Loading web-font TeX/Size2/Regular

2.10 HW 10

  2.10.1 HW 10 questions
  2.10.2 Problem 1
  2.10.3 Problem 2
  2.10.4 Problem 3
  2.10.5 Problem 4
  2.10.6 Key solution for HW 10

2.10.1 HW 10 questions

pict
PDF (letter size)
PDF (legal size)

2.10.2 Problem 1

Problem Show that \int _{0}^{\infty }\frac{1}{x}J_{m}\left ( x\right ) J_{n}\left ( x\right ) dx=\frac{2}{\pi }\frac{\sin \left ( \left ( m-n\right ) \frac{\pi }{2}\right ) }{m^{2}-n^{2}}

Solution\begin{align*} x^{2}J_{n}^{\prime \prime }\left ( x\right ) +xJ_{n}^{\prime }\left ( x\right ) +\left ( x^{2}-n^{2}\right ) J_{n}\left ( x\right ) & =0\\ x^{2}J_{m}^{\prime \prime }\left ( x\right ) +xJ_{m}^{\prime }\left ( x\right ) +\left ( x^{2}-m^{2}\right ) J_{m}\left ( x\right ) & =0 \end{align*}

Dividing both equations by x^{2} gives\begin{align*} J_{n}^{\prime \prime }\left ( x\right ) +\frac{1}{x}J_{n}^{\prime }\left ( x\right ) +\left ( 1-\frac{n^{2}}{x^{2}}\right ) J_{n}\left ( x\right ) & =0\\ J_{m}^{\prime \prime }\left ( x\right ) +\frac{1}{x}J_{m}^{\prime }\left ( x\right ) +\left ( 1-\frac{m^{2}}{x^{2}}\right ) J_{m}\left ( x\right ) & =0 \end{align*}

Multiplying the first ODE by xJ_{m}\left ( x\right ) and the second by xJ_{n}\left ( x\right ) gives (multiplying by just x did not lead to a result that I could use).\begin{align*} xJ_{m}J_{n}^{\prime \prime }+J_{m}J_{n}^{\prime }+x\left ( 1-\frac{n^{2}}{x^{2}}\right ) J_{m}J_{n} & =0\\ xJ_{n}J_{m}^{\prime \prime }+J_{n}J_{m}^{\prime }+x\left ( 1-\frac{m^{2}}{x^{2}}\right ) J_{n}J_{m} & =0 \end{align*}

Subtracting gives\begin{align*} \left ( xJ_{m}J_{n}^{\prime \prime }+J_{m}J_{n}^{\prime }+x\left ( 1-\frac{n^{2}}{x^{2}}\right ) J_{m}J_{n}\right ) -\left ( xJ_{n}J_{m}^{\prime \prime }+J_{n}J_{m}^{\prime }+x\left ( 1-\frac{m^{2}}{x^{2}}\right ) J_{n}J_{m}\right ) & =0\\ x\left ( J_{m}J_{n}^{\prime \prime }-J_{n}J_{m}^{\prime \prime }\right ) +J_{m}J_{n}^{\prime }-J_{n}J_{m}^{\prime }-xJ_{m}J_{n}\left ( \left ( 1-\frac{n^{2}}{x^{2}}\right ) -\left ( 1-\frac{m^{2}}{x^{2}}\right ) \right ) & =0 \end{align*}

Or\begin{equation} x\left ( J_{m}J_{n}^{\prime \prime }-J_{n}J_{m}^{\prime \prime }\right ) +J_{m}J_{n}^{\prime }-J_{n}J_{m}^{\prime }=xJ_{m}J_{n}\left ( \left ( 1-\frac{m^{2}}{x^{2}}\right ) -\left ( 1-\frac{n^{2}}{x^{2}}\right ) \right ) \tag{1} \end{equation}

But the LHS above is complete differential3 \begin{equation} x\left ( J_{m}J_{n}^{\prime \prime }-J_{n}J_{m}^{\prime \prime }\right ) +J_{m}J_{n}^{\prime }-J_{n}J_{m}^{\prime }=\left ( x\left ( J_{m}J_{n}^{\prime }-J_{n}J_{m}^{\prime }\right ) \right ) ^{\prime } \tag{2} \end{equation}
Hence using (2) in (1), then (1) simplifies to\begin{align*} \left ( x\left ( J_{m}J_{n}^{\prime }-J_{n}J_{m}^{\prime }\right ) \right ) ^{\prime } & =xJ_{m}J_{n}\left ( \left ( 1-\frac{m^{2}}{x^{2}}\right ) -\left ( 1-\frac{n^{2}}{x^{2}}\right ) \right ) \\ & =xJ_{m}J_{n}\left ( \frac{n^{2}}{x^{2}}-\frac{m^{2}}{x^{2}}\right ) \\ & =\frac{J_{m}J_{n}}{x}\left ( n^{2}-m^{2}\right ) \end{align*}

Integrating both sides above gives \left [ x\left ( J_{m}J_{n}^{\prime }-J_{n}J_{m}^{\prime }\right ) \right ] _{0}^{\infty }=\left ( n^{2}-m^{2}\right ) \int _{0}^{\infty }\frac{J_{m}J_{n}}{x}dx

Therefore\begin{equation} \int _{0}^{\infty }\frac{J_{m}\left ( x\right ) J_{n}\left ( x\right ) }{x}dx=\frac{1}{\left ( m^{2}-n^{2}\right ) }\left [ x\left ( J_{n}\left ( x\right ) J_{m}^{\prime }\left ( x\right ) -J_{m}\left ( x\right ) J_{n}^{\prime }\left ( x\right ) \right ) \right ] _{0}^{\infty } \tag{3} \end{equation}
At x=0 the expression x\left ( J_{n}\left ( x\right ) J_{m}^{\prime }\left ( x\right ) -J_{m}\left ( x\right ) J_{n}^{\prime }\left ( x\right ) \right ) =0. And at x=\infty we can use the asymptotic approximation given by\begin{align*} J_{n}\left ( x\right ) & =\sqrt{\frac{2}{\pi x}}\cos \left ( x-\frac{n\pi }{2}-\frac{\pi }{4}\right ) \\ J_{n}^{\prime }\left ( x\right ) & =-\sqrt{\frac{2}{\pi x}}\sin \left ( x-\frac{n\pi }{2}-\frac{\pi }{4}\right ) -\frac{1}{\sqrt{2\pi }}\left ( \frac{1}{x}\right ) ^{\frac{3}{2}}\cos \left ( x-\frac{n\pi }{2}-\frac{\pi }{4}\right ) \end{align*}

And similarly for J_{m}\left ( x\right ) \begin{align*} J_{m}\left ( x\right ) & =\sqrt{\frac{2}{\pi x}}\cos \left ( x-\frac{m\pi }{2}-\frac{\pi }{4}\right ) \\ J_{m}^{\prime }\left ( x\right ) & =-\sqrt{\frac{2}{\pi x}}\sin \left ( x-\frac{m\pi }{2}-\frac{\pi }{4}\right ) -\frac{1}{\sqrt{2\pi }}\left ( \frac{1}{x}\right ) ^{\frac{3}{2}}\cos \left ( x-\frac{m\pi }{2}-\frac{\pi }{4}\right ) \end{align*}

Therefore J_{n}\left ( x\right ) J_{m}^{\prime }\left ( x\right ) =\sqrt{\frac{2}{\pi x}}\cos \left ( x-\frac{n\pi }{2}-\frac{\pi }{4}\right ) \left ( -\sqrt{\frac{2}{\pi x}}\sin \left ( x-\frac{m\pi }{2}-\frac{\pi }{4}\right ) -\frac{1}{\sqrt{2\pi }}\left ( \frac{1}{x}\right ) ^{\frac{3}{2}}\cos \left ( x-\frac{m\pi }{2}-\frac{\pi }{4}\right ) \right )

Let x-\frac{n\pi }{2}-\frac{\pi }{4}=\alpha , and let x-\frac{m\pi }{2}-\frac{\pi }{4}=\beta , then the above becomes\begin{align} J_{n}\left ( x\right ) J_{m}^{\prime }\left ( x\right ) & =\sqrt{\frac{2}{\pi x}}\cos \left ( \alpha \right ) \left ( -\sqrt{\frac{2}{\pi x}}\sin \left ( \beta \right ) -\frac{1}{\sqrt{2\pi }}\left ( \frac{1}{x}\right ) ^{\frac{3}{2}}\cos \left ( \beta \right ) \right ) \nonumber \\ & =-\frac{2}{\pi x}\cos \left ( \alpha \right ) \sin \left ( \beta \right ) -\sqrt{\frac{2}{\pi x}}\sqrt{\frac{1}{2\pi }}\left ( \frac{1}{x}\right ) ^{\frac{3}{2}}\cos \left ( \alpha \right ) \cos \left ( \beta \right ) \nonumber \\ & =-\frac{2}{\pi x}\cos \left ( \alpha \right ) \sin \left ( \beta \right ) -\frac{1}{\pi }\left ( \frac{1}{x}\right ) ^{\frac{1}{2}}\left ( \frac{1}{x}\right ) ^{\frac{3}{2}}\cos \left ( \alpha \right ) \cos \left ( \beta \right ) \nonumber \\ & =-\frac{2}{\pi x}\cos \left ( \alpha \right ) \sin \left ( \beta \right ) -\frac{1}{\pi }\left ( \frac{1}{x}\right ) ^{2}\cos \left ( \alpha \right ) \cos \left ( \beta \right ) \tag{4} \end{align}

Similarly\begin{equation} J_{m}\left ( x\right ) J_{n}^{\prime }\left ( x\right ) =-\frac{2}{\pi x}\cos \left ( \beta \right ) \sin \left ( \alpha \right ) -\frac{1}{\pi }\left ( \frac{1}{x}\right ) ^{2}\cos \left ( \beta \right ) \cos \left ( \alpha \right ) \tag{5} \end{equation}

Substituting (4,5) into (3) gives (only the term as x\rightarrow \infty remains)

\begin{align} \int _{0}^{\infty }\frac{J_{m}\left ( x\right ) J_{n}\left ( x\right ) }{x}dx & =\frac{1}{\left ( m^{2}-n^{2}\right ) }\left [ x\left ( J_{n}\left ( x\right ) J_{m}^{\prime }\left ( x\right ) -J_{m}\left ( x\right ) J_{n}^{\prime }\left ( x\right ) \right ) \right ] _{0}^{\infty }\nonumber \\ & =\frac{x}{\left ( m^{2}-n^{2}\right ) }\left ( \left ( -\frac{2}{\pi x}\cos \left ( \alpha \right ) \sin \left ( \beta \right ) -\frac{1}{\pi }\left ( \frac{1}{x}\right ) ^{2}\cos \left ( \alpha \right ) \cos \left ( \beta \right ) \right ) -\left ( -\frac{2}{\pi x}\cos \left ( \beta \right ) \sin \left ( \alpha \right ) -\frac{1}{\pi }\left ( \frac{1}{x}\right ) ^{2}\cos \left ( \beta \right ) \cos \left ( \alpha \right ) \right ) \right ) \nonumber \\ & =\frac{x}{\left ( m^{2}-n^{2}\right ) }\left ( -\frac{2}{\pi x}\cos \left ( \alpha \right ) \sin \left ( \beta \right ) -\frac{1}{\pi }\left ( \frac{1}{x}\right ) ^{2}\cos \left ( \alpha \right ) \cos \left ( \beta \right ) +\frac{2}{\pi x}\cos \left ( \beta \right ) \sin \left ( \alpha \right ) +\frac{1}{\pi }\left ( \frac{1}{x}\right ) ^{2}\cos \left ( \beta \right ) \cos \left ( \alpha \right ) \right ) \nonumber \\ & =\frac{x}{\left ( m^{2}-n^{2}\right ) }\left ( -\frac{2}{\pi x}\cos \left ( \alpha \right ) \sin \left ( \beta \right ) +\frac{2}{\pi x}\cos \left ( \beta \right ) \sin \left ( \alpha \right ) \right ) \nonumber \\ & =\frac{2}{\pi }\frac{1}{\left ( m^{2}-n^{2}\right ) }\left ( \sin \left ( \alpha \right ) \cos \left ( \beta \right ) -\cos \left ( \alpha \right ) \sin \left ( \beta \right ) \right ) \tag{6} \end{align}

But \begin{align*} \sin \left ( \alpha \right ) \cos \left ( \beta \right ) -\cos \left ( \alpha \right ) \sin \left ( \beta \right ) & =\sin \left ( \alpha -\beta \right ) \\ & =\sin \left ( \left ( x-\frac{n\pi }{2}-\frac{\pi }{4}\right ) -\left ( x-\frac{m\pi }{2}-\frac{\pi }{4}\right ) \right ) \\ & =\sin \left ( x-\frac{n\pi }{2}-\frac{\pi }{4}-x+\frac{m\pi }{2}+\frac{\pi }{4}\right ) \\ & =\sin \left ( \frac{m\pi }{2}-\frac{n\pi }{2}\right ) \\ & =\sin \left ( \left ( m-n\right ) \frac{\pi }{2}\right ) \end{align*}

Using the above in (6) gives \int _{0}^{\infty }\frac{J_{m}\left ( x\right ) J_{n}\left ( x\right ) }{x}dx=\frac{2}{\pi }\frac{\sin \left ( \left ( m-n\right ) \frac{\pi }{2}\right ) }{\left ( m^{2}-n^{2}\right ) }

Which is the result required to show.  QED.

2.10.3 Problem 2

   2.10.3.1 Part (a)
   2.10.3.2 Part (b)
   2.10.3.3 Appendix

Problem What linear second order ODE does the function x^{m}J_{n}\left ( ax^{k}\right ) solves? Are there any required relationships among m,n,k? Use this to solve y^{\prime \prime }+x^{2}y=0

Solution

2.10.3.1 Part (a)

We know that the Bessel ODE \begin{equation} t^{2}z^{\prime \prime }\left ( t\right ) +tz^{\prime }\left ( t\right ) +\left ( t^{2}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) z\left ( t\right ) =0 \tag{1} \end{equation}

I am using the order as \frac{\alpha }{\beta } instead of n to make it more general. At the end, \frac{\alpha }{\beta } can always be replaced back by n.

The ODE above has solution z\left ( t\right ) =J_{\frac{\alpha }{\beta }}\left ( t\right )

Hence using the transformation \begin{equation} t=ax^{k} \tag{2} \end{equation}
The solution y\left ( x\right ) \equiv z\left ( ax^{k}\right ) will becomes y\left ( x\right ) =J_{\frac{\alpha }{\beta }}\left ( ax^{k}\right )
Therefore the question now is, how does ODE (1) transforms under (2)? From (2) x=\left ( \frac{t}{a}\right ) ^{\frac{1}{k}}
Hence\begin{align} \frac{dx}{dt} & =\frac{1}{k}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\nonumber \\ & =\frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1} \tag{3} \end{align}

Now\begin{align} \frac{dz}{dt} & =\frac{dz}{dx}\frac{dx}{dt}\nonumber \\ & =\frac{dz}{dx}\frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1} \tag{5} \end{align}

And\begin{align} \frac{d^{2}z}{dt^{2}} & =\frac{d}{dt}\left ( \frac{dz}{dt}\right ) \nonumber \\ & =\frac{d}{dt}\left ( \frac{dz}{dx}\frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) \nonumber \\ & =\frac{d^{2}z}{dx^{2}}\frac{dx}{dt}\left ( \frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) +\frac{dz}{dx}\frac{d}{dt}\left ( \frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) \nonumber \\ & =\frac{d^{2}z}{dx^{2}}\left ( \frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) ^{2}+\frac{dz}{dx}\left ( \frac{1}{a^{2}k}\left ( \frac{1}{k}-1\right ) \left ( \frac{t}{a}\right ) ^{\frac{1}{k}-2}\right ) \tag{6} \end{align}

Using (5,6) then ODE (1) becomes

t^{2}\left ( z^{\prime \prime }\left ( ax^{k}\right ) \left ( \frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) ^{2}+z^{\prime }\left ( ax^{k}\right ) \frac{1}{a^{2}k}\left ( \frac{1}{k}-1\right ) \left ( \frac{t}{a}\right ) ^{\frac{1}{k}-2}\right ) +t\left ( z^{\prime }\left ( ax^{k}\right ) \frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) +\left ( t^{2}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) z\left ( ax^{k}\right ) =0

Writing y\left ( x\right ) \equiv z\left ( ax^{k}\right ) so we do not have to keep writing z\left ( ax^{k}\right ) , the above becomes t^{2}\left ( y^{\prime \prime }\left ( x\right ) \left ( \frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) ^{2}+y^{\prime }\left ( x\right ) \frac{1}{a^{2}k}\left ( \frac{1}{k}-1\right ) \left ( \frac{t}{a}\right ) ^{\frac{1}{k}-2}\right ) +t\left ( y^{\prime }\left ( x\right ) \frac{1}{ak}\left ( \frac{t}{a}\right ) ^{\frac{1}{k}-1}\right ) +\left ( t^{2}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) y\left ( x\right ) =0

But t=ax^{k} and the above becomes

a^{2}x^{2k}\left ( y^{\prime \prime }\left ( x\right ) \left ( \frac{1}{ak}\left ( \frac{ax^{k}}{a}\right ) ^{\frac{1}{k}-1}\right ) ^{2}+y^{\prime }\left ( x\right ) \frac{1}{a^{2}k}\left ( \frac{1}{k}-1\right ) \left ( \frac{ax^{k}}{a}\right ) ^{\frac{1}{k}-2}\right ) +ax^{k}\left ( y^{\prime }\left ( x\right ) \frac{1}{ak}\left ( \frac{ax^{k}}{a}\right ) ^{\frac{1}{k}-1}\right ) +\left ( a^{2}x^{2k}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) y\left ( x\right ) =0

Which is simplified more as follows\begin{align} a^{2}x^{2k}\left ( y^{\prime \prime }\left ( x\right ) \left ( \frac{1}{ak}\left ( \frac{x}{x^{k}}\right ) \right ) ^{2}+y^{\prime }\left ( x\right ) \frac{1}{a^{2}k}\left ( \frac{1}{k}-1\right ) \frac{x}{x^{2k}}\right ) +ax^{k}\left ( y^{\prime }\left ( x\right ) \frac{1}{ak}\frac{x}{x^{k}}\right ) +\left ( a^{2}x^{2k}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) y\left ( x\right ) & =0\nonumber \\ a^{2}x^{2k}\left ( y^{\prime \prime }\left ( x\right ) \frac{1}{a^{2}k^{2}}\left ( \frac{x^{2}}{x^{2k}}\right ) +y^{\prime }\left ( x\right ) \frac{1}{a^{2}k}\left ( \frac{1}{k}-1\right ) \frac{x}{x^{2k}}\right ) +ax^{k}\left ( y^{\prime }\left ( x\right ) \frac{1}{ak}\frac{x}{x^{k}}\right ) +\left ( a^{2}x^{2k}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) y\left ( x\right ) & =0\nonumber \\ x^{2k}\left ( y^{\prime \prime }\left ( x\right ) \frac{1}{k^{2}}\left ( \frac{x^{2}}{x^{2k}}\right ) +y^{\prime }\left ( x\right ) \frac{1}{k}\left ( \frac{1}{k}-1\right ) \frac{x}{x^{2k}}\right ) +y^{\prime }\left ( x\right ) \frac{x}{k}+\left ( a^{2}x^{2k}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) y\left ( x\right ) & =0\nonumber \\ \frac{x^{2}}{k^{2}}y^{\prime \prime }\left ( x\right ) +y^{\prime }\left ( x\right ) \frac{1}{k}\left ( \frac{1}{k}-1\right ) x+y^{\prime }\left ( x\right ) \frac{x}{k}+\left ( a^{2}x^{2k}-\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) y\left ( x\right ) & =0\nonumber \\ x^{2}y^{\prime \prime }\left ( x\right ) +y^{\prime }\left ( x\right ) k\left ( \frac{1}{k}-1\right ) x+y^{\prime }\left ( x\right ) kx+\left ( k^{2}a^{2}x^{2k}-k^{2}\left ( \frac{\alpha }{\beta }\right ) ^{2}\right ) y\left ( x\right ) & =0\nonumber \\ x^{2}y^{\prime \prime }\left ( x\right ) +xy^{\prime }\left ( x\right ) +\left ( k^{2}a^{2}x^{2k}-\frac{k^{2}\alpha ^{2}}{\beta ^{2}}\right ) y\left ( x\right ) & =0 \tag{7} \end{align}

We know that the above ODE has one solution as y\left ( x\right ) =J_{\frac{\alpha }{\beta }}\left ( ax^{k}\right ) because this is how the above was constructed. Now assuming that\begin{align*} w\left ( x\right ) & =x^{m}y\left ( x\right ) \\ & =x^{m}J_{\frac{\alpha }{\beta }}\left ( ax^{k}\right ) \end{align*}

Then w\left ( x\right ) is the solution we want. This means we need to express (7) in terms of w\left ( x\right ) instead of y\left ( x\right ) in order to find the ODE whose solution is x^{m}J_{\frac{\alpha }{\beta }}\left ( ax^{k}\right ) .

Since y\left ( x\right ) =w\left ( x\right ) x^{-m} then\begin{align*} y^{\prime }\left ( x\right ) & =\frac{d}{dx}\left ( x^{-m}w\right ) \\ & =-mx^{-m-1}w+x^{-m}w^{\prime } \end{align*}

And\begin{align*} y^{\prime \prime }\left ( x\right ) & =\frac{d}{dx}\left ( -mx^{-m-1}w+x^{-m}w^{\prime }\right ) \\ & =-m\left ( -m-1\right ) x^{-m-2}w-mx^{-m-1}w^{\prime }-mx^{-m-1}w^{\prime }+x^{-m}w^{\prime \prime }\\ & =m\left ( m+1\right ) x^{-m-2}w-2w^{\prime }mx^{-m-1}+x^{-m}w^{\prime \prime } \end{align*}

Substituting the above results back into (7) gives x^{2}\left ( m\left ( m+1\right ) x^{-m-2}w-2w^{\prime }mx^{-m-1}+x^{-m}w^{\prime \prime }\right ) +x\left ( -mx^{-m-1}w+x^{-m}w^{\prime }\right ) +\left ( k^{2}a^{2}x^{2k}-\frac{k^{2}\alpha ^{2}}{\beta ^{2}}\right ) wx^{-m}=0

Dividing by x^{-m}\begin{align} x^{2}\left ( m\left ( m+1\right ) x^{-2}w-2w^{\prime }mx^{-1}+w^{\prime \prime }\right ) +x\left ( -mx^{-1}w+w^{\prime }\right ) +\left ( k^{2}a^{2}x^{2k}-\frac{k^{2}\alpha ^{2}}{\beta ^{2}}\right ) w & =0\nonumber \\ m\left ( m+1\right ) w-2xw^{\prime }m+x^{2}w^{\prime \prime }-mw+xw^{\prime }+\left ( k^{2}a^{2}x^{2k}-\frac{k^{2}\alpha ^{2}}{\beta ^{2}}\right ) w & =0\nonumber \\ x^{2}w^{\prime \prime }+w^{\prime }\left ( -2xm+x\right ) +\left ( k^{2}a^{2}x^{2k}+m\left ( m+1\right ) -m-\frac{k^{2}\alpha ^{2}}{\beta ^{2}}\right ) w & =0\nonumber \\ x^{2}w^{\prime \prime }+\left ( 1-2m\right ) xw^{\prime }+\left ( k^{2}a^{2}x^{2k}+m^{2}-\frac{k^{2}\alpha ^{2}}{\beta ^{2}}\right ) w & =0 \tag{8} \end{align}

Hence the above ODE (8) will have the solution x^{m}J_{\frac{\alpha }{\beta }}\left ( ax^{k}\right ) . We can now let n=\frac{\alpha }{\beta } and the above ODE becomes\begin{equation} x^{2}w^{\prime \prime }+\left ( 1-2m\right ) xw^{\prime }+\left ( k^{2}a^{2}x^{2k}+m^{2}-k^{2}n^{2}\right ) w=0 \tag{9} \end{equation}

Has the required solution x^{m}J_{n}\left ( ax^{k}\right ) .

To answer the final part about the relation between n,m,k. One restriction is that m=\frac{1}{2}. One relation between the order n and k is that m^{2}-k^{2}n^{2} being a rational number. This means m^{2}-k^{2}n^{2}=\frac{N}{M}

Where N,M are integers.

2.10.3.2 Part (b)

\begin{equation} y^{\prime \prime }\left ( x\right ) +x^{2}y\left ( x\right ) =0\tag{1} \end{equation}

Comparing this ODE to one found in part (a), written below again, now using y\left ( x\right ) to make it easier to compare\begin{align} x^{2}y^{\prime \prime }\left ( x\right ) +\left ( 1-2m\right ) xy^{\prime }\left ( x\right ) +\left ( k^{2}a^{2}x^{2k}+m^{2}-k^{2}n^{2}\right ) y\left ( x\right ) & =0\nonumber \\ y^{\prime \prime }\left ( x\right ) +\frac{\left ( 1-2m\right ) }{x}y^{\prime }\left ( x\right ) +\frac{1}{x^{2}}\left ( k^{2}a^{2}x^{2k}+m^{2}-k^{2}n^{2}\right ) y\left ( x\right ) & =0\tag{2} \end{align}

To make (2) same as (1), we want \left ( 1-2m\right ) =0 or m=\frac{1}{2}. Also need 2k=4 or k=2. Using these the above reduces to y^{\prime \prime }\left ( x\right ) +\left ( 4a^{2}x^{2}+\frac{\frac{1}{4}-4n^{2}}{x^{2}}\right ) y\left ( x\right ) =0

Therefore, we need also that n^{2}=\frac{1}{16} in order to cancel extra term above. Hence n=\frac{1}{4}. Now the above becomes y^{\prime \prime }\left ( x\right ) +4a^{2}x^{2}y\left ( x\right ) =0
Finally, if we let a^{2}=\frac{1}{4} or a=\frac{1}{2}, then the above becomes y^{\prime \prime }\left ( x\right ) +x^{2}y\left ( x\right ) =0
Therefore, we found that \begin{align*} n & =\frac{1}{4}\\ a & =\frac{1}{2}\\ k & =2\\ m & =\frac{1}{2} \end{align*}

Hence the following solves the ODE\begin{align*} y\left ( x\right ) & =x^{m}J_{n}\left ( ax^{k}\right ) \\ & =\sqrt{x}J_{\frac{1}{4}}\left ( \frac{1}{2}x^{2}\right ) \end{align*}

2.10.3.3 Appendix

To verify the above result, it is solved again directly. We first need to convert this ODE to Bessel ODE. Let y=x^{\frac{1}{2}}z\left ( x\right )

Then\begin{align*} \frac{dy}{dx} & =\frac{1}{2}x^{-\frac{1}{2}}z+x^{\frac{1}{2}}z^{\prime }\\ \frac{d^{2}y}{dx^{2}} & =-\frac{1}{4}x^{-\frac{3}{2}}z+\frac{1}{2}x^{-\frac{1}{2}}z^{\prime }+\frac{1}{2}x^{-\frac{1}{2}}z^{\prime }+x^{\frac{1}{2}}z^{\prime \prime }\\ & =-\frac{1}{4}x^{-\frac{3}{2}}z+x^{-\frac{1}{2}}z^{\prime }+x^{\frac{1}{2}}z^{\prime \prime } \end{align*}

Substituting the above into (1) gives\begin{align*} \left ( -\frac{1}{4}x^{-\frac{3}{2}}z+x^{-\frac{1}{2}}z^{\prime }+x^{\frac{1}{2}}z^{\prime \prime }\right ) +x^{2}x^{\frac{1}{2}}z & =0\\ x^{\frac{1}{2}}z^{\prime \prime }+x^{-\frac{1}{2}}z^{\prime }+\left ( x^{\frac{5}{2}}-\frac{1}{4}x^{-\frac{3}{2}}\right ) z & =0 \end{align*}

Multiplying both sides by x^{\frac{3}{2}} gives\begin{equation} x^{2}z^{\prime \prime }+xz^{\prime }+\left ( x^{4}-\frac{1}{4}\right ) z=0\tag{2} \end{equation}

Where the derivatives above is with respect to x. Now let t=\frac{x^{2}}{2}. Then \frac{dz}{dx}=\frac{dz}{dt}\frac{dt}{dx}=x\frac{dz}{dt}
And\begin{align*} \frac{d^{2}z}{dx^{2}} & =\frac{d^{2}z}{dt^{2}}\left ( \frac{dt}{dx}\right ) \left ( x\right ) +\frac{dz}{dt}\\ & =\frac{d^{2}z}{dt^{2}}x^{2}+\frac{dz}{dt} \end{align*}

Substituting the above into (2) gives x^{2}\left ( x^{2}z^{\prime \prime }+z^{\prime }\right ) +x\left ( xz^{\prime }\right ) +\left ( x^{4}-\frac{1}{4}\right ) z=0

Where the derivatives above is with respect to t now. This simplifies to x^{4}z^{\prime \prime }+2x^{2}z^{\prime }+\left ( x^{4}-\frac{1}{4}\right ) z=0
But t=\frac{x^{2}}{2}, hence the above becomes\begin{align*} 4t^{2}z^{\prime \prime }+4tz^{\prime }+\left ( 4t^{2}-\frac{1}{4}\right ) z & =0\\ t^{2}z^{\prime \prime }+tz^{\prime }+\left ( t^{2}-\frac{1}{16}\right ) z & =0 \end{align*}

This now in the form of Bessel ODE t^{2}z^{\prime \prime }+tz^{\prime }+\left ( t^{2}-n^{2}\right ) z=0

Where n=\frac{1}{4}. Hence one solution is \begin{align*} z\left ( t\right ) & =J_{n}\left ( t\right ) \\ & =J_{\frac{1}{4}}\left ( t\right ) \end{align*}

But y\left ( x\right ) =\sqrt{x}z\left ( x\right ) and t=\frac{x^{2}}{2}, therefore the above becomes\begin{equation} y\left ( x\right ) =\sqrt{x}J_{\frac{1}{4}}\left ( \frac{x^{2}}{2}\right ) \tag{3} \end{equation}

Which is the same as found in part (b)

2.10.4 Problem 3

Problem Prove that \left \vert J_{n}\left ( x\right ) \right \vert \leq 1 for all integers n

Solution

From the integral representation of J_{n}\left ( x\right ) for integer n J_{n}\left ( x\right ) =\frac{1}{\pi }\int _{0}^{\pi }\cos \left ( n\theta -x\sin \theta \right ) d\theta

Then\begin{align*} \left \vert J_{n}\left ( x\right ) \right \vert & \leq \frac{1}{\pi }\left \vert \int _{0}^{\pi }\cos \left ( n\theta -x\sin \theta \right ) d\theta \right \vert _{\max }\\ & \leq \frac{1}{\pi }\int _{0}^{\pi }\left \vert \cos \left ( n\theta -x\sin \theta \right ) \right \vert _{\max }d\theta \\ & =\frac{1}{\pi }\left \vert M\right \vert _{\max }\int _{0}^{\pi }d\theta \\ & =\frac{1}{\pi }\left \vert M\right \vert _{\max }\pi \\ & =\left \vert M\right \vert _{\max } \end{align*}

Where \left \vert M\right \vert _{\max }=\left \vert \cos \left ( n\theta -x\sin \theta \right ) \right \vert _{\max } over \theta =0\cdots \pi . But this is 1 for the cosine function. Hence \left \vert J_{n}\left ( x\right ) \right \vert \leq 1

2.10.5 Problem 4

   2.10.5.1 Part (a)
   2.10.5.2 Part (b)

Problem Starting with the integral formula for hypergeometric function, express the following in terms of elementary functions _{2}F_{1}\left ( 1,1,2;x\right ) and _{2}F_{1}\left ( a,1,1;x\right )

Solution

\begin{align} _{2}F_{1}\left ( a,b,c;x\right ) & =\frac{\Gamma \left ( c\right ) }{\Gamma \left ( b\right ) \Gamma \left ( c-b\right ) }\int _{0}^{1}t^{b-1}\left ( 1-t\right ) ^{c-b-1}\left ( 1-tx\right ) ^{-a}dt\tag{1}\\ & =\frac{\Gamma \left ( c\right ) }{\Gamma \left ( a\right ) \Gamma \left ( b\right ) }\sum _{n=0}^{\infty }\frac{\Gamma \left ( a+n\right ) \Gamma \left ( b+n\right ) }{\Gamma \left ( c+n\right ) }\frac{x^{n}}{n!} \tag{2} \end{align}

2.10.5.1 Part (a)

Here a=1,b=1,c=2. Therefore, using (1) representation gives\begin{align*} _{2}F_{1}\left ( 1,1,2;x\right ) & =\frac{\Gamma \left ( 2\right ) }{\Gamma \left ( 1\right ) \Gamma \left ( 2-1\right ) }\int _{0}^{1}t^{1-1}\left ( 1-t\right ) ^{2-1-1}\left ( 1-tx\right ) ^{-1}dt\\ & =\frac{\Gamma \left ( 2\right ) }{\Gamma \left ( 1\right ) \Gamma \left ( 1\right ) }\int _{0}^{1}\frac{dt}{1-tx} \end{align*}

But \Gamma \left ( 2\right ) =1,\Gamma \left ( 1\right ) =0, therefore the above becomes\begin{align*} _{2}F_{1}\left ( 1,1,2;x\right ) & =\int _{0}^{1}\frac{dt}{1-tx}\\ & =\left [ \frac{-\ln \left ( 1-tx\right ) }{x}\right ] _{0}^{1}\\ & =-\left ( \frac{\ln \left ( 1-x\right ) }{x}-\frac{-\ln \left ( 1-0\right ) }{x}\right ) \\ & =-\frac{\ln \left ( 1-x\right ) }{x} \end{align*}

2.10.5.2 Part (b)

Here a=a,b=1,c=1. Therefore (2) representation gives\begin{align*} _{2}F_{1}\left ( a,1,1;x\right ) & =\frac{\Gamma \left ( c\right ) }{\Gamma \left ( a\right ) \Gamma \left ( b\right ) }\sum _{n=0}^{\infty }\frac{\Gamma \left ( a+n\right ) \Gamma \left ( b+n\right ) }{\Gamma \left ( c+n\right ) }\frac{x^{n}}{n!}\\ & =\frac{1}{\Gamma \left ( a\right ) }\sum _{n=0}^{\infty }\frac{\Gamma \left ( a+n\right ) \Gamma \left ( 1+n\right ) }{\Gamma \left ( 1+n\right ) }\frac{x^{n}}{n!}\\ & =\sum _{n=0}^{\infty }\frac{\Gamma \left ( a+n\right ) }{\Gamma \left ( a\right ) }\frac{x^{n}}{n!} \end{align*}

Looking at few values



n _{2}F_{1}\left ( a,1,1;x\right )


0 \frac{\Gamma \left ( a\right ) }{\Gamma \left ( a\right ) }=1


1 \frac{\Gamma \left ( a+1\right ) }{\Gamma \left ( a\right ) }x


2 \frac{\Gamma \left ( a+2\right ) }{\Gamma \left ( a\right ) }\frac{x^{2}}{2!}


3 \frac{\Gamma \left ( a+3\right ) }{\Gamma \left ( a\right ) }\frac{x^{3}}{3!}


\vdots \vdots


Using the recursive relation \Gamma \left ( a+1\right ) =a\Gamma \left ( a\right ) , which works for integer and non integer a, then we see that \Gamma \left ( a+1\right ) =a\Gamma \left ( a\right )

And\begin{align*} \Gamma \left ( a+2\right ) & =\Gamma \left ( \left ( a+1\right ) +1\right ) \\ & =\left ( a+1\right ) \Gamma \left ( a+1\right ) \\ & =\left ( a+1\right ) a\Gamma \left ( a\right ) \end{align*}

And\begin{align*} \Gamma \left ( a+3\right ) & =\Gamma \left ( \left ( a+2\right ) +1\right ) \\ & =\left ( a+2\right ) \Gamma \left ( \left ( a+2\right ) \right ) \\ & =\left ( a+2\right ) \left ( a+1\right ) a\Gamma \left ( a\right ) \end{align*}

And so on. Hence the above now becomes



n _{2}F_{1}\left ( a,1,1;x\right )


0 1


1 \frac{a\Gamma \left ( a\right ) }{\Gamma \left ( a\right ) }x=ax


2 \frac{\left ( a+1\right ) a\Gamma \left ( a\right ) }{\Gamma \left ( a\right ) }\frac{x^{2}}{2!}=a\left ( a+1\right ) \frac{x^{2}}{2!}


3 \frac{\left ( a+2\right ) \left ( a+1\right ) a\Gamma \left ( a\right ) }{\Gamma \left ( a\right ) }\frac{x^{3}}{3!}=a\left ( a+1\right ) \left ( a+2\right ) \frac{x^{3}}{3!}


\vdots \vdots


We see from the above the pattern of the sequence is as follows\begin{equation} _{2}F_{1}\left ( a,1,1;x\right ) =1+ax+a\left ( a+1\right ) \frac{x^{2}}{2!}+a\left ( a+1\right ) \left ( a+2\right ) \frac{x^{3}}{3!}+\cdots \tag{1} \end{equation}

Comparing the above to the Binomial expansion given by\begin{equation} \left ( 1+z\right ) ^{n}=1+nz+n\left ( n-1\right ) \frac{z^{2}}{2!}+n\left ( n-1\right ) \left ( n-2\right ) \frac{z^{3}}{3!}+\cdots \tag{2} \end{equation}
By replacing z\rightarrow -x and n\rightarrow -a, the above becomes\begin{align*} \left ( 1-x\right ) ^{-a} & =1+\left ( -a\right ) \left ( -x\right ) +\left ( -a\right ) \left ( \left ( -a\right ) -1\right ) \frac{\left ( -x\right ) ^{2}}{2!}+\left ( -a\right ) \left ( \left ( -a\right ) -1\right ) \left ( \left ( -a\right ) -2\right ) \frac{\left ( -x\right ) ^{3}}{3!}+\cdots \\ & =1+ax+\left ( a\right ) \left ( a+1\right ) \frac{x^{2}}{2!}+\left ( a\right ) \left ( a+1\right ) \left ( a+2\right ) \frac{x^{3}}{3!}+\cdots \end{align*}

Comparing the above to (1) shows it is the same series. Hence _{2}F_{1}\left ( a,1,1;x\right ) =\left ( 1-x\right ) ^{-a}

2.10.6 Key solution for HW 10

PDF