1 Detailed lookup table and classification for each ODE

The following table 1 gives the classification of each ODE from Maple ODE advisor with a link to each ODE page as well. Clicking on the problem opens a new page that shows the result.

Table 1:ODE classification and performance for each differential equation
#

result

ODE 1

y(x) = af(x)

[_quadrature]

Solution method Separable ODE, Dependent variable missing

Maple
Mathematica

ODE 2

y(x) = y(x) + x + sin(x)

[[_linear, ‘class A‘]]

Solution method Linear ODE

Maple
Mathematica

ODE 3

y(x) = x2 + 2y(x) + 3cosh(x)

[[_linear, ‘class A‘]]

Solution method Linear ODE

Maple
Mathematica

ODE 4

y(x) = a + bx + cy(x)

[[_linear, ‘class A‘]]

Solution method Linear ODE

Maple
Mathematica

ODE 5

y(x) = acos(bx + c) + ky(x)

[[_linear, ‘class A‘]]

Solution method Linear ODE

Maple
Mathematica

ODE 6

y(x) = asin(bx + c) + ky(x)

[[_linear, ‘class A‘]]

Solution method Linear ODE

Maple
Mathematica

ODE 7

y(x) = a + bekx + cy(x)

[[_linear, ‘class A‘]]

Solution method Linear ODE

Maple
Mathematica

ODE 8

y(x) = x( 2      )
 x − y (x )

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 9

y(x) = x(            )
 ay(x) + e−x2

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 10

y(x) = x2(          )
 ax3 + by(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 11

y(x) = axny(x)

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 12

y(x) = y(x)cos(x) + sin(x)cos(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 13

y(x) = y(x)cos(x) + esin(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 14

y(x) = y(x)cot(x)

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 15

y(x) = 1 y(x)cot(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 16

y(x) = xcsc(x) y(x)cot(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 17

y(x) = y(x)(cot(x) + 2csc(2x))

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 18

y(x) = sec(x) y(x)cot(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 19

y(x) = y(x)cot(x) + ex sin(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 20

y(x) + 2y(x)cot(x) + csc(x) = 0

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 21

y(x) = 4xcsc(x)sec2(x) 2y(x)cot(2x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 22

y(x) = 2

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 23

y(x) = 4xcsc(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 24

y(x) = 4xcsc(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 25

y(x) = y(x)sec(x)

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 26

y(x) + tan(x) = (1 y(x))sec(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 27

y(x) = y(x)tan(x)

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 28

y(x) = y(x)tan(x) + cos(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 29

y(x) = cos(x) y(x)tan(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 30

y(x) = sec(x) y(x)tan(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 31

y(x) = y(x)tan(x) + sin(2x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 32

y(x) = sin(2x) y(x)tan(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 33

y(x) = 2y(x)tan(x) + sin(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 34

y(x) = 2(y(x)tan(2x) + sec(2x) + 1)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 35

y(x) = 3y(x)tan(x) + csc(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 36

y(x) = y(x)(a + sin(log(x)) + cos(log(x)))

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 37

y(x) = 6e2x y(x)tanh(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 38

y(x) = y(x)f(x) + f(x)f(x)

odeadvisor timed out

Solution method Linear ODE

Maple
Mathematica

ODE 39

y(x) = f(x) + g(x)y(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 40

y(x) = x2 y(x)2

[_Riccati]

Solution method Series solution to y(x) = f(x,y(x)), case f(x,y) analytic

Maple
Mathematica

ODE 41

f(x)2 + y(x) = f(x) + y(x)2

odeadvisor timed out

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 42

y(x) x + 1 = y(x)(y(x) + x)

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 43

y(x) = (y(x) + x)2

[[_homogeneous, ‘class C‘], _Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 44

y(x) = (x y(x))2

[[_homogeneous, ‘class C‘], _Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 45

y(x) = (x y(x))2 + 3(y(x) x + 1)

[[_homogeneous, ‘class C‘], _Riccati]

Solution method Equation linear in the variables, y(x) = f(a + bx + cy(x))

Maple
Mathematica

ODE 46

y(x) = y(x) + y(x)2 + 2x

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 47

y(x) = xy(x)

[[_1st_order, _with_linear_symmetries], _Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 48

y(x) = x + y(x) + 1

[[_1st_order, _with_linear_symmetries], _Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 49

y(x) = cos(x) y(x)(sin(x) y(x))

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 50

y(x) = y(x)(y(x) + sin(2x)) + cos(2x)

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 51

y(x) = xf(x)y(x) + f(x) + y(x)2

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 52

y(x) = (4y(x) + x + 3)2

[[_homogeneous, ‘class C‘], _Riccati]

Solution method Equation linear in the variables, y(x) = f(a + bx + cy(x))

Maple
Mathematica

ODE 53

y(x) = (9y(x) + 4x + 1)2

[[_homogeneous, ‘class C‘], _Riccati]

Solution method Equation linear in the variables, y(x) = f(a + bx + cy(x))

Maple
Mathematica

ODE 54

y(x) = 3

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 55

y(x) = a + by(x)2

[_quadrature]

Solution method Separable ODE, Independent variable missing

Maple
Mathematica

ODE 56

y(x) = ax + by(x)2

[[_Riccati, _special]]

Solution method Riccati ODE, Main form

Maple
Mathematica

ODE 57

y(x) = a + bx + cy(x)2

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 58

y(x) = axn1 + bx2n + cy(x)2

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 59

y(x) = ax2 + by(x)2

[[_Riccati, _special]]

Solution method Riccati ODE, Main form

Maple
Mathematica

ODE 60

y(x) = a0 + a1y(x) + a2y(x)2

[_quadrature]

Solution method Separable ODE, Independent variable missing

Maple
Mathematica

ODE 61

y(x) = ay(x) + by(x)2 + f(x)

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 62

y(x) = a(x y(x))y(x) + 1

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 63

y(x) = ay(x)2 + f(x) + g(x)y(x)

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 64

y(x) = xy(x)(y(x) + 3)

[_separable]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 65

y(x) = x3 + y(x) xy(x)2 x + 1

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 66

y(x) = x

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 67

y(x) = + (1 2x)y(x) + x

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 68

y(x) = axy(x)2

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 69

y(x) = xn

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 70

y(x) = axm + bxny(x)2

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 71

y(x) = y(x)(a + by(x)cos(kx))

[_Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 72

y(x) = sin(x)

[_linear]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 73

y(x) + 4csc(x) = y(x)2 sin(x) + y(x)(3 cot(x))

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 74

y(x) = y(x)sec(x) + (sin(x) 1)2

[_linear]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 75

y(x) + tan(x) = 0

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 76

y(x) = f(x) + g(x)y(x) + h(x)y(x)2

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 77

y(x) = f(x)

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 78

y(x)2(ax + y(x)) + y(x)

[_Abel]

Solution method Abel ODE, First kind

Maple
Mathematica

ODE 79

y(x) = y(x)2

[_Abel]

Solution method Abel ODE, First kind

Maple
Mathematica

ODE 80

3a(y(x) + 2x)y(x)2 + y(x) = 0

[_Abel]

Solution method Abel ODE, First kind

Maple
Mathematica

ODE 81

y(x) = y(x)

[_quadrature]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 82

y(x) = a0 + a1y(x) + a2y(x)2 + a3y(x)3

[_quadrature]

Solution method Separable ODE, Independent variable missing

Maple
Mathematica

ODE 83

y(x) = xy(x)3

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 84

y(x) + y(x) = 0

[_Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 85

y(x) = y(x)2(a + bxy(x))

[[_homogeneous, ‘class G‘], _Abel]

Solution method Abel ODE, First kind

Maple
Mathematica

ODE 86

y(x)3 + y(x) + 3xy(x)2 = 0

[_Abel]

Solution method Abel ODE, First kind

Maple
Mathematica

ODE 87

y(x) = y(x)2

[_Abel]

Solution method Abel ODE, First kind

Maple
Mathematica

ODE 88

2xy(x) + y(x) = 0

[_Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 89

y(x) = y(x)2 axy(x)3

[_Abel]

Solution method Abel ODE, First kind

Maple
Mathematica

ODE 90

y(x) = ay(x)2 + xy(x)3

[_Abel]

Solution method Abel ODE, First kind

Maple
Mathematica

ODE 91

y(x) + y(x) = 0

[_Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 92

y(x) + y(x)3 tan(x)sec(x) = 0

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 93

y(x) = f0(x) + f1(x)y(x) + f2(x)y(x)2 + f3(x)y(x)3

[_Abel]

Solution method Abel ODE, First kind

Maple
Mathematica

ODE 94

y(x) = y(x)

[_Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 95

y(x) = ax + by(x)n

[[_homogeneous, ‘class G‘], _Chini]

Solution method Change of Variable, new dependent variable

Maple
Mathematica

ODE 96

y(x) = f(x)y(x) + g(x)y(x)k

[_Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 97

y(x) = f(x) + g(x)y(x) + h(x)y(x)n

[_Chini]

Solution method Change of Variable, new dependent variable

Maple
Mathematica

ODE 98

y(x) = f(x)y(x)m + g(x)y(x)n

[NONE]

Solution method Change of Variable, new dependent variable

Maple
Mathematica

ODE 99

y(x) =

[_quadrature]

Solution method Separable ODE, Independent variable missing

Maple
Mathematica

ODE 100

y(x) = a + + by(x)

[_quadrature]

Solution method Separable ODE, Independent variable missing

Maple
Mathematica

ODE 101

y(x) = ax + b

[[_homogeneous, ‘class G‘], _Chini]

Solution method Change of Variable, new dependent variable

Maple
Mathematica

ODE 102

x3 + y(x) = x

[[_1st_order, _with_linear_symmetries]]

Solution method Homogeneous equation, isobaric equation

Maple
Mathematica

ODE 103

y(x) + 2y(x) = 0

[_Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 104

y(x) =

[_quadrature]

Solution method Separable ODE, Independent variable missing

Maple
Mathematica

ODE 105

y(x) = y(x)

[_quadrature]

Solution method Separable ODE, Independent variable missing

Maple
Mathematica

ODE 106

g(x)(f(x) y(x)) + y(x) = 0

[‘y=_G(x,y’)‘]

Solution method Change of Variable, new dependent variable

Maple
Mathematica

ODE 107

y(x) =

[_quadrature]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 108

y(x) = R1R2

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 109

y(x) = cos2(x)cos(y(x))

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 110

y(x) = sec2(x)Cosy(y(x))cot(y(x))

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 111

y(x) = a + bcos(Ax + By(x))

[[_homogeneous, ‘class C‘], _dAlembert]

Solution method Change of Variable, new dependent variable

Maple
Mathematica

ODE 112

y(x) = cos(y(x)) + f(x) f(x)sin(y(x)) + 1

odeadvisor timed out

Solution method Change of Variable, new dependent variable

Maple
Mathematica

ODE 113

g(x)sin(ay(x)) + h(x)cos(ay(x)) + f(x) + y(x) = 0

[‘y=_G(x,y’)‘]

Solution method Change of Variable, new dependent variable

Maple
Mathematica

ODE 114

y(x) = a + bcos(y(x))

[_quadrature]

Solution method Separable ODE, Independent variable missing

Maple
Mathematica

ODE 115

x + y(x) = 0

[‘y=_G(x,y’)‘]

Solution method Change of Variable, new dependent variable

Maple
Mathematica

ODE 116

y(x) + tan(x)sec(x)cos2(y(x)) = 0

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 117

y(x) = cot(x)cot(y(x))

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 118

y(x) + cot(x)cot(y(x)) = 0

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 119

y(x) = sin(x)(csc(y(x)) cot(y(x)))

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 120

y(x) = tan(x)cot(y(x))

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 121

y(x) + tan(x)cot(y(x)) = 0

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 122

y(x) + sin(2x)csc(2y(x)) = 0

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 123

y(x) = tan(x)(tan(y(x)) + sec(x)sec(y(x)))

[‘y=_G(x,y’)‘]

Solution method Exact equation, integrating factor

Maple
Mathematica

ODE 124

y(x) = cos(x)sec2(y(x))

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 125

y(x) = sec2(x)sec3(y(x))

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 126

y(x) = a + bsin(y(x))

[_quadrature]

Solution method Separable ODE, Independent variable missing

Maple
Mathematica

ODE 127

y(x) = a + bsin(Ax + By(x))

[[_homogeneous, ‘class C‘], _dAlembert]

Solution method Change of Variable, new dependent variable

Maple
Mathematica

ODE 128

y(x) = tan(y(x))(cos(x)sin(y(x)) + 1)

[‘y=_G(x,y’)‘]

Solution method Change of Variable, new dependent variable

Maple
Mathematica

ODE 129

y(x) + csc(2x)sin(2y(x)) = 0

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 130

f(x) + g(x)tan(y(x)) + y(x) = 0

[‘y=_G(x,y’)‘]

Solution method Change of Variable, new dependent variable

Maple
Mathematica

ODE 131

y(x) =

[_quadrature]

Solution method Separable ODE, Independent variable missing

Maple
Mathematica

ODE 132

y(x) = ey(x) + x

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

Solution method Series solution to y(x) = f(x,y(x)), case f(x,y) analytic

Maple
Mathematica

ODE 133

y(x) = ey(x)+x

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 134

y(x) = ex

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 135

y(x) + y(x)log(x)log(y(x)) = 0

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 136

y(x) = xm1y(x)1nf

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

Solution method Change of Variable, new dependent variable

Maple
Mathematica

ODE 137

y(x) = af(y(x))

[_quadrature]

Solution method Separable ODE, Independent variable missing

Maple
Mathematica

ODE 138

y(x) = f(a + bx + cy(x))

[[_homogeneous, ‘class C‘], _dAlembert]

Solution method Equation linear in the variables, y(x) = f(a + bx + cy(x))

Maple
Mathematica

ODE 139

y(x) = f(x)g(y(x))

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 140

y(x) = Csx(x)y(x)sec(x) + sec2(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 141

2y(x) + 2csc2(x) = y(x)csc(x)sec(x) y(x)2 sec2(x)

[_Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 142

2y(x) = 2sin2(y(x))tan(y(x)) xsin(2y(x))

[‘y=_G(x,y’)‘]

Solution method Change of Variable, new dependent variable

Maple
Mathematica

ODE 143

ax + 2y(x) =

[[_homogeneous, ‘class G‘]]

Solution method Homogeneous equation, isobaric equation

Maple
Mathematica

ODE 144

3y(x) = + x

[[_1st_order, _with_linear_symmetries], _dAlembert]

Solution method Exact equation, integrating factor

Maple
Mathematica

ODE 145

xy(x) =

[_quadrature]

Solution method Separable ODE, Dependent variable missing

Maple
Mathematica

ODE 146

xy(x) + y(x) + x = 0

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 147

x2 + xy(x) y(x) = 0

[_linear]

Solution method Exact equation, integrating factor

Maple
Mathematica

ODE 148

xy(x) = x3 y(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 149

xy(x) = x3 + y(x) + 1

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 150

xy(x) = xm + y(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 151

xy(x) = xsin(x) y(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 152

xy(x) = x2 sin(x) + y(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 153

xy(x) = xn log(x) y(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 154

xy(x) = sin(x) 2y(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 155

xy(x) = ay(x)

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 156

xy(x) = ay(x) + x + 1

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 157

xy(x) = ax + by(x)

[_linear]

Solution method Homogeneous equation

Maple
Mathematica

ODE 158

xy(x) = ax2 + by(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 159

xy(x) = a + bxn + cy(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 160

xy(x) + (3 x)y(x) + 2 = 0

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 161

(ax + 2)y(x) + xy(x) + x = 0

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 162

y(x)(a + bx) + xy(x) = 0

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 163

xy(x) = x3 + y(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 164

xy(x) = ax y(x)

[_linear]

Solution method Linear ODE

Maple
Mathematica

ODE 165

y(x) + xy(x) + x = 0

[_linear]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 166

x2 + xy(x) + y(x)2 = 0

[_rational, _Riccati]

Solution method Riccati ODE, Special cases

Maple
Mathematica

ODE 167

xy(x) = x2 + y(x)(y(x) + 1)

[[_homogeneous, ‘class D‘], _rational, _Riccati]

Solution method Riccati ODE, Special cases

Maple
Mathematica

ODE 168

xy(x) + y(x)2 y(x) = x23

[_rational, _Riccati]

Solution method Riccati ODE, Special cases

Maple
Mathematica

ODE 169

xy(x) = a + by(x)2

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 170

xy(x) = ax2 + by(x)2 + y(x)

[[_homogeneous, ‘class D‘], _rational, _Riccati]

Solution method Riccati ODE, Special cases

Maple
Mathematica

ODE 171

xy(x) = ax2n + y(x)(by(x) + n)

[_rational, _Riccati]

Solution method Riccati ODE, Special cases

Maple
Mathematica

ODE 172

xy(x) = axn + by(x) + cy(x)2

[_rational, _Riccati]

Solution method Riccati ODE, Special cases

Maple
Mathematica

ODE 173

xy(x) = axn + by(x) + cy(x)2 + k

[_rational, _Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 174

a + xy(x) + xy(x)2 = 0

[_rational, [_Riccati, _special]]

Solution method Riccati ODE, Main form

Maple
Mathematica

ODE 175

xy(x) + y(x)(1 xy(x)) = 0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 176

xy(x) = y(x)(1 xy(x))

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 177

xy(x) = y(x)(xy(x) + 1)

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 178

xy(x) = ax3y(x)(1 xy(x))

[_Bernoulli]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 179

xy(x) = x3 + y(x) + xy(x)2

[[_homogeneous, ‘class D‘], _rational, _Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 180

xy(x) = y(x)(2xy(x) + 1)

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 181

y(x)(axy(x) + 2) + bx + xy(x) = 0

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 182

a0 + a1x + y(x)(a2 + a3xy(x)) + xy(x) = 0

[_rational, _Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 183

ax2y(x)2 + xy(x) + 2y(x) = b

[_rational, _Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 184

(n m)y(x) + xm + xny(x)2 + xy(x) = 0

[_rational, _Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 185

y(x) + xy(x) = 0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 186

xy(x) = axm by(x) cxny(x)2

[_rational, _Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 187

xy(x) = axn(x y(x))2 y(x) + 2x

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 188

y(x)(1 ay(x)log(x)) + xy(x) = 0

[_Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 189

xy(x) = f(x) + y(x)

[[_homogeneous, ‘class D‘], _Riccati]

Solution method Riccati ODE, Generalized ODE

Maple
Mathematica

ODE 190

xy(x) = y(x)

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 191

xy(x) + y(x) = 0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 192

xy(x) + y(x) = ay(x)3

[_rational, _Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 193

xy(x) = ay(x) + by(x)3

[_rational, _Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 194

xy(x) + 2y(x) = ax2ky(x)k

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

Solution method The Bernoulli ODE

Maple
Mathematica

ODE 195

xy(x) = 4

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 196

xy(x) + 2y(x) =

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 197

xy(x) = + y(x)

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

Solution method Homogeneous equation

Maple
Mathematica

ODE 198

xy(x) = + y(x)

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

Solution method Homogeneous equation

Maple
Mathematica

ODE 199

xy(x) = x + y(x)

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

Solution method Homogeneous equation, xy(x) = xf(x)g(u) + y(x)

Maple
Mathematica

ODE 200

xy(x) = y(x) x(x y(x))

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

Solution method Homogeneous equation, xy(x) = xf(x)g(u) + y(x)

Maple
Mathematica

ODE 201

xy(x) = a∘ -2-2------2-
  b x + y(x) + y(x)

[[_homogeneous, ‘class A‘], _dAlembert]

Solution method Homogeneous equation

Maple
Mathematica

ODE 202

cos(y(x))(                      )
 sin(y(x))− 3x2 cos(y (x )) + xy(x) = 0

[‘y=_G(x,y’)‘]

Solution method Exact equation, integrating factor

Maple
Mathematica

ODE 203

xy(x) y(x) + xcos(y(x))
  x + x = 0

[[_homogeneous, ‘class A‘], _dAlembert]

Solution method Homogeneous equation

Maple
Mathematica

ODE 204

xy(x) = y(x) xcos2(    )
 y(x)
  x

[[_homogeneous, ‘class A‘], _dAlembert]

Solution method Homogeneous equation

Maple
Mathematica

ODE 205

xy(x) = (       )
 1− 2x2cot2(y(x))

[_separable]

Solution method Separable ODE, Neither variable missing

Maple
Mathematica

ODE 206

xy(x) = y(x) cot2(y(x))

[_separable]

Solution method Homogeneous equation

Maple
Mathematica

ODE 207

xy(x) + y(x) + 2xsec(xy(x)) = 0

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

Solution method Exact equation, integrating factor

Maple
Mathematica

ODE 208

xy(x) y(x) + xsec(y(x))
 -x-- = 0

[[_homogeneous, ‘class A‘], _dAlembert]

Solution method Homogeneous equation

Maple
Mathematica

ODE 209

xy(x) = y(x) + xsec2(y(x))
  x

[[_homogeneous, ‘class A‘], _dAlembert]

Solution method Homogeneous equation

Maple
Mathematica

ODE 210

xy(x) = sin(x y(x))

[‘y=_G(x,y’)‘]

Solution method Change of Variable, new dependent variable

Maple
Mathematica

ODE 211

xy(x) = y(x) + xsin(    )
 y(xx)

[[_homogeneous, ‘class A‘], _dAlembert]

Solution method Homogeneous equation

Maple
Mathematica

ODE 212

xy(x) + tan(y(x)) = 0

[_separable]

Solution method Exact equation, integrating factor

Maple
Mathematica