4.4 HW 4

  4.4.1 Problem 4.1(a), Chapter 4
  4.4.2 Problem 4.3, Chapter 4
  4.4.3 Problem 4.5, Chapter 4
  4.4.4 Problem 4.11, Chapter 4
  4.4.5 Problem 4.19, Chapter 4
  4.4.6 Problem 4.23, Chapter 4
  4.4.7 Problem 4.26, Chapter 4
  4.4.8 key solution
PDF (letter size)
PDF (legal size)

4.4.1 Problem 4.1(a), Chapter 4

Find Fourier transform of (a) e2(t1)u(t1)

SolutionX(ω)=x(t)ejωtdt=1e2(t1)eiωtdt=1e2te2eiωtdt=e21et(2+iω)dt=e2(2+iω)[et(2+iω)]1

Assuming Im(ω)<2 thenX(ω)=e2(2+iω)[0e2eiω]=e2(2+iω)[e2eiω]=eiω(2+iω)

4.4.2 Problem 4.3, Chapter 4

   4.4.2.1 Part a
   4.4.2.2 Part b

Determine the Fourier transform of each of the following periodic signals (a) sin(2πt+π4) (b) 1+cos(6πt+π8)

Solution

4.4.2.1 Part a

Since this is periodic signal, then we can not use X(ω)=x(t)ejωtdt which is for aperiodic signal. Instead we need to use 4.22 in the textbook which is X(ω)=k=2πakδ(ωkω0) From sin(2πt+π4) we see that ω0=2π, henceX(ω)=k=2πakδ(ω2kπ) Writing sin(ω0t+π4)=12jej(ω0t+π4)12jej(ω0t+π4)=(12jejπ4)ejω0t(12jejπ4)ejω0t shows that a1=12jejπ4 and a1=12jejπ4 and ak=0 for all other k. Hence above simplifies toX(ω)=2π(12jejπ4)δ(ω2π)+2π(12jejπ4)δ(ω+2π)=πjejπ4δ(ω2π)πjejπ4δ(ω+2π)

4.4.2.2 Part b

Since this is periodic signal, then its Fourier transform isX(ω)=k=2πakδ(ωkω0) From 1+cos(6πt+π8) we see that ω0=6π, henceX(ω)=k=2πakδ(ω6kπ) Writing 1+cos(6πt+π8)=1+(12ej(ω0t+π8)+12ej(ω0t+π8))=1+(12ejπ8ejω0t+12ejπ8ejω0t) shows that a1=12ejπ8 and a1=12ejπ8 and a0=1. Therefore the above becomesX(ω)=2πa1δ(ω+6π)+2πa0δ(ω)+2πa1δ(ω6π)=2π(12ejπ8)δ(ω+6π)+2πδ(ω)+2π(12ejπ8)δ(ω6π)=πejπ8δ(ω+6π)+2πδ(ω)+πejπ8δ(ω6π)

4.4.3 Problem 4.5, Chapter 4

Use the Fourier transform synthesis equation (4.8) to determine the inverse Fourier transform of X(jω)=|X(jω)|ejX(jω) where |X(jω)|=2(u(ω+3)u(ω3)),X(jω)=32ω+π

Solution

4.8 is (4.8)x(t)=12πX(ω)ejωtdω Hencex(t)=12π|X(jω)|ejX(jω)ejωtdω=12π2(u(ω+3)u(ω3))ej(32ω+π)ejωtdω

But u(ω+3)u(ω3) is one over ω=33 and zero otherwise. The above simplifies tox(t)=12π332ej(32ω+π)ejωtdω=1π33ejπej32ωejωtdω=ejππ33ej(32+t)ωdω

But ejπ=1 and ej(32+t)ωdω=ej(32+t)ωj(32+t), hence the above becomesx(t)=1π1j(32+t)[ej(32+t)ω]33=1π(32+t)(ej3(32+t)ej3(32+t)j)=1π(32+t)2(sin(3(32+t)))=2π(t32)sin(3(t32))

4.4.4 Problem 4.11, Chapter 4

Given the relationships y(t)=x(t)h(t) and g(t)=x(3t)h(3t) and given that x(t) has Fourier transform X(jω) and h(t) has Fourier transform H(jω), use Fourier transform properties to show that g(t) has the form g(t)=Ay(Bt). Determine the values of A and B

Solution

The main relation to use is that if y(t)Y(ω) then y(at)1aY(ωa). Therefore x(3t)13X(ω3) and h(3t)13H(ω3). Hence since g(t)=x(3t)h(3t) then G(ω)=13X(ω3)13H(ω3)=13(13X(ω3)H(ω3))

But X(ω3)H(ω3)=Y(ω3). Therefore the above becomes

G(ω)=13(13Y(ω3))

Inverse Fourier transform gives

g(t)=13y(3t)

Where in the above, we used 13Y(ω3)y(3t). Hence A=13,B=3

4.4.5 Problem 4.19, Chapter 4

Consider a causal LTI system with frequency response H(jω)=1jω+3. For a particular input x(t) this system is observed to produce the output y(t)=e3tu(t)e4tu(t). Determine x(t).

Solutiony(t)=x(t)h(t) Taking Fourier transform givesY(ω)=X(ω)H(ω) HenceX(ω)=Y(ω)H(ω) But y(t)=e3tu(t)e4tu(t), therefore, from table Y(ω)=13+jω14+jω=(4+jω)(3+jω)(3+jω)(4+jω)=1(3+jω)(4+jω) and the above becomesX(ω)=1(3+jω)(4+jω)H(ω) But we are given that H(jω)=1jω+3. The above simplifies toX(ω)=1(3+jω)(4+jω)1jω+3=14+jω

From tablesx(t)=e4tu(t)

4.4.6 Problem 4.23, Chapter 4

   4.4.6.1 Part a
   4.4.6.2 Part b

pict
Figure 4.57:Problem description

Solution

4.4.6.1 Part a

First we find the Fourier transform of x0(t). Since this is a periodic, then x0(t)X0(ω) and X0(ω)=x0(t)ejωtdt=01etejωtdt=01et(1+jω)dt=11+jω[et(1+jω)]01=11+jω(e(1+jω)1)=1e(1+jω)1+jω

From table 4.1, property 4.3.5, Fourier transform of x(t)=X(ω). Hence x0(t)X0(ω). Therefore, using the above result and taking its complex conjugate givesX0(ω)=1e(1jω)1jω Therefore the Fourier transform of x0(t)+x0(t)X1(ω)=X0(ω)+X0(ω) This is by linearity property. HenceX1(ω)=X0(ω)+X0(ω)=1e(1+jω)1+jω+1e(1jω)1jω=(1jω)(1e(1+jω))+(1+jω)(1e(1jω))(1+jω)(1jω)=1e(1+jω)jω(1e(1+jω))+(1e(1jω))+jω(1e(1jω))1+ω2=1e(1+jω)jω+jωe(1+jω)+(1e(1jω))+jωjωe(1jω)1+ω2=1e(1+jω)+jωe(1+jω)+1e(1jω)jωe(1jω)1+ω2=1e1ejω+jωe1ejω+1e1ejωjωe1ejω1+ω2=1e1(ejω+ejω)jωe1(ejωejω)1+ω2=11+ω2e11+ω2(ejω+ejω)+ωe11+ω2(ejωejω)j=11+ω22e(1+ω2)cosω+2ωe(1+ω2)sinω

The following is a plot of the above

pict
Figure 4.58:Plot of X(ω)

We see that X1(ω) is even and real. This agrees with table 4.1, property 4.3.3 which says that for real x(t) which is even, then its Fourier transform is real and even.

4.4.6.2 Part b

We found X0(ω)=1e(1+jω)1+jω above. Hence x0(t)X0(ω)=1e(1jω)1jω=1e(1jω)jω1. ThereforeX2(ω)=X0(ω)X0(ω)=1e(1+jω)1+jω+1e(1jω)jω1=(jω1)(1e(1+jω))+(1+jω)(1e(1jω))(1+jω)(jω1)=jω(1e(1+jω))(1e(1+jω))+(1e(1jω))+jω(1e(1jω))jω1ω2jω=jωjωe(1+jω)1+e(1+jω)+1e(1jω)+jωjωe(1jω)(1+ω2)=2jωjωe(1+jω)+e(1+jω)e(1jω)jωe(1jω)(1+ω2)=2jωjωe1ejω+e1ejωe1ejωjωe1ejωjωω22=2jωjωe1(ejω+ejω)e1(ejωejω)(1+ω2)=2jω(1+ω2)jωe1(ejω+ejω)(1+ω2)e1ejωejω(1+ω2)=2jω(1+ω2)2jωe1cosω(1+ω2)2je1sin(ω)(1+ω2)

HenceX2(ω)=j(2ω(1+ω2)+2ωcosωe(1+ω2)+2sin(ω)e(1+ω2))=je(1+ω2)(2eω+2ωcosω+2sin(ω))

We see that X2(ω) is pure imaginary. This agrees with table 4.1, property 4.3.3 which says that for real x(t) which is odd, then its Fourier transform is pure imaginary and odd.

The following is a plot of the above which shows that the imaginary part of X2(ω) is odd

pict
Figure 4.59:Plot of imaginary part of X(ω)

4.4.7 Problem 4.26, Chapter 4

   4.4.7.1 Part a
   4.4.7.2 Part b

pict
Figure 4.60:Problem description

Solution

4.4.7.1 Part a

Part i y(t)=x(t)h(t) Taking Fourier transform the above, convolution becomes multiplicationY(ω)=X(ω)H(ω) Given that x(t)=te2tu(t), then from tables X(ω)=1(2+jω)2 and given that h(t)=e4tu(t) then from table 4.2 H(ω)=14+jω. Hence the above becomesY(ω)=1(2+jω)2(4+jω) Doing partial fractions. Let s=jω then 1(2+s)2(4+s)=A(2+s)2+B2+s+C4+s=A(4+s)+B((2+s)(4+s))+C(2+s)2(2+s)2(4+s)

Expanding numerator1=4A+8B+4C+Bs2+Cs2+As+6Bs+4Cs1=(4A+8B+4C)+s(A+6B+4C)+s2(B+C)

Comparing coefficients1=4A+8B+4C0=A+6B+4C0=B+C

Or(484164011)(ABC)=(100) Gaussian elimination. Multiplying second row by 4 and subtracting result from first row gives(48401612011)(ABC)=(110) Multiplying third row by 16 and subtracting result from second row gives(48401612004)(ABC)=(111) Backsubstitution. Last row gives C=14. Second row gives 16B+12C=1 or 16B=112(14), hence 16B=4, Hence B=14. First row gives 4A+8B+4C=1 or 4A+8(14)+4(14)=1 or 4A2+1=1. Hence A=12. Therefore partial fractions gives1(2+s)2(4+s)=(12)(2+s)2+(14)2+s+(14)4+s Replacing s back with jωY(ω)=121(2+jω)21412+jω+1414+jω Applying inverse Fourier transform, using table givesy(t)=12te2tu(t)14e2tu(t)+14e4tu(t)

Part ii y(t)=x(t)h(t) Taking Fourier transform the above, convolution becomes multiplicationY(ω)=X(ω)H(ω) Given that x(t)=te2tu(t), then from tables X(ω)=1(2+jω)2 and given that h(t)=te4tu(t) then from table 4.2 H(ω)=1(4+jω)2. Hence the above becomesY(ω)=1(2+jω)2(4+jω)2 Doing partial fractions. Let s=jω then 1(2+s)2(4+s)2=A(2+s)2+B2+s+C(4+s)2+D(4+s)=A(4+s)2+B((2+s)(4+s)2)+C(2+s)2+D((2+s)2(4+s))(2+s)2(4+s)2

Expanding numerator1=16A+32B+4C+16D+20sD+As2+10Bs2+Bs3+Cs2+8s2D+s3D+8As+32Bs+4Cs1=(16A+32B+4C+16D)+s(20D+8A+32B+4C)+s2(A+10B+C+8D)+s3(B+D)

Comparing coefficients1=16A+32B+4C+16D0=8A+32B+4C+20D0=A+10B+C+8D0=B+D

Or(1632416832420110180101)(ABCD)=(1000) Gaussian elimination. replacing row 2 by result of subtracting 1/2 times row 1 from row 2(1632416016212110180101)(ABCD)=(11200) Replacing row 3 by result of subtracting 116 times row 1 from row 3(1632416016212083470101)(ABCD)=(1121160) Replacing row 3 by result of subtracting 12 times row 2 from row 3(1632416016212001410101)(ABCD)=(1123160) Replacing row 4 by result of subtracting 116 times row 2 from row 4(163241601621200141001814)(ABCD)=(112316132) Replacing row 4 by result of subtracting 12 times row 3 from row 4(16324160162120014100014)(ABCD)=(112316116) Backsubstitution phase:14D=116D=14

Third row gives 14C+D=316 or 14C+14=316C=14. Second row gives 16B+2C+12D=12 or 16B+2(14)+12(14)=12B=14. First row gives 16A+32B+4C+16D=1 or 16A+32(14)+4(14)+16(14)=1,A=14.

Therefore partial fractions gives1(2+s)2(4+s)2=A(2+s)2+B2+s+C(4+s)2+D(4+s)=141(2+s)21412+s+141(4+s)2+141(4+s)

Replace s back with jωY(ω)=141(2+jω)21412+jω+141(4+jω)2+141(4+jω) Applying inverse Fourier transform, using table givesy(t)=14te2tu(t)14e2tu(t)+14te4tu(t)+14e4tu(t)

Part iii y(t)=x(t)h(t) Taking Fourier transform the above, convolution becomes multiplicationY(ω)=X(ω)H(ω) Given that x(t)=etu(t), then from tables X(ω)=1(1+jω) and given that h(t)=etu(t) then H(ω)=11jω. Hence the above becomesY(ω)=1(1+jω)1(1jω) Doing partial fractions. Let s=jω then 1(1+s)1(1s)=A(1+s)+B1s Hence A=(1(1s))s=1=12 and B=(1(1+s))s=1=12. Hence Y(ω)=121(1+jω)+1211jω Thereforey(t)=12etu(t)+12etu(t) The above means for t<0,y(t)=12et and for t>0,y(t)=12et.

4.4.7.2 Part b

x(t)=e(t2)u(t2), h(t)=u(t+1)u(t3). Let us first find X(ω) and H(ω)X(ω)=e(t2)u(t2)ejωtdt=2e(t2)ejωtdt=2ete2ejωtdt=e22et(1+jω)dt=e21+jω[et(1+jω)]2=e21+jω(0e2(1+jω))=e2e2(1+jω)1+jω=e22jω+21+jω=e2jω1+jω

AndH(ω)=u(t+1)u(t3)ejωtdt=13ejωtdt=1jω(ejωt)13=1jω(e3jωejωt)=1jωejω(ej2ωej2ωt)=1jωejω(ej2ωtej2ω)=1ωejω(ej2ωtej2ωj)=2ωejωsin(2ω)

Hence Y(ω)=H(ω)X(ω)=e2jω1+jω(2ωejωsin(2ω))=2ω(1+jω)e2jωejωsin(2ω)(1)=2ω(1+jω)e3jωsin(2ω)

Now, y(t)=x(t)h(t)=x(τ)h(tτ)dτ

Folding h(t). For t<1, then y(t)=0. For 2<1+t<6 or 1<t<5y(t)=21+tx(τ)dτ=21+te(τ2)dτ=(e(τ2))21+t=(e(1+t2)e(22))=(e(1+t)1)=1e1t

For 6<1+t or t>5y(t)=t3t+1x(τ)dτ=t3t+1e(τ2)dτ=(e(τ2))t31+t=(e(1+t2)e(t32))=(e(1+t)e(t5))=(e1te5t)=e5te1t

Hencey(t)={0t<11e1t1<t<5e5te1tt>5 The above can be written as y(t)y(t)=(1e1t)(u(t1)u(t5))+(e5te1t)u(t5)=u(t1)u(t5)e1t(u(t1)u(t5))+(e5te1t)u(t5)=u(t1)u(t5)e1tu(t1)+e1tu(t5)+e5tu(t5)e1tu(t5)(2)=u(t1)u(t5)e1tu(t1)+e5tu(t5)

Taking the Fourier transform of the above from tables u(t1)1jωejω+πδ(ω)u(t5)1jωe5jω+πδ(ω)e1tu(t1)ejω1+jωe5tu(t5)e5jω1+jω

Hence Y(ω) isY(ω)=1jωejω+πδ(ω)(1jωe5jω+πδ(ω))ejω1+jω+e5jω1+jω=1jωejω1jωe5jωejω1+jω+e5jω1+jω=e3jωω(1je2jω1je2jω)ejω1+jω+e5jω1+jω=e3jωω2(sin2ω)e3jω1+jω(e2jωe2jω)=e3jωω2(sin2ω)2e3jωj+ωsin2ω=2e3jωsin2ω(1ω1j+ω)=2e3jωsin2ω(j+ωωω(ω+j))=2e3jωsin2ωjω(ω+j)=2e3jωsin2ω1ω(1+jω)

Comparing the above to (1) shows they are the same.

Hence this shows that Fourier transform of x(t)h(t) gives same answer as H(ω)X(ω)

4.4.8 key solution

PDF