The following table 1 gives the classification of each ODE from Maple ODE advisor with a link to each ODE page as well. Clicking on the problem opens a new page that shows the result.
| |
# |
result |
ODE 1 |
y′(x) = af(x) Solution method Separable ODE, Dependent variable missing Maple ✓ |
ODE 2 |
y′(x) = y(x) + x + sin(x) Solution method Linear ODE Maple ✓ |
ODE 3 |
y′(x) = x2 + 2y(x) + 3cosh(x) Solution method Linear ODE Maple ✓ |
ODE 4 |
y′(x) = a + bx + cy(x) Solution method Linear ODE Maple ✓ |
ODE 5 |
y′(x) = acos(bx + c) + ky(x) Solution method Linear ODE Maple ✓ |
ODE 6 |
y′(x) = asin(bx + c) + ky(x) Solution method Linear ODE Maple ✓ |
ODE 7 |
y′(x) = a + bekx + cy(x) Solution method Linear ODE Maple ✓ |
ODE 8 |
y′(x) = x Solution method Linear ODE Maple ✓ |
ODE 9 |
y′(x) = x Solution method Linear ODE Maple ✓ |
ODE 10 |
y′(x) = x2 Solution method Linear ODE Maple ✓ |
ODE 11 |
y′(x) = axny(x) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 12 |
y′(x) = y(x)cos(x) + sin(x)cos(x) Solution method Linear ODE Maple ✓ |
ODE 13 |
y′(x) = y(x)cos(x) + esin(x) Solution method Linear ODE Maple ✓ |
ODE 14 |
y′(x) = y(x)cot(x) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 15 |
y′(x) = 1 − y(x)cot(x) Solution method Linear ODE Maple ✓ |
ODE 16 |
y′(x) = xcsc(x) − y(x)cot(x) Solution method Linear ODE Maple ✓ |
ODE 17 |
y′(x) = y(x)(cot(x) + 2csc(2x)) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 18 |
y′(x) = sec(x) − y(x)cot(x) Solution method Linear ODE Maple ✓ |
ODE 19 |
y′(x) = y(x)cot(x) + ex sin(x) Solution method Linear ODE Maple ✓ |
ODE 20 |
y′(x) + 2y(x)cot(x) + csc(x) = 0 Solution method Linear ODE Maple ✓ |
ODE 21 |
y′(x) = 4xcsc(x)sec2(x) − 2y(x)cot(2x) Solution method Linear ODE Maple ✓ |
ODE 22 |
y′(x) = 2 Solution method Linear ODE Maple ✓ |
ODE 23 |
y′(x) = 4xcsc(x) Solution method Linear ODE Maple ✓ |
ODE 24 |
y′(x) = 4xcsc(x) Solution method Linear ODE Maple ✓ |
ODE 25 |
y′(x) = y(x)sec(x) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 26 |
y′(x) + tan(x) = (1 − y(x))sec(x) Solution method Linear ODE Maple ✓ |
ODE 27 |
y′(x) = y(x)tan(x) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 28 |
y′(x) = y(x)tan(x) + cos(x) Solution method Linear ODE Maple ✓ |
ODE 29 |
y′(x) = cos(x) − y(x)tan(x) Solution method Linear ODE Maple ✓ |
ODE 30 |
y′(x) = sec(x) − y(x)tan(x) Solution method Linear ODE Maple ✓ |
ODE 31 |
y′(x) = y(x)tan(x) + sin(2x) Solution method Linear ODE Maple ✓ |
ODE 32 |
y′(x) = sin(2x) − y(x)tan(x) Solution method Linear ODE Maple ✓ |
ODE 33 |
y′(x) = 2y(x)tan(x) + sin(x) Solution method Linear ODE Maple ✓ |
ODE 34 |
y′(x) = 2(y(x)tan(2x) + sec(2x) + 1) Solution method Linear ODE Maple ✓ |
ODE 35 |
y′(x) = 3y(x)tan(x) + csc(x) Solution method Linear ODE Maple ✓ |
ODE 36 |
y′(x) = y(x)(a + sin(log(x)) + cos(log(x))) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 37 |
y′(x) = 6e2x − y(x)tanh(x) Solution method Linear ODE Maple ✓ |
ODE 38 |
y′(x) = y(x)f′(x) + f(x)f′(x) Solution method Linear ODE Maple ✓ |
ODE 39 |
y′(x) = f(x) + g(x)y(x) Solution method Linear ODE Maple ✓ |
ODE 40 |
y′(x) = x2 − y(x)2 Solution method Series solution to y′(x) = f(x,y(x)), case f(x,y) analytic Maple ✓ |
ODE 41 |
f(x)2 + y′(x) = f′(x) + y(x)2 Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 42 |
y′(x) − x + 1 = y(x)(y(x) + x) Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 43 |
y′(x) = (y(x) + x)2 Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 44 |
y′(x) = (x − y(x))2 Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 45 |
y′(x) = (x − y(x))2 + 3(y(x) − x + 1) Solution method Equation linear in the variables, y′(x) = f(a + bx + cy(x)) Maple ✓ |
ODE 46 |
y′(x) = − Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 47 |
y′(x) = x Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 48 |
y′(x) = x Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 49 |
y′(x) = cos(x) − y(x)(sin(x) − y(x)) Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 50 |
y′(x) = y(x)(y(x) + sin(2x)) + cos(2x) Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 51 |
y′(x) = xf(x)y(x) + f(x) + y(x)2 Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 52 |
y′(x) = (−4y(x) + x + 3)2 Solution method Equation linear in the variables, y′(x) = f(a + bx + cy(x)) Maple ✓ |
ODE 53 |
y′(x) = (9y(x) + 4x + 1)2 Solution method Equation linear in the variables, y′(x) = f(a + bx + cy(x)) Maple ✓ |
ODE 54 |
y′(x) = 3 Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 55 |
y′(x) = a + by(x)2 Solution method Separable ODE, Independent variable missing Maple ✓ |
ODE 56 |
y′(x) = ax + by(x)2 Solution method Riccati ODE, Main form Maple ✓ |
ODE 57 |
y′(x) = a + bx + cy(x)2 Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 58 |
y′(x) = axn−1 + bx2n + cy(x)2 Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 59 |
y′(x) = ax2 + by(x)2 Solution method Riccati ODE, Main form Maple ✓ |
ODE 60 |
y′(x) = a0 + a1y(x) + a2y(x)2 Solution method Separable ODE, Independent variable missing Maple ✓ |
ODE 61 |
y′(x) = ay(x) + by(x)2 + f(x) Solution method Riccati ODE, Generalized ODE Maple ✗ |
ODE 62 |
y′(x) = a(x − y(x))y(x) + 1 Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 63 |
y′(x) = ay(x)2 + f(x) + g(x)y(x) Solution method Riccati ODE, Generalized ODE Maple ✗ |
ODE 64 |
y′(x) = xy(x)(y(x) + 3) Solution method The Bernoulli ODE Maple ✓ |
ODE 65 |
y′(x) = −x3 + Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 66 |
y′(x) = x Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 67 |
y′(x) = − Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 68 |
y′(x) = axy(x)2 Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 69 |
y′(x) = xn Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 70 |
y′(x) = axm + bxny(x)2 Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 71 |
y′(x) = y(x)(a + by(x)cos(kx)) Solution method The Bernoulli ODE Maple ✓ |
ODE 72 |
y′(x) = sin(x) Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 73 |
y′(x) + 4csc(x) = y(x)2 sin(x) + y(x)(3 − cot(x)) Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 74 |
y′(x) = y(x)sec(x) + (sin(x) − 1)2 Solution method The Bernoulli ODE Maple ✓ |
ODE 75 |
y′(x) + Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 76 |
y′(x) = f(x) + g(x)y(x) + h(x)y(x)2 Solution method Riccati ODE, Generalized ODE Maple ✗ |
ODE 77 |
y′(x) = f(x) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 78 |
y(x)2(ax + y(x)) + y′(x) Solution method Abel ODE, First kind Maple ✓ |
ODE 79 |
y′(x) = y(x)2 Solution method Abel ODE, First kind Maple ✓ |
ODE 80 |
3a(y(x) + 2x)y(x)2 + y′(x) = 0 Solution method Abel ODE, First kind Maple ✓ |
ODE 81 |
y′(x) = y(x) Solution method The Bernoulli ODE Maple ✓ |
ODE 82 |
y′(x) = a0 + a1y(x) + a2y(x)2 + a3y(x)3 Solution method Separable ODE, Independent variable missing Maple ✓ |
ODE 83 |
y′(x) = xy(x)3 Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 84 |
y′(x) + y(x) Solution method The Bernoulli ODE Maple ✓ |
ODE 85 |
y′(x) = y(x)2(a + bxy(x)) Solution method Abel ODE, First kind Maple ✓ |
ODE 86 |
y(x)3 Solution method Abel ODE, First kind Maple ✓ |
ODE 87 |
y′(x) = y(x)2 Solution method Abel ODE, First kind Maple ✗ |
ODE 88 |
2xy(x) Solution method The Bernoulli ODE Maple ✓ |
ODE 89 |
y′(x) = y(x)2 − ax Solution method Abel ODE, First kind Maple ✗ |
ODE 90 |
y′(x) = ay(x)2 + xy(x)3 Solution method Abel ODE, First kind Maple ✗ |
ODE 91 |
y′(x) + y(x) Solution method The Bernoulli ODE Maple ✓ |
ODE 92 |
y′(x) + y(x)3 tan(x)sec(x) = 0 Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 93 |
y′(x) = f0(x) + f1(x)y(x) + f2(x)y(x)2 + f3(x)y(x)3 Solution method Abel ODE, First kind Maple ✗ |
ODE 94 |
y′(x) = y(x) Solution method The Bernoulli ODE Maple ✓ |
ODE 95 |
y′(x) = ax Solution method Change of Variable, new dependent variable Maple ✓ |
ODE 96 |
y′(x) = f(x)y(x) + g(x)y(x)k Solution method The Bernoulli ODE Maple ✓ |
ODE 97 |
y′(x) = f(x) + g(x)y(x) + h(x)y(x)n Solution method Change of Variable, new dependent variable Maple ✗ |
ODE 98 |
y′(x) = f(x)y(x)m + g(x)y(x)n Solution method Change of Variable, new dependent variable Maple ✗ |
ODE 99 |
y′(x) = Solution method Separable ODE, Independent variable missing Maple ✓ |
ODE 100 |
y′(x) = a + Solution method Separable ODE, Independent variable missing Maple ✓ |
ODE 101 |
y′(x) = ax + b Solution method Change of Variable, new dependent variable Maple ✓ |
ODE 102 |
x3 + y′(x) = x Solution method Homogeneous equation, isobaric equation Maple ✓ |
ODE 103 |
y′(x) + 2 Solution method The Bernoulli ODE Maple ✓ |
ODE 104 |
y′(x) = Solution method Separable ODE, Independent variable missing Maple ✓ |
ODE 105 |
y′(x) = y(x) Solution method Separable ODE, Independent variable missing Maple ✓ |
ODE 106 |
g(x)(f(x) − y(x)) Solution method Change of Variable, new dependent variable Maple ✗ |
ODE 107 |
y′(x) = Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 108 |
y′(x) = R1 Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 109 |
y′(x) = cos2(x)cos(y(x)) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 110 |
y′(x) = sec2(x)Cosy(y(x))cot(y(x)) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 111 |
y′(x) = a + bcos(Ax + By(x)) Solution method Change of Variable, new dependent variable Maple ✓ |
ODE 112 |
y′(x) = − Solution method Change of Variable, new dependent variable Maple ✓ |
ODE 113 |
g(x)sin(ay(x)) + h(x)cos(ay(x)) + f(x) + y′(x) = 0 Solution method Change of Variable, new dependent variable Maple ✗ |
ODE 114 |
y′(x) = a + bcos(y(x)) Solution method Separable ODE, Independent variable missing Maple ✓ |
ODE 115 |
x Solution method Change of Variable, new dependent variable Maple ✓ |
ODE 116 |
y′(x) + tan(x)sec(x)cos2(y(x)) = 0 Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 117 |
y′(x) = cot(x)cot(y(x)) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 118 |
y′(x) + cot(x)cot(y(x)) = 0 Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 119 |
y′(x) = sin(x)(csc(y(x)) − cot(y(x))) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 120 |
y′(x) = tan(x)cot(y(x)) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 121 |
y′(x) + tan(x)cot(y(x)) = 0 Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 122 |
y′(x) + sin(2x)csc(2y(x)) = 0 Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 123 |
y′(x) = tan(x)(tan(y(x)) + sec(x)sec(y(x))) Solution method Exact equation, integrating factor Maple ✓ |
ODE 124 |
y′(x) = cos(x)sec2(y(x)) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 125 |
y′(x) = sec2(x)sec3(y(x)) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 126 |
y′(x) = a + bsin(y(x)) Solution method Separable ODE, Independent variable missing Maple ✓ |
ODE 127 |
y′(x) = a + bsin(Ax + By(x)) Solution method Change of Variable, new dependent variable Maple ✓ |
ODE 128 |
y′(x) = tan(y(x))(cos(x)sin(y(x)) + 1) Solution method Change of Variable, new dependent variable Maple ✗ |
ODE 129 |
y′(x) + csc(2x)sin(2y(x)) = 0 Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 130 |
f(x) + g(x)tan(y(x)) + y′(x) = 0 Solution method Change of Variable, new dependent variable Maple ✗ |
ODE 131 |
y′(x) = Solution method Separable ODE, Independent variable missing Maple ✓ |
ODE 132 |
y′(x) = ey(x) + x Solution method Series solution to y′(x) = f(x,y(x)), case f(x,y) analytic Maple ✓ |
ODE 133 |
y′(x) = ey(x)+x Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 134 |
y′(x) = ex Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 135 |
y′(x) + y(x)log(x)log(y(x)) = 0 Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 136 |
y′(x) = xm−1y(x)1−nf Solution method Change of Variable, new dependent variable Maple ✓ |
ODE 137 |
y′(x) = af(y(x)) Solution method Separable ODE, Independent variable missing Maple ✓ |
ODE 138 |
y′(x) = f(a + bx + cy(x)) Solution method Equation linear in the variables, y′(x) = f(a + bx + cy(x)) Maple ✓ |
ODE 139 |
y′(x) = f(x)g(y(x)) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 140 |
y′(x) = Csx(x)y(x)sec(x) + sec2(x) Solution method Linear ODE Maple ✓ |
ODE 141 |
2y′(x) + 2csc2(x) = y(x)csc(x)sec(x) − y(x)2 sec2(x) Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 142 |
2y′(x) = 2sin2(y(x))tan(y(x)) − xsin(2y(x)) Solution method Change of Variable, new dependent variable Maple ✗ |
ODE 143 |
ax + 2y′(x) = Solution method Homogeneous equation, isobaric equation Maple ✓ |
ODE 144 |
3y′(x) = Solution method Exact equation, integrating factor Maple ✓ |
ODE 145 |
xy′(x) = Solution method Separable ODE, Dependent variable missing Maple ✓ |
ODE 146 |
xy′(x) + y(x) + x = 0 Solution method Linear ODE Maple ✓ |
ODE 147 |
x2 + xy′(x) − y(x) = 0 Solution method Exact equation, integrating factor Maple ✓ |
ODE 148 |
xy′(x) = x3 − y(x) Solution method Linear ODE Maple ✓ |
ODE 149 |
xy′(x) = x3 + y(x) + 1 Solution method Linear ODE Maple ✓ |
ODE 150 |
xy′(x) = xm + y(x) Solution method Linear ODE Maple ✓ |
ODE 151 |
xy′(x) = xsin(x) − y(x) Solution method Linear ODE Maple ✓ |
ODE 152 |
xy′(x) = x2 sin(x) + y(x) Solution method Linear ODE Maple ✓ |
ODE 153 |
xy′(x) = xn log(x) − y(x) Solution method Linear ODE Maple ✓ |
ODE 154 |
xy′(x) = sin(x) − 2y(x) Solution method Linear ODE Maple ✓ |
ODE 155 |
xy′(x) = ay(x) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 156 |
xy′(x) = ay(x) + x + 1 Solution method Linear ODE Maple ✓ |
ODE 157 |
xy′(x) = ax + by(x) Solution method Homogeneous equation Maple ✓ |
ODE 158 |
xy′(x) = ax2 + by(x) Solution method Linear ODE Maple ✓ |
ODE 159 |
xy′(x) = a + bxn + cy(x) Solution method Linear ODE Maple ✓ |
ODE 160 |
xy′(x) + (3 − x)y(x) + 2 = 0 Solution method Linear ODE Maple ✓ |
ODE 161 |
(ax + 2)y(x) + xy′(x) + x = 0 Solution method Linear ODE Maple ✓ |
ODE 162 |
y(x)(a + bx) + xy′(x) = 0 Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 163 |
xy′(x) = x3 + Solution method Linear ODE Maple ✓ |
ODE 164 |
xy′(x) = ax − Solution method Linear ODE Maple ✓ |
ODE 165 |
Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 166 |
x2 + xy′(x) + y(x)2 = 0 Solution method Riccati ODE, Special cases Maple ✓ |
ODE 167 |
xy′(x) = x2 + y(x)(y(x) + 1) Solution method Riccati ODE, Special cases Maple ✓ |
ODE 168 |
xy′(x) + y(x)2 − y(x) = x2∕3 Solution method Riccati ODE, Special cases Maple ✓ |
ODE 169 |
xy′(x) = a + by(x)2 Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 170 |
xy′(x) = ax2 + by(x)2 + y(x) Solution method Riccati ODE, Special cases Maple ✓ |
ODE 171 |
xy′(x) = ax2n + y(x)(by(x) + n) Solution method Riccati ODE, Special cases Maple ✓ |
ODE 172 |
xy′(x) = axn + by(x) + cy(x)2 Solution method Riccati ODE, Special cases Maple ✓ |
ODE 173 |
xy′(x) = axn + by(x) + cy(x)2 + k Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 174 |
a + xy′(x) + xy(x)2 = 0 Solution method Riccati ODE, Main form Maple ✓ |
ODE 175 |
xy′(x) + y(x)(1 − xy(x)) = 0 Solution method The Bernoulli ODE Maple ✓ |
ODE 176 |
xy′(x) = y(x)(1 − xy(x)) Solution method The Bernoulli ODE Maple ✓ |
ODE 177 |
xy′(x) = y(x)(xy(x) + 1) Solution method The Bernoulli ODE Maple ✓ |
ODE 178 |
xy′(x) = ax3y(x)(1 − xy(x)) Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 179 |
xy′(x) = x3 + Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 180 |
xy′(x) = y(x)(2xy(x) + 1) Solution method The Bernoulli ODE Maple ✓ |
ODE 181 |
y(x)(axy(x) + 2) + bx + xy′(x) = 0 Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 182 |
a0 + a1x + y(x)(a2 + a3xy(x)) + xy′(x) = 0 Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 183 |
ax2y(x)2 + xy′(x) + 2y(x) = b Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 184 |
Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 185 |
y(x) Solution method The Bernoulli ODE Maple ✓ |
ODE 186 |
xy′(x) = axm − by(x) − cxny(x)2 Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 187 |
xy′(x) = axn(x − y(x))2 − y(x) + 2x Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 188 |
y(x)(1 − ay(x)log(x)) + xy′(x) = 0 Solution method The Bernoulli ODE Maple ✓ |
ODE 189 |
xy′(x) = f(x) Solution method Riccati ODE, Generalized ODE Maple ✓ |
ODE 190 |
xy′(x) = y(x) Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 191 |
xy′(x) + y(x) Solution method The Bernoulli ODE Maple ✓ |
ODE 192 |
xy′(x) + y(x) = a Solution method The Bernoulli ODE Maple ✓ |
ODE 193 |
xy′(x) = ay(x) + b Solution method The Bernoulli ODE Maple ✓ |
ODE 194 |
xy′(x) + 2y(x) = ax2ky(x)k Solution method The Bernoulli ODE Maple ✓ |
ODE 195 |
xy′(x) = 4 Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 196 |
xy′(x) + 2y(x) = Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 197 |
xy′(x) = Solution method Homogeneous equation Maple ✓ |
ODE 198 |
xy′(x) = Solution method Homogeneous equation Maple ✓ |
ODE 199 |
xy′(x) = x Solution method Homogeneous equation, xy′(x) = xf(x)g(u) + y(x) Maple ✓ |
ODE 200 |
xy′(x) = y(x) − x(x − y(x)) Solution method Homogeneous equation, xy′(x) = xf(x)g(u) + y(x) Maple ✓ |
ODE 201 |
xy′(x) = a Solution method Homogeneous equation Maple ✓ |
ODE 202 |
cos(y(x)) Solution method Exact equation, integrating factor Maple ✓ |
ODE 203 |
xy′(x) − y(x) + xcos Solution method Homogeneous equation Maple ✓ |
ODE 204 |
xy′(x) = y(x) − xcos2 Solution method Homogeneous equation Maple ✓ |
ODE 205 |
xy′(x) = Solution method Separable ODE, Neither variable missing Maple ✓ |
ODE 206 |
xy′(x) = y(x) − cot2(y(x)) Solution method Homogeneous equation Maple ✓ |
ODE 207 |
xy′(x) + y(x) + 2xsec(xy(x)) = 0 Solution method Exact equation, integrating factor Maple ✓ |
ODE 208 |
xy′(x) − y(x) + xsec Solution method Homogeneous equation Maple ✓ |
ODE 209 |
xy′(x) = y(x) + xsec2 Solution method Homogeneous equation Maple ✓ |
ODE 210 |
xy′(x) = sin(x − y(x)) Solution method Change of Variable, new dependent variable Maple ✗ |
ODE 211 |
xy′(x) = y(x) + xsin Solution method Homogeneous equation Maple ✓ |
ODE 212 |
xy′(x) + tan(y(x)) = 0 Solution method Exact equation, integrating factor Maple ✓ |