Problem Show that \int _{0}^{\infty }\frac{1}{x}J_{m}\left ( x\right ) J_{n}\left ( x\right ) dx=\frac{2}{\pi }\frac{\sin \left ( \left ( m-n\right ) \frac{\pi }{2}\right ) }{m^{2}-n^{2}}
Dividing both equations by x^{2} gives\begin{align*} J_{n}^{\prime \prime }\left ( x\right ) +\frac{1}{x}J_{n}^{\prime }\left ( x\right ) +\left ( 1-\frac{n^{2}}{x^{2}}\right ) J_{n}\left ( x\right ) & =0\\ J_{m}^{\prime \prime }\left ( x\right ) +\frac{1}{x}J_{m}^{\prime }\left ( x\right ) +\left ( 1-\frac{m^{2}}{x^{2}}\right ) J_{m}\left ( x\right ) & =0 \end{align*}
Multiplying the first ODE by xJ_{m}\left ( x\right ) and the second by xJ_{n}\left ( x\right ) gives (multiplying by just x did not lead to a result that I could use).\begin{align*} xJ_{m}J_{n}^{\prime \prime }+J_{m}J_{n}^{\prime }+x\left ( 1-\frac{n^{2}}{x^{2}}\right ) J_{m}J_{n} & =0\\ xJ_{n}J_{m}^{\prime \prime }+J_{n}J_{m}^{\prime }+x\left ( 1-\frac{m^{2}}{x^{2}}\right ) J_{n}J_{m} & =0 \end{align*}
Subtracting gives\begin{align*} \left ( xJ_{m}J_{n}^{\prime \prime }+J_{m}J_{n}^{\prime }+x\left ( 1-\frac{n^{2}}{x^{2}}\right ) J_{m}J_{n}\right ) -\left ( xJ_{n}J_{m}^{\prime \prime }+J_{n}J_{m}^{\prime }+x\left ( 1-\frac{m^{2}}{x^{2}}\right ) J_{n}J_{m}\right ) & =0\\ x\left ( J_{m}J_{n}^{\prime \prime }-J_{n}J_{m}^{\prime \prime }\right ) +J_{m}J_{n}^{\prime }-J_{n}J_{m}^{\prime }-xJ_{m}J_{n}\left ( \left ( 1-\frac{n^{2}}{x^{2}}\right ) -\left ( 1-\frac{m^{2}}{x^{2}}\right ) \right ) & =0 \end{align*}
Or\begin{equation} x\left ( J_{m}J_{n}^{\prime \prime }-J_{n}J_{m}^{\prime \prime }\right ) +J_{m}J_{n}^{\prime }-J_{n}J_{m}^{\prime }=xJ_{m}J_{n}\left ( \left ( 1-\frac{m^{2}}{x^{2}}\right ) -\left ( 1-\frac{n^{2}}{x^{2}}\right ) \right ) \tag{1} \end{equation}
Integrating both sides above gives \left [ x\left ( J_{m}J_{n}^{\prime }-J_{n}J_{m}^{\prime }\right ) \right ] _{0}^{\infty }=\left ( n^{2}-m^{2}\right ) \int _{0}^{\infty }\frac{J_{m}J_{n}}{x}dx
And similarly for J_{m}\left ( x\right ) \begin{align*} J_{m}\left ( x\right ) & =\sqrt{\frac{2}{\pi x}}\cos \left ( x-\frac{m\pi }{2}-\frac{\pi }{4}\right ) \\ J_{m}^{\prime }\left ( x\right ) & =-\sqrt{\frac{2}{\pi x}}\sin \left ( x-\frac{m\pi }{2}-\frac{\pi }{4}\right ) -\frac{1}{\sqrt{2\pi }}\left ( \frac{1}{x}\right ) ^{\frac{3}{2}}\cos \left ( x-\frac{m\pi }{2}-\frac{\pi }{4}\right ) \end{align*}
Therefore J_{n}\left ( x\right ) J_{m}^{\prime }\left ( x\right ) =\sqrt{\frac{2}{\pi x}}\cos \left ( x-\frac{n\pi }{2}-\frac{\pi }{4}\right ) \left ( -\sqrt{\frac{2}{\pi x}}\sin \left ( x-\frac{m\pi }{2}-\frac{\pi }{4}\right ) -\frac{1}{\sqrt{2\pi }}\left ( \frac{1}{x}\right ) ^{\frac{3}{2}}\cos \left ( x-\frac{m\pi }{2}-\frac{\pi }{4}\right ) \right )
Similarly\begin{equation} J_{m}\left ( x\right ) J_{n}^{\prime }\left ( x\right ) =-\frac{2}{\pi x}\cos \left ( \beta \right ) \sin \left ( \alpha \right ) -\frac{1}{\pi }\left ( \frac{1}{x}\right ) ^{2}\cos \left ( \beta \right ) \cos \left ( \alpha \right ) \tag{5} \end{equation}
\begin{align} \int _{0}^{\infty }\frac{J_{m}\left ( x\right ) J_{n}\left ( x\right ) }{x}dx & =\frac{1}{\left ( m^{2}-n^{2}\right ) }\left [ x\left ( J_{n}\left ( x\right ) J_{m}^{\prime }\left ( x\right ) -J_{m}\left ( x\right ) J_{n}^{\prime }\left ( x\right ) \right ) \right ] _{0}^{\infty }\nonumber \\ & =\frac{x}{\left ( m^{2}-n^{2}\right ) }\left ( \left ( -\frac{2}{\pi x}\cos \left ( \alpha \right ) \sin \left ( \beta \right ) -\frac{1}{\pi }\left ( \frac{1}{x}\right ) ^{2}\cos \left ( \alpha \right ) \cos \left ( \beta \right ) \right ) -\left ( -\frac{2}{\pi x}\cos \left ( \beta \right ) \sin \left ( \alpha \right ) -\frac{1}{\pi }\left ( \frac{1}{x}\right ) ^{2}\cos \left ( \beta \right ) \cos \left ( \alpha \right ) \right ) \right ) \nonumber \\ & =\frac{x}{\left ( m^{2}-n^{2}\right ) }\left ( -\frac{2}{\pi x}\cos \left ( \alpha \right ) \sin \left ( \beta \right ) -\frac{1}{\pi }\left ( \frac{1}{x}\right ) ^{2}\cos \left ( \alpha \right ) \cos \left ( \beta \right ) +\frac{2}{\pi x}\cos \left ( \beta \right ) \sin \left ( \alpha \right ) +\frac{1}{\pi }\left ( \frac{1}{x}\right ) ^{2}\cos \left ( \beta \right ) \cos \left ( \alpha \right ) \right ) \nonumber \\ & =\frac{x}{\left ( m^{2}-n^{2}\right ) }\left ( -\frac{2}{\pi x}\cos \left ( \alpha \right ) \sin \left ( \beta \right ) +\frac{2}{\pi x}\cos \left ( \beta \right ) \sin \left ( \alpha \right ) \right ) \nonumber \\ & =\frac{2}{\pi }\frac{1}{\left ( m^{2}-n^{2}\right ) }\left ( \sin \left ( \alpha \right ) \cos \left ( \beta \right ) -\cos \left ( \alpha \right ) \sin \left ( \beta \right ) \right ) \tag{6} \end{align}
But \begin{align*} \sin \left ( \alpha \right ) \cos \left ( \beta \right ) -\cos \left ( \alpha \right ) \sin \left ( \beta \right ) & =\sin \left ( \alpha -\beta \right ) \\ & =\sin \left ( \left ( x-\frac{n\pi }{2}-\frac{\pi }{4}\right ) -\left ( x-\frac{m\pi }{2}-\frac{\pi }{4}\right ) \right ) \\ & =\sin \left ( x-\frac{n\pi }{2}-\frac{\pi }{4}-x+\frac{m\pi }{2}+\frac{\pi }{4}\right ) \\ & =\sin \left ( \frac{m\pi }{2}-\frac{n\pi }{2}\right ) \\ & =\sin \left ( \left ( m-n\right ) \frac{\pi }{2}\right ) \end{align*}
Using the above in (6) gives \int _{0}^{\infty }\frac{J_{m}\left ( x\right ) J_{n}\left ( x\right ) }{x}dx=\frac{2}{\pi }\frac{\sin \left ( \left ( m-n\right ) \frac{\pi }{2}\right ) }{\left ( m^{2}-n^{2}\right ) }
Problem What linear second order ODE does the function x^{m}J_{n}\left ( ax^{k}\right ) solves? Are there any required relationships among m,n,k? Use this to solve y^{\prime \prime }+x^{2}y=0
Solution
We know that the Bessel ODE \begin{equation} t^{2}z^{\prime \prime }\left ( t\right ) +tz^{\prime }\left ( t\right ) +\left ( t^{2}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) z\left ( t\right ) =0 \tag{1} \end{equation}
The ODE above has solution z\left ( t\right ) =J_{\frac{\alpha }{\beta }}\left ( t\right )
Now\begin{align} \frac{dz}{dt} & =\frac{dz}{dx}\frac{dx}{dt}\nonumber \\ & =\frac{dz}{dx}\frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1} \tag{5} \end{align}
And\begin{align} \frac{d^{2}z}{dt^{2}} & =\frac{d}{dt}\left ( \frac{dz}{dt}\right ) \nonumber \\ & =\frac{d}{dt}\left ( \frac{dz}{dx}\frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) \nonumber \\ & =\frac{d^{2}z}{dx^{2}}\frac{dx}{dt}\left ( \frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) +\frac{dz}{dx}\frac{d}{dt}\left ( \frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) \nonumber \\ & =\frac{d^{2}z}{dx^{2}}\left ( \frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) ^{2}+\frac{dz}{dx}\left ( \frac{1}{a^{2}k}\left ( \frac{1}{k}-1\right ) \left ( \frac{t}{a}\right ) ^{\frac{1}{k}-2}\right ) \tag{6} \end{align}
Using (5,6) then ODE (1) becomes
t^{2}\left ( z^{\prime \prime }\left ( ax^{k}\right ) \left ( \frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) ^{2}+z^{\prime }\left ( ax^{k}\right ) \frac{1}{a^{2}k}\left ( \frac{1}{k}-1\right ) \left ( \frac{t}{a}\right ) ^{\frac{1}{k}-2}\right ) +t\left ( z^{\prime }\left ( ax^{k}\right ) \frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) +\left ( t^{2}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) z\left ( ax^{k}\right ) =0
Writing y\left ( x\right ) \equiv z\left ( ax^{k}\right ) so we do not have to keep writing z\left ( ax^{k}\right ) , the above becomes t^{2}\left ( y^{\prime \prime }\left ( x\right ) \left ( \frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) ^{2}+y^{\prime }\left ( x\right ) \frac{1}{a^{2}k}\left ( \frac{1}{k}-1\right ) \left ( \frac{t}{a}\right ) ^{\frac{1}{k}-2}\right ) +t\left ( y^{\prime }\left ( x\right ) \frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) +\left ( t^{2}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) y\left ( x\right ) =0
a^{2}x^{2k}\left ( y^{\prime \prime }\left ( x\right ) \left ( \frac{1}{ak}\left ( \frac{ax^{k}}{a}\right ) ^{\frac{1}{k}-1}\right ) ^{2}+y^{\prime }\left ( x\right ) \frac{1}{a^{2}k}\left ( \frac{1}{k}-1\right ) \left ( \frac{ax^{k}}{a}\right ) ^{\frac{1}{k}-2}\right ) +ax^{k}\left ( y^{\prime }\left ( x\right ) \frac{1}{ak}\left ( \frac{ax^{k}}{a}\right ) ^{\frac{1}{k}-1}\right ) +\left ( a^{2}x^{2k}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) y\left ( x\right ) =0
Which is simplified more as follows\begin{align} a^{2}x^{2k}\left ( y^{\prime \prime }\left ( x\right ) \left ( \frac{1}{ak}\left ( \frac{x}{x^{k}}\right ) \right ) ^{2}+y^{\prime }\left ( x\right ) \frac{1}{a^{2}k}\left ( \frac{1}{k}-1\right ) \frac{x}{x^{2k}}\right ) +ax^{k}\left ( y^{\prime }\left ( x\right ) \frac{1}{ak}\frac{x}{x^{k}}\right ) +\left ( a^{2}x^{2k}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) y\left ( x\right ) & =0\nonumber \\ a^{2}x^{2k}\left ( y^{\prime \prime }\left ( x\right ) \frac{1}{a^{2}k^{2}}\left ( \frac{x^{2}}{x^{2k}}\right ) +y^{\prime }\left ( x\right ) \frac{1}{a^{2}k}\left ( \frac{1}{k}-1\right ) \frac{x}{x^{2k}}\right ) +ax^{k}\left ( y^{\prime }\left ( x\right ) \frac{1}{ak}\frac{x}{x^{k}}\right ) +\left ( a^{2}x^{2k}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) y\left ( x\right ) & =0\nonumber \\ x^{2k}\left ( y^{\prime \prime }\left ( x\right ) \frac{1}{k^{2}}\left ( \frac{x^{2}}{x^{2k}}\right ) +y^{\prime }\left ( x\right ) \frac{1}{k}\left ( \frac{1}{k}-1\right ) \frac{x}{x^{2k}}\right ) +y^{\prime }\left ( x\right ) \frac{x}{k}+\left ( a^{2}x^{2k}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) y\left ( x\right ) & =0\nonumber \\ \frac{x^{2}}{k^{2}}y^{\prime \prime }\left ( x\right ) +y^{\prime }\left ( x\right ) \frac{1}{k}\left ( \frac{1}{k}-1\right ) x+y^{\prime }\left ( x\right ) \frac{x}{k}+\left ( a^{2}x^{2k}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) y\left ( x\right ) & =0\nonumber \\ x^{2}y^{\prime \prime }\left ( x\right ) +y^{\prime }\left ( x\right ) k\left ( \frac{1}{k}-1\right ) x+y^{\prime }\left ( x\right ) kx+\left ( k^{2}a^{2}x^{2k}-k^{2}\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) y\left ( x\right ) & =0\nonumber \\ x^{2}y^{\prime \prime }\left ( x\right ) +xy^{\prime }\left ( x\right ) +\left ( k^{2}a^{2}x^{2k}-\frac{k^{2}\alpha ^{2}}{\beta ^{2}}\right ) y\left ( x\right ) & =0 \tag{7} \end{align}
We know that the above ODE has one solution as y\left ( x\right ) =J_{\frac{\alpha }{\beta }}\left ( ax^{k}\right ) because this is how the above was constructed. Now assuming that\begin{align*} w\left ( x\right ) & =x^{m}y\left ( x\right ) \\ & =x^{m}J_{\frac{\alpha }{\beta }}\left ( ax^{k}\right ) \end{align*}
Then w\left ( x\right ) is the solution we want. This means we need to express (7) in terms of w\left ( x\right ) instead of y\left ( x\right ) in order to find the ODE whose solution is x^{m}J_{\frac{\alpha }{\beta }}\left ( ax^{k}\right ) .
Since y\left ( x\right ) =w\left ( x\right ) x^{-m} then\begin{align*} y^{\prime }\left ( x\right ) & =\frac{d}{dx}\left ( x^{-m}w\right ) \\ & =-mx^{-m-1}w+x^{-m}w^{\prime } \end{align*}
And\begin{align*} y^{\prime \prime }\left ( x\right ) & =\frac{d}{dx}\left ( -mx^{-m-1}w+x^{-m}w^{\prime }\right ) \\ & =-m\left ( -m-1\right ) x^{-m-2}w-mx^{-m-1}w^{\prime }-mx^{-m-1}w^{\prime }+x^{-m}w^{\prime \prime }\\ & =m\left ( m+1\right ) x^{-m-2}w-2w^{\prime }mx^{-m-1}+x^{-m}w^{\prime \prime } \end{align*}
Substituting the above results back into (7) gives x^{2}\left ( m\left ( m+1\right ) x^{-m-2}w-2w^{\prime }mx^{-m-1}+x^{-m}w^{\prime \prime }\right ) +x\left ( -mx^{-m-1}w+x^{-m}w^{\prime }\right ) +\left ( k^{2}a^{2}x^{2k}-\frac{k^{2}\alpha ^{2}}{\beta ^{2}}\right ) wx^{-m}=0
Hence the above ODE (8) will have the solution x^{m}J_{\frac{\alpha }{\beta }}\left ( ax^{k}\right ) . We can now let n=\frac{\alpha }{\beta } and the above ODE becomes\begin{equation} x^{2}w^{\prime \prime }+\left ( 1-2m\right ) xw^{\prime }+\left ( k^{2}a^{2}x^{2k}+m^{2}-k^{2}n^{2}\right ) w=0 \tag{9} \end{equation}
To answer the final part about the relation between n,m,k. One restriction is that m=\frac{1}{2}. One relation between the order n and k is that m^{2}-k^{2}n^{2} being a rational number. This means m^{2}-k^{2}n^{2}=\frac{N}{M}
\begin{equation} y^{\prime \prime }\left ( x\right ) +x^{2}y\left ( x\right ) =0\tag{1} \end{equation}
To make (2) same as (1), we want \left ( 1-2m\right ) =0 or m=\frac{1}{2}. Also need 2k=4 or k=2. Using these the above reduces to y^{\prime \prime }\left ( x\right ) +\left ( 4a^{2}x^{2}+\frac{\frac{1}{4}-4n^{2}}{x^{2}}\right ) y\left ( x\right ) =0
Hence the following solves the ODE\begin{align*} y\left ( x\right ) & =x^{m}J_{n}\left ( ax^{k}\right ) \\ & =\sqrt{x}J_{\frac{1}{4}}\left ( \frac{1}{2}x^{2}\right ) \end{align*}
To verify the above result, it is solved again directly. We first need to convert this ODE to Bessel ODE. Let y=x^{\frac{1}{2}}z\left ( x\right )
Substituting the above into (1) gives\begin{align*} \left ( -\frac{1}{4}x^{-\frac{3}{2}}z+x^{-\frac{1}{2}}z^{\prime }+x^{\frac{1}{2}}z^{\prime \prime }\right ) +x^{2}x^{\frac{1}{2}}z & =0\\ x^{\frac{1}{2}}z^{\prime \prime }+x^{-\frac{1}{2}}z^{\prime }+\left ( x^{\frac{5}{2}}-\frac{1}{4}x^{-\frac{3}{2}}\right ) z & =0 \end{align*}
Multiplying both sides by x^{\frac{3}{2}} gives\begin{equation} x^{2}z^{\prime \prime }+xz^{\prime }+\left ( x^{4}-\frac{1}{4}\right ) z=0\tag{2} \end{equation}
Substituting the above into (2) gives x^{2}\left ( x^{2}z^{\prime \prime }+z^{\prime }\right ) +x\left ( xz^{\prime }\right ) +\left ( x^{4}-\frac{1}{4}\right ) z=0
This now in the form of Bessel ODE t^{2}z^{\prime \prime }+tz^{\prime }+\left ( t^{2}-n^{2}\right ) z=0
But y\left ( x\right ) =\sqrt{x}z\left ( x\right ) and t=\frac{x^{2}}{2}, therefore the above becomes\begin{equation} y\left ( x\right ) =\sqrt{x}J_{\frac{1}{4}}\left ( \frac{x^{2}}{2}\right ) \tag{3} \end{equation}
Which is the same as found in part (b)
Problem Prove that \left \vert J_{n}\left ( x\right ) \right \vert \leq 1 for all integers n
Solution
From the integral representation of J_{n}\left ( x\right ) for integer n J_{n}\left ( x\right ) =\frac{1}{\pi }\int _{0}^{\pi }\cos \left ( n\theta -x\sin \theta \right ) d\theta
Where \left \vert M\right \vert _{\max }=\left \vert \cos \left ( n\theta -x\sin \theta \right ) \right \vert _{\max } over \theta =0\cdots \pi . But this is 1 for the cosine function. Hence \left \vert J_{n}\left ( x\right ) \right \vert \leq 1
Problem Starting with the integral formula for hypergeometric function, express the following in terms of elementary functions _{2}F_{1}\left ( 1,1,2;x\right ) and _{2}F_{1}\left ( a,1,1;x\right )
Solution
\begin{align} _{2}F_{1}\left ( a,b,c;x\right ) & =\frac{\Gamma \left ( c\right ) }{\Gamma \left ( b\right ) \Gamma \left ( c-b\right ) }\int _{0}^{1}t^{b-1}\left ( 1-t\right ) ^{c-b-1}\left ( 1-tx\right ) ^{-a}dt\tag{1}\\ & =\frac{\Gamma \left ( c\right ) }{\Gamma \left ( a\right ) \Gamma \left ( b\right ) }\sum _{n=0}^{\infty }\frac{\Gamma \left ( a+n\right ) \Gamma \left ( b+n\right ) }{\Gamma \left ( c+n\right ) }\frac{x^{n}}{n!} \tag{2} \end{align}
Here a=1,b=1,c=2. Therefore, using (1) representation gives\begin{align*} _{2}F_{1}\left ( 1,1,2;x\right ) & =\frac{\Gamma \left ( 2\right ) }{\Gamma \left ( 1\right ) \Gamma \left ( 2-1\right ) }\int _{0}^{1}t^{1-1}\left ( 1-t\right ) ^{2-1-1}\left ( 1-tx\right ) ^{-1}dt\\ & =\frac{\Gamma \left ( 2\right ) }{\Gamma \left ( 1\right ) \Gamma \left ( 1\right ) }\int _{0}^{1}\frac{dt}{1-tx} \end{align*}
But \Gamma \left ( 2\right ) =1,\Gamma \left ( 1\right ) =0, therefore the above becomes\begin{align*} _{2}F_{1}\left ( 1,1,2;x\right ) & =\int _{0}^{1}\frac{dt}{1-tx}\\ & =\left [ \frac{-\ln \left ( 1-tx\right ) }{x}\right ] _{0}^{1}\\ & =-\left ( \frac{\ln \left ( 1-x\right ) }{x}-\frac{-\ln \left ( 1-0\right ) }{x}\right ) \\ & =-\frac{\ln \left ( 1-x\right ) }{x} \end{align*}
Here a=a,b=1,c=1. Therefore (2) representation gives\begin{align*} _{2}F_{1}\left ( a,1,1;x\right ) & =\frac{\Gamma \left ( c\right ) }{\Gamma \left ( a\right ) \Gamma \left ( b\right ) }\sum _{n=0}^{\infty }\frac{\Gamma \left ( a+n\right ) \Gamma \left ( b+n\right ) }{\Gamma \left ( c+n\right ) }\frac{x^{n}}{n!}\\ & =\frac{1}{\Gamma \left ( a\right ) }\sum _{n=0}^{\infty }\frac{\Gamma \left ( a+n\right ) \Gamma \left ( 1+n\right ) }{\Gamma \left ( 1+n\right ) }\frac{x^{n}}{n!}\\ & =\sum _{n=0}^{\infty }\frac{\Gamma \left ( a+n\right ) }{\Gamma \left ( a\right ) }\frac{x^{n}}{n!} \end{align*}
Looking at few values
n | _{2}F_{1}\left ( a,1,1;x\right ) |
0 | \frac{\Gamma \left ( a\right ) }{\Gamma \left ( a\right ) }=1 |
1 | \frac{\Gamma \left ( a+1\right ) }{\Gamma \left ( a\right ) }x |
2 | \frac{\Gamma \left ( a+2\right ) }{\Gamma \left ( a\right ) }\frac{x^{2}}{2!} |
3 | \frac{\Gamma \left ( a+3\right ) }{\Gamma \left ( a\right ) }\frac{x^{3}}{3!} |
\vdots | \vdots |
Using the recursive relation \Gamma \left ( a+1\right ) =a\Gamma \left ( a\right ) , which works for integer and non integer a, then we see that \Gamma \left ( a+1\right ) =a\Gamma \left ( a\right )
And\begin{align*} \Gamma \left ( a+3\right ) & =\Gamma \left ( \left ( a+2\right ) +1\right ) \\ & =\left ( a+2\right ) \Gamma \left ( \left ( a+2\right ) \right ) \\ & =\left ( a+2\right ) \left ( a+1\right ) a\Gamma \left ( a\right ) \end{align*}
And so on. Hence the above now becomes
n | _{2}F_{1}\left ( a,1,1;x\right ) |
0 | 1 |
1 | \frac{a\Gamma \left ( a\right ) }{\Gamma \left ( a\right ) }x=ax |
2 | \frac{\left ( a+1\right ) a\Gamma \left ( a\right ) }{\Gamma \left ( a\right ) }\frac{x^{2}}{2!}=a\left ( a+1\right ) \frac{x^{2}}{2!} |
3 | \frac{\left ( a+2\right ) \left ( a+1\right ) a\Gamma \left ( a\right ) }{\Gamma \left ( a\right ) }\frac{x^{3}}{3!}=a\left ( a+1\right ) \left ( a+2\right ) \frac{x^{3}}{3!} |
\vdots | \vdots |
We see from the above the pattern of the sequence is as follows\begin{equation} _{2}F_{1}\left ( a,1,1;x\right ) =1+ax+a\left ( a+1\right ) \frac{x^{2}}{2!}+a\left ( a+1\right ) \left ( a+2\right ) \frac{x^{3}}{3!}+\cdots \tag{1} \end{equation}
Comparing the above to (1) shows it is the same series. Hence _{2}F_{1}\left ( a,1,1;x\right ) =\left ( 1-x\right ) ^{-a}