A small object of mass 1 kg is attached to a spring with spring constant k=2 N/m. This spring-mass system is immersed in a viscous medium with damping constant c=3 N s/m. At time t=0, the mass is lowered \frac{1}{2} m below its equilibrium position, and released. Show that the mass will creep back to its equilibrium position as t approaches infinity.
Solution
The ODE is my^{\prime \prime }\left ( t\right ) +cy^{\prime }+ky=0
The characteristic equation is\begin{align*} r^{2}+3r+2 & =0\\ r & =\frac{-b}{2a}\pm \frac{1}{2a}\sqrt{b^{2}-4ac}\\ & =\frac{-3}{2}\pm \frac{1}{2}\sqrt{9-4\left ( 2\right ) }\\ & =\frac{-3}{2}\pm \frac{1}{2}\sqrt{9-8}\\ & =\frac{-3}{2}\pm \frac{1}{2} \end{align*}
Hence \begin{align*} r_{1} & =-1\\ r_{2} & =-2 \end{align*}
Therefore the solution to the ODE is\begin{equation} y\left ( t\right ) =c_{1}e^{-t}+c_{2}e^{-2t}\tag{1} \end{equation}
Hence c_{2}=\frac{1}{2}
Hence the solution (1) becomes y\left ( t\right ) =-e^{-t}+\frac{1}{2}e^{-2t}
The following is a plot of the solution above
Find the Laplace transform of the solution of the following initial value problem.\begin{align*} y^{\prime \prime }+y & =t^{2}\sin t\\ y\left ( 0\right ) & =0\\ y^{\prime }\left ( 0\right ) & =0 \end{align*}
Solution
First we find the solution to the ODE then find its Laplace transform. The solution is given by y\left ( t\right ) =y_{h}\left ( t\right ) +y_{p}\left ( t\right )
The characteristic equation is r^{2}+1=0. Hence r^{2}=-1 or r=\pm i
Substituting the above in y_{p}^{\prime \prime }+y_{p}=t^{2}e^{it} gives\begin{multline*} \left ( 6At+2B\right ) e^{it}+i\left ( 3At^{2}+2Bt+C\right ) e^{it}+i\left ( 3At^{2}+2Bt+C\right ) e^{it}\\ -\left ( At^{3}+Bt^{2}+Ct\right ) e^{it}+\left ( At^{3}+Bt^{2}+Ct\right ) e^{it}=t^{2}e^{it} \end{multline*}
Comparing coefficients gives\begin{align*} 2B+2iC & =0\\ 6A+4iB & =0\\ 6Ai & =1 \end{align*}
Hence A=\frac{1}{6i}=-\frac{i}{6}. From the second equation\begin{align*} 6\left ( -\frac{i}{6}\right ) +4iB & =0\\ -i+4iB & =0\\ B & =\frac{i}{4i}=\frac{1}{4} \end{align*}
From the first equation\begin{align*} \frac{1}{2}+2iC & =0\\ 2C & =-\frac{1}{2i}\\ C & =\frac{i}{4} \end{align*}
Substituting the above back into y_{p}=\left ( At^{3}+Bt^{2}+Ct\right ) e^{it} gives\begin{align*} y_{p} & =\left ( -\frac{i}{6}t^{3}+\frac{1}{4}t^{2}+\frac{i}{4}t\right ) e^{it}\\ & =\left ( -\frac{i}{6}t^{3}+\frac{1}{4}t^{2}+\frac{i}{4}t\right ) \left ( \cos t+i\sin t\right ) \\ & =-\frac{i}{6}t^{3}\cos t+\frac{1}{4}t^{2}\cos t+\frac{i}{4}t\cos t-\frac{i}{6}t^{3}\left ( i\sin t\right ) +\frac{1}{4}t^{2}\left ( i\sin t\right ) +\frac{i}{4}t\left ( i\sin t\right ) \\ & =-\frac{i}{6}t^{3}\cos t+\frac{1}{4}t^{2}\cos t+\frac{i}{4}t\cos t+\frac{1}{6}t^{3}\sin t+\frac{1}{4}it^{2}\sin t-\frac{1}{4}t\sin t\\ & =\left ( \frac{1}{4}t^{2}\cos t+\frac{1}{6}t^{3}\sin t-\frac{1}{4}t\sin t\right ) +i\left ( -\frac{1}{6}t^{3}\cos t+\frac{1}{4}t\cos t+\frac{1}{4}t^{2}\sin t\right ) \end{align*}
The particular solution of the original ODE y^{\prime \prime }+y=t^{2}\sin t is the imaginary part of the above which is y_{p}=-\frac{1}{6}t^{3}\cos t+\frac{1}{4}t\cos t+\frac{1}{4}t^{2}\sin t
What is left is to find C_{1},C_{2} from initial conditions. At t=0 the above becomes 0=C_{1}
Hence (3) becomes the final solution\begin{equation} y\left ( t\right ) =-\frac{1}{4}\sin t-\frac{1}{6}t^{3}\cos t+\frac{1}{4}t\cos t+\frac{1}{4}t^{2}\sin t\tag{3A} \end{equation}
The following is a plot of the above solution. The solution blows up in time due to resonance.
The problem now asks to find the Laplace transform of the above. To obtain the Laplace Transform of the above, the following relations will be used (In the following, the notation \Leftrightarrow means the Laplace transform from left to right and the inverse Laplace transform from right to left). \begin{align*} \sin \left ( at\right ) & \Leftrightarrow \frac{a}{a^{2}+s^{2}}\\ \cos \left ( at\right ) & \Leftrightarrow \frac{s}{a^{2}+s^{2}}\\ t^{n}f\left ( t\right ) & \Leftrightarrow \left ( -1\right ) ^{n}\frac{d^{n}}{ds^{n}}F\left ( s\right ) \end{align*}
Hence \begin{align} \sin \left ( t\right ) & \Leftrightarrow \frac{1}{1+s^{2}}\tag{4}\\ \cos \left ( t\right ) & \Leftrightarrow \frac{s}{1+s^{2}}\tag{5} \end{align}
And t\sin \left ( t\right ) \Leftrightarrow \left ( -1\right ) \frac{d}{ds}\mathcal{L}\left ( \sin \left ( t\right ) \right )
Therefore\begin{align} t\sin \left ( t\right ) & \Leftrightarrow \left ( -1\right ) \frac{-2s}{\left ( 1+s^{2}\right ) ^{2}}\nonumber \\ & \Leftrightarrow \frac{2s}{\left ( 1+s^{2}\right ) ^{2}}\tag{6} \end{align}
And\mathcal{L}\left ( t^{2}\sin \left ( t\right ) \right ) =\left ( -1\right ) ^{2}\frac{d^{2}}{ds^{2}}\mathcal{L}\left ( \sin \left ( t\right ) \right )
Therefore\begin{align} \mathcal{L}\left ( t^{2}\sin \left ( t\right ) \right ) & =\left ( -1\right ) ^{2}\frac{-2+6s^{2}}{\left ( 1+s^{2}\right ) ^{3}}\nonumber \\ & =\frac{-2+6s^{2}}{\left ( 1+s^{2}\right ) ^{3}}\tag{7} \end{align}
And\mathcal{L}\left ( t\cos \left ( t\right ) \right ) =\left ( -1\right ) \frac{d}{ds}\mathcal{L}\left ( \cos \left ( t\right ) \right )
Therefore\begin{align} \mathcal{L}\left ( t\cos \left ( t\right ) \right ) & =\left ( -1\right ) \frac{1-s^{2}}{\left ( 1+s^{2}\right ) ^{2}}\nonumber \\ & =\frac{s^{2}-1}{\left ( 1+s^{2}\right ) ^{2}}\tag{8} \end{align}
And\mathcal{L}\left ( t^{2}\cos \left ( t\right ) \right ) =\left ( -1\right ) ^{2}\frac{d^{2}}{ds^{2}}\mathcal{L}\left ( \cos \left ( t\right ) \right )
Therefore\begin{align} \mathcal{L}\left ( t^{2}\cos \left ( t\right ) \right ) & =\left ( -1\right ) ^{2}\left ( \frac{-6s+2s^{3}}{\left ( 1+s^{2}\right ) ^{3}}\right ) \nonumber \\ & =\frac{-6s+2s^{3}}{\left ( 1+s^{2}\right ) ^{3}}\tag{9} \end{align}
And finally\mathcal{L}\left ( t^{3}\cos \left ( t\right ) \right ) =\left ( -1\right ) ^{3}\frac{d^{3}}{ds^{3}}\mathcal{L}\left ( \cos \left ( t\right ) \right )
Therefore\begin{align} \mathcal{L}\left ( t^{3}\cos \left ( t\right ) \right ) & =\left ( -1\right ) ^{3}\left ( \frac{-6s^{4}+36s^{2}-6}{\left ( 1+s^{2}\right ) ^{4}}\right ) \nonumber \\ & =\frac{6s^{4}-36s^{2}+6}{\left ( 1+s^{2}\right ) ^{4}}\tag{10} \end{align}
Using (4,5,6,7,8,9,10) in (3A) gives\begin{align*} \mathcal{L}\left ( y\left ( t\right ) \right ) & =-\frac{1}{4}\mathcal{L}\left ( \sin t\right ) -\frac{1}{6}\mathcal{L}\left ( t^{3}\cos t\right ) +\frac{1}{4}\mathcal{L}\left ( t\cos t\right ) +\frac{1}{4}\mathcal{L}\left ( t^{2}\sin t\right ) \\ & =-\frac{1}{4}\frac{1}{1+s^{2}}-\frac{1}{6}\frac{6s^{4}-36s^{2}+6}{\left ( 1+s^{2}\right ) ^{4}}+\frac{1}{4}\frac{s^{2}-1}{\left ( 1+s^{2}\right ) ^{2}}+\frac{1}{4}\frac{-2+6s^{2}}{\left ( 1+s^{2}\right ) ^{3}}\\ & =-\frac{1}{4}\frac{\left ( 1+s^{2}\right ) ^{3}}{\left ( 1+s^{2}\right ) ^{4}}-\frac{1}{6}\frac{6s^{4}-36s^{2}+6}{\left ( 1+s^{2}\right ) ^{4}}+\frac{1}{4}\frac{\left ( s^{2}-1\right ) \left ( 1+s^{2}\right ) ^{2}}{\left ( 1+s^{2}\right ) ^{4}}+\frac{1}{4}\frac{\left ( -2+6s^{2}\right ) \left ( 1+s^{2}\right ) }{\left ( 1+s^{2}\right ) ^{4}}\\ & =\frac{-\frac{1}{4}\left ( 1+s^{2}\right ) ^{3}-\frac{1}{6}\left ( 6s^{4}-36s^{2}+6\right ) +\frac{1}{4}\left ( s^{2}-1\right ) \left ( 1+s^{2}\right ) ^{2}+\frac{1}{4}\left ( -2+6s^{2}\right ) \left ( 1+s^{2}\right ) }{\left ( 1+s^{2}\right ) ^{4}}\\ & =\frac{-\frac{1}{4}\left ( 1+s^{2}\right ) ^{3}-\frac{1}{6}\left ( 6s^{4}-36s^{2}+6\right ) +\frac{1}{4}\left ( s^{2}-1\right ) \left ( 1+s^{2}\right ) ^{2}+\frac{1}{4}\left ( -2+6s^{2}\right ) \left ( 1+s^{2}\right ) }{\left ( 1+s^{2}\right ) ^{4}}\\ & =\frac{-\frac{1}{4}\left ( 1+s^{2}\right ) ^{3}-\frac{1}{6}\left ( 6s^{4}-36s^{2}+6\right ) +\frac{1}{4}\left ( s^{2}-1\right ) \left ( 1+s^{2}\right ) ^{2}+\frac{1}{4}\left ( -2+6s^{2}\right ) \left ( 1+s^{2}\right ) }{\left ( 1+s^{2}\right ) ^{4}} \end{align*}
Which can be simplified to \mathcal{L}\left ( y\left ( t\right ) \right ) =\frac{6s^{2}-2}{\left ( 1+s^{2}\right ) ^{4}}
Find the inverse Laplace transform of each of the following functions \frac{1}{s\left ( s+4\right ) ^{2}}
Let F\left ( s\right ) =\frac{1}{s\left ( s+4\right ) ^{2}}
Comparing coefficients gives\begin{align*} 16A & =1\\ 8A+4B+C & =0\\ A+B & =0 \end{align*}
From first equation A=\frac{1}{16}. From the third equation B=-\frac{1}{16}. From the second equation 8\left ( \frac{1}{16}\right ) +4\left ( -\frac{1}{16}\right ) +C=0, hence C=-\frac{1}{4}, Therefore\begin{equation} \frac{1}{s\left ( s+4\right ) ^{2}}=\frac{1}{16}\frac{1}{s}-\frac{1}{16}\frac{1}{\left ( s+4\right ) }-\frac{1}{4}\frac{1}{\left ( s+4\right ) ^{2}} \tag{1} \end{equation}
Therefore we see that \begin{equation} \mathcal{L}^{-1}\left ( \frac{1}{\left ( s+4\right ) ^{2}}\right ) =te^{-4t} \tag{4} \end{equation}
Or, taking t\geq 0, then H_{0}\left ( t\right ) can be replaced by 1 and above can be simplifies to\mathcal{L}^{-1}\left ( \frac{1}{s\left ( s+4\right ) ^{2}}\right ) =\frac{1}{16}-\frac{1}{16}e^{-4t}-\frac{1}{4}te^{-4t}
Solve the following initial-value problems by the method of Laplace transforms\begin{align*} y^{\prime \prime }+y & =t\sin t\\ y\left ( 0\right ) & =1\\ y^{\prime }\left ( 0\right ) & =2 \end{align*}
Solution
Taking the Laplace transform of the ODE gives\begin{align} \mathcal{L}\left ( y^{\prime \prime }+y\right ) & =\mathcal{L}\left ( t\sin t\right ) \nonumber \\\mathcal{L}\ y^{\prime \prime }+\mathcal{L}\ y & =\mathcal{L}\left ( t\sin t\right ) \tag{1} \end{align}
But from the above problem Section 2.9, problem 18 we have already found that\mathcal{L}\left ( t\sin t\right ) =\frac{2s}{\left ( 1+s^{2}\right ) ^{2}}
Now we ready to apply inverse Laplace transform using the relations\begin{align} \mathcal{L}\cos t & =\frac{s}{s^{2}+1}\tag{2A}\\\mathcal{L}\sin t & =\frac{1}{s^{2}+1}\tag{2B} \end{align}
The only term left is \frac{s}{\left ( 1+s^{2}\right ) ^{3}}. But this is the same as \frac{s}{\left ( 1+s^{2}\right ) ^{2}}\frac{1}{\left ( 1+s\right ) } and we already found that \frac{2s}{\left ( 1+s^{2}\right ) ^{2}}\Leftrightarrow t\sin t from above solving section 2.9, problem 18, and \frac{1}{\left ( 1+s\right ) }\Leftrightarrow \sin t. Therefore we can use convolution as follows \left ( \frac{2s}{\left ( 1+s^{2}\right ) ^{2}}\right ) \left ( \frac{1}{\left ( 1+s\right ) }\right ) \Leftrightarrow \int _{0}^{t}f\left ( \tau \right ) g\left ( t-\tau \right ) d\tau
Substituting the above in (2) gives\begin{align} \frac{s}{\left ( 1+s^{2}\right ) ^{3}} & \Leftrightarrow \int _{0}^{t}\tau \left ( \frac{1}{2}\left ( \cos \left ( 2\tau -t\right ) -\cos \left ( t\right ) \right ) \right ) d\tau \nonumber \\ & \Leftrightarrow \frac{1}{2}\int _{0}^{t}\tau \cos \left ( 2\tau -t\right ) d\tau -\frac{1}{2}\int _{0}^{t}\tau \cos \left ( t\right ) d\tau \nonumber \\ & \Leftrightarrow \frac{1}{2}\int _{0}^{t}\tau \cos \left ( 2\tau -t\right ) d\tau -\frac{1}{2}\cos \left ( t\right ) \int _{0}^{t}\tau d\tau \tag{3} \end{align}
Using integration by parts on the first integral. Let u=\tau ,dv=\cos \left ( 2\tau -t\right ) ,du=1,v=\frac{\sin \left ( 2\tau -t\right ) }{2}, hence\begin{align*} \int _{0}^{t}\tau \cos \left ( 2\tau -t\right ) d\tau & =\frac{1}{2}\left [ \tau \sin \left ( 2\tau -t\right ) \right ] _{0}^{t}-\int _{0}^{t}\frac{\sin \left ( 2\tau -t\right ) }{2}d\tau \\ & =\frac{1}{2}\left [ t\sin \left ( t\right ) \right ] -\frac{1}{2}\int _{0}^{t}\sin \left ( 2\tau -t\right ) d\tau \\ & =\frac{1}{2}t\sin \left ( t\right ) +\frac{1}{4}\left [ \cos \left ( 2\tau -t\right ) \right ] _{0}^{t}\\ & =\frac{1}{2}t\sin \left ( t\right ) +\frac{1}{4}\left [ \cos \left ( t\right ) -\cos \left ( -t\right ) \right ] \\ & =\frac{1}{2}t\sin \left ( t\right ) +\frac{1}{4}\left [ \cos \left ( t\right ) -\cos \left ( t\right ) \right ] \\ & =\frac{1}{2}t\sin \left ( t\right ) \end{align*}
Substituting the above in (3) gives\begin{align} \frac{s}{\left ( 1+s^{2}\right ) ^{3}} & \Leftrightarrow \frac{1}{2}\left ( \frac{1}{2}t\sin \left ( t\right ) \right ) -\frac{1}{4}t^{2}\cos \left ( t\right ) \nonumber \\ & \Leftrightarrow \frac{1}{4}t\sin \left ( t\right ) -\frac{1}{4}t^{2}\cos \left ( t\right ) \tag{2C} \end{align}
We have found the inverse Laplace transform for all the terms. Substituting (2A,2B,2C) into (1A) gives\begin{align*} \mathcal{L}^{-1}Y\left ( s\right ) & =\mathcal{L}^{-1}\frac{2s}{\left ( 1+s^{2}\right ) ^{3}}+\mathcal{L}^{-1}\frac{s}{\left ( s^{2}+1\right ) }+2\mathcal{L}^{-1}\frac{1}{\left ( s^{2}+1\right ) }\\ y\left ( t\right ) & =\left ( \frac{1}{4}t\sin \left ( t\right ) -\frac{1}{4}t^{2}\cos \left ( t\right ) \right ) +\cos t+2\sin t\\ & =-\frac{1}{4}t^{2}\cos t+\frac{1}{4}t\sin t+\cos t+2\sin t \end{align*}
The following is a plot of the above solution. The solution blows up in time due to resonance.