Processing math: 100%

2.5 HW 5

  2.5.1 Section 34, Problem 3
  2.5.2 Section 37, Problem 1
  2.5.3 Section 37, Problem 3
  2.5.4 Section 37, Problem 5
  2.5.5 Section 39, Problem 2
  2.5.6 Section 39, Problem 4
PDF (letter size)
PDF (legal size)

2.5.1 Section 34, Problem 3

pict
Figure 2.57:Problem statement

Solution

The boundary conditions are

pict
Figure 2.58:Boundary conditions

Let u\left ( x,y\right ) =X\left ( x\right ) Y\left ( y\right ) Substitution in the PDE u_{xx}+y_{yy}=0 leads to\begin{align*} X^{\prime \prime }Y+Y^{\prime \prime }Y & =0\\ \frac{X^{\prime \prime }}{X} & =-\frac{Y^{\prime \prime }}{Y}=-\lambda \end{align*}

Where \lambda is the separation constant. We obtain two ODE’s\begin{align} X^{\prime \prime }+\lambda X & =0\tag{1}\\ Y^{\prime \prime }-\lambda Y & =0\tag{2} \end{align}

We use the X\left ( x\right ) ODE (1) to determine the eigenvalues, since that ODE has both boundary conditions specified:\begin{align*} X^{\prime \prime }+\lambda X & =0\\ X^{\prime }\left ( 0\right ) & =0\\ X^{\prime }\left ( \pi \right ) & =0 \end{align*}

Case \lambda <0

Solution is \begin{align*} X\left ( x\right ) & =A\cosh \left ( \sqrt{-\lambda }x\right ) +B\sinh \left ( \sqrt{-\lambda }x\right ) \\ X^{\prime }\left ( x\right ) & =A\sqrt{-\lambda }\sinh \left ( \sqrt{-\lambda }x\right ) +B\sqrt{-\lambda }\cosh \left ( \sqrt{-\lambda }x\right ) \end{align*}

At x=0 the above gives\begin{align*} 0 & =B\sqrt{-\lambda }\cosh \left ( 0\right ) \\ & =B\sqrt{-\lambda } \end{align*}

Hence B=0 and the solution (3) reduces to\begin{align*} X\left ( x\right ) & =A\cosh \left ( \sqrt{-\lambda }x\right ) \\ X^{\prime }\left ( x\right ) & =A\sqrt{-\lambda }\sinh \left ( \sqrt{-\lambda }x\right ) \end{align*}

At x=\pi the above becomes 0=A\sqrt{-\lambda }\sinh \left ( \sqrt{-\lambda }\pi \right ) For non-trivial solution we want \sinh \left ( \sqrt{-\lambda }\pi \right ) =0, but \sinh is only zero when its argument is zero, which is not possible here, since \lambda \neq 0. Therefore \lambda <0 is not possible.

Case \lambda =0

Solution becomes X=Ax+B. Hence X^{\prime }=A. At x=0 this leads to A=0. Therefore the solution now becomes X=B. Hence X^{\prime }=0. Therefore the second boundary conditions at x=\pi is automatically satisfied. Hence the solution is X\left ( x\right ) =B, a constant. We pick X\left ( x\right ) =1. Therefore \lambda =0 is eigenvalue with associated eigenfunction X_{0}\left ( x\right ) =1.

Case \lambda >0

The solution becomes\begin{align*} X\left ( x\right ) & =A\cos \left ( \sqrt{\lambda }x\right ) +B\sin \left ( \sqrt{\lambda }x\right ) \\ X^{\prime }\left ( x\right ) & =-A\sqrt{\lambda }\sin \left ( \sqrt{\lambda }x\right ) +B\sqrt{\lambda }\cos \left ( \sqrt{\lambda }x\right ) \end{align*}

At x=0 the above becomes 0=B\sqrt{\lambda } Hence B=0 and the solution reduces to\begin{align*} X\left ( x\right ) & =A\cos \left ( \sqrt{\lambda }x\right ) \\ X^{\prime }\left ( x\right ) & =-A\sqrt{\lambda }\sin \left ( \sqrt{\lambda }x\right ) \end{align*}

At x=\pi the above gives\begin{align*} 0 & =-A\sqrt{\lambda }\sin \left ( \sqrt{\lambda }\pi \right ) \\ \sin \left ( \sqrt{\lambda }\pi \right ) & =0 \end{align*}

Therefore \sqrt{\lambda }\pi =n\pi for n=1,2,3,\cdots . Hence \lambda _{n}=n^{2}\qquad n=1,2,3,\cdots And the solution (corresponding eigenfunctions) is\begin{align*} X_{n}\left ( x\right ) & =\cos \left ( \sqrt{\lambda _{n}}x\right ) \\ & =\cos \left ( nx\right ) \end{align*}

In summary, the solution to the X ODE resulted in \begin{align} X_{0}\left ( x\right ) & =1\qquad n=0\tag{3}\\ X_{n}\left ( x\right ) & =\cos \left ( nx\right ) \qquad n=1,2,3,\cdots \nonumber \end{align}

Now we solve for the Y ODE\begin{align*} Y^{\prime \prime }-\lambda Y & =0\\ Y\left ( 0\right ) & =0 \end{align*}

We are only given boundary conditions on bottom edge.

case \lambda =0 Y=Ay+B When y=0 the above leads to 0=B. Hence the corresponding eigenfunction is Y_{0}\left ( y\right ) =y.

case \lambda >0

The solution becomes Y\left ( y\right ) =A\cosh \left ( \sqrt{\lambda }y\right ) +B\sinh \left ( \sqrt{\lambda }y\right ) At y=0 the above gives\begin{align*} 0 & =A\cosh \left ( 0\right ) \\ & =A \end{align*}

Hence the solution reduces to Y\left ( y\right ) =B\sinh \left ( \sqrt{\lambda }y\right ) Therefore the eigenfunctions for n=1,2,3,\cdots are Y_{n}\left ( y\right ) =\sinh \left ( ny\right ) since \lambda _{n}=n^{2} for n=1,2,3,\cdots .

In summary, the solution to the Y ODE resulted in \begin{align} Y_{0}\left ( y\right ) & =y\qquad n=0\tag{4}\\ Y_{n}\left ( x\right ) & =\sinh \left ( ny\right ) \qquad n=1,2,3,\cdots \nonumber \end{align}

From (3,4) we see that u_{n}\left ( x,y\right ) =X_{n}\left ( x\right ) Y_{n}\left ( y\right ) For n=0 the above becomes\begin{align*} u_{0}\left ( x,y\right ) & =\left ( 1\right ) \left ( y\right ) \\ & =y \end{align*}

And for n=1,2,3,\cdots \begin{align*} u_{n}\left ( x,y\right ) & =\sinh \left ( ny\right ) \\ & =\cos \left ( nx\right ) \sinh \left ( ny\right ) \end{align*}

Using superposition, then\begin{align*} u\left ( x,y\right ) & =X\left ( x\right ) Y\left ( y\right ) \\ & =A_{0}u_{0}+\sum _{n=1}^{\infty }A_{n}u_{n}\\ & =A_{0}y+\sum _{n=1}^{\infty }A_{n}\cos \left ( nx\right ) \sinh \left ( ny\right ) \end{align*}

QED.

2.5.2 Section 37, Problem 1

pict
Figure 2.59:Problem statement

Solution

The boundary conditions now become as follows

pict
Figure 2.60:Boundary conditions

From the above problem we know the general solution is\begin{equation} u\left ( x,y\right ) =A_{0}y+\sum _{n=1}^{\infty }A_{n}\cos \left ( nx\right ) \sinh \left ( ny\right ) \tag{1} \end{equation} Now we impose the remaining boundary condition u\left ( x,2\right ) =f\left ( x\right ) . Therefore the above becomes f\left ( x\right ) =2A_{0}+\sum _{n=1}^{\infty }A_{n}\cos \left ( nx\right ) \sinh \left ( 2n\right ) Multiplying both sides by \cos \left ( mx\right ) integrating w.r.t. x from x=0 to x=\pi results in\begin{align*} \int _{0}^{\pi }f\left ( x\right ) \cos \left ( mx\right ) dx & =\int _{0}^{\pi }2A_{0}\cos \left ( mx\right ) dx+\left [ \int _{0}^{\pi }\sum _{n=1}^{\infty }A_{n}\cos \left ( nx\right ) \cos \left ( mx\right ) \sinh \left ( 2n\right ) dx\right ] \\ \int _{0}^{\pi }f\left ( x\right ) \cos \left ( mx\right ) dx & =\int _{0}^{\pi }2A_{0}\cos \left ( mx\right ) dx+\left [ \sum _{n=1}^{\infty }A_{n}\sinh \left ( 2n\right ) \left ( \int _{0}^{\pi }\cos \left ( nx\right ) \cos \left ( mx\right ) dx\right ) \right ] \end{align*}

case m=0\begin{align} \int _{0}^{\pi }f\left ( x\right ) dx & =\int _{0}^{\pi }2A_{0}dx\nonumber \\ & =2A_{0}\pi \nonumber \\ A_{0} & =\frac{1}{2\pi }\int _{0}^{\pi }f\left ( x\right ) dx \tag{2} \end{align}

case m=1,2,\cdots \int _{0}^{\pi }f\left ( x\right ) \cos \left ( mx\right ) dx=\sum _{n=1}^{\infty }A_{n}\sinh \left ( 2n\right ) \left ( \int _{0}^{\pi }\cos \left ( nx\right ) \cos \left ( mx\right ) dx\right ) But \int _{0}^{\pi }\cos \left ( nx\right ) \cos \left ( mx\right ) dx=0 for all m\neq n and \frac{\pi }{2} when m=n. Hence the above simplifies to\begin{align*} \int _{0}^{\pi }f\left ( x\right ) \cos \left ( mx\right ) dx & =\frac{\pi }{2}A_{m}\sinh \left ( 2m\right ) \\ A_{m} & =\frac{2}{\pi \sinh \left ( 2m\right ) }\int _{0}^{\pi }f\left ( x\right ) \cos \left ( mx\right ) dx \end{align*}

Since m is summation index, we can rename it to n and the above becomes\begin{equation} A_{n}=\frac{2}{\pi \sinh \left ( 2n\right ) }\int _{0}^{\pi }f\left ( x\right ) \cos \left ( nx\right ) dx \tag{3} \end{equation} Using (2,3) in (1) gives the final solution u\left ( x,y\right ) =\left ( \frac{1}{2\pi }\int _{0}^{\pi }f\left ( x\right ) dx\right ) y+\sum _{n=1}^{\infty }\left ( \frac{2}{\pi \sinh \left ( 2n\right ) }\int _{0}^{\pi }f\left ( x\right ) \cos \left ( nx\right ) dx\right ) \cos \left ( nx\right ) \sinh \left ( ny\right )

2.5.3 Section 37, Problem 3

   Part (a)
   Part (b)
   Part (c)
   Part (d)

pict
Figure 2.61:Problem statement
Part (a)

u_{xx}-xtu_{tt}=0 Let u=X\left ( x\right ) T\left ( t\right ) . Substituting this into the above PDE gives X^{\prime \prime }T-xtT^{\prime \prime }X=0 Dividing by XT\neq 0 gives \frac{X^{\prime \prime }}{X}-xt\frac{T^{\prime \prime }}{T}=0 Diving by x gives\begin{align*} \frac{1}{x}\frac{X^{\prime \prime }}{X}-t\frac{T^{\prime \prime }}{T} & =0\\ \frac{1}{x}\frac{X^{\prime \prime }}{X} & =t\frac{T^{\prime \prime }}{T}=-\lambda \end{align*}

Hence it possible to separate them. The generated ODE’s are\begin{align*} X^{\prime \prime }+\lambda xX & =0\\ T^{\prime \prime }+\lambda \frac{T}{t} & =0 \end{align*}

Part (b)

\left ( x+t\right ) u_{xx}-u_{t}=0 Let u=X\left ( x\right ) T\left ( t\right ) . Substituting this into the above PDE gives \left ( x+t\right ) X^{\prime \prime }T-T^{\prime }X=0 Dividing by XT\neq 0 gives x\frac{X^{\prime \prime }}{X}+t\frac{X^{\prime \prime }}{X}-\frac{T^{\prime }}{T}=0 It is not possible to separate them.

Part (c)

xu_{xx}+u_{xt}+tu_{tt}=0 Let u=X\left ( x\right ) T\left ( t\right ) . Substituting this into the above PDE gives\begin{align*} xX^{\prime \prime }T-\frac{\partial }{\partial t}\left ( X^{\prime }T\right ) +tT^{\prime \prime }X & =0\\ xX^{\prime \prime }T-X^{\prime }T^{\prime }X+tT^{\prime \prime }X & =0 \end{align*}

Dividing by XT\neq 0 gives x\frac{X^{\prime \prime }}{X}-X^{\prime }T^{\prime }+t\frac{T^{\prime \prime }}{T}=0 It is not possible to separate them.

Part (d)

u_{xx}-u_{tt}-u_{t}=0 Let u=X\left ( x\right ) T\left ( t\right ) . Substituting this into the above PDE gives X^{\prime \prime }T-T^{\prime \prime }X-T^{\prime }X=0 Dividing by XT\neq 0 gives\begin{align*} \frac{X^{\prime \prime }}{X}-\frac{T^{\prime \prime }}{T}-\frac{T^{\prime }}{T} & =0\\ \frac{X^{\prime \prime }}{X} & =\frac{T^{\prime \prime }}{T}+\frac{T^{\prime }}{T}=-\lambda \end{align*}

It is possible to separate them. The ODE’s are\begin{align*} X^{\prime \prime }+\lambda X & =0\\ T^{\prime \prime }+T^{\prime }+\lambda T & =0 \end{align*}

2.5.4 Section 37, Problem 5

pict
Figure 2.62:Problem statement

Case \lambda <0

Solution is X\left ( x\right ) =A\cosh \left ( \sqrt{-\lambda }x\right ) +B\sinh \left ( \sqrt{-\lambda }x\right ) At x=0 the above gives 0=A Hence the solution becomes X\left ( x\right ) =B\sinh \left ( \sqrt{-\lambda }x\right ) At x=c the above becomes 0=B\sinh \left ( \sqrt{-\lambda }c\right ) For non-trivial solution we want \sinh \left ( \sqrt{-\lambda }c\right ) =0. But \sinh is zero only when its argument is zero. Which means \sqrt{-\lambda }c=0 which is not possible. Hence \lambda <0 is not possible.

Case \lambda =0

Solution is X\left ( x\right ) =Ax+B At x=0 the above gives 0=B Hence the solution becomes X\left ( x\right ) =B At x=c the above becomes 0=B Which gives trivial solution. Hence \lambda =0 is not possible.

Case \lambda >0

Solution is X\left ( x\right ) =A\cos \left ( \sqrt{\lambda }x\right ) +B\sin \left ( \sqrt{\lambda }x\right ) At x=0 the above gives 0=A Hence the solution becomes X\left ( x\right ) =B\sin \left ( \sqrt{\lambda }x\right ) At x=c the above becomes 0=B\sin \left ( \sqrt{\lambda }c\right ) For non trivial solution we want \sin \left ( \sqrt{\lambda }c\right ) =0 which implies \begin{align*} \sqrt{\lambda }c & =n\pi \qquad n=1,2,3,\cdots \\ \lambda _{n} & =\left ( \frac{n\pi }{c}\right ) ^{2} \end{align*}

Therefore the eigenvalues are \lambda _{n}=\left ( \frac{n\pi }{c}\right ) ^{2} for n=1,2,3,\cdots and the eigenfunctions are X_{n}\left ( x\right ) =\sin \left ( \frac{n\pi }{c}x\right ) for n=1,2,3,\cdots .

2.5.5 Section 39, Problem 2

pict
Figure 2.63:Problem statement

Solution

Example 1 is: Solve u_{t}=ku_{xx} with u\left ( 0,t\right ) =0 and u\left ( \pi ,t\right ) =0. We now use initial conditions u\left ( x,0\right ) =\sin \left ( x\right ) . The eigenvalues are \lambda _{n}=n^{2} for n=1,2,3,\cdots and eigenfunctions are \sin \left ( nx\right ) . The general solution for this example is given in the book as u\left ( x,t\right ) =\sum _{n=1}^{\infty }B_{n}e^{-kn^{2}t}\sin \left ( nx\right ) At t=0 the above becomes\begin{equation} \sin x=\sum _{n=1}^{\infty }B_{n}\sin \left ( nx\right ) \tag{1} \end{equation} By comparing sides, we see that only n=1 term exist. Hence B_{1}=1 and all other terms are zero. Hence the solution is, for n=1 u\left ( x,t\right ) =e^{-kt}\sin \left ( x\right ) To verify this, we start with (1) and multiply both sides by \sin \left ( mx\right ) and integrate which gives\begin{align*} \int _{0}^{\pi }\sin x\sin \left ( mx\right ) dx & =\int _{0}^{\pi }\sum _{n=1}^{\infty }B_{n}\sin \left ( nx\right ) \sin \left ( mx\right ) dx\\ & =\sum _{n=1}^{\infty }B_{n}\left ( \int _{0}^{\pi }\sin \left ( nx\right ) \sin \left ( mx\right ) dx\right ) \end{align*}

But \int _{0}^{\pi }\sin \left ( nx\right ) \sin \left ( mx\right ) dx=0 for m\neq n and \frac{\pi }{2} for n=m. Hence the above gives \int _{0}^{\pi }\sin x\sin \left ( mx\right ) dx=B_{m}\frac{\pi }{2} Similarly, \int _{0}^{\pi }\sin x\sin \left ( mx\right ) dx=0 for m\neq 1 and \frac{\pi }{2} when m=1, therefore the above becomes\begin{align*} \frac{\pi }{2} & =B_{1}\frac{\pi }{2}\\ B_{1} & =1 \end{align*}

And all other B_{n}=0. Which gives the same result obtain above, which is u\left ( x,t\right ) =e^{-kt}\sin \left ( x\right )

2.5.6 Section 39, Problem 4

pict
Figure 2.64:Problem statement

Solution

We need to solve u_{t}=ku_{xx}\qquad t>0,0<x<\pi With boundary conditions\begin{align*} u\left ( 0,t\right ) & =u_{0}\\ u\left ( \pi ,t\right ) & =0 \end{align*}

And initial conditions u\left ( x,0\right ) =0 Solution (15) is\begin{equation} u\left ( x,t\right ) =\frac{u_{0}}{\pi }\left [ x+2\sum _{n=1}^{\infty }\frac{\left ( -1\right ) ^{n}}{n}e^{-n^{2}kt}\sin \left ( nx\right ) \right ] \tag{15} \end{equation} Replacing x by \pi -x in (15) gives\begin{align} u\left ( x,t\right ) & =\frac{u_{0}}{\pi }\left [ \left ( \pi -x\right ) +2\sum _{n=1}^{\infty }\frac{\left ( -1\right ) ^{n}}{n}e^{-n^{2}kt}\sin \left ( n\left ( \pi -x\right ) \right ) \right ] \nonumber \\ & =\frac{u_{0}}{\pi }\left ( \pi -x\right ) +2\frac{u_{0}}{\pi }\sum _{n=1}^{\infty }\frac{\left ( -1\right ) ^{n}}{n}e^{-n^{2}kt}\sin \left ( n\pi -nx\right ) \tag{2} \end{align}

Using \sin \left ( A-B\right ) =\sin A\cos B+\cos A\sin B, then \sin \left ( n\pi -nx\right ) =\sin \left ( n\pi \right ) \cos \left ( nx\right ) +\cos \left ( n\pi \right ) \sin \left ( nx\right ) But \sin \left ( n\pi \right ) =0 since n is integer and \cos \left ( n\pi \right ) =\left ( -1\right ) ^{n}, then \sin \left ( n\pi -nx\right ) =\left ( -1\right ) ^{n}\sin \left ( nx\right ) . Substituting this in (2) gives\begin{align*} u\left ( x,t\right ) & =u_{0}-u_{0}\frac{x}{\pi }+2\frac{u_{0}}{\pi }\sum _{n=1}^{\infty }\frac{\left ( -1\right ) ^{n}}{n}e^{-n^{2}kt}\left ( -1\right ) ^{n}\sin \left ( nx\right ) \\ & =u_{0}\left [ 1-\frac{x}{\pi }+\frac{2}{\pi }\sum _{n=1}^{\infty }\frac{\left ( -1\right ) ^{2n}}{n}e^{-n^{2}kt}\sin \left ( nx\right ) \right ] \\ & =u_{0}\left [ 1-\frac{x}{\pi }+\frac{2}{\pi }\sum _{n=1}^{\infty }\frac{1}{n}e^{-n^{2}kt}\sin \left ( nx\right ) \right ] \end{align*}

Which is the result required.