − y

x2

)
Now we see that the ode is exact by checking:

∂M

∂y
= 2y
x3

∂N

∂x
= −

(
−2 y

x3

)
= 2y
x3

Since ode is now exact, we need to find φ from

∂φ

∂x
=M (3)

∂φ

∂y
= N (4)

From (3)
∂φ

∂x
= y2

x3

Therefore

φ =
∫
Mdx+ f(y)

=
∫

y2

x3
dx+ f(y)

= y2
∫
x−3dx+ f(y)

= y2
x−2

−2 + f(y)

= y2

−2x2 + f(y) (5)

Where f(y) is arbitrary function to be found. Taking derivative of the above w.r.t. y
gives

∂φ

∂y
= d

dy

(
− y2

2x2 + f(y)
)

= − y

x2
+ f ′(y)
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Comparing the above to (4) shows that

N = − y

x2
+ f ′(y)

y2 − y

x2
= − y

x2
+ f ′(y)

f ′(y) = y2

Hence

f(y) =
∫
y2dy

= y3

3 + c

Substituting this into (5) gives

φ = y2

−2x2 + f(y)

= y2

−2x2 + y3

3 + c

Since φ is also constant function then we can simplify the above to

y2

−2x2 + y3

3 = C

3y2 − 2x2y3 = 6x2C
3y2 − 2x2y3 = x2C1

1.2.17 Riccati ode y′ = f0 + f1y + f2y
2

1.2.17.1 Direct solution of Riccati

There is no general method to solve the general Riccati ode. These are special cases to
try

1.2.17.1.1 Case 1

If f0, f1, f2 are constants then this is separable ode and can easily be solved.
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1.2.17.1.2 Case 2

If f1 = 0 then we have the reduced Riccati

y′ = f0(x) + f2(x) y2

For the case of f0 = cxn where c1 is constant and f2 = c2 is also a constant, then the
above becomes

y′ = c1x
n + c2y

2

Now it depends on n. The case of n = −2 is y′ = c1
x2 + c2y

2 can be solved using the
substitution y = 1

u
. Hence y′ = − u′

u2 and the ode becomes

− u′

u2
= c1
x2

+ c2
1
u2

−u′ = c1
u2

x2
+ c2

u′ = −c1
u2

x2
− c2

Which is first order Homogeneous ode type (see earlier section).

The case of n = −4k(2k − 1) where k = 0,±1,±2, · · · are all solvable by algebraic,
exponential and logarithmic function. For all other values, Liouville proved no so-
lution exist in terms of elementary functions. These n values come out to be n =
{· · · ,−112,−60,−24,−4, 0,−12,−40,−84, · · · }. For example for n = −4

y′ = c1
x4

+ c2y
2

This is solved by converting to second order ode using y = −u′

c2u
which result in ode

which can be solved as Bessel ode. Similarly for all other n values listed above. I need
to look into this. When I tried n = −3 I also got solution in terms of Bessel functions.
So what is the difference?

1.2.17.1.3 Case 3

Assume we can find a particular solution y1 to the general Riccati ode y′ = f0(x) +
f1(x) y + f2(x) y2. Then let y = y1 + u. The Riccati ode becomes a Bernoulli ode.

(y1 + u)′ = f0 + f1(y1 + u) + f2(y1 + u)2

y′1 + u′ = f0 + f1y1 + f1u+ f2
(
y21 + u2 + 2y1u

)
y′1 + u′ = f0 + f1y1 + f1u+ f2y

2
1 + f2u

2 + 2f2y1u

y′1 + u′ =
︷ ︸︸ ︷
f0 + f1y1 + f2y

2
1 +f1u+ f2u

2 + 2f2y1u
u′ = f1u+ f2u

2 + 2f2y1u
= u(f1 + 2f2y1) + f2u

2
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Which is Bernoulli ode. But this assumes we are able to find particular solution y1 to
the general Riccati ode. There is no method to do that. So this case will not be tried.

1.2.17.1.4 References used

1. https://mathworld.wolfram.com/RiccatiDifferentialEquation.html

2. https://math24.net/riccati-equation.html

3. https://encyclopediaofmath.org/wiki/Riccati_equation

4. https://www.youtube.com/watch?v=iuHDmZ8VutM

5. paper: Methods of Solution of the Riccati Differential Equation. By D. Robert
Haaheim and F. Max Stein. 1969

1.2.17.2 Conversion of Riccati to second order ode

ode internal name "riccati"

Solved using transformation y = −u′

f2u
which generates second order ode in u. This is

solved for u (if possible) then y is found.

1.2.18 Abel first kind ode y′ = f0 + f1y + f2y
2 + f3y

3

ode internal name "abelFirstKind"

Currently the program detect this ODE and evaluates the Abel invariant only. This
ODE has the form

y′(x) = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3 (1)

Any of the following forms is called an Abel ode of first kind

y′ = f0 + f1y + f2y
2 + f3y

3

y′ = f1y + f2y
2 + f3y

3

y′ = f2y
2 + f3y

3

y′ = f0 + f2y
2 + f3y

3

y′ = f0 + f3y
3

y′ = f0 + f1y + f3y
3

y′ = f2y
2 + f3y

3

https://mathworld.wolfram.com/RiccatiDifferentialEquation.html
https://math24.net/riccati-equation.html
https://encyclopediaofmath.org/wiki/Riccati_equation
https://www.youtube.com/watch?v=iuHDmZ8VutM
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The case for both f0(x) = 0, f2(x) = 0 is not allowed, else it becomes Bernoulli ode.
Either f0 = 0 or f2 = 0 is allowed but not both at same time. The term f3(x) must be
there in all cases. When f2 = 0 then Abel invariant is given by

∆ = −(−f ′
0f3 + f0f

′
3 + 3f0f3f1)3

27f 4
3 f

5
0

In the case when f2 6= 0, then f2 is removed from the original ode using the change of
dependent variable y = u(x) − f2

3f3 . Now the new ode will not have f2 in it, and the
above invariant can now be applied to it.

There are two possibilities. ∆ can be constant (does not depend on x) or not constant
(i.e. function of x). The constant invariant is the easier case and can be solved. The
non constant case is not fully solved and only few cases can be solved analytically.

1.2.18.1 Solution method

Find what is called the abel invariant and check if constant.

∆ = −(−f ′
0f3 + f0f

′
3 + 3f0f3f1)3

27f 4
3 f

5
0

The substitution y = 1
u
is now applied. Therefore y′ = − 1

u2u
′. Substituting this in (1)

gives

− 1
u2
u′ = f0(x) + f1(x)

1
u
+ f2(x)

1
u2

+ f3(x)
1
u3

−uu′ = u3f0(x) + u2f1(x) + uf2(x) + f3(x)
uu′ = −u3f0(x)− u2f1(x)− uf2(x)− f3(x) (2)

Using the substitution u = 1
E

(
y + f2

3f3

)
where E = exp

(∫
f1 − f2

2
3f3dx

)
in the above

gives
1
E

(
y + f2

3f3

)
u′ = −u3f0(x)− u2f1(x)− uf2(x)− f3(x)
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Hence

u′ = 1
E2

dE

dx

(
y + f2

3f3

)
+ 1
E

(
y′ + 1

3
f ′
2f3 − f2f

′
3

f 2
3

)
= 1
E2

dE

dx

(
1
u
+ f2

3f3

)
+ 1
E

(
− 1
u2
u′ + 1

3
f ′
2f3 − f2f

′
3

f 2
3

)
u′ + u′

Eu2
= 1
E2

dE

dx

(
1
u
+ f2

3f3

)
+ 1

3E
f ′
2f3 − f2f

′
3

f 2
3

u′
(
1 + 1

Eu2

)
= 1
E2

dE

dx

(
1
u
+ f2

3f3

)
+ 1

3E
f ′
2f3 − f2f

′
3

f 2
3

u′ = Eu2

1 + Eu2

(
1
E2

dE

dx

(
1
u
+ f2

3f3

)
+ 1

3E
f ′
2f3 − f2f

′
3

f 2
3

)
u′ = u2

1 + Eu2

(
1
E

dE

dx

(
1
u
+ f2

3f3

)
+ 1

3
f ′
2f3 − f2f

′
3

f 2
3

)
Substituting the above into (2) gives

u
u2

1 + Eu2

(
1
E

dE

dx

(
1
u
+ f2

3f3

)
+ 1

3
f ′
2f3 − f2f

′
3

f 2
3

)
= −u3f0 − u2f1 − uf2 − f3

Therefore

E = exp
(∫

f1(x)−
f 2
2 (x)

3f3 (x)
dx

)
ξ =

∫
f3(x)E2dx

u = 1
E

(
y + f2(x)

3f3 (x)

)
The above are used to convert the first kind Abel ode to canonical form. (To finish).

1.2.18.2 About equivalence between two Abel ode’s

Given one Abel ode y′(x) = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3, it is called equivalent
to another Abel ode u′(t) = g0(t) + g1(t)u+ g2(t)u2 + g3(t)u3 if there is transformation
which converts one to the other. This transformation is given by

x = F (t) (1)
y(x) = P (t)u(t) +Q(t)

Where F ′ 6= 0, P 6= 0. If such transformation can be found, then if given the solution
of one of these ode’s, the solution to the other ode can directly be fond using this
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transformation. In this case, we also call these two ode as belonging to same Abel
equivalence class. In other words, an Abel equivalence class is the set of all Abel ode’s
that can be transformed to each others using the same transformation given in (1).

There are many disjoint Abel equivalence classes, each class will have all the ode that
can be transformed to each others using some specific transformation (1). Here is one
example below taken from paper by A.D.Roch and E.S.Cheb-Terrab called "Abel ODEs:
Equivalence and integrable classes".

Given one Abel ode

y′(x) = 1
2x+ 8y

2 + x

2x+ 8y
3 (2)

Which is known to have solution

c1 +
√
y2x− 4y − 1

y
+ 2arctan

(
1 + 2y√

y2x− 4y − 1

)
= 0 (3)

And now we are given a second Abel ode

u′(t) = 1
t
u+ f ′t− f

2 (f + 3t)u
2 + (f ′t− f) (t− f)

2 (f + 3t) u3 (4)

And asked to find its solution. If we can determine if (4) is equivalent to (2) then the
solution of (4) can be obtained directly. It can be found that

F (t) = f(t)
t

− 1

Q(t) = 0
P (t) = t

Where see that F ′(t) 6= 0 and P (t) 6= 0. Hence (1) becomes

x = f(t)
t

− 1 (5)

y(x) = tu(t)

Applying the transformation (5) on the solution (3) results in the solution of (4) as

A =

√(
f

t
− 1
)
t2u2 − 4tu− 1

c1 +
A

tu
+ 2arctan

(
1 + 2tu
A

)
= 0 (6)

Equation (6) above is the implicit solution to (4) obtained from the solution to (2) by
using equivalence transformation as the two ode’s are found to be equivalent. Finding
the transformation (5) requires more calculation and not trivial. See the above paper
for more information.
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1.2.19 differential type ode y′ = f(x, y)
ode internal name "differentialType"

These are special case ode where the ode can be written as complete differential
d(f(y)) = d(g(x)) which is then solved by just integrating.

1.2.19.1 Example 1

dy

dx
= x− y

x+ y

(x+ y) dy = (x− y) dx
xdy + ydy = (x− y) dx

ydy = −xdy + xdx− ydx (1)

But RHS is complete differential because

−xdy + xdx− ydx = d

(
1
2x

2 − xy

)
Hence (1) becomes

ydy = d

(
1
2x

2 − xy

)
Integrating ∫

ydy =
∫
d

(
1
2x

2 − xy

)
1
2y

2 = 1
2x

2 − xy + c

y2 = x2 − 2xy + 2c

Which is an implicit solution. This method works if it is possible by the solver to detect
that the ode can be written as complete differentials or not.

1.2.19.2 Example 2

dy

dx
= −y

x
+ x2

dy =
(
−y + x3

x

)
dx

xdy = −ydx+ x3dx

0 = −xdy − ydx+ x3dx (1)



chapter 1 . f irst order ode 81

But RHS is complete differential because

−xdy − ydx+ x3dx = d

(
x4

4 − xy

)
Hence (1) becomes

0 = d

(
x4

4 − xy

)
Integrating gives

0 = x4

4 − xy + c

solving for y gives
y = x3

4 + c

x

1.2.20 Series method

1.2.20.1 Algorithm flow chart

The algorithms are summarized in the following flow chart.

first order solver

step(ODE)

series ode solver

step(ODE)

second order ode series solver

step(ODE)

first order ode series solver

step(ODE)

IF expansion not at zero THEN

change of variables to zero

END IF

Let y′ = f(x, y). If f(x, y) is analytic
at expansion point then use Taylor
expansion, else use power point
expansion. If point is not regular
singular point then not supported.

first order ode series solver taylor

step(ODE)

first order ode series solver frobenius

step(ODE)

first order ode series solver ordinary point

step(ODE)

process initial conditions(ODE,sol)
Updates solution with IC

Nasser M. Abbasi, May 2, 2023
ODE_algorthims\images\series_block_chart.ipe

Figure 1.5: Flow chart for series solution for first order
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First order ode linear in y′ . Assume expansion is around x0.
y′(x) = f(x, y)

Assuming initial condition is y(x0) = y0

q(x) has series expansion
at x0?

NOYES

limx→x0(x− x0)p(x) exists?

irreqular singular point.
Asymptotic expansion.
Not supported.

Regular singular point.
Use Frobenius series yh =∑∞

n=0 anx
n+r

q(x) = 0 ?

NO

Nasser M. Abbasi
series flow chart.ipe
March 20, 2023

Generate the balance equation
from n = 0 from the Frobenius se-
ries y =

∑∞
n=0 anx

n+r which will
give equation that looks like y′ +
p(x)y = mc0x

m and then solve for
m, c0 from mc0x

m = q(x) for each
sum term in q(x),

Not solved Solved

Solve for m, c0 from the balance
equation

No series solution
exist

Find yp =
∑∞

n=0 cnx
n+m using

same recurrence relation for the
main ode above.

Find the recurrence relation for y′ + p(x)y = 0 and de-
termine all an coeffecients. Also determine the balance
equation.

y = yh + yp

=
∞∑

n=0

anx
n+r +

∞∑
n=0

cnx
n+m

is f(x, y) analytic at x0?

YES

The easy case. Apply Taylor series defin-
tion directly to find the series expansion.
Let

y = y0 +
∞∑

n=1

xn

n!
fn(x, y)

∣∣∣∣x=x0
y=y0

Where
f1 = f(x, y)

fn+1 =
∂fn
∂x

+

(
∂fn
∂y

)
f1

NO

Write the ode as y′ +
p(x)y = q(x).

YES

Finish

YESNO

Expand q(x) in series around x0 and match each power of
x with the corresponding n term in the reccurence relation
to solve for the an

All an found. Solution is y =
xr

∑∞
n=0 anx

n

Linear in y?

YES NO

STOP.
Not
sup-
ported.

Figure 1.6: Algorithm for series solution for first orde
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1.2.20.2 Algorithm pseudocode

function solve_first_order_ode_series(y′ = f(x, y))
if f(x, y) analytic at expansion point x0 then

Apply Taylor series defintion directly to find the series expansion. Let
y0 = y(x0) and

y = y0 +
∞∑
n=0

xn+1

(n+ 1)! Fn(x, y)
∣∣∣∣x=x0
y=y0

where

F0 = f(x, y)

Fn = d

dx
Fn−1

= ∂Fn−1

∂x
+
(
∂Fn−1

∂y

)
F0

return y as the solution
else

if f(x, y) not linear in y(x) then
return – Not supported.

else
Write the ode as y′ + p(x)y = q(x)
if limx→x0(x− x0)p(x) does not exist then

return Irregular singular point. Not supported.
else

Regular singular point. Expand p(x) in series if not already a polyno-
mial.

if unable to obtain series for p(x) then
return Not supported.

else
Use Frobenius series. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r)anxn+r−1

Figure 1.7: Algorithm for series solution for first orde

1.2.20.3 Ordinary point using standard power series method

ode internal name "first_order_ode_power_series_method_ordinary_point"
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Expansion point is an ordinary point. Standard power series. The ode must be linear
in y′ and y at this time. See below for examples.

1.2.20.4 Ordinary point using Taylor series method

ode internal name "first_order_ode_taylor_series_method_ordinary_point"

Alternative method to solving the above example is given here which is to use the
Taylor series method. This is derived as follows.

Let
y′ = f(x, y)

Where f(x, y) is analytic at expansion point x0. We can always shift to x0 = 0 if x0 is
not zero. So from now we assume x0 = 0 . Assume also that y(x0) = y0. Using Taylor
series

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′(x0) + · · ·

= y0 + xf + x2

2
df

dx

∣∣∣∣
x0,y0

+ x3

3!
d2f

dx2

∣∣∣∣
x0,y0

+ · · ·

= y0 +
∞∑
n=0

xn+1

(n+ 1)!
dnf

dxn

∣∣∣∣
x0,y0

But

df

dx
= ∂f

∂x
+ ∂f

∂y
f (1)

d2f

dx2
= d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f (2)

d3f

dx3
= d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(
∂

∂y

d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y) then the above can be written as

F0 = f(x, y) (4)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
F0 (5)

For example, for n = 1 we see that

F1 =
d

dx
(F0)

= ∂

∂x
F0 +

(
∂F0

∂y

)
F0

= ∂f

∂x
+ ∂f

∂y
f

Which is (1). And when n = 2

F2 =
d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
F0

= ∂

∂x

(
∂f

∂x
+ ∂f

∂y
f

)
+ ∂

∂y

(
∂f

∂x
+ ∂f

∂y
f

)
f

= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f

Which is (2) and so on. Therefore (4,5) can be used from now on along with

y(x) = y0 +
∞∑
n=0

xn+1

(n+ 1)! Fn|x0,y0
(6)

See below for examples.

1.2.20.4.1 Example 1

y′ + 2xy = x

Solved using power series

Expansion is around x = 0. The (homogeneous) ode has the form y′ + p(x) y = 0. We
see that p(x) is defined as is at x = 0. Hence this is an ordinary point, also the RHS
has series expansion at x = 0. It is very important to check that the RHS has series
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expansion at x = 0. Otherwise this method will fail and we must use Frobenius even if
x = 0 is ordinary point for the LHS of the ode. For example for the ode y′ + 2xy = 1

x

or y′ + 2xy =
√
x standard power series will fail. See examples below.

Using standard power series, let

y =
∞∑
n=0

anx
n

y′ =
∞∑
n=0

nanx
n−1 =

∞∑
n=1

nanx
n−1

The ode now becomes
∞∑
n=1

nanx
n−1 + 2x

∞∑
n=0

anx
n = x

∞∑
n=1

nanx
n−1 +

∞∑
n=0

2anxn+1 = x

Reindex so that all powers on x are n gives
∞∑
n=0

(n+ 1) an+1x
n +

∞∑
n=1

2an−1x
n = x

For n = 0, the RHS is zero, since there is no matching term with x0, therefore the
above gives

a1 = 0

For n = 1, the RHS is x1 which gives

(n+ 1) an+1 + 2an−1 = 1
2a2 + 2a0 = 1

a2 =
1− 2a0

2
For n ≥ 2 the RHS is zero and we have recurrence relation. Therefore we have

(n+ 1) an+1 + 2an−1 = 0

For n = 2

3a3 + 2a1 = 0

a3 = −2a1
3 = 0
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For n = 3

4a4 + 2a2 = 0

a4 = −1
2a2 = −1

2

(
1− 2a0

2

)
= 2a0 − 1

4

And so on. The solution is

y =
∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + a3x

3 + · · ·

= a0 +
(
1− 2a0

2

)
x2 +

(
2a0 − 1

4

)
x4 + · · ·

= a0

(
1− x2 + 1

2x
4 + · · ·

)
+
(
1
2x

2 − 1
4x

4 + · · ·
)

Which can be written as

y = y(0)
(
1− x2 + 1

2x
4 + · · ·

)
+
(
1
2x

2 − 1
4x

4 + · · ·
)

Solved using Taylor series

y′ + 2xy = x

y′ = x− 2xy
= f(x, y)

For this method to work, f(x, y) must be analytic at x = x0, the expansion point. Let
expansion point be x = 0. Let y(0) = y0. Then

y = y(0) +
∞∑
n=0

xn+1

(n+ 1)! Fn(x, y)|x=0,y0



chapter 1 . f irst order ode 88

Where F0 = f(x, y) and Fn = ∂Fn−1
∂x

+
(

∂Fn−1
∂y

)
F0. Hence

F0 = (x− 2xy)

F1 =
d

dx
F0

=
(
∂F0

∂x

)
+
(
∂F0

∂y

)
F0

=
(
∂(x− 2xy)

∂x

)
+
(
∂(x− 2xy)

∂y

)
(x− 2xy)

= (1− 2y)− 2x(x− 2xy)
= 4x2y − 2y − 2x2 + 1

F2 =
d2

dx2
F1

=
(
∂F1

∂x

)
+
(
∂F1

∂y

)
F0

=
(
∂

∂x

(
4x2y − 2y − 2x2 + 1

))
+
(
∂

∂y
4x2y − 2y − 2x2 + 1

)
(x− 2xy)

= (8xy − 4x) +
(
4x2 − 2

)
(x− 2xy)

= 12xy − 8x3y − 6x+ 4x3

F3 =
d3

dx3
F2

=
(
∂F2

∂x

)
+
(
∂F2

∂y

)
F0

=
(
∂

∂x

(
12xy − 8x3y − 6x+ 4x3

))
+
(
∂

∂y

(
12xy − 8x3y − 6x+ 4x3

))
(x− 2xy)

= 12y − 24x2y − 6 + 12x2 +
(
12x− 8x3

)
(x− 2xy)

= 12y − 48x2y + 16x4y + 24x2 − 8x4 − 6

And so on. Evaluating the above at x = 0, y = y0 gives

F0 = 0
F1 = −2y0 + 1
F2 = 0
F3 = 12y0 − 6
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Hence

y = y(0) +
∞∑
n=0

xn+1

(n+ 1)! Fn(x, y)|x=0,y0

= y0 + xF0 +
x2

2 F1 +
x3

6 F2 +
x4

24F3 + · · ·

= y0 + 0 + x2

2 (−2y0 + 1) + 0 + x4

24(12y0 − 6) + · · ·

= y0 − 2y0
x2

2 + x2

2 + 1
2y0x

4 − x4

4 +

= y0

(
1− x2 + 1

2x
4
)
+ x2

2 − x4

4 + · · ·

1.2.20.4.2 Example 2

Solved using Taylor series

Another example using Taylor series method.

y′ + 2xy = 1 + x+ x2

y′ = 1 + x+ x2 − 2xy
= f(x, y)

Let expansion point be x = 0. Let y(0) = y0. Then

y = y(0) +
∞∑
n=0

xn+1

(n+ 1)! Fn(x, y)|x=0,y0
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Where F0 = f(x, y) and Fn = ∂Fn−1
∂x

+
(

∂Fn−1
∂y

)
F0. Hence

F0 = 1 + x+ x2 − 2xy

F1 =
(
∂F0

∂x

)
+
(
∂F0

∂y

)
F0

= 1 + 2x− 2y + (−2x)
(
1 + x+ x2 − 2xy

)
= 4x2y − 2y − 2x2 − 2x3 + 1

F2 =
(
∂F1

∂x

)
+
(
∂F1

∂y

)
F0

=
(
8xy − 4x− 6x2

)
+
(
4x2 − 2

)
(x− 2xy)

= 12xy − 8x3y − 6x− 6x2 + 4x3

F3 =
(
∂F2

∂x

)
+
(
∂F2

∂y

)
F0

= 12y − 24x2y − 6− 12x+ 12x2 +
(
12x− 8x3

) (
1 + x+ x2 − 2xy

)
= 12y − 48x2y + 16x4y + 24x2 + 4x3 − 8x4 − 8x5 − 6

And so on. Evaluating the above at x = 0, y = y0 gives

F0 = 1
F1 = −2y0 + 1
F2 = 0
F3 = 12y0 − 6

Hence

y = y(0) +
∞∑
n=0

xn+1

(n+ 1)! Fn(x, y)|x=0,y0

= y0 + F0x+ F1
x2

2 + F2
x3

6 + F3
x4

24 + · · ·

= y0 + x+ (−2y0 + 1) x
2

2 + (12y0 − 6) x
4

24 + · · ·

= y0

(
1− x2 + 1

2x
4 + · · ·

)
+
(
x+ 1

2x
2 − 1

4x
4 + · · ·

)



chapter 1 . f irst order ode 91

1.2.20.4.3 Example 3

Solved using Taylor series

y′ + 2xy2 = 1 + x+ x2

y′ = 1 + x+ x2 − 2xy2

= f(x, y)

Let expansion point be x = 0. Let y(0) = y0. Then

y = y(0) +
∞∑
n=0

xn+1

(n+ 1)! Fn(x, y)|x=0,y0

Where F0 = f(x, y) and Fn = ∂Fn−1
∂x

+
(

∂Fn−1
∂y

)
F0. Hence

F0 = 1 + x+ x2 − 2xy2

F1 =
(
1 + 2x− 2y2

)
+ (−4xy)

(
1 + x+ x2 − 2xy2

)
= −4x3y + 8x2y3 − 4x2y − 4xy + 2x− 2y2 + 1

F2 =
(
∂F1

∂x

)
+
(
∂F1

∂y

)
F0

=
(
−12x2y + 16xy3 − 8xy − 4y + 2

)
+
(
−4x3 + 24x2y2 − 4x2 − 4x− 4y

) (
1 + x+ x2 − 2xy2

)
= −4x5 + 32x4y2 − 8x4 − 48x3y4 + 32x3y2 − 12x3 + 32x2y2 − 16x2y − 8x2 + 24xy3 − 12xy − 4x− 8y + 2

F3 =
(
∂F2

∂x

)
+
(
∂F2

∂y

)
F0

And so on. Evaluating the above at x = 0, y = y0 gives

F0 = 1
F1 = −2y20 + 1
F2 = −8y0 + 2

Hence

y = y(0) +
∞∑
n=0

xn+1

(n+ 1)! Fn(x, y)|x=0,y0

= y0 + F0x+ F1
x2

2 + F2
x3

6 + F3
x4

24 + · · ·

= y0 + x+
(
−2y20 + 1

) x2
2 + (−8y0 + 2) x

3

6 + · · ·

= y0

(
1− 4

3x
3 + · · ·

)
+ y20

(
−x2 + · · ·

)
+ · · ·+

(
x+ 1

2x
2 + 1

3x
3 + · · ·

)
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1.2.20.4.4 Example 4

Solved using power series

y′ + y = sin x
Expansion is around x = 0. The (homogenous) ode has the form y′ + p(x) y = 0. We
see that p(x) is defined as is at x = 0. Hence this is ordinary point, also the RHS has
series expansion at x = 0.

Let y =
∑∞

n=0 anx
n, y′ =

∑∞
n=0 nanx

n−1 =
∑∞

n=1 nanx
n−1. The ode becomes

∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n = sin x

Indexing so all powers of x start at n gives
∞∑
n=0

(n+ 1) an+1x
n +

∞∑
n=0

anx
n = sin x

Expanding sin x in series gives
∞∑
n=0

(n+ 1) an+1x
n +

∞∑
n=0

anx
n = x− x3

3! +
x5

5! − · · ·

For n = 0, there is no term on RHS with x0, hence we obtain

a1 + a0 = 0
a1 = −a0

For n = 1 there is one term x1 on RHS, hence

2a2 + a1 = 1

a2 =
1− a1

2 = 1 + a0
2

For n = 2 there is no term on RHS with x2 hence

3a3 + a2 = 0

a3 = −a23 = −
1+a0
2
3 = −1

6a0 −
1
6

For n = 3 there is term −1
6x

3 on RHS, hence

4a4 + a3 = −1
6

a4 =
−1

6 − a3
4 =

−1
6 −

(
−1

6a0 −
1
6

)
4 = 1

24a0
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And so on. The solution is

y =
∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + · · ·

= a0 − a0x+
(
1 + a0

2

)
x2 +

(
−1
6a0 −

1
6

)
x3 +

(
1
24a0

)
x4 + · · ·

= a0

(
1− x+ 1

2x
2 − 1

6x
3 + 1

24x
4 − · · ·

)
+
(
1
2x

2 − 1
6x

3 + · · ·
)

1.2.20.5 Regular singular point using Frobenius series method.

ode internal name "first_order_ode_series_method_regular_singular_point"

expansion point is a regular singular point. Standard power series. The ode must be
linear in y′ and y at this time.

1.2.20.5.1 Example 1

y′ + 2xy =
√
x

Expansion is around x = 0. The (homogenous) ode has the form y′ + p(x) y = 0. We
see that p(x) is analytic at x = 0. However the RHS has no series expansion at x = 0
(not analytic there). Therefore we must use Frobenius series in this case. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

The (homogenous) ode becomes
∞∑
n=0

(n+ r) anxn+r−1 + 2x
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

2anxn+r+1 = 0

Reindex so all powers on x are the lowest gives
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=2

2an−2x
n+r−1 = 0 (1)
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For n = 0 , Eq(1) gives
ra0x

r−1 = 0
Hence r = 0 since a0 6= 0. Therefore the balance equation is

mc0x
m−1 =

√
x

Where r is replaced my m and an is replaced by cn. The above will used below to find
yp. For n = 1, Eq(1) gives

(1 + r) a1xr = 0
a1 = 0

For n ≥ 2 the recurrence relation is from (1)

(n+ r) an + 2an−2 = 0

an = − 2an−2

(n+ r) (2)

Or for r = 0 the above simplifies to

an = − 2
n
an−2 (2A)

Eq (2A) is what is used to find all an for For n ≥ 2. Hence for n = 2 and remembering
that a0 = 1 gives

a2 = −1
For n = 3

a3 = −2
3a1 = 0

For n = 4
a4 = −1

2a2 =
1
2

For n = 5, 7, · · · and all odd n then an = 0. For n = 6

a6 = −1
3a4 = −1

6
And so on. Hence (using a0 = 1)

yh = c1

∞∑
n=0

anx
n+r

= c1

∞∑
n=0

anx
n

= c1
(
a0 + a1x+ a2x

2 + a3x
3 + · · ·

)
= c1

(
1− x2 + 1

2x
4 − 1

6x
6 + · · ·

)
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Now we need to find yp using the balance equation. From above we found that

ra0x
r−1 = x

1
2

Renaming a to c and r as m so not to confuse terms used for yh, the above becomes

mc0x
m−1 = x

1
2

Hence m− 1 = 1
2 or m = 3

2 . Therefore mc0 = 1 or c0 = 2
3 . Now we can find the series

for yp using

yp =
∞∑
n=0

cnx
n+m

= x
3
2

∞∑
n=0

cnx
n

To find cm we use the same recurrence relation found for yh but change r to m and a
to c. From above we found

(n+ r) an + 2an−2 = 0

Hence it becomes
(n+m) cn + 2cn−2 = 0

The above is valid for n ≥ 2. For n = 0 we have found c0 already. For c1 using the
above ra1 = 0 hence it becomes mc1 = 0 which implies

c1 = 0

since m 6= 0. Now we are ready to find few cn terms. The above recurrence relation
becomes for m = 3

2 (
n+ 3

2

)
cn + 2cn−2 = 0

cn = −2cn−2(
n+ 3

2

)
Hence for n = 2

c2 =
−2c0(
2 + 3

2

) =
−2
(2
3

)(
2 + 3

2

) = − 8
21

For n = 3
c3 =

−2c1(
3 + 3

2

) = 0
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For n = 4
c4 =

−2c2(
4 + 3

2

) =
−2
(
− 8

21

)(
4 + 3

2

) = 32
231

And so on. Hence

yp = x
3
2

∞∑
n=0

cnx
n

= x
3
2
(
c0 + c1x+ c2x

2 + · · ·
)

Hence the final solution is

y = yh + yp

= c1

(
1− x2 + 1

2x
4 − 1

6x
6 + · · ·

)
+ x

3
2

(
2
3 +− 8

21x
2 + 32

231x
4 − · · ·

)

1.2.20.5.2 Example 2

y′ + 2xy = 1
x

Expansion is around x = 0. The (homogenous) ode has the form y′ + p(x) y = 0. We
see that p(x) is defined as is at x = 0. However the RHS has no series expansion at
x = 0. Therefore we must use Frobenius series. This is the same ode as example 1. So
we go straight to find yp as yh is the same. Now we need to find yp using the balance
equation. From above we found that

ra0x
r−1 = 1

x

Renaming a to c and r as m so not to confuse terms used for yh, the above becomes

mc0x
m−1 = x−1

Hence m− 1 = −1 or m = 0. Therefore mc0 = 1. But since m = 0 then no solution for
c0. Hence it is not possible to find series solution. This is an example where the balance
equation fails and so we have to use asymptotic expansion to find solution, which is
not supported now.
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1.2.20.5.3 Example 3

y′ = 1
x

Expansion is around x = 0. The (homogenous) ode has the form y′ + p(x) y = 0. We
see that p(x) = 0 is analytic at x = 0. However the RHS has no series expansion at
x = 0 (not analytic there). Therefore we must use Frobenius series in this case. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

The (homogenous) ode becomes
∞∑
n=0

(n+ r) anxn+r−1 = 0 (1)

For n = 0
ra0x

r−1 = 0

Hence r = 0 since a0 6= 0. Therefore the ode satisfies

y′ = ra0x
r−1

Eq (1) becomes
∞∑
n=0

nanx
n−1 = 0

nanx
n−1 = 0 (2)

Therefore for all n ≥ 1 we have an = 0. Hence

yh = a0

Now we need to find yp using the balance equation. From above we found that

ra0x
r−1 = 1

x

Changing r to m and a0 to c0 so not to confuse notation gives

mc0x
m−1 = x−1

Hence m − 1 = −1 or m = 0. Therefore there is no solution for c0. Unable to find
yp therefore no series solution exists. Asymptotic methods are needed to solve this.
Mathematica AsymptoticDSolveValue gives the solution as y(x) = c+ ln x.
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1.2.20.5.4 Example 4

y′ = 1
x2

Expansion is around x = 0. The (homogenous) ode has the form y′ + p(x) y = 0. We
see that p(x) = 0 is analytic at x = 0. However the RHS has no series expansion at
x = 0 (not analytic there). Therefore we must use Frobenius series in this case. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

The (homogenous) ode becomes
∞∑
n=0

(n+ r) anxn+r−1 = 0 (1)

For n = 0
ra0x

r−1 = 0

Hence r = 0 since a0 6= 0. Therefore the balance equation is

ra0x
r−1 = 1

x2

Or by changing r to m and a0 to c0 so not to confuse notation with yh gives

mc0x
m−1 = x−2 (2)

Eq (1) becomes, where r = 0 now
∞∑
n=0

nanx
n−1 = 0

nanx
n−1 = 0 (2)

n = 0 is not used since that was used to find r. Therefore we start from n = 1. For all
n ≥ 1 we see from (2) that an = 0. Hence

yh = c1(a0 +O(x))

Letting a0 = 1 the above becomes

yh = c1(1 +O(x))
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Now we need to find yp using the balance equation. From (2) above we found that

mc0x
m−1 = x−2

To balance, we need m− 1 = −2 or m = −1 and mc0 = 1 or c0 = −1. Therefore

yp = xm
∞∑
n=0

c0x
n

Where c0 = −1 and all cn for n ≥ 1 are found using the recurrence relation from finding
yh. But from above we found that all an = 0 for n ≥ 1. Hence cn = 0 also for n ≥ 1.
Therefore

yp = xmc0

= −1
x

+O
(
x2
)

Hence the solution is

y = yh + yp

= c1
(
1 +O

(
x2
))

+
(
−1
x

+O
(
x2
))

If we to ignore the big O, the above becomes

y = c1 −
1
x

To verify, we see that y′ = 1
x2 .

1.2.20.5.5 Example 5

y′ + y

x
= 0

Expansion is around x = 0. The (homogenous) ode has the form y′ + p(x) y = 0. We
see that p(x) = 1

x
is not analytic at x = 0 but limx→0 xp(x) = 0 is analytic. Therefore

we must use Frobenius series in this case. Let

y =
∞∑
n=0

anx
n+r (A)

y′ =
∞∑
n=0

(n+ r) anxn+r−1
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The ode becomes
∞∑
n=0

(n+ r) anxn+r−1 + 1
x

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r−1 = 0

∞∑
n=0

((n+ r) an + an)xn+r−1 = 0

∞∑
n=0

(n+ r + 1) anxn+r−1 = 0 (1)

For n = 0
(r + 1) a0 = 0

Hence r = −1 since a0 6= 0. Eq (1) becomes, where r = −1 now
∞∑
n=0

nanx
n = 0

nanx
n−1 = 0 (2)

n = 0 is not used since that was used to find r. Therefore we start from n = 1. For
n = 1 the above gives a1 = 0 and same for all n ≥ 1. Hence from Eq (A), since
y =

∑∞
n=0 anx

n+r then (note: When there is only one
∑

term left in (1) as in this case,
then this means there is no recurrence relation and all an = 0 for n > 0).

y = c1

(
∞∑
n=0

anx
n+r

)

= c1

(
∞∑
n=0

anx
n−1

)
= c1

(
a0x

−1 + 0 + 0 + · · ·+O(x)
)

Letting a0 = 1 the above becomes

y = c1
(
x−1 +O(x)

)
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1.2.20.6 irregular singular point

ode internal name "first order ode series method. Irregular singular point"

expansion point is an irregular singular point. Not supported.

1.2.21 Laplace method
ode internal name "first_order_laplace"

These are ode’s solved using Laplace method. Currently only linear constant coefficient
is supported.

1.2.21.1 Examples

1.2.21.1.1 Example 1

y′ − 2y = 6e5t

With initial conditions y(0) = 3. Taking the Laplace transform gives

L(y) = Y (s)
L(y′) = sY (s)− y(0)

L
(
6e5t

)
= 6
s− 5

The ode becomes

sY (s)− y(0)− 2Y (s) = 6
s− 5

Y (s) (s− 2)− y(0) = 6
s− 5

Y (s) (s− 2) = 6
s− 5 + y(0)

Y (s) (s− 2) = 6
s− 5 + 3

Y (s) (s− 2) = 6 + 3(s− 5)
s− 5

Y (s) (s− 2) = 3s− 9
s− 5

Y (s) = 3s− 9
(s− 5) (s− 2)

= 2
s− 5 + 1

s− 2
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Applying inverse Laplace transform and using L−1( 2
s−5

)
= 2e5t,L−1( 1

s−2

)
= e2t then

the above gives
y(t) = 2e5t + e2t

1.2.21.1.2 Example 2

y′ − ty = 0

With initial conditions y(0) = 0. For this we will use relation L(tf(t)) = − d
ds
F (s).

Hence taking the Laplace transform gives

L(ty) = − d

ds
L(y)

= − d

ds
Y (s)

L(y′) = sY (s)− y(0)

The ode becomes

sY (s)− y(0) + d

ds
Y (s) = 0

sY (s) + d

ds
Y (s) = 0

This is linear ode in Y (s). The integrating factor is e
∫
sds = e

s2
2 . Hence the above

becomes
d

ds

(
Y e

s2
2

)
= 0

Integrating gives

Y e
s2
2 = c1

Y = c1e
−s2
2

Applying inverse Laplace transform and using

y(t) = c1L−1
(
e

−s2
2

)
Using Laplace transform on time varying coefficient ode is not good idea. I need to
look more into this. There is no L−1

(
e

−s2
2

)
. Solving this in time domain is much easier

of course.
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1.2.21.1.3 Example 3

y′ − 6y = 0
y(−1) = 4

Taking the Laplace transform gives

L(y) = Y (s)
L(y′) = sY (s)− y(0)

The ode becomes
sY (s)− y(0)− 6Y = 0

Since IC is not at zero, we let y(0) = c1 and solving for Y gives

Y (s− 6)− c1 = 0

Y = c1
s− 6

Taking inverse Laplace transform gives

y(t) = c1e
6t

At t = −1, from IC, we obtain

4 = c1e
−6

c1 = 4e6

Hence solution is

y(t) = 4e6e6t

= 4e6t+6
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1.2.22 Lie symmetry method for solving first order ODE

1.2.22.1 Terminology used and high level introduction

1. x, y are the natural coordinates used in the input ode dy
dx

= ω(x, y).

2. x̄, ȳ are called the Lie group (local) transformation coordinates. The ode remains
invariant (same shape) when written in x̄, ȳ. The coordinates R,S (some books
use lower case r, s) are called the canonical coordinates in which the input ode
becomes a quadrature and therefore easily solved by just integration.

3. ξ, η are called the Lie infinitesimals. ξ(x, y) , η(x, y) can be calculated knowing
x̄, ȳ. Also x̄, ȳ can be calculated given ξ, η. It is ξ, η which are the most important
quantities that need to be determined in order to find the canonical coordinates
R,S. These quantities are called the tangent vectors. These specify how the orbit
moves. The orbit is the path the point (x, y) point travels on as it move toward
x̄, ȳ. The tangent vectors ξ, η are calculated at ε = 0. The point x̄ = x+ ξε and
the point ȳ = y + ηε.

4. The ultimate goal is write dy
dx

= ω(x, y) in R,S coordinates where it is solved by
integration only as it will have the form dS

dR
= F (R). The right hand side should

always be a function of R only in canonical coordinates.

5. x̄, ȳ can be calculated knowing the canonical coordinates R,S.

6. The ideal transformation has the form (x̄, ȳ) → (x, y + ε) because with this
transformation the ode becomes quadrature in the transformed coordinates. But
because not all ode’s have this transformation available, the ode is transformed
to canonical coordinates (R,S) where the transformation

(
R̄, S̄

)
→ (R,S + ε)

can be used.

7. The main goal of Lie symmetry method is to determine S,R. To be able to do
this, the quantities ξ, η must be determined first.

8. The remarkable thing about this method, is that regardless of how complicated
the original ode dy

dx
= ω(x, y) is, if the similarity condition PDE can be solved for

ξ, η, then R,S are found and the ode becomes quadrature dS
dR

= F (R). The ode
is then solved in canonical coordinates and the solution transformed back to x, y.

9. The quantity ε is called the Lie parameter. This is a real quantity which as it
goes to zero, gives the identity transformation. In other words, when ε = 0 then
(x, y) = (x̄, ȳ).

10. But there is no free lunch, even in Mathematics. The problem comes down to
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finding ξ, η. This requires solving a PDE. This is done using ansatz and trial
and error. This reason possibly explains why the Lie symmetry method have not
become standard in textbooks for solving ODE’s as the algebra and computation
needed to find ξ, η from the PDE becomes very complex to do by hand.

11. Total derivative operator: Given f(x, y) then df
dx

= ∂f
∂x

+ ∂f
∂y

dy
dx

where it is assumed
that y(x) depends on x. Total derivative operator will be used extensively in all
the derivatiations below, so good to practice this. It is written as Dx = ∂x + ∂yy

′

for first order ode, and as Dx = ∂x + ∂yy
′ + ∂y′y

′′ for second order ode and as
Dx = ∂x + ∂yy

′ + ∂y′y
′′ + ∂y′′y

′′′ for third order ode and so on.

12. The notation fx means partial derivative. Hence ∂f
∂x

is written as fx. Total deriva-
tive will always be written as df

dx
. It is important to distinguish between these two

as the algebra will get messy with Lie symmetry. Sometimes we write f ′ to mean
df
dx

but it is better to avoid f ′ and just write df
dx

when f is function of more than
one variable.

13. Given first ode dy
dx

= ω(x, y), where ȳ ≡ ȳ(x, y) and x̄ ≡ x̄(x, y) then then dȳ
dx̄

is
given by the following (using the total derivative operator)

dȳ

dx̄
= Dxȳ

Dxx̄

= ȳx + ȳyy
′

x̄x + x̄yy′

= ȳx + ȳyω

x̄x + x̄yω

14. Given second order ode d2y
dx2 = ω(x, y, y′) where ȳ ≡ ȳ(x, y, y′) and x̄ ≡ x̄(x, y, y′)

then d2ȳ
dx̄2 is given by

d2ȳ

dx̄2
=
Dx

dȳ
dx̄

Dxx̄

=
ȳ′x + ȳ′yy

′ + ȳ′y′y
′′

x̄′x + x̄′yy
′

To simplify notation we used ȳ′ for dȳ
dx̄

above. The above simplifies to

d2ȳ

dx̄2
=
ȳ′x + ȳ′yy

′ + ȳ′y′ω

x̄′x + x̄′yy
′

Keeping in mind that (◦)x or (◦)y mean partial derivative.
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15. Given third order ode d3y
dx3 = ω(x, y, y′, y′′) where ȳ ≡ ȳ(x, y, y′, y′′) and x̄ ≡

x̄(x, y, y′, y′) then d3ȳ
dx̄3 is given by

d3ȳ

dx̄3
=
Dx

d2ȳ
dx̄2

Dxx̄

=
ȳ

′′
x + ȳ′′yy

′ + ȳ′′y′y
′′ + ȳ′′y′′y

′′′

x̄′x + x̄′yy
′

=
ȳ

′′
x + ȳ′′yy

′ + ȳ′′y′y
′′ + ȳ′′y′′ω

x̄′x + x̄′yy
′

To simplify notation we used ȳ′′ for d2ȳ
dx̄2 above. And so on for higher order ode’s.

1.2.22.2 Introduction

Given any first order ODE
dy

dx
= ω(x, y) (A)

The first goal is to find a one parameter invariant Lie group transformation that keeps
the ode invariant. The Lie parameter the transformation depends on is called ε. This
means finding transformation of (x, y) to new coordinates (x̄, ȳ) that keeps the ode the
same form when written using x̄, ȳ.

This view looks at the transformation on the ode itself. Another view is to look at the
family of the solution curves of the ode instead. Looking at solution curves transforma-
tion is geometrical in nature and can lead to more insight.

What does the transformation mean when looking at solution curves instead of the
ODE itself? It is the mapping of a point (x, y) on one solution curve to another point
(x̄, ȳ) on another solution curve. If the mapping sends point (x, y) to another point (x̄, ȳ)
on the same solution curve, then it is called a trivial mapping or trivial transformation.

As an example, given the ode y′ = 0, this has solutions y = c1. For any constant c1
there is a solution curve. There are infinite number of solution curves. All solution
curves are horizontal lines. The mapping (x, y) → (x+ ε, y) is trivial transformation as
it moves the point (x, y) to another point (x̄, ȳ) on the same solution curve.

The transformation (x, y) → (x, y + ε) however is non trivial as it moves the point (x, y)
to point (x̄, ȳ) on another solution curve. Here x̄ = x and ȳ = y + ε. This can also be
written (x, y) → (x, eεy) which is the preferred way.

The transformation (x, y) → (x+ ε, y + ε) is non trivial for this ode. The simplest non
trivial transformation that map all points on one solution curve to another solution curve
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is selected. In canonical coordinates the transformation used has the form (R,S) →
(R,S + ε).

Another example is y′ = y. This has solution curves given by y = cex. This is a plot
showing two such curves for different c values.

x

y(x)
c1

c2
(x, y)

(x̄, ȳ)

Figure 1.8: Point transformation example for y′ = y

The above shows that a non trivial transformation is given by x̄ = x + ε, ȳ = y. This
can be found analytically by solving the symmetry condition as will be illustrated
below using examples. For this case, the tangent vectors are ξ = ∂x̄

∂ε

∣∣
ε=0 = 1 and

η = ∂ȳ
∂ε

∣∣
ε=0 = 0. In Maple this is found using� �

ode:=diff(y(x),x)=y(x);
DEtools:-symgen(ode)
[_xi = 1, _eta = 0]� �
But the following transformation x̄ = x, ȳ = y + ε does not work

x

y(x)
c1

c2
(x, y)

(x̄, ȳ)

Figure 1.9: Possible Point transformation for y′ = y

This is because it does not leave the ode invariant because dȳ
dx̄

= ȳ becomes ȳx+ȳyy′

x̄x+x̄yy′
= ȳ,

where now ȳx = 0, ȳy = 1, x̄x = 1, x̄y = 0, ȳ = y + ε, and hence ȳx+ȳyy′

x̄x+x̄yy′
= ȳ simplifies to
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y′ = y + ε which is not the same ode. This shows that x̄ = x, ȳ = y + ε is not valid Lie
point symmetry.

However x̄ = x + ε, ȳ = y leaves the ODE invariant. In this case ȳx = 0, ȳy = 1, x̄x =
1, x̄y = 0, ȳ = y and hence ȳx+ȳyy′

x̄x+x̄yy′
= ȳ becomes y′ = y which is the same ode.

The transformation must keep the ode invariant as this is the main definition of sym-
metry transformation.

In the above, the path the point (x, y) travels over as it moves to (x̄, ȳ) as ε changes is
called the orbit. Each point (x, y) travels on its orbit during transformation.

In all such transformations, there is a parameter ε that the transformation depends on.
This is why this is called the Lie one parameter symmetry transformation group. There
are infinite number of such transformations.

Lie symmetry is called point symmetry, because of the above. It transforms points from
an ODE solution curves to points on another solution curves for the same ODE. The
identity transformation is when ε = 0, since then the point is transformed to itself.

An example using an ODE. The Clairaut ode of the form y = xf(p) + g(p) where
p ≡ y′.

x(y′)2 − yy′ +m = 0 (1)

y = x
(y′)2

m
+ y

y′

m

Where f(p) = (y′)2
m

and g(p) = y′

m
. Using the dilation transformation Lie group

x̄ ≡ x̄(x, y; ε) = e2εx (2)
ȳ ≡ ȳ(x, y; ε) = eεy (3)

Eq. (1) is now expressed in the new coordinates x̄, ȳ . If this results in same same ode
form but written in x̄, ȳ then the transformation is invariant. But how to find dȳ

dx̄
? This

is done as follows

dȳ

dx̄
=

dȳ
dx
dx̄
dx

=
ȳx + ȳy

dy
dx

x̄x + x̄y
dy
dx
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In this example ȳx = 0, ȳy = eε, x̄x = e2ε, x̄y = 0. The above now becomes

dȳ

dx̄
=
eε dy

dx

e2ε

= e−ε dy

dx

Writing (1) in terms of x̄, ȳ now gives

x̄

(
dȳ

dx̄

)2

− ȳ
dȳ

dx̄
+m = 0 (4)

(
e2εx

)(
e−ε dy

dx

)2

− (eεy) e−ε dy

dx
+m = 0

x

(
dy

dx

)2

− y
dy

dx
+m = 0 (5)

Which gives the same ode. The above method starts by replacing the given ode by
x̄, ȳ, dȳ

dx̄
and finds if the result gives back the original ode in x, y, dy

dx
. This is simpler than

having to transform the original ode to x̄, ȳ, dȳ
dx̄
. This transformation can be verified in

Maple as follows� �
ode:=x*diff(y(x),x)^2-y(x)*diff(y(x),x)+m=0;
the_tr:={x=X*exp(-2*s),y(x)=Y(X)*exp(-s)};
newode:=PDEtools:-dchange(the_tr,ode,{Y(X),X},'known'={y(x)},'uknown'={Y(X)});
diff(Y(X), X)^2*X - Y(X)*diff(Y(X), X) + m = 0� �
Comparing (4) to (5) shows that the ode form did not change, only the letters changed
from x to x̄ and y to ȳ. The resulting ode must never have the parameter ε show or
remain in it.

The above shows how to verify that a transformation is invariant or not. In Lie group
transformation there is only one parameter ε and the transformation is obtained by
evaluating the group as ε goes to zero.

But how does this help in solving the ode? If the ode in x, y is hard to solve, then the
ode written with x̄, ȳ will also be hard to solve since it is the same. But Eq. (4) is
not what is used to solve the ode, but the above is just to verify the transformation is
invariant. Similarity transformation is used to determine tangent vectors ξ, η only. Then
the ode in canonical coordinates is used instead. In the canonical coordinates (R,S) the
ode becomes quadrature and solved by integration. The transformation found above is
only one step toward finding (R,S) and it is these canonical coordinates that are the
goal and not x̄, ȳ.
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1.2.22.3 Outline of the steps in solving a differential equation using Lie
symmetry method

These are the steps in solving an ODE using Lie symmetry method.

1. Given an ode y′ = ω(x, y) to solve in natural coordinates.

2. Now the tangent vector ξ(x, y) , η(x, y) are found. There are two options.

(a) If Lie group coordinates (x̄, ȳ) are given, then it is easy to determine
ξ(x, y) , η(x, y) using

ξ(x, y) = ∂x̄

∂ε

∣∣∣∣
ε=0

η(x, y) = ∂ȳ

∂ε

∣∣∣∣
ε=0

Lie group coordinates (x̄, ȳ) must also satisfy

x̄xȳy − x̄yȳx 6= 0

(b) In practice Lie group coordinates (x̄, ȳ) are not given and are not known. In
this case ξ(x, y) , η(x, y) are found by solving the similarity condition which
results in a PDE (derivation is given below). The PDE is

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0

3. ξ, η are now used to determine the canonical coordinates (R,S). In the canonical
coordinates, only S translation is needed to make the ode quadrature. The trans-
formation is (R,S) → (R,S + ε). This transforms the original ode y′ = ω(x, y) to
dS
dR

= F (R) which is then solved by only integration. This is the main advantage
of moving to canonical coordinates (R,S).

4. The ODE is solved in (R,S) space where R ≡ R(x, y) , S ≡ S(x, y). The trans-
formation from (x, y) to (R,S) is found by solving two set of PDEs using the
characteristic method. After finding R(x, y) , S(x, y) the ode will then be given
by dS

dR
= Sx+Sy

dy
dx

Rx+Ry
dy
dx

which will be quadrature. If this ode does not come out as
dS
dR

= F (R) then something went wrong in the process. This ode is now solved for
S(R) . It is the symmetry of the form (R,S) → (R,S + ε) which is of the most
interest in the Lie method. This is called a translation transformation along the
y axis (or the S axis). This is because this transformation leads to an ode which
is solved by just integration.
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5. Transform the solution from S(R) to y(x).

6. An alternative to steps (3) to (5) is to use ξ, η to determine an integrating factor
µ(x, y) which is given by µ(x, y) = 1

η−ξω
then the general solution to y′ = ω(x, y)

can be written directly as
∫
µ(x, y) (dy − ωdx) = c1 or

∫
dy−ωdx
η−ξω

= c1 but this
requires finding a function F (x, y) whose differential is dF = dy−ωdx

η−ξω
and now

the solution becomes
∫
dF = c1 or F = c1. If we can integrate this using∫

µdy −
∫
µωdx = c1 then this is the solution to the ode. It is implicit in y(x).

Currently my program does not implement Lie symmetry to find an integrating
factor due to difficulty of finding dF that satisfies dF = dy−ωdx

η−ξω
or in carrying

out the integration in all general cases but I hope to add this soon as a backup
algorithm if the main one fails.

7. An important property, at least for first order ode’s (I do not know now if this
carries to higher order) is that given ξ = f(x, y) , η = g(x, y), then we can always
shift and use ξ ≡ 0, η = g − ωf where y′ = ω(x, y). This means we can always
base everything on ξ ≡ 0 after this shift is done to η. This can simplify some
parts of the computation. Ofcourse if ξ was found to be zero initially, i.e. just
after solving the linearized similarity PDE, then there is nothing more to do.

The most difficult step in all of the above is 2(b) which requires finding ξ(x, y) , η(x, y).
In practice Lie group x̄, ȳ transformation is not given. Lie infinitesimal ξ(x, y) , η(x, y)
have to be found directly from the linearized symmetry condition PDE using ansatz
and by trial and error. The following diagram illustrates the above steps.
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S

R

(R̄, S̄)

(R,S)

Canonical coordinates
are given by

R̄ = R

S̄ = S + ϵ

orbit

At this point ϵ = 0 and the
tangent vectors are given by

ξ (x, y) =
dx

dϵ

∣∣∣∣
ϵ=0

η (x, y) =
dy

dϵ

∣∣∣∣
ϵ=0

y

x

(x̄, ȳ)

(x, y)

orbit

0 =
∂R

∂x
ξ +

∂R

∂y
η

1 =
∂S

∂x
ξ +

∂S

∂y
η

Method of characterstics

dx

ξ
=

dy

η
= dS

Generate the ODE in canonical coordinates

dS

dR
=

Sx + Syω

Rx +Ryω

And here is the tricky part. The RHS above will be a function
of x, y. Rewrite the above as function of R only using the
earlier findings, knowing what R was. The result must depend
on R only giving

dS

dR
= F (R)

Which is solved for S by quadrature. The final step is the
easy one. Convert solution S(R) back to x, y.

ODE is y′ = ω(x, y)

Nasser M. Abbasi main 1.ipe (8/23/2023)

Canonical coordinates

Linearized symmetry
condition PDE

ηx + ω (ηy − ξx)− ω2ξy − ωxξ − ωyη = 0

Solve to find ξ, η

is ξ = 0 ?

YES

R = x

S =

∫
dy

η

NO

Solve dy
dx = η

ξ and set R
to the constant of inte-
gration.

Does ξ depend
on x only?

YES

Solve for S from

S =

∫
dx

ξ

NO

is η = 0 ?

YES NO

R = y

S =

∫
dx

ξ

Does η depend
on y only?

YES

Solve for S from

S =

∫
dy

η

NO

Since ξ depends on y and η
depends on x, then we can use
any one of these. Let us pick
dS = dx

ξ . But first we have to
replace y in ξ by its value found
from solving dy

dx = η
ξ found above

so that ξ is function of x only.
And now find

S =

∫
1

ξ
dx

Figure 1.10: General steps to solve ode using Lie symmetry method
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The following diagram illustrates the above steps when we carry the shifting step in
order to force ξ = 0. We see that It simplifies the algorithm as now we can just assume
ξ = 0 and we do not have to check for different cases as before.

S

R

(R̄, S̄)

(R,S)

Canonical coordinates
are given by

R̄ = R

S̄ = S + ϵ

orbit

At this point ϵ = 0 and the
tangent vectors are given by

ξ (x, y) =
dx

dϵ

∣∣∣∣
ϵ=0

η (x, y) =
dy

dϵ

∣∣∣∣
ϵ=0

y

x

(x̄, ȳ)

(x, y)

orbit

0 =
∂R

∂x
ξ +

∂R

∂y
η

1 =
∂S

∂x
ξ +

∂S

∂y
η

Method of characterstics

dx

ξ
=

dy

η
= dS

Generate the ODE in canonical coordinates

dS

dR
=

Sx + Syω

Rx +Ryω

And here is the tricky part. The RHS above will be a function
of x, y. Rewrite the above as function of R only using the
earlier findings, knowing what R was. The result must depend
on R only giving

dS

dR
= F (R)

Which is solved for S by quadrature. The final step is the
easy one. Convert solution S(R) back to x, y.

ODE is y′ = ω(x, y)

Nasser M. Abbasi main 2.ipe (9/26/2023)

Canonical coordinates

Linearized symmetry
condition PDE

ηx + ω (ηy − ξx)− ω2ξy − ωxξ − ωyη = 0

Solve to find ξ, η

R = x

S =

∫
dy

η

Apply the shift

η = η − ξω

ξ = 0

Since ξ = 0 always

Figure 1.11: General steps to solve ode using Lie symmetry method. Shifting method
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1.2.22.4 Finding ξ(x, y) , η(x, y) knowing the first order ode type. Table
lookup method.

There is a short cut to obtaining ξ(x, y) , η(x, y) if the first order ode type is known
or can be determined. (of course, if we know the ode type, then a direct method for
solving the ode can be used, since the type is known and there is no need to use Lie
symmetry), but still Lie symmetry can be useful in this case, and also it allows us to
find the integrating factor quickly, which provides one more method to solve the ode.
An example of a first order ode which does not have known type is(

x cos y − e− sin y
)
y′ + 1 = 0

The above can be solved using Lie symmetry but with functional form of anstaz
ξ = f(x) g(y) , η = 0. which gives ξ = e− sin y, η = 0.

I am in the process of building table for ready to use infinitesimal based on the first ode
type. The following small list is the current ones determined. For some first order ode
such as linear y′ = f(x) y(x) + g(x) or separable y′ = f(x) g(y) the infinitesimals can
be written directly (but again, for these simple ode’s Lie method is not really needed
but it provides good illustration on how to use it. Lie method is meant to be used for
ode’s which have no known type or difficult to solve otherwise). For an ode type not
given in this list, an anstaz have to be used to solve the similarity PDE.

ode type form ξ η notes

linear ode y′ =
f(x)y(x) +
g(x)

0 e
∫
fdx Notice that g(x) does not

affect the result

separable ode y′ =
f(x) g(y)

1
f 0 This works for any g function

that depends on y only

quadrature ode y′ = f(x) 0 1 of course for quadrature we do
not need Lie symmetry as ode
is already quadrature

quadrature ode y′ = g(y) 1 0 For example y′ = x+y
−x+y or

y′ = y+2√yx
x

homogeneous
ODEs of Class
A

y′ = f
( y
x

)
x y
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homogeneous
ODEs of Class
C

y′ =
(a+ bx+ cy)

n
m

1 − b
c Also

ξ = 0, η = c(bx+ cy + a)
n
m

are possible. For example, for
y′ = (1 + 2x+ 3y)

1
2 then use

the first option as simpler
which is ξ = 1, η = −2

3 . Notice
that ξ = 1, η = − b

c does not
depend on a and not on n,m.
Hence these odes
y′ = (1 + x+ y)

1
3 ,y′ =

(10 + x+ y)
1
3 and

y′ = (10 + x+ y)
2
3 all have

the same infinitesimals
ξ = 1, η = − b

c = −1

homogeneous
class D

y′ = y
x +

g(x)F
( y
x

) x2 xy example y′ = y
x + 1

xe
− y

x .
Where here
g(x) = 1

x , F
( y
x

)
= e−

y
x .

First order
special form
ID 1

y′ =
g(x) eh(x)+by+
f(x)

e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x) For an example, for the ode
y′ = 5ex2+20y + sin x, here
g(x) = 5, h(x) = x2, b =
20, f(x) = sin x, hence
ξ = e−

∫
20 sin dx−x2

5 , η =
sinxe−

∫
20 sin xdx−x2

5 or
ξ = 1

5 sin x
(
e20 cos(x)−x2

)
, η =

sin(x)
5

(
e20 cos(x)−x2

)
. In this

form, b must be constant.

polynomial
type ode

y′ =
a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

For example for y′ = x+y+3
2x+y

then a1 = 1, b1 = 1, c1 =
3, a2 = 2, b2 = 1, c2 = 0. Hence
ξ = x− 3, η = y + 6.
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Bernoulli ode y′ = f(x)y+
g(x)yn

0 yne
∫
(1−n)f(x) dx n is integer n 6= 1, n 6= 0. For

example, for
y′ = − sin (x) y + x2y2 then
f(x) = − sin x, g(x) = x2, n =
2 and ξ = 0, η = e

∫
sinxdxy2 or

ξ = 0, η = e− cosxy2. Notice
that g(x) does not show up in
the infinitesimals Another
example is y′ = 2 y

x + y3

x2 where
here f(x) = 2

x . Hence
ξ = 0, η = e−

∫
(3−1) 2

x
dxy3 or

ξ = 0, η = η = y3

x4

Reduced
Riccati

y′ =
f1(x) y +
f2(x) y2

0 e−
∫
f1dx For example, for

y′ = xy + sin (x) y2 then
f1 = x, f2 = sin x and hence
ξ = 0, η = e−

∫
xdx or

ξ = 0, η = e
1
2x

2 . Notice that
f2(x) does not show up in the
infinitesimals. I could not find
infinitesimals for the full
Riccati ode
y′ = f0(x) + f1(x) y + f2(x) y2.
Notice that f1, f2 can not be
both constants, else this
becomes separable

Abel first kind y′ = f0(x) +
f1(x) y +
f2(x) y2 +
f3(x) y3

No infinitesimals found

Currently the above are the ones I am able to determine for known first order ode’s. If
I find more, will add them. The table lookup is much faster to use than having to solve
the similarity PDE each time using anstaz in order to find ξ, η.
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1.2.22.5 Finding ξ(x, y) , η(x, y) from linearized symmetry condition

Given any first order ODE
dy

dx
= ω(x, y) (A)

ξ(x, y) , η(x, y) are called the infinitesimals of the transformation. Maple has function
called symgen in the DEtools package to determine these using 16 different algorithms.
Starting with the Lie point transformation group

x̄ ≡ x̄(x, y; ε)
ȳ ≡ ȳ(x, y; ε)

Expanding using Taylor series near ε = 0 gives

x̄ = x+ ∂x̄

∂ε

∣∣∣∣
ε=0

ε+O
(
ε2
)

= x+ εξ(x, y) +O
(
ε2
)

ȳ = y + ∂ȳ

∂ε

∣∣∣∣
ε=0

ε+O
(
ε2
)

= y + εη(x, y) +O
(
ε2
)

Ignoring higher order terms gives

x̄(x, y) = x+ εξ(x, y) (1)
ȳ(x, y) = y + εη(x, y) (2)

In the above ε is the one parameter in the Lie symmetry group. The symmetry condition
for (A) is that

dȳ

dx̄
= ω(x̄, ȳ)

Whenever
dy

dx
= ω(x, y)

Symmetry of an ODE means the ODE in (x, y) remain the same form (but using new
variables (x̄, ȳ)) after applying the (non-trivial) transformation (1,2).

Nontrivial transformation means ε 6= 0. The first goal is to find the functions ξ(x, y) , η(x, y)
which satisfy the symmetry condition above.

The symmetry condition is written as

dȳ

dx̄
=

dȳ
dx
dx̄
dx

= ω(x̄, ȳ) (3)
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Where dȳ
dx

is the total derivative with respect to the x variable. Similarly for dx̄
dx
. But

dȳ

dx
= ȳx + ȳy

dy

dx
= ȳx + ȳyω(x, y) (4)

And
dx̄

dx
= x̄x + x̄y

dy

dx
= x̄x + x̄yω(x, y) (5)

Substituting (4,5) into (3) gives the symmetry condition as

ȳx + ω(x, y) ȳy
x̄x + ω (x, y) x̄y

= ω(x̄, ȳ) (6)

But
x̄x = 1 + εξx (7)

And similarly
x̄y = εξy (8)

And
ȳx = εηx (9)

And
ȳy = 1 + εηy (10)

Substituting (7,8,9,10) back into the symmetry condition (6) gives

εηx + ω(1 + εηy)
(1 + εξx) + ωεξy

= ω(x+ εξ, y + εη)

εηx + ω + ωsηy
1 + εξx + ωεξy

= ω(x+ εξ, y + εη)

ω + s(ηx + ωηy)
1 + ε (ξx + ωξy)

= ω(x+ εξ, y + εη) (11)

The above is used to determine ξ(x, y) , η(x, y). The above PDE is too complicated to
use as is. It is linearized, and the linearized version is used to solve for ξ, η near small ε.

Eq. (11) is linearized by expanding the LHS and the RHS using Taylor series around
ε = 0 . Starting with the LHS first, let ω+ε(ηx+ωηy)

1+ε(ξx+ωξy) = ∆LHS. Expanding this using
Taylor series around ε = 0 gives

∆LHS = ∆ε=0 + ε
d

dε
(∆)ε=0 + h.o.t. (11A)
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But ∆ε=0 = ω and

d

dε
(∆LHS) =

d
dε

[ω + ε(ηx + ωηy)] (1 + ε(ξx + ωξy))− (ω + ε(ηx + ωηy)) d
dε

[1 + ε(ξx + ωξy)]
(1 + ε (ξx + ωξy))2

= (ηx + ωηy) (1 + ε(ξx + ωξy))− (ω + ε(ηx + ωηy)) (ξx + ωξy)
(1 + ε (ξx + ωξy))2

At ε = 0 the above reduces to
d

dε
(∆LHS)ε=0 = (ηx + ωηy)− ω(ξx + ωξy)

= ηx + ωηy − ωξx − ω2ξy

= ηx + ω(ηy − ξx)− ω2ξy (12)

Therefore the LHS of Eq. (11A) becomes

∆LHS = ω + ε
(
ηx + ω(ηy − ξx)− ω2ξy

)
(11B)

Now the RHS of Eq. (11) is linearized. Let ω(x+ sξ, y + sη) = ∆RHS. Expansion
around ε = 0 gives

∆RHS = ∆ε=0 + ε

(
d

dε
∆
)

ε=0
+ h.o.t.

But ∆ε=0 = ω(x, y) and
d

dε
∆RHS = ωxξ + ωyη

Hence the linearized RHS of (11) becomes

∆RHS = ω(x, y) + ε(ωxξ + ωyη) (13)

Substituting (11B,13) back into (11), gives the linearized version of (11) as

∆LHS = ∆RHS

ω + ε
(
ηx + ω(ηy − ξx)− ω2ξy

)
= ω + ε(ωxξ + ωyη)

ε
(
ηx + ω(ηy − ξx)− ω2ξy

)
= ε(ωxξ + ωyη)

ηx + ω(ηy − ξx)− ω2ξy = ωxξ + ωyη

Hence
ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

The above equation (14) is what is used to determine ξ, η. It is the linearized symmetry condition.
There is an additional constraint not mentioned above which is

x̄xȳy 6= x̄yȳx
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The restricted form of (14) is

χx + χyω − χωy = 0

An important property is the following. Given any

ξ = A, η = B

Then we can always write the above as

ξ = 0, η = B − ωA

So that ξ = 0 can always be used if needed to simplify some things.

After finding ξ, η from (14), the question now becomes is how to use them to solve the
original ODE?

1.2.22.6 Moving to canonical coordinates R,S

The next step is to determine what is called the canonical coordinates (R,S). In these
canonical coordinates the ODE becomes a quadrature and solved by integration. Once
solved, the solution is transformed back to (x, y). The canonical coordinates (R,S) are
found as follows. Selecting the transformation to be

R̄ = R (15)
S̄ = S + ε (16)

Eq. (15) becomes
∂R̄

∂ε

∣∣∣∣
ε=0

=
(
∂R̄

∂x

dx

dε

)∣∣∣∣
ε=0

+
(
∂R̄

∂y

dy

dε

)∣∣∣∣
ε=0

But ∂R̄
∂x

∣∣∣
ε=0

= ∂R
∂x

and dx
dε

∣∣
ε=0 = ξ(x, y) and similarly ∂R̄

∂y

∣∣∣
ε=0

= ∂R
∂y

and dy
dε

∣∣
ε=0 = η(x, y).

The above becomes
∂R̄

∂ε

∣∣∣∣
ε=0

= ∂R

∂x
ξ + ∂R

∂y
η

But ∂R̄
∂ε

∣∣∣
ε=0

= 0 since R̄ = R. The above reduces to

0 = ∂R

∂x
ξ + ∂R

∂y
η

This PDE have solution using symmetry method given by
dR

dt
= 0 (15A)

dx

dt
= ξ (15B)

dy

dt
= η (15C)



chapter 1 . f irst order ode 121

The same procedure is applied to Eq. (16) which gives

∂S̄

∂ε

∣∣∣∣
ε=0

=
(
∂S̄

∂x

dx

dε

)∣∣∣∣
ε=0

+
(
∂S̄

∂y

dy

dε

)∣∣∣∣
ε=0

But ∂S̄
∂x

∣∣∣
ε=0

= ∂S
∂x

and dx
dε

∣∣
ε=0 = ξ(x, y) and similarly ∂S̄

∂y

∣∣∣
ε=0

= ∂S
∂y

and dy
dε

∣∣
ε=0 = η(x, y) .

The above becomes
∂S̄

∂ε

∣∣∣∣
ε=0

= ∂R

∂x
ξ + ∂R

∂y
η

But ∂S̄
∂ε

∣∣∣
ε=0

= 1 since S̄ = S + ε. The above reduces to

1 = ∂S

∂x
ξ + ∂S

∂y
η

This PDE have solution using symmetry method given by

dS

dt
= 1 (16A)

dx

dt
= ξ (16B)

dy

dt
= η (16C)

Equations (15A,B,C) are used to solve for R(x, y) and equations (16A,B,C) are used
to solve for S(x, y). Starting with R. In the case when ξ = 0 the equations become

dR

dt
= 0

dx

dt
= 0

dy

dt
= η

First equation above gives R = c1. Second equation gives x = c2. Letting c1 = c2 then

R = x

If ξ 6= 0 then combining Eqs. (15B,15C) gives

dy

dx
= η

ξ

R = c1
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The ODE dy
dx

= η
ξ
is solved first and the constant of integration is replaced by R. Hence

R is now found. S(x, y) is found similarly using Eqs. (16A,B,C). If ξ = 0 then

dS

dt
= 1

dx

dt
= 0

dy

dt
= η

The first and third equations give

dS

dy
= 1
η

S =
∫ 1
η
dy

If ξ 6= 0 then using the second and third equation gives

dS

dx
= 1
ξ

S =
∫ 1

ξ
dx

Now that R,S are found and the problem is solved. The ode in (R,S) space is set up
using

dS

dR
=

Sx + Sy
dy
dx

Rx +Ry
dy
dx

(16)

Where dy
dx

= ω(x, y) which is given. The solution S(R) is next converted back to y(x).

Examples below illustrate how this done on a number of ODE’s. Eq. (16) is solved by
quadrature. This is the whole point of Lie symmetry method, is that the original ode
is solved in canonical coordinates where it is much easier to solve and the solution is
transformed back to natural coordinates.

The only way to understand this method well, is to workout some problems. To learn
more about the theory of Lie transformation itself and why it works, there are many
links in my links page on the subject.
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1.2.22.7 Definitions and various notes

1. infinitesimal generator operator. Γ = ξ(x, y) ∂
∂x

+ η(x, y) ∂
∂y
. Any first order ode

has such generator. For instance, for the ode y′ = ω(x, y) then Γω = ξ ∂ω
∂x

+ η ∂ω
∂y
.

The ode y′ = ω(x, y) = y
x
+ x has solution y = x2 + xc1, therefore the solution

family is φ(x, y) = y−x2

x
= c. Using ξ = 0, η = x then Γφ = x

∂

(
y−x2

x

)
∂y

= 1. This

is another example: using ξ = x, η = 2y , hence Γφ = x
∂

(
y−x2

x

)
∂x

+ 2y
∂

(
y−x2

x

)
∂y

=
x
(
− y

x2 − 1
)
+ 2y

( 1
x

)
= − y

x
− 1 + 2 y

x
= y

x
− 1 6= 1. I must be not applying the

symmetry generator correct as the result supposed to be 1. Need to visit this
again. See book Bluman and Anco, page 109. Maybe some of the assumptions
for using this generator are not satisfied for this ode.

2. ω(x, y) is invariant iff Γω = ξ(x, y) ∂
∂x

+ η(x, y) ∂
∂y

= 0.

3. The linearized PDE from the symmetry condition is ωξx+ω2ξy+ωxξ = ωyη+ηx+
ωηy. This is used to determine tangent vector (ξ(x, y) , η(x, y)) which is one of
the core parts of the algorithm to solve the ode using symmetry methods. There
are infinite number of solutions and only one is needed.

4. Symmetries and first integrals are the two most important structures of differential
equations. First integral is quantity that depends on x, y and when integrated
over any solution curve is constant.

5. Lie symmetry allows one to reduce the order of an ode by one. So if we have third
order ode and we know the symmetry for it, we can change the ode to second
order ode. Then if apply the symmetry for this second order ode, its order is
reduced to one now.

6. If ξ, η are known then the canonical coordinates R,S can now be found as func-
tions of x, y. We just ξ, η to find R,S. Once R,S are known then dS

dR
= f(R) can

be formulated. This ode is solved for S by quadrature. Final solution is found
by replacing R,S back by x, y. I have functions and a solver now written and
complete to do all of this but just for first order ode’s only. I need to start on
second order ode’s after that. The main and most difficult step is in finding ξ, η.
Currently I only use multivariable polynomial ansatz up to second order for ξ and
multivariable polynomial ansatz up to third order for η and then try all possible
combinations. This is not very efficient. But works for now. I need to add better
and more efficient methods to finding ξ, η but need to do more research on this.

7. When using polynomial ansatz to find ξ, η do not mix x, y in both ansatz. For
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example if we use ξ = p(x) then can use η = q(x) or η = q(x, y) polynomial ansatz
to find η. But do not try ξ = p(x, y) ansatz with η = q(x, y) ansatz. In other
words, if one ansatz polynomial is multivariable, then the other should be single
variable. Otherwise results will be complicated and this defeats the whole ides of
using Lie symmetry as the ode generated will be as complicated or more than the
original ode we are trying to solve. I found this the hard way. I was generating all
permutations of ξ, η ansatz’s but with both as multivariable polynomials. This
did not work well.

8. Symmetries on the ode itself, is same as talking about symmetries on solution
curves. i.e. given an ode y′ = ω(x, y) with solution y = f(x), then when we look
for symmetry on the ode which leaves the ode looking the same but using the new
variables x̄, ȳ. This is the same as when we look for symmetry which maps any
point (x, y) on solution curve y = f(x) to another solution curve. In other words,
the symmetry will map all solution curves of y′ = ω(x, y) to the same solution
curves. i.e. a specific solution curve y = f(x, c1) will be mapped to y = f(x, c2).
All solution curves of y′ = ω(x, y) will be mapped to the same of solution curves.
But each curve maps to another curve within the same set. If the same curve
maps to itself, then this is called invariant curve.

9. An orbit is the name given to the path the transformation moves the point (x, y)
from one solution curve to another point on another solution curve due to the
symmetry transformation.

10. A solution curve of y′ = ω(x, y) that maps to itself under the symmetry transfor-
mation is called an invariant curve.

11. Not every first order ode has symmetry. At least according to Maple. For example
y′ + y3 + xy2 = 0 which is Abel ode type, it found no symmetries using way=all.
May be with special hint it can find symmetry?

12. After trying polynomials ansatz, I find it is limited. Since it will only find symme-
tries that has polynomials form. A more powerful ansatz is the functional form.
But these are much harder to work with but they are more general at same time
and can find symmetries that can’t be found with just polynomials. So I have to
learn how to use functional ansatz’s. Currently I only use Polynomials.

13. ξ, η are called Lie infinitesimal and x̄, ȳ are called the Lie group.

14. If we given the ξ, η then we can find Lie group (x̄, ȳ). See example below.

15. If we are given Lie group (x̄, ȳ) then we can find the infinitesimal using ξ(x, y) =
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∂
∂ε
x̄
∣∣
ε=0 and η(x, y) = ∂

∂ε
ȳ
∣∣
ε=0.

16. First order ode have infinite number of symmetries. Talking about symmetry of
an ode is the same as talking about symmetry between solution curves of the
ode itself. i.e. symmetry then becomes finding mapping that maps each solution
curve to another one in the same family of solutions of the ode.

17. ξ, η can also be used to find the integrating factor for the first order ode. This is
given by µ(x, y) = 1

η−ξω
where the ode is y′(x) = ω(x, y) . This gives an alternative

approach to solve the ode. I still need to add examples using µ(x, y).

18. For first order ode, to find Lie infinitesmilas, we have to solve first order PDE
in 2 variables. For second order ode, to find Lie infinitesmilas, we have to solve
second order PDE in 3 variables. For third order ode, to find Lie infinitesmilas,
we have to solve third order PDE in 4 variables and so on. Hence in general,
for nth order ode, we have to solve nth order PDE in n+ 1 variables to find the
required Lie infinitesmilas. For first order, these variables are ξ, η and the PDE
is ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0. Currently my program only handles
first order odes. Once I am more familar with Lie method for second order ode,
will update these notes. See at the end a section on just second order ode that I
started working on.

1.2.22.8 Closer look at orbits and tangent vectors

This section takes a closer look at orbits and tangent vectors ξ, η which are the core of
Lie symmetry method. By definition

ξ(x, y) = dx̄

dε

∣∣∣∣
ε=0

(1)

η(x, y) = dȳ

dε

∣∣∣∣
ε=0

Hence ξ(x, y) shows how x̄ changes as function of (x, y). And η(x, y) shows how ȳ

changes as function of (x, y). This is because

x̄ = x+ ξε (2)
ȳ = y + ηε

Comparing (2) to equation of motion where x̄ represents final position and x is initial
position, then ξ is the speed and ε is the time. When time is zero, initial and final
position is the same. As time increases final position changes depending on the speed
as time (here represented as ε) increases. So it helps to think of ξ, η as the rate at which
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x̄, ȳ change location depending on the value ε. ξ, η are calculated when ε is very small
in the limit as it reaches zero.

As ε increases the point (x, y) moves closer to the final destination point (x̄, ȳ). So
these quantities ξ, η specify the orbit shape. The orbit is the path taken by point
transformation from (x, y) to (x̄, ȳ) and depends on ε such that the ode remain invariant
in x̄, ȳ and points on solution curves are mapped to points on other solution curves.

Different ξ, η give different orbits between two solution curves. The following example
shows this. Given the ode

y′ = x− y

x+ y

This is Abel type ode. Also Homogeneous class A.

It has two solutions. One solution is given by Mathematica as y = −x−
√
c1 + 2x2. A

small program was now written that plots the orbit for 4 solutions ξ, η found for the
similarity conditions. The similarity solution were found by Maple’s symgen command.

Figure 1.12: Command used to find ξ, η

The program starts from the same (x, y) point from one solution curve and determines
(x̄, ȳ) location on anther solution curve using each pair of ξ, η found. The same solution
curves are used in order to compare the orbits. The following plot was generated showing
the result
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Figure 1.13: Different orbits using different ξ, η

The source code used to generate the above plot is� �
<<MaTeX`
ode=y'[x]==(x-y[x])/(x+y[x]);
ysol=DSolve[ode,y[x],x]
ysol=-x-Sqrt[C[1]+2 x^2];

x1 = 1.5;
y1 = ysol /. {C[1] -> 1, x -> x1};

ysol2=ysol/.C[1]->1.1

getSolutions[inf_List, titles_List, x_Symbol, ysol1_, ysol2_, x1_,
y1_, from_, to_] :=

Module[{xbar, ybar, eps, eq, soleps, p, data, n, xi, eta, texStyle},
data = Table[0, {n, Length@inf}];
texStyle = {FontFamily -> "Latin Modern Roman", FontSize -> 12};
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Do[
xi = First[inf[[n]]];
eta = Last[inf[[n]]];
xbar = x1 + eps*xi ;
ybar = y1 + eps*eta;
eq = ybar == ysol2 /. x -> xbar;
soleps = SolveValues[eq, eps];
soleps = First@SortBy[soleps, Abs];
ybar = ybar /. eps -> soleps;
xbar = xbar /. eps -> soleps;
p = Plot[{ysol1, ysol2}, {x, from, to},

PlotLabel -> MaTeX[titles[[n]], Magnification -> 1.5],
BaseStyle -> texStyle,
Epilog -> {{Arrowheads[.02], Arrow[{{x1, y1}, {xbar, ybar}}]},

Text[MaTeX["\\left( x,y \\right)"], {x1, y1}, {-1, -1}],
Text[
MaTeX["\\left( \\bar{x},\\bar{y}\\right)"], {xbar, ybar}, {1,
1}]},

ImageSize -> 400];
data[[n]] = p
,
{n, 1, Length@inf}
];

data

];

inf = {{1/x1, -1/x1},
{0, 1/(x1 + y1)},
{-(x1^2 - 2*x1*y1 - y1^2)/(x1 - y1), 0},
{2*x1 + y1, x1}
};

titles = {"\\xi=\\frac{1}{x},\\eta=-\\frac{1}{x}",
"\\xi=0,\\eta=\\frac{1}{x+y}",
"\\xi=\\frac{-(x^2-2 x y-y^2)}{x=y},\\eta=0", "\\xi=2 x+y,\\eta=x"};

data = getSolutions[inf, titles, x, ysol /. C[1] -> 1, ysol2, x1, y1,
1.45, 1.51];

p = Grid[Partition[data, 2], Frame -> All, Spacings -> {1, 1}]� �
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1.2.22.9 Selection of ansatz to try

The following are selection of ansatz to try for solving the linearized PDE above
generated from the symmetry condition in order to solve for ξ(x, y) , η(x, y). These use
the functional form. As a general rule, the simpler that ansatz that works, the better it
is. Functional form of ansatz is better than explicit polynomials but much harder to
use and implement. Maple’s symgen has 16 different algorithms include HINT option
to support functional forms. The following are possible cases to use.

1. ξ = 0, η = f(x)

2. ξ = 0, η = f(y)

3. ξ = f(x) , η = 0

4. ξ = f(y) , η = 0

5. ξ = f(x) , η = xg(y). An example: applied to y′ = x+cos
(
ey+(1+x)e−x

)
ey+x should give

ξ = ex, η = xe−y which leads to solution y = ln
(
2 arctan

(
e
−
(
c1+e−x

)
−1

e
−
(
c1+e−x

)
+1

)
− (1 + x) e−x

)
.

6. ξ = f(x) , η = g(y)

7. ξ = 0, η = f(x) g(y). For example, applied to y′ = x
√
1+y+

√
1+y+1+y

1+x
should give

f(x) =
√
1 + x, g(y) =

√
1 + y.

8. ξ = f(x) g(y) , η = 0

1.2.22.10 Examples

1.2.22.11 Example 1 on how to find Lie group (x̄, ȳ) given Lie infinitesimal
ξ, η

Given ξ = 1, η = 2x find Lie group x̄, ȳ. Since

ξ(x, y) = ∂x̄

∂ε

∣∣∣∣
ε=0

Then
dx̄

dε
= ξ(x̄, ȳ)

= 1 (1)

Similarly, since
η(x, y) = ∂ȳ

∂ε

∣∣∣∣
ε=0
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Then
dȳ

dε
= η(x̄, ȳ)

= 2ȳ (2)

Where in both odes (1,2) we have the condition that at ε = 0 then x̄ = x, ȳ = y.
Starting with (1), solving it gives

x̄ = ε+ c1(x, y)

Where c1(x, y) is arbitrary function which acts like constant of integration since x̄(x, y)
is function of two variables. At ε = 0 then c1(x, y) = x. Hence the above is

x̄ = ε+ x (3)

And from (2), solving give
ȳ = 2x̄ε+ c2(x, y)

But at ε = 0 , ȳ = y, x̄ = x then the above gives c2 = y. Hence the above becomes

ȳ = 2x̄ε+ y

But x̄ = ε+ x from (3), hence the above becomes

ȳ = 2(ε+ x) ε+ y

= 2ε2 + 2εx+ y

Therefore Lie group is

x̄ = ε+ x

ȳ = 2ε2 + 2εx+ y

1.2.22.12 Example how to find Lie group (x̄, ȳ) given canonical
coordinates R,S

Given R = x, S = y
x
find Lie group x̄, ȳ. Solving for x, y from R,S gives

x = R

y = SR

Hence

x̄ = R̄

ȳ = S̄R̄
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But S̄ = S + ε by definition of canonical coordinates and R̄ = R by definition of
canonical coordinates. Hence the above becomes

x̄ = R

ȳ = (S + ε)R

Using the values given for R,S in terms of x, y the above becomes

x̄ = x

ȳ =
(y
x
+ ε
)
x

= y + εx

1.2.22.13 Example y′ = y
x
+ x

This is linear first order which can be easily solved using integrating factor. But this is
just to illustrate Lie symmetry method.

y′ = y

x
+ x (1)

y′ = ω(x, y)

The first step is to find ξ and η. Using lookup method, since this is linear ode of form
y′ = f(x) y + g(x) then

ξ = 0
η = e

∫
fdx = e

∫ 1
x
dx = x

The end of this problem shows also how to find these from the symmetry conditions.
Therefore we write

x̄ = x+ ξε

= x

ȳ = y + ηε

= y + ηx (2)

The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
x
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Before solving this, let us first verify that transformation (2) is invariant which means it
leaves the ode in same form but using x̄, ȳ. We do the same as in the above introduction.

dȳ

dx̄
=

dȳ
dx
dx̄
dx

=
ȳx + ȳy

dy
dx

x̄x + x̄y
dy
dx

But ȳx = s, ȳy = 1, x̄x = 1, x̄y = 0 and the above becomes

dȳ

dx̄
=
ε+ dy

dx

1
= ε+ dy

dx

Substituting x̄, ȳ, dȳ
dx̄

in the original ode gives

dȳ

dx̄
= ȳ

x̄
+ x̄

ε+ dy

dx
= y + εx

x
+ x

ε+ dy

dx
= y

x
+ ε+ x

dy

dx
= y

x
+ x

Which is the original ODE. Therefore (2) are indeed an invariant Lie group transfor-
mation as it leaves the ODE unchanged. The next step is to determine what is called
the canonical coordinates R,S. Where R is the independent variable and S is the
dependent variable. So we are looking for S(R) function. This is done by using the
standard characteristic equation by writing

dx

ξ
= dy

η
= dS

dx

0 = dy

x
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Which is a first

order PDE. This is solved for S, which gives (1) using the method of characteristic to
solve first order PDE which is standard method. In the special case when ξ = 0 and
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η 6= 0 these give

R = x

S =
∫ 1
η
dy

=
∫ 1
x
dy

= y

x
+ c

We are free to set c = 0, hence S = y
x
. Therefore the transformation to canonical

coordinates is
(x, y) → (R,S) =

(
x,
y

x

)
The derivative in (R,S) is found same as with dȳ

dx̄
giving

dS

dR
=

Sx + Sy
dy
dx

Rx +Ry
dy
dx

But Sx = − y
x2 , Sy = 1

x
, Rx = 1, Ry = 0 and the above becomes

dS

dR
=

− y
x2 + 1

x
dy
dx

1
= − y

x2
+ 1
x

dy

dx

But dy
dx

= y
x
+ x hence the above becomes

dS

dR
= − y

x2
+ 1
x

(y
x
+ x
)

= 1

Solving this gives
S = R + c1

But S = y
x
, R = x. Therefore the above becomes

y

x
= x+ c1

y = x2 + c1x

Which is the solution to the original ode. Of course this was just an example showing
how to use Lie symmetry method. The original ode is linear and can be easily solved
using an integrating factor

y′ − y

x
= x

I = e−
∫ 1

x
dx = e− lnx = 1

x
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Multiplying the ode by I gives

d

dx
(yI) = Ix

y

x
=
∫
x

x
dx

= x+ c1

Hence
y = x2 + xc1

Which is same solution. But Lie symmetry method works the same way for any given
ode. And this is where it powers are. It can solve much more complicated odes than
this using the same procedure. The main difficulty is in finding the infinitesimals for
the group, which are ξ, η that leaves the ode invariant.

Finding Lie symmetries for this example

y′ = y

x
+ x

= ω(x, y)

The condition of symmetry is a the linearized PDE given above in equation (14) as

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

We first find the determining equation before solving for ξ, η. Since ω = y
x
+ x then

ωy = 1
x
, ωx = − y

x2 + 1. Hence the above becomes

ηx +
(y
x
+ x
)
(ηy − ξx)−

(y
x
+ x
)2
ξy −

(
− y

x2
+ 1
)
ξ − 1

x
η = 0

ηx +
(y
x
+ x
)
(ηy − ξx)−

(
y2

x2
+ x2 + 2y

)
ξy −

(
− y

x2
+ 1
)
ξ − 1

x
η = 0

ηx +
(y
x
+ x
)
ηy − ξx

(y
x
+ x
)
−
(
y2

x2
+ x2 + 2y

)
ξy −

(
− y

x2
+ 1
)
ξ − 1

x
η = 0

Multiplying by x2 to normalize gives

x2ηx +
(
yx+ x3

)
ηy − ξx

(
yx+ x3

)
−
(
y2 + x4 + 2yx2

)
ξy −

(
−y + x2

)
ξ − xη = 0 (A)

Equation (A) is called the determining equation. Using different ansatz can result in
more solutions.
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Trying ansatz

ξ = 0
η = b0x

Plugging these into (A) and comparing coefficients to solve for the unknown gives

x2(b0)− xη = 0
b0x

2 − x(b0x) = 0
b0x

2 − b0x
2 = 0

b0(0) = 0

So any b0 will work. Let b0 = 1. Hence

ξ = 0
η = x

Now Trying ansatz as

ξ = a0 + a1x

η = b0 + b1y

Then ξx = a1, ξy = 0, ηx = 0, ηy = b1 and the determining equation (A) becomes

(b0 + b1y)x+ (a0 + a1x)
(
x2 − y

)
+ b1

(
−yx− x3

)
+ a1

(
yx+ x3

)
= 0

(b0 + b1y)x+ (a0 + a1x)
(
x2 − y

)
+ (b1 − a1)

(
−yx− x3

)
= 0

xb0 − ya0 + x2a0 + x3(2a1 − b1) = 0

Setting each coefficient to zero gives

b0 = 0
a0 = 0
a0 = 0

2a1 − b1 = 0

Hence the solution is a0 = 0, b0 = 0, a1 = b1
2 . Using b1 = 2 gives a1 = 1 and therefore

ξ = x

η = 2y
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And Trying ansatz as

ξ = a0 + a1x+ a2y

η = b0 + b1y + b2x

Hence ξx = a1, ξy = a2, ηx = b2, ηy = b1 and the determining equation (A) becomes

(b0 + b1y + b2x)x+ (a0 + a1x+ a2y)
(
x2 − y

)
+ b1

(
−yx− x3

)
+ a2

(
y2 + x4 + 2yx2

)
+ b2

(
−x2

)
+ a1

(
yx+ x3

)
= 0

x4(−a2) + x3(−2a1) + x2y(−3a2) + x3(b1) + x2(−a0) + y(a0)− x(b0) = 0

Setting each coefficient to zero gives

b0 = 0
a0 = 0
a1 = 0
b1 = 0
a2 = 0
b2 = 0

This shows there is no solution for this ansatz. There are more solutions depending on
what ansatz we used. We just need one to obtain the final solution. In Maple, these
solutions can be found as follows� �
ode:=diff(y(x),x)= y(x)/x+x;
DEtools:-symgen(ode,y(x),way=all)
[_xi = 0, _eta = x],
[_xi = 0, _eta = x],
[_xi = 0, _eta = x^2 - y],
[_xi = x, _eta = 2*y],
[_xi = 1, _eta = y/x],
[_xi = x^2 + y, _eta = 4*y*x],
[_xi = x^2 - 3*y, _eta = -4*y^2/x]� �
Trying ansatz using functional form. Let ξ = 0, η = f(x) then ξx = 0, ξy = 0, ηx =
f ′(x) , ηy = 0 and the determining equation (A) becomes

x2ηx +
(
yx+ x3

)
ηy − ξx

(
yx+ x3

)
−
(
y2 + x4 + 2yx2

)
ξy −

(
−y + x2

)
ξ − xη = 0

x2f ′(x)− xf(x) = 0
xf ′(x)− f(x) = 0
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This is easily solved to give f = cx. Hence ξ = 0, η = x by choosing c = 1. We see that
this choice of ansatz was the easiest in this case, as the ode generated was linear. Let
us try another and see what happens.

Trying ansatz as ξ = 0, η = f(y) then ξx = 0, ξy = 0, ηx = 0, ηy = f ′(y) and the
determining equation (A) becomes(

yx+ x3
)
f ′(y)− xf(y) = 0(

y + x2
)
f ′(y)− f(y) = 0

This is separable and its solution is f = c1(x2 + y). Hence ξ = 0, η = (x2 + y) by
using c1 = 1. But this is not function of y only. So this choice did not work. Trying
[ξ = f(x) , η = 0] , [ξ = f(y) , η = 0] shows these also do not work.

ξ, η can be checked for validity by substituting them in the PDE. Maple’s symtest
command does this. These functional ansatz’s lead to an ode which have to be solved.

1.2.22.14 Example y′ = xy2 − 2y
x
− 1

x3

Solve

y′ = xy2 − 2y
x

− 1
x3

(1)

y′ = ω(x, y)

For x 6= 0. Given dilation transformation

x̄ = eεx (2)
ȳ = e−2εy

Hence

ξ(x, y) = dx̄

dε

∣∣∣∣
ε=0

= x

η(x, y) = dȳ

dε

∣∣∣∣
ε=0

= −2y

(At end shows how to obtain these). The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
−2y − x

(
xy2 − 2y

x
− 1

x3

)
= − x2

x4y2 − 1
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Now

x̄ = x+ ξε = x+ εx (3)
ȳ = y + ηε = y − 2yε

This transformation x̄ = eεx, ȳ = e−2εy is now verified that it keeps the ode invariant.

dȳ

dx̄
=
ȳx + ȳy

dy
dx

x̄x + x̄y
dy
dx

=
e−2ε dy

dx

eε
= e−3ε dy

dx

Substituting x̄, ȳ, dȳ
dx̄

in the original ode gives

dȳ

dx̄
= x̄ȳ2 − 2ȳ

x̄
− 1
x̄3

e−3ε dy

dx
= (eεx)

(
e−2εy

)2 − 2(e−2εy)
(eεx) − 1

(eεx)3

e−3ε dy

dx
= e−3εxy2 − 2e−3εy

x
− e−3ε

x3

dy

dx
= xy2 − 2y

x
− 1
x3

Which is the original ode. Hence the transformation (2) is invariant. It is important to
use (2) and not (3) when doing the verification.

The next step is to determine what is called the canonical coordinates R,S. Where R
is the independent variable and S is the dependent variable. So we are looking for S(R)
function. This is done by using the standard characteristic equation by writing

dx

ξ
= dy

η
= dS

dx

x
= dy

−2y = dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Which is a first

order PDE. This is solved for S, which gives (1) using the method of characteristic to
solve first order PDE which is standard method. Starting with the first pair of ODE
gives

dy

dx
= −2y

x

Integrating gives yx2 = c where c is constant of integration. In this method R is always
c. Hence

R = yx2
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S(x, y) is now found from the first equation in (1) and the last equation which gives

dS = dx

ξ

S =
∫
dx

x

S = ln x

Now that R(x, y) , S(x, y) are found, the ODE dS
dR

= Ω(R) is setup. The ODE comes
out to be function of R only, so it is quadrature. This is the main idea of this method.
By solving for R we go back to x, y and solve for y(x). How to find dS

dR
? There is an

equation to determine this given by

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

Everything on the RHS is known. But

Sx = 1
x

Sy = 0
Rx = 2yx
Ry = x2

Substituting gives

dS

dR
=

1
x
+
(
xy2 − 2y

x
− 1

x3

)
(0)

2xy +
(
xy2 − 2y

x
− 1

x3

)
x2

=
1
x

2xy +
(
xy2 − 2y

x
− 1

x3

)
x2

= 1
x4y2 − 1

But R = yx2, hence the above becomes

dS

dR
= 1
R2 − 1

This is just quadrature. Integrating gives

S = − arctanh (R) + c1
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This solution is converted back to x, y. Since S = ln x,R = yx2, the above becomes

ln |x| = − arctanh
(
yx2
)
+ c1

Or

− ln |x|+ c1 = arctanh
(
yx2
)

yx2 = tanh (− ln |x|+ c1)

y = tanh (− ln |x|+ c1)
x2

Which is the solution to the original ODE.

The above shows the basic steps in this method. Let us solve more ODE’s to practice
this method more.

Finding Lie symmetries for this example

The condition of symmetry is given above in equation (14) as

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

We now need to solve the above for ξ, η given a specific ω(x, y) for the ODE at hand.
This PDE can not be solved as is for ξ, η without an ansatz. One common ansatz is
to use ξ = α(x) and η = β(x) y + γ(x) and plugging these into the above and then
compare coefficients to solve for α(x) , β(x) , γ(x).

Another ansatz is to use a polynomials for ξ, η. And this is what we will start with.

Using polynomial as ansatz

We start with order 1 polynomials. Hence

ξ = a0 + a1x (1)
η = b0 + b1y (2)

If this does not generate solution, we will try higher order polynomials. Eq (14) becomes

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0
0 + ω(b1 − a1)− ω2(0)− ωx(a0 + a1x)− ωy(b0 + b1y) = 0

But in this ODE ω = xy2 − 2y
x
− 1

x3 , hence ωx = y2 + 2y
x2 + 3

x4 and ωy = 2yx− 2
x
. The

above becomes (
xy2 − 2y

x
− 1
x3

)
(b1 − a1)−

(
y2 + 2y

x2
+ 3
x4

)
(a0 + a1x)−

(
2yx− 2

x

)
(b0 + b1y) = 0

xy2b1 −
2y
x
b1 −

1
x3
b1 − xy2a1 +

2y
x
a1 +

1
x3
a1 − y2a0 −

2y
x2
a0 −

3
x4
a0 − xy2a1 − a1

2y
x

− a1
3
x3

− 2yxb0 +
2
x
b0 − 2y2xb1 +

2y
x
b1 = 0

xy2(b1 − a1 − a1 − 2b1) +
y

x
(−2b1 + 2a1 − 2a1 + 2b1) +

1
x3

(−b1 + a1 − 3a1) + y2(−a0) +
y

x2
(−2a0) +

1
x4

(−3a0) + yx(−2b0) +
1
x
(2b0) = 0
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Each coefficient to each monomial must be zero. Hence

−2a1 − b1 = 0
−b1 − 2a1 = 0
−2a1 − 2b1 = 0

a0 = 0
b0 = 0

These are overdetermined equations. Solving gives a1 = −1
2b1 and a0 = b0 = 0. Choosing

b1 = −2 gives a1 = 1. Hence

ξ = a0 + a1x = x

η = b0 + b1y = −2y

Which is what we wanted to show for this ODE. These are the values we used earlier
to solve the ODE using symmetry method.

Using functions as ansatz

Now ξ, η are found using ξ = α(x) and η = β(x) y + γ(x) as ansatz. Eq. (14) is

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

But
ηx = β′(x) y + γ′(x)

And
ηy = β(x)

And

ξy = 0
ξx = α′(x)

Substituting the above into EQ. (14) gives

β′(x) y + γ′(x) + ω(β(x)− α′(x))− ωxα(x)− ωy(β(x) y + γ(x)) = 0

But in this ODE ω = xy2 − 2y
x
− 1

x3 , hence ωx = y2 + 2y
x2 + 3

x4 and ωy = 2yx− 2
x
. The

above becomes

β′y + γ′ +
(
xy2 − 2y

x
− 1
x3

)
(β − α′)−

(
y2 + 2y

x2
+ 3
x4

)
α−

(
2yx− 2

x

)
(βy + γ) = 0
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Or

γ′ + yβ′ + 2
x
γ − 1

x3
β − 3

x4
α− y2α + 1

x3
α′ − 2xyγ − 2

x2
yα− xy2β + 2

x
yα′ − xy2α′ = 0

Collecting on y gives

y0
(
γ′ + 2

x
γ − 1

x3
β − 3

x4
α + 1

x3
α′
)
+y
(
β′ − 2xyγ − 2

x2
α + 2

x
α′
)
+y2(−α− xβ − xα′) = 0

Each term above is zero. This gives the following equations

γ′(x) + 2
x
γ(x)− 1

x3
β(x)− 3

x4
α(x) + 1

x3
α′(x) = 0

β′(x)− 2xyγ(x)− 2
x2
α(x) + 2

x
α′(x) = 0

−α(x)− xβ(x)− xα′(x) = 0

Solving these coupled ODE on the computer gives

α(x) = 1
x

(
c3x

4 + c1x
2 + c2

)
β(x) = −4c3x2 − 2c1
γ(x) = −2c3 − 2 c2

x4

Where the c1, c2, c3 above are constant of integration. Let c2 = c3 = 0. Hence

α(x) = 1
x

(
c3x

4 + c1x
2)

β(x) = −4c3x2 − 2c1
γ(x) = 0

Let c3 = 0. Hence

α(x) = 1
x
c1x

2

β(x) = −2c1
γ(x) = 0

Let c1 = 1, hence

α(x) = x

β(x) = −2
γ(x) = 0
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Therefore, since ξ = α(x) and η = β(x) y+γ(x) then ξ = x, η = −2y which is the same
as the earlier method. After working using this ansatz, I find using the polynomial
ansatz better. First of all, I had to set constants above to values in order to obtain
the same result as earlier. Setting these constants other values will give different result.
For example, the following are another set of possible solutions obtained from Maple
for this ODE {

α(x) = 1
x
, β(x) = 0, γ(x) = − 2

x4

}
{
α(x) = −x2 , β(x) = 1, γ(x) = 0

}
{
α(x) = −x

3

4 , β(x) = x2, γ(x) = 1
2

}
Which gives {

ξ = 1
x
, η = − 2

x4

}
{
ξ = −x2 , η = y

}
{
ξ = −x3

4 , η = x2y + 1
2

}

1.2.22.15 Example y′ = y+1
x

+ y2

x3

Solve

y′ = y + 1
x

+ y2

x3

y′ = ω(x, y)

This can be written as

y′ = y

x
+ 1
x
+ y2

x3

= y

x
+ x2 + y2

x3

= y

x
+ 1
x

(
x2 + y2

x2

)
= y

x
+ 1
x

(
1 +

(y
x

)2)
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Hence this has the form y′ = y
x
+ g(x)F

(
y
x

)
where g(x) = 1

x
and F =

(
1 +

(
y
x

)2).
Therefore this is homogeneous class D. Lookup table gives

ξ = x2

η = xy

Another way to find ξ, η is by solving the symmetry condition PDE and this is shown
at the end of this problem. Hence

x̄ = x+ ξε

= x+ x2ε

ȳ = y + ηε

= y + xyε (2)

The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
xy − x2

(
y+1
x

+ y2

x3

)
= − x

x2 + y2

The ode is now verified that it remains invariant under (2) transformation.

dȳ

dx̄
=

dȳ
dx
dx̄
dx

=
ȳx + ȳy

dy
dx

x̄x + x̄y
dy
dx

But from (2) ȳx = yε, ȳy = 1 + xε, x̄x = 1 + 2xε, x̄y = 0 and the above becomes

dȳ

dx̄
=

1 + (1 + xε) dy
dx

1 + 2xε

Substituting x̄, ȳ, dȳ
dx̄

in the original ode gives

dȳ

dx̄
= ȳ + 1

x̄
+ ȳ2

x̄3

1 + (1 + xε) dy
dx

1 + 2xε = (y + xyε) + 1
x+ x2ε

+ (y + xyε)2

(x+ x2ε)3
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Which as limε→0 gives
dy

dx
= y + 1

x
+ y2

x3

The same original ode showing the transformation is valid symmetry.� �
Y:=y/(1-s*x):
X:=x/(1-s*x):
eq:=(diff(Y,x)+diff(Y,y)*Z)/(diff(X,x)+diff(X,y)*Z)=simplify((Y+1)/X+Y^2/X^3):
solve(simplify(eq),Z)
y/x + 1/x + y^2/x^3� �
Hence the transformation in (2) is invariant.

The next step is to determine what is called the canonical coordinates R,S. Where R
is the independent variable and S is the dependent variable. So we are looking for S(R)
function. This is done by using the standard characteristic equation by writing

dx

ξ
= dy

η
= dS

dx

x2
= dy

xy
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Which is a first

order PDE. We need to solve this for S, which gives (1) using method of characteristic
to solve first order PDE which is standard method. Starting with the first pair of ODE
in (1) gives

dy

dx
= xy

x2
= y

x

Integrating gives y
x
= c where c is constant of integration. In this method R is always

c. Hence
R(x, y) = y

x

Now we find S(x, y) from the first equation in (1) and the last equation

dS = dx

ξ

S =
∫
dx

x2

S = −1
x

Now that we found R and S, we determine the ODE dS
dR

= Ω(R). The ODE comes
out to be function of R only, so it is quadrature. This is the whole idea of this method.
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By solving for R we go back to x, y and solve for y(x). How to find dS
dR
? There is an

equation to determine this given by

dS

dR
= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

We know everything on the RHS. Substituting gives

dS

dR
=

1
x2 +

(
y+1
x

+ y2

x3

)
(0)

− y
x2 +

(
y+1
x

+ y2

x3

)
1
x

=
1
x2

− y
x2 +

(
y+1
x

+ y2

x3

)
1
x

= x2

x2 + y2

= 1
1 +

(
y
x

)2
But R = y

x
, hence the above becomes

dS

dR
= 1

1 +R2

This is just quadrature. Integrating gives

S = arctan (R) + c1

Now we go back to x, y. Since S = − 1
x
, R = y

x
, then the above becomes

−1
x
= arctan

(y
x

)
+ c1

−1
x

+ c2 = arctan
(y
x

)
y

x
= tan

(
−1
x

+ c2

)
y(x) = x tan

(
−1
x

+ c2

)
And the above is the solution to original ODE.

Finding Lie symmetries for this example

The symmetry condition was derived earlier as

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)
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Let ansatz be

ξ = c1x+ c2y + c3

η = c4x+ c5y + c6

Eq 14 becomes

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0
c4 + ω(c5 − c1)− ω2c2 − ωx(c1x+ c2y + c3)− ωy(c4x+ c5y + c6) = 0

But in this ODE ω = y+1
x

+ y2

x3 , hence ωx = −y+1
x2 − 3 y2

x4 and ωy = 1
x
+ 2y

x3 . The above
becomes

c4 +
(
y + 1
x

+ y2

x3

)
(c5 − c1)−

(
y + 1
x

+ y2

x3

)2

c2 −
(
−y + 1

x2
− 3y

2

x4

)
(c1x+ c2y + c3)−

(
1
x
+ 2y
x3

)
(c4x+ c5y + c6) = 0

1
x2
c3 −

1
x2
c2 +

1
x
c5 −

1
x
c6 +

2
x3
y2c1 −

2
x4
y2c2 +

3
x4
y2c3 +

1
x4
y3c2 −

1
x3
y2c5 −

1
x6
y4c2 −

1
x2
yc2 +

1
x2
yc3 −

2
x2
yc4 −

2
x3
yc6 = 0

x4c3 − x4c2 + x5c5 − x5c6 + 2x3y2c1 − 2x2y2c2 + 3x2y2c3 + x2y3c2 − x3y2c5 − y4c2 − x4yc2 + x4yc3 − 2x4yc4 − 2x3yc6 = 0
x4(c3 − c2) + x5(c5 − c6) + x3y2(2c1 − c5) + x2y2(−2c2 + 3c3) + x2y3(c2) + y4(−c2) + x4y(−c2 + c3 − 2c4) + x3y(−2c6) = 0

Each coefficient to each monomial must be zero. Hence

c3 − c2 = 0
c5 − c6 = 0
2c1 − c5 = 0

−2c2 + 3c3 = 0
c2 = 0

−c2 + c3 − 2c4 = 0
−2c6 = 0

Which simplifies to (since c2 = 0, c6 = 0)

c3 = 0
c5 = 0

c1 − c5 = 0
3c3 = 0

c3 − 2c4 = 0

Which simplifies to (since c3 = 0, c5 = 0)

c5 = 0
c1 − c5 = 0

c4 = 0
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Hence c5 = 0, c1 = 0, c4 = 0. We see that all ci = 0, therefore there is no solution using
this ansatz.

Trying ansatz

ξ = a0 + a1x+ a2y + a3xy + a4x
2

η = b0 + b1x+ b2y + b3xy + b4y
2

Eq 9 becomes
ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0

Substituting the ansatz and simplifying gives

−x2y3a2+y4a2+x4(−a0+a2)+x2y2(−3a0+2a2)+xy4a3+2x3yb0+x4y(−a0+a2+2b1)+x5(a3+b0−b2)+x3y2(−2a1+2a3+b2)+x6(a4−b3)+x6y(a4−b3)+x4y2(−a4+b3)+x5y(2a3−2b4)+x5y2(a3−b4) = 0

Each coefficient to each monomial must be zero. Hence

a2 = 0
−a0 + a2 = 0

−3a0 + 2a2 = 0
a3 = 0
b0 = 0

−a0 + a2 + 2b1 = 0
a3 + b0 − b2 = 0

−2a1 + 2a3 + b2 = 0
a4 − b3 = 0

2a3 − 2b4 = 0
a3 − b4 = 0

Since a2 = a3 = b0 = 0 the above simplifies to

−a0 = 0
−3a0 = 0

−a0 + 2b1 = 0
−b2 = 0

−2a1 + b2 = 0
a4 − b3 = 0
−2b4 = 0
−b4 = 0
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Since a0 = b2 = a4 = b4 = 0, The above now simplifies to

a4 − b3 = 0

Therefore, if we let a4 = 1 then b3 = 1 and the solution is

ξ = a0 + a1x+ a2y + a3xy + a4x
2

= x2

η = b0 + b1x+ b2y + b3xy + b5y
2

= xy

Which is what we used above to solve the ode.

1.2.22.16 Example y′ = y−4xy2−16x3

y3+4x2y+x

Solve

y′ = y − 4xy2 − 16x3
y3 + 4x2y + x

y′ = ω(x, y)

The first step is to find ξ and η. This is shown at the end of this problem below.

ξ = −y
η = 4x

The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
4x+ y

(
y−4xy2−16x3

y3+4x2y+x

)
= x2y + x+ y3

4x2 + y2

The next step is to determine what is called the canonical coordinates R,S. Where R
is the independent variable and S is the dependent variable. This is done by using the
standard characteristic equation by writing

dx

ξ
= dy

η
= dS

dx

−y
= dy

4x = dS (1)
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The first pair of ode’s in (1) gives
dy

dx
= −4x

y

Solving gives
y =

√
−4x2 + c

Where c is constant of integration (For y > 0 only). In this method R is always c. Hence

y2 = −4x2 + c

R = y2 + 4x2 (2)

The first equation in (1) and the last equation gives

dS = dx

ξ

S = −
∫
dx

y

But y =
√
−4x2 + c. The above becomes

S = −
∫

dx√
−4x2 + c

= −1
2 arctan

(
2x√

−4x2 + c

)
= −1

2 arctan
(
2x
y

)
For y > 0. Now that we found R and S, we determine the ODE dS

dR
= Ω(R). The ODE

comes out to be function of R only, so it is quadrature. This is the whole idea of this
method. By solving for R we go back to x, y and solve for y(x). How to find dS

dR
? There

is an equation to determine this given by
dS

dR
= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

We know everything on the RHS. Substituting gives

dS

dR
=

d
dx

(
−1

2 arctan
(

2x
y

))
+
(

y−4xy2−16x3

y3+4x2y+x

)
d
dy

(
−1

2 arctan
(

2x
y

))
d
dx

√
y2 + 4x2 +

(
y−4xy2−16x3

y3+4x2y+x

)
d
dy

√
y2 + 4x2

=

−1
y
(

4x2
y2 +1

) + (y−4xy2−16x3

y3+4x2y+x

)
x

y2
(

4x2
y2 +1

)
4x√

y2+4x2 +
(

y−4xy2−16x3

y3+4x2y+x

)
y√

y2+4x2

= −
√

4x2 + y2

= −R
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Hence
dS

dR
= −R

This is just quadrature. Integrating gives

S = −R
2

2 + c

Now we go back to x, y. Since S = −1
2 arctan

(
2x
y

)
, R =

√
y2 + 4x2, then the above

becomes

−1
2 arctan

(
2x
y

)
= −

(
y2 + 4x2

2

)
+ c

y2

2 − 1
2 arctan

(
2x
y

)
+ 2x2 − c = 0 y > 0

And the above is the solution to original ODE.

Finding Lie symmetries for this example

The symmetry condition was derived earlier as

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

Let ansatz be

ξ = c1x+ c2y + c3

η = c4x+ c5y + c6

Eq 14 becomes

c4 + ω(c5 − c1)− ω2c2 − ωx(c1x+ c2y + c3)− ωy(c4x+ c5y + c6) = 0

But in this ODE ω = y−4xy2−16x3

y3+4x2y+x
, hence ωx = −4y5−32x2y3−8xy2+

(
−64x4−1

)
y−32x3

(4x2y+y3+x)2 and
ωy = 64x5+32x3y2+4xy4−8x2y−2y3+x

(4x2y+y3+x)2 . Above becomes

c4+
(
y − 4xy2 − 16x3
y3 + 4x2y + x

)
(c5 − c1)−

(
y − 4xy2 − 16x3
y3 + 4x2y + x

)2

c2−
(
−4y5 − 32x2y3 − 8xy2 + (−64x4 − 1) y − 32x3

(4x2y + y3 + x)2
)
(c1x+ c2y + c3)−

(
64x5 + 32x3y2 + 4xy4 − 8x2y − 2y3 + x

(4x2y + y3 + x)2
)
(c4x+ c5y + c6) = 0
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Which expands to

8c1xy2
4x2y + y3 + x

+ 4c5xy2
4x2y + y3 + x

− 256c2x4y2

(4x2y + y3 + x)2
− 48c2x2y4

(4x2y + y3 + x)2
+ 16c2x3y
(4x2y + y3 + x)2

+ 12c2xy3

(4x2y + y3 + x)2

+ 48x2c2y
4x2y + y3 + x

− 128x5yc1
(4x2y + y3 + x)2

− 128x4yc3
(4x2y + y3 + x)2

− 32x3y3c1
(4x2y + y3 + x)2

− 32x2y3c3
(4x2y + y3 + x)2

+ 4x2y2c1
(4x2y + y3 + x)2

+ 4xy2c3
(4x2y + y3 + x)2

+ yc1x

(4x2y + y3 + x)2
+ 8x2yc4
4x2y + y3 + x

+ 8xyc6
4x2y + y3 + x

−

64x5c5y
(4x2y + y3 + x)2

− 64x4y2c4
(4x2y + y3 + x)2

− 64x3y3c5
(4x2y + y3 + x)2

− 64x3y2c6
(4x2y + y3 + x)2

− 12x2y4c4
(4x2y + y3 + x)2

− 16c5x3
4x2y + y3 + x

− 256c2x6

(4x2y + y3 + x)2
+ 64c1x3
4x2y + y3 + x

− c1y

4x2y + y3 + x
+ 48x2c3
4x2y + y3 + x

+ 4y3c2
4x2y + y3 + x

+ 4y2c3
4x2y + y3 + x

− 16x4c1
(4x2y + y3 + x)2

− 16x3c3
(4x2y + y3 + x)2

+ yc3

(4x2y + y3 + x)2
− c4x

4x2y + y3 + x
− 64x6c4
(4x2y + y3 + x)2

− 64x5c6
(4x2y + y3 + x)2

+ 3y4c5
(4x2y + y3 + x)2

+ 3y3c6
(4x2y + y3 + x)2

− c6
4x2y + y3 + x

− 12xy5c5
(4x2y + y3 + x)2

− 12xy4c6
(4x2y + y3 + x)2

+ 4x3yc4
(4x2y + y3 + x)2

+ 4x2y2c5
(4x2y + y3 + x)2

+ 4x2yc6
(4x2y + y3 + x)2

+ 3y3c4x
(4x2y + y3 + x)2

+ c4 = 0

Multiplying each term by (4x2y + y3 + x)2 and expanding gives the multivariable
polynomial

128x5yc1+64x3y3c1+8c1xy5−256c2x6−64c2x4y2+16c2x2y4+4c2y6−64x6c4−16x4y2c4+4x2y4c4+c4y6

−128x5c5y−64x3y3c5−8xy5c5+64x4yc3+32x2y3c3+4c3y5−64x5c6−32x3y2c6−4xy4c6+48x4c1+
8x2y2c1−c1y4+64c2x3y+16c2xy3+16x3yc4+4y3c4x−16c5x4+8x2y2c5+3y4c5+32x3c3+8xy2c3+8x2yc6+2y3c6+yc3−c6x = 0

Each monomial coefficient must be zero. This gives the following equations to solve for
ci
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equation
−256c2 − 64c4 = 0
128c1 − 128c5 = 0
−64c6 = 0
−64c2 − 16c4 = 0
64c3 = 0
48c1 − 16c5 = 0
64c1 − 64c5 = 0
−32c6 = 0
64c2 + 16c4 = 0
32c3 = 0
16c2 + 4c4 = 0
32c3 = 0
8c1 + 8c5 = 0
8c6 = 0
8c1 − 8c5 = 0
−4c6 = 0
16c2 + 4c4 = 0
8c3 = 0
−c6 = 0
4c2 + c4 = 0
4c3 = 0
−c1 + 3c5 = 0
2c6 = 0
c3 = 0

Hence we see that c6 = 0, c3 = 0. The above reduces to
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equation
−256c2 − 64c4 = 0
128c1 − 128c5 = 0
−64c2 − 16c4 = 0
48c1 − 16c5 = 0
64c1 − 64c5 = 0
64c2 + 16c4 = 0
16c2 + 4c4 = 0
8c1 + 8c5 = 0
8c1 − 8c5 = 0
16c2 + 4c4 = 0
4c2 + c4 = 0
−c1 + 3c5 = 0

Hence Ac = b gives 

0 −256 −64 0
128 0 0 −128
0 −64 −16 0
48 0 0 −16
64 0 0 −64
0 64 16 0
0 16 4 0
8 0 0 −8
0 16 4 0
0 4 1 0
−1 0 0 3




c1
c2
c4
c5

 =



0
0
0
0
0
0
0
0
0
0
0


The rank of A is 3 and the number of columns is 4. Hence non-trivial solution exist.
Solving the above gives c4 = −4 and c2 = 1 and all other coefficients are zero. this
means that , since

ξ = c1x+ c2y + c3

η = c4x+ c5y + c6

Then

ξ = y

η = −4x

Which is what we wanted to show for this ODE.
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1.2.22.17 Example y′ = −y2

ex−y

Solve

y′ = −y2

ex − y

y′ = ω(x, y)

The symmetry condition results in the PDE

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0

End of the problem shows how this is solved for ξ, η which results in

ξ(x, y) = 1
η(x, y) = y

The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
y −

(
−y2

ex−y

)
= 1− ye−x

y

The next step is to determine what is called the canonical coordinates R,S. Where R
is the independent variable and S is the dependent variable. So we are looking for S(R)
function. This is done by using the standard characteristic equation by writing

dx

ξ
= dy

η
= dS

dx

1 = dy

y
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Which is a first

order PDE. This is solved for S, which gives (1) using the method of characteristic to
solve first order PDE which is standard method. Starting with the first pair of ODE
gives

dy

dx
= y

Integrating gives ln |y| = x + c or y = cex where c is constant of integration. In this
method R is always c. Hence

R(x, y) = ye−x
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S(x, y) is now found from the first equation in (1) and the last equation which gives

dS = dx

ξ

dS = dx

1
dS = dx

S = x

Hence

R = ye−x

S = x

Now that R(x, y) , S(x, y) are found, the ODE dS
dR

= Ω(R) is setup. The ODE comes
out to be function of R only, so it is quadrature. This is the main idea of this method.
By solving for R we go back to x, y and solve for y(x). How to find dS

dR
? There is an

equation to determine this given by

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

Everything on the RHS is known. Sx = 1, Rx = −ye−x, Sy = 0, Ry = e−x. Substituting
gives

dS

dR
= 1

−ye−x + −y2

ex−y
e−x

= ye−x − 1
ye−x

But R = ye−x, hence the above becomes

dS

dR
= R− 1

R

This is just quadrature. Integrating gives

S =
∫
R− 1
R

dR

= R− lnR + c1
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This solution is converted back to x, y. Since S = x,R = ye−x, the above becomes

x = ye−x − ln
(
ye−x

)
+ c1

Which is the solution to the original ODE.

Finding Lie symmetries for this example

The condition of symmetry is given above in equation (14) as

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

Try

ξ = c1x+ c2y + c3

η = c4x+ c5y + c6

Hence ξx = c1, ξy = c2, ηx = c4, ηy = c5 and (14) becomes

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0
c4 + ω(c5 − c1)− ω2c2 − ωx(c1x+ c2y + c3)− ωy(c4x+ c5y + c6) = 0

But ω = −y2

ex−y
, ωx = y2ex

(ex−y)2 , ωy =
(
− 2y

ex−y
− y2

(ex−y)2

)
and the above becomes

c4+
−y2

ex − y
(c5 − c1)−

(
−y2

ex − y

)2

c2−
y2ex

(ex − y)2
(c1x+ c2y + c3)−

(
− 2y
ex − y

− y2

(ex − y)2
)
(c4x+ c5y + c6) = 0

Need to do this again. I should get c3 = 1, c5 = 1 and everything else zero.

ξ = 1
η = y

1.2.22.18 Example y′ = x
√
1+y+

√
1+y+1+y

1+x

Solve

y′ = x
√
1 + y +

√
1 + y + 1 + y

1 + x

y′ = ω(x, y)

The symmetry condition results in the pde

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (1)
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Let Ansatz be

ξ = 0
η = f(x) g(y)

Hence (1) becomes
g(y) df

dx
+ ωf(x) dg

dy
− ωyf(x) g(y) = 0

But ωx = d
dx

(
x
√
1+y+

√
1+y+1+y

1+x

)
= − (y+1)

(x+1)2 and ωy = x+1+2
√
1+y√

1+y(2+2x) . Hence the above
becomes

g(y) df
dx

+
(
x
√
1 + y +

√
1 + y + 1 + y

1 + x

)
f(x) dg

dy
− x+ 1 + 2

√
1 + y√

1 + y (2 + 2x)
(f(x) g(y)) = 0

(2)
The numerator of the normal form of the above is

2 df
dx
g
√
1 + yx+2y

√
1 + yf

dg

dy
+2f dg

dy
xy+2 df

dx
g
√

1 + y−2fg
√

1 + y+2f dg
dy

√
1 + y−fgx+2f dg

dy
x+2fydg

dy
−fg+2f dg

dy
= 0

(3)
We can now either collect on y or x and try. Let us start with collecting on all terms
with y. This gives

g
√

1 + y

(
2x df
dx

+ 2 df
dx

− 2f
)
+y
√

1 + y
dg

dy
(2f)+dg

dy

√
1 + y(2f)+g(xf − f)+ydg

dy
(2xf + 2f)+dg

dy
(2xf + 2f) = 0

(3A)
The coefficients of all terms with g(y) or y in them are from the above are the following,
which each must be zero

2f = 0
xf − f = 0

2xf + 2f = 0

2x df
dx

+ 2 df
dx

− 2f = 0

Now we set each to zero and see if this produces f(x) which can be used. We have
4 choices to try above. Starting from the most simple one. The first one above gives
2f = 0 or f = 0. But this is not function of x. We try the next one xf − f = 0. This
gives f = 0 or x = 1. Hence this does not give f as function of x. Next we try 2xf +2f.
This also does not give f as function of x. The last one is 2x df

dx
+ 2 df

dx
− 2f = 0 or

df
dx

= 2f
2x+2 . Solving this gives f = c1(x+ 1). This is successful since f is function of x.

Hence

f(x) = c1(x+ 1)
df

dx
= c1
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Now we need to determine g(y). Substituting the above into (3) gives

2c1g(y)
√

1 + yx+2
√

1 + yc1(x+1)dg
dy
y+2c1(x+1)dg

dy
xy+2c1g

√
1 + y−2c1(x+1)g

√
1 + y+2c1(x+1)dg

dy

√
1 + y−c1(x+1)g(y)x+2c1(x+1)dg

dy
x+2c1(x+1)dg

dy
y−c1(x+1)g(y)+2c1(x+1)dg

dy
= 0

Which simplifies to

2c1
√
1 + y

dg

dy
yx+2c1

dg

dy
x2y−c1gx2+2c1

dg

dy

√
1 + yx+2

√
1 + yc1

dg

dy
y+2c1

dg

dy
x2+4c1

dg

dy
xy−2c1xg+2c1

dg

dy

√
1 + y+4c1

dg

dy
x+2c1

dg

dy
y−c1g(y)+2c1

dg

dy
= 0

(4)
Now factoring on all terms with x, and these are {x, x2} gives

−c1x2
(
−2dg

dy
y + g − 2dg

dy

)
−c1x

(
−2
√

1 + y
dg

dy
y − 2

√
1 + y

dg

dy
− 2dg

dy
y + g − 2dg

dy

)
+T = 0

(4A)
Where T are terms that depends on y only. Each factor of x, x2 must be zero. Hence
the first above implies

−2dg
dy
y + g − 2dg

dy
= 0

g′(y) = g

2 (1 + y)

Solving gives
g = c2

√
1 + y (5)

Substituting (5) into (4) gives

c1(1 + x) c2(1 + y) = 0

Which is not zero. Hence this term does not work. Now we try the second term in (4A)
which means

−2
√

1 + y
dg

dy
y − 2

√
1 + y

dg

dy
− 2dg

dy
y + g − 2dg

dy
= 0

dg

dy
= −g

−2
√
1 + yy − 2

√
1 + y − 2y − 2

Solving gives

g(y) = c2

√
1 + y

1 +
√
1 + y

Again, substituting the above back in (4) gives

c1(1 + x) c2
(1 + y)x(

1 +
√
1 + y

)2 = 0



chapter 1 . f irst order ode 160

Which is not zero. Therefore starting with f(x) = c1(x+ 1) has failed to produce a
valid g(y) to satisfy the pde. This means we need to start all over again. Going back
to (3) and now collecting on all terms with x instead. Here is (3) again

2 df
dx
g
√
1 + yx+2y

√
1 + yf

dg

dy
+2f dg

dy
xy+2 df

dx
g
√

1 + y−2fg
√

1 + y+2f dg
dy

√
1 + y−fgx+2f dg

dy
x+2fydg

dy
−fg+2f dg

dy
= 0

(3)
Collecting on all terms that depend on x gives

x
df

dx

(
2g
√

1 + y
)
+f
(
2y
√

1 + y
dg

dy
− 2g

√
1 + y + 2dg

dy

√
1 + y + 2ydg

dy
+ 2dg

dy
− g

)
+xf

(
2dg
dy
y − g + 2dg

dy
y

)
= 0

(3B)
Each term must be zero, hence this gives these trials

2g
√

1 + y = 0

2dg
dy
y − g + 2dg

dy
y = 0

2y
√

1 + y
dg

dy
− 2g

√
1 + y + 2dg

dy

√
1 + y + 2ydg

dy
+ 2dg

dy
− g = 0

Starting with the first one above 2g
√
1 + y = 0 which gives g = 0 which does not match

the ansatz. Now we try the second one above, which gives
dg

dy
= g

2 + 2y
Solving gives

g = c1
√

1 + y (6)
Which meets the requirements of the ansatz. Now we need to use the above to generate
f(x). We do not need to try the third one above unless this fails. Substituting (6) into
(3) gives

c2

(
2 df
dx
xy + 2 df

dx
x+ 2 df

dx
y − fy + 2 df

dx
− f

)
= 0

2 df
dx
xy + 2 df

dx
x+ 2 df

dx
y − fy + 2 df

dx
− f = 0 (7)

Collecting on y gives
c1(1 + y)

(
2 df
dx
x+ 2 df

dx
− f

)
= 0

Hence 2 df
dx
x+ 2 df

dx
− f must be zero. This gives as solution

f(x) = c2
√
1 + x

df

dx
= c2

1
2
√
1 + x
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Substituting the above into (7) to verify gives

2
(
c2

1
2
√
1 + x

)
xy + 2

(
c2

1
2
√
1 + x

)
x+ 2

(
c2

1
2
√
1 + x

)
y −

(
c2
√
1 + x

)
y + 2

(
c2

1
2
√
1 + x

)
− c2

√
1 + x = 0

c2
1√
1 + x

xy + c2
1√
1 + x

x+ c2
1√
1 + x

y − c2
√
1 + xy + c2

1√
1 + x

− c2
√
1 + x = 0

c2

(
1√
1 + x

xy + 1√
1 + x

x+ 1√
1 + x

y −
√
1 + xy + 1√

1 + x
−
√
1 + x

)
= 0

0 = 0

Verified, Hence we have found f(x) , g(y). Therefore

ξ = 0
η = f(x) g(y)
=

√
1 + x

√
1 + y

Where we set c1 = c2 = 1. The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1√
1 + x

√
1 + y

The next step is to determine the canonical coordinates R,S. Where R is the inde-
pendent variable and S is the dependent variable. This is done by using the standard
characteristic equation by writing

dx

ξ
= dy

η
= dS

For the special case ξ = 0 we have R = x. S(x, y) is now found from the last two pair
of equations which gives

dS = dy

η

dS = dy√
1 + x

√
1 + y

S = 2
√
1 + y√
1 + x

Hence (constant of integration is set to zero)

R = x (2)

S = 2
√
1 + y√
1 + x
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Now that R(x, y) , S(x, y) are found, the ODE dS
dR

= Ω(R) is setup. The ODE comes
out to be function of R only, so it is quadrature. This is the main idea of this method.
By solving for R we go back to x, y and solve for y(x). How to find dS

dR
? There is an

equation to determine this given by

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

Everything on the RHS is known. Sx = −
√
1+y

(1+x)
3
2
, Rx = 1, Sy = 1√

1+x
√
1+y

, Ry = 0.
Substituting into the above gives

dS

dR
= −

√
1 + y

(1 + x)
3
2
+ ω(x, y) 1√

1 + x
√
1 + y

= −
√
1 + y

(1 + x)
3
2
+
(
x
√
1 + y +

√
1 + y + 1 + y

1 + x

)
1√

1 + x
√
1 + y

= 1√
x+ 1

= 1√
R + 1

Hence
dS

dR
= 1√

R + 1
This is quadrature. Solving gives

S = 2
√
R + 1 + c1

Convecting back to x, y gives

2
√
1 + y√
1 + x

= 2
√
x+ 1 + c1

1.2.22.19 Example y′ = −y
2x−yey

Solve

y′ = −y
2x− yey

y′ = ω(x, y)
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The symmetry condition results in the pde

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (1)

Let anstaz be

ξ = g(y)
η = 0

Substituting this into (1) gives

−ω2dg

dy
− ωxg = 0

But ω2 = y2

(2x−yey)2 , ωx = d
dx

(
−y

2x−yey

)
= 2y

(2x−yey)2 . The above becomes

− y2

(2x− yey)2
dg

dy
− 2y

(2x− yey)2
g = 0

−y2dg
dy

− 2yg = 0

dg

dy
+ 2
y
g = 0

This is linear ode. The solution is
g = c1

y2

Hence

ξ = 1
y2

η = 0

But taking c1 = 1. The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
− 1

y2

(
−y

2x−yey

)
= y(2x− yey)

The next step is to determine the canonical coordinates R,S. Where R is the inde-
pendent variable and S is the dependent variable. This is done by using the standard
characteristic equation by writing

dx

ξ
= dy

η
= dS
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Since η = 0, then in this special case R = c1 = y. To find S we use dS = dx
ξ

or
dS = y2dx. Hence S = c21x + c2 = c21x by taking c2 = 0. Therefore S = y2x since
c1 = y.

R = y (2)
S = y2x

Now that R(x, y) , S(x, y) are found, the ODE dS
dR

= Ω(R) is setup. The ODE comes
out to be function of R only, so it is quadrature. This is the main idea of this method.
By solving for R we go back to x, y and solve for y(x). How to find dS

dR
? There is an

equation to determine this given by

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

Everything on the RHS is known. Sx = y2, Rx = 0, Sy = 2yx,Ry = 1. Substituting into
the above gives

dS

dR
= y2 + ω(x, y) 2yx

ω (x, y)

=
y2 +

(
−y

2x−yey

)
2yx(

−y
2x−yey

)
= y2ey

Now we need to express the RHS in terms of R,S. From (2) we see that y = R, hence
the above becomes

dS

dR
= R2eR

This is quadrature. Solving gives

S =
(
R2 − 2R + 2

)
eR + c1

Convecting back to x, y gives

y2x =
(
y2 − 2y + 2

)
ey + c1
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1.2.22.20 Example y′ = −1−2yx
x2+2y

Solve

y′ = −1− 2yx
x2 + 2y

y′ = ω(x, y)

The symmetry condition results in the pde

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (1)

Let anstaz be

ξ = 0
η = f(x) g(y)

Substituting this into (1) gives

g
df

dx
+ ωf

dg

dy
− ωyfg = 0

But ω = −1−2yx
x2+2y , ωy = d

dy

(
−1−2yx
x2+2y

)
= 2−2x3

(x2+2y)2 . The above becomes

g
df

dx
+
(
−1− 2yx
x2 + 2y

)
f
dg

dy
−
(

2− 2x3

(x2 + 2y)2
)
fg = 0

The numerator of the normal form is

g
df

dx

(
x2 + 2y

)2 + (x2 + 2y
)
(−1− 2yx) f dg

dy
−
(
2− 2x3

)
fg = 0

g
df

dx

(
x4 + 4x2y + 4y2

)
+
(
−2x3y − x2 − 4xy2 − 2y

)
f
dg

dy
−
(
2− 2x3

)
fg = 0 (2)

To solve this for f(x) , g(y) we start by collecting on either x or y. Let us start by
collecting on y. This gives[
4 df
dx

] (
gy2
)
+
[
4 df
dx
x2
]
(yg)+

[
df

dx
x4 −

(
−2x3 + 2

)
f

]
g+
[(
−2x3 − 4x− 2

)
f
](dg

dy

)
−
[
x2f
] dg
dy

= 0

(3)
The other option was to collect on x terms. This would give[
−2ydg

dy
+ 2g

] (
x3f
)
−
[
x2f
](dg

dy

)
−[4xf ]

(
y
dg

dy

)
+
[
−2dg

dy
y − 2g

]
(f)+[g]

(
x4
df

dx

)
+[yg]

(
4 df
dx
x2
)
+
[
y2g
](

4 df
dx

)
= 0

(4)
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We start from (3), and if this yields no solutions for f(x) , g(y) then we come back and
try (4). In either form, the terms inside the [·] must all be zero to satisfy the ode. From
(3) this gives

4 df
dx

= 0

4 df
dx
x2 = 0

df

dx
x4 −

(
−2x3 + 2

)
f = 0(

−2x3 − 4x− 2
)
f = 0

x2f = 0

If one of these results in f(x) which is function of x. Then we try it to solve for g(y).
If the solutions end up verifying the pde, then we are done. From the above, we start
with the first one. This gives f = c1. Which is not function of x. The second give same
result. The this option which is df

dx
x4 − (−2x3 + 2) f = 0 gives

f(x) = c1
e−

2
3x3

x2

Which is function of x. We now use this to find g(y). It turns out this does not work.
The whole anstaz will fail. So need to try different anstaz.

1.2.22.21 Example y′ = 3√yx

Solve

y′ = 3√yx
y′ = ω(x, y)

The symmetry condition results in the pde

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (1)

Trying polynomial anstaz

ξ = a0 + a1x

η = b0 + b1y

And substituting these into (1) and simplifying gives

(−9a1 + 3b1) yx− 3xb0 − 3ya0 = 0
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Setting all coefficients to zero gives

−9a1 + 3b1 = 0
b0 = 0
a0 = 0

Hence a1 = 1
3b1. Letting b1 = 1 then a1 = 1

3 and the infinitesimals are

ξ = 1
3x

η = y

The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
y − 1

3x
(
3√yx

)
= −

y + x
√
xy

x3y − y2

The next step is to determine the canonical coordinates R,S. This is done by using the
standard characteristic equation by writing

dx

ξ
= dy

η
= dS

The first pair of equations gives

dy

dx
= η

ξ
= 3y

x

Solving gives
y = c1x

3

Hence
R = c1 =

y

x3
(2)

And S is found from
dS = dx

ξ
= 3dx

x

Integrating gives

S = 3 ln x+ c1

= 3 ln x
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By choosing c1 = 0. Now that R(x, y) , S(x, y) are found, the ODE dS
dR

= F (R) is
determined. This is determined from

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

But Sx = 3
x
, Rx = −3 y

x4 , Sy = 0, Ry = 1
x3 . Substituting these into the above gives

dS

dR
=

3
x

−3 y
x4 + ω (x, y) 1

x3

= 3x3
−3y + xω (x, y)

But ω(x, y) = 3√yx. The above becomes
dS

dR
= 3x3

−3y + 3x√yx

= x3

x
√
yx− y

= −1√
y
x3 − y

x3

(3)

But R = y
x3 and the above becomes

dS

dR
= −1
R−

√
R

Which is a quadrature. Solving gives∫
dS =

∫
−1

R−
√
R
dR

S = −2 ln
(√

R− 1
)
+ c1

Converting back to x, y gives

3 ln x = −2 ln
(√

y

x3
− 1
)
+ c1

ln x3 + ln
(√

y

x3
− 1
)2

= c1

ln
(
x3
(√

y

x3
− 1
)2)

= c1

x3
(√

y

x3
− 1
)2

= c2
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Or

y1(x) = 2x
(
x2 + x

√
xc1
)
− x3 + c1

y2(x) = −2x
(
−x2 + x

√
xc1
)
− x3 + c1

1.2.22.22 Example y′ = 4(yx)
1
3

Solve

y′ = 4(yx)
1
3

y′ = ω(x, y)

The symmetry condition results in the pde

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (1)

Trying polynomial anstaz

ξ = a0 + a1x

η = b0 + b1y

And substituting these into (1) and simplifying gives

(−16a1 + 8b1) yx− 4xb0 − 4ya0 = 0

Setting all coefficients to zero gives

−16a1 + 8b1 = 0
b0 = 0
a0 = 0

Hence a1 = 1
2b1. Letting b1 = 1 then a1 = 1

2 and the infinitesimals are

ξ = 1
2x

η = y

The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
y − 1

2x
(
4 (yx)

1
3

)
= 1
y − 2x (xy)

1
3
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The next step is to determine the canonical coordinates R,S. This is done by using the
standard characteristic equation by writing

dx

ξ
= dy

η
= dS

The first pair of equations gives
dy

dx
= η

ξ
= 2y

x

Solving gives
y = c1x

2

Hence
R = c1 =

y

x2
(2)

And S is found from
dS = dx

ξ
= 2dx

x

Integrating gives

S = 2 ln x+ c1

= 2 ln x

By choosing c1 = 0. Now the ODE dS
dR

= F (R) is found from

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

But Sx = 2
x
, Rx = −2 y

x3 , Sy = 0, Ry = 2
x2 . Substituting these into the above and

simplifying gives
dS

dR
= x2

2x (yx)
1
3 − y

= 1
2 1
x
(yx)

1
3 − y

x2

= 1
2y 1

3x−
2
3 − y

x2

= 1
2
(

y
x2

) 1
3 − y

x2

= 1
2 (R)

1
3 −R
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Hence
dS

dR
= 1

2R 1
3 −R

Which is a quadrature. Solving gives∫
dS =

∫ 1
2R 1

3 −R
dR

S = −3
2 ln

(
−2 +R

2
3

)
+ c1

Converting back to x, y gives

2 ln x = −3
2 ln

(
−2 +

( y
x2

) 2
3
)
+ c1

The above can be simplified more if needed to solve for y(x) explicitly.

1.2.22.23 Example y′ = 2y + 3e2x

Solve

y′ = 2y + 3e2x

y′ = ω(x, y)

From the lookup table, since this is linear ode y′ = f(x) y + g(x) then

ξ = 0
η = e

∫
fdx

= e
∫
2dx

= e2x.

If we were to use the integrating factor method, then

µ(x, y) = 1
η − ξω

= 1
e2x

= e−2x
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Then the general solution is ∫
µ(x, y) (dy − ωdx) = c1∫

e−2x(dy − (2y + 3e2x
)
dx
)
= c1∫

e−2xdy −
(
2ye−2x + 3

)
dx = c1∫

e−2xdy − 2ye−2xdx =
∫

3dx+ c1∫
d
(
e−2xy

)
=
∫

3dx+ c1

Hence

e−2xy = 3x+ c1

y = e2x(3x+ c1)

But if we were to use the basic Lie symmetry method, then the next step is to deter-
mine the canonical coordinates R,S. This is done by using the standard characteristic
equation by writing

dx

ξ
= dy

η
= dS

Since ξ = 0 then this is the special case where R = x. And S is found from

dS = dy

η
= e−2xdy

Integrating gives

S = e−2xy + c1

= e−2xy

By choosing c1 = 0. Now the ODE dS
dR

= F (R) is found from

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

But Sx = −2e−2xy,Rx = 1, Sy = e−2x, Ry = 0. Substituting these into the above and
simplifying gives

dS

dR
= −2e−2xy +

(
2y + 3e2x

)
e−2x

= −2e−2xy + 2ye−2x + 3
= 3
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Which is a quadrature. Solving gives∫
dS =

∫
3dR

S = 3R + c1

Converting back to x, y gives

e−2xy = 3x+ c1

y = (3x+ c1) e2x

Of course, this ode is first order linear and can be solved much easier using integrating
factor method. But this is just to illustrate the Lie symmetry method.

1.2.22.24 Example y′ = 1
3
2y+y3−x2

x

Solve

y′ = 1
3
2y + y3 − x2

x
y′ = ω(x, y)

Using Maple the infinitesimals are

ξ = 3
2x 1

3

η = y

x
4
3

(Will need to show how to obtain these). Lets solve this using the integration factor
method first. The integrating factor is given by

µ(x, y) = 1
η − ξω

= 1
y

x
4
3
− 3

2x
1
3

(
1
3
2y+y3−x2

x

)
= 2 x

4
3

x2 − y3



chapter 1 . f irst order ode 174

Then the general solution is ∫
µ(x, y) (dy − ωdx) = c1∫

2 x
4
3

x2 − y3

(
dy −

(
1
3
2y + y3 − x2

x

)
dx

)
= c1∫ (

2 x
4
3

x2 − y3
dy −

(
2 x

4
3

x2 − y3

)(
1
3
2y + y3 − x2

x

)
dx

)
= c1∫ (

2 x
4
3

x2 − y3
dy −

(
2
3

x
1
3

x2 − y3

)(
2y + y3 − x2

)
dx

)
= c1

Hence we need to find F (x, y) s.t. dF =
(
2 x

4
3

x2−y3
dy −

(
2
3

x
1
3

x2−y3

)
(2y + y3 − x2) dx

)
which will make the solution F = c. Therefore

dF = ∂F

∂x
dx+ ∂F

∂y
dy

= 2 x
4
3

x2 − y3
dy −

(
2
3

x
1
3

x2 − y3

)(
2y + y3 − x2

)
dx

Hence

∂F

∂x
= −2

3
x

1
3 (2y + y3 − x2)

x2 − y3
(1)

∂F

∂y
= 2 x

4
3

x2 − y3
(2)

Integrating (1) gives

F =
(∫

−2
3
x

1
3 (2y + y3 − x2)

x2 − y3
dx

)
+ g(y)

= 1
2x

4
3 + 1

3 ln
(
x

4
3 + x

2
3y + y2

)
− 2

3
√
3 arctan

1
3

(
2x 2

3 + y
)√

3
y

− 2
3 ln

(
x

2
3 − y

)
+ g(y)

(3)

Where g(y) acts as the integration constant but F depends on x, y it becomes an
arbitrary function. Taking derivative of the above w.r.t. y gives

∂F

∂y
= 2 x

4
3

x2 − y3
+ g′(y) (4)
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Equating (4,2) gives

2 x
4
3

x2 − y3
= 2 x

4
3

x2 − y3
+ g′(y)

0 = g′(y)
g(y) = c1

Hence (3) becomes

F = 1
2x

4
3+1

3 ln
(
x

4
3 + x

2
3y + y2

)
−2
3
√
3 arctan

1
3

(
2x 2

3 + y
)√

3
y

−2
3 ln

(
x

2
3 − y

)
+c1

Therefore the solution is

F = c

1
2x

4
3 + 1

3 ln
(
x

4
3 + x

2
3y + y2

)
− 2

3
√
3 arctan

1
3

(
2x 2

3 + y
)√

3
y

− 2
3 ln

(
x

2
3 − y

)
= c2

Where constants c1, c were combined into c2. Now this ode will be solved using direct
symmetry by converting to canonical coordinates. This is done by using the standard
characteristic equation by writing

dx

ξ
= dy

η
= dS

dx
3

2x
1
3

= dy
y

x
4
3

= dS

First pair of ode’s give
dy

dx
=

y

x
4
3
3

2x
1
3

= 2
3xy

Hence
y = c1x

2
3

Therefore
R = yx−

2
3

And
dS = dx

ξ
= 2

3x
1
3dx
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Integrating gives

S =
∫ 2

3x
1
3dx

= 1
2x

4
3 + c1

= 1
2x

4
3

By choosing c1 = 0. Now the ODE dS
dR

= F (R) is found from

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

But Sx = 2
3x

1
3 , Rx = −2

3yx
− 5

3 , Sy = 0, Ry = x−
2
3 . Substituting these into the above and

simplifying gives

dS

dR
=

2
3x

1
3

−2
3yx

− 5
3 + ω (x, y)x− 2

3

=
2
3x

1
3

−2
3yx

− 5
3 +

(
1
3
2y+y3−x2

x

)
x−

2
3

= −2 x2

x2 − y3

But R = yx−
2
3 or y = Rx

2
3 . The above becomes

dS

dR
= −2 x2

x2 −R3x2

= −2
1−R3

Which is a quadrature. Solving gives∫
dS =

∫
−2

1−R3dR

S = −1
3 ln

(
R2 + x+ 1

)
− 2

3
√
3 arctan

(
1
3(1 + 2R)

√
3
)
+ 2

3 ln (R− 1) + c1

Converting back to x, y gives
1
2x

4
3 = −1

3 ln
((

yx−
2
3

)2
+ x+ 1

)
− 2

3
√
3 arctan

(
1
3

(
1 + 2

(
yx−

2
3

))√
3
)
+ 2

3 ln
((
yx−

2
3

)
− 1
)
+ c1

1
2x

4
3 = −1

3 ln
(
y2x−

4
3 + x+ 1

)
− 2

3
√
3 arctan

(
1
3

(
1 + 2yx− 2

3

)√
3
)
+ 2

3 ln
(
yx−

2
3 − 1

)
+ c1
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1.2.22.25 Example y′ = 3− 2 y
x

This is homogeneous ODE of Class A of form y′ = F
(
y
x

)
, hence from the lookup table

ξ = x

η = y

The first step is to verify that x̄ = εx, ȳ = εy leaves the ode invariant.

dȳ

dx̄
= ȳx + ȳyy

′

x̄x + x̄yy′
= εy′

ε
= y′

Hence the ode becomes
dȳ

dx̄
= 3− 2 ȳ

x̄

y′ = 3− 2 εy
εx

= 3− 2y
x

Verified. Now the ode is solved. The tangent curves are computed directly from the Lie
group symmetry given above

ξ = ∂x̄

∂ε

∣∣∣∣
ε=0

= x

η = ∂ȳ

∂ε

∣∣∣∣
ε=0

= y

The canonical coordinates (R,S) are now found. Using

dx

ξ
= dy

η
= dS

dx

x
= dy

y
= dS (1)

The first pair gives
dy

dx
= y

x
ln y = ln x+ c1

y = cx

Hence

R = c

= y

x
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Now we find S from the last pair of equations

dy

y
= dS

S = ln y

What is left is to find dS
dR

. This is given by

dS

dR
= G(R)

To find G(R), we use dS = Sxdx+Sydy = 1
y
dy and dR = Rxdx+Rydy = − y

x2dx+ 1
x
dy.

Hence

dS

dR
=

1
y
dy

− y
x2dx+ 1

x
dy

=
dy
dx

− y2

x2 + y
x
dy
dx

=
dy
dx

−R2 +R dy
dx

But dy
dx

= 3− 2 y
x
= 3− 2R, hence

dS

dR
= 3− 2R

−R2 +R (3− 2R)

= 3− 2R
3 (R−R2)

Which is a quadrature. In Lie method, for first order ode, we always obtain dS
dR

= G(R).
Integrating the above gives∫

dS =
∫ 3− 2R

3 (R−R2)dR

S = lnR− 1
3 ln (R− 1) + c1
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Final step is to replace R,S back with x, y which gives

ln y = ln y
x
− 1

3 ln
(y
x
− 1
)
+ c1

y = c1

y
x(

y
x
− 1
) 1

3(y
x
− 1
) 1

3 = c1
1
x

y

x
− 1 = c2

1
x3

y =
(
c2

1
x3

+ 1
)
x

1.2.22.26 Example y′ = −3+ y
x

−1− y
x

This is homogeneous ODE of Class A of form y′ = F
(
y
x

)
, hence from the lookup table

ξ = x

η = y

Canonical coordinates (R,S) are found similar to the above which gives

R = y

x
S = ln y

What is left is to find dS
dR

. This is given by

dS

dR
= G(R)

Which is the same as above
dS

dR
=

dy
dx

−R2 +R dy
dx

But in this problem, the only difference is that dy
dx

= −3+ y
x

−1− y
x
= −3+R

−1−R
, hence

dS

dR
=

−3+R
−1−R

−R2 +R
(−3+R
−1−R

)
= 1
R

R− 3
R2 + 2R− 3



chapter 1 . f irst order ode 180

Which is a quadrature. In Lie method, for first order ode, we always obtain dS
dR

= G(R).
Integrating the above gives∫

dS =
∫ 1
R

(
R− 3

R2 + 2R− 3

)
dR

S = ln (R)− 1
2 ln (R + 3)− 1

2 ln (R− 1) + c1

Final step is to replace R,S back with x, y which gives

ln y = ln
(y
x

)
− 1

2 ln
(y
x
+ 3
)
− 1

2 ln
(y
x
− 1
)
+ c1

This can be solved for y if an explicit solution is needed.

1.2.22.27 Example y′ = 1+3
( y
x

)2
2 y
x

This is homogeneous ODE of Class A of form y′ = F
(
y
x

)
, hence from the lookup table

ξ = x

η = y

The canonical ode is
dS

dR
=

dy
dx

−R2 +R dy
dx

The above is the same ode in canonical coordinates for any ode of the form y′ = F
(
y
x

)
.

We just need to express y′ as function of R. In this case the above becomes

dS

dR
=

1+3R2

2R

−R2 +R
(1+3R2

2R

)
= 3R2 + 1
R3 +R

Integrating gives
S = ln

(
R
(
R2 + 1

))
+ c1

Final step is to replace R,S back with x, y which gives

ln y = ln
(
y

x

((y
x

)2
+ 1
))

+ c1

y = c2
y

x

((y
x

)2
+ 1
)

1 = c2
x

((y
x

)2
+ 1
)

y2

x2
= c3x− 1

y2 = c3x
3 − x2
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Hence

y = ±
√
c3x3 − x2

= ±x
√
c3x− 1

Finding ξ, η from symmetry condition for the above ode This shows how to find ξ, η

directly also. The condition of symmetry is given above in equation (14) as

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

Try Ansatz

ξ = c0 + c1x

η = c2 + c3y

And given

ω = 1
2
x2 + 3y2
xy

ω2 = 1
4
(x2 + 3y2)2

x2y2

ωx = 1
2
x2 − 3y2
yx2

ωy =
1
2
3y2 − x2

xy2

Hence (14) becomes

ηx +
1
2
x2 + 3y2
xy

ηy −
1
2
x2 − 3y2
yx2

ξ − 1
2
3y2 − x2

xy2
η = 0

Therefore the above becomes

1
2
x2 + 3y2
xy

c3 −
1
2
x2 − 3y2
yx2

(c0 + c1x)−
1
2
3y2 − x2

xy2
(c2 + c3y) = 0

Using the computer the above simplifies to

x

y
(c3 − c1) +

1
2c2

x

y2
− 1
y

(
1
2c0
)
− 1
x

3
2c2 +

3
2c0

y

x2
= 0
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Hence

c3 − c1 = 0
1
2c2 = 0

−1
2c0 = 0

−3
2c2 = 0
3
2c0 = 0

Solving gives c0 = 0, c2 = 0 and c3 = c1. Hence the solution is

ξ = c1x

η = c3y

Let c1 = 1, therefore c3 = 1 and we obtain

ξ = x

η = y

Which is the result we used in solving the above problem. Notice that any scaler will
also work. Hence

ξ = 5x
η = 5y

And

ξ = 10x
η = 10y

This will also give same solution.

1.2.22.28 Example y′ = y
x
+ 1

x
F
(
y
x

)
This is homogeneous class D y′ = y

x
+ g(x)F

(
y
x

)
. Hence from lookup table

ξ = x2

η = xy
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Now we just need to find canonical coordinates (R,S) since ξ, η are known. Using

dx

ξ
= dy

η
= dS

dx

x2
= dy

xy
= dS (1)

The first pair gives

dy

dx
= y

x
ln y = ln x+ c1

y = cx

Hence

R = c

= y

x

Now we find S from the last pair of equations (we could also use the first and last
equations in (1)).

dy

xy
= dS

S = 1
x
ln y

What is left is to find dS
dR

. This is given by

dS

dR
= G(R)

= Sx + Syy
′

Rx +Ryy′

To find G(R), we use Sx = −1
x2 ln y, Sy = 1

xy
and Rx = − y

x2 , Ry = 1
x
. Hence

dS

dR
=

−1
x2 ln y + 1

xy
y′

− y
x2 + 1

x
y′

=
− ln y − x

y
y′

y + xy′

=
− ln y − 1

R
y′

y + xy′
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But y′ = y
x
+ 1

x
F
(
y
x

)
= R + 1

x
F (R). The above becomes

dS

dR
=

− ln y − 1
R

(
R + 1

x
F (R)

)
y + x

(
R + 1

x
F (R)

)
=

− ln y − 1− 1
xR
F (R)

y + xR + F (R)

=
− ln y − 1− 1

x y
x
F (R)

y + x y
x
+ F (R)

=
− ln y − 1− 1

y
F (R)

2y + F (R)

Something is wrong. dS
dR

should only be a function of R. Need to find out why. Let me
try the other pair of equations from (1) to solve for S and see what happens.

dx

x2
= dS

S = −1
x

What is left is to find dS
dR

. This is given by

dS

dR
= G(R)

= Sx + Syy
′

Rx +Ryy′

To find G(R), we use Sx = 1
x2 , Sy = 0 and Rx = − y

x2 , Ry = 1
x
. Hence

dS

dR
=

1
x2

− y
x2 + 1

x
y′

= 1
−y + xy′

But y′ = y
x
+ 1

x
F
(
y
x

)
= R + 1

x
F (R). The above becomes

dS

dR
= 1

−y + x
(
R + 1

x
F (R)

)
= 1

−y + xR + F (R)

= 1
−y + x y

x
+ F (R)

= 1
F (R)
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This worked. But why the first choice did not work? OK, let me continue now. Inte-
grating the above gives

S =
∫ 1
F (R)dR + c

But S = − 1
x
, hence

−1
x
=
∫ y

x 1
F (r)dr + c

0 =
∫ y

x 1
F (r)dr + c+ 1

x

This example shows that when solving for S from

dx

x2
= dy

xy
= dS

There are two choice. One is dS = dy
xy

and the other dS = dx
x2 . Using the first choice did

not work here (unless I made a mistake, but do not see it)., Only the second choice
worked because we must end up with dS

dR
= G(R) where RHS is function of R only. I

need to look more into this. In theory, any choice should have worked.

1.2.22.29 Example y′ = y
x
+ 1

x
e−

y
x

This is homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
. Hence from lookup table

ξ = x2

η = xy

From above we found the solution to be

S =
∫ 1
F (R)dR + c

In this case F (R) = e−R. Hence

S =
∫
eRdR + c

S = eR + c

Now we just need to find canonical coordinates (R,S) since ξ, η are known. From above

R = y

x

S = −1
x
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Hence the solution becomes

−1
x
= e

y
x + c

e
y
x = c2 −

1
x

y

x
= ln

(
c2 −

1
x

)
y = x ln

(
c2 −

1
x

)
The nice thing about this method is that once we solve for one pattern of an ode, then
the same solution in canonical coordinates is used, the only change need is to plug-in
in the RHS of the original ode in the solution and integrate.

1.2.22.30 Example y′ = 1−y2+x2

1+y2−x2

y′ = 1− y2 + x2

1 + y2 − x2

= ω(x, y)

Using anstaz’s it is found that

ξ = x− y

η = y − x

Hence
dx

ξ
= dy

η
= dS

dx

x− y
= dy

y − x
= dS (1)

The first two give
dy

dx
= η

ξ
= y − x

x− y
= −1

Hence
y = −x+ c1 (2)

Therefore

R = c1

= y + x
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To find S, since both ξ, η depend on both x, y, then dy
η
= dS or dx

ξ
= dS can be used.

Lets try both to show same answer results.

dy

η
= dS

dS = dy

y − x

But from (2), x = c1 − y. The above becomes

dS = dy

y − (c1 − y)

= dy

2y − c1

Hence
S = 1

2 ln (2y − c1)

But c1 = y + x. So the above becomes

S = 1
2 ln (2y − (y + x))

= 1
2 ln (y − x) (3)

Let us now try the other ode

dx

ξ
= dS

dS = dx

x− y

But from (2) y = −x+ c1. The above becomes

dS = dx

x− (−x+ c1)

= dx

2x− c1

Therefore
S = 1

2 ln (2x− c1)

But c1 = y + x. Therefore

S = 1
2 ln (2x− (y + x))

= 1
2 ln (x− y) (4)
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The constant of integration is set to zero when finding S. What is left is to find dS
dR
.

This is given by
dS

dR
= Sx + Syω

Rx +Ryω
(5)

But, and using (4) for S we have

Rx = 1
Ry = 1

Sx = −1
y − x

Sy =
1

y − x

Hence (2) becomes

dS

dR
=

−1
y−x

+ 1
y−x

ω

1 + ω

=
−ω−1

x−y

1 + ω

= 1− ω

(1 + ω) (x− y)

=
1−

(
1−y2+x2

1+y2−x2

)
(
1 +

(
1−y2+x2

1+y2−x2

))
(x− y)

= −x− y

= −(x+ y)
= −R

Hence

dS

dR
= −R

S = −R
2

2

Converting back to x, y gives

ln (y − x) = −(y + x)2

2
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1.2.22.31 Example y′ = −1
4xe

−2y + 1
4

√
(e−2y)2 x2 + 4e−2y

y′ = −1
4xe

−2y + 1
4

√
(e−2y)2 x2 + 4e−2y

= ω(x, y)

Using anstaz’s it is found that

ξ = x

η = 1

Hence

dx

ξ
= dy

η
= dS

dx

x
= dy = dS (1)

The first two give
dy

dx
= 1
x

Hence
y = ln x+ c1

Therefore

R = c1

= y − ln x

And S is found from either dy
η

= dS or dx
ξ

= dS. Since η = 1, it is simpler to use
dy
η
= dS instead.

dy

η
= dS

dy = dS

S = y

Where constant of integration is set to zero. What is left is to find dS
dR

. This is given by

dS

dR
= Sx + Syω

Rx +Ryω
(2)
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But

Rx = −1
x

Ry = 1
Sx = 0
Sy = 1

Hence (2) becomes

dS

dR
= ω

− 1
x
+ ω

= 1
− 1

xω
+ 1

= 1
1− 1

x

(
− 1

4xe
−2y+ 1

4

√
(e−2y)2x2+4e−2y

)

But y = R + ln x. The above becomes

dS

dR
= 1

1− 1

x

(
− 1

4xe
−2(R+ln x)+ 1

4

√(
e−2(R+ln x))2x2+4e−2R+ln x

)

= 1
1− 1

x
(
− 1

4
xe−2R

x2 + 1
4

1
x

√
e−4R+4e−2R

)
= 1

1− 1(
− 1

4 e
−2R+ 1

4

√
e−4R+4e−2R

)
Integrating gives

S =

√
1+4e2R
e4R

e2R arctanh
(

1√
1+4e2R

)
√
1 + 4e2R

Converting back to x, y gives

y =

√
1+4e2(y−ln x)

e4(y−ln x) e2(y−lnx) arctanh
(

1√
1+4e2(y−ln x)

)
√
1 + 4e2(y−lnx)

1.2.22.32 Example y′ = y−xf
(
x2+ay2

)
x+ayf(x2+ay2)

y′ = y − xf(x2 + ay2)
x+ ayf (x2 + ay2)

= ω(x, y)
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Using anstaz’s it is found that

ξ = −ay
η = x

Hence

dx

ξ
= dy

η
= dS

dx

−ay
= dy

x
= dS (1)

The first two give
dy

dx
= x

−ay
This is separable. Solving gives (taking one root)

y =
√
a (ac1 − x2)

a

Solving for c1 gives
c1 =

x2 + ay2

a

Hence
R = x2 + ay2

a

S is found from either dy
η
= dS or dx

ξ
= dS. Using dx

−ay
= dS then

dx

−ay
= dS

But y =
√

a(ac1−x2)
a

. Hence

dx

−a
√

a(ac1−x2)
a

= dS

dx

−
√
a (ac1 − x2)

= dS

− 1√
a
arctan

( √
ax√

c1a2 − x2a

)
= S

− 1√
a
arctan

(√
ax

ay

)
= S



chapter 1 . f irst order ode 192

Where constant of integration is set to zero. What is left is to find dS
dR

. This is given by

dS

dR
= Sx + Syω

Rx +Ryω
(2)

But

Rx = 2x
a

Ry = 2y

Sx = − y

x2y2 + a

Sy = − x

a
(
1 + x2y2

a

)
Hence (2) becomes

dS

dR
=

− y
x2y2+a

+
(
− x

a
(
1+x2y2

a

)
)
ω

2x
a
+ 2yω

But R = x2+ay2

a
. The above becomes

dS

dR
=

− y
aR

+
(
− x

a
(
1+x2y2

a

)
)
ω

2x
a
+ 2yω

To finish. Another hard part of this Lie method is to convert back dS
dR

= Sx+Syω
Rx+Ryω

so
that the RHS is only a function of R. Need to find a robust way to do this. This is now
a weak point in my program as I have few ode’s that it can’t do it

1.2.22.33 Alternative form for the similarity condition PDE

This section shows how to obtain eq. (8) in paper "Computer Algebra Solving of First
Order ODEs Using Symmetry Methods" 1996 by Durate, Terrab, Mota. Which is an
alternative equation to solve instead of the main Lie condition for symmetry we were
looking at above.

Starting with the main linearized symmetry pde

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

Assuming anstaz
η = ξω + χ (A)
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Hence

ηx = ξxω + ξωx + χx

ηy = ξyω + ξωy + χy

Then (14) becomes

(ξxω + ξωx + χx) + ω((ξyω + ξωy + χy)− ξx)− ω2ξy − ωxξ − ωy(ξω + χ) = 0
ξxω + ξωx + χx + ξyω

2 + ξωyω + χyω − ωξx − ω2ξy − ωxξ − ξωωy − ωyχ = 0
ξxω + χx + ξyω

2 + ξωyω + χyω − ωξx − ω2ξy − ξωωy − ωyχ = 0
χx + ξyω

2 + ξωyω + χyω − ω2ξy − ξωωy − ωyχ = 0
χx + ξωyω + χyω − ξωωy − ωyχ = 0

Or
χx + χyω − ωyχ = 0 (1)

And hence (1) is now solved for χ(x, y). If we are able to find χ then we can use the
anstaz η = ξω + χ. This leaves only one unknown ξ. The paper does not explain how
to solve for this, ξ, which I assume is by using (14) again. The paper only said

The knowledge of χ, in turn, allows one to set ξ and η as desired using (A)

Which is not too clear how in practice this is done. I need to work an example showing
this. The paper says that (1) is solved for χ(x, y) by using bivariate polynomial anstaz.
The degree can be set by a user, or Maple internally determines this.

1.3 First order nonlinear in derivative F (x, y, p) = 0
1.3.1 Introduction and algorithm flow charts . . . . . . . . . . . . . . . . . . . 194
1.3.2 Algorithm diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
1.3.3 Solved examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
1.3.4 references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
1.3.5 Special case. (y′)

n
m = f(x) g(y) . . . . . . . . . . . . . . . . . . . . . . . 223

1.3.6 Special case. (y′)
n
m = ax+ by + c . . . . . . . . . . . . . . . . . . . . . . 229



1.3.1 Introduction and algorithm flow charts
This gives an overview on solving first order ode where y′ enters the ode as nonlinear.
Examples are x(y′)2 + yy′ + x = 0 or 2y′x− y + ln y′ = 0 and so on. Four general cases
exist and these are summarized in the flow chart at the end of this section. Two of these
cases are called the Clairaut ode and the d’Alembert ode. Following the flow chart, a
number of examples are solved.

Given the ode F (x, y, y′) = 0, we start by writing y′ = p which results in

F (x, y, p) = 0

This is the top level algorithm
function solve_first_order_ode_nonlinear_p(F (x, y, p))

Where p = y′ and the ode is non-linear in p. An example is x(y′)2− yy′ = −1 and

y = x

(
y′ + a

√
1 + (y′)2

)
if degree of p an integer in F (x, y, p) then

As an example p2x+yp+y = 0 and it is possible to find the roots (i.e.
solve for p) then let the roots be pi and each generated ode is solved
as a first order ode which is now linear in each in y′i. So we need to
solve y′i = f(x, y) for each root.

else if we can solve for x from F (x, y, p) then
This is currently not implemented.
Let x = φ(y, p) then differentiating w.r.t. y gives

dx

dy
= ∂φ

∂y
+ ∂φ

∂p

dp

dy
1
p
= ∂φ

∂y
+ ∂φ

∂p

dp

dy
(1)

Solving (1) for p from the above and substituting the result in
x = φ(y, p) gives the solution.

else
CALL clairaut_dAlembert_solver(F (x, y, p))

end if
end function

Algorithm below is Clairaut dAlembert solver algorithm
function clairaut_dalembert_solver(F (x, y, p))

Solve for y and write the ode as (where p = y′)
y = xf(p) + g(p) (1)



where f(p) 6= 0
if f(p) = p then . Example y = xp+ g(p)

if g(p) = 0 then . Example y = xp

return as this is neither Clairaut nor d’Alembert.
else if g(p) is linear in p then . Example y = xp+ p

return as this is neither Clairaut nor d’Alembert.
else . Example y = xp+ p2 or y = xp+ sin(p)

This is a Clairaut ode. Taking the derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

where g′ is the derivative of g(p) w.r.t. p. The general solution is

dp

dx
= 0 p = c1

where c1 is constant. Substituting p = c1 the in (1) gives the general solution yg
The singular solution ys is now found from solving the ode (x+ g′(p)) = 0 for p
and substituting the solution pi back in (1).
return yg, ys

end if
else

CALL dalembert_solver(F (x, y, p))
end if

end function
Algorithm below is just the dAlembert solver algorithm

function dalembert_solver(F (x, y, p))
Write the ode as (where p = y′)

y = xf(p) + g(p) (1)
where f(p) 6= 0. Note that We get here when f(p) 6= p else it is
Clairaut.
if g(p) = 0 then . Example y = xf(p)

f(p) must be nonlinear in p but can not be the special case p 1
n where

n integer because then it is separable.
if f(p) = p

1
n and n ∈ Z then . Ex. y = x(y′) 1

2
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return as this is not dAlmbert ode.
end if

else
In this case any form of f(p) is OK even f(p) = p

1
n with n integer

except ofcourse f(p) = p since this would have made it Clairaut and
not dAlembert. Example is y = xf(p) + p is dAlembert.
if g(p) is constant and does not depend on p then . Ex. y = xf(p) + 1

return as this is not dAlmbert ode.
else

if g(p) = f(p) then
if g(p), f(p) have the form p

1
n with n integer then . Ex. y = xp

1
2 + p 1

2

return as this is not dAlmbert ode.
else . Ex. y = xp

2
3 + p

2
3 or y = xp2 + p2

This is dAlmbert ode.
end if

end if
end if

end if
When we get here then (1) is dAlmbert ode. Note that all the above
cases f(p), g(p) can not be function of x in any case. Now we solve (1)
using dAlmbert algorithm. Taking derivative of (1) w.r.t. x gives

p = d

dx
(xf + g)

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
where f ′ means df

dp
and g′ means dg

dp
. The above becomes

p = f + (xf ′ + g′) dp
dx

p− f = (xf ′ + g′) dp
dx

(2)

The singular solution is given when dp
dx

= 0 above. Hence

p− f = 0
Solving the above for p and substituting the result back in (1) gives
the singular solution ys. The general solution yg is found by solving
the ode in (2) for p and substituting the result in (1). there are two
cases to consider.
if ode (2) is separable or linear in p as is then
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Solve (2) for p directly and substitute the solution in (1). This gives
the general solution yg.

else
Inverting (2) first gives

dx

dp
= xf ′ + g′

p− f
Which makes it linear ode in x. This is solved for x(p) as function of
p. Let

x = h(p) + c1 (3)
be the solution. Now two possible cases exist
if able to isolate p from (3) then

Substitute p in (1). This gives the general solution yg.
else

Solve for p from (1) and substitute the result in (3). This gives an
implicit solution for yg instead of explicit one.

end if
end if

end function

1.3.2 Algorithm diagram
The following is the flow chart.



chapter 1 . f irst order ode 198

Not linear in y′. dy
dx is replaced by p. The ode now has the form F (x, y, p) = 0.

An example is (y′)2 + (x+ y)y′ + xy = 0 and 2y′x− y + ln y′ = 0

is f(x, y, p) = 0 an ode of n degree where n is integer? i.e. an algebraic in p?
For example p2x+ yp+ y = 0

yes

If are able to solve for p
from f(x, y, p) = 0 then
solve each generated
equation as an ode of
degree one. Let roots be
pi, then solve each ode
y′ = pi = fi(x, y) where
i = 1, 2, . . . , n. This can
be done easily now as
degree is one.

no

Solve for y from f(x, y, p) = 0 then

y = φ(x, p) (1)

Differentiating (1) w.r.t. x gives

p = ∂φ

∂x
+ ∂φ

∂p

dp

dx
(2)

∂φ
∂x = p

ODE (2) becomes

p = p+ ∂φ

∂p

dp

dx

0 = ∂φ

∂p

dp

dx

Clairaut ODE

General solution Singular solution

dp

dx
= 0

p = c

Substituting this in
(1) gives the general
solution

y = φ(x, c)

∂φ

∂p
= 0

Solving for p from the
above equation
(algebraic) and
substituting the result
in (1) gives the
singular solution. Let
the solution be pi,
therefore the singular
solution is

y = φ(x, pi)

∂φ
∂x ̸= p

Expanding ODE (2) results in an ode in p of
the form

Q(p) = G(x, p)dp
dx

d’Alembert ODE

General solution Singular solution

General solution found by solving for p
from

Q(p) = G(x, p)dp
dx

This can be done by solving for p
directly from the above first order ode
for p if the above ode turns out simple
one (linear, separable), if not then
invert the above to become

dp

dx
= Q(p)

G(x, p)
dx

dp
= G(x, p

Q(p)

And solve for x(p) to obtain solution

x(p) = R(p) + c (3)

Eliminating p from (1) and (3) gives
the general solution for y

Let dp
dx = 0 then the singular

solution is found by solving for
p from Q(p) = 0. Let the
solution be pi. Hence singular
solution is given by substituting
this in in (1) which gives

y = φ(x, pi)

Similar to flow chart on left. But instead of solving
for y, we solve for x. then let

x = φ(y, p) (1)

Differentiating (1) w.r.t. y gives

dx

dy
= ∂φ

∂y
+ ∂φ

∂p

dp

dy

1
p
= ∂φ

∂y
+ ∂φ

∂p

dp

dy
(2)

Solving (2) for p and substituting the result in (1)
gives the solution for y

Nasser M. Abbasi, Nov 26, 2022. non_linear_first_order_ode.ipe

Figure 1.14: Algorithm for solving first order ode with nonlinear y′
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1.3.3 Solved examples

# original ode y = xf(p) + g(p) f(p) g(p) type

1 x(y′)2 − yy′ = −1 y = xp+ 1
p p 1

p Clairaut

2 y = xy′ − (y′)2 y = xp− p2 p −p2 Clairaut

3 y = xy′ − 1
4 (y

′)2 y = xp− 1
4p

2 p − 1
4p

2 Clairaut

4 y = x(y′)2 y = xp2 p2 0 d’Alembert

5 y = x+ (y′)2 y = x+ p2 1 p2 d’Alembert

6 (y′)2 − 1− x− y = 0 y = −x+
(
p2 − 1

)
−1

(
p2 − 1

)
d’Alembert

7 yy′ − (y′)2 = x y = 1
px+ p 1

p p d’Alembert

8 y = x(y′)2 + (y′)2 y = xp2 + p2 p2 p2 d’Alembert

9 y = x
ay

′ + b
ay′ y = x

ap+
b
ap

−1 p
a

b
ap

−1 d’Alembert

10 y = x

(
y′ + a

√
1 + (y′)2

)
y = x

(
p+ a

√
1 + p2

)
p+ a

√
1 + p2 0 d’Alembert

11 y = x+ (y′)2
(
1− 2

3y
′) y = x+ p2

(
1− 2

3p
)

1 p2
(
1− 2

3p
)

d’Alembert

12 y = 2x− 1
2 ln

( (
y′)2
y′−1

)
y = 2x− 1

2 ln
(

p2

p−1

)
2 − 1

2 ln
(

p2

p−1

)
d’Alembert

13 (y′)2 − x(y′)2 + y(1 + y′)− xy′ = 0 y = xp+xp2−p2

p+1 = xp− p2

p+1 p − p2

p+1 Clairaut

14 x(y′)2 + (x− y) y′ + 1− y = 0 y = xp+ 1
1+p p 1

1+p Clairaut

15 xyy′ = y2 + x
√

4x2 + y2 y = RootOf (h(p))x RootOf (h(p)) 0 d’Alembert
16 ln (cos y′) + y′ tan y′ = y y = ln (cos y′) + y′ tan y′ 0 ln (cos p) + p tan p d’Alembert

1.3.3.1 Example 1

x(y′)2− yy′ = −1, is put in normal form (by replacing y′ with p) and solving for y gives

y = xp+ 1
p

(1)

= xf(p) + g(p)

Where f(p) = p and g(p) = 1
p
. Since f(p) = p then this is Clairaut ode. Taking

derivative of the above w.r.t. x gives

p = d

dx
(xp+ g(p))

p = p+ (x+ g′(p)) dp
dx

0 = (x+ g′(p)) dp
dx
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The general solution is given by
dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution

y = c1x+
1
c1

The term (x+ g′(p)) = 0 is used to find singular solutions.

x+ g′(p) = x+ d

dp

1
p

= x− 1
p2

Hence x− 1
p2

= 0 or p = ± 1√
x
. Substituting these back in (1) gives

y1(x) = xp+ 1
p

= x
1√
x
+
√
x

= 2
√
x (3)

y2(x) = −x
√

1
x
−

√
x

= −2
√
x (4)

Eq. (2) is the general solution and (3,4) are the singular solutions.

1.3.3.2 Example 2

y = xy′ − (y′)2 is put in normal form (by replacing y′ with p) and solving for y gives

y = xp− p2 (1)
= xf(p) + g(p)

Where f(p) = p and g(p) = −p2. Taking derivative of the above w.r.t. x gives

p = d

dx
(xp+ g(p))

p = p+ (x+ g′(p)) dp
dx

0 = (x+ g′(p)) dp
dx
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The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution

y = c1x− c21

The term (x+ g′(p)) = 0 is used to find singular solutions.

x+ g′(p) = x+ d

dp

(
−p2

)
= x+ 2p

Hence x+ 2p = 0 or p = x
2 . Substituting this back in (1) gives

y(x) = x2

2 − x2

4

= x2

4 (3)

Eq. (2) is the general solution and (3) is the singular solution.

1.3.3.3 Example 3

y = xy′ − 1
4(y

′)2 is put in normal form (by replacing y′ with p) and solving for y gives

y = xp− 1
4p

2 (1)

= xf(p) + g(p)

Where f(p) = p and g(p) = −1
4p

2. Taking derivative of the above w.r.t. x gives

p = d

dx
(xp+ g(p))

p = p+ (x+ g′(p)) dp
dx

0 = (x+ g′(p)) dp
dx

The general solution is given by

dp

dx
= 0

p = c1
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Substituting this in (1) gives the general solution

y = c1x−
1
4c

2
1

The term (x+ g′(p)) = 0 is used to find singular solutions.

x+ g′(p) = x+ d

dp

(
−1
4p

2
)

= x− 1
2p

Hence x− 1
2p = 0 or p = 2x. Substituting this back in (1) gives

y(x) = 2x2 − x2

= x2 (3)

Eq. (2) is the general solution and (3) is the singular solution.

1.3.3.4 Example 4

y = x(y′)2 is put in normal form (by replacing y′ with p) and solving for y gives

y = xp2 (1)
= xf(p)

This is the case when f(p) = p2 and g(p) = 0. Writing f ≡ f(p) and g ≡ g(p) to make
notation simpler but remembering that f is function of p(x) which in turn is function
of x. Same for g(p).

y = xf

Taking derivative of the above w.r.t. x gives

p = d

dx
(xf)

p = f + xf ′ dp

dx

p− f = xf ′ dp

dx

Since f = p2 then the above becomes

p− p2 = 2xpdp
dx

(2)
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The singular solution is given when dp
dx

= 0 or p − p2 = 0. This gives p = 0 or p = 1.
Substituting these values of p in (1) gives singular solutions

ys1 = 0 (3)
ys2 = x (4)

General solution is found when dp
dx

6= 0 . Eq(2) is a first order ode in p. Now we could
either solve ode (2) directly as it is for p(x), or do an inversion and solve for x(p). We
always try the first option first. Since (2) is separable as is, no need to do an inversion.
Eq (2) is separable. The solution is

p1 = 0

p2 = 1 + c1√
x

For each p, there is a general solution. Substituting each of the above in (1) gives

y1(x) = 0

y2(x) = x

(
1 + c1√

x

)2

Hence the final solutions are

y = x (singular)
y = 0

y = x

(
1 + c1√

x

)2

But y = x can be obtained from the general solution when c1 = 0. Hence it is removed.
Therefore the final solutions are

y = 0 (6)

y = x

(
1 + c1√

x

)2

(7)

What will happen if we had done an inversion to x(p)? Let us find out. ode(5) now
becomes

p− p2

p

dx

dp
= 2x

dx

2x = p

p− p2
dp
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This is also separable in x. Solving this for x gives

x = c1

(p− 1)2

Solving for p from the above gives

p1 =
x+√

xc1
x

p2 =
x−√

xc1
x

Substituting each of the above in (1) gives

y1 = x

(
x+√

xc1
x

)2

=
(
x+√

xc1
)

x

2

y2 = x

(
x−√

xc1
x

)2

=
(
x−√

xc1
)

x

2

Now we see that singular solution y = x can be obtained from the above general
solutions from c1 = 0. But y = 0 can not. Hence the final solutions are

y = 0 (singular) (8)

y =
(
x+√

xc1
)

x

2

(9)

y =
(
x−√

xc1
)

x

2

(10)

All solutions (6,7,8,9,10) are correct and verified. Maple gives the solutions given in
(8,9,10) and not those in (6,7).

1.3.3.5 Example 5

y = x+ (y′)2 is put in normal form (by replacing y′ with p) which gives

y = x+ p2 (1)
= xf + g
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Hence f(p) = 1, g(p) = p2. Taking derivative w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

(2)

Using f = 1, g = p2 the above simplifies to

p− 1 = 2pdp
dx

(2A)

The singular solution is found by setting dp
dx

= 0 in (2) which results in p − f = 0 or
p− 1 = 0. Hence p = 1. Substituting these values of p in (1) gives singular solution as

y = x+ 1 (3)

General solution is found when dp
dx

6= 0 . Eq (2A) is a first order ode in p. Now we could
either solve ode (2) directly as it is for p(x), or do an inversion and solve for x(p). We
always try the first option first. Since (2) is separable as is, no need to do an inversion.
Solving (2) for p gives

p = LambertW
(
c1e

x
2−1)+ 1

Substituting this in (1) gives the general solution

y(x) = x+
(
LambertW

(
c1e

x
2−1)+ 1

)2 (4)

Note however that when c1 = 0 then the general solution becomes y(x) = x+ 1. Hence
(3) is a particular solution and not a singular solution. (4) is the only solution.

1.3.3.6 Example 6

(y′)2 − 1− x− y = 0 is put in normal form (by replacing y′ with p) which gives

y = −x+
(
p2 − 1

)
(1)

= xf + g

Hence f = −1, g(p) = (p2 − 1). Taking derivative w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

(2)
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Using f = −1, g = (p2 − 1) the above simplifies to

p+ 1 = 2pdp
dx

(2A)

The singular solution is found by setting dp
dx

= 0 which results in p = −1. Substituting
this in (1) gives singular solution as

y(x) = −x (3)

The general solution is found by finding p from (2A). No need here to do the inversion
as (2) is separable already. Solving (2) gives

p = −LambertW
(
−e−

x
2−1+ c2

2

)
− 1

= −LambertW
(
−c1e−

x
2−1)− 1

Substituting the above in (1) gives the general solution

y(x) = −x+
(
p2 − 1

)
y(x) = −x+

(
−LambertW

(
−c1e−

x
2−1)− 1

)2 − 1 (4)

Note however that when c1 = 0 then the general solution becomes y(x) = −x. Hence
(3) is a particular solution and not a singular solution. Solution (4) is therefore the only
solution.

1.3.3.7 Example 7

yy′ − (y′)2 = x is put in normal form (by replacing y′ with p) which gives

y = x+ p2

p
(1)

= 1
p
x+ p

= xf + g

Hence f = 1
p
, g(p) = p. Taking derivative w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx
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Using f = 1
p
, g = p the above simplifies to

p− 1
p
=
(
− x

p2
+ 1
)
dp

dx
(2A)

The singular solution is found by setting dp
dx

= 0 in (2) which results in Q(p) = 0 or
p− 1 = 0 or p = 1. Substituting these values in (1) gives the solutions

y1(x) = x+ 1 (3)

The general solution is found by finding p from (2A). Since (2A) is not linear and not
separable in p, then inversion is needed. Writing (2) as

dx

dp
=

1− x
p2

p− 1
p

= 1
p− p3

(
x− p2

)
Hence

dx

dp
+ x

p (p2 − 1) = p2

p (p2 − 1)
This is now linear ODE in x(p). The solution is

x =
p
√

(p− 1) (1 + p) ln
(
p+

√
p2 − 1

)
(1 + p) (p− 1) + c1

p√
(1 + p) (p− 1)

=
p
√
p2 − 1 ln

(
p+

√
p2 − 1

)
p2 − 1 + c1

p√
p2 − 1

(4)

Now we need to eliminate p from (1,4). From (1) since y = 1
p
x + p then solving for p

gives

p1 =
y

2 + 1
2
√
y2 − 4x

p2 =
y

2 − 1
2
√
y2 − 4x

Substituting each pi in (4) gives the general solution (implicit) in y(x). First solution is

x =

(
y
2 +

1
2
√
y2 − 4x

)√(
y
2 +

1
2
√
y2 − 4x

)2 − 1 ln
(

y
2 +

1
2
√
y2 − 4x+

√(
y
2 +

1
2
√
y2 − 4x

)2 − 1
)

(
y
2 +

1
2
√
y2 − 4x

)2 − 1
+c1

y
2 +

1
2
√
y2 − 4x√(

y
2 +

1
2
√
y2 − 4x

)2 − 1

And second solution is

x =

(
y
2 −

1
2
√
y2 − 4x

)√(
y
2 −

1
2
√
y2 − 4x

)2 − 1 ln
(

y
2 −

1
2
√
y2 − 4x+

√(
y
2 −

1
2
√
y2 − 4x

)2 − 1
)

(
y
2 −

1
2
√
y2 − 4x

)2 − 1
+c1

y
2 −

1
2
√
y2 − 4x√(

y
2 −

1
2
√
y2 − 4x

)2 − 1
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1.3.3.8 Example 8

y = x(y′)2 + (y′)2 is put in normal form (by replacing y′ with p) which gives

y = xp2 + p2 (1)
= xf + g

where f = p2, g = p2. Taking derivative and simplifying gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

Using values for f, g the above simplifies to

p− p2 = (2xp+ 2p) dp
dx

(2A)

The singular solution is found by setting dp
dx

= 0 which results in p = 0 or p = 1.
Substituting these values in (1) gives the singular solutions

y1(x) = 0 (3)
y2(x) = x+ 1 (4)

The general solution is found by finding p from (2A). Since (2A) is not linear in p, then
inversion is needed. Writing (A2) as

p(1− p)
2p (x+ 1) = dp

dx

Inverting gives

dx

dp
= 2(x+ 1)

(1− p)
dx

dp
− x

2
(1− p) = 2

(1− p)

This is now linear x(p). The solution is

x = C2

(p− 1)2
− 1
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Solving for p gives

C2

(p− 1)2
= x+ 1

(p− 1)2 = C2

x+ 1

(p− 1) = ± C√
x+ 1

p = 1± C√
x+ 1

Substituting the above in (1) gives the general solutions

y = (x+ 1) p2

Therefore

y(x) = (x+ 1)
(
1 + C√

x+ 1

)2

y(x) = (x+ 1)
(
1− C√

x+ 1

)2

The solution y1(x) = 0 found earlier can not be obtained from the above general
solution hence it is singular solution. But y2(x) = x + 1 can be obtained from the
general solution when C = 0. Hence there are only three solutions, they are

y1(x) = 0

y2(x) = (x+ 1)
(
1 + C√

x+ 1

)2

y3(x) = (x+ 1)
(
1− C√

x+ 1

)2

1.3.3.9 Example 9

y = x
a
y′ + b

ay′
is put in normal form (by replacing y′ with p) which gives

y = x

a
p+ b

a
p−1 (1)

= xf + g
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Where f = p
a
, g = b

a
p−1. Taking derivative w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

Using values for f, g the above simplifies to

p− p

a
=
(
x

a
− b

a
p−2
)
dp

dx
(2A)

The singular solution is found by setting dp
dx

= 0 which results in p = 0. Substi-
tuting this in (1) does not generate any solutions due to division by zero. Hence
no singular solution exist.

The general solution is found by finding p from (2A). Since (2A) is not linear in p, then
inversion is needed. Writing (2A) as

p
(
1− 1

a

)
x
a
− b

a
p−2 = dp

dx

Since this is nonlinear, then inversion is needed

dx

dp
=

x
a
− b

a
p−2

p
(
1− 1

a

)
dx

dp
− x

1
p (a− 1) = − b

a

1
p3
(
1− 1

a

)
This is now linear ode in x(p). The solution is

x = b

(2a− 1)p2 + C1p
1

a−1 (3)

There are now two choices to take. The first is by solving for p from the above in terms
of x and then substituting the result in (1) to obtain explicit solution for y(x), and the
second choice is by solving for p algebraically from (1) and substituting the result in
(3). The second choice is easier in this case but gives an implicit solution. Solving for p
from (1) gives

p1 =
ay +

√
a2y2 − 4xb
2x

p1 =
ay −

√
a2y2 − 4xb
2x
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Substituting each one of these solutions back in (3) gives two implicit solutions

x = b

(2a− 1)
(

ay+
√

a2y2−4xb
2x

)2 + C1

(
ay +

√
a2y2 − 4xb
2x

) 1
a−1

x = b

(2a− 1)
(

ay−
√

a2y2−4xb
2x

)2 + C1

(
ay −

√
a2y2 − 4xb
2x

) 1
a−1

1.3.3.10 Example 10

y = xy′ + ax
√

1 + (y′)2 is put in normal form (by replacing y′ with p) which gives

y = x
(
p+ a

√
1 + p2

)
(1)

= xf

where f = p+ a
√
1 + p2, g = 0. Taking derivative and simplifying gives

p =
(
f + xf ′ dp

dx

)
p− f = xf ′ dp

dx
Using values for f, g the above simplifies to

−a
√

1 + p2 = x

(
1 + ap√

1 + p2

)
dp

dx
(2A)

The singular solution is found by setting dp
dx

= 0 which results in −a
√
1 + p2 = 0. This

gives no real solution for p. Hence no singular solution exists.

The general solution is when dp
dx

6= 0 in (2A). Since (2A) is nonlinear, inversion is
needed.

−a
√
1 + p2

x+ 1
2x

2ap√
1+p2

= dp

dx

dx

dp
=
x
(
1 + 1

2
2ap√
1+p2

)
−a

√
1 + p2

dx

x
=

1 + 1
2

2ap√
1+p2

−a
√
1 + p2

dp

dx

x
=

√
1 + p2 + 1

22ap
−a (1 + p2) dp

dx

x
=
(
− 1
a
√
1 + p2

− p

(1 + p2)

)
dp
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Integrating gives
ln x(p) = −1

2 ln
(
p2 + 1

)
− 1
a
arcsinh (p)

Therefore
x = c1

−e− 1
a
(arcsinh(p))

√
p2 + 1

(3)

There are now two choices to take. The first is by solving for p from the above in terms
of x and substituting the result in (1) to obtain explicit solution for y(x), and the
second choice is by solving for p algebraically from (1) and substituting the result in
(3). The second choice is easier in this case but gives an implicit solution. Solving for p
from (1) gives

p1 = −1
x

ay +
√
−a2x2 + x2 + y2a− y

a2 − 1

p2 =
1
x

−ay +
√
−a2x2 + x2 + y2a− y

a2 − 1
Substituting each one of these solutions back in (3) gives two implicit solutions

x = c1
−e

− 1
a

(
arcsinh

(
− 1

x

ay+
√

−a2x2+x2+y2a−y

a2−1

))
√(

− 1
x
ay+

√
−a2x2+x2+y2a−y

a2−1

)2
+ 1

x = c1
−e

− 1
a

(
arcsinh

(
1
x

−ay+
√

−a2x2+x2+y2a−y

a2−1

))
√(

1
x
−ay+

√
−a2x2+x2+y2a−y

a2−1

)2
+ 1

1.3.3.11 Example 11

y = x+ (y′)2
(
1− 2

3y
′
)

= x+ p2
(
1− 2

3p
)

Where f = 1, g = p2
(
1− 2

3p
)
. Taking derivative w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx
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Using values for f, g the above simplifies to

p− 1 =
(
2p− 2p2

) dp
dx

(2A)

The singular solution is when dp
dx

= 0 which results in p = 1. Substituting this in (1)
gives

y = x−
(
1− 2

3

)
= x+ 1

3
The general solution is when dp

dx
6= 0. Then (2A) is now separable. Solving for p gives

p = −
√
c1 − x

p =
√
c1 − x

Substituting each one of the above solutions of p in (1) gives

y1 = x+
(
p2 − 2

3p
3
)

= x+
((

−
√
c1 − x

)2 − 2
3
(
−
√
c1 − x

)3)
= x+

(
c1 − x+ 2

3(c1 − x)
3
2

)
= c1 +

2
3(c1 − x)

3
2

And

y2 = x+
(
p2 − 2

3p
3
)

= x+
((√

c1 − x
)2 − 2

3
(√

c1 − x
)3)

= x+
(
c1 − x− 2

3(c1 − x)
3
2

)
= c1 −

2
3(c1 − x)

3
2

Therefore the solutions are

y = x+ 1
3

y = c1 +
2
3(c1 − x)

3
2

y = c1 −
2
3(c1 − x)

3
2
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1.3.3.12 Example 12

(y′)2 = e4x−2y(y′ − 1)
ln (y′)2 = (4x− 2y) + ln (y′ − 1)
4x− 2y = ln (y′)2 − ln (y′ − 1)

4x− 2y = ln (y′)2

y′ − 1

2y = 4x− ln (y′)2

y′ − 1

y = 2x− 1
2 ln

(
(y′)2

y′ − 1

)

= 2x− 1
2 ln

(
p2

p− 1

)
= xf + g

Where f = 2, g = −1
2 ln

(
p2

p−1

)
. Taking derivative w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

Using values for f, g the above simplifies to

p− 2 =
(

2− p

2p2 − 2p

)
dp

dx
(2A)

The singular solution is when dp
dx

= 0 which gives p = 2. From (1) this gives

y = 2x− 1
2 ln 4

The general solution is when dp
dx

6= 0. Then (2) becomes

dp

dx
= (p− 2)

(
2p2 − 2p
2− p

)
= 2p(1− p)
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is now separable. Solving for p gives

p = 1
1 + ce−2x

Substituting the above solutions of p in (1) gives

y = 2x− 1
2 ln

( ( 1
1+ce−2x

)2
1

1+ce−2x − 1

)

= 2x− 1
2 ln

(
−e4x

c (c+ e2x)

)

1.3.3.13 Example 13

y = xy′ + x(y′)2 − (y′)2

y′ + 1

= xp+ xp2 − p2

p+ 1

= xp− p2

p+ 1 (1)

= xf + g

Where f = p and g = − p2

p+1 . Since f(p) = p then this is Clairaut ode. Taking derivative
of the above w.r.t. x gives

p = d

dx
(xp+ g(p))

p = p+ (x+ g′(p)) dp
dx

0 = (x+ g′(p)) dp
dx

The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution

y = xc1 −
c21

c1 + 1
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The term (x+ g′(p)) = 0 is used to find singular solutions.

x+ g′(p) = x+ d

dp

1
p

= x− 1
p2

Hence x− 1
p2

= 0 or p = ± 1√
x
. Substituting these back in (1) gives

y1(x) = xp+ 1
p

= x
1√
x
+
√
x

= 2
√
x (3)

y2(x) = −x
√

1
x
−

√
x

= −2
√
x (4)

Eq. (2) is the general solution and (3,4) are the singular solutions.

1.3.3.14 Example 14

x(y′)2 + (x− y) y′ + 1− y = 0
x(y′)2 + xy′ − yy′ + 1− y = 0

y(−y′ − 1) + x(y′)2 + xy′ + 1 = 0

Solving for y

y = −x(y′)2 − xy′ − 1
−y′ − 1

= −xp2 − xp− 1
−p− 1

= xp2 + xp+ 1
p+ 1

= x

(
p2 + p

p+ 1

)
+ 1

1 + p

= xp+ 1
1 + p

= xf + g (1)
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Where f = p and g = 1
1+p

. Taking derivative of the above w.r.t. x gives

p = d

dx
(xp+ g(p))

p = p+ (x+ g′(p)) dp
dx

0 = (x+ g′(p)) dp
dx

The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution

y = c1x+
1

c1 + 1 (4)

The term (x+ g′(p)) = 0 is used to find singular solutions. But

x+ g′(p) = x+ d

dp

(
1

1 + p

)
= x− 1

(p+ 1)2

Hence

x− 1
(p+ 1)2

= 0

x(p+ 1)2 − 1 = 0

(p+ 1)2 = 1
x

p+ 1 = ± 1√
x

p = ± 1√
x
− 1
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Substituting these values into (1) gives

y1 = xp1 +
1

1 + p1

= x

(
1√
x
− 1
)
+ 1

1 +
(

1√
x
− 1
)

= x√
x
− x+

√
x

= x
√
x

x
− x+

√
x

= 2
√
x− x (5)

And substituting p2 into (1) gives

y1 = xp1 +
1

1 + p1

= x

(
− 1√

x
− 1
)
+ 1

1 +
(
− 1√

x
− 1
)

= − x√
x
− x−

√
x

= −x
√
x

x
− x−

√
x

= −2
√
x− x (6)

There are 3 solutions given in (4,5,6). One is general and two are singular.

1.3.3.15 Example 15

xyy′ = y2 + x
√
4x2 + y2

Solving for y gives

y=RootOf
(
_z4 − 4 +

(
p2 − 1

)
_z2 − 2_z3p

)
x

y = xf + g

Where f = RootOf (_z4 − 4 + (p2 − 1)_z2 − 2_z3p) and g = 0. Taking derivative of
the above w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + xf ′ dp

dx

p− f = xf ′ dp

dx
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Using values for f the above simplifies to

p−RootOf
(
_z4 − 4 +

(
p2 − 1

)
_z2 − 2_z3p

)
=
(
x
d

dp
RootOf

(
_z4 − 4 +

(
p2 − 1

)
_z2 − 2_z3p

)) dp

dx
(2A)

The singular solution is found by setting dp
dx

= 0 which results in p = RootOf (_z4 − 4 + (p2 − 1)_z2 − 2_z3p).
Substituting this in (1) does not generate any real solutions (only 2 complex ones) hence
will not be used.

The general solution is found by finding p from (2A). Since (2A) is not linear in p, then
inversion is needed. Writing (2A) as

dx

dp
= xf

p− f
1
x
dx = f

p− f
dp

Due to complexity of result, one now needs to obtain explicit result for RootOf which
makes the computation very complicated. So this is not practical to solve by hand. Will
stop here. It is much easier to solve this ode as a homogeneous ode instead which gives
the solution as

−
√
4x2 + y2

x
+ ln (x) = c1

1.3.3.16 Example 16

ln (cos y′) + y′ tan y′ = y

Solving for y gives

y = ln (cos p) + p tan p (1)
y = xf + g

= g (1A)

Where f = 0 and g(p) = ln (cos p)+p tan p. Important note: This ode has f = 0 which is
strictly speaking is not of the form y = xf(p)+ g(p). But Maple says this is dAlembert.
This is why it is included. I should make special case dAlmbert classification to handle
this special case.
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Taking derivative of (1A) w.r.t. x gives

p = dg

dp

dp

dx

p =
(
− sin p
cos p + tan p+ p

(
1 + tan2 p

)) dp

dx

p =
(
− tan p+ tan p+ p

(
1 + tan2 p

)) dp
dx

p = p
(
1 + tan2 p

) dp
dx

1 =
(
1 + tan2 p

) dp
dx

(1.1)

The singular solution is found by setting dp
dx

= 0 which does not result in solution.

The general solution is found by finding p from (2). Since (2) is not linear in p, then
inversion is needed. Writing (1) as

dx

dp
= 1 + tan2 p

dx =
(
1 + tan2 p

)
dp

Integrating gives

x = tan p+ c

p = arctan (x− c)

Substituting the above in (1) gives the solution

y = ln (cos p) + p tan p
= ln (cos (arctan (x− c))) + (arctan (x− c)) tan (arctan (x− c))
= ln (cos (arctan (x− c))) + (x− c) arctan (x− c)

This ode also have solution y = 0.

1.3.3.17 Extra example

This ode is an example where y does not appear explicitly in the ode so not possible
to directly solve for y. It is given here to show possible problems with this method.

y′ =
√

1 + x+ y (1A)

This ode is squared to first solve for y which gives

(y′)2 = 1 + x+ y (2A)
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However, here care is needed. To get back to original ode (1A) then (2A) means two
possible equations

y′ = ±
√
1 + x+ y

Hence the solutions obtained using (2A) can be the solution to one of these

y′ = +
√
1 + x+ y (B1)

y′ = −
√
1 + x+ y (B2)

Therefore the solution obtained by squaring both sides of (1A), which is done in order
to solve for y, must be checked to see if it satisfies the original ode, else it will be
extraneous solution resulting from squaring both sides of the ode.

Starting from (2A), in normal form (by replacing y′ with p) it becomes

y = −x− 1 + p2 (1)
= xf + g

Where f = −1, g = −1 + p2. Taking derivative w.r.t. x gives

p = f + (xf ′ + g′) dp
dx

p+ 1 = 2pdp
dx

(2)

Since ∂φ
∂x

= −1 6= p then this is d’Alembert ode. The singular solution is found by
setting dp

dx
= 0 which results in p = −1. Substituting this in (1) gives the singular

solution
y(x) = −x (3)

But this solution does not satisfy the ode, hence it is extraneous. The general solution
is found by finding p from (2). Since (2) is nonlinear, then it is inverted which gives

p+ 1
2p = dp

dx
dx

dp
= 2p
p+ 1

Which is linear in x. Solving gives

x = 2p− 2 ln (p+ 1) + c1 (4)

Instead of inverting this to find p in terms of x, p is found from (1) which gives

y + x+ 1 = p2

p = ±
√
y + x+ 1
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Substituting these solutions in (4) gives implicit solutions as

x = 2
√
y + x+ 1− 2 ln

(
1 +

√
y + x+ 1

)
+ c1

x = −2
√
y + x+ 1− 2 ln

(
1−

√
y + x+ 1

)
+ c1

But only the first one above satisfies the ode. The second is extraneous. Therefore the
final solution is

x = 2
√
y + x+ 1− 2 ln

(
1 +

√
y + x+ 1

)
+ c1

And no singular solutions exist. If instead of doing the above, p was found from (4)
using inversion, then it will be

p = −LambertW
(
−c1e

−x
2 −1

)
− 1

Substituting this in (1) gives

y = −x− 1 +
(
−LambertW

(
−c1e

−x
2 −1

)
− 1
)2

But this general solution does not satisfy the original ode. In general, it is best to avoid
squaring both side of the ode in order to solve for y as this can generate extraneous
solutions. Only use this method if the original ode is already given in the form where
y shows explicitly.

1.3.4 references
1. An elementary treatise on differential equations. By Abraham Cohen. 1906.

2. Applied differential equations, N Curle. 1972

3. Ordinary differential equations, LB Jones. 1976.

4. Elementary differential equations, William Martin, Eric Reissner. second edition.
1961.

5. Differentialgleichungen, by E. Kamke, page 30.

6. Differential and integral calculus by N. Piskunov, Vol II



chapter 1 . f irst order ode 223

1.3.5 Special case. (y′)
n
m = f(x) g(y)

ode internal name "first_order_nonlinear_p_but_separable"

For the special case of (y′)
n
m = F (x, y) where RHS is separable, i.e. F (x, y) = f(x) g(y)

then short cut method is described below. This only works if F (x, y) is separable and
if there is only one y′ in the equation. For example, it will not work on (y′)

3
2 + y′ = yx

and will not work on (y′)
3
2 = y + x (see second special case below for the form (y′)

n
m =

ax+ by + c)

If the form is (y′)
n
m = f(x) g(y) then we first write it as (y′)n = (f(x) g(y))m assuming

f(x) g(y) > 0. Then find roots on unity for n. For example of n = 2 this gives

y′ =

 (f(x) g(y))
m
2

−(f(x) g(y))
m
2

And if n = 3 then

y′ =


(f(x) g(y))

m
3

−(−1)
1
3 (f(x) g(y))

m
3

(−1)
2
3 (f(x) g(y))

m
3

And if n = 4 then

y′ =


(f(x) g(y))

m
4

−i(f(x) g(y))
m
4

i(f(x) g(y))
m
4

−(f(x) g(y))
m
4

And so on. For works for positive or negative n,m integers. Now the ode are solved
each as as separable. Examples given below.
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1.3.5.1 Example 1

(y′)4 + f(x) (y − a)3 (y − b)3 (y − c)2 = 0
(y′)4 = −f(x) (y − a)3 (y − b)3 (y − c)2

(y′)4

(y − a)3 (y − b)3 (y − c)2
= −f(x) y′(

(y − a)3 (y − b)3 (y − c)2
) 1

4

4

= −f(x)

y′(
(y − a)3 (y − b)3 (y − c)2

) 1
4
= (−f(x))

1
4

y′(
(y − a) (y − b) (y − c)

2
3

) 3
4
= (−f(x))

1
4

dy(
(y − a) (y − b) (y − c)

2
3

) 3
4
= (−f(x))

1
4 dx

∫ y(x) 1(
(z − a) (z − b) (z − c)

2
3

) 3
4
dz =

∫ x

(−f(τ))
1
4 dτ + c1

1.3.5.2 Example 2

(y′)3 = y sin x
(y′)3

y
= sin x(

y′

y
1
3

)3

= sin x
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Hence we have 3 solutions

y′

y
1
3
=


sin 1

3 x

−(−1)
1
3 sin 1

3 x

(−1)
2
3 sin 1

3 x

dy

y
1
3
=


sin 1

3 xdx

−(−1)
1
3 sin 1

3 xdx

(−1)
2
3 sin 1

3 xdx

∫
dy

y
1
3
=


∫
sin 1

3 xdx

−(−1)
1
3
∫
sin 1

3 xdx

(−1)
2
3
∫
sin 1

3 xdx

3
2y

2
3 =


∫
sin 1

3 xdx+ c1

−(−1)
1
3
∫
sin 1

3 xdx+ c1

(−1)
2
3
∫
sin 1

3 xdx+ c1

y
2
3 =


2
3

∫
sin 1

3 xdx+ c1

−2
3(−1)

1
3
∫
sin 1

3 xdx+ c1

2
3(−1)

2
3
∫
sin 1

3 xdx+ c1

y =



(
2
3

∫
sin 1

3 xdx+ c1
) 3

2

(
−2

3(−1)
1
3
∫
sin 1

3 xdx+ c1
) 3

2

(
2
3(−1)

2
3
∫
sin 1

3 xdx+ c1
) 3

2

1.3.5.3 Example 3

(y′)3 = yx

(y′)3

y
= x(

y′

y
1
3

)3

= x
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Hence we have 3 solutions

y′

y
1
3
=


x

1
3

−(−1)
1
3 x

1
3

(−1)
2
3 x

1
3

dy

y
1
3
=


x

1
3dx

−(−1)
1
3 x

1
3xdx

(−1)
2
3 x

1
3xdx

∫
dy

y
1
3
=


∫
x

1
3dx

−(−1)
1
3
∫
x

1
3dx

(−1)
2
3
∫
x

1
3dx

3
2y

2
3 =


3
4x

4
3 + c1

−(−1)
1
3

(
3
4x

4
3

)
+ c1

(−1)
2
3

(
3
4x

4
3

)
+ c1

y
2
3 =


1
2x

4
3 + c1

−(−1)
1
3

(
1
2x

4
3

)
+ c1

(−1)
2
3

(
1
2x

4
3

)
+ c1

y =



(
1
2x

4
3 + c1

) 3
2

(
−(−1)

1
3

(
1
2x

4
3

)
+ c1

) 3
2

(
(−1)

2
3

(
1
2x

4
3

)
+ c1

) 3
2
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1.3.5.4 Example 4

(y′)
1
3 = yx

For this form, we write y′ = (yx)3 but this is always with the assumption that yx > 0.

y′ = (yx)3

y′ = y3x3

dy

y3
= x3dx

− 1
2y2 = 1

4x
4 + c1

2y2 = −1
1
4x

4 + c1

y2 = 1
−1

2x
4 + c2

y =


√

1
− 1

2x
4+c2

−
√

1
− 1

2x
4+c2

=


√

2
−x4+c3

−
√

2
−x4+c3

=


√
2√

−x4+c3

−
√
2√

−x4+c3

1.3.5.5 Example 5

(y′)2 = 1− y2

1− x2

(y′)2

1− y2
= 1

1− x2(
y′

(1− y2)
1
2

)2

= 1
1− x2
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Hence we have 2 solutions

y′√
(1− y2)

=


√

1
1−x2

−
√

1
1−x2

∫
dy√

(1− y2)
=


∫ √ 1

1−x2dx

−
∫ √ 1

1−x2dx

=


∫ 1√

1−x2dx

−
∫ 1√

1−x2dx
− 1 < x < 1

arcsin (y) =
{

arcsin (x) + c

− arcsin (x) + c
− 1 < x < 1

y =
{

sin (arcsin (x) + c)
− sin (arcsin (x) + c)

− 1 < x < 1

1.3.5.6 Algorithm description to obtain the above solutions

Starting with
(y′)

n
m = f(x) g(y)

Find the solution z of equation
z

n
m = fg

This will obtain number of solutions. For example for n = 3,m = 1

z1 = (fg)
1
3

z2 = −1
2(fg)

1
3 + 1

2i
√
3(fg)

1
3

z3 = −1
2(fg)

1
3 − 1

2i
√
3(fg)

1
3

Now if we assume that f > 0, g > 0 then we can separate the f, g giving

z1 = f
1
3 g

1
3

z2 = −1
2f

1
3 g

1
3 + 1

2i
√
3f 1

3 g
1
3

z3 = −1
2f

1
3 g

1
3 − 1

2i
√
3f 1

3 g
1
3
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or

z1 = f
1
3 g

1
3

z2 = g
1
3

(
−1
2f

1
3 + 1

2i
√
3f 1

3

)
z3 = g

1
3

(
−1
2f

1
3 − 1

2i
√
3f 1

3

)
This means

y′ = f
1
3 g

1
3

y′ = g
1
3

(
−1
2f

1
3 + 1

2i
√
3f 1

3

)
y′ = g

1
3

(
−1
2f

1
3 − 1

2i
√
3f 1

3

)
Which gives ∫

dy

g (y)
1
3
=
∫
f(x)

1
3 dx+ c1∫

dy

g (y)
1
3
=
∫ (

−1
2f

1
3 + 1

2i
√
3f 1

3

)
dx+ c1∫

dy

g (y)
1
3
=
∫ (

−1
2f

1
3 − 1

2i
√
3f 1

3

)
dx+ c1

There is no need to evaluate the integrals unless needed. Without the assumption
f, g > 0 we could not separate them. Since (fg)

n
m = f

n
m g

n
m is true under this condition

when n
m

is rational number. If n
m

is an integer, then this condition is not needed and
we can always factor out f, g and separate them.

The assumption f, g > 0 might be too strict to use but without this assumption this
method can not be used.

1.3.6 Special case. (y′)
n
m = ax+ by + c

ode internal name "first_order_nonlinear_p_but_linear_in_x_y"

For the special case of (y′)
n
m = F (x, y) where RHS is linear in both x and y, i.e.

F (x, y) = ax+ by+ c then a short cut method is described below using transformation
u = ax+ by + c. This makes it separable in u. This will not work if there is nonlinear
x term, such as (y′)

n
m = by + x2 or nonlinear term in y such as (y′)

n
m = y2 + x.
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Taking derivatives gives u′ = a+ by′ or y′ = u′−a
b

and the ode becomes(
u′ − a

b

) n
m

= u(
u′ − a

b

)n

= um

Here we need to find roots of unity for n. For example, for n = 2 we have

u′ − a

b
=

 (u)
m
2

−(u)
m
2

And for n = 3

u′ − a

b
=


(u)

m
3

−(−1)
1
3 (u)

m
3

(−1)
2
3 (u)

m
3

And so on. From now on, this is solved as separable. For negative integer values n, we
just replaced n by −n in the above. For example, for n = 3

u′ − a

b
=


(u)

m
−3

−(−1)
1
3 (u)

m
−3

(−1)
2
3 (u)

m
−3

For symbolic values of n we can just leave the integral as is. For example for (y′)r =
ax+ by we obtain (

u′ − a

b

)r

= u

u′ − a

b
= u

1
r

u′ = bu
1
r + a∫

du

bu
1
r + a

=
∫
dx+ c1∫ ax+by(x) dz

bz
1
r + a

= x+ c1
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1.3.6.1 Example 1

(y′)3 = 2y + 3x+ 9

Let u = 2y + 3x+ 9 then u′ = 2y′ + 3 then y′ = u′−3
2 and the ode becomes(

u′ − 3
2

)3

= u

u′ − 3
2 =


(u)

1
3

−(−1)
1
3 (u)

1
3

(−1)
2
3 (u)

1
3

u′ − 3 =


2(u)

1
3

−2(−1)
1
3 (u)

1
3

2(−1)
2
3 (u)

1
3

u′ =


2(u)

1
3 + 3

−2(−1)
1
3 (u)

1
3 + 3

2(−1)
2
3 (u)

1
3 + 3

Each is now solved as separable.

u′ = 2(u)
1
3 + 3

du

2 (u)
1
3 + 3

= dx∫
du

2 (u)
1
3 + 3

=
∫
dx∫

du

2 (u)
1
3 + 3

= x+ c1

Hence ∫ 2y(x)+3x+9 dz

2z 1
3 + 3

= x+ c1
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For the second one u′ = −2(−1)
1
3 (u)

1
3 + 3 results in

du

−2 (−1)
1
3 (u)

1
3 + 3

= dx∫
du

−2 (−1)
1
3 (u)

1
3 + 3

=
∫
dx∫ 2y(x)+3x+9 dz

−2 (−1)
1
3 (z)

1
3 + 3

= x+ c1

And for the third ode u′ = 2(−1)
2
3 (u)

1
3 + 3

du

2 (−1)
2
3 (u)

1
3 + 3

= dx∫
du

2 (−1)
2
3 (u)

1
3 + 3

=
∫
dx∫ 2y(x)+3x+9 dz

2 (−1)
2
3 (z)

1
3 + 3

= x+ c1

Hence the three solutions are

∫ 2y(x)+3x+9 dz

2z
1
3+3

= x+ c1∫ 2y(x)+3x+9 dz

−2(−1)
1
3 (z)

1
3+3

= x+ c1∫ 2y(x)+3x+9 dz

2(−1)
2
3 (z)

1
3+3

= x+ c1

1.3.6.2 Example 2

(y′)
3
2 = 2y + 3x+ 9

Let u = 2y + 3x+ 9 then u′ = 2y′ + 3 then y′ = u′−3
2 and the ode becomes(

u′ − 3
2

) 3
2

= u((
u′ − 3

2

) 1
2
)3

= u
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Let
(
u′−3
2

) 1
2 = Y then

Y 3 = u

Y =


u

1
3

u
1
3

(
−1

2 +
i
√
3

2

) 1
3

u
1
3

(
−1

2 −
i
√
3

2

) 1
3

Hence

(
u′ − 3

2

) 1
2

=


u

1
3

u
1
3

(
−1

2 +
i
√
3

2

) 1
3

u
1
3

(
−1

2 −
i
√
3

2

) 1
3

(
u′ − 3

2

)
=


u

2
3

u
2
3

(
−1

2 +
i
√
3

2

) 2
3

u
2
3

(
−1

2 −
i
√
3

2

) 2
3

u′ =


2u 2

3 + 3

2u 2
3

(
−1

2 +
i
√
3

2

) 2
3 + 3

2u 2
3

(
−1

2 −
i
√
3

2

) 2
3 + 3

Each is solved as separable. 

∫
du

2u
2
3+3

=
∫
dx∫

du

2u
2
3
(
− 1

2+
i
√
3

2

) 2
3+3

=
∫
dx

∫
du

2u
2
3
(
− 1

2−
i
√
3

2

) 2
3+3

=
∫
dx
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Hence the three solutions are

∫ 2y(x)+3x+9 dz

2z
2
3+3

= x+ c1∫ 2y(x)+3x+9 dz

2z
2
3
(
− 1

2+
i
√
3

2

) 2
3+3

= x+ c1

∫ 2y(x)+3x+9 dz

2z
2
3
(
− 1

2−
i
√
3

2

) 2
3+3

= x+ c1

1.3.6.3 Algorithm description to obtain the above solutions

Starting with
(y′)

n
m = ax+ by + c

Find the solution z of equation
z

n
m = u

Where u now is a symbol. Lets say we found s1, s2, · · · solutions (depending on what
n,m are). Then for each solution si change it to be

si = bsi + a

Then write

∫
du

si
= x+ c1

Then replace each with letter u in each si by new letter say z (the integration variable).
Now the solution becomes ∫ ax+by+c dz

si
= x+ c1

This is basically what was done in the above examples. There is no need to find an
explicit solution for the integral. But this can be done if needed afterwords.
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1.4 System of first order ode’s
1.4.1 Linear system of first order ode’s . . . . . . . . . . . . . . . . . . . . . . 235
1.4.2 nonlinear system of first order ode’s . . . . . . . . . . . . . . . . . . . . 241

1.4.1 Linear system of first order ode’s
Currently the solver only supports first order system of odes, that are linear and not
time varying.

ode internal name "system of linear ODEs"

System of linear first order ode’s.

x′ = Ax+ F (x)

Solved using both eigenvalues and eigenvectors method and also the matrix exponential
method. Only linear ode’s are supported. The following flow chart show the algorithm
for two system of ode’s.

system of first order ODE’s

homogeneous system. (A constant)
x′ = Ax

nonhomogeneous system. (A constant)
x′ = Ax+G(t)

Find eigenvalues λ by
solving |A− λI| = 0

λ is real and repeated

Find first eigenvector
v1 by solving
(A− λ1I)v1 = 0

Is the eigenvalue λ1 complete? i.e. can
we find the second v2 from same
eigenvalue λ1? (in a 2× 2 system, this
will only happen when the two first
order equations are decoupled).
Hence, most of the time, the
eigenvalue will not be complete.

λ1 is complete (rare case)

Second eigenvector v2
is found by solving
from same eigenvalue
(A− λ1I)v2 = 0

λ1 is defective (common case)

Find first L.I. solution
x1 = v1e

λ1t

Find second L.I.
solution x2 = v2e

λ1t

Solve for v2 from
(A− λ1I)v2 = v1
Where v1 was found in
above step. This step
requires Gaussian
elimination.

Find second L.I. solution
x2 = (tv1 + v2) e

λ1t

xh = c1x1+c2x2

build homogeneous solution

x1

x1

x2

x2

λ1, λ2 are real and distinct λ1 = α+ iβ,
λ2 = α− iβ are
complex conjugatesFind first eigenvector

v1 by solving
(A− λ1I)v1 = 0

Find second eigenvector
v2 by solving
(A− λ2I)v2 = 0

x1 = v1e
λ1t

x2 = v2e
λ2t

xh = c1x1 + c2x2

build homogeneous solution

Find first eigenvector
v1 by solving
(A− λ1I)v1 = 0

Find second eigenvector v2
by solving (A− λ2I)v2 = 0

x1 = v1e
(α+iβ)t

x2 = v2e
(α−iβ)t

xh = c1x1 + c2x2

build homogeneous solution

convert to real basis

x1 = Re{x1}
x2 = Im{x1}
xh = c3x1 + c4x2

xh

First solve the homogeneous part to find x1 and x2

Only works if G(t) contains sums and
products of exponentials and/or
polynomials of degree ≥ 0 and A is
constant. Everything else, use
Variation of parameters.

Undetermined coefficientsVariation of parameters

Write G(t) = g
1
(t) + g

2
(t)

guess xp(t) based on form of
g1(t),g2(t) similar to scalar
case but using vectors for
constants. So end up with
something like
xp(t) = a + bet (see example
May 4, 2017)

is x1 or x2 in xp ?
YES

NOAdjust xp by
multiplying by
t, see example
May 4, 2017 for
illustration.

Plug xp(t) into
x′
p(t) = Axp(t) + g1(t) + g2(t).

Balance terms and solve for
vectors a and b

xp

Find fundamental matrix
Φ =

[
x1 x1

]

xp = Φ
∫
Φ−1G(t) dt

x = xh + xp

p8_sysem.ipe may 5, 2017. Nasser M. Abbasi

Figure 1.15: Flow chart for system of ode solver
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These diagrams show the handling of repeated eigenvalues when a defective system is
encountered.

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 1.16: repeated eigenvalue of order 2
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 1.17: repeated eigenvalue of order 3
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λ
eigenvectors

v⃗1

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 4

case 1

case 2

x⃗1 = eλtv⃗1

x⃗2 = eλtv⃗2

x⃗3 = eλtv⃗3

x⃗4 = eλtv⃗4

The solution is

x⃗ = c1x⃗1 + c2x⃗2 + c3x⃗3 + c4x⃗4

The Four possible cases for repeated eigenvalue of multiplicity 4

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

A− λI

zero vector
v⃗1 A− λI

v⃗2

v⃗4
rank 2 vector

In this case, we need to solve for v⃗4 from linear combination of v⃗1, v⃗2, v⃗3.

(A− λ)v⃗4 = a1v⃗1 + a2v⃗2 + a3v⃗3

Where ai are any scalars not all zero.

u⃗ = a1v⃗1 + a2v⃗2 + a3v⃗3

A− λI

x⃗1 = eλtv⃗1

x⃗2 = eλtv⃗2

x⃗3 = eλtv⃗3

x⃗4 = eλt (u⃗ t+ v⃗4)

Where u⃗ = a1v⃗1 + a2v⃗2 + a3v⃗3 and ai are
constants to find that are not all zero.

(A− λI) v⃗4 = u⃗

Hence the solution is

x⃗ = c1x⃗1 + c2x⃗2 + c3x⃗3 + c4x⃗4

✓

normal
eigenvector

v⃗2 v⃗4v⃗3

λ
eigenvectors

Multiplicity 4

v⃗1

✓ ✓

normal
eigenvector

normal
eigenvector

✓

normal
eigenvector

?

Generalized
eigenvector

v⃗2 v⃗4v⃗3

v⃗3
A− λI

(A− λI)2

case 3

Incomplete eigenvalue.
defect is 2

A− λI

zero vector
v⃗1 A− λI

v⃗2

v⃗3
rank 2

First solve for v⃗3, v⃗4 from

(A− λI)v⃗3 = v⃗1

(A− λI)v⃗4 = v⃗4

x⃗1 = eλtv⃗1

x⃗2 = eλtv⃗2

x⃗3 = eλt (v⃗1 t+ v⃗3)

x⃗4 = eλt (v⃗2 t+ v⃗4)

Hence the solution is

x⃗ = c1x⃗1 + c2x⃗2 + c3x⃗3 + c4x⃗4

λ
eigenvectors

Multiplicity 4

v⃗1

✓ ✓

normal
eigenvector

normal
eigenvector

? ?

Generalized
eigenvector

v⃗2 v⃗4v⃗3

Generalized
eigenvector

v⃗4
rank 2 A− λI

case 4

Incomplete eigenvalue.
defect is 3

A− λI

zero vector
v⃗1

v⃗2
rank 2 A− λI

x⃗1 = eλtv⃗1

x⃗2 = eλt (v⃗1 t+ v⃗2)

x⃗3 = eλt
(
v⃗1

t2

2
+ v⃗2 t+ v⃗3

)

x⃗4 = eλt
(
v⃗1

t3

6
+ v⃗2

t2

2
+ v⃗3 t+ v⃗4

)
Where v⃗2 is found by solving (A− λI)v⃗2 =
v⃗1. And v⃗3 is found by solving (A−λI)v⃗3 =
v⃗2. And v⃗4 is found by solving (A−λI)v⃗4 =
v⃗3.
Hence the solution is

x⃗ = c1x⃗1 + c2x⃗2 + c3x⃗3 + c4x⃗4

λ
eigenvectors

Multiplicity 4

v⃗1

✓ ?

normal
eigenvector

? ?

Generalized
eigenvector

v⃗2 v⃗4v⃗3

Generalized
eigenvector

v⃗3
rank 3 A− λI

Generalized
eigenvector

rank 1
v⃗4

rank 3 A− λI

A− λI

Figure 1.18: repeated eigenvalue of order 4
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1.4.1.1 Examples

1.4.1.1.1 Example 1

x′(t) + y′(t) = x+ y + t (1)
x′(t) + y′(t) = 2x+ 3y + et (2)

Hence

x+ y + t = 2x+ 3y + et

y = −1
2x+

1
2t−

1
2e

t (3)

Taking derivative w.r.t. t gives

y′ = −x
′

2 + 1
2 − 1

2e
t (4)

Substituting (3,4) in (1) to eliminate y, y′ gives

x′ +
(
−x

′

2 − 1
2e

t + 1
2

)
= x+

(
−x2 − 1

2e
t + 1

2t
)
+ t

x′ = 3t+ x− 1 (5)

This is linear ode. Its solution is

x = c1e
t − 3t− 2 (6)

Substituting this in (3) gives

y = −1
2
(
c1e

t − 3t− 2
)
+ 1

2t−
1
2e

t

= 2t− 1
2e

t − 1
2c1e

t + 1
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1.4.1.1.2 Example 2

x′(t) + y′(t) = x+ y + t (1)
2x′(t) + y′(t) = 2x+ 3y + et (2)

Let x′ = A, y′ = B then

A+B = x+ y + t (1)
2A+B = 2x+ 3y + et (2)

From (1), B = x+ y + t− A. Substituting in (2) gives

2A+ (x+ y + t− A) = 2x+ 3y + et

A = x− t+ 2y + et (3)

Now we plugin the above in (1) which gives

(
x− t+ 2y + et

)
+B = x+ y + t

B = 2t− y − et (4)

Hence we have the following two linear ode’s of standard form now. These are (3,4)

x′ = x− t+ 2y + et

y′ = 2t− y − et

And now these can be solved using standard methods.
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1.4.1.1.3 Example 3

x′(t) + y′(t) = x+ 2y + 2et (1)
x′(t) + y′(t) = 3x+ 4y + e2t (2)

Hence

x+ 2y + 2et = 3x+ 4y + e2t

y = −x− 1
2e

2t + et (3)

Taking derivative w.r.t. t gives

y′ = −x′ − e2t + et (4)

Substituting (3,4) in (1) to eliminate y, y′ gives

x′ +
(
−x′ − e2t + et

)
= x+ 2

(
−x− 1

2e
2t + et

)
+ 2et

x′ − x′ − e2t + et = x− 2x− e2t + 2et + 2et

0 = −x+ 3et

x = 3et (5)

Substituting this in (3) gives

y = −3et − 1
2e

2t + et

= −2et − 1
2e

2t

Hence the solution is

x = 3et

y = −2et − 1
2e

2t

1.4.2 nonlinear system of first order ode’s
Not currently supported.



chapter 1 . f irst order ode 242



CHAPTER 2
Second order ode F (x, y, y′, y′′) = 0

2.1 Flow charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
2.2 Existence and uniqueness for second order ode . . . . . . . . . . . . . . . . 245
2.3 Linear second order ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
2.4 Nonlinear second order ode . . . . . . . . . . . . . . . . . . . . . . . . . . 416

243



chapter 2 . second order ode F (x, y, y′, y′′) = 0 244

2.1 Flow charts

scalar (one ODE)

a(x)y′′ + b(x)y′ + c(x)y = f(x)

first order second order

b(x)y′ + c(x)y = f(x)
constant coefficients

ay′′ + by′ + cy = f(x)

non constant coefficients

Euler ODE
ax2y′′ + bxy′ + cy = f(x)

homogeneousnon-homogeneous

ay′′ + by′ + cy = 0ay′′ + by′ + cy = f(x)

homogeneousnon-homogeneous

ax2y′′ + bxy′ + cy = f(x) ax2y′′ + bxy′ + cy = 0

solve the
homogeneous first
and find y1,y2.

Let yh = Aerx, plug
into ODE and find
charaterestic equation
ar2 + br + c = 0 and
find its roots r1, r2

Two distinct
real roots r1, r2

Two complex
conjugate
roots α± iβ

one root,
repeated

y1 =erx

y2 =xerx

yh =c1y1 + c2y2

Note: y2 is found us-
ing reduction of or-
der method.

y1 =er1x

y2 =er2x

yh =c1y1 + c2y2

y1 =eαx cos(βx)
y2 =eαx sin(βx)
yh =c1y1 + c2y2

=eαx (c1 cos(βx) + c2 sin(βx))

Does f(x) contain only
exponential, trig, constants
or polynomials?

YESNO

Use variation
of parameters

Use Undetermined
coefficients (guess)

y1 or y2 present in
f(x)?

Guess yp form based
on f(x) from lookup
table

YESNO

Multiply guess
yp by extra x

Plugin guess yp found
back into original ODE
and determine the
unknown coefficients in
yp

First find Wronskina
W and then

yp =y1u1 + y2u2

u1 =−
∫

y2f(x)
aW

dx

u2 =
∫

y1f(x)
aW

dx

yh

General solution y = yh + yp. If initial
conditions are given, now we find
c1, c2.

yp

yp

Integrating factor or
separable (see detailed flow
chart for 1D on page 3 if
needs more information
about 1D)

Let yh = Axr, plug into ODE and
find charaterestic equation
ar(r − 1) + br + c = 0 and find its
roots r1, r2

Two distinct
real roots r1, r2

Two complex conjugate
roots α± iβ

one root,
repeated

y1 =xr

y2 =xr ln x
yh =c1y1 + c2y2

Note: y2 is found
using reduction of
order method.

y1 =xr1

y2 =xr2

yh =c1y1 + c2y2

y1 =x(α+iβ)

y1 =x(α−iβ)

yh =c1y1 + c2y2

For complex roots, it can be
simplified as follows.

yh =xα
(
c1x

iβ + c2x
−iβ

)
=xα

(
c1e

ln xiβ
+ c2e

ln x−iβ
)

=xα
(
c1e

iβ ln x + c2e
−iβ ln x

)
=xα (C1 cos(β lnx) + C2 sin(β lnx))

yh

Can only use variation
of parameters since not
constant coefficients

yp found

p8.ipe May 3, 2017 Nasser M. Abbasi

General solution y = yh + yp. If initial
conditions are given, now we find
c1, c2.

yp

First find Wronskina
W and then

yp =y1u1 + y2u2

u1 =−
∫

y2f(x)
aW

dx

u2 =
∫

y1f(x)
aW

dx

second order with one solution given

Reduction of Order

If the second order ODE
is given along with one
solution y1 and asked to
find general solution, then
the homogenous solution
can be found by assuming
yh = v(x)y1(x) and
plugging this back into
the given ODE and
solving for v(x).

solve the homogeneous first
and find y1,y2.

Figure 2.1: Flow chart for some of the supported ode types
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2.2 Existence and uniqueness for second order ode
There are two theorems. One for linear second order ode and one for non-linear second
order ode.

2.2.1 Existence and uniqueness for linear second order ode
Given linear second order ode

y′′ + p(x) y′ + q(x) y = f(x)

With initial conditions at x0

y(x0) = y0

y′(x0) = y′0

If p(x) , q(x) , f(x) are all continuous at x0 then theorem guarantees that a solution
exist and is unique on some interval than includes x0. If this was not the case, (i.e. if
any of p, q, f are not continuous at x0) then the theorem does not apply. This means a
solution could still exists and even be unique, but theory does not say anything about
this.

2.2.1.1 Example

xy′′ + y′ + 3y = sin (x)
y(0) = 0
y′(0) = 1

In standard form
y′′ + 1

x
y′ + 3

x
y = 1

x
sin x

We see that p(x) = 1
x
is not continuous at x0 = 0. Hence theorem does not apply. It

turns out that there is no solution to this ode with these initial conditions. Changing
x0 to 1 instead of zero, solution exists and is unique.
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2.2.1.2 Example

y′′ + 1
x− 1y

′ + 3y = x

y(1) = 0
y′(1) = 1

In standard form
y′′ + py′ + qy = f

p(x) = 1
x−1 is not continuous at x0 = 1. Hence theorem does not apply. It turns out

that there is no solution to this ode with these initial conditions. Changing x0 to 0
instead then a solution exists and is unique.

2.2.2 Existence and uniqueness for non-linear second order
ode

Now the ode is written in the form

y′′ = f(x, y, y′)
y(x0) = y0

y′(x0) = y′0

Then if f is continuous at (x0, y0, y′0) and fy is also continuous at (x0, y0, y′0) and also fy′
is also continuous at (x0, y0, y′0) then there is unique solution on interval that contains
x0.

2.2.2.1 Example

y′′ = 2yy′

y(0) = 1
y′(0) = 2

Hence f(x, y, y′) = 2yy′. At x = 0 then f = 4 which is continuous. And fy = 2y′ which
at x0 becomes 4. This is also continuous. And fy′ = 2y which at x0 becomes 4 which
is also continuous. Hence solution exists and is unique on interval that contains x = 0.
The solution can be found as follows
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Let y′ = p(y) then y′′ = dp
dx

= dp
dy

dy
dx

= dp
dy
p. The ode becomes

dp

dy
p = 2yp

dp

dy
= 2y

But at x = 0 we have y(0) = 1 and y′(0) = p(y(0)) = p(1) = 2. This is the initial
condition used for solving the above quadrature ode. Integrating the above gives

p = y2 + c1

Applying IC p(1) = 2 gives

2 = 1 + c1

c1 = 1

Hence p = y2 + 1. But y′ = p or y′ = y2 + 1. This is separable with initial conditions
y(0) = 1. Integrating gives ∫

dy

y2 + 1 =
∫
dx

arctan (y) = x+ c2

Applying IC
arctan (1) = c2

So c2 = π
4 . Hence the solution becomes

arctan (y) = x+ π

4
y(x) = tan

(
x+ π

4

)
2.2.2.2 Example

y′′ + y = 1
x

y(0) = 1
y′(0) = 2

Here f(x) = 1
x
is not continuous at x = 0. Therefore theory does not apply. It turns

out that no solution exists for this ode.
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2.3 Linear second order ode
2.3.1 Linear ode with constant coefficients Ay′′ +By′ + Cy = f(x) . . . . . . 249
2.3.2 Linear ode with non-constant coefficients A(x) y′′ +B(x) y′ +C(x) y = f(x)255
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2.3.1 Linear ode with constant coefficients
Ay′′ +By′ + Cy = f(x)

2.3.1.1 Quadrature ode y′′ = f(x)

ode internal name "second order ode quadrature"

Solved by integration twice. y′ =
∫
fdx+ c1 and y =

∫ (∫
fdx

)
dx+ c1x+ c2

2.3.1.2 Solved by finding roots of characteristic equation

ode internal name "second order linear constant coeff"

These are solved by finding roots of characteristic equation. This is the standard method.
Homogeneous and inhomogeneous. The method of Variation of parameters and the
method of undetermined coefficients are both used to find the particular solution. If
hint "laplace" is given, then the ODE is solved using Laplace transform method. If hint
"series" is given then series method is used.

2.3.1.2.1 Example 1 (Variation of parameters)

4y′′ − y = e
x
2 + 6

Solution is y = yh + yp. The roots of the characteristic equation are ±1
2 ,. hence yh is

yh = c1e
1
2x + c2e

− 1
2x

The basis for yh are y1 = e
1
2x, y2 = e−

1
2x. Let

yp = y1u1 + y2u2

Where

u1 = −
∫
y2f(x)
aW

dx

u2 =
∫
y1f(x)
aW

dx

Where a = 4, f(x) = e
x
2 + 6 and

W =

∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣ =
∣∣∣∣∣∣ e

1
2x e−

1
2x

1
2e

1
2x −1

2e
− 1

2x

∣∣∣∣∣∣ = −1
2 − 1

2 = −1
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Hence

u1 = −
∫
e−

1
2x
(
e

x
2 + 6

)
−4 dx = 1

4x− 3e− 1
2x

u2 =
∫
e

1
2x
(
e

x
2 + 6

)
−4 dx = −1

4e
1
2x
(
e

1
2x + 12

)
Hence

yp = y1u1 + y2u2

= e
1
2x

(
1
4x− 3e− 1

2x

)
+ e−

1
2x

(
−1
4e

1
2x
(
e

1
2x + 12

))
= 1

4xe
1
2x − 1

4e
1
2x − 6

Therefore

y = yh + yp

= c1e
1
2x + c2e

− 1
2x + 1

4xe
1
2x − 1

4e
1
2x − 6

Or by combining terms into new constant, the above becomes

y = c3e
1
2x + c2e

− 1
2x + 1

4xe
1
2x − 6

2.3.1.3 Solved using Laplace transform

ode internal name "second order laplace"

These are solved using Laplace transform. These are only solved using this method if
’hint’="laplace" is given.

2.3.1.3.1 Example 1

y′′ + 2y′ + y = 0
y(1) = 2
y′(0) = 2

Taking Laplace transform gives(
s2Y − sy(0)− y′(0)

)
+ 2(sY − y(0)) + Y = 0(

s2Y − sy(0)− 2
)
+ (2sY − 2y(0)) + Y = 0
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Let y(0) = c (
s2Y − sc− 2

)
+ (2sY − 2c) + Y = 0

Y
(
s2 + 2s+ 1

)
− sc− 2− 2c = 0

Y = sc+ 2 + 2c
s2 + 2s+ 1

Applying inverse Laplace transform gives

y(t) = (c+ 2t+ ct) e−t (1)

But y(1) = 2 hence

2 = (c+ 2 + c) e−1

2e = 2c+ 2
c = e− 1

Therefore (1) becomes

y(t) = (e− 1 + 2t+ (e− 1) t) e−t

= e−t(−1 + e+ t+ et)

2.3.1.3.2 Example 2

y′′ − 2y′ − 3y = 0
y(4) = −3
y′(4) = −17

Taking Laplace transform gives(
s2Y − sy(0)− y′(0)

)
− 2(sY − y(0))− 3Y = 0

Since given initial conditions are not at t = 0, then let y(0) = c1, y
′(0) = c2 and the

above becomes (
s2Y − sc1 − c2

)
− 2(sY − c1)− 3Y = 0

Y
(
s2 − 2s− 3

)
− sc1 − c2 + 2c1 = 0

Y = sc1 + c2 − 2c1
s2 − 2s− 3

Taking inverse Laplace gives

y(t) = 1
4e

−t
(
c2
(
e4t − 1

)
+ c1

(
3 + e4t

))
(1)
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Hence
y′(t) = 1

4e
−t(4c1e−4t + 4c2e4t)−

1
4e

−t(c2(−1 + e4t) + c1(3 + e4t)) (2)

At t = 4 then (1,2) become

−3 = 1
4e

−4(c2(e16 − 1
)
+ c1

(
3 + e16

))
−17 = 1

4e
−4(4c1e−16 + 4c2e16)−

1
4e

−4(c2(−1 + e16) + c1(3 + e16))

Solving the above for c1, c2 gives

c1 =
−5 + 2e16

e12

c2 =
−15− 2e16

e12

Hence the solution (1) becomes

y(t) = 1
4e

−t

(
−15− 2e16

e12
(
e4t − 1

)
+ −5 + 2e16

e12
(
3 + e4t

))
= −e3t

(
5e−12 − 2e4e−4t)

= −5e3t−12 + 2e4−t

2.3.1.3.3 Example 3

y′′ + 2y′ + 5y = 50t− 100
y(2) = −4
y′(2) = 14

Taking Laplace transform gives(
s2Y − sy(0)− y′(0)

)
+ 2(sY − y(0)) + 5Y = 50

s2
− 100

s

Since given initial conditions are not at t = 0, then let y(0) = c1, y
′(0) = c2 and the

above becomes(
s2Y − sc1 − c2

)
+ 2(sY − c1) + 5Y = 50

s2
− 100

s

Y
(
s2 + 2s+ 5

)
− sc1 − c2 − 2c1 =

50
s2

− 100
s

Y =
sc1 + c2 + 2c1 + 50

s2
− 100

s

s2 + 2s+ 5
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Taking inverse Laplace gives

y(t) = −24 + 10t+ (24 + c1) e−t cos (2t) + (14 + c1 + c2) e−t cos t sin t (1)

Hence
y′(t) = e−t

(
10et + (c2 − 10) cos (2t)− (110 + 5c1 + c2) cos t sin t

)
(2)

At t = 2 then (1,2) become

−4 = −24 + 20 + (24 + c1) e−2 cos (4) + (14 + c1 + c2) e−2 cos 2 sin 2
14 = e−2(10e2 + (c2 − 10) cos (4)− (110 + 5c1 + c2) cos 2 sin 2

)
Solving the above for c1, c2 gives

c1 = −2
(
12 + e2 sin 4

)
c2 = 2

(
5 + e2(2 cos 4 + sin 4)

)
Hence the solution (1) becomes

y(t) = −24+10t+
(
24− 2

(
12 + e2 sin 4

))
e−t cos (2t)+

(
14− 2

(
12 + e2 sin 4

)
+ 2
(
5 + e2(2 cos 4 + sin 4)

))
e−t cos t sin t

Which simplifies to
y(t) = −24 + 10t− 2e2−t sin (4− 2t)

2.3.1.3.4 Example 4

y′′ + 2y′ + 10y = δ(t)
y(0) = 0
y′(0) = 0

Taking Laplace transform gives(
s2Y − sy(0)− y′(0)

)
+ 2(sY − y(0)) + 10Y = 1

Since given initial conditions then the above becomes

s2Y + 2sY + 10Y = 1

Y = 1
s2 + 2s+ 10

= 1
(s+ 2) (s+ 5)
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Taking inverse Laplace transform gives

y = 1
6ie

(−1−3i)t − 1
6ie

(−1+3i)t

= 1
6ie

−te−3it − 1
6ie

−te3it

= 1
6ie

−t
(
e−3it − e3it

)
= 1

6ie
−t(cos 3t− i sin 3t− (cos 3t+ i sin 3t))

= 1
6ie

−t(−i sin 3t− i sin 3t)

= 1
6ie

−t(−2i sin 3t)

= 1
3e

−t sin 3t

Which is the same as
y =

(
1
3e

−t sin (3t)
)
U(t)

Where U(t) is Heaviside function which is one for t > 0. Note that it seems one should
not give IC at same point of application of δ(t) as in this problem. So this problem
might be ill posed. Need to look more into this.

2.3.1.4 Solved using series method

2.3.1.4.1 Ordinary point using Taylor series method

ode internal name "second_order_taylor_series_method_ordinary_point"

This is the same as section below under non-constant coefficient.

2.3.1.4.2 Ordinary point using power series method

ode internal name "second_order_power_series_method_ordinary_point"

This is the same as section below under non-constant coefficient.
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2.3.2 Linear ode with non-constant coefficients
A(x) y′′ +B(x) y′ + C(x) y = f(x)

2.3.2.1 Euler ode x2y′′ + xy′ + y = f(x) . . . . . . . . . . . . 256
2.3.2.2 Kovacic type . . . . . . . . . . . . . . . . . . . . . . . 256
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2.3.2.1 Euler ode x2y′′ + xy′ + y = f(x)

ode internal name "second order euler ode"

Solved by substitution y = xr and solving for r. Solution will be y = c1x
r1 +c2xr2 where

r1, r2 are the roots of the characteristic equation. For repeated root, the second solution
is multiplied by extra ln (x) and not extra x as is the case with standard constant
coefficient ode. The particular solution is found in the same way using variation of
parameters. Can not use undetermined coefficient method since this is not constant
coefficients ode. The basis functions here are xr1 , xr2 if not repeated roots, else the basis
are xr1 , ln (x)xr2 .

2.3.2.2 Kovacic type

ode internal name "kovacic"

These are ode that are solvable using Kovacic algorithm. See my paper on arxiv on this
with algorithm description.

2.3.2.3 Method of conversion to first order Riccati

ode internal name This is currently not implemented.

Given linear second order ode A(x) y′′ +B(x) y′ + C(x) y = 0 then using the transfor-
mation v(x) = −y′

y
converts the second order ode to a first order Riccati

v′ = −yy′′ + (y′)2

y2

=
−y
(
−B

A
y′ − C

A
y
)
+ (y′)2

y2

=
B
A
yy′ + C

A
y2 + (y′)2

y2

= B

A

y′

y
+ C

A
+ (y′)2

y2

= C

A
+ B

A
v + v2

Which is Riccati of the form v′ = f0(x) + f1(x) v + f2v
2. where f0 = C

A
, f1 = B

A
, f2 = 1.

Lets say we can now find the solution to this Riccati v(x) (see section earlier on Riccati
for algorithm). Then the solution to the second order ode is found from y′ = −yv by
solving this first order ode. The solution is

y = e−
∫
v(x)dx + c2
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Notice there is also a second constant of integration inside v(x). This method of course
works only if we can solve the generated Riccati ode which does not have a general
method for solving and only for specific cases it can be solved. So this will be tried as
last resort.

We want to look for reduced Riccati generated from the above, which is v′ = f0 + f2v
2.

Which means f1 = 0 or B = 0 in the hope of solving the Riccati. This means ode of
the form A(x) y′′ + C(x) y = 0 will have hope of solving using this Riccati conversion
method. See Riccati section why that is.

2.3.2.4 Airy ode y′′ ± k2xy = f(x)

ode internal name "second order airy"

Full solution now implemented.
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2.3.2.5 Solved using series method

function solve_second_order_ode_series(y′′ = f(x, y, y′))
if f(x, y, y′) analytic at expansion point x0 then

This means x0 is an ordinary point. Apply Taylor series defintion directly to find
the series expansion. Let y0 = y(x0), y′(x0) = y′0 and

y = y0 + y′0 +
∞∑

n=0

xn+2

(n+ 2)! Fn(x, y)
∣∣∣∣x0
y0
y′
0

Where

F0 = f(x, y, y′)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0

return y as the solution
else

if f(x, y, y′) not linear in y(x) or not linear in y′(x) then
return Not supported.

else
if expansion point x0 is not regular singular point then

return Not supported.
else

This is a regular singular point. Determine the roots of the indicial equation. Let
roots be r1, r2.
if Roots r1, r2 are complex (they will conjugate) then

Example is Euler ode x2y′′ + xy + y = 0
Use Frobenius series as is for each basis solution y1, y2 where

y1 =
∞∑

n=0
anx

n+r1

y2 =
∞∑

n=0
bnx

n+r2

Where an, bn above are found from the recurrence relation using each ri root.
else if Roots r1, r2 differ by non-integer then . Ex. 2x2y′′ + 3xy − xy = 0

Use Frobenius series as is for each basis solution y1, y2 as above case.
else if Roots r1, r2 are repeated. This means one root r, a double root then

An example ode is x2y′′ + xy′ + xy = 0
y1 is found use Frobenius series as above. For y2 a modification is needed. Let
y2 = y1 ln(x) +

∑∞
n=1 bnx

n+r where bn = d
dran(r) after finding an(r) evaluated at

the root.
else if Roots r1, r2 differ by an integer then

if Both roots r1, r2 are good then . Ex. (x− x2)y′′ + 3y′ + 3y = 0
Called the lucky case. This means the recurrence equation and all an are defined
for all n for both r1, r2. In this case both solutions y1, y2 are found using standard
Frobenius series and no modification is needed.

Figure 2.2: Series method for second order ode algorithm
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Ordinary point and regular singular point are supported. irregular singular point support
will be added in the future. Expansion around point other than zero is also supported,
including initial conditions. All three cases of regular point are supported, these are
when the roots on indicial equation are repeated, or differ by an integer, or differ by non
integer. case of Complex roots of indicial equation is also supported. Only second order
and first order series solution is supported. Higher order ode support will be added in
the future.

2.3.2.5.1 Ordinary point using Taylor series method

ode internal name "second_order_taylor_series_method_ordinary_point"

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2)!
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (2.1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (2.2)

d2f

dx2
= d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3
= d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(
∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2)! Fn|x0,y0,y′0
(7)

To find y(x) series solution around x = 0.



chapter 2 . second order ode F (x, y, y′, y′′) = 0 262

2.3.2.5.2 Ordinary point using power series method

ode internal name "second_order_power_series_method_ordinary_point"

Expansion point is an ordinary point. Using standard power series. For an ordinary
point, and for inhomogeneous. ode, always generate the full solution directly from the
summation. Do not split the problem into yh, yp . To be able to do this, we have to
express the RHS as Taylor series (expand it around the same expansion point). If the
RHS is already a polynomial in x then there is nothing to do as it is already in Taylor
series form. Examples below show how to do this. When the RHS is not zero, do not
attempt to find recurrence relation as the RHS will get in the way, If the RHS is zero,
then find recurrence relation.

y′′ = f(x, y, y′)

In this method, we let Let y =
∑∞

n=0 anx
n and replace this in the above ode and solve

for an using recurrence relation. Examples below show how these methods work.

2.3.2.5.2.1 Example 1

Solved using Taylor series method.

y′′ + xy′ + y = 2x+ x2 + x4

y′′ = −xy′ − y + 2x+ x2 + x4

y′′ = f(x, y, y′)

Hence
y(x) = y0 + xy′0 +

∞∑
n=0

xn+2

(n+ 1)! Fn|x0,y0,y′0

Where

F0 = f(x, y, y′)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0
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Hence

F1 =
∂(−xy′ − y + 2x+ x2 + x4)

∂x
+ ∂(−xy′ − y + 2x+ x2 + x4)

∂y
y′ + ∂(−xy′ − y + 2x+ x2 + x4)

∂y′
y′′

=
(
4x3 + 2x− y′ + 2

)
− y′ − xy′′

= 2x− 2y′ − xy′′ + 4x3 + 2

But y′′ = f(x, y, y′), the above becomes

F1 = 2x− 2y′ + x2y′ + xy − 2x2 + 3x3 − x5 + 2

And

F2 =
d

dx
(Fn−1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x

(
2x− 2y′ + x2y′ + xy − 2x2 + 3x3 − x5 + 2

)
+

+
(
∂

∂y

(
2x− 2y′ + x2y′ + xy − 2x2 + 3x3 − x5 + 2

))
y′

+
(
∂

∂y′
(
2x− 2y′ + x2y′ + xy − 2x2 + 3x3 − x5 + 2

))
y′′

=
(
y − 4x+ 2xy′ + 9x2 − 5x4 + 2

)
+ xy′ +

(
−2 + x2

)
y′′

= y − 4x− 2y′′ + 3xy′ + x2y′′ + 9x2 − 5x4 + 2

But y′′ = f(x, y, y′), the above becomes

F2 = y − 4x− 2
(
−xy′ − y + 2x+ x2 + x4

)
+ 3xy′ + x2

(
−xy′ − y + 2x+ x2 + x4

)
+ 9x2 − 5x4 + 2

= 3y − 8x+ 5xy′ − x2y − x3y′ + 7x2 + 2x3 − 6x4 + x6 + 2

And

F3 =
d

dx
(F2)

= ∂

∂x
F2 +

(
∂F2

∂y

)
y′ +

(
∂F2

∂y′

)
y′′

= ∂

∂x

(
3y − 8x+ 5xy′ − x2y − x3y′ + 7x2 + 2x3 − 6x4 + x6 + 2

)
+
(
∂

∂y

(
3y − 8x+ 5xy′ − x2y − x3y′ + 7x2 + 2x3 − 6x4 + x6 + 2

))
y′

+
(
∂

∂y′
(
3y − 8x+ 5xy′ − x2y − x3y′ + 7x2 + 2x3 − 6x4 + x6 + 2

))
y′′

= 14x+ 5y′ − 3x2y′ − 2xy + 6x2 − 24x3 + 6x5 − 8 +
(
3− x2

)
y′ +

(
5x− x3

)
y′′
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But y′′ = f(x, y, y′), the above becomes

F3 = 14x+ 5y′ − 3x2y′ − 2xy + 6x2 − 24x3 + 6x5 − 8 +
(
3− x2

)
y′ +

(
5x− x3

) (
−xy′ − y + 2x+ x2 + x4

)
= 14x+ 8y′ + x3y − 9x2y′ + x4y′ − 7xy + 16x2 − 19x3 − 2x4 + 10x5 − x7 − 8

And so on. Evaluating each of the above at x = 0, y = y0, y
′ = y′0 gives

F0 =
(
−xy′ − y + 2x+ x2 + x4

)
x=0,y0,y′0

= −y0

F1 =
(
2x− 2y′ + x2y′ + xy − 2x2 + 3x3 − x5 + 2

)
x=0,y0,y′0

= (−2y′0 + 2)

F2 = 3y − 8x+ 5xy′ − x2y − x3y′ + 7x2 + 2x3 − 6x4 + x6 + 2 = 3y0 + 2
F3 = 14x+ 8y′ + x3y − 9x2y′ + x4y′ − 7xy + 16x2 − 19x3 − 2x4 + 10x5 − x7 − 8 = 8y′0 − 8

Hence

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2)! Fn|x0,y0,y′0

= y0 + xy′0 +
x2

2 F0 +
x3

6 F1 +
x4

24F2 +
x5

5! F3 + · · ·

= y0 + xy′0 +
x2

2 (−y0) +
x3

6 (−2y′0 + 2) + x4

24(3y0 + 2) + x5

5! (8y
′
0 − 8) + · · ·

= y0

(
1− x2

2 + 1
8x

4 + · · ·
)
+ y′0

(
x− x3

3 + 1
15x

4· · ·
)
+
(
1
3x

3 + 1
12x

4 − 1
15x

4
)

= c1

(
1− x2

2 + 1
8x

4 + · · ·
)
+ c2

(
x− x3

3 + 1
15x

4· · ·
)
+
(
1
3x

3 + 1
12x

4 − 1
15x

4
)

Solved using power series method.

y′′ + xy′ + y = 2x+ x2 + x4

Comparing the homogenous ode to y′′+p(x) y′+q(x) y = 0 shows that p(x) = x, q(x) = 1.
These are defined everywhere. Let the expansion point be x0 = 0. This is ordinary point
since p(x) , q(x) are defined at x0. Let y =

∑∞
n=0 anx

n. Hence y′ =
∑∞

n=0 nanx
n−1 =∑∞

n=1 nanx
n−1 and y′′ =

∑∞
n=1 (n) (n− 1) anxn−2 =

∑∞
n=2 (n) (n− 1) anxn−2. The ho-

mogenous ode becomes
∞∑
n=2

(n) (n− 1) anxn−2 + x
∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n = 2x+ x2 + x4

∞∑
n=2

(n) (n− 1) anxn−2 +
∞∑
n=1

nanx
n +

∞∑
n=0

anx
n = 2x+ x2 + x4
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Adjust all sums to lowest power on x gives
∞∑
n=2

(n) (n− 1) anxn−2 +
∞∑
n=3

(n− 2) an−2x
n−2 +

∞∑
n=2

an−2x
n−2 = 2x+ x2 + x4

n = 2 gives x0 on the LHS with no match on the RHS. Hence

2a2 + a0 = 0

a2 = −1
2a0

n = 3 gives x1 on the LHS with one match on the RHS. Hence

6a3 + 2a1 = 2

a3 =
2− 2a1

6
= 1

3 − 1
3a1

n = 4 gives x2 on the LHS with one match on the RHS. Hence

12a4 + 3a2 = 1

a4 =
1− 3a2

12

=
1− 3

(
−1

2a0
)

12
= 1

8a0 +
1
12

n = 5 gives x3 on the LHS with no match on the RHS. Hence

20a5 + 4a3 = 0

a5 =
−4a3
20

=
−4
(1
3 −

1
3a1
)

20
= 1

15a1 −
1
15

n = 6 gives x4 on the LHS with one match on the RHS. Hence

30a6 + 5a4 = 1

a6 =
1− 5a4

30

=
1− 5

(1
8a0 +

1
12

)
30

= 7
360 − 1

48a0
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And for n ≥ 7 we have recurrence relation

(n) (n− 1) an + (n− 2) an−2 + an−2 = 0

an = − n− 1
n (n− 1)an−2

Hence for n = 7

a7 = − 6
42a5

= − 6
42

(
1
15a1 −

1
15

)
= 1

105 − 1
105a1

For n = 8

a8 = − 7
(8) (7)a6

= − 7
(8) (7)

(
7
360 − 1

48a0
)

= 1
384a0 −

7
2880

And so on. Hence

y =
∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + a3x

3 + · · ·

= a0 + a1x−
1
2a0x

2 +
(
1
3 − 1

3a1
)
x3 +

(
1
8a0 +

1
12

)
x4 +

(
1
15a1 −

1
15

)
x5 +

(
7
360 − 1

48a0
)
x6 +

(
1
105 − 1

105a1
)
x7 + · · ·

= a0

(
1− 1

2x
2 + 1

8x
4 − 1

48x
6 + · · ·

)
+ a1

(
x− 1

3x
3 + 1

15x
5 − 1

105x
7 − · · ·

)
+
(
1
3x

3 + 1
12x

4 − 1
15x

5 + 7
360x

6 + 1
105x

7 + · · ·
)

Which is the same answer given using the Taylor series method. We see that the
Taylor series method is much simpler, but requires using the computer to calculate the
derivatives as they become very complicated as more terms are needed.

Even though the expansion point is ordinary, we can also solve this using Frobenius
series as follows. Comparing the ode y′′ + xy′ + y = 0 to

y′′ + p(x) y′ + q(x) y = 0
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Hence p(x) = x, q(x) = 1. Therefore p0 = limx→0 xp(x) = limx→0 x
2 = 0 and q0 =

limx→0 x
2q(x) = limx→0 x

2 = 0. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) = 0

r = 1, 0

Hence r1 = 1, r2 = 0. All ordinary points will have the same roots. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + x
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r = 0

Reindex to lowest powers gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2+
∞∑
n=2

(n+ r − 2) an−2x
n+r−2+

∞∑
n=2

an−2x
n+r−2 = 0 (1)

For n = 0
r(r − 1) a0xr−2 = 0

The homogenous ode therefore satisfies

y′′ + xy′ + y = r(r − 1) a0xr (2)

For n = 1, Eq (1) gives
(1 + r) (r) a1 = 0

For r = 1 we see that a1 = 0. But for r = 0 then the above gives 0b1 = 0. This means
b1 can be any value and we choose b1 = 0 in this case.
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For n ≥ 2 we obtain the recurrence relation

(n+ r) (n+ r − 1) an + (n+ r − 2) an−2 + an−2 = 0

an = −(n+ r − 2) an−2 − an−2

(n+ r) (n+ r − 1) = −(n+ r − 1) an−2

(n+ r) (n+ r − 1)
(3)

Now we find y1 which is associated with r = 1. From (3) and for r = 1 it becomes

an = − n

(n+ 1)nan−2 = − 1
n+ 1an−2 (4)

For n = 2 and using a0 = 1
a2 = −1

3a0 = −1
3

For n = 3
a3 = −1

4a1 = 0

All odd an will be zero. For n = 4

a4 = −1
5a2 = −1

5

(
−1
3

)
= 1

15

And so on. Hence

y1 =
∑

anx
n+r1

= x
∑

anx
n

= x
(
a0 + a1x+ a2x

2 + · · ·
)

= x

(
1− 1

2x
2 + 1

10x
4 − · · ·

)
= x− 1

3x
3 + 1

15x
5 − · · ·

Now we find y2 associated with r = 0. From (3) this becomes (using b instead of a)
and r = 0

bn = −(n+ r − 1) bn−2

(n+ r) (n+ r − 1)

= −(n− 1) bn−2

(n) (n− 1)

= −bn−2

n
(5)
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From above, we found that b1 = 0. Now we use (5) to find all bn for n ≥ 2. For n = 2

b2 = −b02 = −1
2

For n = 3
b3 = −b13 = 0

For n = 4
b4 = −b24 = 1

8
And so on. Hence

y2 =
∑

bnx
n+r2

=
∑

bnx
n

=
(
b0 + b1x+ b2x

2 + · · ·
)

=
(
1− 1

2x
2 + 1

8x
4 + · · ·

)
Hence the solution yh is

y = c1y1 + c2y2

= c1

(
x− 1

3x
3 + 1

15x
5 − · · ·

)
+ c2

(
1− 1

2x
2 + 1

8x
4 + · · ·

)
We see this is the same yh obtained using standard power series. This shows that we
can also use Frobenius series to solve for ordinary point. The roots will always be
r1 = 1, r2 = 0. But this requires more work than using standard power series. The main
advantage of using Frobenius series for ordinary point comes in when the RHS has no
series expansion at x = 0. For example, if the RHS in this ode was say

√
x then we

must use Frobenius to be able to solve it as standard power series will fail, since
√
x has

no series representation at x = 0. Examples below shows how to do this.

2.3.2.5.2.2 Example 2
1
x5
y′′ + y′ + y = 0

Solved using Taylor series method.

y′′ = −x5(y′ + y)
= −x5y − x5y′

y′′ = f(x, y, y′)
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Hence
y(x) = y0 + xy′0 +

∞∑
n=0

xn+2

(n+ 1)! Fn|x0,y0,y′0

Where

F0 = f(x, y, y′)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0

Hence

F1 =
∂(−x5y − x5y′)

∂x
+ ∂(−x5y − x5y′)

∂y
y′ + ∂(−x5y − x5y′)

∂y′
y′′

=
(
−5x4y − 5x4y′

)
− x5y′ − x5y′′

But y′′ = f(x, y, y′), the above becomes

F1 =
(
−5x4y − 5x4y′

)
− x5y′ − x5

(
−x5y − x5y′

)
= x10y − 5x4y − 5x4y′ − x5y′ + x10y′

And

F2 =
d

dx
(Fn−1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x

(
x10y − 5x4y − 5x4y′ − x5y′ + x10y′

)
+

+
(
∂

∂y

(
x10y − 5x4y − 5x4y′ − x5y′ + x10y′

))
y′

+
(
∂

∂y′
(
x10y − 5x4y − 5x4y′ − x5y′ + x10y′

))
y′′

=
(
10x9y − 20x3y − 20x3y′ − 5x4y′ + 10x9y′

)
+ x4

(
x6 − 5

)
y′ +

(
−5x4 − x5 + x10

)
y′′

But y′′ = f(x, y, y′), the above becomes

F2 =
(
10x9y − 20x3y − 20x3y′ − 5x4y′ + 10x9y′

)
+ x4

(
x6 − 5

)
y′ +

(
−5x4 − x5 + x10

) (
−x5(y′ + y)

)
= −x3

(
20y + 20y′ + 10xy′ − 15x6y − x7y + x12y − 15x6y′ − 2x7y′ + x12y′

)
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And

F3 =
d

dx
(F2)

= ∂

∂x
F2 +

(
∂F2

∂y

)
y′ +

(
∂F2

∂y′

)
y′′

= ∂

∂x

(
−x3

(
20y + 20y′ + 10xy′ − 15x6y − x7y + x12y − 15x6y′ − 2x7y′ + x12y′

))
+
(
∂

∂y

(
−x3

(
20y + 20y′ + 10xy′ − 15x6y − x7y + x12y − 15x6y′ − 2x7y′ + x12y′

)))
y′

+
(
∂

∂y′
(
−x3

(
20y + 20y′ + 10xy′ − 15x6y − x7y + x12y − 15x6y′ − 2x7y′ + x12y′

)))
y′′

= −5x2
(
12y + 12y′ + 8xy′ − 27x6y − 2x7y + 3x12y − 27x6y′ − 4x7y′ + 3x12y′

)
+ x3

(
−x12 + x7 + 15x6 − 20

)
y′ +

(
−20x3 − 10x4 + 15x9 + 2x10 − x15

)
y′′

But y′′ = f(x, y, y′), the above becomes

F3 = −5x2
(
12y + 12y′ + 8xy′ − 27x6y − 2x7y + 3x12y − 27x6y′ − 4x7y′ + 3x12y′

)
+ x3

(
−x12 + x7 + 15x6 − 20

)
y′ +

(
−20x3 − 10x4 + 15x9 + 2x10 − x15

) (
−x5(y′ + y)

)
= −x2

(
60y + 60y′ + 60xy′ − 155x6y − 20x7y + 30x12y + 2x13y − x18y − 155x6y′ − 45x7y′ − x8y′ + 30x12y′ + 3x13y′ − x18y′

)
And so on. Since the derivatives become very complicated, the result was done on the
computer which results in (Evaluating each of the above at x = 0, y = y0, y

′ = y′0)

F0 = 0
F1 = 0
F2 = 0
F3 = 0
F4 = 0
F5 = −120y′0 − 120y0
F6 = −720y′0
F7 = 0
F8 = 0
F9 = 0
F10 = 0
F11 = 6652800y′0 + 6652800y0
F12 = 79833600y′0 + 11404800y0
F13 = 111196800y′0
F14 = 0

...
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And so on. Hence

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2)! Fn|x0,y0,y′0

= y0 + xy′0 +
x7

7! (−120y′0 − 120y0)−
x8

8! (720y
′
0) +

x13

13! (6652800y
′
0 + 6652800y0)

+ x14

14! (79833600y
′
0 + 11404800y0) +

x15

15! (111196800y
′
0) + · · ·

= y0

(
1− 120

7! x
7 + 6652800

13! x13 + 11404800
14! x14 − · · ·

)
+ y′0

(
x− 120

7! x
7 − 720

8! x
8 + 6652800

13! x13 + 79833600
14! x14 + 111196800

15! x15 + · · ·
)

= y0

(
1− 1

42x
7 + 1

936x
13 + 1

7644x
14 + · · ·

)
+ y′0

(
x− 1

42x
7 − 1

56x
8 + 1

936x
13 + 1

1092x
14 + 1

11 760x
15 + · · ·

)
Solved using power series method

Expansion around x = 0. This is ordinary point. Since RHS is zero, we will find
recurrence relation.

Let y =
∑∞

n=0 anx
n. Hence y′ =

∑∞
n=0 nanx

n−1 =
∑∞

n=1 nanx
n−1 and y′′ =

∑∞
n=1 (n) (n− 1) anxn−2 =∑∞

n=2 (n) (n− 1) anxn−2. The ode becomes

x−5y′′ + y′ + y = 0

Hence
∞∑
n=2

(n) (n− 1) anxn−2 +
∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n = 0

∞∑
n=2

(n) (n− 1) anxn−7 +
∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n = 0

Reindex so all powers start at lowest powers n− 7
∞∑
n=2

(n) (n− 1) anxn−7 +
∞∑
n=7

(n− 6) an−6x
n−7 +

∞∑
n=7

an−7x
n−7 = 0 (1)

For n = 2, 3, 4, 5, 6 it generates a2 = 0, a3 = 0, a4 = 0, a5 = 0, a6 = 0 since there is only
one term in each one of these and the RHS is zero.

For n ≥ 7 we have the recurrence relation

(n) (n− 1) an + (n− 6) an−6 + an−7 = 0 (2)

an = −(n− 6) an−6 + an−7

(n+ 2) (n+ 1)
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Hence for n = 7
a7 = −a1 + a0

42
For n = 8

a8 = − 2a2 + a1
(6 + 2) (6 + 1) = −a1

56
For n = 9

a9 = −(7− 4) a3 + a2
(7 + 2) (7 + 1) = 0

For n = 10
a10 = −(8− 4) a4 + a3

(8 + 2) (8 + 1) = 0

For n = 11
a11 = −(9− 4) a5 + a4

(9 + 2) (9 + 1) = 0

For n = 12
a12 = −(n− 4) a6 + a5

(n+ 2) (n+ 1) = 0

For n = 13

a13 = − (11− 4) a7 + a6
(11 + 2) (11 + 1) = − (11− 4) a7

(11 + 2) (11 + 1) = − 7
156a7 = − 7

156

(
−a1 + a0

42

)
= 1

936a0+
1
936a1

And so on. Hence

y =
∞∑
n=0

anx
n

= a0 + a1x+ a7x
7 + a13x

13 + · · ·

Notice that all terms an = 0 for n = 2· · · 6. The above becomes

y = a0 + a1x+
(
− 1
42a0 −

1
42a1

)
x7 +

(
1
936a0 +

1
936a1

)
x13 + · · ·

= a0

(
1− 1

42x
7 + 1

936x
13 + · · ·

)
+ a1

(
x− 1

42x
7 + 1

936x
13 + · · ·

)
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2.3.2.5.2.3 Example 3
1
x2
y′′ + y′ + y = sin x

Expansion around x = 0. This is ordinary point. Since RHS is not zero, do not find
recurrence relation. Let y =

∑∞
n=0 anx

n. Hence y′ =
∑∞

n=0 nanx
n−1 =

∑∞
n=1 nanx

n−1

and y′′ =
∑∞

n=1 (n) (n− 1) anxn−2 =
∑∞

n=2 (n) (n− 1) anxn−2. The ode becomes

y′′ + x2y′ + x2y = x2 sin x

Hence
∞∑
n=2

(n) (n− 1) anxn−2 + x2
∞∑
n=1

nanx
n−1 + x2

∞∑
n=0

anx
n = x2 sin x

∞∑
n=2

(n) (n− 1) anxn−2 +
∞∑
n=1

nanx
n+1 +

∞∑
n=0

anx
n+2 = x2 sin x

Reindex so all powers to start from n. This results in
∞∑
n=0

(n+ 2) (n+ 1) an+2x
n +

∞∑
n=2

(n− 1) an−1x
n +

∞∑
n=2

an−2x
n = x2 sin x

To be able to continue, we have to expand sin x as Taylor series around x. The above
becomes
∞∑
n=0

(n+ 2) (n+ 1) an+2x
n +

∞∑
n=2

(n− 1) an−1x
n +

∞∑
n=2

an−2x
n = x2

(
x− 1

6x
3 + 1

120x
5 − 1

5040x
7 + · · ·

)
∞∑
n=0

(n+ 2) (n+ 1) an+2x
n +

∞∑
n=2

(n− 1) an−1x
n +

∞∑
n=2

an−2x
n = x3 − 1

6x
5 + 1

120x
7 − 1

5040x
9 + · · ·

For n = 0

2a2 = 0
a2 = 0

For n = 1

(3) (2) a3 = 0
a3 = 0

For n = 2

(2 + 2) (2 + 1) a4 + (2− 1) a1 + a0 = 0
12a4 + a1 + a0 = 0

a4 =
−a1 − a0

12
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For n = 3 (now we pick one term from the RHS which match on x3)

20a5 + 2a2 + a1 = 1

a5 =
1− a1
20

For n = 4

30a6 + 3a3 + a2 = 0
a6 = 0

For n = 5

42a7 + 4a4 + a3 = −1
6

a7 =
−1

6 − 4a4
42 =

−1
6 − 4

(−a1−a0
12

)
42 = 1

126a0 +
1
126a1 −

1
252

And so on. Hence

y =
∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + a3x

3 + · · ·

= a0 + a1x+
(
−a1 − a0

12

)
x4 +

(
1− a1
20

)
x5 +

(
1
126a0 +

1
126a1 −

1
252

)
x7 + · · ·

= a0

(
1− 1

12x
4 + 1

126x
7 + · · ·

)
+ a1

(
x− 1

12x
4 − 1

20x
5 + 1

126x
7 + · · ·

)
+
(

1
20x

5 − 1
252x

7 + · · ·
)

2.3.2.5.3 Regular singular point using Frobenius series method.

expansion point is regular singular point. Four sub methods depending on type of roots
of the indicial equations.

2.3.2.5.3.1 Roots of indicial equation are complex

ode internal name "second_order_series_method_regular_singular_point_complex_roots"

In this case the solution is
y = c1y1 + c2y2

Where

y1 =
∞∑
n=0

anx
n+r1

y2 =
∞∑
n=0

bnx
n+r2
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Where r1, r2 are roots of the indicial equation. a0, b0 are set to 1 as arbitrary.

Example 1
x2y′′ + xy′ + y = 1

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1
x
, q(x) = 1

x2 . There is one singular point at x0 = 0. Therefore p0 =
limx→0 xp(x) = limx→0 1 = 1 and q0 = limx→0 x

2q(x) = limx→0 1 = 1. Hence the indicial
equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) + r + 1 = 0

r2 + 1 = 0
r = ±i

Hence r1 = i, r2 = −i. Expansion around x = 0. This is regular singular point. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Solving first for the homogenous ode.

x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + x
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r = 0

For n = 0
(r(r − 1) + r + 1) a0xr = 0 (1)

Since a0 6= 0, then (r(r − 1) + r + 1) = 0 or r2 + 1 = 0. Therefore r = ±i as was found
above. The homogenous ode therefore satisfies

x2y′′ + xy′ + y =
(
r2 + 1

)
a0x

r



chapter 2 . second order ode F (x, y, y′, y′′) = 0 277

Since when r = ±i, the RHS is zero. For n ≥ 1 the recurrence relation is

(n+ r) (n+ r − 1) an + (n+ r) an + an = 0
((n+ r) (n+ r − 1) + (n+ r) + 1) an = 0(

n2 + 2nr + r2 + 1
)
an = 0 (2)

Let a0 = 1. For r = i. For n = 1

(1 + 2i− 1 + 1) a1 = 0

Hence a1 = 0. Similarly all an = 0 for n ≥ 1. Hence

y1 =
∞∑
n=0

anx
n+i

= xi(a0 + a1x+ · · · )
= a0x

i

= xi

For r = −i. For n = 1 and using b instead of a, we obtain (also using b0 = 1)

(1− 2i+ 1 + 1) bn = 0

Hence b1 = 0. Similarly all bn = 0 for n ≥ 1. Hence

y2 =
∞∑
n=0

bnx
n−i

= x−i(b0 + b1x+ · · · )
= b0x

−i

= x−i

Therefore

yh = c1y1 + c2y2

= c1x
i + c2x

−i

To find yp since the ode satisfies

x2y′′ + xy′ + y =
(
r2 + 1

)
a0x

r

Relabel r = m, a0 = c0 to avoid confusion with terms used above, then we balance
RHS, hence (

m2 + 1
)
c0x

m = 1
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This implies m = 0 and c0 = 1. Therefore

yp =
∞∑
n=0

cnx
n+m

=
∞∑
n=0

cnx
n

Using the recurrence relation (2) found above, but now using the values found m = 0
and c0 = 1, then (2) becomes(

n2 + 2nm+m2 + 1
)
cn = 0(

n2 + 1
)
cn = 0

Hence all cn = 0 except for c0. Therefore

yp =
∞∑
n=0

cnx
n

= c0

= 1

Hence the solution is

y = yh + yp

= c1x
i + c2x

−i + 1

2.3.2.5.3.2 Roots of indicial equation differ by non integer

ode internal name "second_order_series_method_regular_singular_point_difference_not_in-
teger"

If one of the roots is an integer, and the ode is inhomogeneous. ode, then we do not
need to split the solution into yh, yp and can use the integer root to find yp directly. If
both roots are non-integer, we have to split the problem into yh, yp. This is because it
will not be possible to match powers on x from the left side to the right side. Because
the RHS will be polynomial in x, but the LHS will not be polynomial in x because of
the non integer powers on x.In this case the solution is

y = c1y1 + c2y2

Where

y1 =
∞∑
n=0

anx
n+r1

y2 =
∞∑
n=0

bnx
n+r2



chapter 2 . second order ode F (x, y, y′, y′′) = 0 279

And r1, r2 are roots of the indicial equation. a0, b0 are set to 1 as arbitrary.

Example 1
2x2y′′ + 3xy′ − xy = x2 + 2x

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 3
2x , q(x) = −1

2x . There is one singular point at x = 0. Therefore p0 =
limx→0 xp(x) = limx→0

3
2 = 3

2 and q0 = limx→0 x
2q(x) = limx→0−x

2 = 0. Hence the
indicial equation is

r(r − 1) + p0r + q0 = 0

r(r − 1) + 3
2r + 0 = 0

r(2r + 1) = 0

r = 0,−1
2

Therefore r1 = 0, r2 = −1
2 .

Expansion around x = x0 = 0. This is regular singular point. Hence Frobenius is needed.
First we find yh. Let y =

∑∞
n=0 anx

n+r, hence

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

2x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + 3x
∞∑
n=0

(n+ r) anxn+r−1 − x
∞∑
n=0

anx
n+r = 0

∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

3(n+ r) anxn+r −
∞∑
n=0

anx
n+r+1 = 0

Re indexing to lowest powers on x gives
∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

3(n+ r) anxn+r −
∞∑
n=1

an−1x
n+r = 0
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When n = 0

2(r) (r − 1) a0xr + 3(r) a0xr = 0
(r(2r + 1)) a0xr = 0

Since a0 6= 0 then r(2r + 1) = 0 and r = 0, r = −1
2 as was found above. Therefore the

homogenous ode satisfies

2x2y′′ + 3xy′ − xy = (r(2r + 1)) a0xr

Where the RHS will be zero when r = 0 or r = −1
2 . For n ≥ 1 the recurrence relation is

2(n+ r) (n+ r − 1) an + 3(n+ r) an − an−1 = 0

an = an−1

2 (n+ r) (n+ r − 1) + 3 (n+ r)
= an−1

2n2 + 4nr + n+ 2r2 + r
(1)

For r = 0 the above becomes
an = an−1

2n2 + n

For n = 1 and letting a0 = 1
a1 =

1
3

For n = 2
a2 =

a1
8 + 2 = a1

10 = 1
30

For n = 3
a3 =

a2
18 + 3 = a2

21 = 1
21 (30) = 1

630
And so on. Hence

y1 =
∞∑
n=0

anx
n+r =

∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + · · ·

= 1 + 1
3x+

1
30x

2 + 1
630x

3 + · · ·

And for r = −1
2 the recurrence relation (2) becomes, and using b instead of a

bn = bn−1

2n2 + 4n
(
−1

2

)
+ n+ 1

2 −
1
2
= − bn−1

n− 2n2

For n = 1 and using b0 = 1
b1 = − b0

1− 2 = 1
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For n = 2
b2 = − b1

2− 8 = − 1
2− 8 = 1

6
For n = 3

b3 = − b2
3− 18 = −

1
6

3− 18 = 1
90

And so on. Hence

y2 =
∞∑
n=0

bnx
n+r2

= 1√
x

∞∑
n=0

bnx
n

= 1√
x

(
b0 + b1x+ b2x

2 + · · ·
)

= 1√
x

(
1 + x+ 1

6x
2 + 1

90x
3 + · · ·

)
Hence

yh = c1y1 + c2y2

= c1

(
1 + 1

3x+
1
30x

2 + 1
630x

3 + · · ·
)
+ c2

1√
x

(
1 + x+ 1

6x
2 + 1

90x
3 + · · ·

)
Now we find yp. Since ode satisfies

2x2y′′ + 3xy′ − xy = (r(2r + 1)) a0xr

To find yp, and relabeling r as m and a as c so not to confuse terms used for yh. Then
the above becomes

2x2y′′ + 3xy′ − xy = (m(2m+ 1)) c0xm

The RHS is x2 + 2x. We balance each term at a time, this finds a particular solution
for each term on the RHS, then these particular solutions are added at the end. For
the input 2x the balance equation is

(m(2m+ 1)) c0xm = 2x

This implies that
m = 1

Therefore (m(2m+ 1)) c0 = 2, or c0(1(2 + 1)) = 2 or 3c0 = 2 or

c0 =
2
3
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The recurrence relation now becomes (using m for r and c0 for a0)

cn = cn−1

2n2 + 4nm+ n+ 2m2 +m

For m = 1 the above becomes

cn = cn−1

2n2 + 5n+ 3

For n = 1 and using c0 = 2
3

c1 =
2
3

2 + 5 + 3 = 1
15

For n = 2
c2 =

c1
8 + 10 + 3 =

1
15

8 + 10 + 3 = 1
315

For n = 3
c3 =

c2
18 + 15 + 3 =

1
315

18 + 15 + 3 = 1
11 340

And so on. Hence

yp1 =
∞∑
n=0

cnx
n+m = x

∞∑
n=0

cnx
n

= x
(
c0 + c1x+ c2x

2 + · · ·
)

= x

(
2
3 + 1

15x+
1
315x

2 + 1
11 340x

3 + · · ·
)

=
(
2
3x+

1
15x

2 + 1
315x

3 + 1
11 340x

4 + · · ·
)

The second term x2 is now balanced x2. The balance equation is

(m(2m+ 1)) c0xm = x2

Therefore m = 2 and (m(2m+ 1)) c0 = 1. Hence

(2(4 + 1)) c0 = 1

c0 =
1
10

The recurrence relation becomes for m = 2

cn = cn−1

2n2 + 4nm+ n+ 2m2 +m

For m = 2 the above becomes

cn = cn−1

2n2 + 9n+ 10
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For n = 1 and using c0 = 1
10

c1 =
1
10

2 + 9 + 10 = 1
210

For n = 2
c2 =

c1
8 + 18 + 10 =

1
210

8 + 18 + 10 = 1
7560

For n = 3
c3 =

c2
18 + 27 + 10 =

1
7560

18 + 27 + 10 = 1
415 800

And so on. Hence

yp2 =
∞∑
n=0

cnx
n+m = x2

∞∑
n=0

cnx
n

= x2
(
c0 + c1x+ c2x

2 + · · ·
)

= x2
(

1
10 + 1

210x+
1

7560x
2 + 1

415 800x
3 + · · ·

)
=
(

1
10x

2 + 1
210x

3 + 1
7560x

4 + 1
415 800x

5 + · · ·
)

The particular solution is the sum of all the particular solutions found above, which is

yp = yp1 + yp2

=
(
2
3x+

1
15x

2 + 1
315x

3 + 1
11 340x

4 + · · ·
)
+
(

1
10x

2 + 1
210x

3 + 1
7560x

4 + 1
415 800x

5 + · · ·
)

= 2
3x+

(
1
15 + 1

10

)
x2 +

(
1
315 + 1

210

)
x3 +

(
1

11 340 + 1
7560

)
x4 + · · ·

= 2
3x+

1
6x

2 + 1
126x

3 + 1
4536x

4 + · · ·

Hence the complete solution is

y = yh + yp

= c1

(
1 + 1

3x+
1
30x

2 + 1
630x

3 + · · ·
)
+ c2

1√
x

(
1 + x+ 1

6x
2 + 1

90x
3 + · · ·

)
+ 2

3x+
1
6x

2 + 1
126x

3 + 1
4536x

4 + · · ·

Example 2
2xy′′ + (x+ 1) y′ + 3y = 5

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0
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Hence p(x) = (x+1)
2x , q(x) = 3

2x . There is one singular point at x = 0. Therefore p0 =
limx→0 xp(x) = limx→0

(x+1)
2 = 1

2 and q0 = limx→0 x
2q(x) = limx→0

3x
2 = 0. Hence the

indicial equation is

r(r − 1) + p0r + q0 = 0

r(r − 1) + 1
2r + 0 = 0

r(2r − 1) = 0

r = 0, 12

Therefore r1 = 0, r2 = 1
2 .

Expansion around x = x0 = 0. This is regular singular point. Hence Frobenius is needed.
Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The homogenous ode becomes

2x
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + (x+ 1)
∞∑
n=0

(n+ r) anxn+r−1 + 3
∞∑
n=0

anx
n+r = 0

∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

3anxn+r = 0

Re indexing to lowest powers on x gives
∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r−1+
∞∑
n=1

(n+ r − 1) an−1x
n+r−1+

∞∑
n=0

(n+ r) anxn+r−1+
∞∑
n=1

3an−1x
n+r−1 = 0

For n = 0

(2(r) (r − 1) a0 + ra0)xr−1 = 0
(2r(r − 1) + r) a0 = 0
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Since a0 6= 0 then the first term above will vanish only when 2r(r − 1) + r = 0 or
r(2r − 1) = 0. Hence r = 0, r = 1

2 as was found above. For n ≥ 1

2(n+ r) (n+ r − 1) an + (n+ r − 1) an−1 + (n+ r) an + 3an−1 = 0

an = − n+ r + 2
(n+ r) (2r + 2n− 1)an−1

(1)

Therefore the differential equation satisfies

2xy′′ + (x+ 1) y′ + 3y = r(2r − 1) a0xr−1 (2)

The RHS above will be zero when r = 0 or r = 1
2 . When r = 0 the recurrence relation

(1) becomes
an = − n+ 2

(n) (2n− 1)an−1

Which gives (for a0 = 1) (working out few terms using the above)

y1 = 1− 3x+ 2x2 − 2
3x

3 + · · ·

And when r = 1
2 the recurrence relation is (using b in place of a and letting b0 = 1 also)

bn = −
n+ 5

2(
n+ 1

2

)
(1 + 2n− 1)

bn−1

Which gives (working out few terms)

y2 =
√
x

(
1− 7x

6 + 21x
2

40 + · · ·
)

Hence the solution is

yh = c1y1 + c2y2

= c1

(
1− 3x+ 2x2 − 2

3x
3 + · · ·

)
+ c2

(√
x

(
1− 7x

6 + 21x
2

40 + · · ·
))

Now we find yp. From (2), and relabeling r as m and a as c so not to confuse terms
used

2xy′′ + (x+ 1) y′ + 3y = m(2m− 1) c0xm−1

Therefore we need to balance m(2m− 1) c0xm−1 = 5 since the RHS is 5. This implies
m− 1 = 0 or m = 1. Therefore m(2m− 1) c0 = 5 or (2− 1) c0 = 5 which gives c0 = 5.
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Hence

yp =
∞∑
n=0

cnx
n+m

= x
∞∑
n=0

cnx
n

To find cn, the same recurrence relation (1) is used by with r replaced by m and a

replaced by c. This gives

cn = − n+m+ 2
(n+m) (2m+ 2n− 1)cn−1

For m = 1 the above becomes

cn = − n+ 3
(n+ 1) (1 + 2n)cn−1

For n = 1
c1 = − 1 + 3

(1 + 1) (1 + 2)c0 = −2
3c0 = −2

3(5) = −10
3

For n = 2
c2 = − 2 + 3

(2 + 1) (1 + 4)c1 = −1
3c1 = −1

3

(
−10

3

)
= 10

9
For n = 3

c1 = − 3 + 3
(3 + 1) (1 + 6)c2 = − 3

14

(
10
9

)
= −2

3(5) = − 5
21

And so on. Hence

yp = x
∞∑
n=0

cnx
n

= x
(
c0 + c1x+ c2x

2 + c3x
3 + · · ·

)
= x

(
5− 10

3 x+
10
9 x

2 − 5
21x

3 + · · ·
)

=
(
5x− 10

3 x
2 + 10

9 x
3 − 5

21x
4 + · · ·

)
Hence the final solution

y = yh + yp

= c1

(
1− 3x+ 2x2 − 2

3x
3 + · · ·

)
+
√
xc2

(
1− 7x

6 + 21x
2

40 + · · ·
)
+
(
5x− 10

3 x
2 + 10

9 x
3 − 5

21x
4 + · · ·

)
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Example 3
2xy′′ + (x+ 1) y′ + 3y = x

This is the same problem as above but different RHS. As shown above, we obtained
that the differential equation satisfies

2xy′′ + (x+ 1) y′ + 3y = r(2r − 1) a0xr−1

To find yp, and using m in place of r and c in place of a so not to confuse terms with
the yh terms, then the above becomes

2xy′′ + (x+ 1) y′ + 3y = m(2m− 1) c0xm−1

The RHS above will be zero when m = 0 or m = 1
2 . We now need to balance the RHS

against given RHS which is x. Hence

m(2m− 1) c0xm−1 = x

To balance this we need m− 1 = 1 or m = 2. Hence 2(4− 1) c0 = 1 or c0 = 1
6 . Using

the recurrence relation we found above, which is for n ≥ 1 (again, calling r as m so not
to confuse yh terms with yp terms), we obtain

cn = − n+m+ 2
(n+ r) (2m+ 2n− 1)cn−1

But now using m = 2
cn = − n+ 4

(n+ 2) (4 + 2n− 1)cn−1

Hence for n = 1

c1 = − 1 + 4
(1 + 2) (4 + 2− 1)c0

= −1
3c0

= −1
3

(
1
6

)
= − 1

18

for n = 2

c2 = − 6
(2 + 2) (4 + 4− 1)c1

= − 3
14c1 = − 3

14

(
− 1
18

)
= 1

84
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For n = 3

c3 = − 3 + 4
(3 + 2) (4 + 6− 1)c2

= − 7
45c2 = − 7

45

(
1
84

)
= − 1

540

For n = 4

c4 = − 4 + 4
(4 + 2) (4 + 8− 1)c3

= − 4
33c3 = − 4

33

(
− 1
540

)
= 1

4455

And so on. Hence

yp =
∞∑
n=0

cnx
n+r

= x2
∞∑
n=0

cnx
n

= x2
(
c0 + c1x+ c2x

2 + · · ·
)

= x2
(
1
6 − 1

18x+
1
84x

2 − 1
540x

3 + 1
4455x

4 + · · ·
)

Hence the solution is (yh was found in the earlier problem)

y = yh + yp

= c1

(
1− 3x+ 2x2 − 2

3x
3 + · · ·

)
+ c2

(√
x

(
1− 7x

6 + 21x
2

40 + · · ·
))

+ x2
(
1
6 − 1

18x+
1
84x

2 − 1
540x

3 + 1
4455x

4 + · · · · · ·
)

Example 4
x2y′′ + (x+ 1) y′ + y = 5

Expansion around x = x0 = 0. This is regular singular point. Hence Frobenius is needed.
Comparing the ode to

y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = x+1
x2 , q(x) = 1

x2 . Therefore p0 = limx→0 xp(x) = limx→0
x+1
x

which is not
defined. Hence not possible to solve this using series solution.

Example 5
2x2y′′ − xy′ +

(
1− x2

)
y = x2

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0
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Hence p(x) = −x
2x2 = − 1

2x , q(x) =
(
1−x2)
2x2 . Therefore p0 = limx→0 xp(x) = limx→0

−1
2 = −1

2

and q0 = limx→0 x
2q(x) = limx→0

(
1−x2)
2 = 1

2 . Hence the indicial equation is

r(r − 1) + p0r + q0 = 0

r(r − 1)− 1
2r +

1
2 = 0

r2 − 3
2r +

1
2 = 0

r = 1, 12

Therefore r1 = 0, r2 = −1
2 . Expansion around x = x0 = 0. This is regular singular point.

Hence Frobenius is needed. First we find yh. Let y =
∑∞

n=0 anx
n+r, hence

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The homogenous ode becomes

2x2y′′ − xy′ +
(
1− x2

)
y = 0

2x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 − x
∞∑
n=0

(n+ r) anxn+r−1 +
(
1− x2

) ∞∑
n=0

anx
n+r = 0

∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r −
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r −

∞∑
n=0

anx
n+r+2 = 0

Re indexing to lowest powers on x gives
∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r −
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r −

∞∑
n=2

an−2x
n+r = 0

When n = 0

(2(n+ r) (n+ r − 1) a0 − (n+ r) a0 + a0)xr = 0
(2r(r − 1)− r + 1) a0xr = 0(

2r2 − 3r + 1
)
a0x

r = 0
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Since a0 6= 0 then 2r2 − 3r + 1 = 0, hence r = 1, r = 1
2 as was found above. Therefore

the homogenous ode satisfies

2x2y′′ − xy′ +
(
1− x2

)
y =

(
2r2 − 3r + 1

)
a0x

r

Where the RHS will be zero when r = 1, r = 1
2 . When n = 1

2(1 + r) (1 + r − 1) a1 − (1 + r) a1 + a1 = 0
(2(1 + r) (1 + r − 1)− (1 + r) + 1) a1 = 0

r(2r + 1) a1 = 0

Hence a1 = 0. For n ≥ 2 the recurrence relation is

2(n+ r) (n+ r − 1) an − (n+ r) an + an − an−2 = 0

an = an−2

2 (n+ r) (n+ r − 1)− (n+ r) + 1
= an−2

2 (n+ r) (n+ r − 1)− (n+ r) + 1
(1)

For r = 1 the above becomes
an = an−2

n (2n+ 1)
For n = 2 and letting a0 = 1

a2 =
a0

2 (4 + 1) = 1
10

For n = 3
a3 =

a1
n (2n+ 1) = 0

For n = 4
a4 =

a2
4 (8 + 1) =

1
10

4 (8 + 1) = 1
360

And so on. Hence

y1 =
∞∑
n=0

anx
n+r = x

∞∑
n=0

anx
n

= x
(
a0 + a1x+ a2x

2 + · · ·
)

= x

(
1 + x2

10 + x4

360 + · · ·
)
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And for r = 1
2 the recurrence relation (1) becomes, and using b instead of a

bn == bn−2

2 (n+ r) (n+ r − 1)− (n+ r) + 1

= bn−2

2
(
n+ 1

2

) (
n+ 1

2 − 1
)
−
(
n+ 1

2

)
+ 1

= bn−2

n (2n− 1)

Notice also that b1 = 0 just like a1 = 0 from above. Now, for n = 2 and using b0 = 1

b2 =
b0

2 (4− 1) = 1
6

For n = 3
b2 = − b1

2− 8 = − 1
2− 8 = 1

6
For n = 3

b3 =
b1

n (2n− 1) = 0

For n = 4
bn = b2

4 (8− 1) =
1
6

4 (8− 1) = 1
168

And so on. Hence

y2 =
∞∑
n=0

bnx
n+r2

=
√
x

∞∑
n=0

bnx
n

=
√
x
(
b0 + b1x+ b2x

2 + · · ·
)

=
√
x

(
1 + 1

6x
2 + 1

168x
4 + · · ·

)
Hence

yh = c1y1 + c2y2

= c1

(
x

(
1 + x2

10 + x4

360 + · · ·
))

+ c2
√
x

(
1 + 1

6x
2 + 1

168x
4 + · · ·

)
= c1

(
x+ x3

10 + x5

360 + · · ·
)
+ c2

√
x

(
1 + 1

6x
2 + 1

168x
4 + · · ·

)
Now we find yp. Since ode satisfies

2x2y′′ − xy′ +
(
1− x2

)
y =

(
2r2 − 3r + 1

)
a0x

r
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To find yp, and relabeling r as m and a as c so not to confuse terms used for yh. Then
the above becomes

2x2y′′ − xy′ +
(
1− x2

)
y =

(
2m2 − 3m+ 1

)
c0x

m

The RHS is x2. Hence the balance equation is(
2m2 − 3m+ 1

)
c0x

m = x2

This implies that
m = 2

Therefore (2m2 − 3m+ 1) c0 = 1, or (8− 6 + 1) c0 = 1 or

c0 =
1
3

The recurrence relation (1) from above now becomes (using m for r and c0 for a0)

cn = cn−2

2 (n+m) (n+m− 1)− (n+m) + 1

For m = 2 the above becomes

cn = cn−2

2 (n+ 2) (n+ 1)− (n+ 2) + 1
= cn−2

2n2 + 5n+ 3
For n = 1 we use c1 = 0 the same as was found for a1, b1. For n ≥ 2 the above is used.
Hence for n = 2

c2 =
c0

8 + 10 + 3 =
1
3

8 + 10 + 3 = 1
63

For n = 3
c3 =

c1
18 + 15 + 3 = 0

For n = 4
c4 =

c2
32 + 20 + 3 =

1
63

32 + 20 + 3 = 1
3465

And so on. Hence

yp =
∞∑
n=0

cnx
n+m = x2

∞∑
n=0

cnx
n

= x2
(
c0 + c1x+ c2x

2 + · · ·
)

= x2
(
1
3 + 1

63x
2 + 1

3465x
4 + · · ·

)
= 1

3x
2 + 1

63x
4 + 1

3465x
6 + · · ·
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Hence the complete solution is

y = yh + yp

= c1

(
x+ x3

10 + x5

360 + · · ·
)
+ c2

√
x

(
1 + 1

6x
2 + 1

168x
4 + · · ·

)
+
(
1
3x

2 + 1
63x

4 + 1
3465x

6 + · · ·
)

Alternative way to find yp is the the following. Let yp = c0 + c1x + c2x
2 + c3x

3 + · · ·
then y′p = c1 + 2c2x+ 3c3x2 + · · · and y′′p = 2c2 + 6c3x+ · · · . Hence the ode becomes

2x2(2c2 + 6c3x+ · · · )− x
(
c1 + 2c2x+ 3c3x2 + · · ·

)
+
(
1− x2

) (
c0 + c1x+ c2x

2 + c3x
3 + · · ·

)
= x2

c0 + x(−c1 + c1) + x2(4c2 − 2c2 + c2 − c0) + x3(· · · ) = x2

Hence c0 = 0, 4c2 − 2c2 + c2 − c0 = 1 or 3c2 − c0 = 1 or c2 = 1
3 . We need to keep adding

more equations and solving them simultaneously. This method is not as easy to use as
the method used above, which uses the balance equation to find to yp. Also this method
could fail, since in practice we should not use undetermined coefficients method (which
is what this does) on an ode with variable coefficients. So I will not use this any more.

Example 6
2xy′′ + y′ + y = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1
2x , q(x) = 1

2x . Therefore p0 = limx→0 xp(x) = limx→0
1
2 = 1

2 and q0 =
limx→0 x

2q(x) = limx→0
x
2 = 0. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0

r(r − 1) + 1
2r = 0

r(2r − 1) = 0

r = 0, 12
Therefore r1 = 0, r2 = 1

2 . Expansion around x = x0 = 0. This is regular singular point.
Hence Frobenius is needed. First we find yh. Let y =

∑∞
n=0 anx

n+r, hence

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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The ode becomes

xy′′ + y′ + y = 0

2x
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

Re indexing to lowest powers on x gives
∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=1

an−1x
n+r−1 = 0

When n = 0

2(r) (r − 1) a0xr−1 + ra0x
r−1 = 0

(2r(r − 1) + r) a0xr−1 = 0
(r(2r − 1)) a0xr−1 = 0

Since a0 6= 0 then r(2r − 1) = 0, hence r = 0, r = 1
2 as was found above. Therefore the

homogenous ode satisfies

2xy′′ + y′ + y = (r(2r − 1)) a0xr−1

Where the RHS will be zero when r = 1, r = 1
2 . For n ≥ 1 the recurrence relation is

2(n+ r) (n+ r − 1) an + (n+ r) an = −an−1

an = −an−1

2 (n+ r) (n+ r − 1) + (n+ r)

= −an−1

2n2 + 4nr − n+ 2r2 − r
(1)

For r = 0 the above becomes
an = −an−1

n (2n− 1)
For n = 1 and using a0 = 1

a1 =
−a0

n (2n− 1) = −1

For n = 2
a2 =

−a1
2 (3) = 1

6
For n = 3

a3 =
−a2
3 (5) =

−1
6

15 = − 1
90
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And so on. Hence

y1 =
∞∑
n=0

anx
n+r1

= a0 + a1x+ a2x
2 + · · ·

= 1− x+ 1
6x

2 − 1
90x

3 + · · ·

To find y2, using (1) but replacing a by b and using r = 1
2 and letting b0 = 1 and

following the above process gives

bn = −bn−1

2n2 + 4n
(1
2

)
− n+ 2

(1
2

)2 − 1
2

= − bn−1

2n2 + n

For n = 1
b1 = −b03 = −1

3
For n = 2

b2 = − b1
8 + 2 = − b1

10 = −
−1

3
10 = 1

30
And so on. Hence we obtain

y2 =
√
x

∞∑
n=0

bnx
n

=
√
x
(
b0 + b1x+ b2x

2 + · · ·
)

=
√
x

(
1− 1

3x+
1
30x

2 + · · ·
)

Therefore the solution is

y = c1y1 + c2y1

= c1

(
1− x+ 1

6x
2 − 1

90x
3 + · · ·

)
+ c2

(√
x

(
1− 1

3x+
1
30x

2 + · · ·
))

Example 7
4xy′′ + 3y′ + 3y =

√
x

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 3
4x , q(x) = 3

4x . Therefore p0 = limx→0 xp(x) = limx→0
3
4 = 3

4 and q0 =
limx→0 x

2q(x) = limx→0
3x
4 = 0. Hence x = 0 is regular singular point. The indicial
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equation is

r(r − 1) + p0r + q0 = 0

r(r − 1) + 3
4r + 0 = 0

r(r − 1) + 3
4r = 0

r = 1
4 , 0

Frobenius is now used. Roots differ by non integer. First we find yh. Let y =∑∞
n=0 anx

n+r.

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The homogenous ode becomes

4x
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + 3
∞∑
n=0

(n+ r) anxn+r−1 + 3
∞∑
n=0

anx
n+r = 0

∞∑
n=0

4(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

3(n+ r) anxn+r−1 +
∞∑
n=0

3anxn+r = 0

Re indexing to lowest powers on x gives
∞∑
n=0

4(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

3(n+ r) anxn+r−1 +
∞∑
n=1

3an−1x
n+r−1 = 0

When n = 0

4(n+ r) (n+ r − 1) anxn+r−1 + 3(n+ r) anxn+r−1 = 0
4r(r − 1) a0 + 3ra0 = 0
(4r(r − 1) + 3r) a0 = 0

Since a0 6= 0 then 4r(r − 1)+ 3r = 0, hence r = 0, r = 1
4 as was found above. Therefore

the homogenous ode satisfies

4xy′′ + 3y′ + 3y = (4r(r − 1) + 3r) a0xr−1
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Hence the balance equation is that we will use to find the particular solution is

(4m(m− 1) + 3m) c0xm−1 =
√
x

We will get back to the above after finding yh. Going over the same steps as before, we
find the recurrence relation

an = − 3an−1

4n2 + 8nr + 4r2 − n− r

For r = 1
4 , n > 0 and similarly

bn = − 3an−1

4n2 + 8nr + 4r2 − n− r

For r = 0, n > 0. Finding few terms using the above gives the solution as

yh = c1y1(x) + c2y2(x)

= c1x
1
4

(
1− 3

5x+
1
10x

2 − 1
130x

3 + · · ·
)
+ c2

(
1− x+ 3

14x
2 − 3

154x
3 + · · ·

)
Now we need to find yp. From the balance equation

(4m(m− 1) + 3m) c0xm−1 =
√
x

Hencem−1 = 1
2 orm = 3

2 . And (4m(m− 1) + 3m) c0 = 1, hence
(
4
(3
2

) (3
2 − 1

)
+ 3
(3
2

))
c0 =

1, which gives c0 = 2
15 . Therefore

yp = xm
∞∑
n=0

cnx
n

= x
3
2
(
c0 + c1x+ c2x

2 + · · ·
)

= x
3
2

(
2
15 + c1x+ c2x

2 + · · ·
)

We now just need to determined cn for n > 0. For this we use the same recurrence
relation as found above. We can use an or bn as they are the same, but change an to cn
and r to c (so not to confuse notations). This gives

cn = − 3cn−1

4n2 + 8nm+ 4m2 − n−m

For n > 0 and m = 3
2 . Hence for n = 1 the above gives

c1 = − 3c0
4 + 8

(3
2

)
+ 4

(3
2

)2 − 1− 3
2

= −
3
( 2
15

)
4 + 8

(3
2

)
+ 4

(3
2

)2 − 1− 3
2

= − 4
225
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For n = 2

c1 = − 3c1
4 (2)2 + 8 (2)

(3
2

)
+
(3
2

)2 − 2−
(3
2

)
= −

3
(
− 4

225

)
4 (2)2 + 8 (2)

(3
2

)
+ 4

(3
2

)2 − 2−
(3
2

)
= 8

6825
And so on. Hence

yp = x
3
2

(
2
15 + c1x+ c2x

2 + · · ·
)

= x
3
2

(
2
15 − 4

225x+
8

6825x
2 − 16

348075x
3 + · · ·

)
Hence the complete solution is

y = yh + yp

= c1x
1
4

(
1− 3

5x+
1
10x

2 − 1
130x

3 + · · ·
)
+ c2

(
1− x+ 3

14x
2 − 3

154x
3 + · · ·

)
+ x

3
2

(
2
15 − 4

225x+
8

6825x
2 − 16

348075x
3 + · · ·

)

2.3.2.5.3.3 Roots of indicial equation differ by integer. Good case

ode internal name "second_order_series_method_regular_singular_point_difference_is_in-
teger_good_case".

In this case the solution is
y = c1y1 + c2y2

There are two sub cases that show up when roots differ by integer. First sub case
is when the second solution y2 is obtained similar to how y1 is obtained. i.e. using
standard Frobenius series but with the second root. The second sub case is the harder
one, this is when y2 fails to be obtained using the standard method due to bN being
undefined where N is the difference between the roots. In this sub case we need to use
a modified Frobenius series method where, which is explained more using examples
below. Therefore for sub case one (called the good case) we have

y1 =
∞∑
n=0

anx
n+r1

y2 =
∞∑
n=0

bnx
n+r2
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For the second subcase (called the bad case) first we will find the bad root r of the
indicial equation which causes the recurrence relation to become undefined at some n.
Call it rbad, then we first find y defined as

y = xr
∞∑
n=0

(r − rbad) anxn

Where an is found using the recurrence relation (but r is kept symbolic). y1 is then
found from by evaluating it r = rbad

y1 = yr=rbad

And also setting a0 = 1. Note that some terms will vanish above but not all, since there
will be cancellation of (r − rbad) during the process. y2 is next found using

y2 =
(
d

dr
y

)
r=rbad

= y1 ln (x) + xrbad
∞∑
n=0

(
d

dr
((r − rbad) anxn)

)
r=rbad

Example 1 (
x− x2

)
y′′ + 3y′ + 2y = 3x2

Comparing the above to y′′+p(x) y′+q(x) y = 0 shows that p(x) = 3
x(1−x) , q(x) =

2
x(x−1) .

Hence there are two singular points, one at x = 0 and one at x = 1. Let the expansion
be around x = 0. This means the solution will define up to x = 1, which is the next
nearest singular point.

p0 = lim
x→0

xp(x) = lim
x→0

x
3

x (1− x) = 3

And
q0 = lim

x→0
x2

2
x (1− x) = 0

Hence x0 = 0 is a regular singular point. The indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) + 3r = 0
r2 − r + 3r = 0

r2 + 2r = 0
r(r + 2) = 0
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Therefore r = 0, r = −2. They differ by an integer N = 2. Therefore two linearly
independent solutions can be constructed using

y1 =
∞∑
n=0

anx
n+r1

y2 =
∞∑
n=0

bnx
n+r2

Where C above can be zero depending on a condition given below. Now we will work
out the solution for a general r. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The homogeneous ode becomes (
x− x2

)
y′′ + 3y′ + 2y = 0(

x− x2
) ∞∑

n=0

(n+ r) (n+ r − 1) anxn+r−2 + 3
∞∑
n=0

(n+ r) anxn+r−1 + 2
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

3(n+ r) anxn+r−1 +
∞∑
n=0

2anxn+r = 0

Re indexing to lowest powers on x gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1−
∞∑
n=1

(n+ r − 1) (n+ r − 2) an−1x
n+r−1+

∞∑
n=0

3(n+ r) anxn+r−1+
∞∑
n=1

2an−1x
n+r−1 = 0

(1A)
For n = 0

(n+ r) (n+ r − 1) anxn+r−1 + 3(n+ r) anxn+r−1 = 0
(r(r − 1) + 3r) a0xr−1 =(

r2 + 2r
)
a0x

r−1 = 0 (1B)

Since a0 6= 0, then r = 0, r = −2 as was found above. Hence N = 2 which is the
difference between the two roots. The homogenous ode therefore satisfies(

x− x2
)
y′′ + 3y′ + 2y =

(
r2 + 2r

)
a0x

r−1
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Since when r = 0, r = −2 the RHS is zero. The term on the right of the above
is important as it will be used to determine the particular solution. The recurrence
relation is when n ≥ 1 from (1A) and is given by

(n+ r) (n+ r − 1) an − (n+ r − 1) (n+ r − 2) an−1 + 3(n+ r) an + 2an−1 = 0

Keeping larger an on the left and all lower an on the right gives

an = −2 + (n+ r − 1) (n+ r − 2)
(n+ r) (n+ r − 1) + 3 (n+ r)an−1

an = n+ r − 3
n+ r + 2an−1 (1)

Now we find yh = c1y1 + c2y2. For r = 0 then (1) becomes

an = n− 3
n+ 2an−1 (2)

For n = 1 and letting a0 = 1 then (2) gives

a1 =
1− 3
1 + 2a0 =

−2
3

For n = 2 Eq. (2) gives

a2 =
2− 3
2 + 2a1 =

2− 3
2 + 2

(
−2
3

)
= 1

6

For n = 3 Eq. (2) gives
a3 =

3− 3
3 + 2a2 = 0

And all other higher an = 0. Hence

y1 =
∞∑
n=0

anx
n

= a0 + a1x+ a2x
2

= 1− 2
3x+

1
6x

2

Now we need to find y2. We first check if y2 can be found using standard method as
was done above for y1. For this we calculate bN = b2 using same recurrence relation (1)
to see if it is defined or not. If it is defined, then we continue, else we have to use the
modified Frobenius method. From (1) and using b instead of a and using r = r2 = −2
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gives

bn = n+ r − 3
n+ r + 2bn−1

= n− 2− 3
n− 2 + 2bn−1

= n− 5
n

bn−1

Hence for n = 1 and using b0 = 1 as we did for a0 gives

b1 = −4b0 = −4

For n = N = 2
bn = −3

2 b1 = 6

Since bN is defined, we can continue and y2 is found using same recurrence relation.
Hence this is subcase one. For n = 3

b3 =
−2
3 b2 = −4

For n = 4
b4 =

−1
4 b3 = 1

And so on. Hence

y2 =
1
x2

∞∑
n=0

bnx
n

= 1
x2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4)
= 1
x2
(
1− 4x+ 6x2 − 4x3 + x4

)
Therefore

yh = c1y1 + c2y2

= c1

(
1− 2

3x+
1
6x

2
)
+ c2

(
1
x2
(
1− 4x+ 6x2 − 4x3 + x4

))
Now we find yp. From earlier we found in (1B) the balance equation which gives(

x− x2
)
y′′ + 3y′ + 2y =

(
r2 + 2r

)
a0x

r−1

Relabeling r as m and a as c so not to confuse terms used in finding yh the above
becomes (

x− x2
)
y′′ + 3y′ + 2y =

(
m2 + 2m

)
c0x

m−1
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Therefore we need to balance (m2 + 2m) c0xm−1 = 3x2. This implies m − 1 = 2 or
m = 3. Therefore (m2 + 2m) c0 = 3 or (9 + 6) c0 = 3 which gives c0 = 3

15 = 1
5 . Hence

yp =
∞∑
n=0

cnx
n+m

= x3
∞∑
n=0

cnx
n

To find cn, the same recurrence relation given in (1) is used again but now r is replaced
by m and a replaced by c. This gives the recurrence relation to find coefficients of the
particular solution as

cn = n+m− 3
n+m+ 2cn−1

For m = 3 the above becomes

cn = n+ 3− 3
n+ 3 + 2cn−1

= n

n+ 5cn−1

For n = 1
c1 =

1
6c0 =

1
6

(
1
5

)
= 1

30
For n = 2

c2 =
2

2 + 5c1 =
2
7

(
1
30

)
= 1

105
And so on. Hence

yp = x3
∞∑
n=0

cnx
n

= x3
(
c0 + c1x+ c2x

2 + · · ·
)

= x3
(
1
5 + 1

30x+
1
105x

2 + · · ·
)

Hence the final solution

y = yh + yp

= c1

(
1− 2

3x+
1
6x

2
)
+ c2

(
1
x2
(
1− 4x+ 6x2 − 4x3 + x4

))
+
(
1
5x

3 + 1
30x

4 + 1
105x

5 + · · ·
)

If we try to find yp by assuming yp =
∑∞

n=0 cnx
n and substituting into the ode and try

to match coefficients, we can not always be successful. The above method using the
balance equation always works and that is what I am using in my solver.
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Example 2
4x2y′′ + 4xy′ +

(
4x2 − 1

)
y = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1
x
, q(x) = 4x2−1

4x2 . Therefore p0 = limx→0 xp(x) = limx→0 1 = 1 and
q0 = limx→0 x

2q(x) = limx→0
4x2−1

4 = −1
4 . Hence the indicial equation is

r(r − 1) + p0r + q0 = 0

r(r − 1) + r − 1
4 = 0

r2 − 1
4 = 0

r = −1
2 ,

1
2

Therefore r1 = 1
2 , r2 = −1

2 .

Expansion around x = 0. This is regular singular point. Hence Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

4x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + 4x
∞∑
n=0

(n+ r) anxn+r−1 + 4x2
∞∑
n=0

anx
n+r −

∞∑
n=0

anx
n+r = 0

∞∑
n=0

4(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

4(n+ r) anxn+r +
∞∑
n=0

4anxn+r+2 −
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(4(n+ r) (n+ r − 1) + 4(n+ r)− 1) anxn+r +
∞∑
n=0

4anxn+r+2 = 0

∞∑
n=0

(
4n2 + 8nr + 4r2 − 1

)
anx

n+r +
∞∑
n=0

4anxn+r+2 = 0

∞∑
n=0

(
4(n+ r)2 − 1

)
anx

n+r +
∞∑
n=0

4anxn+r+2 = 0

(1)
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Re indexing to lowest powers on x gives
∞∑
n=0

(
4(n+ r)2 − 1

)
anx

n+r +
∞∑
n=2

4an−2x
n+r = 0 (2)

n = 0 gives (
4r2 − 1

)
a0x

r = 0

Since a0 6= 0, then r1 = 1
2 , r2 = −1

2 as was found above. The ode therefore satisfies

4x2y′′ + 4xy′ +
(
4x2 − 1

)
y =

(
4r2 − 1

)
a0x

r

Since when r1 = 1
2 , r2 = −1

2 the RHS is zero. When n = 1 then (2) gives(
4(1 + r)2 − 1

)
a1 = 0 (3)

The recurrence relation is when n ≥ 2 from (2) is given by(
4(n+ r)2 − 1

)
an + 4an−2 = 0

an = −4
4 (n+ r)2 − 1

an−2 (4)

Since roots differ by an integer N = 1 then there two linearly independent solutions
can be constructed using

y1 = xr1
∞∑
n=0

anx
n

y2 = Cy1 ln (x) + xr2
∞∑
n=0

bnx
n

C above can come out to be zero. We start by finding y1 (the one with the larger r).

Now, using r = 1
2 . For n = 1 and from (3)(

4
(
1 + 1

2

)2

− 1
)
a1 = 0

8a1 = 0
a1 = 0

From n = 2 from (4) and using r = 1
2 it becomes

an = −4
4
(
n+ 1

2

)2 − 1
an−2

= − 1
n2 + n

an−2 (5)
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For n = 2 then (5) gives (and using a0 = 1)

a2 = −1
6a0

= −1
6

For n = 3 Eq (5) gives

a3 = − 1
12a1

= 0

For n = 4 Eq (5) gives

a4 = − 1
20a2

= − 1
20

(
−1
6

)
= 1

120
And so on. Hence

y1 =
∞∑
n=0

anx
n+ 1

2

= x
1
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + · · ·
)

=
√
x

(
1− 1

6x
2 + 1

120x
4 + · · ·

)
Now we need to find y2. We first check if y2 can be found using standard method as
was done above for y1. For this we calculate bN = b1 using same recurrence relation (1)
to see if it is defined or not. If it is defined, then we continue, else we have to use the
modified Frobenius method. From (1) and using b instead of a and using r = r2 = −1

2
gives (

4
(
1− 1

2

)2

− 1
)
b1 = 0

0b1 = 0

Hence b1 is arbitrary. Let b1 = 0. Since bN = b1 is defined, we can continue and y2 is
found using same recurrence relation. Hence this is subcase one. From (4) and using
r = −1

2 it becomes

bn = −4
4
(
n− 1

2

)2 − 1
bn−2

= − 1
n (n− 1)bn−2 (6)
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For n = 2 Eq (6) gives (and using b0 = 1)

b2 = − 1
2 (2− 1)b0

= −1
2

For n = 3 Eq (6) gives

b3 = − 1
3 (3− 1)b1

= 0

For n = 4 Eq (6) gives

b4 = − 1
4 (4− 1)b2

= −− 1
12

(
−1
2

)
= 1

24
And so on. Hence

y2 =
∞∑
n=0

bnx
n− 1

2

= 1√
x

(
b0 + b1x+ b2x

2 + · · ·
)

= 1√
x

(
1− 1

2x
2 + 1

24x
4 + · · ·

)
Therefore the final solution is

y = c1y1 + c2y2

= c1
√
x

(
1− 1

6x
2 + 1

120x
4 + · · ·

)
+ c2

1√
x

(
1− 1

2x
2 + 1

24x
4 + · · ·

)
Example 3

y′′ + y′ + y =
√
x

This ode is here because the RHS has no series expansion at x = 0. Comparing the
ode to

y′′ + p(x) y′ + q(x) y = 0
Hence p(x) = 1, q(x) = 1. Therefore p0 = limx→0 xp(x) = limx→0 x = 0 and q0 =
limx→0 x

2q(x) = limx→0 x
2 = 0. Hence the indicial equation is

r(r − 1) = 0
r = 0, 1
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Therefore r1 = 1, r2 = 0.

Expansion around x = 0. This is regular singular point (due to the RHS not having
series expansion). Hence Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0 (1)

Re indexing to lowest powers on x gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2+
∞∑
n=1

(n+ r − 1) an−1x
n+r−2+

∞∑
n=2

an−2x
n+r−2 = 0 (2)

n = 0 gives
r(r − 1) a0xr−2 = 0

Since a0 6= 0, then r1 = 1, r2 = 0 as was found above. The ode therefore satisfies

y′′ + y′ + y = r(r − 1) a0xr−2

When n = 1 then (2) gives

(1 + r) (r) a1 + ra0 = 0

a1 =
−a0
1 + r

(3)

The recurrence relation is when n ≥ 2 from (2) is given by

(n+ r) (n+ r − 1) an + (n+ r − 1) an−1 + an−2 = 0

an = −(n+ r − 1) an−1 − an−2

(n+ r) (n+ r − 1) (4)
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Since roots differ by an integer N = 1 then there two linearly independent solutions
can be constructed using

y1 = xr1
∞∑
n=0

anx
n

y2 = Cy1 ln (x) + xr2
∞∑
n=0

bnx
n

C above can come out to be zero. We start by finding y1 (the one with the larger r).

Now, using r = 1. For n = 1 and from (3) and using a0 = 1 gives

a1 =
−a0
2

a1 =
−1
2

From n = 2 from (4) and using r = 1 it becomes

a2 =
−2a1 − a0
(2 + 1) (2) = −2a1 − a0

6 =
−2
(−1

2

)
− 1

6 = 0

For n = 3 then (5) gives

a3 =
−(3) a2 − a1
(3 + 1) (3) = −a1

12 =
−
(−1

2

)
12 = 1

24

And so on. Hence

y1 =
∞∑
n=0

anx
n+1

= x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + · · ·
)

= x

(
1− 1

2x+
1
24x

2 − 1
120x

3 + · · ·
)

Now we need to find y2. We first check if y2 can be found using standard method as was
done above for y1. For this we look at a1 = −a0

1+r
and see this is defined for r = 0. Next

we look at the recurrence relation an = −(n+r−1)an−1−an−2
(n+r)(n+r−1) and see this is also defined for

r = 1. Hence C = 0 and we can find y2 using same series expansion and using b0 = 1.

b1 =
−b0
1 + r

= −1
1 = −1

For n ≥ 2 we have
bn = −(n+ r − 1) bn−1 − bn−2

(n+ r) (n+ r − 1)
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Which for r = 0 becomes
bn = −(n− 1) bn−1 − bn−2

n (n− 1) (5)

For n = 2
b2 =

−(2− 1) b1 − b0
2 = −(2− 1) (−1)− 1

2 = 0

For n = 3
b3 =

−(3− 1) b2 − b1
3 (3− 1) = 1

6
For n = 4

b4 =
−(3) b3 − b2

4 (3) =
−(3)

(1
6

)
4 (3) = − 1

24
And so on. Hence

y2 =
∞∑
n=0

bnx
n+0

=
(
b0 + b1x+ b2x

2 + · · ·
)

= 1− x+ 1
6x

3 − 1
24x

4 + · · ·

Therefore yh

yh = c1y1 + c2y2

= c1x

(
1− 1

2x+
1
24x

2 − 1
120x

3 + · · ·
)
+ c2

(
1− x+ 1

6x
3 − 1

24x
4 + · · ·

)
Now we find yp. From above y′′ + y′ + y = r(r − 1) a0xr−2, and relabeling r as m and a
as c so not to confuse terms used

y′′ + y′ + y = m(m− 1) c0xm−2

Therefore we need to balance m(m− 1) c0xm−2 = x
1
2 since the RHS is

√
x. This implies

m− 2 = 1
2 or m = 5

2 . Therefore m(m− 1) c0 = 1 or 5
2

(5
2 − 1

)
c0 = 1, c0 = 4

15 . Hence

yp =
∞∑
n=0

cnx
n+m

= x
5
2

∞∑
n=0

cnx
n
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To find cn, the same recurrence relation (4) is used by with r replaced by m and a

replaced by c. This gives

cn = −(n+m− 1) cn−1 − cn−2

(n+m) (n+m− 1)

=
−
(
n+ 5

2 − 1
)
cn−1 − cn−2(

n+ 5
2

) (
n+ 5

2 − 1
)

= −4
3
2cn−1 + cn−2 + ncn−1

(2n+ 3) (2n+ 5) (6)

The above is only for n ≥ 2. For n = 1, using a1 = −a0
1+r

and replacing a by c and r by
m gives

c1 =
−c0
1 +m

=
− 4

15
1 +

(5
2

) = − 8
105

For n = 2 from (6)

c2 = −4
3
2c1 + c0 + 2c1
(4 + 3) (4 + 5) = −4

(
3
2

(
− 8

105

)
+ 4

15 + 2
(
− 8

105

)
(4 + 3) (4 + 5)

)
= 0

For n = 3
c3 = −4

3
2c2 + c1 + 3c2
(6 + 3) (6 + 5) = −4

( − 8
105

(6 + 3) (6 + 5)

)
= 32

10 395
And so on. Hence

yp =
∞∑
n=0

cnx
n+m

=
∞∑
n=0

cnx
n+ 5

2

= x
5
2

∞∑
n=0

cnx
n

= x
5
2
(
c0 + c1x+ c2x

2 + · · ·
)

= x
5
2

(
4
15 − 8

105x+
32

10 395x
3 + · · ·

)
Hence the final solution

y = yh + yp

= c1x

(
1− 1

2x+
1
24x

2 − 1
120x

3 + · · ·
)
+ c2

(
1− x+ 1

6x
3 − 1

24x
4 + · · ·

)
+ x

5
2

(
4
15 − 8

105x+
32

10 395x
3 + · · ·

)
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2.3.2.5.3.4 Roots of indicial equation differ by integer. Bad case

ode internal name "second_order_series_method_regular_singular_point_difference_is_in-
teger_bad_case".

The description is given above. Only examples are given below.

Example 1
x2y′′ + xy′ +

(
x2 − 4

)
y = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1
x
, q(x) = x2−4

x2 . Therefore p0 = limx→0 xp(x) = limx→0 1 = 1 and
q0 = limx→0 x

2q(x) = limx→0 x
2 − 4 = −4. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) + r − 4 = 0

r2 − 4 = 0
r = 2,−2

Therefore r1 = 2, r2 = −2. Expansion around x = 0. This is regular singular point.
Hence Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + x
∞∑
n=0

(n+ r) anxn+r−1 +
(
x2 − 4

) ∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r + x2
∞∑
n=0

anx
n+r − 4

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r+2 −

∞∑
n=0

4anxn+r = 0

∞∑
n=0

((n+ r) (n+ r − 1) + (n+ r)− 4) anxn+r +
∞∑
n=0

anx
n+r+2 = 0
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Re indexing to lowest powers on x gives
∞∑
n=0

((n+ r) (n+ r − 1) + (n+ r)− 4) anxn+r +
∞∑
n=2

an−2x
n+r = 0 (2)

n = 0 gives

(r(r − 1) + r − 4) a0xr = 0(
r2 − 4

)
a0x

r = 0

Since a0 6= 0, then r2 = 4 or r1 = 2, r2 = −2 as was found above. The ode therefore
satisfies

x2y′′ + xy′ +
(
x2 − 4

)
y =

(
r2 − 4

)
a0x

r

Since when r1 = 2 or r2 = −2 then the RHS is zero. When n = 1 then (2) gives

((1 + r) r + (1 + r)− 4) a1 = 0(
r2 + 2r − 3

)
a1 = 0

Hence
a1 = 0

The recurrence relation is when n ≥ 2 from (2) is given by

((n+ r) (n+ r − 1) + (n+ r)− 4) an + an−2 = 0

an = −an−2

((n+ r) (n+ r − 1) + (n+ r)− 4)
(4)

We check first if this is subcase one or two. To do this, we check if the recurrence
relation is defined for both roots for all n ≥ 2. The above for r = 2 gives

an = −an−2

((n+ 2) (n+ 2− 1) + (n+ 2)− 4) = − 1
n

an−2

n+ 4

We see that it is defined for all n ≥ 2. Now we check the other root r2 = −2. (4) now
becomes

an = −an−2

((n− 2) (n− 3) + (n− 2)− 4) = − 1
n

an−2

n− 4
We see that this is the difficult root as at n = 4 it is not defined as it gives 1/0 error.
Hence

rbad = −2
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Therefore this is subcase two. For this case we do the following. We first find the solution
using symbolic r using (4), and at the end replace a0 by (r − rbad) b0 = (r + 2) b0. From
(4) and for n = 2

a2 =
−a0

((2 + r) (1 + r) + (2 + r)− 4) = −1
r

a0
r + 4

Since a1 = 0 then all odd an = 0. For n = 4

a4 =
−a2

((4 + r) (3 + r) + (4 + r)− 4) = − a2
(r + 6) (r + 2) = −

−1
r

a0
r+4

(r + 6) (r + 2) = 1
r

a0
(r + 4) (r + 6) (r + 2)

For n = 6

a6 =
−a4

((6 + r) (5 + r) + (6 + r)− 4) = − a4
(r + 8) (r + 4)

= −
1
r

a0
(r+4)(r+6)(r+2)

(r + 8) (r + 4)

= −1
r

a0
(r + 8) (r + 4) (r + 4) (r + 6) (r + 2)

And so on. Hence

y = xr
(
a0 + a2x

2 + a4x
4 + · · ·

)
= xra0

(
1− 1

r

1
r + 4x

2 + 1
r

1
(r + 4) (r + 6) (r + 2)x

4 − 1
r

1
(r + 8) (r + 4) (r + 4) (r + 6) (r + 2)x

6 + · · ·
)

Replacing a0 by b0(r − rbad) or b0(r + 2) the above becomes

y = xrb0

(
(r + 2)− 1

r

(r + 2)
r + 4 x2 + 1

r

(r + 2)
(r + 4) (r + 6) (r + 2)x

4 − 1
r

(r + 2)
(r + 8) (r + 4) (r + 4) (r + 6) (r + 2)x

6 + · · ·
)

(5)
Now

y1 = yr=rbad

= yr=−2

= x−2b0

(
(r + 2)− 1

r

(r + 2)
r + 4 x2 + 1

r

(r + 2)
(r + 4) (r + 6) (r + 2)x

4 − 1
r

(r + 2)
(r + 8) (r + 4) (r + 4) (r + 6) (r + 2)x

6 + · · ·
)

r=−2

= x−2b0

(
1
r

1
(r + 4) (r + 6)x

4 − 1
r

1
(r + 8) (r + 4) (r + 4) (r + 6)x

6 + · · ·
)

r=−2

= x−2b0

(
− 1
16x

4 + 1
192x

6 − · · ·
)
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But b0 = 1. Hence

y1 =
(
− 1
16x

2 + 1
192x

4 − · · ·
)

= − 1
16

(
x2 − 1

12x
4 − · · ·

)
We can removing the leading − 1

16 since it will be absorbed by the c1 constant. Hence

y1 = c1

(
x2 − 1

12x
4 − · · ·

)
Now we find y2 using

y2 =
(
dy

dr

)
r=rbad

Notice the derivative is evaluated also at the bad root r = rbad = −2 same as for y1.
Hence, and using b0 = 1 and using (5) the above gives

y2 =
d

dr

(
xr
(
(r + 2)− 1

r

(r + 2)
r + 4 x2 + 1

r

(r + 2)
(r + 4) (r + 6) (r + 2)x

4 − 1
r

(r + 2)
(r + 8) (r + 4) (r + 4) (r + 6) (r + 2)x

6 + · · ·
))

r=−2

= yr=−2 ln x+ xr
d

dr

(
(r + 2)− 1

r

(r + 2)
r + 4 x2 + 1

r

(r + 2)
(r + 4) (r + 6) (r + 2)x

4 − 1
r

(r + 2)
(r + 8) (r + 4) (r + 4) (r + 6) (r + 2)x

6 + · · ·
)

r=−2

But
y1 = yr=−2

Therefore, evaluating all the derivatives gives

y2 = y1 ln x+ xr
(
1 + (r2 + 4r + 8)

r2 (r + 4)2
x2 − 1

r2
3r2 + 20r + 24
(r2 + 10r + 24)2

x4 + (5r3 + 68r2 + 256r + 192)
r2 (r + 4)3 (r2 + 14r + 48)2

x6 + · · ·
)

r=−2

= y1 ln x+ x−2
(
1 + 1

4x
2 + 1

64x
4 − 11

2304x
6 + · · ·

)
Hence

y2 = y1 ln x+
(
1
4 + 1

x2
+ 1

64x
2 − 11

2304x
4 + · · · · · ·

)
Therefore the final solution is

y = c1y1 + c2y2

= c1

(
x2 − 1

12x
4 − · · ·

)
+ c2

(
ln (x)

(
x2 − 1

12x
4 − · · ·

)
+
(
1
4 + 1

x2
+ 1

64x
2 − 11

2304x
4 + · · · · · ·

))
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Example 2
xy′′ − 3y′ + xy = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = −3
x
, q(x) = 1. Therefore p0 = limx→0 xp(x) = limx→0 (−3) = −3 and

q0 = limx→0 x
2q(x) = limx→0 x

2 = 0. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1)− 3r = 0

r2 − 4r = 0
r(r − 4) = 0

r = 0, 4

Therefore r1 = 4, r2 = 0. Expansion around x = 0. This is regular singular point. Hence
Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

xy′′ − 3y′ + xy = 0

x
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 − 3
∞∑
n=0

(n+ r) anxn+r−1 + x
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=0

3(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r+1 = 0

Re indexing to lowest powers on x gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=0

3(n+ r) anxn+r−1 +
∞∑
n=2

an−2x
n+r−1 = 0 (2)

n = 0 gives

r(r − 1) a0xr−1 − 3ra0xr−1 = 0
(r(r − 4)) a0xr−1 = 0
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Since a0 6= 0, then r(r − 4) = 0 or r1 = 0, r2 = 4 as was found above. The ode therefore
satisfies

xy′′ − 3y′ + xy = (r(r − 4)) a0xr−1

Since when r1 = 4 or r2 = 0 then the RHS is zero. When n = 1 then (2) gives

(1 + r) (r) a1 − 3(1 + r) a1 = 0(
r2 − 2r − 3

)
a1 = 0

Hence
a1 = 0

The recurrence relation is when n ≥ 2 from (2) is given by

(n+ r) (n+ r − 1) an − 3(n+ r) an + an−2 = 0

an = −an−2

(n+ r) (n+ r − 1)− 3 (n+ r) (4)

We check first if this is subcase one or two. To do this, we check if the recurrence
relation is defined for both roots for all n ≥ 2. The above for r = 4 gives

an = −an−2

(n+ 4) (n+ 3)− 3 (n+ 4) = − 1
n

an−2

n+ 4
Which is defined for all n ≥ 2. Checking the second root r = 0 gives

an = −an−2

(n+ 0) (n+ 0− 1)− 3 (n+ 0) = − 1
n

an−2

n− 4
Which is not defined for n = 4. Hence this is subcase two, where y2 does not exist using
standard method. Hence

rbad = 0
For this case we do the following. We find the solution using symbolic r and replace a0
by (r − rbad) b0. From (4) and for n = 2

a2 =
−a0

(2 + r) (1 + r)− 3 (2 + r) = − a0
r2 − 4

Since a1 = 0 then all odd an = 0. For n = 4

a4 =
−a2

(4 + r) (4 + r − 1)− 3 (4 + r) =
a0

r2−4
r (r + 4) = a0

r (r + 4) (r2 − 4)
For n = 6

a6 =
−a4

(6 + r) (5 + r)− 3 (6 + r) =
− a0

r(r+4)(r2−4)

r2 + 8r + 12

= −a0
(r2 + 8r + 12) r (r + 4) (r2 − 4)
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And so on. Hence

y = xr
(
a0 + a2x

2 + a4x
4 + · · ·

)
= xra0

(
1− 1

r2 − 4x
2 + 1

r (r + 4) (r2 − 4)x
4 − 1

(r2 + 8r + 12) r (r + 4) (r2 − 4)x
6 + · · ·

)
Replacing a0 by b0(r − r2) or b0r since r2 = 0, the above becomes

y = xrb0

(
r − r

r2 − 4x
2 + 1

(r + 4) (r2 − 4)x
4 − 1

(r2 + 8r + 12) (r + 4) (r2 − 4)x
6 + · · ·

)
(5)

Now

y1 = yr=rbad

= yr=0

= b0

(
1

(4) (−4)x
4 − 1

(12) (4) (−4)x
6 + · · ·

)
= b0

(
− 1
16x

4 + 1
192x

6 + · · ·
)

But b0 = 1. Hence

y1 =
(
− 1
16x

4 + 1
192x

6 + · · ·
)

= − 1
16

(
x4 − 1

12x
6 + · · ·

)
We can removing the leading − 1

16 since it will be absorbed by the c1 constant. Hence

y1 = c1

(
x4 − 1

12x
6 + · · ·

)
= x4c1

(
1− 1

12x
2 + · · ·

)
Now we find y2 using

y2 =
(
dy

dr

)
r=rbad

Notice the derivative is evaluated also at root r = rbad = 0 the same as for y1. Hence,
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and using b0 = 1 and using (5) the above gives

y2 =
d

dr

(
xr
(
r − r

r2 − 4x
2 + 1

(r + 4) (r2 − 4)x
4 − 1

(r2 + 8r + 12) (r + 4) (r2 − 4)x
6 + · · ·

))
r=0

= yr=0 ln x+ xr
d

dr

(
r − r

r2 − 4x
2 + 1

(r + 4) (r2 − 4)x
4 − 1

(r2 + 8r + 12) (r + 4) (r2 − 4)x
6 + · · ·

)
r=0

= yr=0 ln x+ x0
(
1 + (r2 + 4)

(r2 − 4)2
x2 − 3r2 + 8r − 4

(r3 + 4r2 − 4r − 16)2
x4 + 1

(r + 2)3
5r3 + 38r2 + 44r − 88
(r3 + 8r2 + 4r − 48)2

x6 − · · ·
)

r=0

= yr=0 ln x+
(
1 + 1

4x
2 + 1

64x
4 − 11

2304x
6 + · · ·

)
But

yr=0 = y1

Therefore
y2 = y1 ln x+

(
1 + 1

4x
2 + 1

64x
4 − 11

2304x
6 + · · ·

)
The complete solution is

y = c1y1 + c2y2

= x4c1

(
1− 1

12x
2 + · · ·

)
+ c2

(
ln x
(
x4
(
1− 1

12x
2 + · · ·

))
+
(
1 + 1

4x
2 + 1

64x
4 − 11

2304x
6 + · · ·

))
Example 3

x2y′′ +
(
x2 − 2x

)
y′ + 2y = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Show that p(x) =
(
x2−2x

)
x2 = (x−2)

x
, q(x) = 2

x2 . Therefore p0 = limx→0 xp(x) = limx→0 (x− 2) =
−2 and q0 = limx→0 x

2q(x) = limx→0 2 = 2. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1)− 2r + 2 = 0

r2 − 3r + 2 = 0
r = 2, 1

Therefore r1 = 2, r2 = 1. Expansion around x = 0. This is regular singular point. Hence
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Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

x2y′′ +
(
x2 − 2x

)
y′ + 2y = 0

x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
(
x2 − 2x

) ∞∑
n=0

(n+ r) anxn+r−1 + 2
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r + x2
∞∑
n=0

(n+ r) anxn+r−1 − 2x
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

2anxn+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r+1 −
∞∑
n=0

2(n+ r) anxn+r +
∞∑
n=0

2anxn+r = 0

Re indexing to lowest powers on x gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r+
∞∑
n=1

(n+ r − 1) an−1x
n+r−

∞∑
n=0

2(n+ r) anxn+r+
∞∑
n=0

2anxn+r = 0

(2)
n = 0 gives

r(r − 1) a0xr − 2ra0xr + 2a0xr = 0
(r(r − 1)− 2r + 2) a0xr = 0(

r2 − 3r + 2
)
a0x

r = 0

Since a0 6= 0, then r2 − 3r + 2 = 0,or r1 = 2, r2 = 1 as was found above. The ode
therefore satisfies

x2y′′ +
(
x2 − 2x

)
y′ + 2y =

(
r2 − 3r + 2

)
a0x

r

Recurrence relation is when n ≥ 1. From (2)

(n+ r) (n+ r − 1) an + (n+ r − 1) an−1 − 2(n+ r) an + 2an = 0
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Therefore

an = − (n+ r − 1)
(n+ r) (n+ r − 1)− 2 (n+ r) + 2an−1

= − 1
n+ r − 2an−1 (3)

We check first if this is subcase one or two. To do this, we check if the above recurrence
relation is defined for both roots for all n ≥ 1. The above for r = r1 = 2 gives

an = − 1
n
an−1

Which is defined for all n ≥ 1. Checking the second root r = 1 gives

an = − 1
n− 1an−1

Which is not defined for n = 1. Hence this is subcase two, where y2 does not exist using
standard method. Hence

rbad = 1

For this case we do the following. We find the solution using symbolic r and replace a0
by (r − rbad) b0. From (3) and for n = 1

a1 = − 1
r − 1a0

For n = 2
a2 = −1

r
a1 =

1
(r) (r − 1)a0

For n = 3
a3 = − 1

r + 1a2 = − a0
(r) (r − 1) (r + 1)

For n = 4
a4 = − 1

2 + r
a3 =

a0
(r) (r − 1) (r + 1) (r + 2)

And so on. Hence

y = xr
(
a0 + a1x+ a2x

2 + · · ·
)

= xra0

(
1− 1

r − 1x+
1

(r) (r − 1)x
2 − 1

(r) (r − 1) (r + 1)x
3 + 1

(r) (r − 1) (r + 1) (r + 2)x
4 − · · ·

)
Replacing a0 by b0(r − rbad) or b0(r − 1) since rbad = 1, the above becomes

y = xrb0

(
(r − 1)− (r − 1)

r − 1 x+ (r − 1)
(r) (r − 1)x

2 − (r − 1)
(r) (r − 1) (r + 1)x

3 + (r − 1)
(r) (r − 1) (r + 1) (r + 2)x

4 − · · ·
)

= xrb0

(
(r − 1)− x+ 1

r
x2 − 1

r (r + 1)x
3 + 1

r (r + 1) (r + 2)x
4 − · · ·

)
(5)
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Now

y1 = yr=rbad

= yr=1

= xb0

(
−x+ x2 − 1

2x
3 + 1

(1) (2) (3)x
4 − · · ·

)
= xb0

(
−x+ x2 − 1

2x
3 + 1

6x
4 − · · ·

)
But b0 = 1. Hence

y1 = x

(
−x+ x2 − 1

2x
3 + 1

6x
4 − · · ·

)
= −x2 + x3 − 1

2x
4 + 1

6x
5 − · · ·

Now we find y2 using
y2 =

(
dy

dr

)
r=rbad

Notice the derivative is evaluated also at root r = rbad = 1, the same as for y1. Hence,
and using b0 = 1 and using (5) the above gives

y2 =
d

dr

(
xrb0

(
(r − 1)− x+ 1

r
x2 − 1

r (r + 1)x
3 + 1

r (r + 1) (r + 2)x
4 − · · ·

))
r=1

= yr=1 ln x+ xr=1 d

dr

(
(r − 1)− x+ 1

r
x2 − 1

r (r + 1)x
3 + 1

r (r + 1) (r + 2)x
4 − · · ·

)
r=1

= y1 ln x+ x
d

dr

(
(r − 1)− x+ 1

r
x2 − 1

r (r + 1)x
3 + 1

r (r + 1) (r + 2)x
4 − · · ·

)
r=1

= y1 ln x+ x

(
1− 1

r2
x2 + 1

r2
2r + 1
(r + 1)2

x3 − 1
r2

3r2 + 6r + 2
(r2 + 3r + 2)2

x4 − · · ·
)

r=1

= y1 ln x+ x

(
1− x2 + 3

4x
3 − 11

36x
4 − · · ·

)
Therefore

y2 = y1 ln x+
(
x− x3 + 3

4x
4 − 11

36x
5 − · · ·

)
The complete solution is

y = c1y1 + c2y2

= c1

(
−x2 + x3 − 1

2x
4 + 1

6x
5 − · · ·

)
+ c2

(
ln x
(
−x2 + x3 − 1

2x
4 + 1

6x
5 − · · ·

)
+
(
x− x3 + 3

4x
4 − 11

36x
5 − · · ·

))
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Example 4
(x− 1) y′′ + xy′ + y

x
= 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = x
x−1 , q(x) =

1
x(x−1) . There is a singular point at x = 0 and at x = 1. For

x = 0, p0 = limx→0 xp(x) = 0 and q0 = limx→0 x
2q(x) = 0. Hence the indicial equation

is

r(r − 1) + p0r + q0 = 0
r(r − 1) = 0

r = 0, 1

For expansion around x = 0. This is regular singular point. Hence Frobenius is needed.
Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

(x− 1) y′′ + xy′ + y

x
= 0

(x− 1)
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + x
∞∑
n=0

(n+ r) anxn+r−1 + x−1
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r−1 = 0

Re indexing to lowest powers on x gives
∞∑
n=1

(n+ r − 1) (n+ r − 2) an−1x
n+r−2−

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2+
∞∑
n=2

(n+ r − 2) an−2x
n+r−2+

∞∑
n=1

an−1x
n+r−2 = 0

(2)
n = 0 gives

(r(r − 1)) a0 = 0
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Since a0 6= 0, then r1 = 0, r2 = 1 as was found above. For n = 1

(r) (r − 1) a0 − (1 + r) (r) a1 + a0 = 0

a1 =
a0 + (r) (r − 1) a0

(1 + r) (r) = 1 + (r) (r − 1)
(1 + r) (r) a0

For r = 0 the above is not defined. Therefore this falls into case two (difficult case).
Hence rbad = 0. For r = 1 we see a1 is defined.

For this case we do the following. We find the solution using symbolic r and replace a0
by (r − rbad) b0 = rb0. For n = 1

a1 =
1 + (r) (r − 1)
(1 + r) (r) a0

For n ≥ 2, the recurrence relation is

(n+ r − 1) (n+ r − 2) an−1 − (n+ r) (n+ r − 1) an + (n+ r − 2) an−2 + an−1 = 0

Or
an = (n+ r − 1) (n+ r − 2) + 1

(n+ r) (n+ r − 1) an−1 +
(n+ r − 2)

(n+ r) (n+ r − 1)an−2 (3)

For n = 2

a2 =
(1 + r) (r) + 1
(2 + r) (1 + r)a1 +

r

(2 + r) (1 + r)a0

= r(1 + r) + 1
(2 + r) (1 + r)

(
1 + r(r − 1)
(1 + r) (r) a0

)
+ r

(2 + r) (1 + r)a0

=
(

r(1 + r) + 1
(2 + r) (1 + r)

1 + r(r − 1)
r (1 + r) + r

(2 + r) (1 + r)

)
a0

=
(
(r(1 + r) + 1) (1 + r(r − 1))
(2 + r) (1 + r) (1 + r) (r) + r

(2 + r) (1 + r)

)
a0

For n = 3

a3 =
(2 + r) (1 + r) + 1
(3 + r) (2 + r) a2 +

(1 + r)
(3 + r) (2 + r)a1

= (2 + r) (1 + r) + 1
(3 + r) (2 + r)

((
(r(1 + r) + 1) (1 + r(r − 1))
(2 + r) (1 + r) (1 + r) (r) + r

(2 + r) (1 + r)

)
a0

)
+ (1 + r)

(3 + r) (2 + r)

(
1 + (r) (r − 1)
(1 + r) (r) a0

)
=
[
(2 + r) (1 + r) + 1
(3 + r) (2 + r)

(
(r(1 + r) + 1) (1 + r(r − 1))
(2 + r) (1 + r) (1 + r) (r) + r

(2 + r) (1 + r)

)
+ (1 + r)

(3 + r) (2 + r)
1 + (r) (r − 1)
(1 + r) (r)

]
a0

And so on. Hence

y = xr
(
a0 + a1x+ a2x

2 + a3x
3 + · · ·

)
= xra0

(
1 + 1 + (r) (r − 1)

(1 + r) (r) x+
(
(r(1 + r) + 1) (1 + r(r − 1))
(2 + r) (1 + r) (1 + r) (r) + r

(2 + r) (1 + r)

)
x2 + · · ·

)
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Replacing a0 by b0(r − rbad) or b0r since rbad = 0, the above becomes

y = xrb0

(
r + r

1 + (r) (r − 1)
(1 + r) (r) x+ r

(
(r(1 + r) + 1) (1 + r(r − 1))
(2 + r) (1 + r) (1 + r) (r) + r

(2 + r) (1 + r)

)
x2 + · · ·

)
= xrb0

(
r + 1 + (r) (r − 1)

(1 + r) x+
(
(r(1 + r) + 1) (1 + r(r − 1))

(2 + r) (1 + r) (1 + r) + r2

(2 + r) (1 + r)

)
x2 + · · ·

)
(5)

Now

y1 = yr=rbad

= yr=0

= x0b0

(
x+

(
1

(2) (1) (1)

)
x2 +

[
(2) (1) + 1
(3) (2)

(
(1) (1)

(2) (1) (1)

)
+ (1)

(3) (2)

]
x3· · ·

)
= b0

(
x+ 1

2x
2 + 5

12x
3 + · · ·

)
But b0 = 1. Hence

y1 = x+ 1
2x

2 + 5
12x

3 + · · ·

y2 is found using
y2 =

(
dy

dr

)
r=rbad

Notice the derivative is evaluated also at root r = rbad = 0, the same as for y1. Hence,
and using b0 = 1 and using (5) the above gives

y2 =
d

dr

(
xr
(
r + 1 + (r) (r − 1)

(1 + r) x+
(
(r(1 + r) + 1) (1 + r(r − 1))

(2 + r) (1 + r) (1 + r) + r2

(2 + r) (1 + r)

)
x2 + · · ·

))
r=0

= yr=0 ln x+ xr=0 d

dr

(
r + 1 + (r) (r − 1)

(1 + r) x+
(
(r(1 + r) + 1) (1 + r(r − 1))

(2 + r) (1 + r) (1 + r) + r2

(2 + r) (1 + r)

)
x2 + · · ·

)
r=0

But yr=0 = y1. The above becomes

y2 = y1 ln x+
d

dr

(
r + 1 + (r) (r − 1)

(1 + r) x+
(
(r(1 + r) + 1) (1 + r(r − 1))

(2 + r) (1 + r) (1 + r) + r2

(2 + r) (1 + r)

)
x2 + · · ·

)
r=0

Carrying out the derivatives gives

y2 = y1 ln x+
(
1 + 1

(r + 1)2
(
r2 + 2r − 2

)
x+

(
(r5 + 7r4 + 10r3 + 8r2 + 5r − 5)

(r + 1)3 (r + 2)2
)
x2 + · · ·

)
r=0

Evaluating at r = 0
y2 = y1 ln x+

(
1− 2x− 5

4x
2 + · · ·

)
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Therefore the complete solution is

y = c1y1 + c2y2

= c1

(
x+ 1

2x
2 + 5

12x
3 + · · ·

)
+ c2

(
ln x
(
x+ 1

2x
2 + 5

12x
3 + · · ·

)
+
(
1− 2x− 5

4x
2 + · · ·

))
Example 5

x2y′′ + xy′ +
(
x2 − 1

)
y = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1
x
, q(x) = x2−4

x2 . Therefore p0 = limx→0 xp(x) = limx→0 1 = 1 and
q0 = limx→0 x

2q(x) = limx→0 (x2 − 1) = −1. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) + r − 1 = 0

r2 − 1 = 0
r = 1,−1

Therefore r1 = 1, r2 = −1. Expansion around x = 0. This is regular singular point.
Hence Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + x
∞∑
n=0

(n+ r) anxn+r−1 +
(
x2 − 1

) ∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r + x2
∞∑
n=0

anx
n+r −

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r+2 −

∞∑
n=0

anx
n+r = 0
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Re indexing to lowest powers on x gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r+
∞∑
n=0

(n+ r) anxn+r+
∞∑
n=2

an−2x
n+r−

∞∑
n=0

anx
n+r = 0 (2)

n = 0 gives

r(r − 1) a0xr + ra0x
r − a0 = 0

(r(r − 1) + r − 1) a0xr = 0(
r2 − 1

)
a0x

r = 0

Since a0 6= 0, then r2 = 1 or r1 =, r2 = −1 as was found above. The ode therefore
satisfies

x2y′′ + xy′ +
(
x2 − 1

)
y =

(
r2 − 1

)
a0x

r (2A)

When n = 1 then (2) gives

(1 + r) (r) a1 + (1 + r) a1 − a1 = 0
((1 + r) (r) + (1 + r)− 1) a1 = 0

(r(r + 2)) a1 = 0

Hence
a1 = 0

The recurrence relation is when n ≥ 2 from (2) is given by

(n+ r) (n+ r − 1) an + (n+ r) an + an−2 − an = 0

an = −an−2

(n+ r) (n+ r − 1) + (n+ r)− 1
(4)

We check first if this is subcase one or two. To do this, we check if the recurrence
relation is defined for both roots for all n ≥ 2. The above for r = 1 gives

an = −an−2

(n+ 1)n+ n

We see that it is defined for all n ≥ 2. Now we check the other root r2 = −1. (4) now
becomes

an = −an−2

(n− 1) (n− 2) + (n− 2)
We see that this is the difficult root as at n = 2 it is not defined as it gives 1/0 error.
Hence

rbad = −1
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Therefore this is subcase two. For this case we do the following. We first find the solution
using symbolic r using (4), and at the end replace a0 by (r − rbad) b0 = (r + 1) b0. From
(4) and for n = 2

a2 =
−a0

((2 + r) (1 + r) + (2 + r)− 1) = −a0
(r + 1) (r + 3)

Since a1 = 0 then all odd an = 0. For n = 4

a4 =
−a2

((4 + r) (3 + r) + (4 + r)− 1) = − a2
(r + 5) (r + 3) = −

−a0
(r+1)(r+3)

(r + 5) (r + 3) = a0
(r + 5) (r + 3) (r + 1) (r + 3)

For n = 6

a6 =
−a4

((6 + r) (5 + r) + (6 + r)− 1) = − a4
(r + 7) (r + 5) = −

a0
(r+5)(r+3)(r+1)(r+3)

(r + 7) (r + 5)
= − a0

(r + 7) (r + 5) (r + 5) (r + 3) (r + 1) (r + 3)

And so on. Hence

y = xr
(
a0 + a2x

2 + a4x
4 + · · ·

)
= xra0

(
1− 1

(r + 1) (r + 3)x
2 + 1

(r + 5) (r + 3) (r + 1) (r + 3)x
4 − 1

(r + 7) (r + 5) (r + 5) (r + 3) (r + 1) (r + 3)x
6 + · · ·

)
Replacing a0 by b0(r − rbad) or b0(r + 1) the above becomes

y = xrb0

(
(r + 1)− (r + 1)

(r + 1) (r + 3)x
2 + (r + 1)

(r + 5) (r + 3) (r + 1) (r + 3)x
4 − (r + 1)

(r + 7) (r + 5) (r + 5) (r + 3) (r + 1) (r + 3)x
6 + · · ·

)
= xrb0

(
(r + 1)− 1

(r + 3)x
2 + 1

(r + 5) (r + 3) (r + 3)x
4 − 1

(r + 7) (r + 5) (r + 5) (r + 3) (r + 3)x
6 + · · ·

)
(5)

Now

y1 = yr=rbad

= yr=−1

= x−1b0

(
− 1
(r + 3)x

2 + 1
(r + 5) (r + 3) (r + 3)x

4 − 1
(r + 7) (r + 5) (r + 5) (r + 3) (r + 3)x

6 + · · ·
)

r=−1

= x−1b0

(
− 1
(−1 + 3)x

2 + 1
(−1 + 5) (−1 + 3) (−1 + 3)x

4 − 1
(−1 + 7) (−1 + 5) (−1 + 5) (−1 + 3) (−1 + 3)x

6 + · · ·
)

= x−1b0

(
−1
2x

2 + 1
16x

4 − 1
384x

6 + · · ·
)
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b0 = 1. Hence

y1 =
1
x

(
−1
2x

2 + 1
16x

4 − 1
384x

6 + · · ·
)

=
(
−1
2x+

1
16x

3 − 1
384x

5 + · · ·
)

= −1
2

(
x− 1

8x
3 + 1

192x
5 + · · ·

)
We can remove the leading −1

2 since it will be absorbed by the c1 constant. Hence

y1 =
(
x− 1

8x
3 + 1

192x
5 + · · ·

)
Now we find y2 using

y2 =
(
dy

dr

)
r=rbad

Notice the derivative is evaluated also at the bad root r = rbad = −2 same as for y1.
Hence, and using b0 = 1 and using (5) the above gives

y2 =
d

dr

(
xrb0

(
(r + 1)− 1

(r + 3)x
2 + 1

(r + 5) (r + 3) (r + 3)x
4 − 1

(r + 7) (r + 5) (r + 5) (r + 3) (r + 3)x
6 + · · ·

))
r=−1

= yr=−1 ln x+ xr
d

dr

(
(r + 1)− 1

(r + 3)x
2 + 1

(r + 5) (r + 3) (r + 3)x
4 − 1

(r + 7) (r + 5) (r + 5) (r + 3) (r + 3)x
6 + · · ·

)
r=−1

But
y1 = yr=−2

Therefore, evaluating all the derivatives gives

y2 = y1 ln x+ x−1 d

dr

(
(r + 1)− 1

(r + 3)x
2 + 1

(r + 5) (r + 3) (r + 3)x
4 − 1

(r + 7) (r + 5) (r + 5) (r + 3) (r + 3)x
6 + · · ·

)
r=−1

= y1 ln x+ x−1
(
1 + 1

(r + 3)2
x2 − 3r + 13

(r + 3)3 (r + 5)2
x4 + 1

(r + 7)2
5r2 + 52r + 127
(r2 + 8r + 15)3

x6 + · · ·
)

r=−1

= y1 ln x+ x−1
(
1 + 1

4x
2 − 5

64x
4 + 5

1152x
6 + · · ·

)
Hence

y2 = y1 ln x+
(
1
x
+ 1

4x−
5
64x

3 + 5
1152x

5 + · · ·
)
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Therefore the final solution is

y = c1y1 + c2y2

= c1

(
x− 1

8x
3 + 1

192x
5 + · · ·

)
+ c2

(
ln (x)

(
x− 1

8x
3 + 1

192x
5 + · · ·

)
+
(
1
x
+ 1

4x−
5
64x

3 + 5
1152x

5 + · · ·
))

Example 6
x2y′′ + xy′ +

(
x2 − 1

)
y = 1

This is same example as above but with non zero in the RHS. So we can use the solution
for yh obtained above, but need to find yp here and add these to obtain the general
solution. From above we found that

yh = c1

(
x− 1

8x
3 + 1

192x
5 + · · ·

)
+ c2

(
ln (x)

(
x− 1

8x
3 + 1

192x
5 + · · ·

)
+
(
1
x
+ 1

4x−
5
64x

3 + 5
1152x

5 + · · ·
))

And from (2A) in the above example we also found the balance equation, which is
always the starting point to finding yp, which is

x2y′′ + xy′ +
(
x2 − 1

)
y =

(
r2 − 1

)
a0x

r

Therefore, and as we did all the time, relabel r as m and a as c so not to confuse
notations. Therefore we have (

m2 − 1
)
c0x

m = 1

Hence
m = 0

This implies (m2 − 1) c0 = 1 or
c0 = −1

Now we find yp using the same recursive relation found when finding yh terms but using
r = m = 0 now and using a0 = c0 = −1 (instead of a0 = 1 as is always done when
finding yh). Also let c1 = 0 as that is the same as a1. Now we get to the recurrence
relation (4) in last example which is

an = −an−2

(n+ r) (n+ r − 1) + (n+ r)− 1

Using c in place of a and using m in place r it becomes for n ≥ 2

cn = −cn−2

(n+m) (n+m− 1) + (n+m)− 1
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But m = 0
cn = −cn−2

n (n− 1) + (n− 1)
For n = 2

c2 =
−c0
2 + 1 = −c03

But c0 = −1. The above becomes

c2 =
−c0
2 + 1 = 1

3
For n = 4 (since all odd cn = 0)

c4 =
−c2

4 (3) + (3) =
−1

3
4 (3) + (3) = − 1

45

For n = 6
c6 =

−c4
6 (5) + (5) =

1
45

6 (5) + (5) = 1
1575

And so on. Hence

yp = xm
∞∑
n=0

cnx
n

= c0 + c2x
2 + c4x

4 + · · ·

= −1 + 1
3x

2 − 1
45x

4 + 1
1575x

6 + · · ·

Hence the general solution is

y = yh + yp

= c1

(
x− 1

8x
3 + 1

192x
5 + · · ·

)
+

c2

(
ln (x)

(
x− 1

8x
3 + 1

192x
5 + · · ·

)
+
(
1
x
+ 1

4x−
5
64x

3 + 5
1152x

5 + · · ·
))

+
(
−1 + 1

3x
2 − 1

45x
4 + 1

1575x
6 + · · ·

)
Example 7

x2y′′ + xy′ +
(
x2 − 1

)
y = 1

x

This is same example as above but with 1
x
instead of 1 in the RHS to show that there

will not be a series solution in this. From (2A) in the above example we found the
balance equation, which is always the starting point to finding yp, which is

x2y′′ + xy′ +
(
x2 − 1

)
y =

(
r2 − 1

)
a0x

r
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Therefore, and as we did all the time, relabel r as m and a as c so not to confuse
notations. Therefore we have (

m2 − 1
)
c0x

m = x−1

Hence
m = −1

This implies (m2 − 1) c0 = 1 or (
(−1)2 − 1

)
c0 = 1
0c0 = 1

Therefore no solution exists. This is why there is no series solution for this ode. If we
try to solve this using Maple, will will get no answer and the above explains why.

2.3.2.5.3.5 Roots of indicial equation are repeated

ode internal name "second_order_series_method_regular_singular_point_repeated_root".

In this case the solution is
y = c1y1 + c2y2

Where

y1 =
∞∑
n=0

anx
n+r1

y2 = y1 ln (x) +
∞∑
n=1

bnx
n+r2

r1, r2 are roots of the indicial equation. a0, b0 are set to 1 as arbitrary. The coefficients
bn are not found from the recurrence relation but found using using bn = d

dr
an(r) after

finding an first, and the result evaluated at root r2. (notice that r = r1 = r2 in this
case). Notice there is no C term in from of the ln in this case as when root differ by an
integer and the sum on bn starts at 1 since b0 is always zero due to d

dr
a0(r) = 0 always

as a0 = 1 by default.

Example 1

x2y′′ + xy′ + xy = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0
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Hence p(x) = 1
x
, q(x) = 1

x
. Therefore p0 = limx→0 xp(x) = limx→0 1 = 1 and q0 =

limx→0 x
2q(x) = limx→0 x = 0. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) + r = 0

r2 = 0
r = 0, 0

Therefore r1 = 0, r2 = 0.

Expansion around x = 0. This is regular singular point. Hence Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + x
∞∑
n=0

(n+ r) anxn+r−1 + x
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r+1 = 0

Re indexing to lowest powers on x gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=1

an−1x
n+r = 0 (1)

The indicial equation is obtained from n = 0. The above reduces to
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r = 0

(n+ r) (n+ r − 1) an + (n+ r) an = 0
(r) (r − 1) a0 + ra0 = 0
a0
((
r2 − r

)
+ r
)
= 0

a0r
2 = 0
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Since a0 6= 0 then
r2 = 0

Hence r1 = 0, r2 = 0. Since the roots are repeated then two linearly independent
solutions can be constructed using

y1 = xr1
∞∑
n=0

anx
n =

∞∑
n=0

anx
n

y2 = y1 ln (x) + xr2
∞∑
n=1

bnx
n = y1 ln (x) +

∞∑
n=1

bnx
n

For n ≥ 1 the recurrence relation is

(n+ r) (n+ r − 1) an + (n+ r) an + an−1 = 0

an = − an−1

(n+ r) (n+ r − 1) + (n+ r)
= − an−1

(n+ r)2
(1)

Starting with y1. From (1) with r = 0 gives

an = −an−1

n2

For n = 1 and using a0 = 1
a1 = −1

For n = 2
a2 = −a14 = 1

4
And so on. Hence

y1 =
∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + a3x

3 + · · ·

= 1− x+ 1
4x

2 − 1
36x

3 + · · ·

In the case of duplicate roots, bn is found using bn = d
dr
an(r). And this is evaluated at

r = r0 = 0 in this case since r0 = 0 here. So we need to find an(r). This is done from
(1). For n = 1

b1 =
d

dr
(a1(r))

b1 =
d

dr

(
− a0

(1 + r)2
)

= d

dr

(
− 1
(1 + r)2

)
= 2

(r + 1)3
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Evaluated at r = 0 gives
b1 = 2

For n = 2 then (2) becomes

b2 =
d

dr
(a2(r))

b2 =
d

dr

(
− a1

(2 + r)2
)

= d

dr

(
−
− 1

(1+r)2

(2 + r)2

)
= d

dr

(
1

(r + 1)2 (r + 2)2
)

= −2 2r + 3
(r2 + 3r + 2)3

At r = 0 the above becomes
b2 = −2 3

(2)3
= −3

4
And so on. Just remember when replacing the an in the above, is to use the original
an(r) as function of r and not the actual an values from above. It has to be function of
r first before taking derivatives, Hence

y2 = y1 ln (x) +
∞∑
n=1

bnx
n

= y1 ln (x) + b1x+ b2x
2 + b3x

3 + · · ·

= y1 ln (x) + 2x− 3
4x

2 + · · ·

= y1 ln (x) +
(
2x− 3

4x
2 + · · ·

)
Therefore the general solution is

y = c1y1 + c2y2

= c1

(
1− x+ 1

4x
2 − 1

36x
3 + · · ·

)
+ c2

(
y1 ln (x) +

(
2x− 3

4x
2 + · · ·

))
Example 2

x2y′′ + xy′ + xy = 1

The homogenous ode was solved up, so we just need to find yp. To find yp, and using m
in place of r and c in place of a so not to confuse terms with the yh terms, then from
the above problem, we found the indicial equation. Hence the balance equation is

c0m
2xm = 1

To balance this we need m = 0. Hence 0c0 = 1 which is not possible. Hence no
particular solution exists. No solution in series exists.
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Example 3

x2y′′ + xy′ + xy = 1
x

This is the same ode as above but with different RHS. So we will go directly to finding
yp. From above we found that the balance equation is

x2y′′ + xy′ + xy = m2c0x
m

Hence
m2c0x

m = x−1

Which implies m = −1 and therefore m2c0 = 1 or c0 = 1. Using the recurrence equation
(1) in the above problem using using cn in place of an and m in place or r gives

cn = − cn−1

(n+m)2

For m = −1
cn = − cn−1

(n− 1)2

Hence

yp =
∞∑
n=0

cnx
n+m

= 1
x

∞∑
n=0

cnx
n

Now to find few cn terms. For n = 1

c1 = − c0

(1− 1)2

Which is not defined. Hence no yp exist. There is no solution in terms of series solution.

Example 4

x2y′′ + xy′ + xy = x

This is the same ode as above, where we found yh but with different RHS. So we will
go directly to finding yp. From above we found that the balance equation is

x2y′′ + xy′ + xy = m2c0x
m
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Hence
m2c0x

m = x

Which implies m = 1 and therefore m2c0 = 1 or c0 = 1. Using the recurrence equation
(1) in the above problem and using cn in place of an and m in place or r gives

cn = − cn−1

(n+m)2

For m = 1
cn = − cn−1

(n+ 1)2

Hence

yp =
∞∑
n=0

cnx
n+m

= x
∞∑
n=0

cnx
n

Now to find few cn terms. For n = 1

c1 = − c0

(2)2
= −1

4

For n = 2
c2 = − c1

(2 + 1)2
=

1
4
9 = 1

36
For n = 3

c3 = − c2

(3 + 1)2
= −

1
36
16 = − 1

576
And so on. Hence

yp = x
∞∑
n=0

cnx
n

= x
(
c0 + c1x+ c2x

2 + · · ·
)

= x

(
1− 1

4x+
1
36x

2 − 1
576x

3 + · · ·
)

=
(
x− 1

4x
2 + 1

36x
3 − 1

576x
4 + · · ·

)
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Using yh found in the above problem since that does not change, then the general
solution is

y = yh + yp

= c1

(
1− x+ 1

4x
2 − 1

36x
3 + 1

576x
4 + · · ·

)
+ c2

(
ln (x)

(
1− x+ 1

4x
2 − 1

36x
3 + 1

576x
4 + · · ·

)
+
(
2x− 3

4x
2 + 14

108x
3 + · · ·

))
+
(
x− 1

4x
2 + 1

36x
3 − 1

576x
4 + · · ·

)
Example 5

xy′′ + y′ − xy = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1
x
, q(x) = −1. Therefore p0 = limx→0 xp(x) = limx→0 1 = 1 and q0 =

limx→0 x
2q(x) = limx→0 x

2 = 0. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) + r = 0

r2 = 0
r = 0, 0

Therefore r1 = 0, r2 = 0. Expansion around x = 0. This is regular singular point.
Hence Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

x
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 − x
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

(n+ r) anxn+r−1 −
∞∑
n=0

anx
n+r+1 = 0
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Re indexing to lowest powers on x gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

(n+ r) anxn+r−1 −
∞∑
n=2

an−2x
n+r−1 = 0

∞∑
n=0

((n+ r) (n+ r − 1) + (n+ r)) anxn+r−1 −
∞∑
n=2

an−2x
n+r−1 = 0

∞∑
n=0

(n+ r)2 anxn+r−1 −
∞∑
n=2

an−2x
n+r−1 = 0 (1)

The indicial equation is obtained from n = 0. The above reduces to

r2a0x
n+r−1 = 0

Since a0 6= 0 then
r2 = 0

Hence r1 = 0, r2 = 0 as found earlier. Since the roots are repeated then two linearly
independent solutions can be constructed using

y1 = xr1
∞∑
n=0

anx
n =

∞∑
n=0

anx
n

y2 = y1 ln (x) + xr2
∞∑
n=1

bnx
n = y1 ln (x) +

∞∑
n=1

bnx
n

n = 1 gives

(1 + r) (r) a1 + (1 + r) a1 = 0
(r + 1)2 a1 = 0

Hence a1 = 0. The recurrence relation is obtained for n ≥ 2. From (1)

n+ r(n+ r − 1) an + (n+ r) an − an−2 = 0

an = an−2

(n+ r)2
(1)

Since we need to differentiate y1 to obtain y2 and the differentiation is w.r.t r, we will
carry the calculations with r in place and at the end replace r by its value (which
happened to be zero in this example). We do this only in the case of repeated roots.

For n = 2
a2 =

a0

(2 + r)2
= 1

(2 + r)2
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For n = 3
a3 =

a1

(3 + r)2
= 0

For n = 4

a4 =
a2

(4 + r)2
=

1
(2+r)2

(4 + r)2
= 1

(2 + r)2 (4 + r)2

For n = 5, we will find a5 = 0 (for all odd n this is the case). For n = 6

a6 =
a4

(6 + r)2
= 1

(2 + r)2 (4 + r)2 (6 + r)2

And so on. We see that nth term is an = Πk
j=1

1
(2j+r)2 . Now we can substitute the r = 0

value into the above to obtain

a2 =
1
4

a4 =
1
64

a6 =
1

2304
Hence

y1 =
∑

anx
n

= a0 + a1x+ a2x
2 + · · ·

= 1 + 1
4x

2 + 1
64x

4 + 1
2304x

6 + · · ·

To find y2 we use bn = d
dr
an and evaluate this at r = r2 which in this case is zero. Hence

b2 =
d

dr
a2 =

d

dr

(
1

(2 + r)2
)

=
(
− 2
(r + 2)3

)
r=0

= −2
8 = −1

4

b4 =
d

dr
a4 =

d

dr

(
1

(2 + r)2 (4 + r)2
)

=
(
−4 r + 3

(r2 + 6r + 8)3
)

r=0
=
(
−4 3

(8)3
)

= − 3
128

b6 =
d

dr
a6

= d

dr

(
1

(2 + r)2 (4 + r)2 (6 + r)2
)

=
(
−2 3r2 + 24r + 44

(r3 + 12r2 + 44r + 48)3
)

r=0

= −2 44
(48)3

= − 11
13 824
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And so on. Hence

y1 = y1 ln (x) +
∞∑
n=1

bnx
n+r2

= y1 ln (x) +
∞∑
n=1

bnx
n

= y1 ln (x) +
(
b2x

2 + b4x
4 + b6x

6 + · · ·
)

= y1 ln (x) +
(
−1
4x

2 − 3
128x

4 +− 11
13 824x

6 + · · ·
)

Therefore the complete solution is

y = c1y1 + c2y2

= c1

(
1 + 1

4x
2 + 1

64x
4 + 1

2304x
6 + · · ·

)
+ c2

(
ln (x)

(
1 + 1

4x
2 + 1

64x
4 + 1

2304x
6 + · · ·

)
+
(
−1
4x

2 − 3
128x

4 +− 11
13 824x

6 + · · ·
))

Example 6
sin (x) y′′ + y′ + y = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1
sin(x) , q(x) =

1
sinx

. Therefore p0 = limx→0 xp(x) = limx→0
x

x−x2
3! +

x5
5! −···

=
1

1− x
3!+

x4
5! −

= 1 and q0 = limx→0 x
2q(x) = limx→0

x2

x−x2
3! +

x5
5! −···

= x

1−x2
3! +

x5
5! −···

= 0. Hence
the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) + r = 0

r2 = 0
r = 0, 0

Therefore r1 = 0, r2 = 0. Expansion around x = 0. This is regular singular point.
Hence Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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The ode becomes

sin (x)
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0(

x− x3

3! +
x5

5! − · · ·
) ∞∑

n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

Using O(x7) terms as the Order of the series (if more terms are needed we will use
more terms from the sin x series). This means we have to now only expand up to n = 7
as that is the order used for the series of sin x. The above becomes

x
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 − x3

3!

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

+ x5

5!

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

Which becomes
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=0

1
6(n+ r) (n+ r − 1) anxn+r+1

+
∞∑
n=0

1
120(n+ r) (n+ r − 1) anxn+r+3 +

∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

Re indexing to lowest powers on x gives

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=2

1
6(n+ r − 2) (n+ r − 3) an−2x

n+r−1

+
∞∑
n=4

1
120(n+ r − 4) (n+ r − 5) an−4x

n+r−1+
∞∑
n=0

(n+ r) anxn+r−1+
∞∑
n=1

an−1x
n+r−1 = 0

Simplifying gives
∞∑
n=0

(n+ r)2 anxn+r−1−
∞∑
n=2

(n+ r − 2) (n+ r − 3)
6 an−2x

n+r−1+
∞∑
n=4

(n+ r − 4) (n+ r − 5)
120 an−4x

n+r−1+
∞∑
n=1

an−1x
n+r−1 = 0

(1)
The indicial equation is obtained from n = 0. The above reduces to

r2a0x
r−1 = 0

Since a0 6= 0 then
r2 = 0
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Hence r1 = 0, r2 = 0 as found earlier. Since the roots are repeated then two linearly
independent solutions can be constructed using

y1 = xr1
∞∑
n=0

anx
n =

∞∑
n=0

anx
n

y2 = y1 ln (x) + xr2
∞∑
n=1

bnx
n = y1 ln (x) +

∞∑
n=1

bnx
n

n = 1 gives from (1) and by taking a0 = 1

(1 + r)2 a1 + a0 = 0

a1 = − a0

(1 + r)2

= − 1
(1 + r)2

For n = 2 gives from (1)

(2 + r)2 a2 −
(r) (r − 1)

6 a0 + a1 = 0

(2 + r)2 a2 = −a1 +
(r) (r − 1)

6 a0

a2 =
1

(1 + r)2 (2 + r)2
+ (r) (r − 1)

6 (2 + r)2

For n = 3

(3 + r)2 a3 −
(1 + r) (r)

6 a1 + a2 = 0

a3 = − a2

(3 + r)2
+ (1 + r) (r)

6 (3 + r)2
a1

= −
1

(1+r)2(2+r)2 +
(r)(r−1)
6(2+r)2

(3 + r)2
− (1 + r) (r)

6 (3 + r)2
1

(1 + r)2

= − (r4 + r3 − r2 − r + 6)
6 (r + 3)2 (r2 + 3r + 2)2

− (1 + r) (r)
6 (3 + r)2 (1 + r)2

For n ≥ 4 the recurrence relation is

(n+ r)2 an −
(n+ r − 2) (n+ r − 3)

6 an−2 +
(n+ r − 4) (n+ r − 5)

120 an−4 + an−1 = 0

Or

an = − an−1

(n+ r)2
+ (n+ r − 2) (n+ r − 3)

6 (n+ r)2
an−2 −

(n+ r − 4) (n+ r − 5)
120 (n+ r)2

an−4 (2)
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Since we need to differentiate y1 to obtain y2 and the differentiation is w.r.t r, we will
carry the calculations with r in place and at the end replace r by its value (which
happened to be zero in this example). We do this only in the case of repeated roots.

For n = 4 then (2) gives

a4 = − a3

(4 + r)2
+ (2 + r) (1 + r)

6 (4 + r)2
a2 −

(r) (−1 + r)
120 (4 + r)2

a0

= −
− 1

(r+1)2(r+2)2(r+3)2

(4 + r)2
+ (2 + r) (1 + r)

6 (4 + r)2
a2 −

(r) (−1 + r)
120 (4 + r)2

a0

= 1
(r + 1)2 (r + 2)2 (r + 3)2 (4 + r)2

+ (2 + r) (1 + r)
6 (4 + r)2

1
(r + 1)2 (r + 2)2

− (r) (−1 + r)
120 (4 + r)2

And so on. Now we replace r = 0 to find y1. Just remember not to use anything over
n = 5 since we cut off the series for sin (x) at x5.

Using r = 0, then the above values for ai found become

a1 = − 1
(1 + r)2

= −1

a2 =
1

(1 + r)2 (2 + r)2
+ (r) (r − 1)

6 (2 + r)2
= 1

4

a3 = − (r4 + r3 − r2 − r + 6)
6 (r + 3)2 (r2 + 3r + 2)2

− (1 + r) (r)
6 (3 + r)2 (1 + r)2

= − 1
(2)2 (3)2

= − 1
36

a4 =
1

(r + 1)2 (r + 2)2 (r + 3)2 (4 + r)2
+ (2 + r) (1 + r)

6 (4 + r)2
1

(r + 1)2 (r + 2)2
− (r) (−1 + r)

120 (4 + r)2

= 1
(2)2 (3)2 (4)2

+ (2)
6 (4)2

1
(2)2

= 1
144

Let find one more term. For n = 5 then (2) gives

a5 = − a4

(5 + r)2
+ (3 + r) (2 + r)

6 (5 + r)2
a3 −

(1 + r) (r)
120 (5 + r)2

a1

= −
1

144
52 + (3) (2)

6 (5)2
(
− 1
36

)
= − 1

720
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For n = 6 the above recurrence relation gives

a6 = − a5

(6 + r)2
+ (4 + r) (3 + r)

6 (6 + r)2
a4 −

(2 + r) (1 + r)
120 (6 + r)2

a2

= −
− 1

720
62 + (4) (3)

6 (6)2
1
144 − (2)

120 (6)2
1
4

= 1
3240

For n = 7

a7 = − a6

(7 + r)2
+ (5 + r) (4 + r)

6 (7 + r)2
a5 −

(3 + r) (2 + r)
120 (7 + r)2

a3

= −
1

3240

(7)2
+ (5) (4)

6 (7)2
(
− 1
720

)
− (3) (2)

120 (7)2
(
− 1
36

)
= − 23

317 520

For n = 8

a8 = − a7

(8 + r)2
+ (6 + r) (5 + r)

6 (8 + r)2
a6 −

(4 + r) (3 + r)
120 (8 + r)2

a4

= −
(
− 23

317 520

)
(8)2

+ (6) (5)
6 (8)2

(
1

3240

)
− (4) (3)

120 (8)2
(

1
144

)
= 13

903 168

Which is now the wrong value. It should be 1
62720 . So using 3 terms from sin x we obtain

up to a7 correct terms. Hence

y1 =
∑

anx
n

= a0 + a1x+ a2x
2 + · · ·

= 1− 1
2x+

1
4x

2 + 1
36x

3 + 1
144x

4 − 1
720x

5 + 1
3240x

6 − 23
317 520x

7 + · · ·

What would have happened if we expanded sin (x) only for two terms? Lets find out.
The ode becomes

sin (x)
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0(

x− x3

3! + · · ·
) ∞∑

n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0
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The above becomes

x
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 − x3

3!

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=0

1
6(n+ r) (n+ r − 1) anxn+r+1 +

∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

Reindex
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=2

1
6(n+ r − 2) (n+ r − 3) an−2x

n+r−1 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=1

an−1x
n+r−1 = 0

∞∑
n=0

(n+ r)2 anxn+r−1 −
∞∑
n=2

1
6(n+ r − 2) (n+ r − 3) an−2x

n+r−1 +
∞∑
n=1

an−1x
n+r−1 = 0

For n = 0 we obtain the indicial equation as we did above. For n = 1(
1 + r2

)
a1 + a0 = 0

a1 = − a0
(1 + r2) = − 1

(1 + r2)

For r = 0 this gives
a1 = −1

n ≥ 2 gives

(n+ r)2 an −
1
6(n+ r − 2) (n+ r − 3) an−2 + an−1 = 0

an = − an−1

(n+ r)2
+ 1

6
(n+ r − 2) (n+ r − 3)

(n+ r)2
an−2

(2A)

Hence for n = 2

a2 = − a1

(2 + r)2
+ 1

6
r(−1 + r)
(2 + r)2

a0

= −
− 1

(1+r2)

(2 + r)2
+ 1

6
r(−1 + r)
(2 + r)2

For r = 0 the above gives

a2 = −
− 1

(1)

(2)2
= 1

4
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n = 3 gives

a3 = − a2

(3 + r)2
+ 1

6
(1 + r) (r)
(3 + r)2

a1

= −
1
4

(3 + r)2
− 1

6
(1 + r) (r)
(3 + r)2

For r = 0
a3 = −

1
4

(3)2
= − 1

36
For n = 4

a4 = − a3

(4 + r)2
+ 1

6
(2 + r) (1 + r)

(4 + r)2
a2

= − a3

(4)2
+ 1

6
(2) (1)
(4)2

a2

= −
(
− 1

36

)
(4)2

+ 1
6
(2) (1)
(4)2

(
1
4

)
= 1

144

For n = 5

a5 = − a4

(5 + r)2
+ 1

6
(3 + r) (2 + r)

(5 + r)2
a3

= −
1

144

(5)2
+ 1

6
(3) (2)
(5)2

(
− 1
36

)
= − 1

720

For n = 6

a6 = − a5

(6 + r)2
+ 1

6
(6 + r − 2) (6 + r − 3)

(6 + r)2
a4

= −
(
− 1

720

)
(6)2

+ 1
6
(4) (3)
62

1
144

= 11
25 920

Which is the wrong value. We see that using two terms only from the sin (x) gave up
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correct an values up to a5. What if we used only one term? Lets find out.

sin (x)
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

(x+ · · · )
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=1

an−1x
n+r−1 = 0

∞∑
n=0

(n+ r)2 anxn+r−1 +
∞∑
n=1

an−1x
n+r−1 = 0

n = 0 gives the indicial equation. For n ≥ 1 the recurrence relation is

(n+ r)2 an + an−1 = 0

an = − an−1

(n+ r)2

For n = 1

a1 = − a0

(1 + r)2

= − 1
(1 + r)2

For r = 0
a1 = −1

For n = 2
a2 = − a1

(2 + r)2
= 1

(2 + r)2

For r = 0
a2 =

1
4

For n = 3
a3 = − a2

(3 + r)2
= −

1
4

(3 + r)2

For r = 0
a3 = −

1
4

(3)2
= − 1

36
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For n = 4
a4 = − a3

(4 + r)2
= −

− 1
36

(4 + r)2

For r = 0
a4 = −

− 1
36

(4)2
= 1

576
We see that this is the wrong value. So when using one term only we obtain correct
an up to a3. What do we learn from all the above? It is that if we expand f(x) up to
O(xn) order, then we can only determine correct terms up to an and no more. In the
above when we used sin (x) = x− x3

6 + x5

120 +O(x7) then we obtained correct terms up
to a7. And when we used sin (x) = x− x3

6 +O(x5) then we obtained correct terms up
to a5 and when we used sin (x) = x+ O(x3) then we obtained correct terms up to a3.
So we should keep this in mind from now on,.

To find y2 we use bn = d
dr
an and evaluate this at r = r2 which in this case is zero. Hence

b1 =
d

dr
a1 =

d

dr

(
− 1
(1 + r)2

)
r=0

= 2
(r + 1)3

= 2

b2 =
d

dr
a2 =

d

dr

(
1

(1 + r)2 (2 + r)2
+ (r) (r − 1)

6 (2 + r)2
)

=
(
5r4 + 13r3 + 9r2 − 25r − 38

6 (r2 + 3r + 2)3
)

r=0
= −38

6 (2)3
= −19

24

b3 =
d

dr
a3

= d

dr

(
− (r4 + r3 − r2 − r + 6)
6 (r + 3)2 (r2 + 3r + 2)2

− (1 + r) (r)
6 (3 + r)2 (1 + r)2

)
=
(
(4r6 + 18r5 + 20r4 − 15r3 − 18r2 + 93r + 114)

6 (r3 + 6r2 + 11r + 6)3
)

r=0

= 114
6 (6)3

= 19
216

And so on. Hence

y1 = y1 ln (x) +
∞∑
n=1

bnx
n+r2

= y1 ln (x) +
∞∑
n=1

bnx
n

= y1 ln (x) +
(
2x− 19

24x
2 + 19

216x
3 + · · ·

)



chapter 2 . second order ode F (x, y, y′, y′′) = 0 350

Therefore the complete solution is

y = c1y1 + c2y2

= c1

(
1− 1

2x+
1
4x

2 + 1
36x

3 + 1
144x

4 + · · ·
)

+ c2

((
1− 1

2x+
1
4x

2 + 1
36x

3 + 1
144x

4 + · · ·
)
ln (x) +

(
2x− 19

24x
2 + 19

216x
3 + · · ·

))

2.3.2.5.4 irregular singular point

ode internal name "second_order_series_method_irregular_singular_point"

expansion point is irregular singular point. Not supported.

2.3.2.6 Reduction of order

ode internal name "reduction_of_order"

This is second order ode where on solution is known. The second solution is found using
reduction of order.

2.3.2.7 Transformation to a constant coefficient ODE methods

2.3.2.7.1 Introduction

Starting with a second order linear ode in the following normal form

y′′ + p(x) y′ + q(x) y = r(x) (A)

The goal is to find a transformation that converts this ode to one with constant
coefficients which is then easily solved. There are two transformations to try. One
uses transformation on the independent variable x and the second is on the dependent
variable y. The transformation on the independent variable uses τ = g(x) and the one
on the dependent variable uses y = v(x) z(x) and y = v(x)xn as special case.

2.3.2.7.2 Flow diagram

The following is diagram of the algorithms.



chapter 2 . second order ode F (x, y, y′, y′′) = 0 351

Methods for solving variable coefficients second order linear ODE y′′ + p(x)y′ + q(x)y = r(x)

Try change of variable
on the independent
variable

Let τ = g(x) where τ will be the new
independent variable. Applying this
transformation results in

y′′ (τ) + p1 (τ) y′ (τ) + q1 (τ) y (τ) = r1 (τ)
(1)

Where

p1 (τ) =
τ ′′ (x) + p (x) τ ′ (x)

(τ ′ (x))2
(2)

q1 (τ) =
q (x)

(τ ′ (x))2
(3)

r1 (τ) =
r (x)

(τ ′ (x))2
(4)

method 1 method 2

assume q1 = c2 where c
is a constant and then
solve for τ and then find
if p1 turns out to be
constant. If this is the
case, then eq (1) can
now be easily solved
(since it is constant
coefficients ODE) and
therefore the original
ODE solution y (x) is
found
Let q1 = c2 where c2 is
some constant. This
implies

q (x)
(τ ′ (x))2

= c2

Hence

τ = 1
c

∫ √
q (x)dx (5)

This τ is now
substituted in p1 (τ). If
it results in p1 (τ) being
a constant (does not
depend on x) then we
are done. Eq (1) can be
solved and original ode
is also solved.

Let p1 = 0 which implies
τ ′′ (x) + p (x) τ ′ (x) = 0.
Hence

τ =
∫

e−
∫
pdxdx

Substituting this in eq
(3) to find q1 (τ). If
q1 (τ) comes out to be
constant or constant
divided by τ2 then we
are done. Eq (1) can be
solved and original ode
is therefore solved

change of variable on
the dependent variable
y = v(x)z(x) (method 1)

Calculate the Liouville ode
invariant

Q = q − 1
2p

′ − 1
4p

2

Where p, q are read from the
orginal ode when in the form
shown above.
If Q(x) is constant then let
y = v(x)z(x) where

z = e−
∫ p

2 dx

Now we do change of variable on
the original ode, replacing
y = v(x)z(x). This will generate a
second order ode in v(x) which is
constant coefficient.
Solving this is much easier. Once
solved for v(x) then y(x) is thus
found.

Try Kovacic algo-
rithm (see my main
page for full report)

Try to convert the
ODE to Bessel ODE
(see my main page
for examples). If
possible, then it is
solved.

Try Lie Symmetry methods.
This is advanced method. I
have examples on may main
page but still do not have any
implementation using these
methods.

Nasser M. Abbasi (d1,ipe) June 21, 2022

Try Lagrange ad-
joint ode method
(see my main page
for examples)

Try finding in-
tegrating factor
(see main page for
examples)

change of variable on the
dependent variable
y = v(x)xn (method 2)

This transformation, if it works,
changes the second order ode to one
with missing y, which then can be
easily solved as first order ode by
reduction of order. Let

y = v (x)xn

If this transformation changes the ode
to one with missing y, then it can be
solved. We are free to select the
integer n. Substituting this in the
given ode results in the following
transformed ode where the dependent
variable is v and not y

xnv′′ +
(
2xn−1n+ xnp

)
v′ +Q(x)v = r

(7)
Where

Q(x) = n (n− 1)xn−2 + npxn−1 + qxn

If it happens that Q(x) = 0 For some
n, then (7) becomes

xnv′′ +
(
2xn−1n+ xnp

)
v′ = r (7B)

Which now can be solved using
substitution u = v′

u′ +
(
2xn−1n+ xnp

)
xn

u = r

Which is linear first order ode. Once u
is found, then v is found by integration.
Hence y is now found. To use this
method, all what we need to check if
(7A) is true for some n. Typically one
tries n = 1 first and if this does not
work, then try to find other values.

Figure 2.3: Algorithm diagram
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2.3.2.7.3 Transformation on the independent variable x method 1

ode internal name "second_order_change_of_variable_on_x_method_1"

Given ode
y′′ + p(x) y′ + q(x) y = r(x) (A)

Let τ = g(x) where τ is the new independent variable. Applying this to (A) results in
(details not shown)

y′′(τ) + p1(τ) y′(τ) + q1(τ) y(τ) = r1(τ) (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

The idea of the transformation is to determine if ode (1) can be solved instead of (A).

Let q1 = c2 where c is a constant then from (2)

q(x)
(τ ′ (x))2

= c2

τ ′ = 1
c

√
q (x) (5)

τ ′′ = 1
2c

q′(x)√
q (x)

(5A)

Substituting (5,5A) in (2) finds p1(τ). If p1(τ) is a constant (does not depend on x)
then (1) can be solved for y(τ) and (A) is therefore solved for y(x).

2.3.2.7.4 Transformation on the independent variable x method 2

ode internal name "second_order_change_of_variable_on_x_method_2"

Given ode
y′′ + p(x) y′ + q(x) y = r(x) (A)

Let τ = g(x) where τ is the new independent variable. Applying this to (A) results in
(details not shown)

y′′(τ) + p1(τ) y′(τ) + q1(τ) y(τ) = r1(τ) (1)
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Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

The idea of the transformation is to determine if ode (1) can be solved instead of (A).

Let p1 = 0 then τ is solved for from τ ′′(x) + p(x) τ ′(x) = 0.

τ =
∫
e−

∫
pdxdx

If this solution τ(x) results in q1 above being a constant, then (1) can now be easily
solved.

2.3.2.7.5 Transformation on the dependent variable (method 1) y = v(x) z(x)

ode internal name "second_order_change_of_variable_on_y_method_1"

This is also called Liouville transformation. Book by Einar Hille, ordinary differential
equations in the complex domain. Page 179. This method assumes that

y = v(x) z(x)

Substituting this into (A) results in the following ode where the dependent variable is
v and not y

v′′(x) +
(
p+ 2

z
z′(x)

)
v′(x) + 1

z
(z′′(x) + pz′(x) + qz(x)) v(x) = r

z
(6)

Assuming that coefficient of v′ in (6) zero implies

p+ 2
z
z′(x) = 0

Solving gives (where constant of integration is taken as one)

z = e−
∫ p

2dx (6A)

With this choice (6) becomes

v′′ + 1
z
(z′′ + pz′ + qz) v = r

z
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Substituting z from (6A) into the above reduces it to (after some algebra) to

v′′ + q1v = r1 (6B)

Where

q1 = q − 1
2p

′ − 1
4p

2

r1 =
r

z

= re
1
2
∫
pdx

q1 is called the Liouville ode invariant. If q1 is constant, then the substitution y =
v(x) z(x) is used in the original original ode which will result in a constant coefficient
ode. In y = v(x) z(x) the z(x) term is known from 6A and v(x) is the new unknown
dependent variable.

The new ode will be in v(x) but with constant coefficients. Solving it for v(x) gives y.

2.3.2.7.5.1 Example 1

y′′ + 2
x
y′ + y = 1

x
(1)

In the form y′′ + p(x) y′ + q(x) y = r(x) then p = 2
x
, q = 1, r = 1

x
. Hence (6A) is

z = e−
∫ p

2dx

= e−
∫ 1

x
dx

= e− lnx

= 1
x

Now we check if q1 is constant or a constant divided by x2.

q1 = q − 1
2p

′ − 1
4p

2

= 1− 1
2

(
2
x

)′

− 1
4

(
2
x

)2

= 1−
(
− 1
x2

)
− 1

4
4
x2

= 1−
(
− 1
x2

)
− 1

4
4
x2

= 1 + 1
x2

− 1
x2

= 1
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Since q1 is constant, then we can use the change of the variable y = v(x) z(x) which is

y = v

x

Since z = 1
x
. Substituting the above into the original ODE (1) gives(v

x

)′′
+
(
2
x

(v
x

)′)
+ v

x
= 1
x(

v′

x
− v

x2

)′

+ 2
x

(
v′

x
− v

x2

)
+ v

x
= 1
x(

v′′

x
− v′

x2
−
(
v′

x2
− 2 v

x3

))
+ 2
x

(
v′

x
− v

x2

)
+ v

x
= 1
x

v′′

x
− v′

x2
− v′

x2
+ 2 v

x3
+ 2v′
x2

− 2v
x3

+ v

x
= 1
x

v′′

x
− v′

x2
− v′

x2
+ 2v′
x2

+ v

x
= 1
x

v′′

x
+ v

x
= 1
x

v′′ + v = 1

This is constant coefficient ODE which is easily solved. If the ode in v(x) did not come
to be constant coefficient then we made a mistake. The solution is

v = c1 cosx+ c2 sin x+ 1

Hence

y = v

x

= c1
cosx
x

+ c2
sin x
x

+ 1
x

2.3.2.7.5.2 Example 2

x2y′′ − x(x+ 2) y′ + (x+ 2) y = 2x3

y′′ − x+ 2
x

y′ + x+ 2
x2

y = 2x (1)

In the form y′′ + p(x) y′ + q(x) y = r(x) then p = −x+2
x
, q = (x+2)

x2 , r = 2x. Hence (6A)
is

z = e−
∫ p

2dx

= e
∫

x+2
2x dx

= xe
x
2
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Now we check if Liouville ode invariant q1 is constant or a constant divided by x2.

q1 = q − 1
2p

′ − 1
4p

2

= (x+ 2)
x2

− 1
2
(
xe

x
2
)′ − 1

4

(
−x+ 2

x

)2

= −1
4

Since q1 is constant, then we can use the change of the variable y = v(x) z(x) which is

y = v(x) z(x)
= v
(
xe

x
2
)

Substituting the above into the original ODE (1) gives

y′′ − x+ 2
x

y′ + x+ 2
x

y = 2x(
v
(
xe

x
2
))′′ − x+ 2

x

(
v
(
xe

x
2
))′ + x+ 2

x2
v
(
xe

x
2
)
= 2x

Carrying out the simplification gives

4v′′ − v = 8e−x
2

Which is constant coefficient ode. This is easily solved giving the solution

v = c1 sinh
(x
2

)
+ c2 cosh

(x
2

)
− 2xe−x

2

Hence

y = v(x) z(x)

=
(
c1 sinh

(x
2

)
+ c2 cosh

(x
2

)
− 2xe−x

2

)
xe

x
2

2.3.2.7.5.3 Example 3

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0 (1)

In the form y′′+ p(x) y′+ q(x) y = r(x) then p = −4x, q = (4x2 − 2) , r = 0. Hence (6A)
is

z = e−
∫ p

2dx

= e
∫
2xdx

= ex
2
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Now we check if Liouville ode invariant q1 is constant or a constant divided by x2.

q1 = q − 1
2p

′ − 1
4p

2

=
(
4x2 − 2

)
− 1

2(−4x)′ − 1
4(−4x)2

=
(
4x2 − 2

)
+ 2− 1

4
(
16x2

)
= 4x2 − 2 + 2− 4x2

= 0

Since q1 is constant, then we can use the change of the variable y = v(x) z(x) which is

y = v(x) z(x)

= v
(
ex

2
)

Substituting the above into the original ODE (1) gives

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0(

vex
2
)′′

− 4x
(
vex

2
)′

+
(
4x2 − 2

)
vex

2 = 0

Carrying out the simplification gives

v′′ = 0

Which is constant coefficient ode. This is easily solved giving the solution

v = c1 + c2x

Hence

y = v(x) z(x)
= (c1 + c2x) ex

2

2.3.2.7.5.4 Example 4

x2y′′ + 3xy′ + y = 0 (1)

This is of course Euler ode, and we do not need to try this method as solving it as Euler
ode is much simpler. But this is just for illustration for the case when the Liouville ode
invariant comes out not a constant. In the form y′′ + p(x) y′ + q(x) y = r(x) then

y′′ + 3
x
y′ + 1

x2
y = 0 (1A)
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Where now p = 3
x
, q = 1

x2 , r = 0. Hence (6A) is

z = e−
∫ p

2dx

= e
−3
2
∫ 1

x
dx

= 1
x

3
2

Now we check if Liouville ode invariant q1 is constant.

q1 = q − 1
2p

′ − 1
4p

2

=
(

1
x2

)
− 1

2

(
3
x

)′

− 1
4

(
3
x

)2

=
(

1
x2

)
− 3

2

(
−1
x2

)
− 1

4

(
9
x2

)
= 1
x2

+ 3
2x2 − 9

4x2

= 1
4x2

Since q1 is not constant then the ode can not not converted to an ode in v(x) with
constant coefficient.

2.3.2.7.5.5 Example 5

xy′′ + 2y′ − xy = 0 (1)

In the form y′′ + p(x) y′ + q(x) y = r(x) then

y′′ + 2
x
y′ − y = 0 (1A)

Where now p = 2
x
, q = −1, r = 0. Hence (6A) is

z = e−
∫ p

2dx

= e−
∫ 1

x
dx

= 1
x
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Now we check if Liouville ode invariant q1 is constant.

q1 = q − 1
2p

′ − 1
4p

2

= (−1)− 1
2

(
2
x

)′

− 1
4

(
2
x

)2

= −1−
(
− 1
x2

)
− 1
x2

= −1 + 1
x2

− 1
x2

= −1

Since q1 is constant, then we can use the change of the variable y = v(x) z(x) which is

y = v(x) z(x)

= v
1
x

Substituting the above into the original ODE (1A) gives

y′′ + 2
x
y′ − y = 0(

v
1
x

)′′

+ 2
x

(
v
1
x

)′

− v
1
x
= 0

Carrying out the simplification gives

v′′ − v = 0

Which is constant coefficient ode. This is easily solved giving the solution

v = c1e
x + c2e

−x

Hence

y = v(x) z(x)

=
(
c1e

x + c2e
−x
) 1
x
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2.3.2.7.5.6 Example 6

y′′ − 1√
x
y′ +

(
1
4x + 1

4x 3
2
− 2
x2

)
y = 0 (1)

In the form y′′ + p(x) y′ + q(x) y = r(x) then p = − 1√
x
, q =

(
1
4x + 1

4x
3
2
− 2

x2

)
, r = 0.

Hence (6A) is

z = e−
∫ p

2dx

= e
∫ 1√

x
dx

= e2
√
x

Now we check if Liouville ode invariant q1 is constant.

q1 = q − 1
2p

′ − 1
4p

2

=
(

1
4x + 1

4x 3
2
− 2
x2

)
− 1

2

(
− 1√

x

)′

− 1
4

(
− 1√

x

)2

= − 2
x2

Not constant. Stop here. This can be solved using Kovacic algorithm.

2.3.2.7.6 Transformation on the dependent variable (method 2) y = v(x)xn

ode internal name "second_order_change_of_variable_on_y_method_2"

This transformation, if it works, changes the second order ode to an one with missing y,
which then can be solved as first order ode by reduction of order. This transformation
does not necessarily changes the second order ode to one with constant coefficient like
the above general transformation. But to an ode with missing y.

This method assumes
y = v(x)xn

If this transformation changes the ode to one with missing y, then it can be used.
Substituting this in (A) results in the following ode where the dependent variable is
now v and not y

xnv′′ +
(
2xn−1n+ xnp

)
v′ +

(
n(n− 1)xn−2 + npxn−1 + qxn

)
v = r

v′′ +
(
2n
x
+ p
)
v′ +

(
n(n− 1)x−2 + npx−1 + q

)
v = r

xn
(7)

If it happens that
n(n− 1)x−2 + npx−1 + q = 0 (7A)
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For some integer or rational number n, then (7) becomes

v′′ +
(
2n
x
+ p
)
v′ = r

xn
(7B)

Which now can be solved using substitution u = v′.

u′ +
(
2n
x
+ p
)
u = r

xn

Which is linear first order ode. Once u is found, then v is by found integration. Hence y
is now found. To use this method, all what we need is to check if (7A) is true for some
number n. Typically one tries n = ±1 first and if this does not work, then try to find
other values. Example below shows how to apply this method.

2.3.2.7.7 Worked Examples on all above 4 methods

2.3.2.7.7.1 Example 1. xy′′ + 2y′ − xy = 0

Trying change of variable on independent variable first. Let τ = g(x) where z will be
the new independent variable. Writing the ode in normal form gives

y′′ + py′ + qy = r

p = 2
x

q = −1
r = 0

Applying τ = g(x) transformation on the above ode gives

y′′(τ) + p1(τ) y′(τ) + q1(τ) y(τ) = r1(τ) (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

Approach 1. Let q1 = c2 where c2 is some constant. This implies
q

(τ ′ (x))2
= c2

τ ′ = 1
c

√
q (5)
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If p1 is constant using this τ then (1) is a second order constant coefficient ode which
can be solved easily. This ode has q = −1, therefore from (3)

τ ′ = 1
c

√
−1

Hence p1 becomes using (2)

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

=
0 + (2x−1) 1

c

√
−1

−1
c2

= −2x−1√−1c

Which is not a constant. So this transformation failed.

Approach 2 Let p1 = 0. If with this choice now q1 becomes constant or a constant
divided by τ 2 then (2) can be integrated. p1 = 0 implies from (2) that

τ ′′ + pτ ′ = 0

τ =
∫
e−

∫
pdxdx

=
∫
e−

∫
2x−1dxdx

=
∫
x−2dx

= −1
x

Using this then q1 becomes

q1 =
q

(τ ′ (x))2

= −1( 1
x2

)2
= −x4

= − 1
τ 4

Which is not constant and nor a constant divided by τ 2. So this transformation did not
work.

Trying change of variables on the dependent variable transformation (first method).
This method assumes

y = v(x) z(x)



chapter 2 . second order ode F (x, y, y′, y′′) = 0 363

Substituting this in the given ode results in new ode where the dependent variable is v
and not y which can be found to be

v′′(x) +
(
p+ 2

z
z′(x)

)
v′(x) + 1

z
(z′′(x) + pz′(x) + qz(x)) v(x) = r

z

Let p+ 2
z
z′(x) = 0. Solving gives z = e−

∫ p
2dx. With this choice the above ode becomes

v′′ + 1
z
(z′′ + pz′ + qz) v = r

z

Applying z = e−
∫ p

2dx to the above reduces it to

v′′ + q1v = r1 (6)

Where

q1 = q − 1
2p

′ − 1
4p

2

r1 = re
1
2
∫
pdx

If q1 turns out to be constant or a constant divided by x2 with this choice of z, then
v is solved for from (6) and the solution to the original ode is obtained. Applying this
method on the given ode gives

z = e−
∫ p

2dx

= e−
∫
x−1dx

= e− lnx

= x−1

Hence

q1 = q − 1
2p

′ − 1
4p

2

= −1 + 2
2x

−2 − 1
4
(
2x−1)2

= −1 + x−2 − x−2

= −1

Since q1 is constant, then this transformation works. Eq (6) now becomes

v′′ − v = 0

The solution is
v = c1e

−x + c2e
x
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Therefore, since z = x−1 then

y = v(x) z(x)

= 1
x

(
c1e

−x + c2e
x
)

This example shows that change of variable on the independent variable did not work,
but change of variable on the dependent variable (general case) worked.

Trying change of variable on the dependent variable (second method). This method
assumes that

y = v(x)xn

For some n, This transformation changes the ode to an ode with a missing y, which can
be easily solved as two first order ode’s. Substituting this in (A) results in the following
ode where the dependent variable is v and not y

xnv′′ +
(
2xn−1n+ xnp

)
v′ +

(
n(n− 1)xn−2 + npxn−1 + qxn

)
v = r (7)

If it happens that (
n(n− 1)xn−2 + npxn−1 + qxn

)
= 0 (7A)

For some n, then (7) becomes

xnv′′ +
(
2xn−1n+ xnp

)
v′ = r (7B)

Which can be solved using substitution u = v′ to give

u′ + (2xn−1n+ xnp)
xn

u = r

Applying (7A) on this example ode gives(
n(n− 1)xn−2 + n

(
2
x

)
xn−1 + (−1)xn

)
= 0

n(n− 1)xn−2 + 2nxn−2 − xn = 0(
n+ n2)xn−2 − xn = 0

It is clear that there exists no integer or rational number n which makes the LHS above
zero. Hence this special transformation did not work.

This is an example where only the change of variable on the dependent variable (general
case) worked.
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2.3.2.7.7.2 Example 2. Euler ODE x2y′′(x) + xy′(x) + y(x) = 0

One way to solve Euler ODE

x2y′′(x) + xy′(x) + y(x) = 0 (A)

Putting it in normal form gives

y′′(x) + 1
x
y′(x) + 1

x2
y(x) = 0

Hence

p = 1
x

q = 1
x2

r = 0

Trying change of variable on the independent variable. Let τ = g(x) where τ will be
the new independent variable. Applying this transformation results in

y′′ + p1y
′ + q1y = r1 (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

Approach 1. Let q1 = c2 where c2 is some constant. This implies

q

(τ ′ (x))2
= c2

τ = 1
c

∫
√
qdx (5)

If with this τ , then p1 turns out to be constant, then (1) is now a second order constant
coefficient ode which is easily solved. Applying (5) on the given ode gives

τ = 1
c

∫ √
x−2dx

= 1
c
ln x
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Using the above on (2) gives

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

= 0

Which is a constant. Hence this transformation worked. Therefore(1) becomes (using
q1 = c2 which is a constant c2)

y′′(τ) + p1y
′(τ) + q1y(τ) = r1

y′′(τ) + c2y(τ) = 0

The solution is
y(τ) = A cos (cτ) +B sin (cτ)

But τ = 1
c
ln x. Hence the above becomes

y(x) = A cos (ln x) +B sin (ln x)

In practice, this longer method is not needed to solve Euler ode x2y′′(x) + xy′(x) +
y(x) = 0 as that the substitution y = xr works more easily. But the above method is
more general. For example, using y = xr, then x2y′′(x) + xy′(x) + y(x) = 0 becomes
r(r − 1) + r + 1 = 0. The roots r are i,−i. Then the solution is linear combination of
the basis solutions given by

y = Axi +Bx−i

= Aelnxi +Belnx−i

= Aei lnx +Be−i lnx

= A cos (ln x) +B sin (ln x)

Where the last step used Euler relation to do the conversion. Another known trans-
formation for Euler (which is not as simple as the above) is to use x = et. Using this
gives

dx

dt
= et (2)

But ln x = t, hence
dt

dx
= 1
x

(3)

To do this change of variable and obtain a new ode where now y(x) becomes y(t), then
y′(x) is changed to y′(t) and y′′(x) is changed y′′(t). Using

dy

dx
= dy

dt

dt

dx
(4)
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Substituting (3) into (4) gives
dy

dx
= dy

dt

1
x

But 1
x
= e−t. The above becomes

dy

dx
= e−tdy

dt
(5)

Now y′′(x) needs to change to y′′(t). Since

d2y

dx2
= d

dx

(
dy

dx

)
Substituting (5) into the above gives

d2y

dx2
= d

dx

(
e−tdy

dt

)
Dividing the numerator and denominator of d

dx
by dt gives

d2y

dx2
=

d
dt
dx
dt

(
e−tdy

dt

)
= dt

dx

d

dt

(
e−tdy

dt

)
But from (3) dt

dx
= 1

x
= e−t. Hence the above becomes

d2y

dx2
= e−t d

dt

(
e−tdy

dt

)
Using the the product rule gives

d2y

dx2
= e−t

(
−e−tdy

dt
+ e−td

2y

dt2

)
= e−2t

(
−dy
dt

+ d2y

dt2

)
= e−2t

(
d2y

dt2
− dy

dt

)
(6)

Now y′(x) and y′′(x) have been converted to y′(t) , y′′(t). Substituting (5,6) in the gives
ode gives

x2y′′(x) + xy′(x) + y(x) = 0

x2e−2t
(
d2y

dt2
− dy

dt

)
+ xe−tdy

dt
+ y(t) = 0
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But x = et and x2 = e2t. The above becomes
d2y

dt2
− dy

dt
+ dy

dt
+ y(t) = 0

d2y

dt2
+ y(t) = 0

This is now constant coefficient ODE. The solution is

y(t) = A cos (t) +B sin (t)

Since ln x = t, then the above becomes

y(x) = A cos (ln x) +B sin (ln x)

This completes the solution.

2.3.2.7.7.3 Example 3. y′′ sin2 (2x) + y′ sin (4x)− 4y = 0

Writing the ode in normal form gives

y′′ + p(x) y′ + q(x) y = r

p = sin (4x)
sin2 (2x) sin (2x) 6= 0

q = − 4
sin2 (2x)

Trying change of variable on the independent variable as above. Let τ = g(x) where
τ will be the new independent variable. Applying this transformation results in

y′′ + p1y
′ + q1y = r1 (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

Approach 1. Let q1 = c2 where c is some constant. This implies
q

(τ ′ (x))2
= c2

τ = 1
c

∫
√
qdx (5)
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If with this τ , then p1 turns out to be constant, then it means (1) is second order
constant coefficient ode. Applying this on the given ode (5) becomes

τ = 1
c

∫ √
− 4
sin2 (2x)dx

= 2i
c

∫ 1
sin (2x)dx

= i

c
ln (csc (2x)− cot (2x))

Eq (2) now becomes

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

= 0

Which is constant. Hence this transformation worked. Therefore (1) becomes (since
q1 = c2 is constant c2)

y′′(τ) + p1y
′(τ) + q1y(τ) = r1

y′′ + c2y = 0

This gives
y(τ) = A cos (cτ) +B sin (cτ)

Using τ = i
c
ln (csc (2x)− cot (2x)) the above becomes

y(x) = A cos (i ln (csc (2x)− cot (2x))) +B sin (i ln (csc (2x)− cot (2x)))

Simplifying using trig identities gives

y(x) = −iB cos (2x) + A

sin (2x)

= B0 cos (2x)
sin (2x) + A

sin (2x)
= B0 cot (2x) + A csc(2x)

Approach 2 Let p1 = 0. If with this choice now q1 becomes constant or a constant
divided by τ 2 then (2) can be integrated. p1 = 0 implies from (2) that

τ ′′ + pτ ′ = 0

τ =
∫
e−

∫
pdxdx

τ =
∫
e
−
∫ sin(4x)

sin2(2x)dxdx

τ =
∫ 1

sin (2x)dx
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Using this gives

q1 =
q

(τ ′ (x))2

=
− 4

sin2(2x)

− 1
1

sin2(2x)

= −4

Which is a constant. Hence this transformation also works. Eq (1) now becomes

y′′ + p1y
′ + q1y = r1

y′′(τ)− 4y(τ) = 0
y(τ) = Ae−2τ +Be2τ

But τ =
∫ 1

sin(2x)dx = 1
2 ln (csc (2x)− cot (2x)), hence

y(x) = Ae−2 1
2 ln(csc(2x)−cot(2x)) +Be2

1
2 ln(csc(2x)−cot(2x))

= Ae− ln(csc(2x)−cot(2x)) +Beln(csc(2x)−cot(2x))

= A

csc (2x)− cot (2x) +B csc (2x)− cot (2x)

Which can be simplified to same solution shown in approach 1. This was an example
where both sub methods of change of variable on the independent variable worked.

2.3.2.7.7.4 Example 4. (1− x2) y′′ − xy′ + y = 0

Writing the ode in normal form gives

y′′ + p(x) y′ + q(x) y = r

p = −x
(1− x2) x 6= 1, x 6= −1

q = 1
(1− x2)

Trying change of variable on the independent variable as above. Let τ = g(x) where
τ will be the new independent variable. Applying this transformation results in

y′′ + p1y
′ + q1y = r1 (1)
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Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

Approach 1. Let q1 = c2 where c2 is some constant. This implies

q

(τ ′ (x))2
= c2

τ = 1
c

∫
√
qdx (5)

If with this τ , then p1 turns out to be constant, then it means (1) is second order
constant coefficient ode which is easily solved. Using the given ode (5) becomes

τ = 1
c

∫ √ 1
(1− x2)dx

= i

c
ln
(
x+

√
x2 − 1

)
Hence (2) now becomes

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

= 0

Which is constant. Hence this transformation worked. Therefore the ode (1) becomes
(since q1 = c2 is constant c2)

y′′(τ) + p1y
′(τ) + q1y(τ) = r1

y′′ + c2y = 0

The solution is
y(τ) = A cos (cτ) +B sin (cτ)

Using τ = i
c
ln
(
x+

√
x2 − 1

)
the above becomes

y(x) = A cos
(
i ln
(
x+

√
x2 − 1

))
+B sin

(
i ln
(
x+

√
x2 − 1

))
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Approach 2 Let p1 = 0. If with this choice now q1 becomes constant or a constant
divided by τ 2 then (2) can be integrated. p1 = 0 implies from (2) that

τ ′′ + pτ ′ = 0

τ =
∫
e−

∫
pdxdx

τ =
∫
e

∫
x(

1−x2
)dx
dx

τ =
∫ 1√

x− 1
√
x+ 1

dx

Therefore

q1 =
q

(τ ′ (x))2

=
1

(1−x2)(
1√

x−1
√
x+1

)2
=

1
(1−x2)

1
(x−1)(x+1)

=
1

(1−x2)
1

x2−1

= −1

Which is a constant. This transformation also worked. Eq (1) becomes

y′′ + p1y
′ + q1y = r1

y′′(τ)− y(τ) = 0
y(τ) = Ae−τ +Beτ

Using τ =
∫ 1√

x−1
√
x+1dx = ln

(
x+

√
x2 − 1

)
, (x > 1) the above

y(x) = Ae−τ +Beτ

= Ae
− ln

(
x+

√
x2−1

)
+Be

ln
(
x+

√
x2−1

)

= A

x+
√
x2 − 1

+B
(
x+

√
x2 − 1

)
This solution looks different from the solution found above using approach 1, but can be
shown to be the same. This was an example where both methods of change of variable
on the independent variable work.
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2.3.2.7.7.5 Example 5. x2y′′ − xy′ +
(
−x2 − 1

4

)
y = 0

Writing the ode in normal form gives

y′′ + p(x) y′ + q(x) y = r

p = −1
x

x 6= 0

q = −
x2 + 1

4
x2

r = 0

Trying change of variable on the independent variable as above. Let τ = g(x) where
τ will be the new independent variable. Applying this transformation results in

y′′ + p1y
′ + q1y = r1 (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

Approach 1. Let q1 = c2 where c2 is some constant. This implies
q

(τ ′ (x))2
= c2

τ = 1
c

∫
√
qdx (5)

If with this τ , then p1 turns out to be constant, then it means (1) is second order
constant coefficient ode which is easily solved. Applying this on the given ode then (5)

τ = 1
c

∫ √
−
x2 + 1

4
x2

dx

= 1
2c

√
−4x2 − 1 + arctan

(
1√

−4x2 − 1

)
Hence (2) now becomes

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

= (8x2 + 4) c
(−4x2 − 1)

3
2
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Which is not constant. Therefore this transformation did not work.

Approach 2 Let p1 = 0. If with this choice now q1 becomes constant or a constant
divided by τ 2 then (2) can be integrated. p1 = 0 implies from (2) that

τ ′′ + pτ ′ = 0

τ =
∫
e−

∫
pdxdx

=
∫
e
∫ 1

x
dxdx

=
∫
elnxdx

=
∫
xdx

= x2

2

Using this then q1 becomes

q1 =
q

(τ ′ (x))2

=
−x2+ 1

4
x2

x2

= − 1
x4

(
x2 + 1

4

)
Which is not constant. Trying change of variable on the dependent variable (first method).
This method assumes

y = v(x) z(x)

The Liouville ode invariant is

q1 = q − 1
2p

′ − 1
4p

2

= −
x2 + 1

4
x2

− 1
2
d

dx

(
−1
x

)
− 1

4

(
−1
x

)2

= − 1
x2
(
x2 + 1

)
Which is not constant. Hence this method does not work. One way to solve this is as a
Bessel ODE. I have many examples how to do this on my main page.
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2.3.2.7.7.6 Example 6. (x2 − 1) y′′ − 2xy′ + 2y = 0

Writing the ode in normal form gives

y′′ + p(x) y′ + q(x) y = r

p = −2x
x2 − 1 x 6= ±1

q = 2
x2 − 1

r = 0

Trying change of variable on the independent variable as above. Let τ = g(x) where
τ will be the new independent variable. Applying this transformation results in

y′′ + p1y
′ + q1y = r1 (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

Approach 1. Let q1 = c2 where c2 is some constant. This implies
q

(τ ′ (x))2
= c2

τ = 1
c

∫
√
qdx (5)

If with this τ , then p1 turns out to be constant, then it means (1) is second order
constant coefficient ode. Applying this on the given ode (5) becomes

τ = 1
c

∫ √ 2
x2 − 1dx

= 1
c

√
2 ln

(
x+

√
x2 − 1

)
Hence (2) reduces to

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

= − 3
√
2cx√

1
x2−1 (2x2 − 2)
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Which is not constant. This transformation did not work.

Approach 2 Let p1 = 0. If with this choice now q1 becomes constant or a constant
divided by τ 2 then (2) can be easily integrated. p1 = 0 implies from (2) that

τ ′′ + pτ ′ = 0

τ =
∫
e−

∫
pdxdx

=
∫
e
∫ 2x

x2−1dxdx

=
∫ (

x2 − 1
)
dx

Hence q1 becomes

q1 =
q

(τ ′ (x))2

=
2

x2−1

(x2 − 1)2

= 2
(x2 − 1)3

Which is not constant. This transformation did not work.

Trying change of variable on the dependent variable (first method). This method as-
sumes that

y = v(x) z(x)

The Liouville ode invariant is

q1 = q − 1
2p

′ − 1
4p

2

=
(

2
x2 − 1

)
− 1

2
d

dx

(
−2x
x2 − 1

)
− 1

4

(
−2x
x2 − 1

)2

= − 3
(x2 − 1)2

Which is not constant and not constant divided by x2. Hence this transformation also
did not work.

Trying the Lagrange adjoint ode method. From above the adjoint ode is

z′′ − d(zp)
dx

+ zq = 0
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For some unknown function z(x). Hence it becomes

z′′ − d

dx

(
z

(
−2x
x2 − 1

))
+ z

(
2

x2 − 1

)
= 0

z′′ −
(
− 2z′x
x2 − 1 + 4zx2

(x2 − 1)2
− 2z
x2 − 1

)
+ z

(
2

x2 − 1

)
= 0

z′′ + 2x
x2 − 1z

′ − 4x2 + 4(x2 − 1)
(x2 − 1)2

z = 0

Clearly this is just as hard to solve as the original ode So this method does it work.

Trying integrating factor method. For this to work the condition is that 1
2

(
p′ + 1

2p
2) = q.

Applying this on the current ode gives

1
2

(
p′ + 1

2p
2
)

= q

1
2

(
d

dx

(
−2x
x2 − 1

)
+ 1

2

(
−2x
x2 − 1

)2
)

= 2
x2 − 1

(2x2 + 1)
(x2 − 1)2

= 2
x2 − 1

2x2 + 1
x2 − 1 = 2

Which is not true. Hence there is no integrating factor.

Trying transformation on the dependent variable (second method). This method assumes

y = v(x)xn

This works only if (7A) given in the introduction is satisfied.(
n(n− 1)xn−2 + npxn−1 + qxn

)
= 0 (7A)

Applying this on the current ode example gives(
n(n− 1)xn−2 + n

(
−2x
x2 − 1

)
xn−1 +

(
2

x2 − 1

)
xn
)

= 0

Trying n = 1 the above becomes((
−2x
x2 − 1

)
+
(

2
x2 − 1

)
x

)
= 0
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Hence this transformation works for n = 1. Therefore y = v(x)x. eq (7) in the intro-
duction now reduces to

xnv′′ +
(
2xn−1n+ xnp

)
v′ +

(
n(n− 1)xn−2 + npxn−1 + qxn

)
v = r (7)

v′′ + (xp+ 2)
x

v′ = 0

Which now can be solved using substitution u = v′.

u′ + (xp+ 2)
x

u = r

Which is linear first order ode. Once u is found, then v is found by integration. Hence
y is now found. Hence

u′ − 2
x3 − x

u = 0

Which has the solution u = c1
x2

x2−1 . Hence v
′ = c1

x2

x2−1 . Integrating gives v = c1
(
x+ 1

x

)
+

c2. Therefore y = xv = c1(x2 + 1) + c2x

This was an example where only the transformation on the dependent second method
y = v(x)xn worked.

2.3.2.7.7.7 Example 7. xy′′ + (x2 − 1) y′ + x3y = 0

Writing the ode in normal form gives

y′′ + p(x) y′ + q(x) y = r

p = x2 − 1
x

x 6= 0

q = x2

r = 0

Trying change of variable on the independent variable as above. Let τ = g(x) where
τ will be the new independent variable. Applying this transformation results in

y′′ + p1y
′ + q1y = r1 (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)
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Approach 1. Let q1 = c2 where c2 is some constant. This implies

q

(τ ′ (x))2
= c2

τ ′ = 1
c

√
q (5)

If p1 turns out to be constant with this τ then it implies (1) is second order constant
coefficient ode. Eq (5) becomes

τ ′ = 1
c

√
x2

τ ′′(x) = 1
2c

2x√
x2

Hence from (2)

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

=
1
2c

2x√
x2 +

(
x2−1
x

)
1
c

√
x2(

1
c

√
x2
)2

= c

Which is a constant. Then (1) becomes second order of constant coefficient

y′′(τ) + cy′(τ) + c2y(τ) = 0

Which has the solution

y(τ) = e−
cτ
2

(
A sin

(
c
√
3τ
2

)
+B sin

(
c
√
3τ
2

))

But from earlier τ = x2

2c . Hence the above becomes

y(x) = Ae−
c x2
2c
2 sin

(
c
√
3x2

2c
2

)
+Be−

c x2
2c
2 sin

(
c
√
3x2

2c
2

)

= e−
x2
4

(
A sin

(√
3x2
4

)
+B sin

(√
3x2
4

))

Approach 2
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Let p1 = 0. If with this choice now q1 becomes constant or a constant divided by τ 2
then (2) can be easily integrated. p1 = 0 implies from (2) that

τ ′′ + pτ ′ = 0

τ =
∫
e−

∫
pdxdx

=
∫
e−

∫
x2−1

x
dxdx

=
∫
xe−

x2
2 dx

= −e−
x2
2

Therefore

q1 =
q

(τ ′ (x))2

= x2(
xe−

x2
2

)2
= ex

2

Which is not constant. Now it is checked to see if it is constant divided by τ 2. Since
τ 2 =

(
−e−x2

2

)2
= e−x2 then q1 = 1

τ2
. Therefore this approach also worked.

Eq (2) becomes

y′′ + p1y
′ + q1y = 0 (1)

y′′ + 1
τ 2
y = 0

τ 2y′′ + y = 0

Which is standard Euler ode which can be solved easily. Giving

y(τ) = A
√
τ cos

(√
3
2 ln (τ)

)
+B

√
τ sin

(√
3
2 ln (τ)

)

But τ = −e−x2
2 . Hence the above becomes

y(x) = A

√
−e−x2

2 cos
(√

3
2 ln

(
−e−

x2
2

))
+B

√
−e−x2

2 sin
(√

3
2 ln

(
−e−

x2
2

))
This looks different from the solution obtained in approach 1, but it verifies also as
correct solution. This is an example where change of independent variable using q1 = c2

works and also change of independent variable using p1 = 0 works as well.
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2.3.2.7.7.8 Example 8. 4x2 sin (x) y′′+(−4x2 cosx− 4x sin x) y′+(2x cosx+ 3 sin x) y =
0

Writing the ode in normal form gives

y′′ + p(x) y′ + q(x) y = 0

p = −4x2 cosx− 4x sin x
4x2 sin (x) x 6= 0, π, 2π, · · ·

q = 2x cosx+ 3 sin x
4x2 sin (x)

r = 0

Applying transformation on the dependent variable second method y = v(x)xn results
in

xnv′′ +
(
2nxn−1 + pxn

)
v′ +

(
n(n− 1)xn−2 + pxn−1n+ qxn

)
v = 0

v′′ + (2nxn−1 + pxn)
xn

v′ +
(
n(n− 1)xn−2 + pxn−1n+ qxn

xn

)
v = 0

v′′ +
(
2nx−1 + p

)
v′ +

(
n(n− 1)x−2 + px−1n+ q

)
v = 0

v′′ +
(
2nx−1 + p

)
v′ +

(
pnx−1 + q +

(
n2 − n

)
x−2) v = 0 (1)

Assuming the coefficient of v(x) above is zero. This gives

pnx−1 + q +
(
n2 − n

)
x−2 = 0

Substituting the values for p, q in the above gives(
−4x2 cosx− 4x sin x

4x2 sin (x)

)
nx−1 + 2x cosx+ 3 sin x

4x2 sin (x) +
(
n2 − n

)
x−2 = 0

Solving for n shows that n = 1
2 . Hence (1) now reduces to

v′′ +
(
x−1 + p

)
v′ = 0

v′′ +
(
1
x
+ −4x2 cosx− 4x sin x

4x2 sin (x)

)
v′ = 0

v′′ +
(
4x sin x− 4x2 cosx− 4x sin x

4x2 sin x

)
v′ = 0

v′′ +
(
−4x2 cosx
4x2 sin x

)
v′ = 0

v′′ − cosx
sin xv

′ = 0
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Let v′ = u, the above becomes
u′ − cosx

sin xu = 0

Which is linear first order ode. It has the solution u = c1 sin (x). Hence

v′ = c1 sin (x)

Integrating gives
v = −c1 cos (x) + c2

Therefore

y = v
√
x

= (−c1 cos (x) + c2)
√
x

This can also be written as

y = (c3 cos (x) + c2)
√
x

2.3.2.7.7.9 Example 9 x2y′′ − (2a− 1)xy′ + a2y = 0

The above is standard Euler ode. But below shows how to apply these transformations
if one did not know this.

Trying change of variable on independent variable first. Let τ = g(x) where z will be
the new independent variable. Writing the ode in normal form gives

y′′ + py′ + qy = r

p = (1− 2a)
x

q = a2

x2

r = 0

Applying τ = g(x) transformation on the above ode gives

y′′(τ) + p1(τ) y′(τ) + q1(τ) y(τ) = r1(τ) (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)
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Approach 1. Let q1 = c2 where c2 is some constant. This implies
q

(τ ′ (x))2
= c2

τ ′ = 1
c

√
q (5)

If p1 is constant using this τ then (1) is a second order constant coefficient ode which
can be solved easily. This ode has q = a2

x2 , therefore from (5) assuming positive

τ ′ = 1
c

√
a2

x2

= a

cx

Hence p1 becomes using (2)

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

= (1− 2a) c
x

Which is not a constant. So this transformation failed.

Approach 2 Let p1 = 0. If with this choice q1 becomes a constant or a constant divided
by τ 2 then (2) can be integrated. p1 = 0 implies from (2) that

τ ′′ + pτ ′ = 0

τ =
∫
e−

∫
pdxdx

=
∫
e−

∫ (1−2a)
x

dxdx

=
∫
x2a−1dx

= x2a

2a
Using this then q1 becomes

q1 =
q

(τ ′ (x))2

=

(
a2

x2

)
(x2a−1)2

= a2

x2x4a−2

= a2

x4a
(6)
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Which is not constant. But τ 2 =
(

x2a

2a

)2
= x4a

4a2 . Hence q1 =
1
4

1
τ2
. Hence this transforma-

tion works. Eq (2) becomes

y′′ + p1y
′ + q1y = 0 (1)

y′′ + 1
4
1
τ 2
y = 0

4τ 2y′′ + y = 0

Which is standard Euler ode which can be solved easily. Giving

y(τ) = A
√
τ +B

√
τ ln (τ)

But τ = x2a

2a . Hence the above becomes

y(x) = A

√
x2a

2a +B

√
x2a

2a ln
(
x2a

2a

)
= A

√
x2a

2a +B

√
x2a

2a ln
(
x2a

2a

)
= A1x

a +B1x
a ln
(
x2a

2a

)

2.3.2.7.7.10 Example 10. Bessel ODE

Given the ode
y′′(x) +

(
1− 3

4x2

)
y(x) = 0 (A)

Trying change of variables on the dependent variable (first method). In this method
we assume

y = v(x) z(x)

The ode is y′′ + py′ + qy = 0. Hence p = 0, q =
(
1− 3

4x2

)
. Therefore the Liouville ode

invariant is

q1 = q − 1
2p

′ − 1
4p

2

=
(
1− 3

4x2

)
Since q1 is not constant, then this method does not work.

Trying change of variable on independent variable.
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Let z = g(x) where z will be the new independent variable. In general, given an ode of
the form

y′′(x) + p(x) y′(x) + q(x) y(x) = r(x)

Then applying this transformation results in

y′′(z) + p1(z) y′(z) + q1(z) y(z) = r1(z) (1)

Where

p1(z) =
z′′(x) + pz′(x)

(z′ (x))2
(2)

q1(z) =
q

(z′ (x))2
(3)

r1(z) =
r

(z′ (x))2
(4)

Approach 1. Let q1 = c2 where c2 is some constant. This implies

q

(z′ (x))2
= c2

z = 1
c

∫
√
qdx (5)

If with this z, then p1 turns out to be constant, then it means (1) is second order
constant coefficient ode. Applying this on current ode then (5) becomes

z = 1
c

∫ √(
1− 3

4x2

)
dx

= 1
2c

(
√
4x2 − 3 +

√
3 arctan

( √
3√

4x2 − 3

))

Hence (2) becomes

p1(z) =
z′′(x) + pz′(x)

(z′ (x))2

= 6c
(4x2 − 3)

3
2

Which is not a constant. So this transformation did not work. So change of variable on
both the dependent and independent variable does not work for this ode to convert it
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to one with constant coefficient. Trying converting it to standard Bessel ODE. Using
this change of variable on the dependent variable

y = ux
1
2

To transform (A) to standard Bessel ODE

x2u′′ + xu′ +
(
x2 − 1

)
u = 0

Since y = ux
1
2 then

dy

dx
= du

dx
x

1
2 + u

x
−1
2

2 (2A)

And

d2y

dx2
= d

dx

(
du

dx
x

1
2 + u

x
−1
2

2

)

= d

dx

(
du

dx
x

1
2

)
+ d

dx

(
u
x

−1
2

2

)

= d2u

dx2
x

1
2 + 1

2
du

dx
x−

1
2 + 1

2
du

dx
x

−1
2 − 1

4ux
− 3

2

= d2u

dx2
x

1
2 + du

dx
x−

1
2 − 1

4ux
− 3

2 (3A)

Substituting (2A,3A) into (A) gives

d2u

dx2
x

1
2 + du

dx
x−

1
2 − 1

4ux
− 3

2 +
(
1− 3

4x2

)
ux

1
2 = 0

d2u

dx2
x

1
2 + du

dx
x−

1
2 − 1

4ux
− 3

2 + ux
1
2 − 3

4ux
− 3

2 = 0

d2u

dx2
x

1
2 + du

dx
x−

1
2 − ux−

3
2 + ux

1
2 = 0

Multiplying both side by x 3
2 gives

x2
d2u

dx2
+ x

du

dx
− u+ ux2 = 0

x2
d2u

dx2
+ x

du

dx
−
(
1− x2

)
u = 0

x2
d2u

dx2
+ x

du

dx
+
(
x2 − 1

)
u = 0

Which is Bessel ode where order is n = 1. This has known standard solution. Once u(x)
is known, then y(x) which is the solution to the original ODE (A) is now known also.
There is a more general method and better method to find if second order ode can be
transformed to Bessel ODE. See my main page for examples and description.
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2.3.2.8 Exact linear second order ode p(x) y′′ + q(x) y′ + r(x) y = 0

ode internal name "exact_linear_second_order_ode"

Given the ode
p(x) y′′ + q(x) y′ + r(x) y = 0 (1)

We want to first find the condition for exactness. This is the same as saying the
above ode has a corresponding adjoint ode, which is (py′ +B(x) y)′ = 0. i.e. if an ode
p(x) y′′ + q(x) y′ + r(x) y = 0 can be written in the form (py′ +B(x) y)′ = 0 for some
B(x) then the ode (py′ +By)′ = 0 is called the adjoint of py′′ + qy′ + ry = 0 which
is the same thing as saying the ode p(x) y′′ + q(x) y′ + r(x) y = 0 is exact. i.e. it has
complete differential.

The goal therefore is to determine if a linear second order ode has a corresponding
adjoint ODE or not of the form (py′ +B(x) y)′ = 0. If so, then it is exact and we can
solve it by solving the adjoint ODE instead since it is much simpler to solve as it is a
first order ODE. Lets see how to find the adjoint ODE.

Let
py′′ + q(x) y′ + r(x) y = (py′ +By)′

Expanding gives
py′′ + qy′ + ry = p′y′ + py′′ +B′y +By′

Comparing coefficients

q = p′ +B

r = B′

Differentiating the first ode gives q′ = p′′ +B′. Using the second ode gives q′ = p′′ + r

or
p′′ − q′ + r = 0 (2)

This is the condition for exactness. i.e. if the input ODE (1) satisfies (2) then the ODE
is exact and has an adjoint ODE of the form (py′ +By)′ = 0 which we now can be
easily solve since it is complete differential.

(py′ +B(x) y)′ = 0
(py′ + (q − p′) y)′ = 0 (3)

We see that solving (3) is much simpler than (1) since (3) is first order. Integrating
this once gives

py′ + (q − p′) y = c
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This is first order ode. This is also called the first integral equation of (1). In summary,
given an ode py′′+qy′+ry = 0 which is exact, then its first integral is py′+(q − p′) y = c

and the solution to this is the solution to the original second order ode.

2.3.2.8.1 Example 1

x2y′′ + xy′ − y = x4

Then p = x2, q = x, r = −1, f(x) = x4. Condition (2) becomes

p′′ − q′ + r = 0
2− 1− 1 = 0

0 = 0

Hence it is second order exact. Therefore the adjoint ode (3) is(
x2y′ + (x− 2x) y

)′ = x4

x2y′ + (x− 2x) y =
∫
x4dx+ c

x2y′ − xy = x5

5 + c

The first integral is

x2y′ + (x− 2x) y =
∫
x4dx+ c

x2y′ − xy = x5

5 + c

This is linear ode. Solving this ode gives

y = x4

15 − c

2x + c2x

Note that this is also a Euler ode.

2.3.2.8.2 Example 2

y′′ + xy′ + y = 0

Here p = 1, q = x, r = 1. Let F (x, y, y′, y′′) = y′′ + xy′ + y. The condition for exactness
is

p′′ − q′ + r = 0
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Hence the above becomes

0− 1 + 1 = 0
0 = 0

The ode is already exact. i.e. no integrating factor is needed. The solution becomes

(py′ + (q − p′) y)′ = 0
(y′ + xy)′ = 0

The first integral is
y′ + xy = c1

Solving this gives

d

dx
(Iy) = Ic1

d

dx

(
ye
∫
xdx
)
= e

∫
xdxc1

ye
∫
xdx =

∫
e
∫
xdxc1dx+ c2

y = e
∫
−xdx

(∫
e
∫
xdxc1dx

)
+ c2e

∫
−xdx

= c1e
−x2
2

(∫
e

x2
2 dx

)
+ c2e

−x2
2 dx

= e
−x2
2

(
c1

∫
e

x2
2 dx+ c2

)

2.3.2.9 Linear second order not exact but solved by finding µ(x)
integrating factor.

ode internal name "linear_second_order_ode_solved_by_mu_integrating_factor"

(not implemented yet).

As mentioned above, an exact ode is one which has a corresponding adjoint ODE. In
the case when the ode was exact, we did not use an integrating factor (this is the same
as saying the integrating factor was 1), i.e. µ(x) = 1.

But if the ode is not exact, then we look for integrating factor µ(x) that when multiplied
by the ode makes it exact and hence will have an adjoint ODE. Given

py′′ + q(x) y′ + r(x) y = f(x) (1)
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Which is assumed not to be exact. Multiplying both sides by µ(x) gives µ(py′′ + q(x) y′ + r(x) y) =
µf(x). Let

µ(py′′ + q(x) y′ + r(x) y) = (µpy′ +By)′ (2)

Expanding gives

µ(py′′ + q(x) y′ + r(x) y) = µ′py′ + µp′y′ + µpy′′ +B′y +By′

µpy′′ + µqy′ + µry = µpy′′ + y′(µ′p+ µp′ +B) + yB′

Comparing coefficients gives the following 2 equations

µq = µ′p+ µp′ +B (2A)
µr = B′ (2B)

Taking derivative of (2A) gives

µ′q + µq′ = µ′′p+ µ′p′ + µ′p′ + µp′′ +B′

Substituting for B′ from (2B) into the above gives

µ′q + µq′ = µ′′p+ µ′p′ + µ′p′ + µp′′ + µr (3)

Arranging
µ′′p+ µ′(2p′ − q) + µ(p′′ − q′ + r) = 0 (4)

The integrating factor µ is the solution to the above ODE (called the adjoint ode also).
Note that in (4), the term p′′ − q′ + r will not be zero, as this is the condition for
exactness, and this ode is not exact (else we will not need an integrating factor to start
with).

We can obtain (4) directly from py′′ + qy′ + ry = 0. Since the relation between an ode
and its adjoint ode is the following: given

py′′ + qy′ + ry = 0

Its adjoint ode is (
(pµ)′ − qµ

)′ + rµ = 0
(pµ)′′ − (qµ)′ + rµ = 0

(p′µ+ pµ′)′ − (q′µ+ qµ′) + rµ = 0
p′′µ+ p′µ′ + p′µ′ + pµ′′ − q′µ− qµ′ + rµ = 0

pµ′′ + µ′(2p′ − q) + µ(p′′ − q′ + r) = 0
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We see this is the same as (4). In summary, an ode py′′ + qy′ + ry = 0 has adjoint ode
(pµ)′′ − (qµ)′ + rµ = 0 where the solution to the adjoint ode makes the first ode exact.
Once the integrating factor µ is found then the first integral is given by

py′′ + qy′ + ry = (µpy′ +By)′

Where

B = µq − µ′p− µp′

= µ(q − p′)− µ′p

Hence
py′′ + qy′ + ry = (µpy′ + (µ(q − p′)− µ′p) y)′ (5)

There is a known relation between an ode and its adjoint ode given by

µ(py′′ + qy′ + ry)− y(py′′ + qy′ + ry) = d

dx
(P (y, u))

Where the bar above the ode means its complex conjugate. The function P (y, u) is
called the bilinear concomitant (see Murphy book, page 93). And is given by

P (y, u) = p(y′µ− yµ′) + (q − p′) yµ

Unfortunately, all this does not help us in solving the adjoint ode (4) in order to find
the integrating factor µ. Since it will also be a second order ode which can be as hard
to solve as the original ode. So this method is not practical as far as I can see unless
the adjoint ODE comes out very simple to solve, but in all the examples I looked at,
this was not the case.

2.3.2.9.1 Example 1

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0

p = 1, q = −4x, r = (4x2 − 2) . Let us first check if the ode is exact or not as is. The
condition for exactness is

p′′ − q′ + r = 0
Therefore the above becomes

0 + 4 +
(
4x2 − 2

)
= 0

The LHS is not zero. This means the ode is not exact. Therefore we need to try to find
an integration factor µ(x) to make the ode exact. (4) becomes

µ′′p+ µ′(2p′ − q) + µ(p′′ − q′ + r) = 0
µ′′ + µ′(4x) + µ

(
4 +

(
4x2 − 2

))
= 0

µ′′ + 4xµ′ + µ
(
2 + 4x2

)
= 0
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We see in practice that finding the integrating factor leads to yet another second order
ode which is as hard to solve as the original ode. The solution to this ode can be found
to be e−x2

, xe−x2 . We only need one integrating factor. Hence let

µ(x) = e−x2

Multiplying this by the given ode now makes it exact

e−x2
y′′ − 4xe−x2

y′ +
(
4x2 − 2

)
e−x2

y = 0

To see this let us check the condition again now. Here p = e−x2
, q = −4xe−x2

, r =
(4x2 − 2) e−x2 . Hence

p′′ − q′ + r = 0(
4e−x2

x2 − 2e−x2
)
−
(
8e−x2

x2 − 4e−x2
)
+
(
4x2 − 2

)
e−x2 = 0

0 = 0

We see that it is now exact. Hence it has adjoint ODE of the form (5)

(µpy′ + (µ(q − p′)− µ′p) y)′ = 0

Hence the first integral is

µpy′ + (µ(q − p′)− µ′p) y = c

Using µ = e−x2
, p = 1, q = −4x the above becomes

e−x2
y′ +

(
−4xe−x2 −

(
−2xe−x2

))
y = c

e−x2
y′ − 2xe−x2

y = c

y′ − 2xy = cex
2

This is linear first ode whose solution is

y = ex
2(cx+ c2)

2.3.2.9.2 Example 2

y′′ + 1
x
y′ + 1

x
y = 0

Here p = 1, q = 1
x
, r = 1

x
, f(x) = 0. The condition of exactness is

p′′ − q′ + r = 0

0−
(
− 1
x2

)
+ 1
x
= 0
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Is not satisfied. Hence the ode is not exact. The adjoint ode (4) to find the integrating
factor becomes

µ′′p+ µ′(p′ − q) + µ(p′′ − q′ + r) = 0

µ′′ + µ′
(
−1
x

)
+ µ

(
− 1
x2

+ 1
x

)
= 0

µ′′ − 1
x
µ′ − µ

(
1− x

x2

)
= 0

x2µ′′ − xµ′ − (1− x)µ = 0

Which has solutions µ as bessel functions. We see that trying to find an integrating
factor using this method is not practical, as it leads to an ode just as hard to solve
as the original one. We could just have solved y′′ + 1

x
y′ + 1

x
y = 0 directly, since this

is Bessel ode. Unless there is a short cut to solving the ODE to find the integrating
factor, this method is not practical. See section below for simpler method

The main difficulty when second order is not exact, is in finding the integrating factor
µ(x) which itself requires solving another second order ode. The whole point of an ODE
being exact is that it is a complete differential which means the order is reduced by
one to make it easier to solve. This means solving a second order ode becomes solving
a first order ode when the ode is exact.

2.3.2.10 Linear second order not exact but solved by finding an M
integrating factor.

ode internal name "linear_second_order_ode_solved_by_an_M_integrating_factor"

This is another method to find integrating factor method for the second order ode. This
method of finding an integrating factor is not a general one like the above using µ(x)
but it is easier to check. This is tried first and if this does not work, then the above
will be tried.

Given the ode, normalized so that the coefficient of y′′ is one

y′′ +Q(x) y′ +R(x) y = f(x) (1)

Let there exists an integrating factor M(x) such that

(M(x) y)′′ =M(x) f(x) (2)
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Then it can be integrated twice and solved. To find M , the above becomes

(M ′y +My′)′ =Mf

M ′′y +M ′y′ +M ′y′ +My′′ =Mf

My′′ + y′(2M ′) +M ′′y =Mf

y′′ + y′
(
2M

′

M

)
+ M ′′

M
y = f (2A)

Comparing (2A) to (1) gives

2M
′

M
= Q

M ′′

M
= R

Or

M ′ − 1
2MQ = 0 (3)

M ′′ −MR = 0 (4)

Starting with (3) gives M = e
1
2
∫
Qdx. If this also satisfies (4), then M is found by

integration. If not, then this method did not work.

2.3.2.10.1 Example 1

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0

Hence Q = −4x and R = (4x2 − 2) , f(x) = 0. Eq(3) becomes

M ′ − 1
2MQ = 0

Therefore

M = e
1
2
∫
Qdx

= e
1
2
∫
−4xdx

= e−x2

Now we much check that equation (4) is verified with such M .

M ′ = −2xe−x2

M ′′ = −2e−x2 − 2x
(
−2e−x2

)
= −2e−x2 + 4xe−x2



chapter 2 . second order ode F (x, y, y′, y′′) = 0 395

Substituting these in (4) gives(
−2e−x2 + 4xe−x2

)
− e−x2(4x2 − 2

)
= 0

−2e−x2 + 4xe−x2 + 2e−x2 − 4x2e−x2 = 0
0 = 0

M is satisfied. Therefore the integrating factor is

M = e−x2

Eq (2) now becomes

(My)′′ = 0
My′ = c1

My = c1x+ c2

y = c1x+ c2
M

= (c1x+ c2) ex
2

Which is the same answer found using the more general method of µ(x) in the above
section but this is simpler when it works since it does not involve solving another ode
(the adjoint ode) to find an integrating factor.

2.3.2.10.2 Example 2

Here is an example where the method of integrating factor does not work.

y′′ + 1
x
y′ + 1

x
y = 0

Here p = 1, q = 1
x
, r = 1

x
, f(x) = 0. The condition of exactness is

p′′ − q′ + r = 0

0−
(
− 1
x2

)
+ 1
x
= 0

Is not satisfied. Hence the ode is not exact. Therefore let us try to find M . Using

M = e
1
2
∫
qdx

= e
1
2 lnx

=
√
x
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Therefore M ′ = 1
2x

−1
2 and M ′′ = −1

4x
−3
2 . Substituting these in (4) to verify gives (using

r = x−1)

−1
4x

−3
2 − x

1
2
(
x−1) = 0

−1
4x

−3
2 − x−

1
2 = 0

Which does not verify as the LHS is not zero. Therefore the integrating method did
not work on this ode.

An easier method to find if an M integrating factor exists is the following. Since
M = e

1
2
∫
qdx then substituting this into (2A) gives

y′′ + y′
(
2M

′

M

)
+ M ′′

M
y = f(x)

Since M ′ = 1
2qM and since

M ′′ = 1
2(q

′M + qM ′)

= 1
2

(
q′M + 1

2q
2M

)
Then (2A) now becomes

y′′ + y′
(
2

1
2qM

M

)
+

1
2

(
q′M + 1

2q
2M
)

M
y = f

y′′ + qy′ + 1
2

(
q′ + 1

2q
2
)
y = f

By comparing the above to the given ode in normal form shows that for M to exist
the condition is

r = 1
2

(
q′ + 1

2q
2
)

if the above is true, then M exists and is given by

M = e
1
2
∫
qdx

Using this method on the first example above y′′−4xy′+(4x2 − 2) y = 0, where q = −4x
and r = (4x2 − 2). Checking if (4x2 − 2) = 1

2

(
q′ + 1

2q
2), then 1

2

(
−4 + 1

2(16x
2)
)
=

4x2 − 2 = r. Hence M exists. This is a much faster method to determine if M exists or
not.

The second example y′′ + 1
x
y′ + 1

x
y = 0 where q = 1

x
, r = 1

x
, then 1

2

(
q′ + 1

2q
2) =

1
2

(
−x−2 + 1

2x
−2) = − 1

4x2 6= r. Therefore no M exists and the integration factor does
not exist for this ode. Note this does not mean there is no integrating factor. It just
means this short cut method which I call the M integrating factor does not work.
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2.3.2.11 Solved using Lagrange adjoint equation method.

ode internal name "second order ode lagrange adjoint equation method"

This method is used when hint is “adjoint”. This transformation does not use change of
variables. It was discovered by Lagrange in his Miscellanea Taurensis paper. It reduces
the order of the ode by one, assuming the so called adjoint ode can be solved. This
is also described in section 1.5.1 on page 14 of the “book Change and Variations A
History of Differential Equations to 1900” by Jeremy Gray. This method will only work
if adjoint equation turns out to be simple and can be solved. It is now only used by the
program if the hint “adjoint” is detected or if all the other methods were first tried and
they all fail to solve the ode. So this method works if the adjoint ode can be solved.
But the adjoint ode itself is second order non constant ode. So we need to solve a
second order non-constant ode in order to reduce the order by one of the original ode.
Luckily the adjoint ode turns out to be possible to solve by change of variables when
the original one is not, and that is why this method is tried.

Given the ode
y′′ + p(x) y′ + q(x) y = r(x) (1)

This method starts by multiplying the ode by some unknown function z ≡ z(x) which
gives

zy′′ + zpy′ + zqy = zr (2)

Integrating gives ∫
zy′′dx+

∫
zpy′dx+

∫
zqydx =

∫
zrdx (3)

Using integration by parts on
∫
zpy′dx using

∫
udv = uv −

∫
vdu where u = zp and

dv = y′, hence v = y and du = d
dx
(zp). Therefore∫

zpy′dx = zpy −
∫
y
d(zp)
dx

dx

Using integration by parts on
∫
zy′′dx using

∫
udv = uv −

∫
vdu where u = z and

dv = y′′, hence v = y′ and du = z′. Therefore∫
zy′′dx = zy′ −

∫
y′z′dx

Eq (3) becomes(
zy′ −

∫
y′z′dx

)
+
(
zpy −

∫
y
d(zp)
dx

dx

)
+
∫
zqydx =

∫
zrdx (4)
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Integrating by part again the term
∫
y′z′dx using

∫
udv = uv −

∫
vdu where u = z′

and dv = y′, hence v = y and du = z′′. Therefore∫
y′z′dx = yz′ −

∫
yz′′dx

Substituting this in (4) gives(
zy′ −

(
yz′ −

∫
yz′′dx

))
+
(
zpy −

∫
y
d(zp)
dx

dx

)
+
∫
zqydx =

∫
zrdx

zy′ − yz′ +
∫
yz′′dx+ zpy −

∫
y
d(zp)
dx

dx+
∫
zqydx =

∫
zrdx

zy′ − yz′ + zpy +
∫ (

yz′′ − y
d(zp)
dx

+ zqy

)
dx =

∫
zrdx

zy′ − yz′ + zpy +
∫
y

(
z′′ − d(zp)

dx
+ zq

)
dx =

∫
zrdx

zy′ + (zp− z′) y +
∫
y

(
z′′ − d(zp)

dx
+ zq

)
dx =

∫
zrdx (5)

The adjoint ode is the term inside the integral above given by

z′′ − d(zp)
dx

+ zq = 0 (6)

If this can be solved, where the solution zsol(x) 6= 0, then (5) reduces to

zsoly
′ +
(
zsolp− (zsol)′

)
y =

∫
zrdx

y′ + y

(
p− (zsol)′

zsol

)
= 1
z

∫
zrdx

Which is first order ode in y(x) which can be easily solved for y(x). Equation (6) is
called the Lagrange adjoint equation. This method of course works only if the adjoint
ode can be solved for z(x) and the solution is not zero.

2.3.2.12 Solved By transformation on B(x) for ODE
Ay′′(x) +By′(x) + C(x) y(x) = 0

ode internal name "second_order_ode_non_constant_coeff_transformation_on_B"

This method is tried to reduce the order ode the ODE by one, by doing direct transfor-
mation on B(x) for the ode

A(x) y′′(x) +B(x) y′(x) + C(x) y(x) = 0
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Let
y = Bv

Then y′ = B′v + v′B and y′′ = B′′v +B′v′ + v′′B + v′B′ = v′′B + 2v′B′ +B′′v then the
original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0

Now we check if AB′′ + BB′ + CB = 0 or not. If it is zero, then this method works
and we can now solve

ABv′′ +
(
2AB′ +B2) v′ = 0

Using u = v′ which reduces the order to one.

ABu′ +
(
2AB′ +B2)u = 0

This is first order ode now. Solved for u gives v′ which is solved for v as first order ode.
Then y = Bv and we are done. This method only works of course if AB′′+BB′+CB = 0
comes out to be zero. Here is an example

2.3.2.12.1 Example 1

xy′′ + (−1− x) y′ + y = 0

Here A = x,B = (−1− x) and C = 1, hence B′ = −1, B′′ = 0 and therefore

AB′′ +BB′ + CB = 0 + (−1− x) (−1) + (−1− x)
= 1 + x− 1− x

= 0

It works. Hence the reduces ode becomes

ABv′′ +
(
2AB′ +B2) v′ = 0



chapter 2 . second order ode F (x, y, y′, y′′) = 0 400

Let u = v′ then

ABu′ +
(
2AB′ +B2)u = 0

x((−1− x))u′ +
(
−2x+ (−1− x)2

)
u = 0

u− xu′ + ux2 − x2u′ = 0
u′
(
−x− x2

)
+ u
(
1 + x2

)
= 0

u′ − (1 + x2)
(x+ x2)u = 0

This is linear first order ode solved using integrating factor which gives

u = c1
xex

(1 + x)2

Hence since v′ = u then

v′ = c1
xex

(1 + x)2

This is quadrature. Solving gives

v = c2 + c1
ex

1 + x

Therefore

y = Bv

= (−1− x)
(
c2 + c1

ex

1 + x

)
= c2(1 + x) + c1e

x

Note that this method is sensitive to the ODE is written. If we divide the ode by A is
becomes

y′′ + (−1− x)
x

+ 1
x
y = 0
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And now A = 1, B = (−1−x)
x

and C = 1
x
, hence B′ = − 1

x
+ 1+x

x2 and B′′ = 2
x2 − 2

x3 (1 + x)
then

AB′′ +BB′ + CB =
(

2
x2

− 2
x3

(1 + x)
)
+
(
(−1− x)

x

)(
−1
x
+ 1 + x

x2

)
+ 1
x

(
(−1− x)

x

)
= − 1

x3
(
x2 + 2x+ 3

)
6= 0

So this method now fails to reduce the ode order by one. So in practice, I try first on the
ode as given, and then try again by normalizing it so that B is not rational function and
try again. In other words, given an ode y′′ + (−1−x)

x
+ 1

x
y = 0 then try with B = (−1−x)

x

and if this fails, try again after multiplying the ode by x so now B = (−1− x) and
A = x and C = 1 and see if this works or not. This method of course only works when
B is not zero.

2.3.2.13 Bessel type ode x2y′′ + xy′ + (x2 − n2) y = f(x)

ode internal name "second order bessel ode"

Solves Besself ode or an ode which can be converted to bessel ode.

2.3.2.13.1 Introduction

This gives examples of converting (when possible) a second order linear ode to Bessel
form. Bessel ODE is

x2y′′ + xy′ +
(
x2 − n2) y = 0 (A)

Where n is the order which can be integer or non-integer. This comes out when doing
separation of variables for the Laplace and Helmholtz PDE in spherical and cylindrical
coordinates. n is integer for cylindrical coordinates and half integer values (n = 1

2 +Z),
for spherical coordinates. n can also be any other real value. The case n = 1

2 + Z is
special in that the solution of the ode is reducible to standard trigonometric functions
and complex exponential function. In all other cases, the solution remains in terms of
Bessel functions.

The solution to (A) is known to be

y(x) = c1Jn(x) + c2Yn(x)
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Where Jn(x) is Bessel function of first kind (order n). And Yn(x) Bessel function of
second kind (order n).

There is also the modified Bessel ODE which differ by a sign

x2y′′ + xy′ −
(
x2 + n2) y = 0 (B)

There is however a generalized form of (A,B). Which will be used below. (Bowman
1958). This form is

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ −

(
n2γ2 − α2)) y = 0 (C)

Which is obtained by applying the transformation η = y
xα , ξ = βxγ to (A). The above

has the solution

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ)) integer n (C1)
y(x) = xα(c1Jn(βxγ) + c2J−n(βxγ)) noninteger n (C2)

2.3.2.13.2 Collection of transformations

This section shows number of transformations applied to second order linear ode in
order to make it of the form (A) or (B) if it is not already in that form. Once the ode
is in form A or B, then its solution is now known using Bowman transformation.

2.3.2.13.2.1 Example x2y′′ + xy′ + (ax2 − n2) y = 0

x2y′′ + xy′ +
(
ax2 − n2) y = 0 (1)

Comparing (1) to (C) shows that

(1− 2α) = 1
2γ = 2
a = β2γ2

γ2 = 1
α = 0

Solving shows that γ = 1, β =
√
a. Hence the solution from (C1) can now be written

directly as
y(x) = c1Jn

(√
ax
)
+ c2Yn

(√
ax
)

Another way to obtain this solution is to use the transformation

x = 1√
a
z
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Which converts (1) to
z2y′′ + zy′ +

(
x2 − v2

)
y = 0 (2)

This is now in standard form (A) which has solution

y(z) = c1Jv(z) + c2Yv(z)

Replacing back z =
√
ax in the above gives

y(x) = c1Jv
(√

ax
)
+ c2Yv

(√
ax
)

So the rule is that, the term is (ax2 − n2) y then we can just replace Jn(x) and
Yn(x) in the standard solution with Jn

(√
ax
)
and Yn

(√
ax
)
. For example x2y′′ + xy′ +

(4x2 − 9) y = 0 will have the solution y(x) = c1J3(2x) + c2Y3(2x).

2.3.2.13.2.2 Example x2y′′ + xy′ + xy = 0

x2y′′ + xy′ + xy = 0 (1)

Comparing (1) to (C) shows that

(1− 2α) = 1 (2)(
β2γ2x2γ −

(
n2γ2 − α2)) = x

Hence

β2γ2x2γ = x(
n2γ2 − α2) = 0 (3)

Which implies

2γ = 1 (4)
β2γ2 = 1 (5)

(2) gives α = 0. (4) gives γ = 1
2 . Substituting these into (3) gives

n = 0

And (5) gives β2 = 4 or β = ±2. Therefore from (C1) the solution is

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))
= c1J0

(
2
√
x
)
+ c2Yn

(
2
√
x
)
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2.3.2.13.2.3 Example x2y′′ + bxy′ + (x2 − v2) y = 0

x2y′′ + bxy′ +
(
x2 − v2

)
y = 0 (1)

Comparing (1) to the generalized form (C) x2y′′+(1− 2α)xy′+(β2γ2x2γ − (n2γ2 − α2)) y =
0 shows that

(1− 2α) = b

2γ = 2
β2γ2 = 1(

n2γ2 − α2) = v2

Hence γ = 1, β = 1 . From first equation α = 1
2(1− b). Using this in the last equation

gives

n2 − 1
4(1− b)2 = v2

n =
√
v2 + 1

4 (1− b)2

Therefore the solution (C1) is

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))
= x

1
2 (1−b)(c1Jn(x) + c2Yn(x))

For example, if b = 4, then the ode is x2y′′ + 4xy′ + (x2 − v2) y = 0 and the solution is

y(x) = x−
3
2 (c1Jn(x) + Yn(x))

Where n = 1
2

√
4v2+9

2 .

2.3.2.13.2.4 Example xy′′ + y′ + Ay = 0

xy′′ + y′ + Ay = 0 (1)

Where A is constant. Multiplying by x gives

x2y′′ + xy′ + Axy = 0

Comparing the above to (C) x2y′′+(1− 2α)xy′+(β2γ2x2γ − (n2γ2 − α2)) y = 0 shows
that

(1− 2α) = 1
Ax = β2γ2x2γ(

n2γ2 − α2) = 0
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Which implies α = 0, 2γ = 1 or γ = 1
2 . Therefore β

2γ2 = A gives β2 = 4A or β = 2
√
A.

And n = 0. Hence the solution (C1) is

y(x) = c1J0
(
2
√
A
√
x
)
+ c2Y0

(
2
√
A
√
x
)

Alternative and longer method is the following (this is kept just for illustration, as the
above method is more direct).

Using the transformation
x = v2

Hence
v =

√
x (2)

and dv
dx

= 1
2
√
x
. Therefore

dy

dx
= dy

dv

dv

dx

= dy

dv

1
2
√
x

= dy

dv

1
2v (3)

And

d2y

dx2
= d

dx

(
dy

dx

)
= d

dx

(
dy

dv

1
2v

)
But d

dx
= d

dv
dv
dx
. The above becomes

d2y

dx2
= d

dv

dv

dx

(
dy

dv

1
2v

)
= dv

dx

d

dv

(
dy

dv

1
2v

)
But dv

dx
= 1

2
√
x
= 1

2v . Hence the above becomes

d2y

dx2
= 1

2v
d

dv

(
dy

dv

1
2v

)
(4)

But
d

dv

(
dy

dv

1
2v

)
= 1

2

(
d2y

dv2
1
v
− dy

dv

1
v2

)
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Hence (4) becomes
d2y

dx2
= 1

4v

(
d2y

dv2
1
v
− dy

dv

1
v2

)
(5)

Substituting (3,5) into (1) gives

x
1
4v

(
d2y

dv2
1
v
− dy

dv

1
v2

)
+ dy

dv

1
2v + Ay = 0

But x = v2. The above becomes

v

4

(
y′′

1
v
− dy

dv

1
v2

)
+ y′

1
2v + Ay = 0

1
4y

′′ − 1
4y

′ 1
v
+ y′

1
2v + Ay = 0

1
4y

′′ + 1
4y

′ 1
v
+ Ay = 0

y′′ + y′
1
v
+ 4Ay = 0

Multiplying through by v2
v2y′′ + vy′ + 4Av2y = 0

The above of the form
v2y′′ + vy′ +

(
a2v2 − n2) y = 0

Where n = 0 and a2 = 4A which has the standard solution

y(v) = c1Jn(av) + c2Yn(av)

Where Jn(v) is the Bessel function of first kind and Yn(v) is Bessel function of second
kind. Since v =

√
x and a = 2

√
A then the solution for (1) becomes (using n = 0)

y(x) = c1J0
(
2
√
A
√
x
)
+ c2Y0

(
2
√
A
√
x
)

For example, if A = 1
4 . Then the ode xy′′ + y′ + 1

4y = 0 and the solution above becomes

y(x) = c1J0
(√

x
)
+ c2Y0

(√
x
)
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2.3.2.13.2.5 Example y′′ − 1
x
y = 0

y′′ − 1
x
y = 0 (1)

Multiplying both sides by x2 gives

x2y′′ − xy = 0

Comparing to (C) x2y′′ + (1− 2α)xy′ + (β2γ2x2γ − (n2γ2 − α2)) y = 0 shows that

(1− 2α) = 0
β2γ2x2γ = −x(

n2γ2 − α2) = 0

First equation gives α = 1
2 . Second equation gives γ = 1

2 and β2γ2 = −1. Therefore
β2 = −4 or β = ±2i. Last equation gives n2γ2 = 1

4 or n = 1 since γ2 = 1
4 . Hence the

solution (C1) is

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))
=

√
x
(
c1J1

(
2i
√
x
)
+ c2Y1

(
2i
√
x
))

By properties of Bessel functions, where Jn
(
ai
√
x
)

= inIn
(
a
√
x
)
, then the above

becomes
y(x) =

√
x
(
ic1I1

(
2
√
x
)
+ c2Y1

(
2i
√
x
))

Alternative longer method is the following:

Trying standard transformation y =
√
xY . The ode becomes

x2Y ′′ + xY ′ −
(
x+ 1

4

)
Y = 0

Using the transformation x = t2 the above becomes

t2Y ′′ + tY ′ −
(
4t2 + 1

)
Y = 0

Finally applying the standard transformation t = 1
2z to fix the term (4t2 + 1) to

standard form the above becomes

z2Y ′′ + zY ′ −
(
t2 + 1

)
Y = 0

This is modified Bessel ODE whose solution is known to be

Y (z) = c1I1(z) + c2K1(z)
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Where I1 is modified Bessel function of first kind and K1 is modified Bessel function of
second kind. But z = 2t. Hence the above becomes

Y (t) = c1I1(2t) + c2K1(2t)

But t =
√
x. The above becomes

Y (x) = c1I1
(
2
√
x
)
+ c2K1

(
2
√
x
)

But y(x) =
√
xY (z) hence

y(x) = c1
√
xI1
(
2
√
x
)
+ c2

√
xK1

(
2
√
x
)

2.3.2.13.2.6 Example 4x2y′′ + 4xy′ + (x− 4) y = 0

Dividing by 4
x2y′′ + xy′ +

(
1
4x− 1

)
y = 0

Comparing the above to (C) x2y′′+(1− 2α)xy′+(β2γ2x2γ − (n2γ2 − α2)) y = 0 shows
that

(1− 2α) = 1

β2γ2x2γ = 1
4x(

n2γ2 − α2) = 1

Which implies α = 0, 2γ = 1, β2γ2 = 1
4 . Hence γ = 1

2 and β = 1. Last equation now
says n2γ2 = 1 or n = 2. Hence the solution (C1) is

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))
= c1J2

(√
x
)
+ c2Y2

(√
x
)

2.3.2.13.2.7 Example y′′ − 1
x
3
2
y = 0

Multiplying by x 3
2

x
3
2y′′ − y = 0

Multiplying by x 1
2

x2y′′ − x
1
2y = 0

Comparing the above to (C) x2y′′+(1− 2α)xy′+(β2γ2x2γ − (n2γ2 − α2)) y = 0 shows
that

(1− 2α) = 0
β2γ2x2γ = −x

1
2(

n2γ2 − α2) = 0
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Which implies α = 1
2 , 2γ = 1

2 , β
2γ2 = −1. Hence γ = 1

4 and β2 = −16 or β = ±4i. Last
equation now says

(
n2 1

16 −
1
4

)
= 0 or n = 2. Hence the solution (C1) is

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))

=
√
x
(
c1J2

(
4ix 1

4

)
+ c2Y2

(
4ix 1

4

))
By properties of Bessel functions, where Jn

(
ai
√
x
)

= inIn
(
a
√
x
)
, then the above

becomes
y(x) =

√
x
(
−c1I2

(
4x 1

4

)
+ c2Y2

(
4ix 1

4

))
2.3.2.13.2.8 Example x2y′′ − xy + (x2 + 1) y = 0

x2y′′ − xy +
(
x2 + 1

)
y = 0

Comparing the above to (C) x2y′′+(1− 2α)xy′+(β2γ2x2γ − (n2γ2 − α2)) y = 0 shows
that

(1− 2α) = −1
β2γ2x2γ = x2

−
(
n2γ2 − α2) = 1

Which implies α = 1 and γ = 1 and β2γ2 = 1 or β = 1. Last equation now becomes
−(n2 − 1) = 1 or n2 = 0 or n = 0. Hence the solution (C1) becomes

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))
= x(c1J0(x) + c2Y0(x))

2.3.2.13.2.9 Example y′′ − x−
1
4y = 0

Multiplying by x 1
4

x
1
4y′′ − y = 0

Multiplying by x 7
4

x2y′′ − x
7
4y = 0

Comparing the above to (C) x2y′′+(1− 2α)xy′+(β2γ2x2γ − (n2γ2 − α2)) y = 0 shows
that

(1− 2α) = 0
β2γ2x2γ = −x

7
4(

n2γ2 − α2) = 0
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Which implies α = 1
2 and 2γ = 7

4 or γ = 7
8 and β2γ2 = −1 or β2 = − 1( 7

8
)2 = −64

49 . Hence
β = i87 . Last equation now becomes

(
n2(49

64

)
− 1

4

)
= 0, or n = 4

7 . Hence the solution
(C2) for non integer n becomes

y(x) = xα(c1Jn(βxγ) + c2J−n(βxγ))

=
√
x

(
c1J 4

7

(
i
8
7x

7
8

)
+ c2J− 4

7

(
i
8
7x

7
8

))

2.3.2.13.2.10 Example f ′′ + λ
x
f ′ − µf = 0

Multiplying by x2
x2f ′′ + λxf ′ +

(
−µx2

)
f = 0 (1)

Using the generalized form of Bessel ode

x2f ′′ + xf ′ +
(
x2 − n2) f = 0 (A)

Which is given by (Bowman 1958)

x2f ′′ + (1− 2α)xf ′ +
(
β2γ2x2γ −

(
n2γ2 − α2)) f = 0 (C)

Comparing (1) and (C) shows that

(1− 2α) = λ (2)
β2γ2x2γ = −µx2 (3)(

n2γ2 − α2) = 0 (4)

(2) gives α = 1
2 −

1
2λ. (3) gives 2γ = 2 or γ = 1. And (3) also shows that β2γ2 = −µ

or β =
√
−µ. Now (4) gives

(
n2 −

(1
2 −

1
2λ
)2) = 0 or n =

(1
2 −

1
2λ
)
. (taking positive

root). But the solution to (C) is gives by

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))

Therefore the solution to (1) is

y(x) = x
( 1
2−

1
2λ
)(
c1J( 1

2−
1
2λ
)(√−µx

)
+ c2Y( 1

2−
1
2λ
)(√−µx

))
Where J is the Bessel function of first kind and Y is the Bessel function of the second
kind.
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2.3.2.13.2.11 Example x2y′′ + xy′ + (x2 − 5)y = 0

x2y′′ + xy′ + (x2 − 5)y = 0 (1)
Using the generalized form of Bessel ode

x2y′′ + xy′ +
(
x2 − n2) y = 0 (A)

Which is given by (Bowman 1958)

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ −

(
n2γ2 − α2)) y = 0 (C)

Comparing (1) and (C) shows that

(1− 2α) = 1 (2)
β2γ2x2γ = x2 (3)(

n2γ2 − α2) = 5 (4)

(2) gives α = 0. (3) gives γ = 1 and β2γ2 = 1 or β = 1. Now (4) gives n2γ2 = 5 or
n =

√
5.But the solution to (C) is given by

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))

Therefore the solution to (1) is

y(x) = c1J√5(x) + c2Y√5(x)

Where J is the Bessel function of first kind and Y is the Bessel function of the second
kind.
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2.3.2.14 Bessel form A type ode ay′′ + by′ + (cerx −m)y = f(x)

ode internal name "second_order_bessel_ode_form_A"

These are ode of the above form which can be converted to Bessel using transformation
x = ln (t).

2.3.2.14.1 Example ay′′ + by′ + (cerx −m)y = 0

An ode of the form
ay′′ + by′ + (cerx +m)y = 0 (1)

can be transformed to Bessel ode using the transformation

x = ln (t)
ex = t

Where a, b, c,m are not functions of x and where b and m are allowed to be be zero.
Using this transformation gives

dy

dx
= dy

dt

dt

dx

= dy

dt
ex

= t
dy

dt
(2)

And

d2y

dx2
= d

dx

(
dy

dx

)
= d

dx

(
t
dy

dt

)
= d

dt

dt

dx

(
t
dy

dt

)
= dt

dx

d

dt

(
t
dy

dt

)
= t

d

dt

(
t
dy

dt

)
= t

(
dy

dt
+ t

d2y

dt2

)
(3)
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Substituting (2,3) into (1) gives

at

(
dy

dt
+ t

d2y

dt2

)
+ bt

dy

dt
+ (cerx +m)y = 0(

aty′ + at2y′′
)
+ bty′ + (ctr +m)y = 0

at2y′′ + (b+ a) ty′ + (ctr +m)y = 0

t2y′′ + b+ a

a
ty′ +

( c
a
tr + m

a

)
y = 0 (4)

Which is Bessel ODE. Comparing the above to the general known Bowman form of
Bessel ode which is

t2y′′ + (1− 2α) ty′ +
(
β2γ2t2γ −

(
n2γ2 − α2)) y = 0 (C)

And now comparing (4) and (C) shows that

(1− 2α) = b+ a

a
(5)

β2γ2 = c

a
(6)

2γ = r (7)(
n2γ2 − α2) = −m

a
(8)

(5) gives α = 1
2 −

b+a
2a . (7) gives γ = r

2 . (8) now becomes
(
n2( r

2

)2 − (12 − b+a
2a

)2) = −m
a

or n2 =
−m

a
+
(

1
2−

b+a
2a

)2
(
r
2
)2 . Hence n = 2

r

√
−m

a
+
(1
2 −

b+a
2a

)2 by taking the positive root.
And finally (6) gives β2 = c

aγ2 or β =
√

c
a
1
γ
=
√

c
a
2
r
(also taking the positive root).

Hence

α = 1
2 − b+ a

2a

n = 2
r

√
−m
a

+
(
1
2 − b+ a

2a

)2

β =
√
c

a

2
r

γ = r

2

But the solution to (C) which is general form of Bessel ode is known and given by

y(t) = tα(c1Jn(βtγ) + c2Yn(βtγ))
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Substituting the above values found into this solution gives

y(t) = t
1
2−

b+a
2a

(
c1J 2

r

√
−m

a
+
(

1
2−

b+a
2a

)2
(√

c

a

2
r
t
r
2

)
+ c2Y 2

r

√
−m

a
+
(

1
2−

b+a
2a

)2
(√

c

a

2
r
t
r
2

))
Since ex = t then the above becomes

y(x) = e
x
(

1
2−

b+a
2a

)(
c1J 2

r

√
−m

a
+
(

1
2−

b+a
2a

)2
(√

c

a

2
r
ex

r
2

)
+ c2Y 2

r

√
−m

a
+
(

1
2−

b+a
2a

)2
(√

c

a

2
r
ex

r
2

))

= e
x
(

−b
2a

)(
c1J 2

r

√
−m

a
+
(

−b
2a

)2
(√

c

a

2
r
ex

r
2

)
+ c2Y 2

r

√
−m

a
+
(

−b
2a

)2
(√

c

a

2
r
ex

r
2

))

= e
x
(

−b
2a

)(
c1J 2

r

√
−m

a
+ b2

4a2

(√
c

a

2
r
ex

r
2

)
+ c2Y 2

r

√
−m

a
+ b2

4a2

(√
c

a

2
r
ex

r
2

))
= e

x
(

−b
2a

)(
c1J 2

r

√
− 4ma+b2

4a2

(√
c

a

2
r
ex

r
2

)
+ c2Y 2

r

√
− 4ma+b2

4a2

(√
c

a

2
r
ex

r
2

))
= e

x
(

−b
2a

)(
c1J 1

ra

√
−4ma+b2

(√
c

a

2
r
ex

r
2

)
+ c2Y 1

ra

√
−4ma+b2

(√
c

a

2
r
ex

r
2

))
(9)

Equation (9) above is the solution to ay′′ + by′ + (cerx +m)y = 0. Therefore we just
need now to compare this form to the ode given and use (9) to obtain the final solution.

Let us now apply this to an example for illustration. Given the ode

y′′ + (e2x − 4)y = 0

Comparing the above to ay′′ + by′ + (cerx +m)y = 0 shows that a = 1, b = 0, c = 1, r =
2,m = −4. Hence the solution (9) becomes

y(x) = e
x
(

−b
2a

)(
c1J 1

ra

√
−4ma+b2

(√
c

a

2
r
ex

r
2

)
+ c2Y 1

ra

√
−4ma+b2

(√
c

a

2
r
ex

r
2

))
= c1J 1

2
√
16(ex) + c2Y 1

2
√
16(ex)

= c1J2(ex) + c2Y2(ex)
= c1 BesselJ (2, ex) + c2 BesselY (2, ex)

Another example for illustration. Given the ode

y′′ + y′ + (ex − 4)y = 0

Comparing the above to ay′′ + by′ + (cerx +m)y = 0 shows that a = 1, b = 1, c = 1, r =
1,m = −4. Hence the solution (9) becomes

y(x) = ex
(−1

2
)(
c1J√16

(
2ex 1

2

)
+ c2Y√16+1

(
2ex 1

2

))
= e

−x
2
(
c1J√17

(
2ex

2
)
+ c2Y√17

(
2ex

2
))
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Another example for illustration. Given the ode

y′′ + (e2x − n2)y = 0

Comparing the above to ay′′ + by′ + (cerx +m)y = 0 shows that a = 1, b = 0, c = 1, r =
2,m = −n2. Hence the solution (9) becomes

y(x) = e
x
(

−b
2a

)(
c1J 1

ra

√
−4ma+b2

(√
c

a

2
r
ex

r
2

)
+ c2Y 1

ra

√
−4ma+b2

(√
c

a

2
r
ex

r
2

))
= c1J 1

2
√

−4(−n2)(e
x) + c2Y 1

2
√

−4(−n2)(e
x)

= c1Jn(ex) + c2Yn(ex)
= c1 BesselJ (n, ex) + c2 BesselY (n, ex)



chapter 2 . second order ode F (x, y, y′, y′′) = 0 416

2.4 Nonlinear second order ode
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2.4.1 Exact nonlinear second order ode F (x, y, y′, y′′) = 0
ode internal name "exact_nonlinear_second_order_ode"

(not implemented yet)

2.4.1.1 Introduction and terminology used

An ode F (x, y, y′, y′′) = 0 is called exact if there exists a function R(x, y, y′) with order
one less that of the ode, such that

F (x, y, y′, y′′) = d

dx
R(x, y, y′)

Which also implies that R = c some constant, because F = 0. In the above R(x, y, y′)
is called the first integral of the ode F (also called the reduced ode), because

R =
∫
Fdx+ c (1A)

An important property of first integral is the following. If we write the ode F (x, y, y′, y′′) =
0 as y′′ = Φ(x, y, y′) which we can always do, then

Rx + y′Ry + ΦRy′ = 0 (1B)

Lets see how this works. Given the ode y′′ + xy′ + y = 0 which is exact as is from the
exactness test py′′ + qy′ + r = 0 which is p′′ − q′ + r = 0, hence p = 1, q = x, r = 1,
therefore −1 + 1 = 0 which is true. Therefore we can write because we can write
y′′ + xy′ + y = 0 = (y′ +B(x) y)′ and find that B = x, Hence

y′′ + xy′ + y = (y′ + xy)′

Where y′ + xy = 0 is the reduced ode.

R = y′ + xy

For the original ode y′′ + xy′ + y = 0, it can be written as y′′ = −(xy′ + y), therefore
Φ = −(xy′ + y). Eq (1B) now becomes

Rx + y′Ry + ΦRy′ = 0
y + y′x− (xy′ + y) (1) = 0

y + y′x− xy′ − y = 0
0 = 0
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Verified. Here is another example. Given the ode (x− 1)2 y′′+4y′x+2y−2x = 0, this is
exact because we can write (x− 1)2 y′′+4y′x+2y−2x = d

dx
((2x+ 2) y + (x2 − 2x+ 1) y′ − x2),

hence the first integral (or the reduced ode) is R = (2x+ 2) y + (x2 − 2x+ 1) y′ − x2.
The original ode can be written as y′′ = − (4y′x+2y−2x)

(x−1)2 , therefore Φ = − (4y′x+2y−2x)
(x−1)2 . Eq

(1B) becomes

Rx + y′Ry + ΦRy′ = 0

(2y + 2xy′ − 2y′ − 2x) + y′(2x+ 2)−
(
4y′x+ 2y − 2x

(x− 1)2
)(

x2 − 2x+ 1
)
= 0

0 = 0

Verified. Equations (1A) and (1B) are important as they will be used to determined an
integrating factor when the ode is not exact.

2.4.1.2 Test for exactness

The following shows how to determine if F (x, y, y′, y′′) = 0 is exact or not (without
having to find the first integral R). This is based on page 164 in Murphy book. The
second order ode must be of degree one. If it is, it can not be exact. The ode is exact iff

∂F

∂y
− d

dx

(
∂F

∂y′

)
+ d2

dx2

(
∂F

∂y′′

)
= 0 (1)

This turns out to be the same thing as using p′′− q′+ r = 0 on the ode py′′− q′+ r = 0.
Let us apply the above test on second order ode which is known to be exact to see how
it works. The ode is

F (x, y, y′, y′′) = 0
xy′′ + (y − 1) y′ = 0

Hence the above test gives

y′ − d

dx
(y − 1) + d2

dx2
(x) = 0

y′ − y′ = 0
0 = 0

Confirmed. Since the ode is linear, we could also apply p′′ − q′ + r = 0 to check, which
is simpler. Here p = x, q = (y − 1) , r = 0. Therefore

p′′ − q′ + r = 0
0− 0 + 0 = 0
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The form (1) is given in Murphy book which is more general since it works on nonlinear
and linear odes while p′′ − q′ + r = 0 is meant to be used for linear second order odes.

In implementation of the solver this is the same type of ode as "second order integrable
as is" ode which is described below. I should merge these together. if a second order
ode is exact, then it is also integrable ode as is. This is by definition of exactness above.

2.4.1.3 Examples showing how to check for exactness

2.4.1.3.1 Example 1

y′′ + x

y2
y′ − 1

y
= 0

F (x, y, y′, y′′) = y′′ + x

y2
y′ − 1

y

Applying the test
∂F

∂y
− d

dx

(
∂F

∂y′

)
+ d2

dx2

(
∂F

∂y′′

)
= 0 (1)

Therefore
∂F

∂y
= − 2

y3
xy′ + 1

y2

∂F

∂y′
= x

y2

∂F

∂y′′
= 1

Hence (1) becomes (
− 2
y3
xy′ + 1

y2

)
− d

dx

(
x

y2

)
+ d2

dx2
(1) = 0(

− 2
y3
xy′ + 1

y2

)
−
(

1
y2

− 2xy′
y3

)
= 0

0 = 0

Therefore this exact. We see that
(
y′ − x

y

)′
= y′′ −

(
1
y
+ xy2

y′

)
. Which implies the ode

is integrable as is. Which means ∫ (
y′ − x

y

)′

dx = 0

y′ − x

y
= c (2)
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Which can now be solved. In the above R(x, y, y′) =
(
y′ − x

y

)
. In other words F = d

dx
R.

Hence
d

dx
R = 0

Integrating gives ∫
d

dx
Rdx = c∫
dR = c

R = c

y′ − x

y
= c

Which is the same as (2) above but shows how it came about more clearly.

2.4.1.3.2 Example 2

3βy′′ + yy′ = 0
F (x, y, y′, y′′) = 3βy′′ + yy′

Applying the test
∂F

∂y
− d

dx

(
∂F

∂y′

)
+ d2

dx2

(
∂F

∂y′′

)
= 0 (1)

Therefore

∂F

∂y
= y′

∂F

∂y′
= y

∂F

∂y′′
= 3β

Hence (1) becomes

(y′)− d

dx
(y) + d2

dx2
(3β) = 0

y′ − y′ = 0
0 = 0
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Therefore this exact. Therefore we see that
(

y2

2 + 3βy′
)′

= 3βy′′ + yy′ = 0. Which
implies the ode can be written as∫ (

y2

2 + 3βy′
)′

dx = 0

y2

2 + 3βy′ = c

Solving this first order ode gives the solution

y = tanh
(

1
6r

√
c1(c2 + x)

√
2
)√

2√c1

2.4.1.4 How to solve the ode once it is determined it is exact

In the examples above we did not show how to obtain or find the first integral R(x, y, y′).
Given an ode F (x, y, y′, y′′) = 0 which is determined to be exact as above, then how to
solve it? This is done by first finding the first integral R. We need to find R(x, y, y′)
such that

F (x, y, y, y′′) = d

dx
R(x, y, y′) = 0

Once R is found, then we need to solve the first order ode R(x, y, y′) = c where R
is now one order less that F so it should be simpler to solve. This ode might require
another integration factor to solve depending on what it type turns out to be.

This reduces the order of the ode from second to first order (since R is first order). To
find R(x, y, y′) the first step is to write the given ode in this form

F (x, y, y′, y′′) = f(x, y, y′) y′′ + g(x, y, y′) (1)

We know what f, g are in the above by reading them from the given ode. But

F = d

dx
R(x, y, y′)

= ∂R

∂x

dx

dx
+ ∂R

∂y

dy

dx
+ ∂R

∂y′
dy′

dx

= Rx +Ryy
′ +Ry′y

′′ (1A)

And since y′′ = Φ(x, y, y′) then the above can also be written as

F = Rx +Ryy
′ + ΦRy′

The above is same as Eq (1B) in the introduction above. Comparing (1,1A) shows that

f = Ry′ (2)
g = Rx +Ryy

′ (3)
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At this point it is easier to replace y′ by p. The above becomes

f = Rp (2)
g = Rx +Ryp (3)

Using (2,3) we are able to determine R. Note that R must exist since we checked the
ode is exact and hence must have a first integral. This method similar to how we find
R for an exact first order ode.

Starting with (2) and integrating it w.r.t. p gives

R =
∫
fdp+ ψ(x, y) (4)

Where ψ(x, y) acts like an integration constant but since R depends on more than
one variable, it is now an arbitrary function of the other variables x, y. If we can find
ψ(x, y), then R is found, since f is known. To find ψ , we differentiate one time w.r.t.
x and another time w.r.t. y and substitute the result in (3). This gives

g =
(
∂

∂x

(∫
fdp

)
+ ψx(x, y)

)
+
(
∂

∂y

(∫
fdp

)
+ ψy(x, y)

)
p (5)

In the above the terms ∂
∂x

(∫
fdp

)
, ∂
∂y

(∫
fdp

)
are known, since everything is known.

The only unknowns are ψx(x, y) , ψy(x, y). Comparing terms in (5) we can generate two
equations for ψx, ψy and by integrating them we find ψ. Examples below show how to
do this as this is easier explained using examples.

2.4.1.4.1 Examples finding first integral R(x, y, y′) for an exact second order
ode

2.4.1.4.1.1 Example 1

yy′′ + (y′)2 + 2axyy′ + ay2 = 0

Comparing this to F (x, y, y′, y′′) = f(x, y, y′) y′′ + g(x, y, y′) shows that

f = y

g = (y′)2 + 2axyy′ + ay2

= p2 + 2axyp+ ay2

Therefore (4) becomes

R =
∫
fdp+ ψ(x, y)

= yp+ ψ(x, y) (1A)
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Hence (5) becomes

g =
(
∂

∂x

(∫
fdp

)
+ ψx

)
+
(
∂

∂y

(∫
fdp

)
+ ψy

)
p

p2 + 2axyp+ ay2 =
(
∂

∂x
(yp) + ψx

)
+
(
∂

∂y
(yp) + ψy

)
p

But ∂
∂x
(yp) = 0 since y, p are held constant. It is important to watch for this here.

Given f(x, y) = 3x + y(x) where y is function of x, then when we do ∂f
∂x

the result
is 3 and not 3 + y′ because with partial derivatives the y is held constant. Similarly
∂
∂y
(yp) = p2. The above becomes

p2 + 2axyp+ ay2 = ψx + (p+ ψy) p
= ψx + p2 + ψyp

2axyp+ ay2 = ψx + ψyp

Comparing terms shows that

2axy = ψy (2A)
ay2 = ψx (3A)

Integrating (2A) w.r.t y gives
ψ = axy2 + h(x) (4A)

Differentiating the above w.r.t. x gives ψx = ay2 + h′(x). comparing this to (3A) above
gives ay2 = ay2 + h′(x), hence h′(x) = 0 or h(x) = c. Therefore (4A) becomes

ψ = axy2 + c

Substituting the above in (1A) gives

R = yp+ axy2 + c

Therefore, since R = c1 a constant, then the above becomes (by merging the constants)

yp+ axy2 = c2

yy′ + axy2 = c2

This is the reduced ode which needs to be solved for y. The above says that R =
yy′ + axy2 + c2. To verify, let us apply F = d

dx
R. This gives

yy′′ + (y′)2 + 2axyy′ + ay2 = d

dx

(
yy′ + axy2 + c2

)
= y′y′ + yy′′ + ay2 + 2axyy′

= yy′′ + (y′)2 + 2axyy′ + ay2

Verified.
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2.4.1.4.1.2 Example 2

y′′ + xy′ + y = 0
F (x, y, y′, y′′) = 0

This ode is not nonlinear, but let us apply this method to it anyway. First we need to
determine if it is exact or not. Applying the test

∂F

∂y
− d

dx

(
∂F

∂y′

)
+ d2

dx2

(
∂F

∂y′′

)
= 0

1− d

dx
(x) + d2

dx2
(1) = 0

1− 1 = 0
0 = 0

So it exact. Comparing this ode to F (x, y, y′, y′′) = f(x, y, y′) y′′ + g(x, y, y′) shows
that

f = 1
g = xy′ + y

= xp+ y

Therefore (4) becomes

R =
∫
fdp+ ψ(x, y)

= p+ ψ(x, y) (1A)

Hence (5) becomes

g =
(
∂

∂x

(∫
fdp

)
+ ψx

)
+
(
∂

∂y

(∫
fdp

)
+ ψy

)
p

xp+ y =
(
∂p

∂x
+ ψx

)
+
(
∂p

∂y
+ ψy

)
p

But ∂p
∂x

= 0 since y is held constant. And ∂p
∂y

= 0. The above becomes

xp+ y = ψx + ψyp

Comparing terms shows that

x = ψy

y = ψx
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Integrating the first equation gives ψ = xy + c. Hence (1A) becomes

R = p+ xy + c

Therefore, since R = c1 a constant, then the above becomes (by merging the constants)

p+ xy = c2

y′ + xy = c2

This is the reduced ode which needs to be solved for y. Solving gives

y = erf
(
i
√
2x
2

)
e

−x2
2 c1 + c2e

−x2
2

2.4.1.4.1.3 Example 3

y′′ − 2yy′ = 0
F (x, y, y′, y′′) = 0

First we need to determine if it is exact or not. Applying the test

∂F

∂y
− d

dx

(
∂F

∂y′

)
+ d2

dx2

(
∂F

∂y′′

)
= 0

−2y′ − d

dx
(−2y) + d2

dx2
(1) = 0

−2y′ + 2 d
dx

(y) = 0

−2y′ + 2y′ = 0
0 = 0

So it exact. Comparing this ode to F (x, y, y′, y′′) = f(x, y, y′) y′′ + g(x, y, y′) shows
that

f = 1
g = −2yy′

= −2yp

Therefore (4) becomes

R =
∫
fdp+ ψ(x, y)

= p+ ψ(x, y) (1A)



chapter 2 . second order ode F (x, y, y′, y′′) = 0 426

Hence (5) becomes

g =
(
∂

∂x

(∫
fdp

)
+ ψx

)
+
(
∂

∂y

(∫
fdp

)
+ ψy

)
p

−2yp =
(
∂p

∂x
+ ψx

)
+
(
∂p

∂y
+ ψy

)
p

−2yp = ψx + ψyp

Comparing terms shows that

−2y = ψy

0 = ψx

Integrating the first equation gives ψ = −y2 + h(x). Differentiating this w.r.t. x gives
ψx = h′(x). comparing this to the second equation above gives 0 = h′(x), hence h(x) = c.
Hence ψ = −y2 + c. Therefore (1A) becomes

R = p− y2 + c

Therefore, since R = c1 a constant, then the above becomes (by merging the constants)

p− y2 = c2

y′ − y2 = c2

This is the reduced ode.

2.4.1.4.1.4 Example 4

(x− 1)2 y′′ + 4xy′ + 2y − 2x = 0
F (x, y, y′, y′′) = 0

First we need to determine if it is exact or not. Applying the test

∂F

∂y
− d

dx

(
∂F

∂y′

)
+ d2

dx2

(
∂F

∂y′′

)
= 0

2− d

dx
(4x) + d2

dx2
(
(x− 1)2

)
= 0

2− 4 + d

dx
(2(x− 1)) = 0

2− 4 + 2 = 0
0 = 0
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So it exact. Comparing this ode to F (x, y, y′, y′′) = f(x, y, y′) y′′ + g(x, y, y′) shows
that

f = (x− 1)2

g = 4xy′ + 2y − 2x
= 4xp+ 2y − 2x

Therefore (4) becomes

R =
∫
fdp+ ψ(x, y)

= (x− 1)2 p+ ψ(x, y) (1A)

Hence (5) becomes

g =
(
∂

∂x

(∫
fdp

)
+ ψx

)
+
(
∂

∂y

(∫
fdp

)
+ ψy

)
p

4xp+ 2y − 2x =
(
∂

∂x

(
(x− 1)2 p

)
+ ψx

)
+
(
∂

∂y

(
(x− 1)2 p

)
+ ψy

)
p

4xp+ 2y − 2x = 2p(x− 1) + ψx + ψyp

4xp+ 2y − 2x = p(2(x− 1) + ψy) + ψx

Comparing terms shows that

4x = 2(x− 1) + ψy

2y − 2x = ψx

Or

2x+ 2 = ψy

2y − 2x = ψx

Integrating the first equation gives ψ = 2xy+2y+h(x). Differentiating this w.r.t. x gives
ψx = 2y+h′(x). comparing this to the second equation above gives 2y−2x = 2y+h′(x),
hence h′(x) = −2x. Hence h = −x2 + c. Therefore ψ = 2xy + 2y − x2 + c. Eq (1A)
becomes

R = (x− 1)2 p+ 2xy + 2y − x2 + c

= (x− 1)2 y′ + 2xy + 2y − x2 + c

Therefore, since R = c1 a constant, then the above becomes (by merging the constants)

(x− 1)2 y′ + 2xy + 2y − x2 = c2

Which is the reduced ode to solve.
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2.4.1.4.1.5 Example 5

y′′ − y′ey = 0
F (x, y, y′, y′′) = 0

First we need to determine if it is exact or not. Applying the test

∂F

∂y
− d

dx

(
∂F

∂y′

)
+ d2

dx2

(
∂F

∂y′′

)
= 0

−y′ey − d

dx
(−ey) + d2

dx2
(1) = 0

−y′ey + y′ey = 0
0 = 0

So it exact. Comparing this ode to F (x, y, y′, y′′) = f(x, y, y′) y′′ + g(x, y, y′) shows
that

f = 1
g = −y′ey

= −pey

Therefore (4) becomes

R =
∫
fdp+ ψ(x, y)

= p+ ψ(x, y) (1A)

Hence (5) becomes

g =
(
∂

∂x

(∫
fdp

)
+ ψx

)
+
(
∂

∂y

(∫
fdp

)
+ ψy

)
p

−pey =
(
∂

∂x
p+ ψx

)
+
(
∂

∂y
p+ ψy

)
p

−pey = ψx + ψyp

Comparing terms shows that

−ey = ψy

0 = ψx
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Integrating the first equation gives ψ = −ey + h(x). Partial differentiating this w.r.t. x
gives ψx = h′(x). comparing this to the second equation above gives h′(x) = 0, hence
h(x) = c. Hence h = −x2 + c. Therefore ψ = −ey + c. Eq (1A) becomes

R = p− ey + c

= y′ − ey + c

Therefore, since φ = c1 a constant, then the above becomes (by merging the constants)

y′ − ey = c2

Which is the reduced ode to solve.

2.4.2 nonlinear and not exact second order ode

2.4.2.1 Introduction

There seems in the literature two main approaches for handling this. One is to find an
integrating factor µ which makes the ode exact, then it can be solved as shown above.
The second approach is to find the first integral directly from the form of the ode itself.
There are many methods to do this. I will go over the integrating method first, then
the second method after that.

2.4.2.2 Solved by finding an integrating factor µ

ode internal name "exact_nonlinear_second_order_ode_with_integrating_factor"

2.4.2.2.1 Introduction

Not implemented yet. The above section showed how to solve the ode F (x, y, y′, y′′) =
0 once it is determined it is exact as is, which is by finding the first integral R. But
the real problem is what to do if the ode is not exact as is?. Given the second order
nonlinear ode

F (x, y, y′, y′′) = 0

Which is not exact as is (using the earlier test shown), then we need to either find an
integrating factor µ to make it exact (this integrating factor might or might not exist)
or try to find the first integral directly without finding an integrating factor first. There
are few papers that show how to do this for some types of nonlinear second order odes.

Using an integrating factor approach, If we are able to find µ, then the ode can now be
solved as type "second order integrable as is" or as type "exact nonlinear second order
ode" as shown in the above section. (need to merge these types).
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As mentioned earlier, an ode F (x, y, y′, y′′) = 0 is called exact if there exists a function
R(x, y, y′) (called first integral) with order one less than the order of the ode, such that

F (x, y, y′, y′′) = d

dx
R(x, y, y′)

If the ode is not exact, then we need to find an integrating factor of any of these forms
µ(x) , µ(y) , µ(y′) , µ(x, y) , µ(x, y′) , µ(y, y′) such that µF (x, y, y′, y′′) is now exact and
hence

µF (x, y, y′, y′′) = d

dx
R(x, y, y′)

The main difficulty is how to find µ. Few papers were written on this (but I found them
all not very clear as they give no examples).

Finding µ with first order ODE is easy. But not so easy with second order ode’s. Note
that in the above, an integrating factor of the form µ = µ(x, y, y′) will not be considered
as finding such an integrating factor requires solving a pde which is harder than solving
the original ode. There two relations are important in order to find µ

R = G(x, y) +
∫
µdy′ (1)

= G(x, y) +
∫
µdp

Where p = y′ and G is some function to be determined. As was derived in the intro-
duction of the earlier section, we also have the relation

Rx + y′Ry + ΦRy′ = 0 (2)

2.4.2.2.2 Integrating factors by inspection.

These are not yet implemented. Before going through the formal way to find µ for non
exact second order nonlinear ode, there is a table given by Murphy which we can utilize
before searching for µ as a lookup table. Writing the ode as y′′ + g(x, y, y′) = 0 the
table is

g(x, y, y′) form integrating factor
g(y) (i.e. function of y only) y′

g(y′) (i.e. function of y′ only) y′

g

p(x, y) y′ +Q(x, y) (y′)2 1
y′

p(x, y) +Q(x, y) y′ such that ∂p
∂y

= ∂Q
∂x

1
y′

The above integrating factors are from Murphy book page 165.



chapter 2 . second order ode F (x, y, y′, y′′) = 0 431

2.4.2.2.3 Integrating factor µ(x) that depends on x only

Not implemented.

2.4.2.2.4 Integrating factor µ(y) that depends on y only

Not implemented.

2.4.2.2.5 Integrating factor µ(y′) that depends on y′ only

Not implemented.

2.4.2.2.6 Integrating factor µ(x, y)

Not implemented.

2.4.2.2.7 Integrating factor µ(x, y′)

Not implemented.

2.4.2.2.8 Integrating factor µ(y, y′)

Not implemented.

2.4.2.2.9 Checking if an integrating factor exists (but not find it)

An example is

xy(2x+ y) y′′ +
(
x2 + xy

)
y′ +

(
3xy + y2

)
= 0

to do.

2.4.2.2.10 References

1. book: Ordinary differential equations and their solutions by George M. Murphy.

2. paper: "Integrating Factors for Second-order ODEs" by E.S. Cheb-Terraba, and
A.D. Roche.

3. Handbook of Mathematics for engineers and scientists. By Polyanin and Manzhi-
rov. Page 492.
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2.4.2.3 Solved by finding the first integral directly

ode internal name "exact_nonlinear_second_order_ode_using_first_integral"

2.4.2.3.1 Introduction

Not implemented yet. This uses point Lie symmetry.

The above section showed how to solve the nonlinear ode F (x, y, y′, y′′) = 0 once it
is determined it is exact as is, which is by finding the first integral R directly without
finding an integrating factor first. This below gives few ode forms with the corresponding
first integral R to use and how to find R. These are collected from few papers I am
studying now.

2.4.2.3.2 ode of the form y′′ + a2(x, y) (y′)2 + a1(x, y) y′ + a0(x, y) = 0

From paper (On first integrals of second-order ordinary differential equations by Romero
et all), this is called class B. The first integral is

d

dx
R = C(x) + 1

A (x, y) y′ +B (x, y)

where Cy = 0. Another class of ode’s is called class A with first integral

d

dx
R = 1

A (x, y) y′ +B (x, y)

This is subset of class B.

2.4.3 ode is Integrable as given
ode internal name "second_order_integrable_as_is"

This is the same as "exact_nonlinear_second_order_ode". Can be linear or nonlinear.
But must be of degree one. ODE is integrable as is w.r.t. the independent variable x.
Need to merge type names into one.
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2.4.3.1 Example 1

xyy′′ + x(y′)2 − yy′ = 0
Integrating both sides gives∫

xyy′′ + x(y′)2 − yy′dx = c1

xyy′ − y2 = c1

y′ = c1
xy

+ y

x

= c1 + y2

xy

=
(
c1 + y2

y

)
1
x

Which is separable and easily solved.

2.4.3.2 Example 2

y′′ = − 1
2 (y′)2

2(y′)2 y′′ = −1

With IC

y(0) = 1
y′(0) = −1

Integrating both sides gives ∫
2(y′)2 y′′dx =

∫
−dx

2
3(y

′)3 = −x+ c

(y′)3 = −3
2x+ c1

Hence

y′1 =
(
−3
2x+ c1

) 1
3

(1)

y′2 = −(−1)
1
3

(
−3
2x+ c1

) 1
3

(2)

y′3 = (−1)
2
3

(
−3
2x+ c1

) 1
3

(3)
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Trying solution (1). Integrating gives

y1 =
∫ (

−3
2x+ c1

) 1
3

dx+ c2

= −1
2

(
−3
2x+ c1

) 4
3

+ c2

Applying y(0) = 1 gives
1 = −1

2c
4
3
1 + c2 (4)

And y′(x) gives

y′1 =
(
−3
2x+ c1

) 1
3

Hence y′(0) = −1 gives
−1 = c

1
3
1

No solution. Trying solution (2). Integrating gives

y2 = −(−1)
1
3

∫ (
−3
2x+ c1

) 1
3

dx+ c2

= −(−1)
1
3

(
−1
2

(
−3
2x+ c1

) 4
3
)

+ c2 (4A)

Applying y(0) = 1 gives

1 = (−1)
1
3

(
1
2c

4
3
1

)
+ c2 (5)

And y′2(x) gives

y′2(x) = −
(
−1
2

) 1
3

(−3x+ 2c1)
1
3

Hence y′(0) = −1 gives

−1 = −
(
−1
2

) 1
3

(2c1)
1
3

1 = (−1)
1
3 (c1)

1
3

No solution. Finally we will try y3. Integrating gives

y3 = (−1)
2
3

∫ (
−3
2x+ c1

) 1
3

+ c2

= (−1)
2
3

(
−1
2

(
−3
2x+ c1

) 4
3
)

+ c2
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Applying y(0) = 1 gives

1 = (−1)
2
3

(
−1
2c

4
3
1

)
+ c2 (6)

And y′3(x) gives

y′3(x) = (−1)
2
3

(
−3
2x+ c1

) 1
3

Hence y′(0) = −1 gives
−1 = (−1)

2
3 (c1)

1
3

Solving gives c1 = −1. Substituting into (6) gives

1 = (−1)
2
3

(
−1
2(−1)

4
3

)
+ c2

c2 =
3
2

Hence solution is

y3 = (−1)
2
3

(
−1
2

(
−3
2x+ c1

) 4
3
)

+ c2

= (−1)
2
3

(
−1
2

(
−3
2x− 1

) 4
3
)

+ 3
2

= 3
2 − 1

2(−1)
3
2

(
−3
2x− 1

) 4
3

This problem shows that out of the 3 solutions, only one was valid.

2.4.4 ode can be made Integrable F (x, y, y′′) = 0
ode internal name "second_order_ode_can_be_made_integrable"

Can be linear or nonlinear. These are ode’s which become integrable if both sides are
multiplied by y′. For this method to have chance of working, the original ode must not
have y′ already in it.
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2.4.4.1 Example

2y′′ − ey = 0

Multiplying both sides by y′ gives

2y′y′′ − y′ey = 0

Integrating ∫
(2y′y′′ − y′ey) dx = c1

(y′)2 − ey = c1

Hence
y′ = ±

√
ey + c1

Each of the above is separable, which are solved by integration.

2.4.5 Solved using Mainardi Liouville method
ode internal name "second_order_nonlinear_solved_by_mainardi_lioville_method"

2.4.5.1 Introduction

This shows how to solve the nonlinear second order ode of the form

y′′(x) + p(x) y′(x) + q(y) (y′(x))2 = 0 (1)

For this method to work, in the above p(x) must be either a function of x or a constant.
It can not depend on y. And in the term q(y) [y′(x)]2, q(y) must be only a function of
y or a constant. It can not depend on x.

For an example this method will work on y′′ + y′ + yy2 = 0 and on y′′ + sin (x) y′(x) +
y(y′)2 = 0 and on y′′ + sin (x) y′ + (1 + y) (y′)2 = 0 but not on y′′ + y′ + xyy2 = 0 and
not on y′′ + sin (y) y′ + yy2 = 0.

This is implemented in my ode solver as type 18. The first step is to divide (1) by y′(x)
which gives

y′′

y′
+ p(x) + q(y) y′ = 0 (2)

y′′

y′
= −q(y) y′ − p(x) (3)
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The LHS is d
dx
(ln y′) and the term q(y) y′(x) is

(
d
dy

∫
q(y) dy

)
dy
dx

= d
dx

∫
q(y) dy. This

is the reason why q can not depend on x, In order to be able to evaluate the integral.
Using this (3) now becomes

y′′

y′
= −

(
d

dx

∫
q(y) dy

)
− p(x)

d

dx
(ln y′) = −

(
d

dx

∫
q(y) dy

)
− p(x)

d

dx
(ln y′) + d

dx

∫
q(y) dy = −p(x)

d

dx

(
ln y′ +

∫
q(y) dy

)
= −p(x)

Integrating gives
ln y′ +

∫
q(y) dy = −

∫
p(x) dx (4)

And this is the reason why p can not depend on y. In order to able to integrate the
RHS above. Once

∫
q(y) dy and

∫
p(x) dx are evaluated, then y′ is found and this gives

first order ode in y which is easily solved.

2.4.5.2 Example

y′′ + (3 + x) y′ + y[y′]2 = 0

Comparing to
y′′(x) + p(x) y′(x) + q(y) [y′(x)]2 = 0

Show that p = (3 + x) and q(y) = y. Hence the conditions are satisfied to use this
method. Therefore equation (4) becomes

ln y′ +
∫
q(y) dy = −

∫
p(x) dx

ln y′ +
∫
ydy = −

∫
(3 + x) dx

ln y′ + y2

2 = −(3 + x)2

2 + c

ln y′ = −(3 + x)2

2 − y2

2 + c

Hence
y′ = c1e

− (3+x)2
2 − y2

2
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This is separable.
dy

dx
= c1e

− (3+x)2
2 e−

y2
2

e
y2
2 dy = c1e

− (3+x)2
2 dx

Integrating gives ∫
e

y2
2 dy =

∫
c1e

− (3+x)2
2 dx+ c2

− i

2
√
2π erf

(
i√
2
y

)
= −c12

√
2π erf

(
x√
2
+ 3√

2

)
+ c2

And the above is the implicit solution for y.

2.4.6 ode with missing independent variable x or missing
dependent variable y(x)

A nonlinear ode with missing x has the form

y′′ + f(y′) + g(y) = 0 (1)

Where f(y′) and g(y) can be nonlinear functions (one or both of them). If both are
linear, then there is no need for this method to be used. For missing x the substitution
y′(x) = p(y) is used. For nonlinear ode with missing y which has the form

y′′ + F (x) f(y′) + g(x) = 0 (2)

Where F (x) , g(x) are functions of x (or constants) and f(y′) is nonlinear in y′. For this
case the substitution y′(x) = p(x) is used instead. The following gives examples of each
method.

Both methods reduce the order of the ode by one resulting in first order ode where the
dependent variable is p which is then easily solved for p. This now results in another
first order ode in y which is then easily solved.

2.4.6.1 Missing independent variable x

ode internal name "second_order_ode_missing_x"

Given
y′′ + f(y′) + g(y) = 0 (1)

Let p = y′ then y′′ = dp
dx

= dp
dy

dy
dx

= dp
dy
p and the ode becomes

p
dp

dy
+ f(p) + g(y) = 0 (2)

Which is now a first order ode.
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2.4.6.1.1 Example 1

yy′′ − (y′)2 = 1
Let p = y′ then y′′ = pdp

dy
. Hence the ode becomes

yp
dp

dy
− p2 = 1

dp

dy
= 1 + p2

p

1
y

This is separable.
dp

dy

p

1 + p2
= 1
y

p

1 + p2
dp = 1

y
dy∫

p

1 + p2
dp =

∫ 1
y
dy

1
2 ln (p− 1) + 1

2 ln (p+ 1) = ln y + c

Or, assuming p− 1 > 0, p+ 1 > 0

ln (p− 1) + ln (p+ 1) = 2 ln y + 2c
ln ((p− 1) (p+ 1)) = ln y2 + c1

(p− 1) (p+ 1) = c2y
2

p2 − 1 = c2y
2

p2 = c2y
2 + 1

Hence
p = ±

√
1 + c2y2

But p = y′(x). The above becomes

y′(x) = ±
√

1 + c2y2

This is first order ode which is separable. The first one gives

y′(x) =
√

1 + c2y2

dy√
1 + c2y2

= dx∫
dy√

1 + c2y2
=
∫
dx

1
√
c2

ln
(√

c2y +
√

1 + c2y2
)
= x+ c3

ln
(√

c2y +
√

1 + c2y2
)
= √

c2x+
√
c2c3
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Where c2, c3 are constants. Similar solution result for the negative ode.

2.4.6.1.2 Example 2

y′′ + ay(y′) + by3 = 0 (1)

Let p = y′ then y′′ = pdp
dy
. Hence the ode becomes

p
dp

dy
+ ayp+ by3 = 0 (2)

Which is now a first order ode.

dp

dy
= −ay + b

y3

p
(3)

Solving for p gives

1
4
√
a2 + 8b

(
ln
(
−by4 + ay2p+ 2p2

)√
a2 + 8b+ 2a arctanh

(
ax2 + 4p
y2
√
a2 + 8b

))
= c1

Then y is found by solving y′ = p, another first order ode.

1
4
√
a2 + 8b

(
ln
(
−by4 + ay2y′ + 2(y′)2

)√
a2 + 8b+ 2a arctanh

(
ax2 + 4y′

y2
√
a2 + 8b

))
= c1

But this second one could not solve. Actually ode (3) is homogeneous, class G and
should use formula given in Kamke’s book, p. 19. but I have yet to implement this.

2.4.6.1.3 Example 3

2yy′′ − y3 − 2(y′)2 = 0 (1)

With IC

y(0) = −1
y′(0) = 0

Let p = y′ then y′′ = pdp
dy
. Hence the ode becomes

2ypdp
dy

− y3 − 2p2 = 0 (2)

dp

dy
= y3 + 2p2

2py
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Which is first order ode in p(y) of type Bernoulli. There are two solutions

p1 = y
√
y + c1 (3)

p2 = −y
√
y + c1 (4)

But p = y′ hence the above becomes

y′(x) = y
√
y + c1 (3)

y′(x) = −y
√
y + c1 (4)

Solving (3). At x = 0 we have y′(0) = 0, y(0) = −1 hence the above becomes

0 = −1
√
−1 + c1

0 =
√
−1 + c1

c1 = 1

Hence (3) becomes

y′(x) = y
√
y + 1

This is quadrature. Integrating

dy

y
√
y + 1

= dx

−2 arctanh
(√

y + 1
)
= x+ c2

At x = 0 we have y(0) = −1 and the above becomes

−2 arctanh
(√

−1 + 1
)
= c2

c2 = −2 arctanh (0)
c2 = 0

Hence the solution is
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−2 arctanh
(√

y + 1
)
= x

arctanh
(√

y + 1
)
= −x2√

y + 1 = tanh
(
−x2

)
= − tanh

(x
2

)
y + 1 = tanh2

(x
2

)
y = tanh2

(x
2

)
− 1

Solving (4)

At x = 0 we have y′(0) = 0, y(0) = −1 hence

0 = 1
√
−1 + c1

0 =
√
−1 + c1

c1 = 1

Hence (4) becomes

y′(x) = y
√
y + 1

Which gives same solution as before. y = tanh2 (x
2

)
− 1

2.4.6.1.4 Example 4

2y′′ − ey = 0 (1)
With IC

y(0) = 0
y′(0) = 1

Let p = y′ then y′′ = pdp
dy
. Hence the ode becomes

2pdp
dy

− ey = 0

2dp
dy
p = ey (2)
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This is separable.

2
∫
pdp =

∫
eydy

p2 = ey + c1 (3)

Before solving this, we should apply IC now as it simplifies the solution greatly. This
assumes both y, y′ are are given at same point x0. Which is the case here. If only one
IC is given (such as y(0) or y′(0) but not both, then we can not apply IC now and have
to do it at the end).

We are given that y′(0) = p = 1, y(0) = 0, hence the above reduces to

1 = e0 + c1

c1 = 0

Hence (3) now becomes
p2 = ey

but p = y′ hence

(y′)2 = ey

y′ = ±
√
ey

This is quadrature. For the positive solution

dy√
ey

= dx (4)

2√
ey

= −x+ c2 (2.3)

For y(0) = 0 we obtain
2 = c2

Hence (4) becomes

2√
ey

= −x+ 2
√
ey = 2

2− x

ey =
(

2
2− x

)2

y1 = 2 ln
(

2
2− x

)
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For the negative solution
y′ = −

√
ey

Integrating
2√
ey

= x+ c2 (5)

At y(0) = 0
2 = c2

Hence (5) becomes
2√
ey

= x+ 2
√
ey = 2

x+ 2

ey =
(

2
x+ 2

)2

y2 = 2 ln
(

2
x+ 2

)
However, this solution do not satisfy y′(0) = 1 so it is discarded. Hence the solution is
only

y1 = 2 ln
(

2
2− x

)

2.4.6.1.5 Example 5

This is same example as above, but here we delay applying IC to the very end to see
the difference. This method is more general, but makes solving for IC harder.

2y′′ − ey = 0 (1)

With IC

y(0) = 0
y′(0) = 1

Let p = y′ then y′′ = pdp
dy
. Hence the ode becomes

2dp
dy
p = ey

This is separable.

2
∫
pdp =

∫
eydy

p2 = ey + c1
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but p = y′ hence the above becomes

(y′)2 = ey + c1

y′ = ±
√
ey + c1

This is quadrature. For the positive solution

dy√
ey + c1

= dx

−
2 arctanh

(√
ey+c1√
c1

)
√
c1

= x+ c2

2 arctanh
(√

ey + c1√
c1

)
= −x

√
c1 − c2

√
c1

arctanh
(√

ey + c1√
c1

)
= −x

√
c1
2 −

c2
√
c1

2
√
ey + c1√
c1

= tanh
(
−x

√
c1
2 −

c2
√
c1

2

)
√
ey + c1 =

√
c1 tanh

(
−x

√
c1
2 −

c2
√
c1

2

)
ey + c1 =

(
√
c1 tanh

(
−x

√
c1
2 −

c2
√
c1

2

))2

ey =
(
√
c1 tanh

(
−x

√
c1
2 −

c2
√
c1

2

))2

− c1

y = ln
((

√
c1 tanh

(
−x

√
c1
2 −

c2
√
c1

2

))2

− c1

)
(2)

Now we have to use (2) and take derivative and solve for c1, c2. Much harder than if
we have applied IC to each solution earlier.

2.4.6.1.6 Example 6

2y′′ − sin (2y) = 0 (1)

With IC

y(0) = −π2
y′(0) = 1
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Let p = y′ then y′′ = pdp
dy
. Hence the ode becomes

2pdp
dy

= sin (2y) (2)

2pdp = sin (2y) dy∫
2pdp =

∫
sin (2y) dy

p2 = −1
2 cos (2y) + c1

At x = 0 we have p = 1, y = −π
2 . Hence the above becomes

1 = −1
2 cos (−π) + c1

= −1
2 cos (π) + c1

1 = 1
2 + c1

c1 =
1
2

Therefore (2) becomes
(y′(x))2 = −1

2 cos (2y) + 1
2

Need to solve and apply IC y(0) = −π
2 to finish.

2.4.6.2 Missing dependent variable y(x)

ode internal name "second_order_ode_missing_y"

Given
y′′ + F (x) f(y′) + g(x) = 0

Let p = y′ then y′′ = p′. Hence the ode becomes

p′ + F (x) f(p) + g(x) = 0

Which is first order ode.
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2.4.6.2.1 Example

y′′ + (y′)2 + y′ = 0 (1)

Let p = y′ then y′′ = p′. Hence the ode becomes

p′ + p2 + p = 0 (2)

Which is now a first order separable ode. Its solution can be easily found to be

p = 1
c1ex − 1

Hence
y′(x) = 1

c1ex − 1
Which is now solved for y(x) as first order, which gives by integration

y = ln (c1ex − c2 + 1)− x

2.4.7 Higher degree second order ode
ode internal name "second_order_ode_high_degree"

These are ode’s with the second derivative raised to power not one. Solved by solving
for y′′ which generates all roots and now each ode is solved.
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3.1 Linear higher order ode

3.1.1 Linear ode with constant coefficients
a3y

′′′ + a2y
′′ + a1y

′ + a0y = f(x)

3.1.1.1 Solved by finding roots of characteristic equation

ode internal name "Higher order linear constant coefficients ODE"

These are solved finding roots of characteristic equation. This is the standard method.
For non-homogeneous ode, The method of Variation of parameters and the method of
undetermined coefficients are both used to find the particular solution.

3.1.1.2 Solved by series method

ode internal name "Higher_order_series_method_ordinary_point"

Only ordinary point is supported and for third order ode at this time. See section below.

3.1.1.3 Solved using Laplace transform

ode internal name "higher_order_laplace"

Laplace transform method is used. Currently only linear with constant coefficient ode
is supported.

3.1.2 Linear ode with non-constant coefficients

3.1.2.1 Euler type x3y′′′ + x2y′′ + xy′ + y = f(x)

ode internal name "higher_order_ODE_non_constant_coefficients_of_type_Euler"

This uses same algorithm as for second order Euler type ode but for higher order.
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3.1.2.2 Missing y as in ay′′′ + by′′ + cy′ = f(x)

ode internal name "higher_order_ODE_missing_y"

Since y is missing, we then assume y′ = u and the ode reduces to one order less. Now
the lower order ode is solved.

3.1.2.2.1 Example 1

x2y′′′ + xy′′ + y′ = 0

This is not Euler type as it stands. Let y′ = u then the ode becomes

x2u′′ + xu′ + u = 0

This is now Euler type. Solving it gives

u = c2 cos (ln x) + c3 sin (ln x)

Hence
y′ = c2 cos (ln x) + c3 sin (ln x)

Solving this as first order ode of quadrature type gives

y = c2
2 x cos (ln x) +

c2
2 x sin (ln x)−

1
2c3x cos (ln x) +

1
2c3x sin (ln x) + c1

= x cos (ln x)
(
c2
2 − 1

2c3
)
+ x sin (ln x)

(
c2
2 + +1

2c3
)
+ c1

= C2x cos (ln x) + C3x sin (ln x) + c

3.1.2.2.2 Example 2

xy′′′′ + y′′′ + y′′ = 0

Let y′ = u then the ode becomes

xu′′′ + u′′ + u′ = 0

Since u is missing then let u′ = v and the above becomes

xv′′ + v′ + v = 0

This is now second order ode. This is Bessel ode whose solution is

v = c3 BesselJ0
(
2
√
x
)
+ c4 BesselY0

(
2
√
x
)



chapter 3 . higher order ode F (x, y, y′, y′′, y′′′) = 0 452

Hence
u′ = c3 BesselJ0

(
2
√
x
)
+ c4 BesselY0

(
2
√
x
)

This is solved by quadrature giving

u = c3
√
xBesselJ1

(
2
√
x
)
+ c4

√
xBesselY1

(
2
√
x
)
+ c2

Hence
y′ = c3

√
xBesselJ1

(
2
√
x
)
+ c4

√
xBesselY1

(
2
√
x
)
+ c2

This is solved by quadrature giving

y = c3xBesselJ2
(
2
√
x
)
+ c4xBesselY2

(
2
√
x
)
+ c2x+ c1

3.1.2.2.3 Example 3

xy′′′ − y′′ = 0

Let y′ = u then the ode becomes

xu′′ − u′ = 0

Since u is missing then let u′ = v and the above becomes

xv′ − v = 0

This is linear first order ode whose solution is v = c1x. Hence u′ = c1x. Integrating
gives u = c1x

2 + c2. Hence
y′ = c1x

2 + c2

Integrating gives
y = c1x

3 + c2x+ c3

3.1.2.3 Solved by series method

ode internal name "higher_order_taylor_series_method_ordinary_point"

Only ordinary point is supported and for third order ode at this time using Taylor
series (not power series) method. Let

y′′′ = f(x, y, y′, y′′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′, y′′) is analytic at x0 which must be
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the case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0 and
y′′(x0) = y′′0 . Using Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) +
(x− x0)4

4! y′′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 y
′′
0 +

x3

3! f |x0,y0,y′0,y
′′
0
+ x4

4! f
′|x0,y0,y′0,y

′′
0
+ · · ·

= y0 + xy′0 +
x2

2 y
′′
0 +

∞∑
n=0

xn+3

(n+ 3)!
dnf

dxn

∣∣∣∣
x0,y0,y′0,y

′′
0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
+ ∂f

∂y′′
dy′′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ + ∂f

∂y′
y′′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ + ∂f

∂y′
f

d2f

dx2
= d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
y′′ + ∂

∂y′′

(
df

dx

)
y′′′ (2)

= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
y′′ + ∂

∂y′′

(
df

dx

)
f

d3f

dx3
= d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+ ∂

∂y

(
d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
y′′ + ∂

∂y′′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′, y′′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
y′′ + ∂F0

∂y′′
y′′′

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
y′′ + ∂F0

∂y′′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
y′′ + ∂F1

∂y′′
y′′′

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
y′′ + ∂F1

∂y′′
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′ +

(
∂Fn−1

∂y′′

)
y′′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′ +

(
∂Fn−1

∂y′′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
x2

2 y
′′
0 +

∞∑
n=0

xn+3

(n+ 3)! Fn|x0,y0,y′0,y
′′
0

(7)

To find y(x) series solution around x = 0.
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3.2 nonlinear higher order ode
Not currently supported.
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