3.10  HW 10

  3.10.1  Problem 3.24
  3.10.2  Part(b)
  3.10.3  Problem 5.20
  3.10.4  Problem 5.22
  3.10.5  Problem 5.24
  3.10.6  Problem 5.26
  3.10.7  Key solution
PDF (letter size)
PDF (legal size)

3.10.1  Problem 3.24

   3.10.1.1  Part(a)

pict
Figure 3.23:the Problem statement

\[ s_{1}\left ( t\right ) =A_{c}\cos \left ( \omega _{c}t+\phi \right ) \]

DSB-SC signal is

\[ s_{2}\left ( t\right ) =m\left ( t\right ) \cos \left ( \omega _{c}t\right ) \]

Hence by adding the above, we obtain

\[ s\left ( t\right ) =m\left ( t\right ) \cos \left ( \omega _{c}t\right ) +A_{c}\cos \left ( \omega _{c}t+\phi \right ) \]

The above signal is applied to an ideal envelope detector. The output of an envelope detector is given by

\[ a\left ( t\right ) =\sqrt{s_{I}^{2}\left ( t\right ) +s_{Q}^{2}\left ( t\right ) }\]

Since \(s\left ( t\right ) \) is a bandpass signal, we need to first write it in the canonical form \(s_{I}\left ( t\right ) \cos \left ( \omega _{c}t\right ) -s_{Q}\left ( t\right ) \sin \left ( \omega _{c}t\right ) \)

Using \(\cos \left ( A+B\right ) =\cos A\cos B-\sin A\sin B\), then we have

\begin{align*} s\left ( t\right ) & =m\left ( t\right ) \cos \left ( \omega _{c}t\right ) +A_{c}\left [ \cos \omega _{c}t\cos \phi -\sin \omega _{c}t\sin \phi \right ] \\ & =\left [ m\left ( t\right ) +A_{c}\cos \phi \right ] \cos \left ( \omega _{c}t\right ) -A_{c}\sin \omega _{c}t\sin \phi \end{align*}

Hence we see that \begin{align*} s_{I}\left ( t\right ) & =m\left ( t\right ) +A_{c}\cos \phi \\ s_{Q}\left ( t\right ) & =A_{c}\sin \phi \end{align*}

Now we can start answering parts (a) and (b)

3.10.1.1 Part(a)

When \(\phi =0\), then

\begin{align*} s_{I}\left ( t\right ) & =m\left ( t\right ) +A_{c}\\ s_{Q}\left ( t\right ) & =0 \end{align*}

Hence

\begin{align*} a\left ( t\right ) & =\sqrt{\left [ m\left ( t\right ) +A_{c}\right ] ^{2}+0^{2}}\\ & =m\left ( t\right ) +A_{c} \end{align*}

3.10.2  Part(b)

When \(\phi \neq 0\) and \(\left \vert m\left ( t\right ) \right \vert <<\frac{A_{c}}{2}\)

\begin{align*} a\left ( t\right ) & =\sqrt{\left [ m\left ( t\right ) +A_{c}\right ] ^{2}+\left [ A_{c}\sin \phi \right ] ^{2}}\\ & =\sqrt{\left [ m^{2}\left ( t\right ) +A_{c}^{2}+2A_{c}m\left ( t\right ) \right ] +\left [ A_{c}^{2}\sin ^{2}\phi \right ] } \end{align*}

Since \(\left \vert m\left ( t\right ) \right \vert <<\frac{A_{c}}{2}\), then \(m^{2}\left ( t\right ) +A_{c}^{2}+2A_{c}m\left ( t\right ) \simeq A_{c}^{2}\) hence

\begin{align*} a\left ( t\right ) & \simeq \sqrt{A_{c}^{2}+A_{c}^{2}\sin ^{2}\phi }\\ & =A_{c}\sqrt{1+\sin ^{2}\phi } \end{align*}

3.10.3  Problem 5.20

   3.10.3.1  Part(a)
   3.10.3.2  Part(b)
   3.10.3.3  Part(c)
   3.10.3.4  part(d)

pict
Figure 3.24:the Problem statement
3.10.3.1 Part(a)

An AM signal is \(s\left ( t\right ) =A_{c}\left [ 1+\mu \ m\left ( t\right ) \right ] \cos \left ( 2\pi f_{c}t+\theta \left ( t\right ) \right ) \).  Now compare this form with the one given above, which is \(s\left ( t\right ) =A_{c}\cos \left ( 2\pi f_{c}t+\theta \left ( t\right ) \right ) \). We see that \(\mu =0\), i.e. no message source exist. Hence percentage of modulation is zero.

3.10.3.2 Part(b)

\[ P_{av}=\frac{1}{2}A_{c}^{2}\] But \(A_{c}=10\), hence \begin{align*} P_{av} & =\frac{100}{2}\\ & =50 \text{watt} \end{align*}

3.10.3.3 Part(c)

From the general form for angle modulated signal

\[ s\left ( t\right ) =\cos \left ( \omega _{c}t+\theta \left ( t\right ) \right ) \]

Looking at \[ s\left ( t\right ) =A_{c}\cos \overset{Total\ Phase}{\overbrace{\left ( \overset{2\pi f_{c}}{\overbrace{\left ( 2\pi \times 10^{8}\right ) }}t+\overset{\theta \left ( t\right ) }{\overbrace{10\cos \left ( 2\pi \times 10^{3}t\right ) }}\right ) }}\]

Phase deviation is \[ \theta \left ( t\right ) =10\cos \left ( 2\pi \times 10^{3}t\right ) \] Which is maximum when \(\cos \left ( 2\pi \times 10^{3}t\right ) =1\)Hence maximum Phase deviation is \(10\) radians.

3.10.3.4 part(d)

Now, we know that the instantenouse frequency \(f_{i}\) is given by

\begin{align*} f_{i}\left ( t\right ) & =\frac{1}{2\pi }\frac{d}{dt}\left ( \text{total phase}\right ) \\ & =\frac{1}{2\pi }\frac{d}{dt}\left [ \omega _{c}t+\theta \left ( t\right ) \right ] \\ & =\frac{1}{2\pi }\frac{d}{dt}\left [ 2\pi f_{c}t+10\cos \left ( 2\pi \times 10^{3}t\right ) \right ] \\ & =f_{c}-10\left ( 10^{3}\right ) \sin \left ( 2\pi \times 10^{3}t\right ) \end{align*}

The deviation of frequency is the difference between \(f_{i}\) and the carrier frequency \(f_{c}\). Hence from the above we see that the frequency deviation is \begin{align*} \Delta f & =f_{i}-f_{c}\\ & =-10\left ( 10^{3}\right ) \sin \left ( 2\pi \times 10^{3}t\right ) \end{align*}

So, maximum \(\Delta f\) occures when \(\sin \left ( 2\pi \times 10^{3}t\right ) =-1\), hence \[ \max \left ( \Delta f\right ) =10^{4}\ \text{Hz}\]

3.10.4  Problem 5.22

   3.10.4.1  Part(a)
   3.10.4.2  Part(b)

pict
Figure 3.25:the Problem statement

The modulating waveform is \(m\left ( t\right ) \) Hence (I am assuming it is cos since it said sinusoidal)

\begin{align*} m\left ( t\right ) & =A_{m}\cos \left ( 2\pi f_{m}t\right ) \\ & =4\cos \left ( 2000\pi t\right ) \end{align*}

Since it is an FM signal, then

\[ s\left ( t\right ) =A_{c}\cos \left [ \overset{\theta \left ( t\right ) }{\overbrace{\omega _{c}t+2\pi k_{f}\int _{0}^{t}m\left ( x\right ) dx}}\right ] \]

Where \(k_{f}\) is the frequency deviation constant in cycle per volt-second. The gain here means the frequency gain, which is the frequency deviation (deviation from the \(f_{c}\) frequency). Let \(\Delta f\) be the frequency deviation in Hz, then \begin{align*} \Delta f & =f_{i}-f_{c}\\ & =\frac{1}{2\pi }\frac{d}{dt}\theta \left ( t\right ) \\ & =k_{f}m\left ( t\right ) \\ & =k_{f}\left [ 4\cos \left ( 2000\pi t\right ) \right ] \end{align*}

3.10.4.1 Part(a)

max \(\Delta f\) is

\[ \left ( \Delta f\right ) _{\max }=4k_{f}\]

But \(k_{f}=50\) hz/volt, hence

\begin{align*} \left ( \Delta f\right ) _{\max } & =4\times 50\\ & =200 \text{hz} \end{align*}

3.10.4.2 Part(b)

Modulation index \begin{align*} \beta & =\frac{\left ( \Delta f\right ) _{\max }}{f_{m}}\\ & =\frac{200}{1000}\\ & =0.2 \end{align*}

3.10.5  Problem 5.24

   3.10.5.1  Part (b)

pict
Figure 3.26:the Problem statement

\[ s\left ( t\right ) =A_{c}\cos \left ( 2\pi f_{c}t+2\pi k_{f}\int _{0}^{t}m\left ( x\right ) dx\right ) \]

We are told the carrier frequency has \(f_{c}=103.7\) Mhz\(,\) but there is a multiplier of 8\(,\) and hence the center frequency of the bandpass filter must be \(\frac{1}{8}\) of the carrier frequency. i.e.

center frequency of the bandpass filter is \(\frac{1}{8}103.7=\frac{103.7}{8}=12.963\)

Since peak deviation is \(75khz\), which means the deviation from the central frequency has maximum of \(75khz\), then \[ \frac{75}{8}=9.375 \text{ khz}\]

Hence bandwidth from center of frequency of bandwidth filter is \(9.375\) but we need to add frequency width of the audio which is \(15000-20=14980\) Hz on both side, hence

Bandwidth of BPF is \(9.375\times 10^{3}\pm 14980\)

3.10.5.1 Part (b)

To do

3.10.6  Problem 5.26

   3.10.6.1  Part(a)
   3.10.6.2  Part(b)
   3.10.6.3  Part(c)

pict
Figure 3.27:the Problem statement

\[ s\left ( t\right ) =A_{c}\cos \left ( \omega _{c}t+20\cos \omega _{1}t\right ) \]

where \(A_{c}=500,f_{1}=1khz,f_{c}=100Mhz\)

3.10.6.1 Part(a)

The general form of the above PM signal is

\[ s\left ( t\right ) =A_{c}\cos \left ( \omega _{c}t+\overset{\text{phase deviation}}{\overbrace{k_{p}m\left ( t\right ) }}\right ) \]

Where \(k_{p}m\left ( t\right ) \) is the phase deviation, and \(k_{p}\) is the phase deviation constant in radians per volt.  Hence we write

\[ k_{p}m\left ( t\right ) =20\cos \omega _{1}t \]

Then

\[ m\left ( t\right ) =\frac{20\cos \omega _{1}t}{k_{p}}\]

But we are given that \(k_{p}=100\) rad/voltage and \(f_{1}=1000hz\), then the above becomes

\begin{align*} m\left ( t\right ) & =\frac{20\cos \left ( 2000\pi t\right ) }{100}\\ & =0.2\cos \left ( 2000\pi t\right ) \end{align*}

its frequency is \(1\) khz and its peak value is \(0.2\) volts

3.10.6.2 Part(b)

The general form of the above FM signal is

\[ s\left ( t\right ) =A_{c}\cos \left ( \omega _{c}t+k_{f}\int _{0}^{t}m\left ( x\right ) dx\right ) \]

Where \(k_{f}\) is the frequency deviation constant in radians per volt-second

Hence

\[ k_{f}\int _{0}^{t}m\left ( x\right ) dx=20\cos \omega _{1}t \]

Solve for \(m\left ( t\right ) \) in the above, given that \(k_{f}=10^{6}\)radians per volt-second, hence

\begin{align*} k_{f}\int _{0}^{t}m\left ( x\right ) dx & =20\cos \omega _{1}t\\ \int _{0}^{t}m\left ( x\right ) dx & =\frac{20\cos \left ( 2000\pi t\right ) }{10^{6}} \end{align*}

Take derivative of both sides, we obtain

\begin{align*} m\left ( t\right ) & =\frac{20}{10^{6}}\left [ -\sin \left ( 2000\pi t\right ) \times 2000\pi \right ] \\ & =-\frac{20\times 2000\pi }{10^{6}}\sin \left ( 2000\pi t\right ) \\ & =-0.126\sin \left ( 2000\pi t\right ) \end{align*}

Hence its peak value is \(0.126\) and its frequency is \(1\) khz

3.10.6.3 Part(c)

\begin{align*} P_{av} & =\frac{\left \langle s^{2}\left ( t\right ) \right \rangle }{50}\\ & =\frac{\frac{1}{2}A_{c}^{2}}{50}\\ & =\frac{500^{2}}{100}\\ & =2500 \text{watt} \end{align*}

PEP is average power obtained if the complex envelope is held constant at its maximum values. i.e. (the normalized PEP) is

\[ PEP=\frac{1}{2}\left [ \max \left ( \left \vert \tilde{s}\left ( t\right ) \right \vert \right ) \right ] ^{2}\]

Since \begin{align*} s\left ( t\right ) & =A_{c}\cos \left ( \omega _{c}t+20\cos \omega _{1}t\right ) \\ & =A_{c}\left [ \cos \omega _{c}t\cos \left ( 20\cos \omega _{1}t\right ) -\sin \omega _{c}t\sin \left ( 20\cos \omega _{1}t\right ) \right ] \\ & =\overset{s_{I}\left ( t\right ) }{\overbrace{A_{c}\cos \left ( 20\cos \omega _{1}t\right ) }}\cos \omega _{c}t-\overset{s_{Q}\left ( t\right ) }{\overbrace{A_{c}\sin \left ( 20\cos \omega _{1}t\right ) }}\sin \omega _{c}t \end{align*}

Hence \begin{align*} \tilde{s}\left ( t\right ) & =s_{I}\left ( t\right ) +js_{Q}\left ( t\right ) \\ & =A_{c}\cos \left ( 20\cos \omega _{1}t\right ) +jA_{c}\sin \left ( 20\cos \omega _{1}t\right ) \end{align*}

Then\begin{align*} \left \vert \tilde{s}\left ( t\right ) \right \vert & =\sqrt{\left [ A_{c}\cos \left ( 20\cos \omega _{1}t\right ) \right ] ^{2}+\left [ A_{c}\sin \left ( 20\cos \omega _{1}t\right ) \right ] ^{2}}\\ & =A_{c}\sqrt{\cos ^{2}\left ( 20\cos \omega _{1}t\right ) +\sin ^{2}\left ( 20\cos \omega _{1}t\right ) }\\ & =A_{c} \end{align*}

Hence the non-normalized PEP is

\begin{align*} PEP & =\frac{\frac{1}{2}\left [ A_{c}\right ] ^{2}}{50}\\ & =\frac{500^{2}}{100}\\ & =2500 \text{watt} \end{align*}

ps. is there an easier or more direct way to find PEP than what I did? (assuming it is correct)

3.10.7  Key solution

PDF