Evaluate the following integral for t>0 and for t<0 when \omega _{0}>0 and \epsilon \rightarrow 0^{+} \int _{-\infty }^{\infty }\frac{e^{i\omega t}}{\left ( \omega -i\epsilon \right ) ^{2}-\omega _{0}^{2}}d\omega
Case t>0
We select the upper half for contour C since when t>0 the integral on upper half will vanish as will be shown below.
Hence\begin{align*} \int _{-\infty }^{\infty }\frac{e^{i\omega t}}{\left ( \omega -i\epsilon \right ) ^{2}-\omega _{0}^{2}}d\omega & ={\displaystyle \oint \limits _{C}} \frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}dz\\ & =\lim _{R\rightarrow \infty }\left ( P.V.\right ) \int _{-R}^{R}\frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}dz+\int _{CR}\frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}dz\\ & =2\pi i\sum \operatorname{Residue} \end{align*}
Therefore, if we can show that \lim _{R\rightarrow \infty } \int _{CR}\frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}dz=0, then the above implies that \begin{equation} \int _{-\infty }^{\infty }\frac{e^{i\omega t}}{\left ( \omega -i\epsilon \right ) ^{2}-\omega _{0}^{2}}d\omega =2\pi i\sum \operatorname{Residue} \tag{1} \end{equation}
They are both in upper half, inside the contour (since \omega _{0}>0 and \epsilon is positive).
Now we find the residues\begin{align} \operatorname{Residue}\left ( z_{1}\right ) & =\lim _{z\rightarrow z_{1}}\left ( z-z_{1}\right ) \frac{e^{izt}}{\left ( z-z_{1}\right ) \left ( z-z_{2}\right ) }\nonumber \\ & =\lim _{z\rightarrow z_{1}}\frac{e^{izt}}{\left ( z-z_{2}\right ) }\nonumber \\ & =\frac{e^{it\left ( i\epsilon +\omega _{0}\right ) }}{\left ( i\epsilon +\omega _{0}\right ) -\left ( i\epsilon -\omega _{0}\right ) }\nonumber \\ & =\frac{e^{-t\epsilon }e^{it\omega _{0}}}{2\omega _{0}} \tag{2} \end{align}
And\begin{align} \operatorname{Residue}\left ( z_{2}\right ) & =\lim _{z\rightarrow z_{2}}\left ( z-z_{2}\right ) \frac{e^{izt}}{\left ( z-z_{1}\right ) \left ( z-z_{2}\right ) }\nonumber \\ & =\lim _{z\rightarrow z_{2}}\frac{e^{izt}}{\left ( z-z_{1}\right ) }\nonumber \\ & =\frac{e^{it\left ( i\epsilon -\omega _{0}\right ) }}{\left ( i\epsilon -\omega _{0}\right ) -\left ( i\epsilon +\omega _{0}\right ) }\nonumber \\ & =\frac{e^{-t\epsilon }e^{-it\omega _{0}}}{-2\omega _{0}} \tag{3} \end{align}
Substituting (2,3) into (1) gives\begin{align*} \int _{-\infty }^{\infty }\frac{e^{i\omega t}}{\left ( \omega -i\epsilon \right ) ^{2}-\omega _{0}^{2}}d\omega & =2\pi i\left ( \frac{e^{-t\epsilon }e^{it\omega _{0}}}{2\omega _{0}}+\frac{e^{-t\epsilon }e^{-it\omega _{0}}}{-2\omega _{0}}\right ) \\ & =\frac{2\pi i}{2\omega _{0}}e^{-t\epsilon }\left ( e^{it\omega _{0}}-e^{-it\omega _{0}}\right ) \\ & =\frac{2\pi }{\omega _{0}}e^{-t\epsilon }\left ( \frac{e^{it\omega _{0}}-e^{-it\omega _{0}}}{-2i}\right ) \\ & =-\frac{2\pi }{\omega _{0}}e^{-t\epsilon }\left ( \frac{e^{it\omega _{0}}-e^{-it\omega _{0}}}{2i}\right ) \\ & =-\frac{2\pi }{\omega _{0}}e^{-t\epsilon }\sin \left ( t\omega _{0}\right ) \end{align*}
Now, to finish the solution, we must show that \lim _{R\rightarrow \infty } \int _{CR}\frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}dz=0. But
\begin{align} \int _{CR}\frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}dz & \leq \left \vert \int _{CR}\frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}dz\right \vert _{\max }\nonumber \\ & \leq \int _{CR}\left \vert \frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}\right \vert _{\max }dz\nonumber \\ & =\left \vert \frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}\right \vert _{\max }\int _{CR}dz\nonumber \\ & =\left \vert \frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}\right \vert _{\max }\int _{0}^{\pi }Rd\theta \nonumber \\ & =R\pi \left \vert \frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}\right \vert _{\max } \tag{4} \end{align}
But\begin{align*} \left \vert \frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}\right \vert _{\max } & \leq \frac{\left \vert e^{izt}\right \vert _{\max }}{\left \vert \left ( z-z_{1}\right ) \left ( z-z_{2}\right ) \right \vert _{\min }}\\ & \leq \frac{\left \vert e^{izt}\right \vert _{\max }}{\left \vert \left ( z-z_{1}\right ) \right \vert _{\min }\left \vert \left ( z-z_{2}\right ) \right \vert _{\min }}\\ & =\frac{\left \vert e^{it\left ( x+iy\right ) }\right \vert _{\max }}{\left \vert \left ( z-z_{1}\right ) \right \vert _{\min }\left \vert \left ( z-z_{2}\right ) \right \vert _{\min }}\\ & =\frac{\left \vert e^{itx-ty}\right \vert _{\max }}{\left \vert \left ( z-z_{1}\right ) \right \vert _{\min }\left \vert \left ( z-z_{2}\right ) \right \vert _{\min }}\\ & =\frac{\left \vert e^{itx}\right \vert _{\max }\left \vert e^{-ty}\right \vert _{\max }}{\left \vert \left ( z-z_{1}\right ) \right \vert _{\min }\left \vert \left ( z-z_{2}\right ) \right \vert _{\min }}\\ & \leq \frac{\left \vert e^{-ty}\right \vert _{\max }}{\left \vert \left ( z-z_{1}\right ) \right \vert _{\min }\left \vert \left ( z-z_{2}\right ) \right \vert _{\min }} \end{align*}
Now, since y>0 (we are in the upper half) and also since t>0, then \left \vert e^{-ty}\right \vert _{\max }=1, which occurs when y=0. Hence the above becomes \left \vert \frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}\right \vert _{\max }\leq \frac{1}{\left \vert \left ( z-z_{1}\right ) \right \vert _{\min }\left \vert \left ( z-z_{2}\right ) \right \vert _{\min }}
But 2\left \vert \epsilon ^{2}+\omega _{0}^{2}\right \vert ^{2} is a finite value, say \beta so the above is \lim _{R\rightarrow \infty }\int _{CR}\frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}dz\leq \pi \lim _{R\rightarrow \infty }\frac{R}{2R^{2}+\beta }
Hence The final solution is \int _{-\infty }^{\infty }\frac{e^{i\omega t}}{\left ( \omega -i\epsilon \right ) ^{2}-\omega _{0}^{2}}d\omega =-\frac{2\pi }{\omega _{0}}e^{-t\epsilon }\sin \left ( t\omega _{0}\right )
Here, we must use the lower half for the contour in order for the half circle contour integral to vanish.
In this case the sum of residues is zero (since both poles are in the upper half), then we see right away that \int _{-\infty }^{\infty }\frac{e^{i\omega t}}{\left ( \omega -i\epsilon \right ) ^{2}-\omega _{0}^{2}}d\omega =0\qquad t<0
But\begin{align*} \left \vert \frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}\right \vert _{\max } & \leq \frac{\left \vert e^{izt}\right \vert _{\max }}{\left \vert \left ( z-z_{1}\right ) \right \vert _{\min }\left \vert \left ( z-z_{2}\right ) \right \vert _{\min }}\\ & \leq \frac{\left \vert e^{it\left ( x+iy\right ) }\right \vert _{\max }}{\left \vert \left ( z-z_{1}\right ) \right \vert _{\min }\left \vert \left ( z-z_{2}\right ) \right \vert _{\min }}\\ & =\frac{\left \vert e^{itx-ty}\right \vert _{\max }}{\left \vert \left ( z-z_{1}\right ) \right \vert _{\min }\left \vert \left ( z-z_{2}\right ) \right \vert _{\min }}\\ & =\frac{\left \vert e^{itx}\right \vert _{\max }\left \vert e^{-ty}\right \vert _{\max }}{\left \vert \left ( z-z_{1}\right ) \right \vert _{\min }\left \vert \left ( z-z_{2}\right ) \right \vert _{\min }}\\ & \leq \frac{\left \vert e^{-ty}\right \vert _{\max }}{\left \vert \left ( z-z_{1}\right ) \right \vert _{\min }\left \vert \left ( z-z_{2}\right ) \right \vert _{\min }} \end{align*}
Since y<0 (we are now in lower half) and also since t<0, then \left \vert e^{-ty}\right \vert _{\max }=1, which occurs when y=0. Hence \left \vert \frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}\right \vert _{\max }\leq \frac{1}{\left \vert \left ( z-z_{1}\right ) \right \vert _{\min }\left \vert \left ( z-z_{2}\right ) \right \vert _{\min }}
But 2\left \vert \epsilon ^{2}+\omega _{0}^{2}\right \vert ^{2} is finite number, say \beta so the above is \lim _{R\rightarrow \infty }\int _{CR}\frac{e^{izt}}{\left ( z-i\epsilon \right ) ^{2}-\omega _{0}^{2}}dz\leq \pi \lim _{R\rightarrow \infty }\frac{R}{2R^{2}+\beta }
The final solution is \int _{-\infty }^{\infty }\frac{e^{i\omega t}}{\left ( \omega -i\epsilon \right ) ^{2}-\omega _{0}^{2}}d\omega =0\qquad t<0
Evaluate the following integrals \int _{0}^{\infty }\frac{\ln x}{1+x^{2}}dx and \int _{0}^{\infty }\frac{\ln ^{2}x}{1+x^{2}}dx. In order to find the second one you need to consider the integral \int _{0}^{\infty }\frac{\ln ^{3}x}{1+x^{2}}dx
Solution
There are two ways to find \int _{0}^{\infty }\frac{\ln x}{1+x^{2}}dx. One uses a substitution method and requires no complex contour integration and the second method uses \int _{0}^{\infty }\frac{\ln ^{2}x}{1+x^{2}}dx with complex integration to find \int _{0}^{\infty }\frac{\ln x}{1+x^{2}}dx.
Method one
Let x=\frac{1}{y}. Hence dx=-\frac{1}{y^{2}}dy\,. When x=0\rightarrow y=\infty and when x=\infty \rightarrow y=0. Hence the integral \int _{0}^{\infty }\frac{\ln x}{1+x^{2}}dx becomes\begin{align*} \int _{0}^{\infty }\frac{\ln x}{1+x^{2}}dx & =\int _{\infty }^{0}\frac{\ln \left ( \frac{1}{y}\right ) }{1+\frac{1}{y^{2}}}\left ( -\frac{1}{y^{2}}dy\right ) \\ & =-\int _{\infty }^{0}\frac{\ln \left ( \frac{1}{y}\right ) }{\frac{y^{2}+1}{y^{2}}}\left ( \frac{1}{y^{2}}dy\right ) \\ & =-\int _{\infty }^{0}\frac{\ln \left ( \frac{1}{y}\right ) }{y^{2}+1}dy\\ & =\int _{\infty }^{0}\frac{\ln \left ( y\right ) }{y^{2}+1}dy\\ & =-\int _{0}^{\infty }\frac{\ln \left ( y\right ) }{y^{2}+1}dy \end{align*}
Since on the RHS y is arbitrary integration variable, we can rename it back to x. Hence the above becomes\begin{align*} \int _{0}^{\infty }\frac{\ln x}{1+x^{2}}dx & =-\int _{0}^{\infty }\frac{\ln \left ( x\right ) }{x^{2}+1}dy\\ 2\int _{0}^{\infty }\frac{\ln x}{1+x^{2}}dx & =0 \end{align*}
Therefore \fbox{$\int _0^\infty \frac{\ln x}{1+x^2}dx=0$}
In this method will use complex integration on \int _{0}^{\infty }\frac{\ln ^{2}z}{1+z^{2}}dz to show that \int _{0}^{\infty }\frac{\ln z}{1+z^{2}}dz=0. The following contour will be used.
\begin{align*}{\displaystyle \oint } \frac{\ln ^{2}z}{1+z^{2}}dz & ={\displaystyle \oint } f\left ( z\right ) dz\\ & =\int _{L_{2}}f\left ( z\right ) dz+\int _{C_{r_{0}}}f\left ( z\right ) dz+\int _{L_{1}}f\left ( z\right ) dz+\int _{C_{R}}f\left ( z\right ) dz\\ & =2\pi i\sum \operatorname{Residue} \end{align*}
Hence \begin{equation} \int _{L_{2}}f\left ( z\right ) dz+\int _{C_{r_{0}}}f\left ( z\right ) dz+\int _{L_{1}}f\left ( z\right ) dz+\int _{C_{R}}f\left ( z\right ) dz=2\pi i\sum \operatorname{Residue} \tag{1} \end{equation}
And\begin{align*} \operatorname{Residue}\left ( -i\right ) & =\lim _{z\rightarrow -i}\left ( z+i\right ) \frac{\ln ^{2}z}{\left ( z-i\right ) \left ( z+i\right ) }\\ & =\lim _{z\rightarrow -i}\frac{\ln ^{2}z}{\left ( z-i\right ) }\\ & =\frac{\ln ^{2}\left ( -i\right ) }{-2i} \end{align*}
But \ln \left ( -i\right ) =\ln \left ( 1\right ) +i\frac{3}{2}\pi . Notice that the phase is \frac{3}{2}\pi and not -\frac{\pi }{2} since we are using principle branch defined as 0<\theta <2\pi . Therefore the above becomes\begin{align} \operatorname{Residue}\left ( -i\right ) & =\frac{\left ( \ln \left ( 1\right ) +i\frac{3}{2}\pi \right ) ^{2}}{-2i}\nonumber \\ & =\frac{-\frac{9}{4}\pi ^{2}}{-2i}\nonumber \\ & =\frac{9\pi ^{2}}{8i} \tag{3} \end{align}
Adding (2+3) and substituting in (1) gives\begin{align*} \int _{L_{2}}f\left ( z\right ) dz+\int _{C_{r_{0}}}f\left ( z\right ) dz+\int _{L_{1}}f\left ( z\right ) dz+\int _{C_{R}}f\left ( z\right ) dz & =2\pi i\left ( \frac{-\pi ^{2}}{8i}+\frac{9\pi ^{2}}{8i}\right ) \\ \int _{L_{2}}f\left ( z\right ) dz+\int _{C_{r_{0}}}f\left ( z\right ) dz+\int _{L_{1}}f\left ( z\right ) dz+\int _{C_{R}}f\left ( z\right ) dz & =2\pi ^{3} \end{align*}
We will show at the end that \lim _{r_{0}\rightarrow 0}\int _{C_{r_{0}}}f\left ( z\right ) dz=0 and that \lim _{R\rightarrow \infty }\int _{C_{R}}f\left ( z\right ) dz=0. Given this, the above simplifies to only two integrals to evaluate\begin{equation} \int _{L_{2}}f\left ( z\right ) dz+\int _{L_{1}}f\left ( z\right ) dz=2\pi ^{3} \tag{3A} \end{equation}
Now taking the limit as \epsilon \rightarrow 0 the above becomes\begin{equation} \int _{L_{1}}\frac{\ln ^{2}z}{1+z^{2}}dz=\int _{0}^{\infty }\frac{\ln ^{2}r}{1+r^{2}}dr \tag{4} \end{equation}
Taking the limit as \epsilon \rightarrow 0 the above becomes \int _{L_{2}}\frac{\ln ^{2}z}{1+z^{2}}dz=e^{i2\pi }\int _{\infty }^{0}\frac{\ln ^{2}\left ( r\right ) -4\pi ^{2}+4\pi i\ln r}{1+r^{2}e^{i4\pi }}dr
Using (4,5) in (3A) gives\begin{align*} -\int _{0}^{\infty }\frac{\ln ^{2}r}{1+r^{2}}dr+\int _{0}^{\infty }\frac{4\pi ^{2}}{1+r^{2}}dr-4\pi i\int _{0}^{\infty }\frac{\ln r}{1+r^{2}}dr+\int _{0}^{\infty }\frac{\ln ^{2}r}{1+r^{2}}dr & =2\pi ^{3}\\ 4\pi ^{2}\int _{0}^{\infty }\frac{1}{1+r^{2}}dr-4\pi i\int _{0}^{\infty }\frac{\ln r}{1+r^{2}}dr & =2\pi ^{3} \end{align*}
But \int _{0}^{\infty }\frac{1}{1+r^{2}}dr=\arctan \left ( r\right ) _{0}^{\infty }=\arctan \left ( \infty \right ) -\arctan \left ( 0\right ) =\frac{\pi }{2}, hence the above becomes\begin{align*} 4\pi ^{2}\left ( \frac{\pi }{2}\right ) -4\pi i\int _{0}^{\infty }\frac{\ln r}{1+r^{2}}dr & =2\pi ^{3}\\ -4\pi i\int _{0}^{\infty }\frac{\ln r}{1+r^{2}}dr & =0 \end{align*}
Which implies \fbox{$\int _0^\infty \frac{\ln r}{1+r^2}dr=0$}
Appendix Here we will show that \lim _{r_{0}\rightarrow 0}\int _{C_{r_{0}}}f\left ( z\right ) dz=0 and \lim _{R\rightarrow \infty }\int _{C_{R}}f\left ( z\right ) dz=0.
For \lim _{r_{0}\rightarrow 0}\int _{C_{r_{0}}}f\left ( z\right ) dz, let z=r_{0}e^{i\theta }. Hence dz=r_{0}ie^{i\theta }d\theta and the integral becomes \lim _{r_{0}\rightarrow 0}\int _{2\pi -\epsilon }^{\epsilon }\frac{\ln ^{2}\left ( r_{0}e^{i\theta }\right ) }{1+r_{0}^{2}e^{2i\theta }}r_{0}ie^{i\theta }d\theta =\lim _{r_{0}\rightarrow 0}i\int _{2\pi -\epsilon }^{\epsilon }\frac{\ln ^{2}\left ( r_{0}e^{i\theta }\right ) }{1+r_{0}^{2}e^{i\theta }}r_{0}d\theta
But \lim _{r_{0}\rightarrow 0}\frac{r_{0}\ln ^{2}r_{0}}{1-r_{0}^{2}}=0 and \lim _{r_{0}\rightarrow 0}\frac{r_{0}}{1-r_{0}^{2}}=0 and \lim _{r_{0}\rightarrow 0}\frac{r_{0}\ln r_{0}}{1-r_{0}^{2}}=0 Hence all terms on the RHS above become zero in the limit. Therefore\begin{align*} \lim _{r_{0}\rightarrow 0}\int _{2\pi -\epsilon }^{\epsilon }\frac{\ln ^{2}\left ( r_{0}e^{i\theta }\right ) }{1+r_{0}^{2}e^{2i\theta }}r_{0}ie^{i\theta }d\theta & =\lim _{r_{0}\rightarrow 0}\int _{C_{r_{0}}}\frac{\ln ^{2}z}{1+z^{2}}dz\\ & =0 \end{align*}
Now we will do the same \lim _{R\rightarrow \infty }\int _{C_{R}}f\left ( z\right ) dz, let z=Re^{i\theta }. Hence dz=Rie^{i\theta }d\theta and the integral becomes \lim _{R\rightarrow \infty }\int _{\epsilon }^{2\pi -\epsilon }\frac{\ln ^{2}\left ( Re^{i\theta }\right ) }{1+R^{2}e^{2i\theta }}Rie^{i\theta }d\theta =\lim _{R\rightarrow \infty }i\int _{\epsilon }^{2\pi -\epsilon }\frac{\ln ^{2}\left ( \operatorname{Re}^{i\theta }\right ) }{1+R^{2}e^{2i\theta }}Rd\theta
But \lim _{R\rightarrow \infty }\frac{R\ln ^{2}R}{1-R^{2}}=0 and \lim _{R\rightarrow \infty }\frac{R}{1-R^{2}}=0 and \lim _{R\rightarrow \infty }\frac{R\ln R}{1-R^{2}}=0 Hence all terms on the RHS above become zero in the limit. Therefore\begin{align*} \lim _{R\rightarrow \infty }\int _{\epsilon }^{2\pi -\epsilon }\frac{\ln ^{2}\left ( Re^{i\theta }\right ) }{1+R^{2}e^{2i\theta }}Rie^{i\theta }d\theta & =\lim _{R\rightarrow \infty }\int _{C_{R}}\frac{\ln ^{2}z}{1+z^{2}}dz=0\\ & =0 \end{align*}
We will now find \int _{0}^{\infty }\frac{\ln ^{3}z}{1+z^{2}}dz in order to determine \int _{0}^{\infty }\frac{\ln ^{2}z}{1+z^{2}}dz. We will use the same contour integration as part (a) above.\begin{equation} \int _{L_{2}}f\left ( z\right ) dz+\int _{C_{r_{0}}}f\left ( z\right ) dz+\int _{L_{1}}f\left ( z\right ) dz+\int _{C_{R}}f\left ( z\right ) dz=2\pi i\sum \operatorname{Residue} \tag{1} \end{equation}
And\begin{align*} \operatorname{Residue}\left ( -i\right ) & =\lim _{z\rightarrow -i}\left ( z+i\right ) \frac{\ln ^{3}z}{\left ( z-i\right ) \left ( z+i\right ) }\\ & =\lim _{z\rightarrow -i}\frac{\ln ^{3}z}{\left ( z-i\right ) }\\ & =\frac{\ln ^{3}\left ( -i\right ) }{-2i} \end{align*}
But \ln \left ( -i\right ) =\ln \left ( 1\right ) +i\frac{3}{2}\pi . Notice that the phase is \frac{3}{2}\pi and not -\frac{\pi }{2} since we are using principle branch defined as 0<\theta <2\pi . Therefore the above becomes\begin{align} \operatorname{Residue}\left ( -i\right ) & =\frac{\left ( \ln \left ( 1\right ) +i\frac{3}{2}\pi \right ) ^{3}}{-2i}\nonumber \\ & =\frac{\left ( i\frac{3}{2}\pi \right ) ^{3}}{-2i}\nonumber \\ & =\frac{-i\frac{27}{8}\pi ^{3}}{-2i}\nonumber \\ & =\frac{27\pi ^{3}}{16} \tag{3} \end{align}
Adding (2+3) and substituting in (1) gives\begin{align*} \int _{L_{2}}f\left ( z\right ) dz+\int _{C_{r_{0}}}f\left ( z\right ) dz+\int _{L_{1}}f\left ( z\right ) dz+\int _{C_{R}}f\left ( z\right ) dz & =2\pi i\left ( \frac{-\pi ^{3}}{16}+\frac{27\pi ^{3}}{16}\right ) \\ \int _{L_{2}}f\left ( z\right ) dz+\int _{C_{r_{0}}}f\left ( z\right ) dz+\int _{L_{1}}f\left ( z\right ) dz+\int _{C_{R}}f\left ( z\right ) dz & =\frac{13}{4}\pi ^{4}i \end{align*}
We will show below that \lim _{r_{0}\rightarrow 0}\int _{C_{r_{0}}}f\left ( z\right ) dz=0 and that \lim _{R\rightarrow \infty }\int _{C_{R}}f\left ( z\right ) dz=0, which simplifies the above to\begin{equation} \int _{L_{2}}f\left ( z\right ) dz+\int _{L_{1}}f\left ( z\right ) dz=\frac{13}{4}\pi ^{4}i \tag{3A} \end{equation}
Now taking the limit as \epsilon \rightarrow 0 the above becomes\begin{equation} \int _{L_{1}}\frac{\ln ^{3}z}{1+z^{2}}dz=\int _{0}^{\infty }\frac{\ln ^{3}r}{1+r^{2}}dr \tag{4} \end{equation}
But \lim _{\epsilon \rightarrow 0}e^{i\left ( 2\pi -\epsilon \right ) }=e^{2\pi i}=1 and the above becomes\begin{align*} \int _{L_{2}}\frac{\ln ^{3}z}{1+z^{2}}dz & =\int _{\infty }^{0}\frac{\left ( \ln ^{2}r-\left ( 2\pi -\epsilon \right ) ^{2}+2i\left ( 2\pi -\epsilon \right ) \ln r\right ) \left ( \ln \left ( r\right ) +i\left ( 2\pi -\epsilon \right ) \right ) }{1+r^{2}e^{2i\left ( 2\pi -\epsilon \right ) }}dr\\ & =\int _{\infty }^{0}\frac{\ln ^{3}r-\ln r\left ( 2\pi -\epsilon \right ) ^{2}+2i\left ( 2\pi -\epsilon \right ) \ln ^{2}r+i\left ( 2\pi -\epsilon \right ) \ln ^{2}r-i\left ( 2\pi -\epsilon \right ) ^{3}+2i^{2}\left ( 2\pi -\epsilon \right ) ^{2}\ln r}{1+r^{2}e^{2i\left ( 2\pi -\epsilon \right ) }}dr \end{align*}
Taking the limit as \epsilon \rightarrow 0 the above becomes\begin{align*} \int _{L_{2}}\frac{\ln ^{3}z}{1+z^{2}}dz & =\int _{\infty }^{0}\frac{\ln ^{3}r-4\pi ^{2}\ln r+4\pi i\ln ^{2}r+2\pi i\ln ^{2}r-i\left ( 2\pi -\epsilon \right ) ^{2}\left ( 2\pi -\epsilon \right ) +2i^{2}\left ( 4\pi ^{2}+\epsilon ^{2}-4\pi \epsilon \right ) \ln r}{1+r^{2}e^{4\pi i}}dr\\ & =\int _{\infty }^{0}\frac{\ln ^{3}r-4\pi ^{2}\ln r+4\pi i\ln ^{2}r+2\pi i\ln ^{2}r-i\left ( 4\pi ^{2}+\epsilon ^{2}-4\pi \epsilon \right ) \left ( 2\pi -\epsilon \right ) -8\pi ^{2}\ln r}{1+r^{2}}dr\\ & =\int _{\infty }^{0}\frac{\ln ^{3}r-4\pi ^{2}\ln r+6\pi i\ln ^{2}r-i\left ( 8\pi ^{3}+2\pi \epsilon ^{2}-8\pi ^{2}\epsilon \right ) -\left ( 4\pi ^{2}\epsilon +\epsilon ^{3}-4\pi \epsilon ^{2}\right ) -8\pi ^{2}\ln r}{1+r^{2}}dr \end{align*}
Taking the limit as \epsilon \rightarrow 0 the above becomes\begin{align*} \int _{L_{2}}\frac{\ln ^{3}z}{1+z^{2}}dz & =\int _{\infty }^{0}\frac{\ln ^{3}\left ( r\right ) -4\pi ^{2}\ln r+6\pi i\ln ^{2}r-8i\pi ^{3}-8\pi ^{2}\ln r}{1+r^{2}}dr\\ & =\int _{\infty }^{0}\frac{\ln ^{3}\left ( r\right ) -12\pi ^{2}\ln r+6\pi i\ln ^{2}r-8i\pi ^{3}}{1+r^{2}}dr \end{align*}
Hence the above becomes\begin{align} \int _{L_{2}}\frac{\ln ^{3}z}{1+z^{2}}dz & =\int _{\infty }^{0}\frac{\ln ^{3}\left ( r\right ) }{1+r^{2}}dr-12\pi ^{2}\int _{\infty }^{0}\frac{\ln r}{1+r^{2}}dr+6\pi i\int _{\infty }^{0}\frac{\ln ^{2}r}{1+r^{2}}dr-8i\pi ^{3}\int _{\infty }^{0}\frac{1}{1+r^{2}}dr\nonumber \\ & =-\int _{0}^{\infty }\frac{\ln ^{3}r}{1+r^{2}}dr+12\pi ^{2}\int _{0}^{\infty }\frac{\ln r}{1+r^{2}}dr-6\pi i\int _{0}^{\infty }\frac{\ln ^{2}r}{1+r^{2}}dr+8i\pi ^{3}\int _{0}^{\infty }\frac{1}{1+r^{2}}dr\nonumber \end{align}
But \int _{0}^{\infty }\frac{\ln r}{1+r^{2}}dr=0 from part (a) and \int _{0}^{\infty }\frac{1}{1+r^{2}}dr=\frac{\pi }{2}, hence the above becomes\begin{equation} \int _{L_{2}}\frac{\ln ^{3}z}{1+z^{2}}dz=-\int _{0}^{\infty }\frac{\ln ^{3}r}{1+r^{2}}dr-6\pi i\int _{0}^{\infty }\frac{\ln ^{2}r}{1+r^{2}}dr+4i\pi ^{4} \tag{5} \end{equation}
Which implies \fbox{$\int _0^\infty \frac{\ln ^2x}{1+x^2}dx=\frac{\pi ^3}{8}$}
Appendix Here we will show that \lim _{r_{0}\rightarrow 0}\int _{C_{r_{0}}}f\left ( z\right ) dz=0 and \lim _{R\rightarrow \infty }\int _{C_{R}}f\left ( z\right ) dz=0.
For \lim _{r_{0}\rightarrow 0}\int _{C_{r_{0}}}f\left ( z\right ) dz, let z=r_{0}e^{i\theta }. Hence dz=r_{0}ie^{i\theta }d\theta and the integral becomes \lim _{r_{0}\rightarrow 0}\int _{2\pi -\epsilon }^{\epsilon }\frac{\ln ^{3}\left ( r_{0}e^{i\theta }\right ) }{1+r_{0}^{2}e^{2i\theta }}r_{0}ie^{i\theta }d\theta =\lim _{r_{0}\rightarrow 0}i\int _{2\pi -\epsilon }^{\epsilon }\frac{\ln ^{3}\left ( r_{0}e^{i\theta }\right ) }{1+r_{0}^{2}e^{i\theta }}r_{0}d\theta
But from part (a) we showed that 2\pi r_{0}\lim _{r_{0}\rightarrow 0}\frac{\left \vert \ln r_{0}+i\theta \right \vert _{\max }^{2}}{\left \vert 1+r_{0}^{2}e^{i\theta }\right \vert _{\min }}=0, hence it follows that the RHS above goes to zero. Therefore\begin{align*} \lim _{r_{0}\rightarrow 0}\int _{2\pi -\epsilon }^{\epsilon }\frac{\ln ^{3}\left ( r_{0}e^{i\theta }\right ) }{1+r_{0}^{2}e^{2i\theta }}r_{0}ie^{i\theta }d\theta & =\lim _{r_{0}\rightarrow 0}\int _{C_{r_{0}}}\frac{\ln ^{3}z}{1+z^{2}}dz\\ & =0 \end{align*}
Now we will do the same \lim _{R\rightarrow \infty }\int _{C_{R}}f\left ( z\right ) dz, let z=Re^{i\theta }. Hence dz=Rie^{i\theta }d\theta and the integral becomes \lim _{R\rightarrow \infty }\int _{\epsilon }^{2\pi -\epsilon }\frac{\ln ^{3}\left ( Re^{i\theta }\right ) }{1+R^{2}e^{2i\theta }}Rie^{i\theta }d\theta =\lim _{R\rightarrow \infty }i\int _{\epsilon }^{2\pi -\epsilon }\frac{\ln ^{3}\left ( \operatorname{Re}^{i\theta }\right ) }{1+R^{2}e^{2i\theta }}Rd\theta
But from part (a) we showed that 2\pi \lim _{R\rightarrow \infty }R\frac{\left \vert \ln R+i\theta \right \vert _{\max }^{2}}{1-R^{2}}=0, hence it follows that the RHS above goes to zero. Therefore\begin{align*} \lim _{R\rightarrow \infty }\int _{\epsilon }^{2\pi -\epsilon }\frac{\ln ^{3}\left ( Re^{i\theta }\right ) }{1+R^{2}e^{2i\theta }}Rie^{i\theta }d\theta & =\lim _{R\rightarrow \infty }\int _{C_{R}}\frac{\ln ^{3}z}{1+z^{2}}dz=0\\ & =0 \end{align*}