Solution
Solve for y\left ( x,t\right ) in\begin{equation} y_{tt}=y_{xx}-2\beta y_{t}\qquad \left ( t>0,0<x<\pi \right ) \tag{1} \end{equation}
Initial conditions\begin{align*} y\left ( x,0\right ) & =f\left ( x\right ) \\ y_{t}\left ( x,0\right ) & =0 \end{align*}
Let y=XT. Substituting in (1) gives T^{\prime \prime }X=X^{\prime \prime }T-2\beta T^{\prime }X
Where \lambda is separation constant. Due to nature of boundary conditions being both homogeneous, then we know \lambda >0 is only possible case from earlier HW’s. The eigenvalue problem is X^{\prime \prime }+\lambda X=0
This is standard second order ODE with positive damping \beta and since n^{2} is positive. The characteristic equation is r^{2}+2\beta r+n^{2}=0
Hence the solution is \begin{align*} T_{n}\left ( t\right ) & =A_{n}e^{r_{1}t}+B_{n}e^{r_{2}t}\\ & =A_{n}e^{\left ( -\beta +i\sqrt{n^{2}-\beta ^{2}}\right ) t}+B_{n}e^{\left ( -\beta -i\sqrt{n^{2}-\beta ^{2}}\right ) t}\\ & =e^{-\beta t}\left ( A_{n}e^{i\sqrt{n^{2}-\beta ^{2}}t}+B_{n}e^{-i\sqrt{n^{2}-\beta ^{2}}t}\right ) \end{align*}
But the above can be rewritten using Euler relation as (the constants A_{n},B_{n} will be different, but kept them the same names for simplicity) T_{n}\left ( t\right ) =e^{-\beta t}\left ( A_{n}\cos \left ( \sqrt{n^{2}-\beta ^{2}}t\right ) +B_{n}\sin \left ( \sqrt{n^{2}-\beta ^{2}}t\right ) \right )
Now initial conditions are applied to determine A_{n},B_{n}. At t=0 f\left ( x\right ) =\sum _{n=1}^{\infty }A_{n}\sin \left ( nx\right )
Where A_{n}=\frac{2}{\pi }\int _{0}^{\pi }f\left ( x\right ) \sin \left ( nx\right ) dx and \alpha _{n}=\sqrt{n^{2}-\beta ^{2}}. Which is the result required to show (Book used B in place A, but it is the same thing, just different name for a constant).
Solution
suppose \omega \neq a. Let \begin{equation} y_{p}=A\cos \omega t+B\sin \omega t \tag{1} \end{equation}
Substituting the above back into the given ODE gives\begin{align} y_{p}^{\prime \prime }\left ( t\right ) +a^{2}y_{p}\left ( t\right ) & =b\sin \omega t\nonumber \\ \left ( -A\omega ^{2}\cos \omega t-B\omega ^{2}\sin \omega t\right ) +a^{2}\left ( A\cos \omega t+B\sin \omega t\right ) & =b\sin \omega t\nonumber \\ \cos \omega t\left ( -A\omega ^{2}+a^{2}A\right ) +\sin \omega t\left ( -B\omega ^{2}+a^{2}B\right ) & =b\sin \omega t \tag{2} \end{align}
By comparing coefficients, we see that\begin{align*} -A\omega ^{2}+a^{2}A & =0\\ A\left ( a^{2}-\omega ^{2}\right ) & =0 \end{align*}
Since \omega \neq a then this implies that A=0. And from (2), we see that\begin{align*} -B\omega ^{2}+a^{2}B & =b\\ B & =\frac{b}{a^{2}-\omega ^{2}} \end{align*}
Therefore (1) becomes\begin{equation} y_{p}=\frac{b}{a^{2}-\omega ^{2}}\sin \omega t \tag{3} \end{equation}
Let \begin{equation} y_{p}=At\cos \omega t+Bt\sin \omega t \tag{1} \end{equation}
Substituting the above back into the given ODE gives\begin{align} y_{p}^{\prime \prime }\left ( t\right ) +a^{2}y_{p}\left ( t\right ) & =b\sin \omega t\nonumber \\ \left ( \left ( -At\omega ^{2}+2B\omega \right ) \cos \omega t+\left ( -2A\omega -Bt\omega ^{2}\right ) \sin \omega t\right ) +a^{2}\left ( At\cos \omega t+Bt\sin \omega t\right ) & =b\sin \omega t\nonumber \\ \cos \omega t\left ( -At\omega ^{2}+2B\omega +a^{2}At\right ) +\sin \omega t\left ( -2A\omega -Bt\omega ^{2}+a^{2}Bt\right ) & =b\sin \omega t \tag{2} \end{align}
By comparing coefficients, we see that\begin{align} -At\omega ^{2}+2B\omega +a^{2}At & =0\nonumber \\ At\left ( -\omega ^{2}+a^{2}\right ) +B\left ( 2\omega \right ) & =0 \tag{3} \end{align}
And from (2), we see also that\begin{align} -2A\omega -Bt\omega ^{2}+a^{2}Bt & =b\nonumber \\ A\left ( -2\omega \right ) +Bt\left ( -\omega ^{2}+a^{2}\right ) & =b \tag{4} \end{align}
But since \omega =a, then (3) becomes\begin{align*} B\left ( 2\omega \right ) & =0\\ B & =0 \end{align*}
And (4) becomes\begin{align*} A\left ( -2\omega \right ) & =b\\ A & =\frac{-b}{2a} \end{align*}
Substituting these values we found for A,B, in (1) gives y_{p}=\frac{-b}{2a}t\cos \omega t
Solution
The general solution from problem 2 is y\left ( t\right ) =\left \{ \begin{array} [c]{cc}C_{1}\cos at+C_{2}\sin at+\frac{b}{a^{2}-\omega ^{2}}\sin \omega t & \omega \neq a\\ C_{1}\cos at+C_{2}\sin at-\frac{b}{2a}t\cos at & \omega =a \end{array} \right .
case \omega \neq a
y\left ( 0\right ) =0 gives 0=C_{1}
Using C_{1},C_{2} found above, the solution becomes\begin{align} y\left ( t\right ) & =\frac{1}{a}\frac{\omega b}{\omega ^{2}-a^{2}}\sin at+\frac{b}{a^{2}-\omega ^{2}}\sin \omega t\nonumber \\ & =\frac{b}{a^{2}-\omega ^{2}}\left ( \frac{\omega }{a}\sin at-\sin \omega t\right ) \tag{1} \end{align}
case \omega =a
y\left ( 0\right ) =0 gives 0=C_{1}
Using C_{1},C_{2} found above, the solution becomes\begin{align} y\left ( t\right ) & =\frac{1}{a}\frac{b}{2a}\sin at-\frac{b}{2a}t\cos at\nonumber \\ & =\frac{b}{2a}\left ( \frac{1}{a}\sin at-t\cos at\right ) \tag{2} \end{align}
From (1,2) we see that y\left ( t\right ) =\left \{ \begin{array} [c]{cc}\frac{b}{a^{2}-\omega ^{2}}\left ( \frac{\omega }{a}\sin at-\sin \omega t\right ) & \omega \neq a\\ \frac{b}{2a}\left ( \frac{1}{a}\sin at-t\cos at\right ) & \omega =a \end{array} \right .
Solution
\begin{align*} f\left ( x\right ) & =\int _{0}^{\infty }\left ( A\left ( \alpha \right ) \cos \left ( \alpha x\right ) +B\left ( \alpha \right ) \sin \left ( \alpha x\right ) \right ) d\alpha \\ & =\int _{0}^{\infty }\left ( A\left ( \alpha \right ) \left ( \frac{e^{i\alpha x}+e^{-i\alpha x}}{2}\right ) -iB\left ( \alpha \right ) \left ( \frac{e^{i\alpha x}-e^{-i\alpha x}}{2}\right ) \right ) d\alpha \\ & =\int _{0}^{\infty }\left ( e^{i\alpha x}\left ( \frac{A\left ( \alpha \right ) -iB\left ( \alpha \right ) }{2}\right ) +e^{-i\alpha x}\left ( \frac{A\left ( \alpha \right ) +iB\left ( \alpha \right ) }{2}\right ) \right ) d\alpha \\ & =\int _{0}^{\infty }e^{i\alpha x}\frac{A\left ( \alpha \right ) -iB\left ( \alpha \right ) }{2}d\alpha +\int _{0}^{\infty }e^{-i\alpha x}\frac{A\left ( \alpha \right ) +iB\left ( \alpha \right ) }{2}d\alpha \\ & =\int _{0}^{\infty }e^{i\alpha x}\frac{A\left ( \alpha \right ) -iB\left ( \alpha \right ) }{2}d\alpha +\int _{0}^{\infty }e^{-i\alpha x}\frac{A\left ( \alpha \right ) +iB\left ( \alpha \right ) }{2}d\alpha \\ & =\int _{0}^{\infty }e^{i\alpha x}\frac{A\left ( \alpha \right ) -iB\left ( \alpha \right ) }{2}d\alpha +\int _{-\infty }^{0}e^{i\alpha x}\frac{A\left ( \alpha \right ) +iB\left ( \alpha \right ) }{2}d\alpha \\ & =\int _{-\infty }^{\infty }C\left ( \alpha \right ) e^{i\alpha x}d\alpha \end{align*}
Where \begin{array} [c]{ccc}C\left ( \alpha \right ) =\frac{A\left ( \alpha \right ) -iB\left ( \alpha \right ) }{2} & , & C\left ( -\alpha \right ) =\frac{A\left ( \alpha \right ) +iB\left ( \alpha \right ) }{2}\end{array} \qquad \alpha >0
Substituting the above in C\left ( \alpha \right ) =\frac{A\left ( \alpha \right ) -iB\left ( \alpha \right ) }{2} gives\begin{align*} C\left ( \alpha \right ) & =\frac{1}{2}\left ( \frac{1}{\pi }\int _{-\infty }^{\infty }f\left ( x\right ) \cos \left ( \alpha x\right ) dx-i\frac{1}{\pi }\int _{-\infty }^{\infty }f\left ( x\right ) \sin \left ( \alpha x\right ) dx\right ) \\ & =\frac{1}{2\pi }\left ( \int _{-\infty }^{\infty }f\left ( x\right ) \cos \left ( \alpha x\right ) dx-\int _{-\infty }^{\infty }f\left ( x\right ) i\sin \left ( \alpha x\right ) dx\right ) \\ & =\frac{1}{2\pi }\int _{-\infty }^{\infty }f\left ( x\right ) \left ( \cos \left ( \alpha x\right ) -i\sin \left ( \alpha x\right ) \right ) dx \end{align*}
But using Euler relation \cos \left ( \alpha x\right ) -i\sin \left ( \alpha x\right ) =e^{i\alpha x} then the above reduces to C\left ( \alpha \right ) =\frac{1}{2\pi }\int _{-\infty }^{\infty }f\left ( x\right ) e^{i\alpha x}dx\qquad -\infty <\alpha <\infty
Solution
Since f\left ( x\right ) is piecewise continuous and absolutely integrable (sine function), then \frac{f\left ( x^{+}\right ) +f\left ( x^{-}\right ) }{2}=\frac{1}{\pi }\int _{0}^{\infty }\left ( \int _{-\infty }^{\infty }f\left ( s\right ) \cos \left ( \alpha \left ( s-x\right ) \right ) ds\right ) d\alpha
But \begin{align*} \int _{0}^{\pi }\sin \left ( s+\alpha s-\alpha x\right ) ds & =\left [ \frac{-\cos \left ( s+\alpha s-\alpha x\right ) }{1+\alpha }\right ] _{0}^{\pi }\\ & =\frac{-1}{1+\alpha }\left ( \cos \left ( \pi +\alpha \pi -\alpha x\right ) -\cos \left ( -\alpha x\right ) \right ) \\ & =\frac{-1}{1+\alpha }\left ( \cos \left ( \pi +\alpha \left ( \pi -x\right ) \right ) -\cos \left ( \alpha x\right ) \right ) \end{align*}
But \cos \left ( \pi +\alpha \left ( \pi -x\right ) \right ) =-\cos \left ( \alpha \left ( \pi -x\right ) \right ) , and the above becomes\begin{equation} \int _{0}^{\pi }\sin \left ( s+\alpha s-\alpha x\right ) ds=\frac{1}{1+\alpha }\left ( \cos \left ( \alpha \left ( \pi -x\right ) \right ) +\cos \left ( \alpha x\right ) \right ) \tag{2} \end{equation}
Substituting (2,3) back in (1) gives\begin{align*} \frac{f\left ( x^{+}\right ) +f\left ( x^{-}\right ) }{2} & =\frac{1}{2\pi }\int _{0}^{\infty }\left ( \frac{1}{1+\alpha }\left ( \cos \left ( \alpha \left ( \pi -x\right ) \right ) +\cos \left ( \alpha x\right ) \right ) +\frac{1}{1-\alpha }\left ( \cos \left ( \alpha \left ( \pi +x\right ) \right ) +\cos \left ( \alpha x\right ) \right ) \right ) d\alpha \\ & =\frac{1}{2\pi }\int _{0}^{\infty }\left ( \cos \left ( \alpha \left ( \pi -x\right ) \right ) \left ( \frac{1}{1+\alpha }+\frac{1}{1-\alpha }\right ) +\cos \left ( \alpha x\right ) \left ( \frac{1}{1+\alpha }+\frac{1}{1-\alpha }\right ) \right ) d\alpha \\ & =\frac{1}{2\pi }\int _{0}^{\infty }\left ( \cos \left ( \alpha \left ( \pi -x\right ) \right ) \left ( \frac{2}{1-\alpha ^{2}}\right ) +\cos \left ( \alpha x\right ) \left ( \frac{2}{1-\alpha ^{2}}\right ) \right ) d\alpha \\ & =\frac{1}{\pi }\int _{0}^{\infty }\frac{\cos \left ( \alpha \left ( \pi -x\right ) \right ) +\cos \left ( \alpha x\right ) }{1-\alpha ^{2}}d\alpha \end{align*}
But f\left ( x\right ) is continuous then \frac{f\left ( x^{+}\right ) +f\left ( x^{-}\right ) }{2}=f\left ( x\right ) and the above becomes f\left ( x\right ) =\frac{1}{\pi }\int _{0}^{\infty }\frac{\cos \left ( \alpha \left ( \pi -x\right ) \right ) +\cos \left ( \alpha x\right ) }{1-\alpha ^{2}}d\alpha
Therefore \frac{\pi }{2}=\int _{0}^{\infty }\frac{\cos \left ( \alpha \frac{\pi }{2}\right ) }{1-\alpha ^{2}}d\alpha