$$e^{x} \sin(y) + \tan(y) + (e^{x} \cos(y) + x \sec(y)^{2}) y' = 0$$

The first step is to write the ODE in standard form to check for exactness, which is

$$M(x, y) dx + N(x, y) dy = 0$$
(1A)

Therefore

$$(e^{x}\cos(y) + x\sec(y)^{2}) dy = (-e^{x}\sin(y) - \tan(y)) dx$$
$$(e^{x}\sin(y) + \tan(y)) dx + (e^{x}\cos(y) + x\sec(y)^{2}) dy = 0$$
(2A)

Comparing (1A) and (2A) shows that

$$egin{aligned} M(x,y) &= \mathrm{e}^x \sin{(y)} + an{(y)} \ N(x,y) &= \mathrm{e}^x \cos{(y)} + x \sec{(y)}^2 \end{aligned}$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} (e^x \sin(y) + \tan(y))$$
$$= e^x \cos(y) + \sec(y)^2$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left(e^x \cos(y) + x \sec(y)^2 \right)$$
$$= e^x \cos(y) + \sec(y)^2$$

Since $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, then the ODE is <u>exact</u> The following equations are now set up to solve for the function $\phi(x, y)$

$$\frac{\partial \phi}{\partial x} = M \tag{1}$$

$$\frac{\partial \phi}{\partial y} = N \tag{2}$$

Integrating (1) w.r.t x gives

$$\int \frac{\partial \phi}{\partial x} dx = \int M dx$$
$$\int \frac{\partial \phi}{\partial x} dx = \int e^x \sin(y) + \tan(y) dx$$
$$\phi = e^x \sin(y) + x \tan(y) + f(y)$$
(3)

Where f(y) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$\frac{\partial \phi}{\partial y} = e^x \cos(y) + x \left(1 + \tan(y)^2\right) + f'(y)$$

$$= e^x \cos(y) + x \sec(y)^2 + f'(y)$$
(4)

But equation (2) says that $\frac{\partial \phi}{\partial y} = e^x \cos(y) + x \sec(y)^2$. Therefore equation (4) becomes

$$e^{x}\cos(y) + x\sec(y)^{2} = e^{x}\cos(y) + x\sec(y)^{2} + f'(y)$$
 (5)

Solving equation (5) for f'(y) gives

$$f'(y) = 0$$

Therefore

$$f(y) = c_1$$

Where c_1 is constant of integration. Substituting this result for f(y) into equation (3) gives ϕ

$$\phi = e^x \sin(y) + x \tan(y) + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_0$ where c_0 is new constant and combining c_1 and c_0 constants into new constant c_1 gives the solution as

$$c_1 = e^x \sin\left(y\right) + x \tan\left(y\right)$$