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1.1

. x,y are the natural coordinates used in the input ode

Lie symmetry method for solving first order
ODE

Terminology used and high level introduction

d
iz = w(@,9)-

z,y are called the Lie group (local) transformation coordinates. The ode remains
invariant (same shape) when written in Z,y. The coordinates R, S (some books
use lower case r,s) are called the canonical coordinates in which the input ode
becomes a quadrature and therefore easily solved by just integration.

. &,n are called the Lie infinitesimals. £(z,y),n(x,y) can be calculated knowing

Z,y. Also Z, y can be calculated given &, 7. It is £, 7 which are the most important
quantities that need to be determined in order to find the canonical coordinates
R, S. These quantities are called the tangent vectors. These specify how the orbit
moves. The orbit is the path the point (z,y) point travels on as it move toward
z,y. The tangent vectors £, n are calculated at e = 0. The point z = x + &€ and
the point y = y + ne.

. The ultimate goal is write g—g = w(z,y) in R, S coordinates where it is solved by

integration only as it will have the form %5 = F(R). The right hand side should

always be a function of R only in canonical coordinates.

. Z,y can be calculated knowing the canonical coordinates R, S.

. The ideal transformation has the form (Z,y) — (z,y+€) because with this

transformation the ode becomes quadrature in the transformed coordinates. But
because not all ode’s have this transformation available, the ode is transformed
to canonical coordinates (R, S) where the transformation (R,S) — (R, S +e)
can be used.

. The main goal of Lie symmetry method is to determine S, R. To be able to do

this, the quantities £, 7 must be determined first.

. The remarkable thing about this method, is that regardless of how complicated

the original ode 3—?; = w(z,y) is, if the similarity condition PDE can be solved for

&,n, then R, S are found and the ode becomes quadrature % = F(R). The ode
is then solved in canonical coordinates and the solution transformed back to x,y.

. The quantity € is called the Lie parameter. This is a real quantity which as it

goes to zero, gives the identity transformation. In other words, when € = 0 then
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(z,y) = (,9).

But there is no free lunch, even in Mathematics. The problem comes down to
finding &,7. This requires solving a PDE. This is done using ansatz and trial
and error. This reason possibly explains why the Lie symmetry method have not
become standard in textbooks for solving ODE’s as the algebra and computation
needed to find &, n from the PDE becomes very complex to do by hand.

Total derivative operator: Given f(z,y) then % = %5 + g—i% where it is assumed
that y(x) depends on z. Total derivative operator will be used extensively in all
the derivatiations below, so good to practice this. It is written as D, = 0, + 0,y
for first order ode, and as D, = 9, + 0,y' + O,y” for second order ode and as
D, =0, + 0,y + 0yy” + 0,y" for third order ode and so on.

The notation f, means partial derivative. Hence %5 is written as f,. Total deriva-
tive will always be written as %. It is important to distinguish between these two
as the algebra will get messy with Lie symmetry. Sometimes we write f’ to mean
% but it is better to avoid f’ and just write % when f is function of more than
one variable.

Given first ode % = w(z,y), where § = y(z,y) and z = z(z,y) then then% is
given by the following (using the total derivative operator)

dj _ D.g

di D,

_ Yty

Y
Yz + Yyw
Ty + Tyw

Given second order ode % = w(z,y,y’) where § = y(z,y,v') and = = Z(z,y,y)
then % is given by

_ di
@y _ D,
dz? D,z
G Gy
zl, +zy

To simplify notation we used ¥y’ for g—g above. The above simplifies to

Py _ o Gy + Gy
dz? z, + Ty

Keeping in mind that (o), or (o), mean partial derivative.



15. Given third order ode LY = w(z,y,y,y") where § = y(z,y,v,y") and T =

de3

Z(z,y,y,y’) then % is given by

@y _ Dl
dz?3  D,x
_ G+ Y Ty Ty
T, + z,y
_ Gt Y Ty T
T + Ty’

To simplify notation we used ¢” for % above. And so on for higher order ode’s.

1.2 Introduction

Given any first order ODE

) *)

The first goal is to find a one parameter invariant Lie group transformation that keeps
the ode invariant. The Lie parameter the transformation depends on is called e. This
means finding transformation of (x,y) to new coordinates (Z, ) that keeps the ode the
same form when written using z, ¥.

This view looks at the transformation on the ode itself. Another view is to look at the
family of the solution curves of the ode instead. Looking at solution curves transforma-
tion is geometrical in nature and can lead to more insight.

What does the transformation mean when looking at solution curves instead of the
ODE itself? It is the mapping of a point (z,y) on one solution curve to another point
(Z, y) on another solution curve. If the mapping sends point (z,y) to another point (Z, §)
on the same solution curve, then it is called a trivial mapping or trivial transformation.

As an example, given the ode 3y’ = 0, this has solutions y = ¢;. For any constant c;
there is a solution curve. There are infinite number of solution curves. All solution
curves are horizontal lines. The mapping (z,y) — (z + €, y) is trivial transformation as
it moves the point (z,y) to another point (Z,y) on the same solution curve.

The transformation (z,y) — (z,y + €) however is non trivial as it moves the point (z,y)
to point (Z,y) on another solution curve. Here T = z and § = y + €. This can also be
written (z,y) — (z,e‘y) which is the preferred way.

The transformation (z,y) — (z + €,y + €) is non trivial for this ode. The simplest non
trivial transformation that map all points on one solution curve to another solution curve



is selected. In canonical coordinates the transformation used has the form (R, S) —
(R,S +¢).

Another example is ¢y’ = y. This has solution curves given by y = ce®. This is a plot
showing two such curves for different c values.

C1

v

Figure 1: Point transformation example for v/ = y

The above shows that a non trivial transformation is given by £ = z + ¢,y = y. This
can be found analytically by solving the symmetry condition as will be illustrated

below using examples. For this case, the tangent vectors are £ = %L:o = 1 and
n= % o = 0. In Maple this is found using

‘ode:=diff (y(x),x)=y(x); |
‘ DEtools:-symgen (ode) ‘
L[_xi =1, _eta = 0] ‘
But the following transformation z = x,y = y + € does not work

y(z) o
(x,y). C2
(2,9)
Figure 2: Possible Point transformation for ¢/ = y
This is because it does not leave the ode invariant because % = 9 becomes gzi—gyyl, =1,
7 zTTyY

where now y, = 0,79, =1,Z, =1,%, = 0,§ = y + ¢, and hence EZI—??ZZ’ = g simplifies to



Y’ = y + € which is not the same ode. This shows that £ = z,y = y + € is not valid Lie
point symmetry.

However = x + €,y = y leaves the ODE invariant. In this case y, = 0,79, = 1,7, =

1,2, =0,y = y and hence gz:[—g’;‘zl, = ¢ becomes 3y’ = y which is the same ode.

The transformation must keep the ode invariant as this is the main definition of sym-
metry transformation.

In the above, the path the point (z,y) travels over as it moves to (Z, ) as € changes is
called the orbit. Each point (z,y) travels on its orbit during transformation.

In all such transformations, there is a parameter € that the transformation depends on.
This is why this is called the Lie one parameter symmetry transformation group. There
are infinite number of such transformations.

Lie symmetry is called point symmetry, because of the above. It transforms points from
an ODE solution curves to points on another solution curves for the same ODE. The
identity transformation is when € = 0, since then the point is transformed to itself.

An example using an ODE. The Clairaut ode of the form y = zf(p) + g(p) where
P=Yy.

z2(y) —yy +m=0 (1)

2 !
@)+ﬁ_
m m

y=z

Where f(p) = % and g(p) = f—n/ Using the dilation transformation Lie group

2

Z(z,y;€) = e“x (2)
y(z,y;€) = ey 3)

z

y

Eq. (1) is now expressed in the new coordinates z, ¥y . If this results in same same ode
form but written in z,y then the transformation is invariant. But how to find % ? This
is done as follows

i _ 3

dz Z_i
Ut G
T, + T, %



In this example g, = 0,7, = €, T, = €*,Z, = 0. The above now becomes

dy . efg—z

dz ~ e2
_ -y
- dz

_(dy 2 _dy
— g2 = 4
x(dg_c> ydj—l—m 0 (4)
dy 2 _.dy
2¢ € (o€ € —
(e*z) (e dx) (e‘y)e dx—l—m 0
dy dy _
(dx) —ydw+m—0 (5)

Wthh gives the same ode. The above method starts by replacmg the given ode by
z,Y, di Y and finds if the result gives back the orlgmal ode in x y, Y This is simpler than
having to transform the original ode to z,y, 2% di.. This transformatlon can be verified in
Maple as follows

N

~2-y(x)*diff (y(x),x)+m=0;
‘ the_tr:={x=X*exp(-2xs),y(x)=Y(X)*exp(-s)}; ‘
‘ newode:=PDEtools:-dchange(the_tr,ode,{Y(X),X}, 'known'={y(x)}, 'uknown' ={\4(x) B;
ALEE(Y(X), X)"24X - Y(X)*diff(Y(X), X) +m = 0 |

Comparing (4) to (5) shows that the ode form did not change, only the letters changed
from z to x and y to 4. The resulting ode must never have the parameter € show or
remain in it.

The above shows how to verify that a transformation is invariant or not. In Lie group
transformation there is only one parameter ¢ and the transformation is obtained by
evaluating the group as € goes to zero.

But how does this help in solving the ode? If the ode in z,y is hard to solve, then the
ode written with Z,y will also be hard to solve since it is the same. But Eq. (4) is
not what is used to solve the ode, but the above is just to verify the transformation is
invariant. Similarity transformation is used to determine tangent vectors &, n only. Then
the ode in canonical coordinates is used instead. In the canonical coordinates (R, S) the
ode becomes quadrature and solved by integration. The transformation found above is
only one step toward finding (R, S) and it is these canonical coordinates that are the
goal and not z, ¥.



1.3 Outline of the steps in solving a differential equation
using Lie symmetry method

These are the steps in solving an ODE using Lie symmetry method.
1. Given an ode y' = w(z,y) to solve in natural coordinates.
2. Now the tangent vector &£(z,y),n(x,y) are found. There are two options.

(a) If Lie group coordinates (Z,y) are given, then it is easy to determine
¢(z,y),n(z,y) using

0T
£(z,y) = e .
_ 0y
n(w,y) = e o

Lie group coordinates (Z,§) must also satisfy
«'i'xgy - :iygx 7é 0

(b) In practice Lie group coordinates (Z, %) are not given and are not known. In
this case £(z,y) ,n(z,y) are found by solving the similarity condition which
results in a PDE (derivation is given below). The PDE is

UE + w('ny - gx) - wzfy - wx§ - wy'r’ =0

3. &, n are now used to determine the canonical coordinates (R, .S). In the canonical
coordinates, only S translation is needed to make the ode quadrature. The trans-
formation is (R, S) — (R, S + ¢). This transforms the original ode ¥’ = w(z, y) to
% = F(R) which is then solved by only integration. This is the main advantage
of moving to canonical coordinates (R, S).

4. The ODE is solved in (R, S) space where R = R(z,y),S = S(z,y). The trans-
formation from (z,y) to (R, S) is found by solving two set of PDEs using the

characteristic method. After finding R(z,y),S(z,y) the ode will then be given

dR = R,+R,%
% = F(R) then something went wrong in the process. This ode is now solved for
S(R) . It is the symmetry of the form (R,S) — (R, S + ¢€) which is of the most
interest in the Lie method. This is called a translation transformation along the
y axis (or the S axis). This is because this transformation leads to an ode which
is solved by just integration.

which will be quadrature. If this ode does not come out as



5. Transform the solution from S(R) to y(z).

6. An alternative to steps (3) to (5) is to use &, 7 to determine an integrating factor

p(z,y) which is given by p(z,y) = ﬁ then the general solution to ¢y = w(z,y)

can be written directly as | p(z,y) (dy —wdz) = ¢; or [ d%i—‘gff = ¢; but this
requires finding a function F(x,y) whose differential is dF = df’?:—‘ggx
the solution becomes [dF = ¢; or F = ¢;. If we can integrate this using
[ udy — [ pwdz = ¢; then this is the solution to the ode. It is implicit in y(z).
Currently my program does not implement Lie symmetry to find an integrating
factor due to difficulty of finding dF' that satisfies dF' = % or in carrying
out the integration in all general cases but I hope to add this soon as a backup
algorithm if the main one fails.

and now

7. An important property, at least for first order ode’s (I do not know now if this
carries to higher order) is that given £ = f(z,y),n = g(z,y), then we can always
shift and use £ = 0,7 = g —wf where ¥ = w(z,y). This means we can always
base everything on £ = 0 after this shift is done to 1. This can simplify some
parts of the computation. Ofcourse if £ was found to be zero initially, i.e. just
after solving the linearized similarity PDE, then there is nothing more to do.

The most difficult step in all of the above is 2(b) which requires finding £(z,y) , n(z,y).
In practice Lie group Z,§ transformation is not given. Lie infinitesimal &(z,y) ,n(z,y)
have to be found directly from the linearized symmetry condition PDE using ansatz
and by trial and error. The following diagram illustrates the above steps.

10



> >R At this point € = 0 and the
tangent vectors are given by

ODE is ¥ = w(z,
sy =w(@y) Canonical coordinates E(z,y) = dj
are given by de |,_q
Linearized symmetry dy
condition PDE R=R n(z,y) = &
G e=0
S=5+¢

Mo +w(ny — &) — w2£z/ —waf —wyn =0

v

Solve to find &,n

_OR_ OR
_E +671/77
95, aS

0

1 7

Method of characterstics

YES NO

v
YES NO

Il
<

R=1 d
- d Solve 9 = % and set R
S = / - to the constant of inte-
/g gration.
|
|
Does ¢ depend
on z only?
YES NO
Solve for S from
Does n depend
S = / dj on y only?
§
YES NO

Generate the ODE in canonical coordinates

dS _ So + Syw
dR = R, + Ryw

And here is the tricky part. The RHS above will be a function
of z,y. Rewrite the above as function of R only using the
earlier findings, knowing what R was. The result must depend
on R only giving

a5 _

dR
Which is solved for S by quadrature. The final step is the
easy one. Convert solution S(R) back to z,y.

F(R)

Solve for S from

s- [
n

'

Since £ depends on y and 7
depends on z, then we can use
any one of these. Let us pick

ds = %. But first we have to
replace y in £ by its value found
from solving j—z = ¢ found above
so that ¢ is function of x only.
And now find

5= [ ¢

Nasser M. Abbasi main_l.ipe (8/23/2023)

Figure 3: General steps to solve ode using Lie symmetry method
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The following diagram illustrates the above steps when we carry the shifting step in
order to force £ = 0. We see that It simplifies the algorithm as now we can just assume
¢ = 0 and we do not have to check for different cases as before.

4
> >R At this point € = 0 and the
tangent vectors are given by
DE is ¢ = w(x,
o 5y =w(zy) Canonical coordinates £ (x,y) = dl
are given by ' de g
Linearized symmetry dy
condition PDE R=R n(z,y) = E
_ =0
S=S5+¢€
Ne +w (ny — &) _szy —we§ —wyn =0
Solve to find &,n
OR OR
‘ 0= %é + 8—1/7]
Apply the shift :
PPy Hhe s |05, 08
n=n-¢&w 0z° " oy
£=0 .
Method of characterstics
d. d
Yo _gs
&
R==x
Since £ = 0 always
dy
5= / %
Jon

Generate the ODE in canonical coordinates

dS _ Sz + Syw
dR ~ R, + Ryw

And here is the tricky part. The RHS above will be a function
of z,y. Rewrite the above as function of R only using the
earlier findings, knowing what R was. The result must depend
on R only giving

ds

arg ~ T

‘Which is solved for S by quadrature. The final step is the
easy one. Convert solution S(R) back to z,y.

Nasser M. Abbasi main_2.ipe (9/26/2023)

Figure 4: General steps to solve ode using Lie symmetry method. Shifting method

12



1.4 Finding £(z,y),n(x,y) knowing the first order ode type.
Table lookup method.

There is a short cut to obtaining &(z,y),n(z,y) if the first order ode type is known
or can be determined. (of course, if we know the ode type, then a direct method for
solving the ode can be used, since the type is known and there is no need to use Lie
symmetry), but still Lie symmetry can be useful in this case, and also it allows us to
find the integrating factor quickly, which provides one more method to solve the ode.
An example of a first order ode which does not have known type is

(zcosy—e ™)y +1=0

The above can be solved using Lie symmetry but with functional form of anstaz
¢ = f(z) g(y),n = 0. which gives £ = e 5"¥ 5 = 0.

I am in the process of building table for ready to use infinitesimal based on the first ode
type. The following small list is the current ones determined. For some first order ode
such as linear y' = f(z) y(z) + g(x) or separable ¥y’ = f(x) g(y) the infinitesimals can
be written directly (but again, for these simple ode’s Lie method is not really needed
but it provides good illustration on how to use it. Lie method is meant to be used for
ode’s which have no known type or difficult to solve otherwise). For an ode type not
given in this list, an anstaz have to be used to solve the similarity PDE.

ode type form £ n notes
linear ode y = 0 el fdz Notice that g(z) does not
f(@)y(x) + affect the result
9(z)
separable ode | ¢/ = % 0 This works for any g function
f(z)g(y) that depends on y only
quadrature ode | ¥’ = f(z) 0 1 of course for quadrature we do
not need Lie symmetry as ode
is already quadrature
quadrature ode | ¥’ = g(y) 1 0 For example y' = _x; f_’y or
’_ y+2V/yT
y = T
homogeneous y =f(%) T Y
ODEs of Class
A

13



homogeneous
ODEs of Class
C

(a+bx + cy)&

Also
§=0,n=c(b$+cy+a)%
are possible. For example, for
y=>0+2z+ 3y)% then use
the first option as simpler
whichis § =1,7= —%. Notice
that £ =1,n = —IE’ does not
depend on a and not on n,m.
Hence these odes
y=u+x¢wiy=
(10+z+1y)3 a,nd2

Yy = (104 z +y)3 all have
the same infinitesimals
E=1n=-t=-1

c

homogeneous
class D

Y

example y' = ¥ 4 272
Where here

Y
@) = LP(2) =L,

First order
special form
ID1

o~ | bf(2)do—h(z)

9(z)

f(x)e™ [bf(z)dz—h(z)
9(z)

For an example, for the ode
y = 5e*+2% 4 gin -, here
g(z) =5,h(z) =2%,b=

20, f(z) = sinz, hence
e— J 20sin dz—x2

§= 5

sin ge— J 20sinzde—z

1=

2

5 or
é' = % sin x (620 cos(m)—$2> 1=
% e20cos(z)—=z* ) T this

form, b must be constant.

polynomial
type ode

/I _
y =
a1z+biy+ecr

a1bar—aobix—bico+bacy

a1bay—asbiy—aico—ascy

az2z+bay+c2

a1ba—asgby

a1bo—aszby

z+y+3
2x+y
thena; =1,b =1,¢c1 =

3,(12 = 2,b2 = 1,02 = (. Hence
E=xz—-3,n=y+6.

For example for y' =

14




Bernoulli ode

"= f(z)y+
g(z)y"

ynef(l_n)f(w) dz

n is integer n # 1,n # 0. For
example, for

y' = —sin (z) y + 2%y? then
f(z) = —sinz, g(z) = 22,n =
2and £ =0,n= e/ sinzdzy2 op
€ =0, = e °3%y2 Notice
that g(x) does not show up in
the infinitesimals Another
example is ¢/ = 2% 4 z—g where
here f(z) = 2. Hence
E=0np=¢e" f(3—1)%d:cy3 or
E=0n=n="5%

Reduced
Riccati

e—ffld:c

For example, for

y' = zy + sin (z) y? then

f1 =z, fo = sinx and hence
E=0,n=e"Jod o
E=0,n= e2%”. Notice that
f2(x) does not show up in the
infinitesimals. I could not find
infinitesimals for the full
Riccati ode

y' = fo(z) + fi(@) y + fo(z) y*.
Notice that fi, fo can not be
both constants, else this
becomes separable

Abel first kind

No infinitesimals found

Currently the above are the ones I am able to determine for known first order ode’s. If
I find more, will add them. The table lookup is much faster to use than having to solve
the similarity PDE each time using anstaz in order to find &, 7.

15




1.5 Finding £(z,y),7n(z,y) from linearized symmetry condition

Given any first order ODE

Y = () *)

&(z,y) ,n(x,y) are called the infinitesimals of the transformation. Maple has function
called symgen in the DEtools package to determine these using 16 different algorithms.
Starting with the Lie point transformation group

(z,y;¢€)

(z,y;€)

K|
1]
I

|
If
<

Expanding using Taylor series near € = 0 gives

_ z
T=z+ Be €:06+0(62)

=z + €ef(z,y) + O()
_ @ 0
J=vy+ e E:OG—}-O(G)

=y +en(z,y) +O0()

Ignoring higher order terms gives
Z(z,y) =z + €(z,y) 1)
y(z,y) =y +en(z,y) (2)

In the above € is the one parameter in the Lie symmetry group. The symmetry condition

for (A) is that
dy _

i w(Z,7)
Whenever

W _ o(z,9)

d:v - )y

Symmetry of an ODE means the ODE in (z,y) remain the same form (but using new
variables (Z,¥)) after applying the (non-trivial) transformation (1,2).

Nontrivial transformation means € # 0. The first goal is to find the functions &(z, y) , n(z, y)
which satisfy the symmetry condition above.

The symmetry condition is written as

dg]_%_ _
Y% -uep ®)

16



d,

Where —g is the total derivative with respect to the = variable. Similarly for 3—?

d

dg__ _dy
dz _ym—l_yydm

=Y + :lij(CL',y)
And

de ¢ Ydx

=T+ iin(CL', y)
Substituting (4,5) into (3) gives the symmetry condition as

Y

T, +w(z,y)Z,

But
Ty, =1+4+¢€&,
And similarly
Ty = €&y
And
Yo = €N
And
Yy =1+ eny

Substituting (7,8,9,10) back into the symmetry condition (6) gives

eny +w(l + eny)
=wl(xr+€,y+e€

€Ny + W + wsny
=wl(xr+€e,y+e€
1+, tweg, TSy Fe)

w + 8(nz + wny)
1+ € (& +wéy)

=w(z+ e, y+en)

But

(4)

()

(6)

(7)

(8)

(10)

(11)

The above is used to determine &(z,y),n(x,y). The above PDE is too complicated to

use as is. It is linearized, and the linearized version is used to solve for £, 7 near small e.

Eq. (11) is linearized by expanding the LHS and the RHS using Taylor series around
e = 0 . Starting with the LHS first, let 2X<=t>m) — A, .. Expanding this using

I+e(otwéy)
Taylor series around € = 0 gives

d
Arps = Ao + € (A),_o + h.ot.
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But Ay = w and

a4 (A _ & lwe(n +wny)] (1 + (& +wEy)) — (W + e(ne +wny)) & [1+ (& +wy)]
LHS) = .
de (1+€(& +w8)))
_ (1o owmy) (1+ els +w8y)) — (@ + e(ne +wny)) (6o +wEy)
(1+ € (& + wEy))?

At € = 0 the above reduces to

d

de (ALrS)emo = (N +wmy) — w(&s + w&y)

=1+ wny — wix - w2£y
=g + w(ny - ga:) - w2§y (12)

Therefore the LHS of Eq. (11A) becomes

Arps =w+€(n; +w(n, — &) — w?§y) (11B)

Now the RHS of Eq. (11) is linearized. Let w(z + s&,y + sn) = Agps. Expansion
around € = 0 gives

Arps = Ae—o + e(i A) + h.o.t.
de =0

But Ay = w(z,y) and
d
e Arps = wz€ +wyn

Hence the linearized RHS of (11) becomes
Arns = w(z,y) + €(we€ + wyn) (13)
Substituting (11B,13) back into (11), gives the linearized version of (11) as

Arms = Agrns
w+ €(n + wny — &) — w?€y) = w + e(wz€ + wyn)
e(ne +w(ny — &) — wEy) = e(wo€ +wyn)
Mo +w(ny — &) — wzfy = wy€ + wyn

Hence

Ne +w(ny — &) — ‘*‘-’25.1; —wz —wyn =0 (14)

The above equation (14) is what is used to determine £, 7. It is the linearized symmetry condition.
There is an additional constraint not mentioned above which is

T2Yy 7 TyYa

18



The restricted form of (14) is
Xz + Xyw — Xwy = 0
An important property is the following. Given any
E=An=B
Then we can always write the above as
E=0,n=B—-wA
So that £ = 0 can always be used if needed to simplify some things.

After finding &, n from (14), the question now becomes is how to use them to solve the

original ODE?

1.6 Moving to canonical coordinates R, S

The next step is to determine what is called the canonical coordinates (R,.S). In these
canonical coordinates the ODE becomes a quadrature and solved by integration. Once
solved, the solution is transformed back to (z,y). The canonical coordinates (R, .S) are

found as follows. Selecting the transformation to be

Eq. (15) becomes B
OR
Oe

_ (oRaz\[  (oRdy
o \Ozde)|_, Oy de

e=0

OR — OR dz _ .. oR _ 8R dy
But Ox L_O Oz and de }6:0 - §($, y) and Slmllarly By ‘520 = and de

= 6y

The above becomes B
8_R

Oe

_0R,_ OR
o Oz 0y

= ( since R = R. The above reduces to

e=0

__OR OR

= 8_;1; —+ a—yn
This PDE have solution using symmetry method given by
dR
i
dr
pri
dy
=

OR
But e

0

0

§

n
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The same procedure is applied to Eq. (16) which gives

08| _ (05| (05dy
O¢|._, \Ozde)|_, Oy de ) | _,
But g_f‘ = 8 and 2| _ = ¢(z,y) and similarly g—f o ‘3—5 and %[ _ =n(z,y).

The above becomes _
05
Oe

_0R,, OR
o Oz Oy

But %—f =1 since S = S + €. The above reduces to
e=0

,_ 05,05
- Oz 8yn

This PDE have solution using symmetry method given by

dsS

& =1 (16A)
dx

==t (16B)
dy

Equations (15A,B,C) are used to solve for R(z,y) and equations (16A,B,C) are used
to solve for S(z,y). Starting with R. In the case when £ = 0 the equations become

dR
E_O
dx
%—0
dy
%—77

First equation above gives R = c;. Second equation gives £ = cy. Letting ¢; = ¢, then
R=z

If £ # 0 then combining Egs. (15B,15C) gives

dy _m
dr &
R:CI
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The ODE g—g = 7 is solved first and the constant of integration is replaced by R. Hence

3
R is now found. S(z,y) is found similarly using Egs. (16A,B,C). If £ = 0 then

ds

T 1

dx

i 0

dy _

it ="

The first and third equations give

as _1

y n

S = 1dy
n

If £ # 0 then using the second and third equation gives
dS 1

dw €
S=/%dm

Now that R, S are found and the problem is solved. The ode in (R, S) space is set up
using
dS _ SetSig (16)
dR R, +R,%

Where % = w(z,y) which is given. The solution S(R) is next converted back to y(z).

Examples below illustrate how this done on a number of ODE’s. Eq. (16) is solved by
quadrature. This is the whole point of Lie symmetry method, is that the original ode
is solved in canonical coordinates where it is much easier to solve and the solution is
transformed back to natural coordinates.

The only way to understand this method well, is to workout some problems. To learn
more about the theory of Lie transformation itself and why it works, there are many
links in my links page on the subject.
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1.7 Definitions and various notes

1. infinitesimal generator operator. I' = &(z, y) 6% +n(z,y) a%' Any first order ode
has such generator. For instance, for the ode ¥ = w(z,y) then T'w = ‘3—‘;’ + 7]‘3—‘;.
The ode y' = w(z,y) = £ + = has solution y = 2 + z¢;, therefore the solution

o ¥=—
family is ¢(z,y) = y_zxz = ¢. Using £ = 0,7 = z then T'¢p = x(a—y) = 1. This

o) o)

is another example: using § = z,n = 2y, hence I'p = z——_ o
e(—% —-1)+2y(3) = -%£—-1+2% = %1+ 1. I must be not applying the
symmetry generator correct as the result supposed to be 1. Need to visit this
again. See book Bluman and Anco, page 109. Maybe some of the assumptions
for using this generator are not satisfied for this ode.

2. w(z,y) is invariant iff Tw = {(x,y) % +n(z,y) % =0.

3. The linearized PDE from the symmetry condition is w&, +w?¢, +w,€& = w,n+n,+
wny. This is used to determine tangent vector ({(z,y),n(z,y)) which is one of
the core parts of the algorithm to solve the ode using symmetry methods. There
are infinite number of solutions and only one is needed.

4. Symmetries and first integrals are the two most important structures of differential
equations. First integral is quantity that depends on z,y and when integrated
over any solution curve is constant.

5. Lie symmetry allows one to reduce the order of an ode by one. So if we have third
order ode and we know the symmetry for it, we can change the ode to second
order ode. Then if apply the symmetry for this second order ode, its order is
reduced to one now.

6. If &£, are known then the canonical coordinates R, .S can now be found as func-
tions of x,y. We just £, 7 to find R, S. Once R, S are known then j—g = f(R) can
be formulated. This ode is solved for S by quadrature. Final solution is found
by replacing R, S back by z,y. I have functions and a solver now written and
complete to do all of this but just for first order ode’s only. I need to start on
second order ode’s after that. The main and most difficult step is in finding &, 7.
Currently I only use multivariable polynomial ansatz up to second order for £ and
multivariable polynomial ansatz up to third order for 7 and then try all possible
combinations. This is not very efficient. But works for now. I need to add better
and more efficient methods to finding &, 7 but need to do more research on this.

7. When using polynomial ansatz to find £, do not mix z,y in both ansatz. For
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10.

11.

12.

13.

14.
15.

example if we use £ = p(z) then can use n = ¢(x) or n = q(z, y) polynomial ansatz
to find 7. But do not try £ = p(x,y) ansatz with n = ¢q(z,y) ansatz. In other
words, if one ansatz polynomial is multivariable, then the other should be single
variable. Otherwise results will be complicated and this defeats the whole ides of
using Lie symmetry as the ode generated will be as complicated or more than the
original ode we are trying to solve. I found this the hard way. I was generating all
permutations of &, 7 ansatz’s but with both as multivariable polynomials. This
did not work well.

Symmetries on the ode itself, is same as talking about symmetries on solution
curves. i.e. given an ode y' = w(z,y) with solution y = f(z), then when we look
for symmetry on the ode which leaves the ode looking the same but using the new
variables z,y. This is the same as when we look for symmetry which maps any
point (z,y) on solution curve y = f(z) to another solution curve. In other words,
the symmetry will map all solution curves of y' = w(zx,y) to the same solution
curves. i.e. a specific solution curve y = f(z,c;) will be mapped to y = f(z, c2).
All solution curves of ¥ = w(z,y) will be mapped to the same of solution curves.
But each curve maps to another curve within the same set. If the same curve
maps to itself, then this is called invariant curve.

. An orbit is the name given to the path the transformation moves the point (z,y)

from one solution curve to another point on another solution curve due to the
symmetry transformation.

A solution curve of ¥ = w(zx,y) that maps to itself under the symmetry transfor-
mation is called an invariant curve.

Not every first order ode has symmetry. At least according to Maple. For example
v’ +y® + zy? = 0 which is Abel ode type, it found no symmetries using way=all.
May be with special hint it can find symmetry?

After trying polynomials ansatz, I find it is limited. Since it will only find symme-
tries that has polynomials form. A more powerful ansatz is the functional form.
But these are much harder to work with but they are more general at same time
and can find symmetries that can’t be found with just polynomials. So I have to
learn how to use functional ansatz’s. Currently I only use Polynomials.

&, n are called Lie infinitesimal and z,y are called the Lie group.
If we given the &, n then we can find Lie group (Z, ). See example below.

If we are given Lie group (Z,y) then we can find the infinitesimal using &(z,y) =
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%.’EL:O and n(w,y) = %g}GZO‘

16. First order ode have infinite number of symmetries. Talking about symmetry of
an ode is the same as talking about symmetry between solution curves of the
ode itself. i.e. symmetry then becomes finding mapping that maps each solution
curve to another one in the same family of solutions of the ode.

17. £,7n can also be used to find the integrating factor for the first order ode. This is
given by u(z,y) = n—% where the ode is ¥'(z) = w(z,y) . This gives an alternative
approach to solve the ode. I still need to add examples using u(z,y).

18. For first order ode, to find Lie infinitesmilas, we have to solve first order PDE
in 2 variables. For second order ode, to find Lie infinitesmilas, we have to solve
second order PDE in 3 variables. For third order ode, to find Lie infinitesmilas,
we have to solve third order PDE in 4 variables and so on. Hence in general,
for n'* order ode, we have to solve n® order PDE in n + 1 variables to find the
required Lie infinitesmilas. For first order, these variables are £, and the PDE
is n, + w(ny — &) — w2, — wz€ — wyn = 0. Currently my program only handles
first order odes. Once I am more familar with Lie method for second order ode,
will update these notes. See at the end a section on just second order ode that I
started working on.

1.8 Closer look at orbits and tangent vectors

This section takes a closer look at orbits and tangent vectors £, which are the core of
Lie symmetry method. By definition

-

€)= g | M
"

m%w=;g_0

Hence &(z,y) shows how Z changes as function of (z,y). And n(z,y) shows how ¥
changes as function of (z,y). This is because

T=x+¢e (2)
y=1y-+mne

Comparing (2) to equation of motion where Z represents final position and z is initial
position, then £ is the speed and € is the time. When time is zero, initial and final
position is the same. As time increases final position changes depending on the speed
as time (here represented as €) increases. So it helps to think of £, 7 as the rate at which
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Z,y change location depending on the value €. £, n are calculated when € is very small
in the limit as it reaches zero.

As € increases the point (z,y) moves closer to the final destination point (Z,y). So
these quantities &,n specify the orbit shape. The orbit is the path taken by point
transformation from (z,y) to (Z,y) and depends on € such that the ode remain invariant
in z,y and points on solution curves are mapped to points on other solution curves.

Different &, 7 give different orbits between two solution curves. The following example

shows this. Given the ode
/ r—Yy

This is Abel type ode. Also Homogeneous class A.

4

It has two solutions. One solution is given by Mathematica as y = —x — v¢; + 222. A
small program was now written that plots the orbit for 4 solutions &, 7 found for the
similarity conditions. The similarity solution were found by Maple’s symgen command.

[> ode:=diff (yix) , x)=(x-y(x))/(x+ty(x));
DEtools:—odeadvisor (ode) ;
DEtools:-symgen (ode ,way=all)

, d x— )
oqe = — Vx| = ———
dx © x) x4+ ¥ x)
[ [ _homeogeneous, class 4], _rational, | _Abel. 2nd npe, class A]]
R el xXy— _12
x+ ¥

| _E=0_n= : l

Figure 5: Command used to find &, 7

The program starts from the same (z,y) point from one solution curve and determines
(Z,9) location on anther solution curve using each pair of £, 7 found. The same solution
curves are used in order to compare the orbits. The following plot was generated showing
the result
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1 1

=—n=—--

X L

1.46 1.47 1.48 1.49 1.50 1.51

-3.75} =3.75¢
-3.80} -3.801
-3.85} -3.85F
(2, 9)

—(2% = 22y — y?)

{=——""—~ =0 E=2x+yn=u
5 =1 . . . ; . .
. Y . : : 1.46 1.47 1.48 1.49 1.50 1.51
1.46 1.47 1.48 1.49 1.50 1.51

-3.75}

-3.75}
-3.80}

-3.80}
-3.85F

-3.85}

Figure 6: Different orbits using different &, 7n

The source code used to generate the above plot is

<<MaTeX"

ode=y' [x]==(x-y[x])/(x+y[x]);
ysol=DSolve [ode,y[x],x]
ysol=-x-Sqrt[C[1]+2 x~2];

x1
yi

1.5;
ysol /. {C[1] -> 1, x —> x1};

ysol2=ysol/.C[1]->1.1

getSolutions[inf_List, titles_List, x_Symbol, ysoll_, ysol2_, x1_,
y1l_, from_, to_] :=

Module [{xbar, ybar, eps, eq, soleps, p, data, n, xi, eta, texStyle},
data = Table[0, {n, Length@inf}];
texStyle = {FontFamily -> "Latin Modern Roman", FontSize -> 12};
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N

Dol

xi = First[inf[[n]]];
eta = Last[inf[[n]]];
xbar = x1 + eps*xi ;
ybar = yl1 + eps*eta;
eq = ybar == ysol2 /. x -> xbar;

soleps = SolveValues[eq, eps];
First@SortBy[soleps, Abs];

ybar = ybar /. eps -> soleps;

soleps

xbar = xbar /. eps -> soleps;
p = Plot[{ysoll, ysol2}, {x, from, to},

PlotLabel -> MaTeX[titles[[n]], Magnification -> 1.5],

BaseStyle -> texStyle,

Epilog -> {{Arrowheads[.02], Arrow[{{x1, y1}, {xbar, ybar}}1},
Text [MaTeX["\\left( x,y \\right)"], {x1, yi1}, {-1, -1}],
Text [

MaTeX["\\left( \\bar{x},\\bar{y}\\right)"], {xbar, ybar}, {1,
131},
ImageSize -> 400];
datal[[n]] = p
{n, 1, Length@inf}
iE

data

1;

inf = {{1/x1, -1/x1},

{0, 1/(x1 + y1)},

{-(x172 - 2*x1*y1l - y1°2)/(x1 - y1), O},
{2*x1 + y1, x1}

};

titles = {"\\xi=\\frac{1}{x},\\eta=-\\frac{1}{x}",

"\\xi=0, \\eta=\\frac{1}{x+y}",
"\\xi=\\frac{-(x"2-2 x y-y~2) Hx=y},\\eta=0", "\\xi=2 x+y,\\eta=x"};

data = getSolutions[inf, titles, x, ysol /. C[1] -> 1, ysol2, x1, yi,

1.45, 1.51];

p = Grid[Partition[data, 2], Frame -> All, Spacings -> {1, 1}]
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1.9 Selection of ansatz to try

The following are selection of ansatz to try for solving the linearized PDE above
generated from the symmetry condition in order to solve for &(z,y) ,n(x,y). These use
the functional form. As a general rule, the simpler that ansatz that works, the better it
is. Functional form of ansatz is better than explicit polynomials but much harder to
use and implement. Maple’s symgen has 16 different algorithms include HINT option
to support functional forms. The following are possible cases to use.

1. £=0,n= f(z)
2. £=0,1=f(y)
3. §=f(z),n=0
4. &= f(y),n=0

5. & = f(z),n = zg(y). An example: applied to ¢y’ =

z+cos(e¥+(1+z)e %)

should give

ey+z

e (c1+e_z)+l

& = e*,n = xe~¥ which leads to solution y = In (2 arctan (M> - (1+2x) e"”).

6. £ =f(z),n=29(y)

7. £ =0,n = f(z) g(y). For example, applied to 3y =

f@)=vV1+z,9(y) =VI+y.
8. &= f(z)g(y),n=0

1.10 Examples

VIFg+/Trg+1 .
z +y+1 +m+y+ ¥ should give

1.10.1 Example 1 on how to find Lie group (z,y) given Lie infinitesimal £, 7

Given £ = 1,7 = 2z find Lie group z,y. Since

)= 5|
Then
X @)
=1
Similarly, since B
M%w=2$$0
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Then

=2y (2)

Where in both odes (1,2) we have the condition that at ¢ = 0 then z = z,§ = y.
Starting with (1), solving it gives

T =c¢€+c(z,y)

Where ¢;(z,y) is arbitrary function which acts like constant of integration since Z(z, y)
is function of two variables. At € = 0 then ¢ (z,y) = z. Hence the above is

T=€e+x (3)

And from (2), solving give
§ = 2Ze+ co(z,y)

But at € =0,y = y,z = x then the above gives c; = y. Hence the above becomes
y=2xe+y

But Z = € + = from (3), hence the above becomes

Therefore Lie group is

Kl
Il

€
262 + 2ex +y

y

1.10.2 Example how to find Lie group (z,y) given canonical coordinates

R,S

Given R =z, S = ¥ find Lie group Z,%. Solving for z,y from R, S gives

=R

y=SR
Hence

=R

7=5SR



But S = S + € by definition of canonical coordinates and R = R by definition of
canonical coordinates. Hence the above becomes

=R
g=(S+¢€¢R

Using the values given for R, .S in terms of z,y the above becomes

1.10.3 Example y =% 42

This is linear first order which can be easily solved using integrating factor. But this is
just to illustrate Lie symmetry method.

;Y

= — 1
Y x-i-ar: (1)
Y =w(z,y)

The first step is to find £ and 7. Using lookup method, since this is linear ode of form
y' = f(z)y+g(z) then

£=0

The end of this problem shows also how to find these from the symmetry conditions.
Therefore we write

T =x+E&e
=z
y=y-+mne
=y+nz (2)
The integrating factor is therefore
1
T,Y) =
wz,y) —
1
oz
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Before solving this, let us first verify that transformation (2) is invariant which means it
leaves the ode in same form but using z, y. We do the same as in the above introduction.

i _ 3
da‘cjl—i
o + Gy
T, + 7, %

But ¥, = 5,9, = 1,7, = 1,Z, = 0 and the above becomes

dy e+
dz 1
dy
=€ —|— %
Substituting z, v, % in the original ode gives
dy y _
iz 7"
d + ex
+ Y- +x
dzx T
d
€+ o_4 ‘etz
dr =x
dy _y
dr =z te

Which is the original ODE. Therefore (2) are indeed an invariant Lie group transfor-
mation as it leaves the ODE unchanged. The next step is to determine what is called
the canonical coordinates R,S. Where R is the independent variable and S is the
dependent variable. So we are looking for S(R) function. This is done by using the
standard characteristic equation by writing

dz _dy _ g

§ n

der dy

0= ¥ M

The above comes from the requirements that <§ % + n%) S(z,y) = 1. Which is a first

order PDE. This is solved for S, which gives (1) using the method of characteristic to
solve first order PDE which is standard method. In the special case when £ = 0 and
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n # 0 these give

R==x
1
S= [ —dy
n
T
=g—+—c
T

We are free to set ¢ = 0, hence S = . Therefore the transformation to canonical
coordinates is

— (s Y
(&,9) > (R,8) = (=, %)
The derivative in (R, S) is found same as with % giving
ds S, +5,%
dR R, +R,%
But S; = —%,8, = %, R, =1,R, =0 and the above becomes
s —%+.2

e, z do
dR 1
_y  ldy
1?2 zdx

But % = Y + x hence the above becomes

sy 1<y )

R~ @ T a\z 17
=1
Solving this gives
S=R +c
But S = ¥, R = z. Therefore the above becomes
Yey +a
x

y=:c2—|-cla:

Which is the solution to the original ode. Of course this was just an example showing
how to use Lie symmetry method. The original ode is linear and can be easily solved
using an integrating factor

Y
y—S=z
T
I:e—f%dm:e—lnzzl
T
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Multiplying the ode by I gives

d
a(yl) =Iz
gz/zm
z T
=zx+cC

Hence
Y= z? + zc;

Which is same solution. But Lie symmetry method works the same way for any given
ode. And this is where it powers are. It can solve much more complicated odes than
this using the same procedure. The main difficulty is in finding the infinitesimals for
the group, which are &, that leaves the ode invariant.

Finding Lie symmetries for this example

y=2+z
x
= w(z,y)
The condition of symmetry is a the linearized PDE given above in equation (14) as

Nz + W(ny - ém) - w2£y —we€ — wyn =0 (14)

We first find the determining equation before solving for §,7n. Since w = £ + x then
wy = =,w; = —% + 1. Hence the above becomes

o () - - (L42) 6 - (506 bam

Mo + (%er) (my — &) — (Z—z+w2+2y) & — (—%-i—l)g—i?’]:o

no+ (Lra)n—6(L+a) - (g_iﬂuzy)gy_(_%ﬂ)g_;n:o
Multiplying by 22 to normalize gives

2+ (o + %) 1y — &g+ 2%) — (42 + 00+ 290) €, — (—y+2%) € —on =0 ()

Equation (A) is called the determining equation. Using different ansatz can result in
more solutions.
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Trying ansatz

§£=0
n = byr

Plugging these into (A) and comparing coefficients to solve for the unknown gives

x%(by) —xn =0
boz® — z(box) = 0
b().’L'2 - b().’l?z =0

bo(0) = 0

So any by will work. Let by = 1. Hence

SES
Il
8 O

Now Trying ansatz as

E=ar+az
n=bo+ b1y

Then &, = a1,§, = 0,1, = 0,7, = b; and the determining equation (A) becomes

(bo +b1y) T + (ao + a17) (2* —y) + b1 (—yz — 2°) + a1 (yz + 2°) =0
(bo + bly) T+ (ao + CL1.’IJ‘) (1132 - y) + (bl - al) (—yx - $3) =0
xby — yao + 2ag + 23(2a; — b)) =0

Setting each coefficient to zero gives

bp =0
ag=0
ag=0
2a1 —b; =0

Hence the solution is ag = 0,by = 0,a; = %1 Using b; = 2 gives a; = 1 and therefore

{=z
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And Trying ansatz as

E=ap+ a1+ azy
77=b0+b1y+b2x

Hence &, = a1,&, = ag,m; = ba,m, = by and the determining equation (A) becomes

(bo + b1y + boz) T + (a0 + a1z + a2y) (z° — y) + b1 (—yz — 2°) + ax (v° + =* + 2y2?) + ba(—2%) + a1 (yz
z*(—az) + 2°(—2a1) + z%y(—3a2) + 2°(b1) + 2*(—ao) + y(ao) -

Setting each coefficient to zero gives

bp =0
ag=0
a1 =0
by =0
a; =0
by =0

This shows there is no solution for this ansatz. There are more solutions depending on
what ansatz we used. We just need one to obtain the final solution. In Maple, these
solutions can be found as follows

ode:=diff (y(x),x)= y(x)/x+x;
DEtools:-symgen(ode,y(x) ,way=all)
[xi = 0, _eta = x],

[[xi = 0, _eta = x],

[xi = 0, _eta=2x"2-yl],

[Lxi = x, _eta = 2xy],

[xi =1, _eta = y/x],

X"2 +y, _eta = 4xyx*x],
X"2 - 3xy, _eta = -4xy~2/x]

[ xi

[ xi

Trying ansatz using functional form. Let £ = 0,7 = f(z) then & = 0,§, = 0,7, =
f'(z),n, = 0 and the determining equation (A) becomes
.+ (yz+2°)ny — &(yz +2°) — (V¥ +2* +2y2°) & — (—y+2°) E—an=0
2’ f'(z) —xf(z) =0
zf'(z) — f(z) =0
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This is easily solved to give f = cx. Hence £ = 0,1 = x by choosing ¢ = 1. We see that
this choice of ansatz was the easiest in this case, as the ode generated was linear. Let
us try another and see what happens.

Trying ansatz as £ = 0,7 = f(y) then & = 0,§, = 0,n, = 0,7, = f'(y) and the
determining equation (A) becomes
(yz +2°) f'(y) —xf(y) =0
(y+2°) f'(y) - fly) =0

This is separable and its solution is f = ¢;(z? +y). Hence £ = 0,7 = (z®> +y) by
using ¢; = 1. But this is not function of y only. So this choice did not work. Trying
€= f(z),n=0],[¢ = f(y),n = 0] shows these also do not work.

&,m can be checked for validity by substituting them in the PDE. Maple’s symtest
command does this. These functional ansatz’s lead to an ode which have to be solved.

1.10.4 Example y = 2y? — 2 — L

Solve
2y 1
/ 2
= - T 3 1
Y=y ——— 5 (1)
Yy =w(z,y)
For z # 0. Given dilation transformation
T =€ (2)
g=e "y
Hence
dz
€($,y) - % o =z
dy
= — = —2
n(z,y) = B Y

(At end shows how to obtain these). The integrating factor is therefore

1
p(z,y) =
(z,9) —
B 1
R )
$2
- ziy? —1
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Now

T=z+é=xz+ex (3)

This transformation T = e‘z, §j = e >y is now verified that it keeps the ode invariant.

@ — gﬂl +?jy%z — 6_26% — 6—36@

dz 7, +z,% e dz
Substituting z, v, % in the original ode gives

g, 2 1

Z- T e
3. dy Lgev2 2(e”*y) 1
3e2d _ (o€ 2¢ _ _
€ dz (e JZ) (6 y) (eex) (65:13)3
dy 26_363/ e 3e
-39 _ —3€,.,2 _ _
¢ dx €% T 3
dy _ o 1
dx r oz

Which is the original ode. Hence the transformation (2) is invariant. It is important to
use (2) and not (3) when doing the verification.

The next step is to determine what is called the canonical coordinates R, S. Where R
is the independent variable and S is the dependent variable. So we are looking for S(R)
function. This is done by using the standard characteristic equation by writing

w_d_ s

& n

dx dy

bl S 1
z —2y a3 1)

The above comes from the requirements that <§ % + n(%) S(z,y) = 1. Which is a first
order PDE. This is solved for S, which gives (1) using the method of characteristic to
solve first order PDE which is standard method. Starting with the first pair of ODE
gives
dy 2y
dr =z
Integrating gives yx? = ¢ where c is constant of integration. In this method R is always
c. Hence
R=yz
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S(z,y) is now found from the first equation in (1) and the last equation which gives

dz
dS = —

3
sz/d_x
T
S=lnz

Now that R(z,y),S(z,y) are found, the ODE 95 = Q(R) is setup. The ODE comes
out to be function of R only, so it is quadrature. This is the main idea of this method.
By solving for R we go back to z,y and solve for y(z). How to find j%? There is an
equation to determine this given by

s _ & tw@y) g
dR ‘fl—f+w(x,y)‘%
Sy +w(z,y) S,

Everything on the RHS is known. But

S, =1

x
S, =0
R, =2yzx
Ry=x2

Substituting gives

dS L1+ (=P -%-3%)(0
dR ~ 2zy+ (zy2 — % — L) 22

1
- 20y + (zy? — 2 — %) 22
B 1
Corty2—1
But R = yz?, hence the above becomes
as 1
dR  R2-1

This is just quadrature. Integrating gives

S = —arctanh (R) + ¢;
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This solution is converted back to z,y. Since S = Inz, R = yx?, the above becomes
In |z| = — arctanh (yz*) + ¢
Or
—In|z| + ¢; = arctanh (yz*)
yz? = tanh (— In |z| + ¢;)

tanh (—In |z| + ¢;)
y= 72

Which is the solution to the original ODE.

The above shows the basic steps in this method. Let us solve more ODE’s to practice
this method more.

Finding Lie symmetries for this example

The condition of symmetry is given above in equation (14) as

Ny + W(ﬂy - gm) - w2£y - Usz —Wyn = 0 (14)
We now need to solve the above for £, given a specific w(z,y) for the ODE at hand.
This PDE can not be solved as is for £,n without an ansatz. One common ansatz is
to use £ = a(z) and n = B(z)y + () and plugging these into the above and then
compare coefficients to solve for a(z), B(x),v(z).

Another ansatz is to use a polynomials for £, 7. And this is what we will start with.

Using polynomial as ansatz

We start with order 1 polynomials. Hence
£ =ao+ a1 (1)
n="bo+ by (2)
If this does not generate solution, we will try higher order polynomials. Eq (14) becomes
Mo+ w(iy — &) — wéy — we€ —wyn =0
0+ w(by — a1) — w?(0) — wy(ao + a1x) — wy(bo + b1y) = 0

But in this ODE w = zy? — 2 — L hence w, = y*> + % + % and w, = 2yz — 2. The
above becomes

r 3 x?
2 1 2 1 2 3 2 3
ry’by — —ybl - b — Ty’a; + —yal + —a — y2ag — —:Z(IO — — 00 — ry’a; — al—y —a1—3 —:
x x x x x x x x

1 1
.’Ey2(b1 —a; —a; — 2b1) + %(—21)1 + 2@1 — 201 + 2b1) + CIT?’(_bl + a; — 3a1) + y2(—a0) + %(—2a0) + F
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Each coefficient to each monomial must be zero. Hence

—2a; —b; =0
—b; —2a; =0
—2a; —2b; =0
ag=0
bp=0
These are overdetermined equations. Solving gives a; = —%bl and ag = by = 0. Choosing

by = —2 gives a; = 1. Hence
E=a+tar=2
n=bo+ by =—2y

Which is what we wanted to show for this ODE. These are the values we used earlier
to solve the ODE using symmetry method.

Using functions as ansatz

Now &, 7 are found using £ = a(z) and n = (z) y + v(z) as ansatz. Eq. (14) is

Ne +w(ny — &) — ‘*‘-’25.1; —wz —wyn =0 (14)
But
e = B'(z)y +/(z)

And

ny = B(z)
And

gy =0

é.ac = al(w)

Substituting the above into EQ. (14) gives

B(z)y+ 7 (z) + w(B(z) — &/ (x)) — wya(z) — wy(B(z)y +v(z)) =0

But in this ODE w = zy® — 2 — X hence w, = y* + % + 3 and w, = 2yz — 2. The
above becomes

By++ + (x?f—%y—i) (B—d) - (y2+i—g+%>a— (2yx—%) (By+7v)=0
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Or
2 1 3 1 2 2

Y +yf + oy 58— ga—yat+ o/ —2myy— Sya—ay’f+ —ya' —wy’a =0
x x x x x x

Collecting on y gives

2 1 3 1 2 2

y° (7’ +=y— 58— o+ —3a') +y (ﬂ’ —2zyy — Sa+ —0/) +y*(—a—zB —zd/) =0
x x x x x x

Each term above is zero. This gives the following equations

(@) + 21(@) ~ 3B(x) ~ ola) + 5a(2)

B'(z) — 2zyy(x) — %a(z) + %o/(x) =0
0

—a(z) — zf(z) — zd/(z) =

0

3

Solving these coupled ODE on the computer gives

1

a(z) = = (csz* + c12® + ¢2)
x

B(x) = —4csz® — 2¢;

Ca
v(z) = —2¢5 — 2;
Where the ¢y, co, c3 above are constant of integration. Let ¢ = c3 = 0. Hence

1
a(z) = - (c32* + c17?)

B(x) = —4csz® — 2¢

Y(z) =0
Let ¢ = 0. Hence
1
alz) = 5c1x2
B(z) = —2¢
Y(z) =0
Let ¢; = 1, hence
alz) ==
Bla) = —2
Y(z) =0
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Therefore, since £ = a(x) and n = B(z) y+y(x) then £ = z, = —2y which is the same
as the earlier method. After working using this ansatz, I find using the polynomial
ansatz better. First of all, I had to set constants above to values in order to obtain
the same result as earlier. Setting these constants other values will give different result.

For example, the following are another set of possible solutions obtained from Maple
for this ODE

Which gives

1 2
{é-: 5#7: _E}
{€=—g,n y}

—z3 1
{§= Tﬂ?=x2y+§}

1.10.5 Example y/ = ¥ + g—Z

T

Solve

This can be written as
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T

Hence this has the form ¢ = % + g(z) F(¥) where g(z) = % and F = (1 + (

Therefore this is homogeneous class D. Lookup table gives
£=27

n=2xy

Another way to find £, n is by solving the symmetry condition PDE and this is shown

at the end of this problem. Hence

The integrating factor is therefore

M@W%:n—&)
B 1

_z.y_x2<ﬁ+£>

T 3

x
x? + y?

The ode is now verified that it remains invariant under (2) transformation.
dj _
-5V = dz
dz ¢

U + Ty o

Ty + Ty %

But from (2) y, = ye, 9y = 1+ x¢,Z, = 1 + 2xe, T, = 0 and the above becomes

dg_1+a+z@%
dz 1+ 2ze

Substituting z, y, % in the original ode gives

dy _g+1 &

iz~ oz @
1+(1+ze )2  (y+aye)+1  (y+zye)
= ) —+ 3
1+ 2z¢ T + € (x-|—x2e)
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Which as lim._,q gives

d +1 92
dy _y+1_ ¢
dz x x3
The same original ode showing the transformation is valid symmetry.

Y:=y/(1-s*x):
X:=x/(1-8%x):
eq:=(diff (Y,x)+diff (Y,y)*2)/(diff (X,x)+diff (X,y)*Z)=simplify ((Y+1)/X+Y"2/X"3):
solve(simplify(eq),Z)
y/x + 1/x + y~2/x73

Hence the transformation in (2) is invariant.

The next step is to determine what is called the canonical coordinates R, S. Where R
is the independent variable and S is the dependent variable. So we are looking for S(R)
function. This is done by using the standard characteristic equation by writing

dr _ dy _

as
£
dr dy

The above comes from the requirements that <§ % + n%) S(z,y) = 1. Which is a first

order PDE. We need to solve this for S, which gives (1) using method of characteristic
to solve first order PDE which is standard method. Starting with the first pair of ODE
in (1) gives
dy _zy_y
dr z22 =z
Integrating gives £ = c where c is constant of integration. In this method R is always
c. Hence

R(z,y) =

Now we find S(z,y) from the first equation in (1) and the last equation

SEES

_do

as

Now that we found R and S, we determine the ODE 92 = Q(R). The ODE comes
out to be function of R only, so it is quadrature. This is the whole idea of this method.
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By solving for R we go back to z,y and solve for y(z). How to find 237 There is an
equation to determine this given by

as Sz +w(z,y) Sy
dR  R,+w(z,y) R,

We know everything on the RHS. Substituting gives

is =+ (450

Wo—p+(45)s

N 41, 2\ 1
—%+ (4 5)1
2
:L.2_|_y2
_ 1
1+ (1)

But R = ¥, hence the above becomes

as 1
dR ~ 1+ R?

This is just quadrature. Integrating gives
S = arctan (R) + ¢;

Now we go back to z,y. Since S = —%, R =%, then the above becomes

1 y
—— = arctan (—) +c
x x

-1 y
— 4+ ¢y = arctan (—>
T T

-1
y_ tan <— + cz)
x x
-1
y(z) = ztan <? + cz)

And the above is the solution to original ODE.

Finding Lie symmetries for this example

The symmetry condition was derived earlier as

Ne + w(ny - gm) - w2£y - wz€ — Wyl = 0 (14)
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Let ansatz be
E=car+cytcs
N =C4T + C5Y + Cp
Eq 14 becomes
e +w(iy — &) — W€y — we€ —wyn =0
2

cs +w(cs — c1) —wcy — wy(c1z + coy + ¢3) — wy(cax + csy +¢6) =0

But in this ODEw=yT+1+z—§, hence(,ugc=—ymi21—35—‘21 and w, = 1 + 2% The above
becomes

y+1 9P y+1 y2\? y+1 3y2 1 2y
at\T ) ema T tE) e i) rtarta) - (D4 ) (
1 1 1 1

2% T 2% + 70T % + EQQCl - ?y202 + %yz% + $y302 - ;yz% - E?fcz LA + 290~
zics — 2tcy + 2Pcs — x0cg + 20397 ey — 22%yPcy + 3xPyPes + viyPer — 3yPes — yten — xtycy + tycs — 2
z*(c3 — ¢a) + 7°(c5 — ¢5) + 23Y*(2¢1 — ¢5) + 22Y*(—2c2 + 3c3) + 2%y (c2) + ¥t (—c2) + 2ty(—ca + c3 — 2¢
Each coefficient to each monomial must be zero. Hence
cs—ca=0
cs—cg =0

261—05:0

—2¢co +3c3 =10
c=0
—cpg+c3—2¢c4=0
—2¢c6 =0

Which simplifies to (since c; = 0, ¢ = 0)

C3=0
C5=0
Cl—C5=0
3C3=0

C3—2C4=O

Which simplifies to (since ¢z = 0, ¢5 = 0)

C5:O
01—0520
C4=0
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Hence c5 = 0,c; = 0,c4 = 0. We see that all ¢; = 0, therefore there is no solution using
this ansatz.

Trying ansatz

€ = ag + a1z + agy + asry + asx’
n = by + b1z + byy + bsxy + byy?

Eq 9 becomes

UE + w(ny - fz) - w2§y - ww‘f - wy'r] =0
Substituting the ansatz and simplifying gives
—x2y3a2—|—y4a2—|—x4(—a0+a2)+x2y2(—3a0+2ag)—|—xy4a3+2m3yb0—|—x4y(—a0+a2+2b1)—l—x5 (a3—|—b0—b2)+x3y2

Each coefficient to each monomial must be zero. Hence

a, =0

—ap+ay; =0
—3ag +2a5 =0

a3 =0

bp=0
—ag+as+2b; =0
a3 +bg—by =0
—2a1 +2a3+ b, =0
as— b3 =0

2a3 —2by, =0

a3 —by;, =0

Since as = a3z = by = 0 the above simplifies to

—ap=0
—3ay =0
—ag+2b; =0
—by, =0
—2a; +by,=0
as— b3 =0
—2by, =0
—by=0
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Since ag = by = a4 = by = 0, The above now simplifies to
ag — b3 =0

Therefore, if we let ay = 1 then b3 = 1 and the solution is
& =ag+ a1T + asy + asxy + a4 x>
frd wz
n = by + b1z + byy + bszy + bsy?

=xy

Which is what we used above to solve the ode.

1.10.6 Example y = Lz’ -16c

y3+4x2y+x
Solve
. y—4xy? — 1623
Y Pt dyta
y =w(z,y)

The first step is to find £ and 7. This is shown at the end of this problem below.

£=—y
n =4z
The integrating factor is therefore
1
w(z,y) =
(z,y) —
_ 1
4z +y (ke )

Pyt ac+yP
O 4x2 42

The next step is to determine what is called the canonical coordinates R, S. Where R
is the independent variable and S is the dependent variable. This is done by using the
standard characteristic equation by writing

o _ W _ s

£ 7

de dy

= 22 _d 1
vy S (1)
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The first pair of ode’s in (1) gives
dy _ 4z
dx Y
Solving gives
y=+v—42 +c
Where c is constant of integration (For y > 0 only). In this method R is always c. Hence

y? = —42° + ¢
R =y + 42? (2)
The first equation in (1) and the last equation gives
dz

dsS = —
£

S=-[Z£
)

But y = v/—422 + c¢. The above becomes
g _ / dx
vV—4x? + ¢
1 2z
= —5 arctan (\/T_i_c)

1 (29;)
= ——arctan [ —
2 y

For y > 0. Now that we found R and S, we determine the ODE 23 = Q(R). The ODE
comes out to be function of R only, so it is quadrature. This is the whole idea of this
method. By solving for R we go back to z,y and solve for y(z). How to find %? There
is an equation to determine this given by

ﬁ _ Sptw(z,y) S,
dR  R,+w(z,y) R,
We know everything on the RHS. Substituting gives
z y—4zy®—16z3 x
ds B C%(—% arctan <2y )) + ( P ATy ta > %(—% arctan (%))

dR 2 y—4zy?—1623 [ A2
VY +4a? + “Pdlyta dy Ytz

-1 <y —4xy?—1623 )

y(%zﬂ) y’+dz?y+e y2

4z y—4zy2—1623
\/y2+412 y3+dalyta V2 +4:/z:2
= —/4x% 4+ y?
__R
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Hence

ds
-~ —_R
dR
This is just quadrature. Integrating gives
R2
S = —7 +c

Now we go back to z,y. Since S = —% arctan (2“’) , R = +/y? + 422, then the above

v

1 2 2 4 422
2 Y 2

2 1 2
Y _Carctan (Z2) 4222 —c=0 y>0
2 2 Y

becomes

And the above is the solution to original ODE.

Finding Lie symmetries for this example

The symmetry condition was derived earlier as
Nz + w(ny - gx) - w2§y - wx§ — Wyl = 0 (14)
Let ansatz be

E=cix+cy+cs
N =c4x + C5Y + Cg

Eq 14 becomes

cs+wles — ¢1) — w?ey — wi (1T + ey + c3) — wy(ca + csy +c6) =0

. . _ y—4zy?—1623 _ —4y5-3222y3—8zy?+ (—64x?—1)y—322°
But in this ODE w = S tizTite hence w, = @y ia)? and
5 3,2 4_Qm2,,_9,,3
= 8o’ +3%r 7y +dzy —8zy—2y"+2 AYoyve becomes

Wy = (4z2y+y3+a)’

y — 4zy? — 1623 y — dzy? — 1623 > —4y° — 32z%y® — 8zy? + (—64z* — 1)y —.
C4+ 3 2 (05 — 01)— 3 5 Co— 5
Yy +4rty+x Yy +4zy +x (4z2y + y3 + )
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Which expands to

8ci1zy? 4cszy? 256¢ox*? 48¢cox*yt 16cyz3y 12cozy3
2y + P+ Y+’ +a (dely+yP+13)° (aly+1P+a)’ (dely+13+1)° (daly+ o+
48x2cyy 128x°yc; 128z%ycs 32z313¢, 32z2y3¢c3
Dy+y+r (aly i to) (elytyi o) (dely+yPta) (et + o)
4x%y%c, 4zy’cs ycL T 8x2ycy 8zyce
A2y +13 +2)° (dey+18+12)° (day+18+2)° 4?y+y°+o 4oy+9°+ T
64x°csy 64z*y?cy 64x3y3cs 64z3y>cq 122%y%c, 16¢52
ey +9P +2)° (daty+yP+2) (de2y+yP+2) (da2y+1P+a) (daty+y +2)° 402y +9°
256¢9° 64c; 23 c1y 487%¢c4 43¢y 4y2cs
- (4x2y + 13 + g;)2+4:132y +3+z Ay +9°+ x+4x2y +y3+z dr2y+yi+z dxly+ P+
162%c; 16z3c3 ycs C4T 64z5¢, 6425¢
@yt +a) Y+ o) (@l +a) LW+ (Wt +a) (dely 4y
N 3ycs 3y3cq B Cé B 12z1°cs B 12z cq 4x3yc
Moy +y? +2)° (dely+yP+e)’ 4Py+yP+e (et ta) (dely+yP )’ (daty+ g
4xy%cs 4x?ycg 3yicux e=0

a2y +13+2)  (do2y+yd+2)°  (day+y® + )

Multiplying each term by (4z%y + y> + x)2 and expanding gives the multivariable
polynomial

128x5ycl +64z3y3cl +8clxy5 —256¢52° —64czx4y2+ 1602x2y4+402y6 —6428¢cy— 16x4y204+4x2y4c4+c4y6
— 128x505y—64x3y3c5 —8xy505 +64x4y03+32x2y303+403y5 —64x°cq —32x3y266 —4xy466+48:c4cl +
82%y2c1 —c1y* +64cyr3y+16coxy3+1623ycy+4yPcsxr—16c5 21 +8x2y  cs+-3y  c5+3223 c3+8xy  cs+82% ycg +21

Each monomial coefficient must be zero. This gives the following equations to solve for
(&
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equation

—256¢cy — 64c4 =0

128¢; — 128¢c5 =0

—6466 =0

—64cy — 16c4 =0

6403 =0

48c; — 16¢c5 =0

64c; — 64c5 =0

—3206 =0

6402 + 1604 =0

32¢c3 =0

16co +4c4, =0

32¢c3 =0

861 + 865 =0

806=0

861 — 805 =0

—406 =0

1662 + 404 =0

803=0

—C6=0

402+C4=0

463:0

—C +3C5 =0

206:0

C3:0

Hence we see that cg = 0,c3 = 0.

The above reduces to
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equation

—256cy — 64cy =0
128¢; — 128¢c5 =0
—64cy — 16¢c4 =0
48c; — 16¢c5 =0
64c; — 64c5 =0
64cy + 16c4 =0
16cy +4¢c4 =0
8c1 +8c5 =0

8c; — 8¢5 =0
16co +4c4, =0
4co+c4 =0
—c1+3¢c5=0

Hence Ac = b gives

0 —256 —64 0 0
128 0 0 —128 0
0 —64 —16 0 0
48 0 0 —16 0
64 0 0 —64]|(° 0
0 64 16 0 “1=1|o
0 16 4 0 “ 0
8 0 0 -8 | \® 0
0 16 4 0 0
0 4 1 0 0
1 0 o0 3 0

The rank of A is 3 and the number of columns is 4. Hence non-trivial solution exist.
Solving the above gives ¢4 = —4 and c; = 1 and all other coefficients are zero. this
means that , since

E=cix+cy+cs
N =c4x + C5Y + C

Then

E=y
n = —4x

Which is what we wanted to show for this ODE.
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1.10.7 Example ¢/ =

er—y

Solve
y/ — E_yQ
e —y

Y =w(z,y)

The symmetry condition results in the PDE

Nz + w(ny - €z) - w2€y —wg€ — Wyt = 0

End of the problem shows how this is solved for £, n which results in

{(z,y) =1
n(z,y) =y
The integrating factor is therefore
1
z,y)=
w(z,y) —
B 1
=7
v= ()
1 —ye™®
Yy

The next step is to determine what is called the canonical coordinates R, S. Where R
is the independent variable and S is the dependent variable. So we are looking for S(R)
function. This is done by using the standard characteristic equation by writing

w_ 4 _ s

& n

dr dy

T—?—dS (1)

The above comes from the requirements that <§ 24 n%) S(z,y) = 1. Which is a first
order PDE. This is solved for S, which gives (1) using the method of characteristic to
solve first order PDE which is standard method. Starting with the first pair of ODE
gives

dy

i
Integrating gives In |y| = = + ¢ or y = ce” where c is constant of integration. In this
method R is always c. Hence

T

R(z,y) = ye~
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S(z,y) is now found from the first equation in (1) and the last equation which gives

as =%

3

dzx
dS = — 1

dS =dzx
S=xz

Hence

R=ye™
S=x

Now that R(z,y),S(z,y) are found, the ODE 95 = Q(R) is setup. The ODE comes
out to be function of R only, so it is quadrature. This is the main idea of this method.

By solving for R we go back to z,y and solve for y(x). How to find 575%? There is an
equation to determine this given by

s @ tw@y) g
dR %+w(w,y)‘%
(ac y) Sy

Everything on the RHS is known. S, =1, R, = —ye™*, S, =0, R, = e””. Substituting
gives

dsS 1
IR _ye—w+ y e—:c

ye ¥ —1

e

But R = ye™™, hence the above becomes

dS R-1
dR~ R

This is just quadrature. Integrating gives

S = / —dR

lnR+01
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This solution is converted back to z,y. Since S = x, R = ye™”, the above becomes
r=ye *—In (ye_z) +c

Which is the solution to the original ODE.

Finding Lie symmetries for this example

The condition of symmetry is given above in equation (14) as

Nz + w(ny - gx) - wzé.y - wx§ — Wyl = 0 (14)

E=cx+cy+cs
N =c4x + C5Y + C

Hence &, = ¢1,€, = c2, My = ¢4,y = ¢5 and (14) becomes

UE + W(Uy - 590) - w2€y - wx& - wyn =0

cs +w(cs — ¢1) — w?ey — we(a1T + coy + ¢3) — wy(cax + sy +c6) =0

But w = %,wz = @:%)Q,wy = (—ef%y — ﬁ) and the above becomes
2 2\ 2 2,z 2
—y —Y ye 2y Y
Cat o y(cs —c)- (ex — y) 02_(6“" — y)2(01x + Coy + c3)— (—ex Y (e y)z) (cam + 5y + co)

Need to do this again. I should get c3 = 1,c5 = 1 and everything else zero.

E=1

n=y

zy/1+y+v/1+y+1+y
14z

1.10.8 Example ¢/ =

Solve

, /1t y+J/14+y+1+y
y: 1
+x

Y =w(z,y)

The symmetry condition results in the pde

Ne + w(ny - fz) - w2€y - wz€ — Wyl = 0 (1)
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Let Ansatz be

§=0
n=f(z)9(y)
Hence (1) becomes
df dg
9() 4y Twf(@) 5, —wf(2)gy) =0
But w, = j‘;(“lﬂﬁﬁr?“l”) = —% and w, = f/ﬁ?;j; Hence the above

becomes

v )df (x\/1+y+\/1+y+1+y> £ )@_ac—i-l-l—%/l-l—y
I 4 1+z Vdy T VIty(2+2)

The numerator of the normal form of the above is

2 X o T oty Tyt Lraf Doyro @ g Ty-ateTHy+2r % T y-font2r Duvasy’

dx dy dy dx dy dy d

(3)

We can now either collect on y or x and try. Let us start with collecting on all terms
with y. This gives

d dg dg
g1+ (zzd—f +2—f — 2f>+y\/1 +y g 2f \/1 +y(2f)+g(zf — f)+yd (2zf +2f)+ y( zf -
(3A)
The coefficients of all terms with g(y) or y in them are from the above are the following,
which each must be zero

(f(z)g(y)) =0
(2)

2f =0
zf—f=0
2zf+2f=0

a  df _

Now we set each to zero and see if this produces f(x) which can be used. We have
4 choices to try above. Starting from the most simple one. The first one above gives
2f =0 or f =0. But this is not function of x. We try the next one zf — f = 0. This
gives f = 0 or x = 1. Hence this does not give f as function of x. Next we try 2z f + 2f.
This also does not give f as function of x. The last one is Zx% + 2% —2f =0or
4 — 2f_ Qolving this gives f = ¢ (x 4+ 1). This is successful since f is function of z.

dx 2z+2
Hence

f(@) =c(z+1)
a

= Cl
dx

57



Now we need to determine g(y). Substituting the above into (3) gives

d d d
2¢19(y) /1 + yz+2/1 4+ yc; (x+1)£y+2cl (x+1)d—zxy+2clg\/ 14+ y—2¢c;(z+1)g/1 + y+2¢; (x+1)d—z\,

Which simplifies to

d d d d
avi+y yac+2cl —yx Yy—C19T +201£\/1 +yx+2+/1+ ycl y+201 d—zx +4c; %xy 201$g+201£

(4)

Now factoring on all terms with x, and these are {z, z?} gives

—c1? (—23—531 +g-— 233,) —clx( m/ﬁ e 2@2—5 — 23—531 +g-— 23—5) +T =0
(4A)

Where T are terms that depends on y only. Each factor of z,z? must be zero. Hence

the first above implies

dg dg
92 —97 —
dyy+g dy 0

/ g
g(y)=m

Solving gives
g=c/1+y (5)
Substituting (5) into (4) gives
Cl(]. + CL’) 02(1 + y) =0

Which is not zero. Hence this term does not work. Now we try the second term in (4A)
which means

dg dg dg dg
214+ yZy—2/1+y-=2 —22 —2-2 =0
v/ +ydyy V/ +ydy dyy+g o
dy —2/1+yy—2y/1+y—2y—2

Solving gives

Vi+y
9(y) =co————
1++/14y

Again, substituting the above back in (4) gives

1+y)z

cl(1+x)02(1+m)2 =
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Which is not zero. Therefore starting with f(z) = ¢;(z + 1) has failed to produce a
valid g(y) to satisfy the pde. This means we need to start all over again. Going back
to (3) and now collecting on all terms with x instead. Here is (3) again

d, d d d, d d d
2%9\/1 Fyz+2y/1+ yf£+2fd—zxy+2£g\/1 Fy—2fg\/1+ y+2fi\/1 ¥ y—fg:c+2fd—zx+2fya
3)
Collecting on all terms that depend on z gives
df dg dg dg  ,dg dg d
— 291 2y+/1 — —2g+/1 2—/1 20— +2— — 2—y — 2-
wdx< 9V +y)+f( yvityy —29vity+ 2, ity +2, —9 +zf ¥ "It
(3B)
Each term must be zero, hence this gives these trials

29y/1+y=

dg dg
2 2 0
dyy g+ dyy

d d
2y«/1+yd—z—2g\/1+ +2—~/1+ +2y —+2d—Z—g=O

Starting with the first one above 2g4/1 + y = 0 which gives g = 0 which does not match
the ansatz. Now we try the second one above, which gives

dg _ 9
dy 242y
Solving gives
g=c/1+y (6)

Which meets the requirements of the ansatz. Now we need to use the above to generate
f(z). We do not need to try the third one above unless this fails. Substituting (6) into
(3) gives

daf df daf df _
cz<2d :vy+2d z+2dy fy +2d =0
df df df f
2d zy+2d x+2d fy +2 —f=0 (7)
Collecting on y gives
cl(l+y)(2j—fx+23—f— >=0

Hence 2%3: + 2% — f must be zero. This gives as solution

fz)=cVi+z
df 1

—_— = Cy———
dx 22\/1—+—CL’
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Substituting the above into (7) to verify gives

1 1 1 1
2l cp——— 2y + 2| co————x= ) 2+ 2| cg——— —<cx/1+x) +2(c —)
(22\/1+x> y (22\/1+x> (22\/1+x)y 2 Y 2o/t z
c L Ty + ¢ 1 T+c 1 coV1+zy+c !
2 Ttz Y 2 Ttz 2 ,—1+x?/ 2 Y 2 Ttz
1 1 1 1
c Ty + T+ —V1+2y+
2( 14z Y Vi+zx \/1+my v 14z

Verified, Hence we have found f(z), g(y). Therefore

£=0
n=f(z)g(y)
=vV1+z\/1+y

Where we set ¢c; = ¢, = 1. The integrating factor is therefore
1

n—&w
1
vVi+zy/1+y
The next step is to determine the canonical coordinates R, S. Where R is the inde-

pendent variable and S is the dependent variable. This is done by using the standard
characteristic equation by writing

w(@,y) =

de _dy _
§ n

For the special case £ =0 we have R = z. S(z,y) is now found from the last two pair
of equations which gives

as

is =%
n
s = dy
vi+z/1+y
g_9 14y
1+x

Hence (constant of integration is set to zero)

R=zx (2)
1+y

S=21"=
1+2x
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Now that R(z,y),S(z,y) are found, the ODE 95 = Q(R) is setup. The ODE comes
out to be function of R only, so it is quadrature. This is the main idea of this method.
By solving for R we go back to z,y and solve for y(x). How to find 575%? There is an

equation to determine this given by

s & tw@y) g
IR () 2
St w(z,y) S,
R, +w(z,y) Ry,
Everything on the RHS is known. S, = —a—vj;’)y%, R, =15, = m, R, = 0.
Substituting into the above gives
ds 1 1
B VI |y
dR (1+z)2 Vvi+2xy/1+y
:_\ﬂﬂﬂ/+($¢1+y+dl+y+l+y) 1
(l—l—x)% 1+z Vv1i+z/14+y
1
IRVZES
1
 VRF1
Hence
as 1
dR  VR+1
This is quadrature. Solving gives
S = 2\/ R +1+ C1

Convecting back to z,y gives

il
oYtV _ortita

Vi+zx
1.10.9 Example y' = ;=15
Solve
r —Y
Y=o - yey
y/ = UJ(IL’, y)
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The symmetry condition results in the pde

Ny + w(ny - €z) - w2€y - wz§ — Wy = 0 (1)
Let anstaz be
£=9(y)
n=0

Substituting this into (1) gives

dg
2
—w?Z —.g=0
w dy Wz g
But w? = ﬁ,wx = % <2z:zey> = (2x—256y)2' The above becomes
(22 — yey)2 dy (2z — yey)2
dg
—y2@ —2yg =0
dg 2
2% =0
dy - y”
This is linear ode. The solution is c
1
g=—
Y2
Hence
1
€=
Y2
n=20

But taking ¢; = 1. The integrating factor is therefore
1

n—&w
1

L1 (_=v_
y?2 \ 2z—ye¥

= y(2z — ye')

w(z,y) =

The next step is to determine the canonical coordinates R,S. Where R is the inde-
pendent variable and S is the dependent variable. This is done by using the standard
characteristic equation by writing
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Since n = 0, then in this special case R = ¢; = y. To find S we use dS = d?w or
dS = y?’dz. Hence S = cz + c; = 2z by taking c; = 0. Therefore S = y%z since
Ci =Y.
R=y (2)
S =y’x
Now that R(z,y),S(z,y) are found, the ODE % = Q(R) is setup. The ODE comes
out to be function of R only, so it is quadrature. This is the main idea of this method.

By solving for R we go back to z,y and solve for y(z). How to find g%? There is an
equation to determine this given by

s & tw@y) g
dR %—l—w(m,y)‘%
_ Setw(z,y) S,
" R, +w(z,y) R,

Everything on the RHS is known. S, = y?, R, =0, S, = 2yz, R, = 1. Substituting into
the above gives

s _ v’ +w(z,y) 2yx
dR~ w(z,y)

v+ (5t ) 20

-y
2x—yeY

= y2ey

Now we need to express the RHS in terms of R, S. From (2) we see that y = R, hence

the above becomes
dsS

hatagi R2 R
drR~ " °
This is quadrature. Solving gives
S=(R*-2R+2)e+ ¢
Convecting back to z,y gives

vir = (y2—2y+2)ey+cl
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1.10.10 Example 3y = =22

242y
Solve
/-2
Yy =w(z,y)

The symmetry condition results in the pde

Nz + w(ny - €z) - w2€y —wz§ — Wyt = 0 (1)
Let anstaz be
£E=0
n=f(z)9(y)

Substituting this into (1) gives

daf dg
99z +wf@ —wyfg=0
But w = 5732w, = & (;12122?;”) = (;2;2;;)2. The above becomes
df —1-—2yz\ ,dg 2 — 223
g + ( 2 ) A 2 fg = 0
dx %+ 2y dy (z2 + 2y)

The numerator of the normal form is

df 2 dg B
ga(ac2 +2y)" + (z? + 2y) (-1 — 2yx)fd—y —(2—22%) fg=0

g%(m“ +4ay +4y°) + (—20°y — 2* — day’ — 2) f% - (2-27) fg=0 (2)

To solve this for f(x),g(y) we start by collecting on either = or y. Let us start by
collecting on y. This gives

{4%} (9v°)+ [4%#] (yg)+ [%x‘* — (—22° +2) f} g+[(—22% — 4z - 2) f] (Z—z) —[z*f] ay 0

3)
The other option was to collect on x terms. This would give
d d d d d d ‘
2%+ 2g) @)= [21) (52 ~laor) (v )+ | -2 52 - 28] (11410 (2L ) +lue] (430 )+
(4)
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We start from (3), and if this yields no solutions for f(z), g(y) then we come back and
try (4). In either form, the terms inside the [-] must all be zero to satisfy the ode. From
(3) this gives

df
42 —
dz 0
df ,
42 12 =
dxx 0
df 4 3
—z*— (=2 2) f =
e (—22°+2) f=0

(—2x3—4x—2)f:0
’f=0

If one of these results in f(x) which is function of z. Then we try it to solve for g(y).
If the solutions end up verifying the pde, then we are done. From the above, we start
with the first one. This gives f = ¢;. Which is not function of z. The second give same
result. The this option which is Lz — (—22° 4 2) f = 0 gives

_ 2
e 3z3

f(l’) =G 72

Which is function of z. We now use this to find g(y). It turns out this does not work.
The whole anstaz will fail. So need to try different anstaz.

1.10.11 Example ¢/ = 3,/yz

Solve

Yy =3\yz

Yy =w(z,y)
The symmetry condition results in the pde
e +w(ny — &) — W€y —we€ —wyn =0 (1)
Trying polynomial anstaz

E=ap+ a1z
n = by + b1y

And substituting these into (1) and simplifying gives

(—9a1 + 3b) yr — 3zby — 3yag =0
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Setting all coefficients to zero gives

—9a1+3b1:0
b0=0
CLO:O

Hence a; = 3b;. Letting b; = 1 then a; = 3 and the infinitesimals are

1
13 533
n=y

The integrating factor is therefore

1
n—&w
_ 1

y — 37 (3,/yz)
__Yytzymy

- Yy —y?

wz,y) =

The next step is to determine the canonical coordinates R, S. This is done by using the
standard characteristic equation by writing

o _ W _ g
& n
The first pair of equations gives
dy _n_3y
dr ¢ =«
Solving gives
y=cz®
Hence y
R = C1 = E (2)
And S is found from p p
is =2 =3%
¢ x
Integrating gives
S=3lnz+¢
=3Ilnz

66



By choosing ¢; = 0. Now that R(z,y),S(z,y) are found, the ODE % = F(R) is
determined. This is determined from

But S, = g—?;, R, =-3%,5,=0,R, = z—13 Substituting these into the above gives

ds 3
dR~ 3% +w(z,y) &
B 323
T =3y + 2w (z,y)
But w(z,y) = 3,/yz. The above becomes
ds 3z?
dR ~ —3y+3z./yz
23
= oTm =y
-1
T VE-E @

But R = % and the above becomes
ﬁ -1
dR  R-+R

Which is a quadrature. Solving gives

[ 5= | 5= 7tn

S =—2In (\/_ 1) Yo

Converting back to x,y gives

3lnx=—2ln( %—1) +c

T
2
lnx3+ln< %—1) =q

lf2)-
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yi(z) = 22(2° + z/301) —2° + 1
yo(z) = —2z(—2* + z/701) — 2° + &1
1.10.12 Example ¢/ = 4(ym)%
Solve
1
y =4(yz)®
Yy =w(z,y)
The symmetry condition results in the pde
Nz + W(ﬂy - 5:1:) - w2€y - wzf - Wy"? =0
Trying polynomial anstaz

§=ao+mx

n="bo+ by
And substituting these into (1) and simplifying gives
(—16a; + 8b1) yx — 4xby — 4yag =0

Setting all coefficients to zero gives

—16a1 +8b1 =0
bp =0
a0=0

Hence a; = 1b;. Letting b; = 1 then a; = ; and the infinitesimals are

The integrating factor is therefore

1
pu(z,y) = —
_ 1
Ve (401
_ 1
y — 22 (zy)’
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The next step is to determine the canonical coordinates R, S. This is done by using the
standard characteristic equation by writing

d d
Z_Y_gs
&
The first pair of equations gives
dy _m_2%
dec ¢ =«
Solving gives
y =2’
Hence y
R = Cc1 = a? (2)
And S is found from p p
ds == =9
& x
Integrating gives
S=2Inz+¢
=2lnx

By choosing ¢; = 0. Now the ODE £ = F(R) is found from
s ey g
dR 9 4y (z,y) ‘éi;
St w(z,y) S,
R, +w(z,y) R,

But S, = 2,R, = —2%,5, = 0,R, = %. Substituting these into the above and
simplifying gives

B 1
- Zy%:p_% — ;’—2
B 1
2(%)F - %
B 1
2(R)* — R

69



Hence
ds 1

dR 2R} R
Which is a quadrature. Solving gives

/dSz/—ll dR
2R3 — R
3 2
S=—§ln<—2+R§> + ¢

Converting back to z,y gives

2Inz = —gln (—2+ <%>§) +¢

The above can be simplified more if needed to solve for y(z) explicitly.

1.10.13 Example ¢ = 2y + 3e**

Solve

y =2y + 3e**
y =w(z,y)

From the lookup table, since this is linear ode y' = f(z)y + g(z) then

£E=0

n:effdm
=ef2dx
:62m'

If we were to use the integrating factor method, then

1
n—&w
1
ZeE
2x

w(z,y) =

:e_
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Then the general solution is
[ ) (dy = o) =
/6_2”’ (dy — (2y + 3e2z) dx) =0
/e_hdy — (2ye‘2x + 3) dr = ¢,

/e_hdy — 2ye %dx = /Bdm +c

/d(e‘zmy) = /3dw+cl

e ®y=3c+c
y=e*(3x+cp)

Hence

But if we were to use the basic Lie symmetry method, then the next step is to deter-
mine the canonical coordinates R,.S. This is done by using the standard characteristic
equation by writing

dr d

Z_Y_gs

&

Since & = 0 then this is the special case where R = x. And S is found from
d
ds = ¥ _ e 22dy
n

Integrating gives

S = e_%y +c

— e—2zy

ds _ &+
dR ‘%+w
w
w

But S, = —2¢ **y, R, = 1,5, = e"**, R, = 0. Substituting these into the above and
simplifying gives
ds

9,2 2z\ _—2x
5 2¢ "y + (2y + 3e¢™) e

=2y 4+2ye * +3
=3
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Which is a quadrature. Solving gives

/dS=/3dR
S

=3R + C1
Converting back to z,y gives

ey =31 +¢;
y=(3z+4c))e*

Of course, this ode is first order linear and can be solved much easier using integrating
factor method. But this is just to illustrate the Lie symmetry method.

2z +z 3—"E2

_1
1.10.14 Example y' = 3=+~

Solve

y:1%+f—ﬁ

3 x
Yy =w(z,y)
Using Maple the infinitesimals are
3
<= 213
)
n=-=
T3

(Will need to show how to obtain these). Lets solve this using the integration factor
method first. The integrating factor is given by
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Then the general solution is

/ w(z,y) (dy — wdz) = c1

4
T3 12y +y>— 22
/2x2—y3 dy — (5# dr | =c;

4 1
Hence we need to find F(z,y) s.t. dF = <2ﬁdy— <§ z3
which will make the solution F' = c¢. Therefore

or OoF
dF = ——dx + ——d
ox T oy y
o 2 3 3 9
= 2—362 _y3dy— <§—x2 —y3> (2y+9y° —2%) dz

Hence
OF _gx%(2y + 93 —2?)
oxr 3 x?2 — g3
oF _ 9 s
oy “x2—q3

(1)

Integrating (1) gives

Where ¢(y) acts as the integration constant but F' depends on z,y it becomes an
arbitrary function. Taking derivative of the above w.r.t. y gives

A =25+ (4)
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Equating (4,2) gives

ol
ol

xr Xz
2:32 — B = 21.2 — 3 +9'()
0=2g9'(y)
9(y) =a

Hence (3) becomes

F=1x%—|—lln M —;ln (xg—y)—l—cl

2 1
2 3 (x%—l—x%y—l—f)—g\/garctan 3

Therefore the solution is
F=c¢

2
1 1 /4 2 N 2 1(2173+?J)\/§ 2. /s
—z3+ -In (mB +x3y+y>——\/§arctan = ——ln(x3—y>=02
2 3 3 3 Y 3

Where constants c;,c were combined into c,. Now this ode will be solved using direct
symmetry by converting to canonical coordinates. This is done by using the standard

characteristic equation by writing

d d
2% _gs
& n
d d
G =5 =ds
-1 7
2x3 3
First pair of ode’s give
y
ay _ .3 _ 2
dr -2 327
2x3
Hence
y = C]_xg
Therefore
R = ym_%
And
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Integrating gives

2 1
S= [ Zzsd
/311,' 4
1 s
=T Cc
2 1
Lot
=_I
2

By choosing ¢; = 0. Now the ODE 22 = F(R) is found from
s @ tw@y) g
dR 9B 4y (z,y) ‘%
_ Setw(z,y) S,
R, +w(z,y)R

But S, = %x%, R, = —%yaz‘g, S, =0, R, = z~5. Substituting these into the above and
simplifying gives

dsS B %x%
AR —2yz=5 +w(z,y)z s
9 1
_ 3%?
- T2 — y3

But R = y:v_g ory = Rz3. The above becomes

as _ , @

dR 12— R3x2
_ -2
 1—R3

Which is a quadrature. Solving gives

[as= [ 2 an

S=—§ln(R2+x+1)—;x/garctan<3(1+2R)\/_) In(R—1)+¢

Converting back to z,y gives

ot =gt ( (1) +o+1) = 2vBarctan (3 (14 2(33)) vB) + 31 (1) - 1)

T3 = —%ln <y2x_§ +x+ 1> — gx/garctan (%(1 + 2ya:_§> \/5) + gln (yx‘g — 1) +c
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1.10.15 Example v =3 — 2%

This is homogeneous ODE of Class A of form ¢/ = F (%), hence from the lookup table
=z
n=y

The first step is to verify that T = ex,y = ey leaves the ode invariant.

4 _0+hy & _

dz  T,+IT,y e
Hence the ode becomes
dy (]
279 _g3_97
dz x
y =3 — 9%
€T
=3-2Y
T

Verified. Now the ode is solved. The tangent curves are computed directly from the Lie
group symmetry given above

oz
5 - E e=0 —F
9y
= a e=0 B
The canonical coordinates (R, S) are now found. Using
o _W_ s
£ 0
d d
@ _ %Y _ s (1)
z )
The first pair gives
dy _y
dr =z
Iny=Inx+ ¢,
Yy =cx
Hence
R=c
_Y
T
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Now we find S from the last pair of equations

W _ 45
)
S=lny

What is left is to find dS . This is given by
ds

Jg =GB
To find G(R), we use dS = Sydz+S,dy = idy and dR = R,dz+ Rydy = — % dz + Ldy.
Hence
s _ W
dR —%dz + Ldy
dy
— dx
dy
— dx
d
—-R*+ R%!
But %=3—2§=3—2R, hence
as 3—2R
dR  —R2+ R(3-2R)
_ 3-2R
" 3(R- R?)

Which is a quadrature. In Lie method, for first order ode, we always obtain jﬁ

Integrating the above gives

3—-2R
/dS [ 50n = RR2

lnR—gln(R—l)—I—cl

7

G(R).



Final step is to replace R, S back with x,y which gives

1ny=ln%—%ln<%—1>+cl

—3+2
1.10.16 Example y' = — ;

This is homogeneous ODE of Class A of form ¢y’ = F ( %), hence from the lookup table

Canonical coordinates (R, S) are found similar to the above which gives

r="Y
x
S=Iny

What is left is to find g%. This is given by

as

4 = G8)
Which is the same as above
ds &y
alad dz
dR  —R?+ R%
But in this problem, the only difference is that % = :i’f% = :‘Z’fg, hence
s _ R
dR ~ —R2+ R (=3£E)
_1_R-3
" RR*+2R-3

78



Which is a quadrature. In Lie method, for first order ode, we always obtain 95 = G(R).

Integrating the above gives

Jo- i)

1
Final step is to replace R, S back with x,y which gives

lnyzln(%) —%111(%4—3)—%111(%—1)—!—01

This can be solved for y if an explicit solution is needed.

1.10.17 Example ¢/ = 1+3( N

This is homogeneous ODE of Class A of form ¢/ = F (), hence from the lookup table

==z

n=vy

The canonical ode is p
ds -

dR  —R?+R%
The above is the same ode in canonical coordinates for any ode of the form y' = F(%)

We just need to express 3 as function of R. In this case the above becomes

as MR
2
iR R+ R ()
_3R*+1
" R34+R

Integrating gives
S=In(R(R*+1)) +a
Final step is to replace R, S back with z,y which gives

Iny = In (g((%f + 1)) teo
o)
=2(( )

2

Y
—2=03z—1
T

y? = caa® — 22
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Hence

y =+ c323 — z?

= +zxvc3x — 1

Finding &, 7 from symmetry condition for the above ode This shows how to find &, 7

directly also. The condition of symmetry is given above in equation (14) as
Nz + w(ny - €z) - w2€y —wz€ — wyn =0
Try Ansatz

E=cy+ oz

N =Cy+ C3y
And given

122 + 3y?
w=-——
2 zy
2_1(3”24‘3?/2)2
4z
_ 1a? -3y
2 ya?
13 2 _ 2
y = 139" =
2 zy

Wy

Hence (14) becomes

122 + 3y? 122 —3y%, 13y%>—22

SN A & =0
Tt g Ty Lo yx2 2 xy? K
Therefore the above becomes

122 + 3y? 12% — 3y? 13y? — 22

S o il . =0

2 1y c3~ 5 2 (co + c1z) 2 o (c2 + c3y)

Using the computer the above simplifies to

x(c c)+1cm ! 1c —1§c+§c£—0
gl et gy = (%) = ;3% 03~
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Hence

cg—c1 =0

%cz=0
Lo
—gcz=0

Solving gives ¢g = 0,co = 0 and c3 = ¢;. Hence the solution is
E=cx
n=cy
Let ¢; = 1, therefore c3 = 1 and we obtain
E=z
n=y

Which is the result we used in solving the above problem. Notice that any scaler will
also work. Hence

& =5z
Y
And
¢ =10z
n =10y
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Now we just need to find canonical coordinates (R, S) since &, 7 are known. Using

d d
2 _%_4s
£ n
dr dy
— =—==dS 1
2z (1)
The first pair gives
dy _y
dr =
Iny=Inx+ ¢,
y=cx
Hence
R=c
_Y
x

Now we find S from the last pair of equations (we could also use the first and last
equations in (1)).

W _ s
Y

1
S=—Iny
z
What is left is to find g%. This is given by
ds
Jg =GB
S+ Sy
~ R.+ Ry
To find G(R), we use S, = ;—glny, Sy = m—ly and R, = -5, R, = 9_16 Hence
s Fhy+ v
dR =~ L +1ly
—Iny -2y
y+ay
—Iny — zv/
y+ay
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But y' = £ + 1F(%) = R+ 1F(R). The above becomes

as _ —lny—%z(RjL%F(R))
dR~  y+az(R+1F(R))

_ —lny-— — L F(R)
y+zR+ F(R)
—Iny—1- 5 F(R)

y+z2+ F(R)
1
—lny—1-_F(R)
2y+ F (R)

Something is wrong. j% should only be a function of R. Need to find out why. Let me
try the other pair of equations from (1) to solve for S and see what happens.

dx:dS

§=—1

T

x2

What is left is to find g%. This is given by

dsS
R = G(R)
S+ Sy

R, +Ry
To find G(R), we use S, = 2,5, =0and R, = —%, R, = 1. Hence

-y +zy
But y' = £ + 1F(%) = R+ 1F(R). The above becomes
as 1
dR —y+z(R+1F(R)
1
—y+ 2R+ F(R)
1
~ —y+z¢+F(R)
1
- F(R)
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This worked. But why the first choice did not work? OK, let me continue now. Inte-

grating the above gives
1
S=[| =—=dR
| Fmen+e

But S = —2%, hence

Yy
T

1 1
—5—/ F(T)dr—l-c

=1 1
0—/ md?’"i‘C'i‘;

This example shows that when solving for S from

@ _ W _ g

2 xy

There are two choice. One is dS = Z_Z and the other dS = i—’ﬁ. Using the first choice did
not work here (unless I made a mistake, but do not see it)., Only the second choice
worked because we must end up with 3—1‘5; = G(R) where RHS is function of R only. I

need to look more into this. In theory, any choice should have worked.

8k

1.10.19 Example ' = ¥ + %e‘
This is homogeneous class D ' = ¥ + g(z) F(¥). Hence from lookup table
£ =a?

n=xy

From above we found the solution to be

1

In this case F(R) = e %. Hence

S = / e®dR +c
S=eff+c
Now we just need to find canonical coordinates (R, S) since £, 7 are known. From above

r=1Y
X

§=-1

T
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Hence the solution becomes

Yy
—=e€e=s +c
x

y 1
€z = Cy — —
T

Y 1
Z=1In Cy — —
x x
1
y=zln|cy——
x

The nice thing about this method is that once we solve for one pattern of an ode, then
the same solution in canonical coordinates is used, the only change need is to plug-in
in the RHS of the original ode in the solution and integrate.

22
1.10.20 Example ¢y = L_Zz—-_’-xQ

1+ y? —2?
= w(z,y)

Using anstaz’s it is found that

Hence

= = dS 1)

The first two give

dy _nm_y-z_
de. & x—vy
Hence
y=—-x+c (2)
Therefore
chl
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To find S, since both &, depend on both z,y, then d—;’ =dS or % = dS can be used.

Lets try both to show same answer results.

W _ 45

n

is— W
y—z

But from (2), £ = ¢; — y. The above becomes

iS—__ W
y—(a—y)
__dy
Y —oc

Hence 1
S = 51n(2y—cl)

But ¢; = y + z. So the above becomes

S=lln(2y—(y—|—x))

2

=%m@—x)
Let us now try the other ode
dz
— =dS
£
S — dz
T—y

But from (2) y = —z + ¢;. The above becomes

iS—__ G
z—(—x+c)
_dr
2% —q

Therefore 1
S = §ln(2x—cl)

But ¢; = y + z. Therefore

S=%ln(2x—(y+x))

1

=5n(z—y)
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The constant of integration is set to zero when finding S. What is left is to find g%.

This is given by
as Sy +Sw

dR~ R, + Ryw (5)
But, and using (4) for S we have

S &
ol

3
I

Hence (2) becomes

——z—y
=—(z+y)
=—-R
Hence
as
iR —R
R2
S==%
Converting back to z,y gives
2
In (y — z) = _(y+2)

87



1.10.21 Example y' = —1ze 2 + %L\/(e—?y)2 12 + 4e=%

1 1
R SR PR —2\2 _
y = —ze y+4\/(e W) 22 + 4e~%
= w(z,y)
Using anstaz’s it is found that
E=x
=1
Hence
e _dy_ e
& n
d
& —dy=ds 1)
The first two give
dy _ 1
dr =«
Hence
y=Inz+ ¢
Therefore
R = C1
=y—Inz
And S is found from either % =dS or d?“” = dS. Since n = 1, it is simpler to use
d—;’ = dS instead.
d
% —ds
n
dy =dS
S=y

Where constant of integration is set to zero. What is left is to find dd—i. This is given by

dS Sz + Syw

@5 _ Dot oyw 2
dR ~ R, + Ryw @)
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But

1
R, =—-—
x
R, =
Sz =0
Sy =
Hence (2) becomes
as —  w 1
dR —-l4+w -1 41
1

z (— %ze—%—i-% \/ (e—29)2w2+4e—2y)

But y = R+ Inx. The above becomes

as 1
dR 1-— L

z (_%we—2(R+1n @)41 \/(e—Q(R-Hn z))2w2+4e—2R+lnw)

1
=1 -
z (_i ze;#_ki 1, /e—4R+4e—2R>
1
1

1
 (~le R+l Ve iR rac )

Integrating gives

14+4e2R 2R 1
\/ e~* arctanh
g etht < V1+4e2R )

Vitie®

Converting back to z,y gives

2(y—In
\V ' 644_‘(39—(fllnm)w) e2w=1n2) arctanh (—1 )
y

V1 + 4e2-Tnz)

_ y—zf(x2+ay2)
1.10.22 Example y' = -5

,_ y—of(@+ay)
z + ayf (22 + ay?)
= w(z,y)

Y
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Using anstaz’s it is found that

§=—ay
=z
Hence
o _ 4 _ g
§ n
o _dy g n
—ay
The first two give
Gy _ =
dr —ay

This is separable. Solving gives (taking one root)

a(ac; — x?)

y =
a
Solving for ¢; gives
z? + ay?
g =—
a
Hence ) )
x‘+a
p= ¥ tay
a

S is found from either ‘Z—y =dS or ‘2—”” = dS. Using % = dS then

dz

=dS

But y = —”1('";1_3”2) Hence

dx
—a va(aci—z2)
a
dx

—v/a(ac; — x2)

1 ( Jaz )
——arctan | ———
Va Jad® — 2%

—i arctan @
Va ay

=dS

=dS

S

S
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Where constant of integration is set to zero. What is left is to find %. This is given by

dS _ Sp + Syw @)
dR R, + Rw
But
p 2
a
R, =2y
_ Y
% = 2y’ +a
Sy=——"

Hence (2) becomes

P — z
ds v T ( a<1+{y§)> w
dR %”” + 2yw

But R = 2tay’ The ahove becomes

i~ (o)
dR %””-l—Zyw

To finish. Another hard part of this Lie method is to convert back j—f% = ;zi%;“; SO

that the RHS is only a function of R. Need to find a robust way to do this. This is now
a weak point in my program as I have few ode’s that it can’t do it

1.11 Alternative form for the similarity condition PDE

This section shows how to obtain eq. (8) in paper "Computer Algebra Solving of First
Order ODEs Using Symmetry Methods" 1996 by Durate, Terrab, Mota. Which is an
alternative equation to solve instead of the main Lie condition for symmetry we were
looking at above.

Starting with the main linearized symmetry pde

Nz + W(ny - é..’ll) - w2£y —we€ — wyn =0 (14)

Assuming anstaz
n=¢w+Xx (A)
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Hence
My = §w + &wy + Xy
Then (14) becomes
(Eaw + Ews + Xa) + W((Ew + Ewy + Xy) — &) — W&y — wof —wy(w+x) =0
Eacw +&wy + Xz + 51/‘”2 + gwyw + Xyw — fo - w2£y - wx£ - &Uwy —WyX = 0
Ew+ X + éywz + Ewyw + Xyw — W&y — w2§y — fwwy —wyx =0

Xz + &w? + Ewyw + xyw — w?E, — Ewwy —wyx =0
Xz + Ewyw + xyw — Ewwy — wyx =0
Or
Xz + Xyw —wyx =0 (1)

And hence (1) is now solved for x(z,y). If we are able to find x then we can use the
anstaz n = £w + x. This leaves only one unknown £. The paper does not explain how
to solve for this, &, which I assume is by using (14) again. The paper only said

The knowledge of x, in turn, allows one to set £ and 7 as desired using (A)

Which is not too clear how in practice this is done. I need to work an example showing
this. The paper says that (1) is solved for x(z,y) by using bivariate polynomial anstaz.
The degree can be set by a user, or Maple internally determines this.

2 Second order ODE

2.1 Linearized PDE of the similarity condition

Obtaining the linearized PDE of the similarity condition for second order ode, which
is used to solve for &,n follows similar method as given earlier for the first order ode.
The difference is that instead of ¥’ = w(zx,y) the ode now y" = w(z,y,y’).

d*y dy
de? w <$a Y %)
Y’ = w(z,y,Y) (A)

The linearized similarity condition for second order ode when w = 0 is

Nex + (277my — &)y + (77yy — 264y) (?/)2 - €yy(y,)3 =0
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Which is polynomial in ¢’ hence all the coefficients must be zero giving

2Mpy — &aw =0
Nyy — 262y =0
€yy =0
Nee =0

And for general w(z,y,y’), the linearized similarity condition is

—nuwy+(—3y'&, — 26, +1y) w—ﬁwx+(—y’ny + )& +yE - m) Wy HNae—Eyy (V) +(0yy — 2640) (¥)+

To continue

3 Analysis of Maple’s symgen methods for finding
symmetries

This section gives an overview of Maple’s methods of solving for Lie symmetries. There
are 16 total algorithms.

4 Notes, things to find out

1. Given an ODE y/(z) = w(z, y) then we want to find nontrivial Lie symmetry. The
condition for this is that

n(z,y) # &(z,y) w(z,y)

so any values for n, £ must satisfies the above.

2. Can we always find £, n for non-trivial symmetry for first order ODE? When
I tried some in Maple, it could not find symmetries for some first order ODE’s.
How does one check if nontrivial symmetry exist before trying to find one? For
example y' + y> + zy? = 0 which is Abel ode type, Maple found no symmetry
using all methods.

93



© N o o

10.

References

Symmetry Methods for Differential Equations. By PETER E. HYDON. CAM-
BRIDGE UNIVERSITY PRESS. 2000.

Symmetry and integration methods for differential equations. By Bluman and
Anco. Springer publishing.

Introduction to symmetry analysis. By Brian J. Cantwell. See page 158 for table
of known &, n per first ode type.

Using Lie Symmetry to solve first and second order Linear Differential Equation.
Int. J. Adv. Appl. Math. andMech. 7(4) (2020) 91 — 99 (ISSN: 2347-2529).

Sym Mathematica software package. By Stilianos Dimas and Dimitris Tsoubelis.
SymmetryAnalysis Mathematica package. By Brian J. Cantwell.
Maple symgen and related commands in the ODEtools package.

Computer Algebra Solving of First Order ODEs Using Symmetry Methods. 1996
by Durate, Terrab, Mota. IF-UERJ-27/96

The Truth About Lie Symmetries: Solving Differential Equations With Symmetry
Methods by Ruth A. Steinhour, 2013.

Many other references, listed in my links page under computer algebra section.

94



	Lie symmetry method for solving first order ODE
	Terminology used and high level introduction
	Introduction
	Outline of the steps in solving a differential equation using Lie symmetry method
	Finding ( x,y) ,( x,y)  knowing the first order ode type. Table lookup method.
	Finding ( x,y) ,( x,y)  from linearized symmetry condition
	Moving to canonical coordinates R,S
	Definitions and various notes
	Closer look at orbits and tangent vectors
	Selection of ansatz to try
	Examples
	Example 1 on how to find Lie group ( x,y)  given Lie infinitesimal ,
	Example how to find Lie group ( x,y)  given canonical coordinates R,S
	Example y=yx+x
	Example y=xy2-2yx-1x3
	Example y=y+1x+y2x3
	Example y=y-4xy2-16x3y3+4x2y+x
	Example y=-y2ex-y
	Example y=x1+y+1+y+1+y1+x
	Example y=-y2x-yey
	Example y=-1-2yxx2+2y
	Example y=3yx
	Example y=4( yx) 13
	Example y=2y+3e2x
	Example y=132y+y3-x2x
	Example y=3-2yx
	Example y=-3+yx-1-yx
	Example y=1+3( yx) 22yx
	Example y=yx+1xF( yx) 
	Example y=yx+1xe-yx
	Example y=1-y2+x21+y2-x2
	Example y=-14xe-2y+14( e-2y) 2x2+4e-2y
	Example y=y-xf( x2+ay2) x+ayf( x2+ay2) 

	Alternative form for the similarity condition PDE

	Second order ODE
	Linearized PDE of the similarity condition

	Analysis of Maple's symgen methods for finding symmetries
	Notes, things to find out
	References

