4.9 HW 9

  4.9.1 Chapter 13, problem 6.1 Mary Boas. Second edition
  4.9.2 chapter 13, problem 4.1. Mary Boas, second edition
  4.9.3 chapter 13, problem 4.2. Mary Boas, second edition
  4.9.4 chapter 13, problem 4.6. Mary Boas, second edition
  4.9.5 chapter 13, problem 5.1. Mary Boas, second edition
  4.9.6 chapter 13, problem 5.2. Mary Boas, second edition
  4.9.7 chapter 13, problem 5.4. Mary Boass, second edition
  4.9.8 chapter 13, problem 5.11. Mary Boas, second edition
PDF (letter size)
PDF (legal size)

4.9.1 Chapter 13, problem 6.1 Mary Boas. Second edition

PDF

4.9.2 chapter 13, problem 4.1. Mary Boas, second edition

Complete the plucked string problem to get equation 4.0

Solution

Here we start with the solution given in 4.8

y0=n=1bnsin(nπxL)=f(x)(1)

Where f(x) represents the initial position (shape) of the string.

pict

Now need to find bn

First need to define f(x), from diagram we see that from x=0 to x=L/2 the slope is hL/2=2hL hence from equation of line we get  y=2hLx

From x=L/2 to x=L, slope is 2hL, so y=h2hL(xL2)=h2hLx+h=2h2hLx= 2(hhxL)

so we have f(x)={ 2hLx0xL22(hhxL)L2<xL

so from (1) we get, after applying inner product w.r.t. sin(nπxL)

bn0Lsin2(nπxL)=0Lf(x)sin(nπxL) dxbn L2=0L2f(x)sin(nπxL) dx+L2Lf(x)sin(nπxL) dxbn L2=0L22hLx sin(nπxL) dx+L2L2(hhxL)sin(nπxL) dxbn L2=2hL0L2 x sin(nπxL) dx+L2L2h sin(nπxL) dxL2L2hxLsin(nπxL) dxbn L2=2hL0L2 x sin(nπxL) dx+2hL2Lsin(nπxL) dx2hLL2Lxsin(nπxL) dxbn L2=16 h Lcos(nπ4)sin(nπ4)3n2π2bn=32 h cos(nπ4)sin(nπ4)3n2π2

so

bn  =32 h Lcos(nπ4)sin(nπ4)3n2π2

Looking at few values of n to see the pattern

bn=32 h cos(π4)sin(π4)312π2,32 h cos(2π4)sin(2π4)322π2,32 h cos(3π4)sin(3π4)332π2,...= 8hπ2,0,8h9 π2,0,8h25 π2,=8hπ2(1,0,19,0,125,)

Notice that we have terms for only odd n.

Now, substituting the above in the general solution given in equation 4.7 in book, which is

y=n=1bnsin(nπxL)cos(nπvtL)

Gives

y= 8hπ2(sin(πxL)cos(πvtL)+0+19sin(3πxL)cos(3πvtL)+0+125sin(5πxL)cos(5πvtL)+...)y=8hπ2(sin(πxL)cos(πvtL)19sin(3πxL)cos(3πvtL)+125sin(5πxL)cos(5πvtL)+...)

The above is the result we are asked to show.

4.9.3 chapter 13, problem 4.2. Mary Boas, second edition

A string of length L has zero initial velocity and a displacement y0(x) as shown. Find the displacement as a function of x and t.

pict

Solution

The PDE that governs this problem is the wave equation 2y=1v22yt2

The candidate solutions are

y={sin(kx)sin(ωt)sin(kx)cos(ωt)cos(kx)sin(ωt)cos(kx)cos(ωt)

where ω=kv and k=2πλ where λ is the wave length

Now we discard solutions that contains coskx since the string is fixed at x=0.

So we are left with

y={sin(kx)sin(ωt)sin(kx)cos(ωt)

Now, y=0 at x=L then from sinkx=0 or sinkL=0 we need k=nπL

Hence solutions become

y={sin(nπLx)sin(nπLvt)sin(nπLx)cos(nπLvt)

Applying initial conditions, which says that at time t=0, velocity is zero.

Hence from above, after taking yt, we get

yt={nπvL sin(nπLx) cos(nπvLt)nπvL sin(nπLx) sin(nπvLt)

For the above to be zero at t=0 then we discard first solution above with cost in it. Hence final general solution is now

y={sin(nπLx) cos(nπLvt)

A general solution is a linear combination of the above solutions, hence

y=n=1 bn sin(nπLx) cos(nπLvt)(1)

To find bn, we apply the second initial condition, which is y=y0=f(x)

(Notice that we use two initial conditions, i.e. at time t=0 we are looking at speed and position, this is because we started with a PDE with 2yt2 in it, which is a second order in t.)

At t=0, (1) becomes

y=n=1 bnsin(nπLx)=f(x)(2)

To find f(x) from diagram, we see that for 0xL4, y=xhL/4=4hLx

For L4<xL2, y=(xL4)hL/4+h=(xL4)4hL+h=x4hL+L44hL+h=x4hL+2h

For L2<xL, y=0

Hence

y={4hLx0xL42hx4hLL4<xL20L2<xL

Do the inner product on both sides of equation (2) w.r.t. sinnπLx

  bn0Lsin2nπLx  dx=0Lf(x) sinnπLx  dx  bnL2= 0L4f(x) sinnπLx dx + L4L2f(x) sinnπLx dx+L2Lf(x) sinnπLx dx=0L44hLx sinnπLx dx+L4L2(2hx4hL) sinnπLx dx+L2L0 sinnπLx dx=0L44hLx sinnπLx dx+L4L22hsin(nπLx)x4hLsin(nπLx)  dx=0L44hLx sinnπLx dx+L4L22hsin(nπLx)dxL4L2x4hLsin(nπLx)  dx=4hL0L4x sinnπLx dx+2hL4L2sin(nπLx)dx4hLL4L2xsin(nπLx)  dxbn= 8hn2π2(2sin(nπ4)sinnπ2)

Looking at few values of bn

bn=8h12π2(2sin(π4)sinπ2),8h22π2(2sin(2π4)sin2π2),8h32π2(2sin(3π4)sin3π2),=8hπ2[(2sin(π4)sinπ2),122(2sin2π4sin2π2),132(2sin3π4sin3π2),]=8hπ2[1n2{(2sin(π4)sinπ2),(2sin2π4sin2π2),(2sin3π4sin3π2),}]=8hπ2[1n2(2sin(nπ4)sinnπ2)]

Hence from equation (1) above, we get

y=n=1 bnsinnπLxcosnπLvt=n=1 8hπ2[1n2(2sin(nπ4)sinnπ2)] sinnπLxcosnπLvt=8hπ2n=1Bn sinnπLxcosnπLvt 

Where Bn=1n2(2 sin(nπ4)sinnπ2)

The above is the result required to show.

4.9.4 chapter 13, problem 4.6. Mary Boas, second edition

A string of length L is initially stretched straight, its ends are fixed for all time t. At time t=0 its points are given the velocity V(x)=(yt)t=0 as shown in diagram below. Determine the shape of the string at time t.

pict

Solution

The PDE that governs this problem is the wave equation 2y=1v22yt2

The candidate solutions are

y={sin(kx)sin(ωt)sin(kx)cos(ωt)cos(kx)sin(ωt)cos(kx)cos(ωt)

Where ω=kv and k=2πλ where λ is the wave length

Now we discard solutions that contains coskx since the string is fixed at x=0.

So we are left with

y={sin(kx)sin(ωt)sin(kx)cos(ωt)

Now, y=0 at x=L then from sinkx=0 or sinkL=0 we need k=nπL

Hence solutions become

y={sinnπLxsinnπLvtsinnπLxcosnπLvt

Applying initial conditions, which says that at time t=0, velocity is given by V(x)

Hence from above, after taking yt, we get

yt={nπvL sinnπLxcosnπvLtnπvLsinnπLxsinnπvLt

For the above we discard velocity solution above with sint in it since that will give zero velocity at time t=0, which is not the case here. Hence we discard y solution with cost in it, then the final general solution for y is now

y=sinnπLxsinnπLvt

A general solution is a linear combination of the above solutions, hence

y=n=1 bn sinnπxL sinnπvtL(1)

To find bn, we apply the velocity initial condition. Hence differentiate equation (1) and set t=0, we have

yt=n=1 bn nπvLsinnπxLcosnπvtL

Setting t=0

yt=n=1 bn nπvLsinnπxL=Vt=0(2)

Now to find Vt=0. From diagram, we see that for 0xL2w, Vt=0=0

For L2w<xL2+w,Vt=0=h

For L2+w<xL, Vt=0=0

Hence

Vt=0={00xL2whL2w<xL2+w0L2+w<xL

Do the inner product on both sides of equation (2) w.r.t. sinnπLx

  bnnπvL0Lsin2nπLx  dx=0LV(x) sinnπxL  dx  bnnπv2= 0L2w0 sinnπLx dx + L2wL2+wh sinnπxL dx+L2+wL0 sinnπLx dxbnnπv2= L2wL2+wh sinnπxL dxbnnπv2= h Lnπ[cosnπxL]L2wL2+wbnnπv2= h Lnπ[cosnπ(L2+w)Lcosnπ(L2w)L]bnnπv2= h Lnπ[cos(nπ2+nπwL)cos(nπ2nπwL)]bn= 2hLn2π2v[cos(nπ2+nπwL)cos(nπ2nπwL)]

But cos(a+b)=cos(a)cos(b)sin(a)sin(b)

and cos(ab)=cos(a)cos(b)+sin(a)sin(b)

Let a=nπ2,b=nπwL

Hence bn becomes

bn=2hLn2π2v[cos(a+b)cos(ab)]=2hLn2π2v[cos(a)cos(b)sin(a)sin(b){cos(a)cos(b)+sin(a)sin(b)}]=2hLn2π2v[cos(a)cos(b)sin(a)sin(b)cos(a)cos(b)sin(a)sin(b)]=2hLn2π2v[sin(a)sin(b) sin(a)sin(b)]=4hLn2π2vsin(a)sin(b) =4hLn2π2vsin(nπ2)sin(nπwL) 

For even n, the term sin(nπ2) is zero. For n odd sin(nπ2)=1 when n=1,5,9, and sin(nπ2)=1 when n=3,7,11,Hence

bn=A(n)4hLn2π2vsin(nπwL)n=1,3,5,7,

And A(n) is a function which returns 1 when n=1,5,9,.. and returns 1 when n=3,7,11,

Hence now we have bn we can substitute in (1)

y=n=1 bn sinnπxL sinnπvtL     y=n odd A(n)4hLn2π2v sin(nπwL) [ sinnπxL sinnπvtL]       y=  4hLπ2vn oddA(n) 1n2 sin(nπwL) [ sinnπxL sinnπvtL]

Which is the general solution. Looking at few expanded terms in the series we get

y=4hLπ2v {sin(πwL) sinπxL sinπvtL19 sin(3πwL)  sin3πxL sin3πvtL+ 125 sin(5πwL) sin5πxL sinnπvtL}

Which is the result required.

4.9.5 chapter 13, problem 5.1. Mary Boas, second edition

Compute numerically the coefficients  cm=200kmJ1(km) for the first 3 terms of the series u=m=1cmJ0(kmr)ekmz for the steady state temp. in a solid semi-infinite cylinder when u=0 at r=1 and u=100 at z=0. find u at r=1/2,z=1

Solution

Here, we are looking at the solution for temp. inside a semi-infinite cylinder. This solution is for the case of a uniform temp. distribution on the boundary z=0 is given by u equation shown above. Note that in the expression cm=200kmJ1(km), the km are the zeros of J0 not J1.

Need to find c1,c2,c3 where c1=200k1J1(k1)

To find k1 and J1(k1) I used mathematica.

I plotted J0(x) to see where the zeros are located first

pict

So I see there is a zero near 2,5, and 9. I use mathematica to find these:

pict

Now I need to find J1(km). This is the result for 3 terms:

pict

Hence, now the cm terms can be found:

c1=200k1J1(k1)=200(2.404)(0.519)=160.30c2=200k2J1(k2)=200(5.52)(0.34)=106.56c3=200k3J1(k3)=200(8.65)(0.27)=85.635

Evaluating u=m=1cmJ0(kmr)ekmz for the first 3 terms when r=1/2,z=1

u=c1J0(k1r)ek1z+c2J0(k2r)ek2z+c3J0(k3r)ek3z=c1J0(k112)ek1+c2J0(k212)ek2+c3J0(k312)ek3=(160.30)J0(2.40412)e2.404(106.56)J0(5.5212)e5.52+(85.635)J0(8.6512)e8.65=(160.30)J0(1.202)e2.404(106.56)J0(2.76)e5.52+(85.635)J0(4.325)e8.65

Mathematica was used to evaluate J0 values above.

pict

Hence

u=(160.30)(0.67)e2.404(106.56)(0.168)e5.52+(85.635)(0.356)e8.65u=9.7043+7.1713×1025.3389×103u=9.7707 degrees

4.9.6 chapter 13, problem 5.2. Mary Boas, second edition

Find the solution for the steady state temp. distribution in a solid semi-infinite cylinder if the boundary temp. are u=0 at r=1 and u=y=rsinθ at z=0.

Solution

The candidate solutions are given by the solution to the Laplace equation in cylindrical coordinates which are

u={Jn(k r)sin(nθ)ek z(1)Jn(k r)cos(nθ)ek z(2)

Where k is a zero of Jn (This is because we have used the B.C. of u=0 at r=1 to determine that the ks have to be the zeros of Jn) when deriving the above solutions. See book page 560.

From boundary conditions we want u=rsinθ when z=0, hence we need to keep the solution (1) above, with n=1. Hence a solution is u=J1(k r)sin(θ)ek z(3)

A general solution is a linear series combinations (eigenfunctions) of (3), each eigenfunction for each of the zeros of J1. Call these zeros km

u=m=1cm J1(km r)sin(θ)ekm z(4)

We now apply B.C. at z=0 to find cm. From (4) when z=0 rsinθ=m=1cm J1(km r)sin(θ)(5)

We use (5) to find cm and then substitute into (4) to obtain the final solution.

To find cm from (5), take the inner product of each side with respect to rJ1(ku r) from r=0 to r=1

01rsinθ[rJ1(ku r)] dr=m=1cm (01J1(km r)sin(θ)[rJ1(ku r)] dr)sinθ01r2J1(ku r) dr=m=1cm sin(θ)(01J1(km r)[rJ1(ku r)] dr)

Dividing each side by sinθ

01r2J1(ku r) dr=m=1cm (01J1(km r)[rJ1(ku r)] dr)

From orthogonality of Bessel function, we know that

01Jp(km r)rJp(ku r)dr=0

If mu. Hence in above equation all terms on the right drop except for one when u=m. We get

01r2J1(km r) dr= cm 01r  J1(km r)J1(km r)dr

Or

cm=01r2J1(km r) dr01r  J1(km r)  J1(km r) dr(6)

The integral in the denominator above is found from equation 19.10 in text on page 523 which gives 01r  J1(km r)  J1(km r) dr=12[J2(km)]2(7)

Now, we need to find the integral of the numerator in equation (6).

Using equation 15.1 in text, page 514, which says

ddx[xpJp(x)]=xpJp1(x)

Putting p=2 above, and letting x=kmr gives

1kmddr[(kmr)2J2(kmr)]=(kmr)2J1(kmr)1kmddr[km2r2J2(kmr)]=km2r2J1(kmr)1kmddr[r2J2(kmr)]=r2J1(kmr)

Integrating each side w.r.t r from 01

1km01ddr[r2J2(kmr)] dr=01r2J1(kmr) dr 1km [r2J2(kmr)]01=01r2J1(kmr)dr1km [J2(km)0]=01r2J1(kmr) dr1km J2(km)=01r2J1(kmr)dr(8)

Substituting (7) and (8) into (6)

cm=01r2J1(km r) dr01r  J1(km r)  J1(km r) dr     =1km J2(km)12[J2(km)]2 =2 km J2(km)

Substituting this into (4) above, we get

u=m=1cm J1(km r)sin(θ)ekm zu=m=12 km J2(km)  J1(km r) sin(θ) ekm z

where km are zeros of J1

The above is the result we are asked to show.

4.9.7 chapter 13, problem 5.4. Mary Boass, second edition

A flat circular plate of radius 1 is initially at temp. 1000. From t=0 on, the circumference of the plate is held at 00. Find the time-dependent temp distribution u(r,θ,t)

Solution

First convert heat equation from Cartesian coordinates to polar.

heat equation in 2D Cartesian is 2u=2x2u+2x2u=1α2tu

First need to express Laplacian operator 2 in polar coordinates: x=rcosθy=rsinθ

Hence

(A)xr=cosθyr=sinθ

And

(B)xθ=r sinθyθ=r cosθ

pict

From geometry, we also know that r=x2+y2θ=arctanyx

The above 2 relations imply

r=xrx+yry  and   θ=xθx+yθy

Hence we can express the above, using equations (A) and (B) as follows:

r=xrx+yry=cosθx+sinθy       

Multiply each side by r

rr=rcosθx+rsinθy(1)=x x+yy

Squaring each sides of (1) gives

rr( rr)=(x x+yy)2r(r2r2+r)=  xx xx+yy yy+2xx yy r22r2+rr=xx( xx)+yy( yy)+2xx (yy)= x(x2x2+xx=1x)+y(y2y2+yy=1y)+2x(y2xy+xy=0y)(2)= x22x2+xx+y22y2+yy+2xy2xy

Notice that when manipulating of differential operators, xxxx. Similarly

θ=xθx+yθy=r sinθx+r cosθy(3)=yx+xy

Squaring each side of (3) gives

(θ)2=(yx+xy)2θθ=yx(yx)+xy(xy)yx(xy)+xy(yx)2θ2=y (y2x2+x(y)=0x)+x(x2y2+y(x)=0y)y(x2yx+xx=1y)+x(y2xy+yy=1x)=y22x2+x22y2yx2yxy yxy2xyxx(4)=y22x2+x22y22yx2yxy yxx

Adding equation (2) and (4) and carry cancellations

r22r2+rr+2θ2=(x22x2+xx+y22y2+yy+2xy2xy)+(y22x2+x22y22yx2yxy yxx)

r22r2+rr+2θ2=(x22x2+y22y2)+(y22x2+x22y2 )

Hence we get

r22r2+rr+2θ2=x22x2+y22y2+y22x2+x22y2 =(x2+y2)(2x2+2y2)

Dividing by r2

2r2+1rr+1r22θ2=(x2+y2)r2(2x2+2y2) 

But r2=x2+y2 hence

2r2+1rr+1r22θ2= (2x2+2y2) =2

Now that we have the Laplacian in polar coordinates, we can solve the problem by applying separation of variables on the heat PDE expressed in polar coordinates.

(5)2r2u+1rru+1r22θ2u=1α2tu

Let solution u(r,θ,t) be a linear combination of functions each depends on only r,θ, or t

(6)u(r,θ,t)=R(r)Θ(θ)T(t)

Substitute (6) in (5). First evaluate the various derivatives:

ru=Θ(θ)T(t)rR(r)

2r2u=Θ(θ)T(t)2r2R(r)

θu=R(r)T(t)θΘ(θ)

2θ2u=R(r)T(t)2θ2Θ(θ)

tu=R(r)Θ(θ)tT(t)

Hence equation (5) becomes

2r2u+1rru+1r22θ2u=1α2tuΘ(θ)T(t)d2dr2R(r)+1rΘ(θ)T(t)ddrR(r)+1r2R(r)T(t)d2dθ2Θ(θ)=1α2R(r)Θ(θ)ddtT(t)

Divide by R(r)Θ(θ)T(t)

 1R(r)d2dr2R(r)+1r1R(r)ddrR(r)+1r21Θ(θ)d2dθ2Θ(θ)=1α2 1T(t)ddtT(t)1R(r)[d2dr2R(r)+1rddrR(r)]+1r21Θ(θ)d2dθ2Θ(θ)=1α2 1T(t)ddtT(t)

We notice that the RHS depends only on t and the LHS depends only on r,θ and they equal to each others, hence they both must be constant. Let this constant be k2

Hence

(7)1α2 1T(t)ddtT(t)=k2(8)1R(r)[d2dr2R(r)+1rddrR(r)]+1r21Θ(θ)d2dθ2Θ(θ)=k2

equation (7) is a linear first order ODE with constant coeff. ddtT(t)=α2T(t)k2 or dT(t)T(t)=α2k2dt

Integrating to solve gives dT(t)T(t)=α2k2dtlnT(t)=α2k2t

or(9)T(t)=eα2k2t Looking at equation (8). Multiply each sides by r2 we get r2R(r)[d2dr2R(r)+1rddrR(r)]+1Θ(θ)d2dθ2Θ(θ)=r2k2r2R(r)[d2dr2R(r)+1rddrR(r)]+r2k+1Θ(θ)d2dθ2Θ(θ)=0(10)r2( 1R(r)[d2dr2R(r)+1rddrR(r)]+k2)+1Θ(θ)d2dθ2Θ(θ)=0

The second term depends only on θ and the first term depends only on r and they are equal, hence they must be both constant. Let this constant be n2 hence

1Θ(θ)d2dθ2Θ(θ)=n2 d2dθ2Θ(θ)=n2Θ(θ)

This is a second order linear ODE with constant coeff. Solution is

(11)Θ(θ)={sinnθcosnθ

From (10) we now have

r2( 1R(r)[d2dr2R(r)+1rddrR(r)]+k2)n2=0 r2R(r)[d2dr2R(r)+1rddrR(r)]+r2k2n2=0 r2[d2dr2R(r)+1rddrR(r)]+(r2k2n2)R(r)=0(12)r2d2dr2R(r)+rddrR(r)+(r2k2n2)R(r)=0

Equation (12) is the Bessel D.E., its solutions are Jn(kr) and Nn(kr) . As described on book on page 560, we can not use the Nn(kr) solution since plate contains the origin and Nn(0) is not defined. So we use solution R(r)=Jn(kr). From boundary conditions, we want solution to be zero at r=1, hence we want Jn(k)=0, hence the k’s are the zeros of Jn

Putting these solutions together, we get from (6)

u(r,θ,t)=R(r)Θ(θ)T(t)={Jn(kr)sinnθeα2k2tJn(kr)cosnθeα2k2t

From symmetry of plate, the solution can not depend on the angle θ, hence let n=0 and so as not to get u=0, we must pick the solution with cosnθ term. Hence our solution now is

u(r,t)=J0(kr) eα2k2t

Where k is a zero of J0

The general solution is a linear combination of this eigenfunction for all zeros of J0, hence

(13)u(r,t)=m=1cm J0(kmr) eα2km2 t

We find cm by using initial condition. When t=0 , temp. was 1000 hence

100=m=1cm J0(kmr)  

Applying inner product w.r.t. rJ0(kur) from 01

01100 rJ0(kur) dr=01(m=1cm J0(kmr)) rJ0(kur) dr10001 rJ0(kur) dr=m=1cm01J0(kmr) rJ0(kur) dr

From orthogonality of J0(kmr) and J0(kur), all terms drop expect when m=u

10001 rJ0(kur) dr= cu01  r[J0(kur)]2 dr

From here we can follow the book on page 561 to get cm=200kmJ1(km)

Substitute this in equation 13

u(r,t)=m=1cm J0(kmr) eα2km2 t=m=1200kmJ1(km) J0(kmr) eα2km2 t=200m=11kmJ1(km) J0(kmr) eα2km2 t

Where km are zeros of J0

Notice that final solution does not depend on θ

4.9.8 chapter 13, problem 5.11. Mary Boas, second edition

Solve rddr(rdRdr)=n2Rddr(r2dRdr)=l(l+1)R

Solution

First equation, use power series method.

rddr(rdRdr)=n2Rr (rd2Rdr2+dRdr)n2R=0r2d2Rdr2+rdRdrn2R=0

Let R=a0rs+a1rs+1+a2rs+2+a3rs+3+a4rs+4+ then

R=a0rs+a1rs+1+a2rs+2+a3rs+3+a4rs+4+n2R=n2a0rsn2a1rs+1n2a2rs+2n2a3rs+3n2a4rs+4dRdr=s a0rs1+(s+1) a1rs+(s+2) a2rs+1+(s+3) a3rs+2+ rdRdr=s a0rs+(s+1) a1rs+1+(s+2) a2rs+2+(s+3) a3rs+3+ d2Rdr2= (s1)s a0rs2+s(s+1) a1rs1+(s+1)(s+2) a2rs+(s+2)(s+3) a3rs+1+ r2d2Rdr2= (s1)s a0rs+s(s+1) a1rs+1+(s+1)(s+2) a2rs+2+(s+2)(s+3) a3rs+3+ 

Table is






rs rs+1 rs+2 rs+m





n2R n2a0 n2a1 n2a2 n2 am





rdRdr s a0 (s+1) a1 (s+2) a2  (s+m)am





r2d2Rdr2  (s1)s a0 s(s+1) a1 (s+1)(s+2) a2 (s+m1)(s+m) am





Hence, from first column we see , and since a0 0 we solve for s

n2a0+s a0+(s1)s a0=0a0(n2+s+(s1)s)=0n2+s+(s1)s=0n2+ s2=0s=±n

We see from second column, a1(n2+(s+1)+s2+s)=0 or a1(s2+2s+1+s2)=0, hence a1(2s+1)=0

For a10 then s=12, this means n is not an integer since s=±n. hence a1 must be zero.

The same applies to all am , m>0 Hence solution contains only a0

R=a0r±nR={a0rna0r+n

For some constant a0. This solution is when n0

If n=0, table is






rs rs+1 rs+2 rs+m





n2R 0 0 0 0





rdRdr s a0 (s+1) a1 (s+2) a2  (s+m)am





r2d2Rdr2  (s1)s a0 s(s+1) a1 (s+1)(s+2) a2 (s+m1)(s+m) am





From first column:

sa0+s2a0sa0=0a0(s+s2s)=0s2=0s=0

And all other as are zero. Hence R=a0 or R is constant.

Now for the second ODE

ddr(r2dRdr)=l(l+1)Rr2d2Rdr2+2rdRdrl(l+1)R=0

Let R=a0rs+a1rs+1+a2rs+2+a3rs+3+a4rs+4+ then

R=a0rs+a1rs+1+a2rs+2+a3rs+3+a4rs+4+l(l+1)R=l(l+1)a0rsl(l+1)a1rs+1l(l+1)a2rs+2l(l+1)a3rs+3l(l+1)a4rs+4dRdr=s a0rs1+(s+1) a1rs+(s+2) a2rs+1+(s+3) a3rs+2+ 2rdRdr=2s a0rs+2(s+1) a1rs+1+2(s+2) a2rs+2+2(s+3) a3rs+3+ d2Rdr2= (s1)s a0rs2+s(s+1) a1rs1+(s+1)(s+2) a2rs+(s+2)(s+3) a3rs+1+ r2d2Rdr2= (s1)s a0rs+s(s+1) a1rs+1+(s+1)(s+2) a2rs+2+(s+2)(s+3) a3rs+3+ 

Table is






rs rs+1 rs+2 rs+m





n2R l(l+1)a0 l(l+1)a1 l(l+1)a2 l(l+1) am





2rdRdr 2s a0 2(s+1) a1 2(s+2) a2  2(s+m)am





r2d2Rdr2  (s1)s a0 s(s+1) a1 (s+1)(s+2) a2 (s+m1)(s+m) am





From first column: l(l+1)a0+2s a0+(s1)s a0=0a0(l(l+1)+2s +(s1)s )=0l(l+1)+2s +(s1)s=0l(l+1)+s +s2=0(sl)(s(l1))=0

Hence s=l or s=l1.

We also see that all other as will be zero, since recursive formula has only am in it and no other a. Hence

R=a0rsR={a0rla0rl1

For some constant a0