Chapter 2 sheetsheet
\begin{align*}
\int _{a}^{b}e^{c\tau }\sin \left ( t-\tau \right ) d\tau &=\frac {c\left [ e^{c\tau }\sin \left ( t-\tau \right ) \right ] _{a}^{b}+\left [ e^{c\tau } \cos \left ( t-\tau \right ) \right ] _{a}^{b}}{\left ( 1+c^{2}\right ) } \\
\int _{a}^{b}e^{c\tau }\cos \left ( t-\tau \right ) d\tau &=\frac {c\left [ e^{c\tau }\cos \left ( t-\tau \right ) \right ] _{a}^{b}-\left [ e^{c\tau } \sin \left ( t-\tau \right ) \right ] _{a}^{b}}{1+c^{2}} \\
\int \cos at&=\frac {\sin at}{a} \\
\int \sin at&=\frac {-\cos at}{a} \\
\end{align*}
F(t)
Guess
\(ke^{bt}\)
\(Ae^{bt}\) \(kt^{n}\)
\(A_{n}t^{n}+\cdots +A_{0}\) \(\cos \omega t\) or \(\sin \omega \)
\(c_{1}\cos \omega t+c_{2}\sin \omega t\)
\(ke^{at}\cos \omega t\) \(e^{at}\left ( c_{1}\cos \omega t+c_{2}\sin \omega t\right ) \)
\(x^{\prime \prime }+x^{\prime }+x=f\left ( t\right ) \) \(\left [ s^{2}X-sx\left ( 0\right ) -x^{\prime }\left ( 0\right ) \right ] \)
\(L\left ( t\right ) =\int _{0}^{\infty }x\left ( t\right ) e^{-st}dt\)
\(+\left [ sX-x\left ( 0\right ) \right ] +X=F\)
roots \(\int udv=uv-\int vdu\)
\(x\left ( t\right ) \) real and distinct
\(Ae^{\lambda _{1}t}+Be^{\lambda _{2}t}\) double real
\(Ae^{\lambda t}+Bte^{\lambda t}\)
complex \(\alpha \pm j\beta \) \(e^{\alpha t}\left ( A\cos \beta t+B\sin \beta t\right ) \)
\(x\left ( t\right ) =A\cos \omega _{n}t+B\sin \omega _{n}t\) \(x\left ( t\right ) =C\sin \left ( \omega _{n}t+\theta \right ) \)
\(A=u\left ( 0\right ) B=\frac {v\left ( 0\right ) }{\omega _{n}},\theta =\arctan \left ( \frac {A}{B}\right ) \)
\(C=\sqrt {A^{2}+B^{2}}\ P=\left [ v_{1}v_{2}\right ] \)
\(\begin {pmatrix} \frac {\partial g}{\partial x_{1}} & \frac {\partial g}{\partial x_{2}}\\ \frac {\partial f}{\partial x_{1}} & \frac {\partial f}{\partial x_{2}}\end {pmatrix} \) modal: \(x=M^{-\frac {1}{2}}q\)
Find eigenvalus of
\(\tilde {k}=M^{-\frac {1}{2}}kM^{-\frac {1}{2}}\)
\(r^{\prime \prime }=\Lambda r,q=P\ r,\)
\(P^{T}=P^{-1}(orthon.)\)
\(r\left ( 0\right ) =P^{T}M^{\frac {1}{2}}x\left ( 0\right ) \)
\(x\left ( t\right ) =M^{-\frac {1}{2}}P\ r\left ( t\right ) \)
\(\omega _{n}^{2}=\frac {k}{m}\) \(r=\frac {\omega }{\omega _{n}}\)
\(\zeta =\frac {c}{c_{cr}}\) \(c_{cr}=2\sqrt {km}=2\omega _{n}m\)
\(\omega _{d}=\omega _{n}\sqrt {1-\zeta ^{2}}\) \(\zeta <1\)
\(mx^{\prime \prime }\left ( t\right ) +kx\left ( t\right ) =0\rightarrow x\left ( t\right ) =e^{-\zeta \omega _{n}t}\left ( A\cos \omega _{d}t+B\sin \omega _{d}t\right ) \) or \(x\left ( t\right ) =Ce^{-\zeta \omega _{n}t}\sin \left ( \omega _{d}t-\theta \right ) \) \(A=u\left ( 0\right ) ,B=\frac {v\left ( 0\right ) +x\left ( 0\right ) \zeta \omega _{n}}{\omega _{d}},C=\sqrt {A^{2}+B^{2}},\theta =\tan ^{-1}\left ( \frac {B}{A}\right ) \)
\(L=T-U\) , \(\frac {d}{dt}\frac {\partial L}{\partial q_{i}^{\prime }}-\frac {\partial L}{\partial q_{i}}=Q_{i},\ \) _____________________Rayleigh \(\frac {d}{dt}\frac {\partial L}{\partial q^{\prime }}-\frac {\partial L}{\partial q}+\frac {\partial R}{\partial q^{\prime }}=0\ \) where \(R=\frac {1}{2}c\left ( q^{\prime }\right ) ^{2}\)
\(\ \)\(\delta W=Q_{i}\delta q_{i}\)
\(mx^{\prime \prime }\left ( t\right ) +kx\left ( t\right ) =F_{0}\sin \omega t\rightarrow x\left ( t\right ) =A\cos \omega _{n}t+B\sin \omega _{n}t+\frac {F_{0}}{k}\frac {1}{1-r^{2}}\sin \omega t,A=x\left ( 0\right ) ,\ B=\frac {v\left ( 0\right ) }{\omega _{n}}-\frac {r}{1-r^{2}}\)
\(mx^{\prime \prime }\left ( t\right ) +cx^{\prime }\left ( t\right ) +kx\left ( t\right ) =F_{0}\sin \omega t\rightarrow x\left ( t\right ) =e^{-\zeta \omega _{n}t}\left ( A\cos \omega _{d}t+B\sin \omega _{d}t\right ) +\frac {F_{0}}{k}\frac {1}{\sqrt {\left ( 1-r^{2}\right ) ^{2}+\left ( 2\zeta r\right ) ^{2}}}\sin \left ( \omega t-\theta \right ) \)
\(\theta =\arctan \left ( \frac {2\zeta r}{1-r^{2}}\right ) ,\ \lambda _{1,2}=\frac {-b}{2a}\pm \frac {\sqrt {b^{2}-4ac}}{2a}\) where \(ax^{2}+bx+c=0,\ \)
\(\sin 2A\)
\(2\sin A\cos A\) \(\cos 2A\)
\(2\cos ^{2}A-1\) \(\sin A\sin B\)
\(\frac {1}{2}\left ( \cos \left ( A-B\right ) -\cos \left ( A+B\right ) \right ) \) \(\cos A\cos B\)
\(\frac {1}{2}\left ( \cos \left ( A-B\right ) +\cos \left ( A+B\right ) \right ) \) \(\sin A\cos B\)
\(\frac {1}{2}\left ( \sin \left ( A-B\right ) +\sin \left ( A+B\right ) \right ) \) \(h=v_{i}t+\frac {1}{2}gt^{2}\)
\(h=\frac {v_{i}+v_{f}}{2}t\)
\(v_{f}^{2}=v_{i}^{2}+2gh\) \(v_{f}=v_{i}+gt\)
speed is \(\sqrt {2gh}\)
\(h_{u}\left ( t\right ) =\frac {\hat {F}}{m\omega _{n}}\sin \omega _{n}t\)
\(\hat {F}=F\Delta t=mv\)
phase roots \(\lambda _{1}\) and \(\lambda _{2}>0\)
Unstable, repelling
phase roots \(\lambda _{1}\) and \(\lambda _{2}<0\)
stable, attracting
both real, one \(>\) 0 and one \(<\) 0
unstable saddle point
equal roots and \(>\) 0
unstable, degenrate
equal roots and \(<\) 0 stable, degenrate
complex, real part\(>\) 0 unstabe, spiral out
complex, real part\(<\) 0
stable, spiral in
pure complex conjugrates
marginaly stable, cirlce
time betwen\(\frac {x_{2}^{2}}{2}-\frac {g}{l}\cos x_{1}=c\) \(\frac {dx_{1}}{dt}=\pm \sqrt {c_{1}+\frac {2g}{l}\cos x_{1}}\)
\(t=t_{0}+\int _{x_{1}\left ( t_{0}\right ) }^{x_{1}\left ( t\right ) }\frac {dx_{1}}{\sqrt {c_{1}+\frac {2g}{l}\cos x_{1}}}\) convert: \(x^{\prime \prime }+kx=0\)
\(\frac {dx_{2}}{dt}+kx_{1}=0,\frac {dx_{2}}{dx_{1}}\frac {dx_{1}}{dt}=-kx_{1}\)
\(\frac {dx_{2}}{dx_{1}}x_{2}=-kx_{1}\)
\(\frac {x_{2}^{2}}{2}=-k\frac {x_{1}^{2}}{2}+C\)
\(h_{d}\left ( t\right ) =\frac {1}{m\omega _{d}}e^{-\zeta \omega _{n}t}\sin \omega _{d}t\)
\(\sin \left ( a\pm b\right ) \)
\(\sin a\cos b\pm \cos a\sin b\) \(\cos \left ( a\pm b\right ) \)
\(\cos a\cos b\mp \sin a\sin b\) \(\sin ^{2}a\)
\(\frac {1}{2}\left ( 1-\cos 2a\right ) \)
\(\cos ^{2}a=\frac {1}{2}\left ( 1+\cos 2a\right ) \)
\(sin\left ( A\pm 90\right ) =\cos A\) \(\cos \left ( a\pm 90^{0}\right ) =\mp \sin a\)
\(sin\left ( A\pm 180\right ) =\mp \sin A\) \(\cos \left ( a\pm 90^{0}\right ) =\cos a\)
\(\cos \left ( A\pm 180\right ) =-\cos A\)
\(c^{2}=a^{2}+b^{2}-2ab\cos \left ( \lambda \right ) \) \(\underset {t->0^{+}}{\lim }f\left ( t\right ) =\underset {s->\infty }{\lim }sF\left ( s\right ) \)
\(\underset {s->0}{\lim }sF\left ( s\right ) =\underset {t->\infty }{\lim }f\left ( t\right ) \)
\(M\ddot {x}+kx=0\) , assume \(x_{i}=A_{i}\cos \left ( \omega t+\phi _{i}\right ) ,\) Plug in, rewrite as \(\left [ sys\right ] \left [ A\right ] =0\) , find eigens of sys,each \(\omega _{i},\) find \(r_{1}=\left ( \frac {A_{2}^{\left ( 1\right ) }}{A_{1}^{\left ( 1\right ) }}\right ) ,r_{2}=\left ( \frac {A_{2}^{\left ( 2\right ) }}{A_{1}^{\left ( 2\right ) }}\right ) \)
\(x_{1}=A_{1}^{\left ( 1\right ) }\cos \left ( \omega _{1}t+\phi _{1}\right ) +A_{1}^{\left ( 2\right ) }\cos \left ( \omega _{2}t+\phi _{2}\right ) ,\ \ \ \ x_{2}=A_{2}^{\left ( 1\right ) }\cos \left ( \omega _{1}t+\phi _{1}\right ) +A_{2}^{\left ( 2\right ) }\cos \left ( \omega _{2}t+\phi _{2}\right ) \) , use \(A_{2}^{\left ( 1\right ) }=r_{1}A_{1}^{\left ( 1\right ) },\) \(A_{2}^{\left ( 2\right ) }=r_{2}A_{1}^{\left ( 2\right ) }\)
\(x_{1}=A_{1}^{\left ( 1\right ) }\cos \left ( \omega _{1}t+\phi _{1}\right ) +A_{1}^{\left ( 2\right ) }\cos \left ( \omega _{2}t+\phi _{2}\right ) ,\ \ \ \ x_{2}=r_{1}A_{1}^{\left ( 1\right ) }\cos \left ( \omega _{1}t+\phi _{1}\right ) +r_{2}A_{1}^{\left ( 2\right ) }\cos \left ( \omega _{2}t+\phi _{2}\right ) \)
\(g\left ( t\right ) =\frac {a_{0}}{2}+\sum _{n=1}^{\infty }a_{n}\cos n\left ( 2\pi f\right ) t+b_{n}\sin n\left ( 2\pi f\right ) t\) \(a_{0}=\frac {1}{T/2}\int _{0}^{T}f\left ( t\right ) \ \ \ \ b_{n}=\frac {1}{T/2}\int _{0}^{T}f\left ( t\right ) \sin n\left ( 2\pi f\right ) tdt\)
\(a_{n}=\frac {1}{T/2}\int _{0}^{T}f\left ( t\right ) \cos n\left ( 2\pi f\right ) tdt\ \ \ \ \ \ T=period\ of\ f\left ( t\right ) \)
\(h_{over}\left ( t\right ) =\frac {1}{2m\omega _{n}\sqrt {\xi ^{2}-1}}e^{-\xi \omega _{n}t}\left ( e^{\omega _{n}\sqrt {\xi ^{2}-1}t}-e^{-\omega _{n}\sqrt {\xi ^{2}-1}t}\right ) \) \(h_{critical}\left ( t\right ) =\frac {1}{m}te^{-\xi \omega _{n}t}\)
\(f\left ( t\right ) =\) impulse\(=F\Delta t=\left [ mv\left ( 0^{-}\right ) -mv\left ( 0^{+}\right ) \right ] \delta \left ( t\right ) \)
solid disk, around center \(I=\frac {mr^{2}}{2}\)
thin loop, around center \(I=mr^{3}\)
solid sphere \(I=\frac {2}{5}mr^{2}\)
rod, axis at center of rod \(I=\frac {ML^{2}}{12}\)
rod, axis at end of rod \(I=\frac {ML^{2}}{3}\)
series: \(\frac {1}{k}=\frac {1}{k_{1}}+\frac {1}{k_{2}}\) par \(k=k_{1}+k_{2}\)
\( {\textstyle \int \limits _{a}^{b}} \tau \sin \omega \left ( t-\tau \right ) d\tau =\frac {-\sin \left ( \omega \left ( t-a\right ) \right ) -a\omega \cos \left ( \omega \left ( t-a\right ) \right ) +\sin \left ( \omega \left ( t-b\right ) \right ) +b\omega \cos \left ( \omega \left ( t-b\right ) \right ) }{\omega }\)
2 equations of motions for unbalanced: \(\left ( M-m\right ) \ddot {x}+c\dot {x}+kx=F_{r}\) and \(m\left ( \ddot {x}+\ddot {x}_{r}\right ) =-F_{r}\) , where \(x_{r}=e\sin \omega t,\) eq for \(M\) is
\(M\ddot {x}+c\dot {x}+kx=me\omega ^{2}\sin \omega t\) , guess \(X_{p}=X\sin \left ( \omega t-\theta \right ) \) , we obtain \(X=\frac {Me}{m}\frac {r^{2}}{\sqrt {\left ( 1-r^{2}\right ) ^{2}+\left ( 2\xi r\right ) ^{2}}},\theta =\tan ^{-1}\frac {2\xi r}{1-r^{2}}\) perturbation: \(x^{\prime \prime }+\omega _{0}^{2}x+\alpha x^{3}=0\rightarrow x=x_{0}+\alpha x_{1}+\alpha ^{2}x_{2}+\cdots ,\omega ^{2}=\omega _{0}^{2}+\alpha \omega _{1}^{2}\left ( A\right ) +\alpha \omega _{2}^{2}\left ( A\right ) +\cdots ,\) hence \(\omega _{0}^{2}=\omega ^{2}-\alpha \omega _{1}^{2}\left ( A\right ) \) . Sub in ODE, generate 2 ODE’s and solve for \(x_{0}\) and use result to find \(x_{1}.\) watch
for IC and resonanse. For system ID, set up \(\left \vert G\left ( j\omega \right ) \right \vert =\frac {1}{\sqrt {\left ( c\omega \right ) ^{2}+\left ( k-m\omega ^{2}\right ) ^{2}}}\) and from the spectrum, find \(m,c,k\)