Solution
Let \psi _{2}=f+A\psi _{1} such that \left \langle \psi _{2},\psi _{1}\right \rangle =0. Hence\begin{align*} \left \langle f+A\psi _{1},\psi _{1}\right \rangle & =0\\ \left \langle f,\psi _{1}\right \rangle +\left \langle A\psi _{1},\psi _{1}\right \rangle & =0\\ \left \langle f,\psi _{1}\right \rangle +A\left \langle \psi _{1},\psi _{1}\right \rangle & =0\\ \left \langle f,\psi _{1}\right \rangle +A\left \Vert \psi _{1}\right \Vert ^{2} & =0\\ A & =-\frac{\left \langle f,\psi _{1}\right \rangle }{\left \Vert \psi _{1}\right \Vert ^{2}} \end{align*}
Therefore, since \psi _{2}=f+A\psi _{1} then \psi _{2}=f-\frac{\left \langle f,\psi _{1}\right \rangle }{\left \Vert \psi _{1}\right \Vert ^{2}}\psi _{1}
Solution
Let \begin{align*} f & =\cos nx+\sin nx\\ \psi _{1} & =\cos nx \end{align*}
Then by Gram Schmidt process from problem 2 we know that \psi _{2}=f-\frac{\left \langle f,\psi _{1}\right \rangle }{\left \Vert \psi _{1}\right \Vert ^{2}}\psi _{1}
But \int _{-\pi }^{\pi }\cos nx\cos nxdx=\int _{-\pi }^{\pi }\cos ^{2}nxdx=\pi and \int _{-\pi }^{\pi }\sin nx\cos nxdx=0 since these are orthogonal. Hence the above simplifies to\begin{align*} \psi _{2} & =\left ( \cos nx+\sin nx\right ) -\cos nx\\ & =\sin nx \end{align*}
Solution
The Fourier coefficients of f-g are given by \left \langle f-g,\phi _{n}\right \rangle by definition. But due to linearity of inner product, this can be written as \left \langle f-g,\phi _{n}\right \rangle =\left \langle f,\phi _{n}\right \rangle -\left \langle g,\phi _{n}\right \rangle
solution
Let the generalized Fourier series of f\left ( x\right ) be f\left ( x\right ) =\sum _{n=1}^{\infty }\left \langle f\left ( x\right ) ,\phi _{n}\right \rangle \phi _{n}
Since the sum converges uniformly, then we are allowed to integrate the left side term by term while keeping the equality with the right side. Hence moving the integration inside the sum gives \sum _{n=1}^{\infty }\left \langle f\left ( x\right ) ,\phi _{n}\right \rangle \int _{a}^{b}\phi _{n}\phi _{m}dx=\left \langle s\left ( x\right ) ,\phi _{m}\right \rangle
From part (a), we found \left \langle f,\phi _{n}\right \rangle =\left \langle s,\phi _{n}\right \rangle
But from problem 3, we know that \left \langle f-s,\phi _{n}\right \rangle =0 implies \left \Vert f-s\right \Vert =0.
Next, using part(b) in problem 4, section 61, which says that if \left \Vert f\right \Vert =0 then f\left ( x\right ) =0 except at possibly finite number of points in the interval, then applying this to our case here that \left \Vert f-s\right \Vert =0 leads to \begin{align*} f-s & =0\\ f & =s \end{align*}
Which is the result required to show.
solution
We need to find \begin{align*} & \left \langle \phi _{0},\phi _{2n}\right \rangle \\ & \left \langle \phi _{0},\phi _{2n-1}\right \rangle \\ & \left \langle \phi _{2n},\phi _{2m}\right \rangle \\ & \left \langle \phi _{2n-1},\phi _{2m-1}\right \rangle \\ & \left \langle \phi _{2m-1},\phi _{2n}\right \rangle \end{align*}
And also show that\begin{align*} & \left \langle \phi _{0},\phi _{0}\right \rangle =\left \Vert \phi _{0}\right \Vert ^{2}=1\\ & \left \langle \phi _{2n},\phi _{2n}\right \rangle =\left \Vert \phi _{2n}\right \Vert ^{2}=1\\ & \left \langle \phi _{2n-1},\phi _{2n-1}\right \rangle =\left \Vert \phi _{2n-1}\right \Vert ^{2}=1 \end{align*}
\left \langle \phi _{0},\phi _{2n}\right \rangle \begin{align*} \left \langle \phi _{0},\phi _{2n}\right \rangle & =\int _{-c}^{c}\frac{1}{\sqrt{2c}}\frac{1}{\sqrt{c}}\cos \left ( \frac{n\pi }{c}x\right ) dx\\ & =\frac{1}{c\sqrt{2}}\left [ \frac{\sin \left ( \frac{n\pi }{c}x\right ) }{\frac{n\pi }{c}}\right ] _{-c}^{c}\\ & =\frac{c}{n\pi c\sqrt{2}}\left [ \sin \left ( \frac{n\pi }{c}x\right ) \right ] _{-c}^{c}\\ & =\frac{1}{n\pi \sqrt{2}}\left [ \sin \left ( n\pi \right ) +\sin \left ( n\pi \right ) \right ] \\ & =0 \end{align*}
Since n is integer.
\left \langle \phi _{0},\phi _{2n-1}\right \rangle \begin{align*} \left \langle \phi _{0},\phi _{2n-1}\right \rangle & =\int _{-c}^{c}\frac{1}{\sqrt{2c}}\frac{1}{\sqrt{c}}\sin \left ( \frac{n\pi }{c}x\right ) dx\\ & =\frac{1}{c\sqrt{2}}\left [ \frac{-\cos \left ( \frac{n\pi }{c}x\right ) }{\frac{n\pi }{c}}\right ] _{-c}^{c}\\ & =\frac{-c}{n\pi c\sqrt{2}}\left [ \cos \left ( \frac{n\pi }{c}x\right ) \right ] _{-c}^{c}\\ & =\frac{-1}{n\pi \sqrt{2}}\left [ \cos \left ( n\pi \right ) -\cos \left ( n\pi \right ) \right ] \\ & =0 \end{align*}
\left \langle \phi _{2n},\phi _{2m}\right \rangle \begin{align*} \left \langle \phi _{2n},\phi _{2m}\right \rangle & =\int _{-c}^{c}\frac{1}{\sqrt{c}}\sin \left ( \frac{n\pi }{c}x\right ) \frac{1}{\sqrt{c}}\sin \left ( \frac{m\pi }{c}x\right ) dx\\ & =\frac{1}{c}\int _{-c}^{c}\sin \left ( \frac{n\pi }{c}x\right ) \sin \left ( \frac{m\pi }{c}x\right ) dx \end{align*}
Let \frac{c}{\pi }s=x, then dx=\frac{c}{\pi }ds. When x=-c then s=-\pi and when x=c then s=\pi and the above becomes\begin{align*} \left \langle \phi _{2n},\phi _{2m}\right \rangle & =\frac{1}{c}\int _{-\pi }^{\pi }\sin \left ( ns\right ) \sin \left ( ms\right ) \frac{c}{\pi }ds\\ & =\frac{1}{\pi }\int _{-\pi }^{\pi }\sin \left ( ns\right ) \sin \left ( ms\right ) ds \end{align*}
Since the integrand is even, then \left \langle \phi _{2n},\phi _{2m}\right \rangle =\frac{2}{\pi }\int _{0}^{\pi }\sin \left ( ns\right ) \sin \left ( ms\right ) ds
\left \langle \phi _{2n},\phi _{2m}\right \rangle =0
\left \langle \phi _{2n-1},\phi _{2m-1}\right \rangle \begin{align*} \left \langle \phi _{2n-1},\phi _{2m-1}\right \rangle & =\int _{-c}^{c}\frac{1}{\sqrt{c}}\cos \left ( \frac{n\pi }{c}x\right ) \frac{1}{\sqrt{c}}\cos \left ( \frac{m\pi }{c}x\right ) dx\\ & =\frac{1}{c}\int _{-c}^{c}\cos \left ( \frac{n\pi }{c}x\right ) \cos \left ( \frac{m\pi }{c}x\right ) dx \end{align*}
Let \frac{c}{\pi }s=x, then dx=\frac{c}{\pi }ds. When x=-c then s=-\pi and when x=c then s=\pi and the above becomes\begin{align*} \left \langle \phi _{2n-1},\phi _{2m-1}\right \rangle & =\frac{1}{c}\int _{-\pi }^{\pi }\cos \left ( ns\right ) \cos \left ( ms\right ) \frac{c}{\pi }ds\\ & =\frac{1}{\pi }\int _{-\pi }^{\pi }\cos \left ( ns\right ) \cos \left ( ms\right ) ds \end{align*}
Since the integrand is even, then \left \langle \phi _{2n-1},\phi _{2m-1}\right \rangle =\frac{2}{\pi }\int _{0}^{\pi }\cos \left ( ns\right ) \cos \left ( ms\right ) ds
\left \langle \phi _{2m-1},\phi _{2n}\right \rangle \begin{align*} \left \langle \phi _{2m-1},\phi _{2n}\right \rangle & =\int _{-c}^{c}\frac{1}{\sqrt{c}}\cos \left ( \frac{m\pi }{c}x\right ) \frac{1}{\sqrt{c}}\sin \left ( \frac{n\pi }{c}x\right ) dx\\ & =\frac{1}{c}\int _{-c}^{c}\cos \left ( \frac{m\pi }{c}x\right ) \sin \left ( \frac{n\pi }{c}x\right ) dx \end{align*}
Let \frac{c}{\pi }s=x, then dx=\frac{c}{\pi }ds. When x=-c then s=-\pi and when x=c then s=\pi and the above becomes\begin{align*} \left \langle \phi _{2m-1},\phi _{2n}\right \rangle & =\frac{1}{c}\int _{-\pi }^{\pi }\cos \left ( ms\right ) \sin \left ( ns\right ) \frac{c}{\pi }ds\\ & =\frac{1}{\pi }\int _{-\pi }^{\pi }\cos \left ( ms\right ) \sin \left ( ns\right ) ds \end{align*}
Using \cos \left ( ms\right ) \sin \left ( ns\right ) =\frac{1}{2}\left ( \cos \left ( s\left ( m+n\right ) \right ) +\cos \left ( s\left ( m-n\right ) \right ) \right ) . Hence the above becomes \left \langle \phi _{2m-1},\phi _{2n}\right \rangle =\frac{1}{2\pi }\left ( \int _{-\pi }^{\pi }\cos \left ( s\left ( m+n\right ) \right ) ds+\int _{-\pi }^{\pi }\cos \left ( s\left ( m-n\right ) \right ) ds\right )
Hence \left \Vert \phi _{0}\right \Vert =1\,.
\left \langle \phi _{2n},\phi _{2n}\right \rangle \begin{align*} \left \langle \phi _{2n},\phi _{2n}\right \rangle & =\int _{-c}^{c}\frac{1}{\sqrt{c}}\sin \left ( \frac{n\pi }{c}x\right ) \frac{1}{\sqrt{c}}\sin \left ( \frac{n\pi }{c}x\right ) dx\\ & =\frac{1}{c}\int _{-c}^{c}\sin ^{2}\left ( \frac{n\pi }{c}x\right ) dx\\ & =\frac{1}{c}\int _{-c}^{c}\frac{1}{2}-\frac{1}{2}\cos \left ( 2\frac{n\pi }{c}x\right ) dx\\ & =\frac{1}{2c}\left ( \int _{-c}^{c}dx-\int _{-c}^{c}\cos \left ( 2\frac{n\pi }{c}x\right ) dx\right ) \\ & =\frac{1}{2c}\left ( 2c-\left [ \frac{\sin \left ( 2\frac{n\pi }{c}x\right ) }{2\frac{n\pi }{c}}\right ] _{-c}^{c}\right ) \\ & =\frac{1}{2c}\left ( 2c-\frac{c}{2n\pi }\left [ \sin \left ( 2\frac{n\pi }{c}x\right ) \right ] _{-c}^{c}\right ) \\ & =\frac{1}{2c}\left ( 2c\right ) \\ & =1 \end{align*}
Hence \left \Vert \phi _{2n}\right \Vert =1\,.
\left \langle \phi _{2n-1},\phi _{2n-1}\right \rangle \begin{align*} \left \langle \phi _{2n-1},\phi _{2n-1}\right \rangle & =\int _{-c}^{c}\frac{1}{\sqrt{c}}\cos \left ( \frac{n\pi }{c}x\right ) \frac{1}{\sqrt{c}}\cos \left ( \frac{n\pi }{c}x\right ) dx\\ \left \Vert \phi _{2n-1}\right \Vert ^{2} & =\frac{1}{c}\int _{-c}^{c}\cos ^{2}\left ( \frac{n\pi }{c}x\right ) dx\\ & =\frac{1}{c}\int _{-c}^{c}\frac{1}{2}+\frac{1}{2}\sin \left ( 2\frac{n\pi }{c}x\right ) dx\\ & =\frac{1}{2c}\left ( \int _{-c}^{c}dx+\int _{-c}^{c}\sin \left ( 2\frac{n\pi }{c}x\right ) dx\right ) \\ & =\frac{1}{2c}\left ( 2c-\left [ \frac{\cos \left ( 2\frac{n\pi }{c}x\right ) }{2\frac{n\pi }{c}}\right ] _{-c}^{c}\right ) \\ & =\frac{1}{2c}\left ( 2c-\frac{c}{2n\pi }\left [ \cos \left ( 2\frac{n\pi }{c}x\right ) \right ] _{-c}^{c}\right ) \\ & =\frac{1}{2c}\left ( 2c-\frac{c}{2n\pi }\left [ \cos \left ( 2n\pi \right ) -\cos \left ( 2n\pi \right ) \right ] \right ) \\ & =\frac{1}{2c}2c\\ & =1 \end{align*}
Hence \left \Vert \phi _{2n-1}\right \Vert =1\,.
\begin{align*} \phi _{0}\left ( x\right ) & =\frac{1}{\sqrt{2c}}\\ \phi _{2n-1}\left ( x\right ) & =\frac{1}{\sqrt{c}}\cos \left ( \frac{n\pi x}{c}\right ) \\ \phi _{2n}\left ( x\right ) & =\frac{1}{\sqrt{c}}\sin \left ( \frac{n\pi x}{c}\right ) \end{align*}
On -c<x<c. The generalized Fourier series for f\left ( x\right ) in C_{p}\left ( -c,c\right ) is \sum _{n=0}^{\infty }c_{n}\phi _{n}\left ( x\right ) =c_{0}\phi _{0}\left ( x\right ) +\sum _{n=1}^{\infty }\left ( c_{2n-1}\phi _{2n-1}\left ( x\right ) +c_{2n}\phi _{2n}\left ( x\right ) \right )
If we write a_{0}=2\frac{c_{0}}{\sqrt{2c}},a_{n}=\frac{c_{2n-1}}{\sqrt{c}},b_{n}=\frac{c_{2n}}{\sqrt{c}}\qquad n=1,2,\cdots
This is the ordinary Fourier series on -c<x<c.
From (1) section 65\begin{equation} \sum _{n=0}^{N}c_{n}^{2}\leq \left \Vert f\right \Vert ^{2} \tag{1} \end{equation}
Substituting the above into (1) gives\begin{align*} c_{0}^{2}+\sum _{n=1}^{N}c_{2n-1}^{2}+\sum _{n=1}^{N}c_{2n}^{2} & \leq \left \Vert f\right \Vert ^{2}\\ \left ( \frac{a_{0}}{2}\sqrt{2c}\right ) ^{2}+\sum _{n=1}^{N}\left ( a_{n}\sqrt{c}\right ) ^{2}+\sum _{n=1}^{N}\left ( b_{n}\sqrt{c}\right ) ^{2} & \leq \int \left [ f\left ( x\right ) \right ] ^{2}dx\\ \left ( \frac{a_{0}^{2}}{4}2c\right ) +\sum _{n=1}^{N}a_{n}^{2}c+\sum _{n=1}^{N}b_{n}^{2}c & \leq \int \left [ f\left ( x\right ) \right ] ^{2}dx\\ \frac{a_{0}^{2}}{2}+\sum _{n=1}^{N}\left ( a_{n}^{2}+b_{n}^{2}\right ) & \leq \frac{1}{c}\int \left [ f\left ( x\right ) \right ] ^{2}dx \end{align*}
solution
The function S_{N}\left ( x\right ) is almost 1 everywhere as can be seen from this diagram
And the problem is asking us to show that S_{N}\left ( x\right ) \rightarrow f\left ( x\right ) in the mean. This means we need to show the following is true
\lim _{N\rightarrow \infty }\left \Vert S_{N}\left ( x\right ) -f\left ( x\right ) \right \Vert =0
Except at possibly finite number of points x. But this is the case here. Looking at S_{N}\left ( x\right ) we see it is equal to f\left ( x\right ) =1 everywhere except at the points x=1,\frac{1}{2},\frac{1}{3},\cdots and compared to all the points between 0 and 1, then S_{N}\left ( x\right ) =f\left ( x\right ) =1 almost everywhere. Even though as N\rightarrow \infty the number of points where S_{N}\left ( x\right ) \neq 1 increases, it is still finitely many compared to the number of points where S_{N}\left ( x\right ) =f\left ( x\right ) =1.
To answer the second part: Since S_{N}\left ( x\right ) =0 at any x value which can written as \frac{1}{p} where p is an integer (this by definition given), then S_{N}\left ( \frac{1}{p}\right ) =0. Then it clearly follows that \lim _{N\rightarrow \infty }S_{N}\left ( \frac{1}{p}\right ) =0.