Loading web-font TeX/Math/Italic

3.10  HW 10

  3.10.1  Problem 3.24
  3.10.2  Part(b)
  3.10.3  Problem 5.20
  3.10.4  Problem 5.22
  3.10.5  Problem 5.24
  3.10.6  Problem 5.26
  3.10.7  Key solution
PDF (letter size)
PDF (legal size)

3.10.1  Problem 3.24

   3.10.1.1  Part(a)

pict
Figure 3.23:the Problem statement

s_{1}\left ( t\right ) =A_{c}\cos \left ( \omega _{c}t+\phi \right )

DSB-SC signal is

s_{2}\left ( t\right ) =m\left ( t\right ) \cos \left ( \omega _{c}t\right )

Hence by adding the above, we obtain

s\left ( t\right ) =m\left ( t\right ) \cos \left ( \omega _{c}t\right ) +A_{c}\cos \left ( \omega _{c}t+\phi \right )

The above signal is applied to an ideal envelope detector. The output of an envelope detector is given by

a\left ( t\right ) =\sqrt{s_{I}^{2}\left ( t\right ) +s_{Q}^{2}\left ( t\right ) }

Since s\left ( t\right ) is a bandpass signal, we need to first write it in the canonical form s_{I}\left ( t\right ) \cos \left ( \omega _{c}t\right ) -s_{Q}\left ( t\right ) \sin \left ( \omega _{c}t\right )

Using \cos \left ( A+B\right ) =\cos A\cos B-\sin A\sin B, then we have

\begin{align*} s\left ( t\right ) & =m\left ( t\right ) \cos \left ( \omega _{c}t\right ) +A_{c}\left [ \cos \omega _{c}t\cos \phi -\sin \omega _{c}t\sin \phi \right ] \\ & =\left [ m\left ( t\right ) +A_{c}\cos \phi \right ] \cos \left ( \omega _{c}t\right ) -A_{c}\sin \omega _{c}t\sin \phi \end{align*}

Hence we see that \begin{align*} s_{I}\left ( t\right ) & =m\left ( t\right ) +A_{c}\cos \phi \\ s_{Q}\left ( t\right ) & =A_{c}\sin \phi \end{align*}

Now we can start answering parts (a) and (b)

3.10.1.1 Part(a)

When \phi =0, then

\begin{align*} s_{I}\left ( t\right ) & =m\left ( t\right ) +A_{c}\\ s_{Q}\left ( t\right ) & =0 \end{align*}

Hence

\begin{align*} a\left ( t\right ) & =\sqrt{\left [ m\left ( t\right ) +A_{c}\right ] ^{2}+0^{2}}\\ & =m\left ( t\right ) +A_{c} \end{align*}

3.10.2  Part(b)

When \phi \neq 0 and \left \vert m\left ( t\right ) \right \vert <<\frac{A_{c}}{2}

\begin{align*} a\left ( t\right ) & =\sqrt{\left [ m\left ( t\right ) +A_{c}\right ] ^{2}+\left [ A_{c}\sin \phi \right ] ^{2}}\\ & =\sqrt{\left [ m^{2}\left ( t\right ) +A_{c}^{2}+2A_{c}m\left ( t\right ) \right ] +\left [ A_{c}^{2}\sin ^{2}\phi \right ] } \end{align*}

Since \left \vert m\left ( t\right ) \right \vert <<\frac{A_{c}}{2}, then m^{2}\left ( t\right ) +A_{c}^{2}+2A_{c}m\left ( t\right ) \simeq A_{c}^{2} hence

\begin{align*} a\left ( t\right ) & \simeq \sqrt{A_{c}^{2}+A_{c}^{2}\sin ^{2}\phi }\\ & =A_{c}\sqrt{1+\sin ^{2}\phi } \end{align*}

3.10.3  Problem 5.20

   3.10.3.1  Part(a)
   3.10.3.2  Part(b)
   3.10.3.3  Part(c)
   3.10.3.4  part(d)

pict
Figure 3.24:the Problem statement
3.10.3.1 Part(a)

An AM signal is s\left ( t\right ) =A_{c}\left [ 1+\mu \ m\left ( t\right ) \right ] \cos \left ( 2\pi f_{c}t+\theta \left ( t\right ) \right ) .  Now compare this form with the one given above, which is s\left ( t\right ) =A_{c}\cos \left ( 2\pi f_{c}t+\theta \left ( t\right ) \right ) . We see that \mu =0, i.e. no message source exist. Hence percentage of modulation is zero.

3.10.3.2 Part(b)

P_{av}=\frac{1}{2}A_{c}^{2}

But A_{c}=10, hence \begin{align*} P_{av} & =\frac{100}{2}\\ & =50 \text{watt} \end{align*}

3.10.3.3 Part(c)

From the general form for angle modulated signal

s\left ( t\right ) =\cos \left ( \omega _{c}t+\theta \left ( t\right ) \right )

Looking at s\left ( t\right ) =A_{c}\cos \overset{Total\ Phase}{\overbrace{\left ( \overset{2\pi f_{c}}{\overbrace{\left ( 2\pi \times 10^{8}\right ) }}t+\overset{\theta \left ( t\right ) }{\overbrace{10\cos \left ( 2\pi \times 10^{3}t\right ) }}\right ) }}

Phase deviation is \theta \left ( t\right ) =10\cos \left ( 2\pi \times 10^{3}t\right )

Which is maximum when \cos \left ( 2\pi \times 10^{3}t\right ) =1Hence maximum Phase deviation is 10 radians.

3.10.3.4 part(d)

Now, we know that the instantenouse frequency f_{i} is given by

\begin{align*} f_{i}\left ( t\right ) & =\frac{1}{2\pi }\frac{d}{dt}\left ( \text{total phase}\right ) \\ & =\frac{1}{2\pi }\frac{d}{dt}\left [ \omega _{c}t+\theta \left ( t\right ) \right ] \\ & =\frac{1}{2\pi }\frac{d}{dt}\left [ 2\pi f_{c}t+10\cos \left ( 2\pi \times 10^{3}t\right ) \right ] \\ & =f_{c}-10\left ( 10^{3}\right ) \sin \left ( 2\pi \times 10^{3}t\right ) \end{align*}

The deviation of frequency is the difference between f_{i} and the carrier frequency f_{c}. Hence from the above we see that the frequency deviation is \begin{align*} \Delta f & =f_{i}-f_{c}\\ & =-10\left ( 10^{3}\right ) \sin \left ( 2\pi \times 10^{3}t\right ) \end{align*}

So, maximum \Delta f occures when \sin \left ( 2\pi \times 10^{3}t\right ) =-1, hence \max \left ( \Delta f\right ) =10^{4}\ \text{Hz}

3.10.4  Problem 5.22

   3.10.4.1  Part(a)
   3.10.4.2  Part(b)

pict
Figure 3.25:the Problem statement

The modulating waveform is m\left ( t\right ) Hence (I am assuming it is cos since it said sinusoidal)

\begin{align*} m\left ( t\right ) & =A_{m}\cos \left ( 2\pi f_{m}t\right ) \\ & =4\cos \left ( 2000\pi t\right ) \end{align*}

Since it is an FM signal, then

s\left ( t\right ) =A_{c}\cos \left [ \overset{\theta \left ( t\right ) }{\overbrace{\omega _{c}t+2\pi k_{f}\int _{0}^{t}m\left ( x\right ) dx}}\right ]

Where k_{f} is the frequency deviation constant in cycle per volt-second. The gain here means the frequency gain, which is the frequency deviation (deviation from the f_{c} frequency). Let \Delta f be the frequency deviation in Hz, then \begin{align*} \Delta f & =f_{i}-f_{c}\\ & =\frac{1}{2\pi }\frac{d}{dt}\theta \left ( t\right ) \\ & =k_{f}m\left ( t\right ) \\ & =k_{f}\left [ 4\cos \left ( 2000\pi t\right ) \right ] \end{align*}

3.10.4.1 Part(a)

max \Delta f is

\left ( \Delta f\right ) _{\max }=4k_{f}

But k_{f}=50 hz/volt, hence

\begin{align*} \left ( \Delta f\right ) _{\max } & =4\times 50\\ & =200 \text{hz} \end{align*}

3.10.4.2 Part(b)

Modulation index \begin{align*} \beta & =\frac{\left ( \Delta f\right ) _{\max }}{f_{m}}\\ & =\frac{200}{1000}\\ & =0.2 \end{align*}

3.10.5  Problem 5.24

   3.10.5.1  Part (b)

pict
Figure 3.26:the Problem statement

s\left ( t\right ) =A_{c}\cos \left ( 2\pi f_{c}t+2\pi k_{f}\int _{0}^{t}m\left ( x\right ) dx\right )

We are told the carrier frequency has f_{c}=103.7 Mhz, but there is a multiplier of 8, and hence the center frequency of the bandpass filter must be \frac{1}{8} of the carrier frequency. i.e.

center frequency of the bandpass filter is \frac{1}{8}103.7=\frac{103.7}{8}=12.963

Since peak deviation is 75khz, which means the deviation from the central frequency has maximum of 75khz, then \frac{75}{8}=9.375 \text{ khz}

Hence bandwidth from center of frequency of bandwidth filter is 9.375 but we need to add frequency width of the audio which is 15000-20=14980 Hz on both side, hence

Bandwidth of BPF is 9.375\times 10^{3}\pm 14980

3.10.5.1 Part (b)

To do

3.10.6  Problem 5.26

   3.10.6.1  Part(a)
   3.10.6.2  Part(b)
   3.10.6.3  Part(c)

pict
Figure 3.27:the Problem statement

s\left ( t\right ) =A_{c}\cos \left ( \omega _{c}t+20\cos \omega _{1}t\right )

where A_{c}=500,f_{1}=1khz,f_{c}=100Mhz

3.10.6.1 Part(a)

The general form of the above PM signal is

s\left ( t\right ) =A_{c}\cos \left ( \omega _{c}t+\overset{\text{phase deviation}}{\overbrace{k_{p}m\left ( t\right ) }}\right )

Where k_{p}m\left ( t\right ) is the phase deviation, and k_{p} is the phase deviation constant in radians per volt.  Hence we write

k_{p}m\left ( t\right ) =20\cos \omega _{1}t

Then

m\left ( t\right ) =\frac{20\cos \omega _{1}t}{k_{p}}

But we are given that k_{p}=100 rad/voltage and f_{1}=1000hz, then the above becomes

\begin{align*} m\left ( t\right ) & =\frac{20\cos \left ( 2000\pi t\right ) }{100}\\ & =0.2\cos \left ( 2000\pi t\right ) \end{align*}

its frequency is 1 khz and its peak value is 0.2 volts

3.10.6.2 Part(b)

The general form of the above FM signal is

s\left ( t\right ) =A_{c}\cos \left ( \omega _{c}t+k_{f}\int _{0}^{t}m\left ( x\right ) dx\right )

Where k_{f} is the frequency deviation constant in radians per volt-second

Hence

k_{f}\int _{0}^{t}m\left ( x\right ) dx=20\cos \omega _{1}t

Solve for m\left ( t\right ) in the above, given that k_{f}=10^{6}radians per volt-second, hence

\begin{align*} k_{f}\int _{0}^{t}m\left ( x\right ) dx & =20\cos \omega _{1}t\\ \int _{0}^{t}m\left ( x\right ) dx & =\frac{20\cos \left ( 2000\pi t\right ) }{10^{6}} \end{align*}

Take derivative of both sides, we obtain

\begin{align*} m\left ( t\right ) & =\frac{20}{10^{6}}\left [ -\sin \left ( 2000\pi t\right ) \times 2000\pi \right ] \\ & =-\frac{20\times 2000\pi }{10^{6}}\sin \left ( 2000\pi t\right ) \\ & =-0.126\sin \left ( 2000\pi t\right ) \end{align*}

Hence its peak value is 0.126 and its frequency is 1 khz

3.10.6.3 Part(c)

\begin{align*} P_{av} & =\frac{\left \langle s^{2}\left ( t\right ) \right \rangle }{50}\\ & =\frac{\frac{1}{2}A_{c}^{2}}{50}\\ & =\frac{500^{2}}{100}\\ & =2500 \text{watt} \end{align*}

PEP is average power obtained if the complex envelope is held constant at its maximum values. i.e. (the normalized PEP) is

PEP=\frac{1}{2}\left [ \max \left ( \left \vert \tilde{s}\left ( t\right ) \right \vert \right ) \right ] ^{2}

Since \begin{align*} s\left ( t\right ) & =A_{c}\cos \left ( \omega _{c}t+20\cos \omega _{1}t\right ) \\ & =A_{c}\left [ \cos \omega _{c}t\cos \left ( 20\cos \omega _{1}t\right ) -\sin \omega _{c}t\sin \left ( 20\cos \omega _{1}t\right ) \right ] \\ & =\overset{s_{I}\left ( t\right ) }{\overbrace{A_{c}\cos \left ( 20\cos \omega _{1}t\right ) }}\cos \omega _{c}t-\overset{s_{Q}\left ( t\right ) }{\overbrace{A_{c}\sin \left ( 20\cos \omega _{1}t\right ) }}\sin \omega _{c}t \end{align*}

Hence \begin{align*} \tilde{s}\left ( t\right ) & =s_{I}\left ( t\right ) +js_{Q}\left ( t\right ) \\ & =A_{c}\cos \left ( 20\cos \omega _{1}t\right ) +jA_{c}\sin \left ( 20\cos \omega _{1}t\right ) \end{align*}

Then\begin{align*} \left \vert \tilde{s}\left ( t\right ) \right \vert & =\sqrt{\left [ A_{c}\cos \left ( 20\cos \omega _{1}t\right ) \right ] ^{2}+\left [ A_{c}\sin \left ( 20\cos \omega _{1}t\right ) \right ] ^{2}}\\ & =A_{c}\sqrt{\cos ^{2}\left ( 20\cos \omega _{1}t\right ) +\sin ^{2}\left ( 20\cos \omega _{1}t\right ) }\\ & =A_{c} \end{align*}

Hence the non-normalized PEP is

\begin{align*} PEP & =\frac{\frac{1}{2}\left [ A_{c}\right ] ^{2}}{50}\\ & =\frac{500^{2}}{100}\\ & =2500 \text{watt} \end{align*}

ps. is there an easier or more direct way to find PEP than what I did? (assuming it is correct)

3.10.7  Key solution

PDF