4.2 HW 1

  4.2.1 Section 1.1, Problem 10
  4.2.2 Section 1.1, Problem 16
  4.2.3 Section 1.1, Problem 24
  4.2.4 Section 1.1, Problem 32
  4.2.5 Section 1.2, problem 6(b,e)
  4.2.6 Section 1.2, problem 7(b,c)
  4.2.7 Section 1.2, problem 10
  4.2.8 Section 1.2, problem 28
  4.2.9 Section 1.2, problem 40
  4.2.10 Section 1.3, problem 9
  4.2.11 Section 1.3, Problem 11
  4.2.12 Section 1.3, Problem 12
  4.2.13 Section 1.3 problem 25

UP

PDF (letter size)

PDF (legal size)

4.2.1 Section 1.1, Problem 10

Problem: Prove or disprove this assertion: if \(f\) is differentiable at \(x\), then for any \(\alpha \neq 1\)

\[ f^{\prime }\relax (x) =\lim _{h\rightarrow 0}\frac {f\left (x+h\right ) -f\left (x+\alpha h\right ) }{h-\alpha h}\]

Solution:

Since \(f^{\prime }\relax (x) \) exists, then expanding \(f\left ( x+h\right ) \) and \(f\left (x+\alpha h\right ) \) in Taylor series results in

\begin {align*} f\left (x+h\right ) & =f\relax (x) +f^{\prime }\relax (x) h+\cdots \text {(Higher\ Order\ Terms\ involving\ }h^{m}\text { where }m\geq 2\text {)}\\ f\left (x+\alpha h\right ) & =f\relax (x) +\left (\alpha h\right ) f^{\prime }\relax (x) +\cdots \text {(Higher\ Order\ Terms\ involving\ }\left (\alpha h\right ) ^{m}\text { where }m\geq 2\text {)} \end {align*}

From first equation above we write

\begin {equation} f\relax (x) =f\left (x+h\right ) -hf^{^{\prime }}\relax (x) -(\text {Higher\ Order\ Terms\ involving\ }h^{m}\text {where }m\geq 2) \tag {1} \end {equation}

And from the second equation we write

\begin {equation} f\relax (x) =f\left (x+\alpha h\right ) -\left (\alpha h\right ) f^{^{\prime }}\relax (x) -(\text {Higher\ Order\ Terms\ involving\ }\left (\alpha h\right ) ^{m}\ \text {where }m\geq 2) \tag {2} \end {equation}

equating equations (1)-(2)=0 we obtain

\begin {align*} \left [ f\left (x+h\right ) -hf^{^{\prime }}\relax (x) -O\left ( \ h^{m}\right ) \right ] -\left [ f\left (x+\alpha h\right ) -\left (\alpha h\right ) f^{^{\prime }}\relax (x) -O\ \left (\alpha h\right ) ^{m}\right ] & =0\\ f^{\prime }\relax (x) \left [ \alpha h-h\right ] +f\left (x+h\right ) -f\left (x+\alpha h\right ) -O\ \left (h^{m}\right ) +O\left (\alpha h\right ) ^{m} & =0 \end {align*}

Keep \(f^{\prime }\relax (x) \) on one side, and move everything to the other side results in

\[ f^{\prime }\relax (x) =\frac {f\left (x+\alpha h\right ) -f\left ( x+h\right ) }{\left (\alpha h-h\right ) }+\frac {\left (O\ \left ( h^{m}\right ) -O\left (\alpha h\right ) ^{m}\right ) }{\left (\alpha h-h\right ) }\]

As \(h\) goes to zero the above reduces to

\[ f^{\prime }\relax (x) =\lim _{h\rightarrow 0}\frac {f\left (x+\alpha h\right ) -f\left (x+h\right ) }{\left (\alpha h-h\right ) }\]

rearrange the sign results in

\[ f^{\prime }\relax (x) =\lim _{h\rightarrow 0}\frac {f\left (x+h\right ) -f\left (x+\alpha h\right ) }{\left (h-\alpha h\right ) }\]

4.2.2 Section 1.1, Problem 16

Problem: If the series for \(\ln x\) is truncated after the term involving \(\left (x-1\right ) ^{1000}\) and is then used to compute \(\ln 2\), what bound on the error can be give?

Answer:

Assume \(\ln x\) has a power series expansion around \(x_{0}\), we write, from definition of power series

\begin {equation} \ln \relax (x) =a_{0}+a_{1}\left (x-x_{0}\right ) +a_{2}\left ( x-x_{0}\right ) ^{2}+a_{3}\left (x-x_{0}\right ) ^{3}+\cdots +a_{n}\left ( x-x_{0}\right ) ^{n}+\cdots \tag {1} \end {equation}

When \(x_{0}=1\) we get

\begin {equation} \ln \relax (x) =a_{0}+a_{1}\left (x-1\right ) +a_{2}\left (x-1\right ) ^{2}+a_{3}\left (x-1\right ) ^{3}+\cdots +a_{n}\left (x-1\right ) ^{n}+\cdots \tag {2} \end {equation}

At \(x=1\) we obtain \(a_{0}=0\) since \(\ln \relax (1) =0\)

Differentiate (2)

\begin {equation} \frac {1}{x}=a_{1}+2a_{2}\left (x-1\right ) +3a_{3}\left (x-1\right ) ^{2}+\cdots +na_{n}\left (x-1\right ) ^{n-1}+\cdots \tag {3} \end {equation}

At \(x=1\) we obtain \(a_{1}=1\)

Differentiate (3)

\begin {equation} \frac {-1}{x^{2}}=2a_{2}+\left (3\times 2\right ) a_{3}\left (x-1\right ) +\cdots +n\left (n-1\right ) a_{n}\left (x-1\right ) ^{n-2}+\cdots \tag {4} \end {equation}

At \(x=1\) we obtain \(-1=2a_{2}\rightarrow a_{2}=\frac {-1}{2}\)

Differentiate (4)

\begin {equation} \frac {2}{x^{3}}=\left (3\times 2\right ) a_{3}+\cdots +n\left (n-1\right ) \left (n-2\right ) a_{n}\left (x-1\right ) ^{n-3}+\cdots \tag {5} \end {equation}

at \(x=1\) we obtain \(a_{3}=\frac {1}{3}\)

continue as above, we obtain the power series for \(\ln \relax (x) \) as

\[ \ln \relax (x) =\left (x-1\right ) -\frac {1}{2}\left (x-1\right ) ^{2}+\frac {1}{3}\left (x-1\right ) ^{3}-\frac {1}{4}\left (x-1\right ) ^{4}+\cdots +\frac {\left (-1\right ) ^{n+1}}{n}\left (x-1\right ) ^{n}+\cdots \]

Notice that for the above to converge, we need to have \(\left (x-1\right ) \leq 1\), or \(x\leq 2\)

Now if the series is truncated after \(\left (x-1\right ) ^{1000}\), hence \(n=1000\), and the maximum error will be the \(\left (n+1\right ) \) term.

Hence \begin {align*} E & \leq \left \vert \frac {\left (-1\right ) ^{1002}}{1001}\left ( x-1\right ) ^{1001}\right \vert \\ & \leq \frac {\left (x-1\right ) ^{1001}}{1001} \end {align*}

which for \(x=2\)

\begin {align*} E & \leq \frac {\left (2-1\right ) ^{1001}}{1001}\\ & \leq \frac {1}{1001}\\ & \leq 9.\,\allowbreak 99\times 10^{-4} \end {align*}

4.2.3 Section 1.1, Problem 24

Problem: For small values of \(x\), how good is the approximation for \(\cos x\approx 1-\frac {1}{2}x^{2}\)? for what range of values will this approximation give correct results rounded to 3 decimal places?

Answer:

Expand \(\cos \relax (x) \) in power series, we write

\[ \cos \relax (x) =a_{0}+a_{1}\left (x-x_{0}\right ) +a_{2}\left ( x-x_{0}\right ) ^{2}+a_{3}\left (x-x_{0}\right ) ^{3}+\cdots +a_{n}\left ( x-x_{0}\right ) ^{n}+\cdots \]

expand at \(x_{0}=0\)

\[ \cos \relax (x) =a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+\cdots +a_{n}x^{n}+\cdots \]

At \(x=0\rightarrow a_{0}=1\), Differentiate the above

\[ -\sin \relax (x) =a_{1}+2a_{2}x+3a_{3}x^{2}+\cdots +na_{n}x^{n-1}+\cdots \]

at \(x=0\rightarrow a_{1}=0\), Differentiate the above

\[ -\cos \relax (x) =2a_{2}+\left (3\times 2\right ) a_{3}x+\cdots +n\left ( n-1\right ) a_{n}x^{n-2}+\cdots \]

at \(x=0\rightarrow a_{2}=-\frac {1}{2}\), continue as above, we obtain the series for \(\cos \relax (x) \) as

\[ \cos \relax (x) =1-\frac {1}{2}x^{2}+\frac {1}{4!}x^{4}-\cdots +\frac {\left (-1\right ) ^{n+1}}{n!}x^{n}+\cdots \]

Hence if we truncate the series at \(\cos \relax (x) \approx 1-\frac {1}{2}x^{2}\), then the maximum error will be bounded by \[ E\leq \frac {1}{4!}x^{4}\]

Since we want the error to be correct to 3 decimal places, then we write

\[ E<0.001 \]

Hence \begin {align*} x^{4} & <4!(0.001)\\ & <0.024 \end {align*}

Hence \[ x<\left (0.024\right ) ^{\frac {1}{4}}=0.393\,60 \]

So for \(x<0.393\,60\) radians (about \(22.\,\allowbreak 552^{0}\)), the approximation \(\cos \relax (x) \approx 1-\frac {1}{2}x^{2}\) give correct results to 3 decimal places.

A small code to verify:

pict
Figure 4.1:code

4.2.4 Section 1.1, Problem 32

Problem: First develop the function \(\sqrt {x}\) in a series of powers of \(\left (x-1\right ) \) and then use it to approximate \(\sqrt {0.99999\ 99995}\) to 10 decimal places.

Solution:

\[ \sqrt {x}=a_{0}+a_{1}\left (x-x_{0}\right ) +a_{2}\left (x-x_{0}\right ) ^{2}+a_{3}\left (x-x_{0}\right ) ^{3}+\cdots +a_{n}\left (x-x_{0}\right ) ^{n}+\cdots \]

Expand at \(x_{0}=1\)

\[ \sqrt {x}=a_{0}+a_{1}\left (x-1\right ) +a_{2}\left (x-1\right ) ^{2}+a_{3}\left (x-1\right ) ^{3}+\cdots +a_{n}\left (x-1\right ) ^{n}+\cdots \]

at \(x=1\rightarrow a_{0}=1\), differentiating the above we obtain

\[ \frac {1}{2\sqrt {x}}=a_{1}+2a_{2}\left (x-1\right ) +3a_{3}\left (x-1\right ) ^{2}+\cdots +na_{n}\left (x-1\right ) ^{n-1}+\cdots \]

at \(x=1\rightarrow a_{1}=\frac {1}{2}\), differentiate the above we obtain

\[ \frac {-1}{4\relax (x) ^{3/2}}=2a_{2}+\left (3\times 2\right ) a_{3}\left (x-1\right ) +\cdots +n\left (n-1\right ) a_{n}\left (x-1\right ) ^{n-2}+\cdots \]

at \(x=1\rightarrow a_{2}=-\frac {1}{4\times 2}=-\frac {1}{8}\), differentiate the above we obtain

\[ \frac {3}{8\relax (x) ^{5/2}}=\left (3\times 2\right ) a_{3}+\cdots +n\left (n-1\right ) \left (n-2\right ) a_{n}\left (x-1\right ) ^{n-3}+\cdots \]

at \(x=1\rightarrow a_{3}=\frac {3}{8\left (3\times 2\right ) }=\frac {1}{16}\) differentiating the above gives

\[ -\frac {15}{16\relax (x) ^{7/2}}=\left (4\times 3\times 2\right ) a_{4}+\cdots +n\left (n-1\right ) \left (n-2\right ) \left (n-3\right ) a_{n}\left (x-1\right ) ^{n-4}+\cdots \]

at \(x=1\rightarrow a_{4}=-\frac {15}{16\left (4\times 3\times 2\right ) }=-\frac {5}{128}\)

Hence the series is

\[ \sqrt {x}=1+\frac {1}{2}\left (x-1\right ) -\frac {1}{8}\left (x-1\right ) ^{2}+\frac {1}{16}\left (x-1\right ) ^{3}-\frac {5}{128}\left (x-1\right ) ^{4}+\cdots \]

Note: For convergence we require \(\left \vert x\right \vert \leq 1\)

We want accuracy to 10 decimal places. Since

\[ \sqrt {0.99999\ 99995}=0.9999\ 999974 \]

Then the series, using 2 terms gives

\[ \sqrt {0.99999\ 99995}\approx \left (1+\frac {1}{2}\left (x-1\right ) \right ) _{x=0.9999999995}=1+\frac {1}{2}\left (0.9999999995-1\right ) =0.9999\ 999975 \]

hence 2 terms are only needed. hence \(n=1\)

4.2.5 Section 1.2, problem 6(b,e)

Problem: For the pair \(\left (x_{n},\alpha _{n}\right ) \), is it true that \(x_{n}=O\left (\alpha _{n}\right ) \) as \(n\rightarrow \infty ?\)

b) \(x_{n}=5n^{2}+9n^{3}+1,\alpha _{n}=1\)

e) \(x_{n}=\sqrt {n+3},\alpha _{n}=\frac {1}{n}\)

Solution:

b) Assume that \(5n^{2}+9n^{3}+1\leq C\left (\alpha _{n}\right ) \) hence \(5n^{2}+9n^{3}+1\leq C\), but since \(n>1\) and keeps increasing, then no matter how large a \(C\) we select, \(5n^{2}+9n^{3}\) will eventually become larger than any constant \(C\) we choose when \(n>N\,\ \) for sufficiently large \(N\).

Hence there is no such \(C\), hence the answer is NOT TRUE.

e) we see that \(lim_{n\rightarrow \infty }x_{n}=\infty \), however \(\lim _{n\rightarrow \infty }\frac {1}{n}=0\), hence it is not possible to find \(C\) s.t. \(\sqrt {n+3}\leq C\frac {1}{n}\) for any \(N\). Hence the answer is NOT TRUE.

4.2.6 Section 1.2, problem 7(b,c)

Problem: Choose the correct assertion (in each, \(n\rightarrow \infty )\)

b) \(\frac {n+1}{\sqrt {n}}=o\relax (1) \)

c)\(\frac {1}{\ln n}=O\left (\frac {1}{n}\right ) \)

Solution:

b) \(x_{n}=\frac {n+1}{\sqrt {n}},\alpha _{n}=1\).

\begin {align*} \lim _{n\rightarrow \infty }\left (\frac {x_{n}}{\alpha _{n}}\right ) & =\lim _{n\rightarrow \infty }\left (\frac {n+1}{\sqrt {n}}\right ) \\ & =\lim _{n\rightarrow \infty }\left (\frac {n+1}{\sqrt {n}}\right ) \\ & =\lim _{n\rightarrow \infty }\left (\frac {n}{\sqrt {n}}\right ) +\lim _{n\rightarrow \infty }\left (\frac {1}{\sqrt {n}}\right ) \\ & =\lim _{n\rightarrow \infty }\left (\sqrt {n}\right ) +0\\ & \neq 0 \end {align*}

Since the limit as \(n\rightarrow \infty \) is not zero, hence the assertion is FALSE

c)\(x_{n}=\frac {1}{\ln n},\alpha _{n}=\frac {1}{n}\). Since \(\ln n\) grows less rapidly than \(n\,\ \)then \(\frac {1}{\ln n}\)grows more rapidly than \(\frac {1}{n}\), Hence it is not possible to find some constant \(C\) s.t. \(\frac {1}{\ln n}\leq C\frac {1}{n}\) , hence assertion is FALSE

4.2.7 Section 1.2, problem 10

Problem: Show that these assertions are not true:

a) \(e^{x}-1=O\left (x^{2}\right ) \) as \(x\rightarrow 0\)

b) \(x^{-2}=O\left (\cot x\right ) \) as \(x\rightarrow 0\)

c) \(\cot x=o\left (x^{-1}\right ) \) as \(x\rightarrow 0\)

Answer:

a) We need to \begin {align*} x_{n} & =e^{x}-1\\ & =\left (1+x+\frac {x^{2}}{2!}+\frac {x^{3}}{3!}+\cdots \right ) -1\\ & =x+\frac {x^{2}}{2!}+\frac {x^{3}}{3!}+\cdots \end {align*}

and \(\alpha _{n}=x^{2}\)

As \(x\rightarrow 0\,\ \)the term \(x\) will become larger than \(x^{2}\), hence near \(x=0\), \(x_{n}>\alpha _{n}\) since near \(x=0\) \(x+\frac {x^{2}}{2!}+\frac {x^{3}}{3!}+\cdots >x^{2}\)

Therefore it is not possible to find a constant \(C\) such that \(x_{n}\leq C\alpha _{n}\) near \(x=0\) since for any constant \(C\) we select, no matter how small, we can find \(x\) closer to zero such that \(x_{n}>C\alpha _{n}\), Hence assertion is not true.

b) The power series for \(\cot \relax (x) \) is (Using CAS:).

pict
Figure 4.2:code

Here we have \(x_{n}=x^{-2}\) and \(\alpha _{n}=\frac {1}{x}-\frac {x}{3}-\frac {x^{3}}{45}-\cdots \)

As \(x\rightarrow 0\), \(\ \)then \(\alpha _{n}\rightarrow \frac {1}{x}\)

But \(\frac {1}{x}\) will grow less rapidly than \(\frac {1}{x^{2}}\)would as \(x\rightarrow 0\), hence it is not possible to find a constant \(C\) such that \(x_{n}\leq C\alpha _{n}\) near \(x=0\) since for any constant \(C\) we select, no matter how small, can find \(x\) closer to zero such that \(x_{n}>C\alpha _{n}\), Hence assertion is not true.

c) \(x_{n}=\cot \relax (x) =\frac {1}{x}-\frac {x}{3}-\frac {x^{3}}{45}-\cdots ,\alpha _{n}=\frac {1}{x}\), hence

\begin {align*} \lim _{x\rightarrow 0}\frac {x_{n}}{\alpha _{n}} & =\lim _{x\rightarrow 0}\frac {\frac {1}{x}-\frac {x}{3}-\frac {x^{3}}{45}-\cdots }{\frac {1}{x}}\\ & =\lim _{x\rightarrow 0}\frac {\frac {1}{x}\left (1-\frac {x^{2}}{3}-\frac {x^{4}}{45}-\cdots \right ) }{\frac {1}{x}}\\ & =\lim _{x\rightarrow 0}\left (1-\frac {x^{2}}{3}-\frac {x^{4}}{45}-\cdots \right ) \\ & =1 \end {align*}

Since the limit does not go to zero, hence the assertion is not true.

4.2.8 Section 1.2, problem 28

Problem: Prove that \(x_{n}=x+o\relax (1) \) iff \(\lim _{n\rightarrow \infty }x_{n}=x\)

Solution:

Let \(X_{n}=x_{n}-x,\alpha _{n}=1\)

Forward direction proof:

\begin {align*} \lim _{n\rightarrow \infty }X_{n} & =\lim _{n\rightarrow \infty }\left ( x_{n}-x\right ) \\ & =\left (\lim _{n\rightarrow \infty }x_{n}\right ) -\left (\lim _{n\rightarrow \infty }x\right ) \\ & =\left (\lim _{n\rightarrow \infty }x_{n}\right ) -x \end {align*}

If \(\lim _{n\rightarrow \infty }x_{n}=x\), then the above become \(x-x=0\)

Hence \(\lim _{n\rightarrow \infty }\frac {X_{n}}{\alpha _{n}}=\frac {0}{1}=0\), hence \(X_{n}=o\relax (1) \) or \(x_{n}-x=o\relax (1) \) or \(x_{n}=x+o\relax (1) \)

Now proof in the reverse direction. Assume that \(\lim _{n\rightarrow \infty }x_{n}\neq x\), we need to show that this implies \(x_{n}\neq x+o\left ( 1\right ) \)

If \(\lim _{n\rightarrow \infty }x_{n}\neq x\), then we can say that \(\lim _{n\rightarrow \infty }x_{n}=\beta \), where \(\beta \neq x\), hence \(\lim _{n\rightarrow \infty }X_{n}=\beta -x\)

Hence \begin {align*} \lim _{n\rightarrow \infty }\frac {X_{n}}{\alpha _{n}} & =\lim _{n\rightarrow \infty }\frac {\beta -x}{\alpha _{n}}\\ & =\frac {\beta -x}{1}\\ & =\beta -x \end {align*}

But since \(\beta \neq x\), then this limit does not go to zero. Hence \(x_{n}\neq x+o\relax (1) \). This complete the proof.

4.2.9 Section 1.2, problem 40

Problem: Prove: If \(\alpha _{n}\rightarrow 0\), \(x_{n}=O\left ( \alpha _{n}\right ) \), and \(y_{n}=O\left (\alpha _{n}\right ) \) then \(x_{n}y_{n}=o\left (\alpha _{n}\right ) \)

Answer: Since \(x_{n}=O\left (\alpha _{n}\right ) \) then \(x_{n}\leq C_{1}\left (\alpha _{n}\right ) \), and since \(y_{n}=O\left (\alpha _{n}\right ) \) then \(y_{n}\leq C_{2}\left (\alpha _{n}\right ) ,\) where \(C_{1},C_{2}\) are positive constants.

Hence \begin {align*} x_{n}y_{n} & \leq C_{1}C_{2}\left (\alpha _{n}\right ) \\ & \leq C\left (\alpha _{n}\right ) \end {align*}

Where \(C=C_{1}C_{2}\)

But \(x_{n}y_{n}\leq C\left (\alpha _{n}\right ) \) means that \(x_{n}y_{n}\) is bounded above by \(\alpha _{n}\).

But we are told next that \(\lim _{n\rightarrow \infty }\alpha _{n}=0\), hence this means that the sequence \(x_{n}y_{n}\) will reach zero before the sequence \(\alpha _{n}\). But this is the same as saying that \(x_{n}y_{n}=o\left ( \alpha _{n}\right ) \)

4.2.10 Section 1.3, problem 9

Problem: Prove that if \(L_{1}\) and \(L_{2}\) are linear combinations of powers of \(E\) and if \(L_{1}x=0\), then \(L_{1}L_{2}x=0\)

Answer: Let \(L_{1}=a_{1}E^{n_{1}}+a_{2}E^{n_{2}}+\cdots \) and \(L_{2}=b_{1}E^{m_{1}}+b_{2}E^{m_{2}}+\cdots \)

Then \begin {align*} L_{1}L_{2}x & =\left (a_{1}E^{n_{1}}+a_{2}E^{n_{2}}+\cdots \right ) \left ( b_{1}E^{m_{1}}+b_{2}E^{m_{2}}+\cdots \right ) x\\ & =\left (a_{1}E^{n_{1}}+a_{2}E^{n_{2}}+\cdots \right ) \left (b_{1}E^{m_{1}}x+b_{2}E^{m_{2}}x+\cdots \right ) \\ & \\ & =\left (a_{1}E^{n_{1}}\left (b_{1}E^{m_{1}}x\right ) +a_{2}E^{n_{2}}\left (b_{1}E^{m_{1}}x\right ) +\cdots \right ) \\ & +\left (a_{1}E^{n_{1}}\left (b_{2}E^{m_{2}}x\right ) +a_{2}E^{n_{2}}\left (b_{2}E^{m_{2}}x\right ) +\cdots \right ) \\ & +\cdots \\ & =\left (b_{1}a_{1}E^{n_{1}}\left (E^{m_{1}}x\right ) +b_{1}a_{2}E^{n_{2}}\left (E^{m_{1}}x\right ) +\cdots \right ) \\ & +\left (b_{2}a_{1}E^{n_{1}}\left (E^{m_{2}}x\right ) +b_{2}a_{2}E^{n_{2}}\left (E^{m_{2}}x\right ) +\cdots \right ) \\ & +\cdots \\ & =\left (b_{1}a_{1}E^{m_{1}}\left (E^{n_{1}}x\right ) +b_{1}a_{2}E^{m_{1}}\left (E^{n_{2}}x\right ) +\cdots \right ) \\ & +\left (b_{2}a_{1}E^{m_{2}}\left (E^{n_{1}}x\right ) +b_{2}a_{2}E^{m_{2}}\left (E^{n_{2}}x\right ) +\cdots \right ) \\ & +\cdots \\ & =\left (b_{1}E^{m_{1}}+b_{2}E^{m_{2}}+\cdots \right ) \left (a_{1}E^{n_{1}}x+a_{2}E^{n_{2}}x+\cdots \right ) \\ & =L_{2}L_{1}x\\ & =L_{2}\relax (0) \\ & =0 \end {align*}

4.2.11 Section 1.3, Problem 11

Problem: Give bases consisting of real sequences for each solution space.

a) \(\left (4E^{0}-3E^{2}+E^{3}\right ) x=0\)

b) \(\left (3E^{0}-2E+E^{2}\right ) x=0\)

c) \(\left (2E^{6}-9E^{5}+12E^{4}-4E^{3}\right ) x=0\)

d) \(\left (\pi E^{2}-\sqrt {2}E+E^{0}\log 2\right ) x=0\)

Solution:

a) Characteristic equation is \(\lambda ^{3}-3\lambda ^{2}+4=0\), or \(\left ( \lambda +1\right ) \left (\lambda -2\right ) ^{2}=0\), hence the roots are \(\lambda =-1\), and \(\lambda =2\) or multiplicity 2.

i.e. \(\lambda _{1}=-1,\lambda _{2}=2,\lambda _{3}=2\)

Hence first solution \(x_{1}\relax (n) \ \)associated with \(\lambda _{1}=-1\ \)is \(x_{1}\relax (n) =\lambda _{1}^{n}=-1^{n}\)

the second solution \(x_{2}\relax (n) \ \)associated with \(\lambda _{2}=-2\ \)is \(x_{2}\relax (n) =\lambda _{2}^{n}=2^{n}\)

the third solution \(x_{3}\relax (n) \ \)associated with \(\lambda _{3}=-2\ \)is \(x_{3}\relax (n) =\frac {dx_{2}\relax (n) }{d\lambda }=n\lambda _{2}^{n-1}=n2^{n-1}\)

Hence now we can write some terms of the above 3 basis solutions are follows

\begin {align*} x_{1}\relax (n) & =\left [ \lambda _{1}^{1},\lambda _{1}^{2},\lambda _{1}^{3},\cdots \right ] \\ & =\left [ -1,-1^{2},-1^{3},\cdots \right ] \\ & =\left [ -1,1,-1,1,\cdots \right ] \\ & \\ x_{2}\relax (n) & =\left [ \lambda _{2}^{1},\lambda _{2}^{2},\lambda _{2}^{3},\cdots \right ] \\ & =\left [ 2^{1},2^{2},2^{3},\cdots \right ] \\ & =\left [ 2,4,8,16,32,\cdots \right ] \\ & \\ x_{3}\relax (n) & =\left [ \lambda _{2}^{0},2\lambda _{2}^{1},3\lambda _{2}^{2},4\lambda _{2}^{3},\cdots \right ] \\ & =\left [ \left (2^{0}\right ) ,2\left (2^{1}\right ) ,3\left ( 2^{2}\right ) ,4\left (2^{3}\right ) ,5\left (2^{4}\right ) ,\cdots \right ] \\ & =\left [ 1,4,12,32,80,\cdots \right ] \end {align*}

Hence the basis are

\begin {align*} & \left [ -1,1,-1,1,\cdots \right ] \\ & \left [ 2,4,8,16,32,\cdots \right ] \\ & \left [ 1,4,12,32,80,\cdots \right ] \end {align*}

b)\(\left (3E^{0}-2E+E^{2}\right ) x=0\)

Characteristic equation is \(\lambda ^{2}-2\lambda +3=0\), The roots are \begin {align*} \lambda _{1} & =1+\sqrt {2}i\\ \lambda _{2} & =1-\sqrt {2}i \end {align*}

Hence first solution \(x_{1}\relax (n) \ \)associated with \(\lambda _{1}=1+\sqrt {2}i\ \)is \(x_{1}\relax (n) =\lambda _{1}^{n}=\left ( 1+\sqrt {2}i\right ) ^{n}\)

the second solution \(x_{2}\relax (n) \)associated with \(\lambda _{2}=1-\sqrt {2}i\ \)is \(x_{2}\relax (n) =\lambda _{2}^{n}=\left ( 1-\sqrt {2}i\right ) ^{n}\)

Hence \begin {align*} x_{1}\relax (n) & =\lambda _{1}^{n}\\ & =\left [ \left (1+\sqrt {2}i\right ) ^{1},\left (1+\sqrt {2}i\right ) ^{2},\left (1+\sqrt {2}i\right ) ^{3},\cdots \right ] \\ & =\left [ \left (1+\sqrt {2}i\right ) ,\left (-1+2i\sqrt {2}\right ) ,\left (-5+i\sqrt {2}\right ) ,\left (-7-4i\sqrt {2}\right ) ,\cdots \right ] \\ & \\ x_{2}\relax (n) & =\left [ \left (1-\sqrt {2}i\right ) ^{1},\left ( 1-\sqrt {2}i\right ) ^{2},\left (1-\sqrt {2}i\right ) ^{3},\cdots \right ] \\ & =\left [ \left (1-\sqrt {2}i\right ) ,\left (-1-2i\sqrt {2}\right ) ,\left (-5-i\sqrt {2}\right ) ,\left (-7+4i\sqrt {2}\right ) \cdots \right ] \end {align*}

Notice that the 2 basis are conjugate to each others in each term in the sequence.

c)\(\left (2E^{6}-9E^{5}+12E^{4}-4E^{3}\right ) x=0\)

Characteristic equation is \(2\lambda ^{6}-9\lambda ^{5}+12\lambda ^{4}-4\lambda ^{3}=0\)

Factoring we obtain \(\lambda \)\[ ^{3}\left (2\lambda -1\right ) \left (\lambda -2\right ) ^{2}=0 \] hence the solutions are

\(\lambda =0\) with multiplicity 3, \(\lambda =\frac {1}{2},\lambda =2\) with multiplicity 2.

Hence Solutions associated with \(\lambda =0\) are

\(x_{1}\relax (n) =\lambda ^{n},x_{2}\relax (n) =n\lambda ^{n-1},x_{3}\relax (n) =n\left (n-1\right ) \lambda ^{n-2}\)

Hence \(x_{1}\relax (n) =\left [ 0,0,0,\cdots \right ] \), and \(x_{2}\) and \(x_{3}\) are also the null sequence.

Solution associated with \(\lambda =\frac {1}{2}\) is \(x_{4}\left ( n\right ) =\lambda ^{n}=\left (\frac {1}{2}\right ) ^{n}=\left [ \frac {1}{2},\frac {1}{4},\frac {1}{8},\frac {1}{16},\cdots \right ] \)

Solutions associated with \(\lambda =2\) are \(x_{5}\relax (n) =\lambda ^{n}=2^{n}=\left [ 2,4,8,16,\cdots \right ] \)

and \(x_{6}\relax (n) =\frac {dx_{5}}{d\lambda }=n\lambda ^{n-1}=n2^{n-1}=\left [ 1,2\relax (2) ,3\left (2^{2}\right ) ,4\left ( 2^{3}\right ) ,\cdots \right ] =\left [ 1,4,12,32,\cdots \right ] \)

Hence the basis are

\begin {align*} & \left [ 0,0,0,\cdots \right ] \\ & \left [ \frac {1}{2},\frac {1}{4},\frac {1}{8},\frac {1}{16},\cdots \right ] \\ & \left [ 2,4,8,16,\cdots \right ] \\ & \left [ 1,4,12,32,\cdots \right ] \end {align*}

d)\(\left (\pi E^{2}-\sqrt {2}E+E^{0}\log 2\right ) x\)

Characteristic equation is \begin {align*} \pi \lambda ^{2}-\sqrt {2}\lambda +\log 2 & =0\\ \lambda ^{2}-\frac {\sqrt {2}}{\pi }\lambda +\frac {\log 2}{\pi } & =0\\ \lambda ^{2}-0.450\,16\ \lambda +0.220\,64 & =0 \end {align*}

\begin {align*} \lambda & =\frac {-b\pm \sqrt {b^{2}-4ac}}{2a}=\frac {0.450\,16\pm \sqrt {0.450\,16^{2}-4\times 0.220\,64}}{2}\\ & =\allowbreak \frac {0.450\,16\pm \sqrt {-0.679\,92}}{2}\\ & =\frac {0.450\,16\pm i0.824\,57}{2} \end {align*}

Hence \(\lambda _{1}=0.225079+i0.41228\) and \(\lambda _{2}=0.225079-i0.41228\)

Hence \begin {align*} x_{1} & =\lambda _{1}^{n}\\ & =\left (0.225079+i0.41228\right ) ^{n} \end {align*}

and \begin {align*} x_{2} & =\lambda _{2}^{n}\\ & =\left (0.225079-i0.41228\right ) ^{n} \end {align*}

4.2.12 Section 1.3, Problem 12

Problem: Prove that if P is a polynomial with real coefficients and if \(z\equiv \left [ z_{1},z_{2},z_{3},\cdots \right ] \) is a complex solution of \(p\relax (E) z=0,\) then the conjugate of \(z\), the real part of \(z\) and the imaginary part of \(z\) are also solutions.

Solution:

\[ P\relax (E) z=0 \]

Take conjugate of both sides

\begin {align*} \overline {P\relax (E) \ z} & =\overline {0}\\ \overline {P\relax (E) }\ \overline {z} & =0 \end {align*}

But \[ P\relax (E) =a_{0}E^{0}+a_{1}E^{1}+a_{2}E^{2}+\cdots \]

and all the \(a^{\prime }s\) are real, hence \(\overline {P\relax (E) }=P\relax (E) \), then \begin {equation} P\relax (E) \bar {z}=0 \tag {1} \end {equation}

Now take the real part of \(P\relax (E) z=0\,\) we get

\begin {align*} \operatorname {Re}\left (P\relax (E) z\right ) & =\operatorname {Re}\relax (0) \\ \operatorname {Re}\left (P\relax (E) \right ) \operatorname {Re}\left ( z\right ) & =0 \end {align*}

But \[ \operatorname {Re}\left (P\relax (E) \right ) =P\relax (E) \]

Hence \begin {equation} P\relax (E) \operatorname {Re}\relax (z) =0 \tag {2} \end {equation}

For the last part, let \[ z=\operatorname {Re}\relax (z) +i\ \operatorname {Im}\relax (z) \]

Then \(P\relax (E) z=0\) can be written as

\begin {align*} P\relax (E) \left \{ \operatorname {Re}\relax (z) +i\ \operatorname {Im}\relax (z) \right \} & =0\\ P\relax (E) \operatorname {Re}\relax (z) +i\ P\relax (E) \operatorname {Im}\relax (z) & =0 \end {align*}

But from (2) we see that \(P\relax (E) \operatorname {Re}\left ( z\right ) =0\,,\) hence the above becomes

\[ i\ P\relax (E) \operatorname {Im}\relax (z) =0 \]

Hence

\[ P\relax (E) \operatorname {Im}\relax (z) =0 \]

4.2.13 Section 1.3 problem 25

Problem: Determine if the difference equation \(x_{n}=x_{n-1}+x_{n-2}\)

Solution: Using the shift operator, we write \(E^{2}x_{n-2}=Ex_{n-1}+E^{0}x_{n-2}\)

Hence

\begin {align*} E^{2}x_{n-2}-Ex_{n-2}-E^{0}x_{n-2} & =0\\ \left (E^{2}-E-1\right ) x_{n-2} & =0 \end {align*}

Hence the roots of the characteristic polynomial \(p\relax (E) x=0\) are \(\lambda ^{2}-\lambda -1=0\,\ \) or \(\lambda =\frac {-b\pm \sqrt {b^{2}-4ac}}{2a}\), hence \(\lambda =\frac {1\pm \sqrt {1+4}}{2}=\frac {1\pm \sqrt {5}}{2}\)

Hence \(\left \vert \lambda _{1}\right \vert =\left \vert \frac {1+\sqrt {5}}{2}\right \vert =\) \(1.\,\allowbreak 618\) and \(\left \vert \lambda _{2}\right \vert =\left \vert \frac {1-\sqrt {5}}{2}\right \vert \) \(=0.618\,03\)

Since \(\lambda _{1}\geq 1\), then NOT STABLE difference equation.