$$
\mathrm{e}^{x} \sin (y)+\tan (y)+\left(\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}\right) y^{\prime}=0
$$

The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}\right) \mathrm{d} y & =\left(-\mathrm{e}^{x} \sin (y)-\tan (y)\right) \mathrm{d} x \\
\left(\mathrm{e}^{x} \sin (y)+\tan (y)\right) \mathrm{d} x+\left(\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\mathrm{e}^{x} \sin (y)+\tan (y) \\
& N(x, y)=\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{x} \sin (y)+\tan (y)\right) \\
& =\mathrm{e}^{x} \cos (y)+\sec (y)^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}\right) \\
& =\mathrm{e}^{x} \cos (y)+\sec (y)^{2}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{x} \sin (y)+\tan (y) \mathrm{d} x \\
\phi & =\mathrm{e}^{x} \sin (y)+x \tan (y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\mathrm{e}^{x} \cos (y)+x\left(1+\tan (y)^{2}\right)+f^{\prime}(y) \tag{4}\\
& =\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}=\mathrm{e}^{x} \cos (y)+x \sec (y)^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{x} \sin (y)+x \tan (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{0}$ where c_{0} is new constant and combining c_{1} and c_{0} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{x} \sin (y)+x \tan (y)
$$

